WorldWideScience

Sample records for filter vessel ceramic

  1. Olivine, dolomite and ceramic filters in one vessel to produce clean gas from biomass.

    Science.gov (United States)

    Rapagnà, Sergio; Gallucci, Katia; Foscolo, Pier Ugo

    2018-01-01

    Heavy organic compounds produced during almond shells gasification in a steam and/or air atmosphere, usually called tar, are drastically reduced in the product gas by using simultaneously in one vessel a ceramic filter placed in the freeboard and a mixture of olivine and dolomite particles in the fluidized bed of the gasifier. The content of tar in the product gas during a reference gasification test with air, in presence of fresh olivine particles only, was 8600mg/Nm 3 of dry gas. By gasifying biomass with steam at the same temperature level of 820°C in a bed of olivine and dolomite (20% by weight), and in the presence of a catalytic ceramic filter inserted in the freeboard of the fluidized bed gasifier, the level of tar was brought down to 57mg/Nm 3 of dry producct gas, with a decrease of more than two orders of magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  3. Formulation of nano-ceramic filters used in separation of heavy metals . Part II: Zirconia ceramic filters

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou EI-Nour, F.H.; Abdel-Kbalik, M.

    2007-01-01

    Zirconia ceramic filters are prepared using polymeric sol-gel process. An optimization of synthesis parameters was studied to give cracked free coated nano porous film with high performance quality. Zirconia ceramic filters are characterized to select tbe optimized conditions that give tbe suitable zirconia filter used in heavy metal separation. The ceramic filters were characterized using BET method for surface measurements, mercury porosimeter for pore size distribution analysis and coating thickness measurements, SEM for microstructural studies and atomic absorption spectrophotometer (AAS) for metal analysis. The results indicated that zirconia ceramic filters. show high separation performance for cadmium, cupper, iron, manganese and lead

  4. High flow ceramic pot filters.

    Science.gov (United States)

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-11-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High flow ceramic pot filters

    NARCIS (Netherlands)

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more

  6. Nondestructive quality assurance of ceramic filters using noncontact dynamic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yue, P.; Chen, S.E.; Nishihama, Y. [University of Alabama, Birmingham, AL (United States). Dept. of Civil & Environmental Engineering

    2005-06-01

    Ceramic candle filters are stiff cylindrical structures arranged in rosettes in a hot gas vessel. Custom-made with strong composite materials, these filters are designed to withstand heating and cooling cycles of very high temperature gradients during coal energy production processes. To ensure consistency in the manufactured filters, noncontact dynamic characterization using laser vibrometry is proposed as a factory quality control technique. To evaluate the proposed technique, a sensitivity study using both contact and noncontact vibration measurements is first conducted. The shift in natural vibration frequencies is used as a quality indicator for likely manufacturing variables. Six candle filters are tested using dynamic impact tests. Contact and noncontact results are compared with theoretical natural frequency values, which show that laser results were 'noisier' due to dropout from speckle noises. The results are used to establish the sensitivity of the technique, which indicates that dynamic characterization is a valid nondestructive testing technique for quality assurance of the ceramic filters, provided that the manufactured filters have a quality variation greater than 3.21%.

  7. High flow ceramic pot filters

    OpenAIRE

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6–19 L h−1), but initial LRVs for E. coli o...

  8. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  9. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  10. Clay Ceramic Filter for Water Treatment

    Directory of Open Access Journals (Sweden)

    Zereffa Enyew Amare

    2017-05-01

    Full Text Available Ceramic water filters were prepared from different proportions of kaolin and soft wood and sintered at 900 °C, 950 °C, and 1000 °C. The flow rate, conductivity, pH of filtered water and removal efficiency (microbial, water hardness agent’s, nitrite and turbidity were analysed. The ceramic filter with 15 % saw dust, 80 % clay and 5 % grog that was fired at temperature of 950 °C or 1000 °C showed the best removal efficiency. Statistical ANOVA tests showed a significant difference between ceramic filters with various compositions in their removal efficiencies.

  11. Applicability study on a ceramic filter with hot-test conducted in a BWR plant

    International Nuclear Information System (INIS)

    Yamada, K.; Shirai, T.; Wada, M.; Nakamizo, H.

    1991-01-01

    Radioactive crud removal and filtration performance recovery by backwashing were examined with a BWR plant pool water using a ceramic filter element, 0.1 micron in nominal pore size and 0.2m 2 in filtration area. Totally 1114 hours filter operation were accumulated. Ten backwashings were accomplished during the test period. The following results were obtained. (1) Radioactive crud concentration in the filter effluent remained below 10 5 Bq/m 3 . (2) Both pressure loss through the filter and dose rate at the filter vessel surface were recovered to the initial level by each backwashing. The surface dose rate after backwashing was approximately 0.01mSv/h. According to these test results, it is confirmed that the ceramic filter is appropriate for the treatment of highly crud concentrated radioactive liquid, which is generated in nuclear facilities, such as spent fuel reprocessing plants. (author)

  12. Method of producing monolithic ceramic cross-flow filter

    Science.gov (United States)

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  13. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  14. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    Science.gov (United States)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  15. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  16. Assessment and evaluation of ceramic filter cleaning techniques: Task Order 19

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Zaharchuk, R.; Harbaugh, L.B.; Klett, M.

    1994-10-01

    The objective of this study was to assess and evaluate the effectiveness, appropriateness and economics of ceramic barrier filter cleaning techniques used for high-temperature and high-pressure particulate filtration. Three potential filter cleaning techniques were evaluated. These techniques include, conventional on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and a novel rapid pulse driven filter cleaning. These three ceramic filter cleaning techniques are either presently employed, or being considered for use, in the filtration of coal derived gas streams (combustion or gasification) under high-temperature high-pressure conditions. This study was divided into six subtasks: first principle analysis of ceramic barrier filter cleaning mechanisms; operational values for parameters identified with the filter cleaning mechanisms; evaluation and identification of potential ceramic filter cleaning techniques; development of conceptual designs for ceramic barrier filter systems and ceramic barrier filter cleaning systems for two DOE specified power plants; evaluation of ceramic barrier filter system cleaning techniques; and final report and presentation. Within individual sections of this report critical design and operational issues were evaluated and key findings were identified.

  17. Decontamination factors of ceramic filter in radioactive waste incineration system

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Ono, Tetsuo; Yoshiki, Shinya; Kouyama, Hiroaki; Nagae, Madoka; Sekiguchi, Ryosaku; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    A suspension-firing type radioactive waste incineration system is developed and cold demonstration testing of ceramic filters for the system are carried out. The incineration system, which is useful for a wide variety of waste materials, can serve to simplify the facilities and to reduce the costs for waste disposal. The incineration system can be used for drying-processing of concentrated waste liquids and disposal of flame resistant materials including ion exchange resins and rubber, as well as for ordinary combustible solid materials. An on-line backwash system is adopted to allow the ceramic filters to operate stably for a long period of time. For one-step filtering using the ceramic filter, the decontamination factor is greater than 10 5 for the processing of various wastes. In a practical situation, there exist vapor produced by the spray drier and the cladding in used ion exchange resin, which act to increase the decontamination performance of the ceramic filters to ensure safe operation. For the waste incineration system equipped with a waste gas processing apparatus consisting of a ceramic filter and HEPA filter, the overall decontamination factor is expected to be greater than 10 6 at portions down to the outlet of the ceramic filter and greater than 10 8 at portions down to the outlet of the HEPA filter. (Nogami, K.)

  18. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  19. Unsupervised Retinal Vessel Segmentation Using Combined Filters.

    Directory of Open Access Journals (Sweden)

    Wendeson S Oliveira

    Full Text Available Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods.

  20. Application of a Low Cost Ceramic Filter for Recycling Sand Filter Backwash Water

    Directory of Open Access Journals (Sweden)

    Md Shafiquzzaman

    2018-02-01

    Full Text Available The aim of this study is to examine the application of a low cost ceramic filter for the treatment of sand filter backwash water (SFBW. The treatment process is comprised of pre-coagulation of SFBW with aluminum sulfate (Alum followed by continuous filtration usinga low cost ceramic filter at different trans-membrane pressures (TMPs. Jar test results showed that 20 mg/L of alum is the optimum dose for maximum removal of turbidity, Fe, and Mn from SFBW. The filter can be operated at a TMP between 0.6 and 3 kPa as well as a corresponding flux of 480–2000 L/m2/d without any flux declination. Significant removal, up to 99%, was observed forturbidity, iron (Fe, and manganese (Mn. The flux started to decline at 4.5 kPa TMP (corresponding flux 3280 L/m2/d, thus indicated fouling of the filter. The complete pore blocking model was found as the most appropriate model to explain the insight mechanism of flux decline. The optimum operating pressure and the permeate flux were found to be 3 kPa and 2000 L/m2/d, respectively. Treated SFBW by a low cost ceramic filter was found to be suitable to recycle back to the water treatment plant. The ceramic filtration process would be a low cost and efficient option to recycle the SFBW.

  1. Characterization of magnesium phosphate ceramics incorporating off-gas filters

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Chul Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    Radioactive cesium (Cs-137) and technetium (Tc-99) are discharged from the spent fuel as gaseous forms during the head-end process in pyroprocess. These off-gases are safely trapped via porous ceramic filters made of fly ash and calcium based material. Spent filters have to be treated, converted into proper waste forms in order to be disposed safely at a repository. Conventional technology used to make waste forms such as vitrification requires high temperature and complex process. In this study, we report a promising method to stabilize spent filters containing cesium and technetium using magnesium phosphate ceramics. Simulated spent filters were fabricated by vaporizing nonradioactive cesium and rhenium (a surrogate of Tc) through the voloxidizer. The crushed filters were mixed with raw materials of magnesium phosphate ceramics, to be stabilized in the phosphate ceramic matrix. Characterization of the waste forms was made by the compressive strength test, apparent porosity, XRD analysis, and SEM analysis. The sample containing filters showed the excellent mechanical property, with the highest compressive strength of 38.1 MPa in the sample with 30 wt% of Cs-filter. Microstructural analysis suggests that wastes are embedded in the crystalline phase formed by an acid-base reaction. (author)

  2. Effects of SiC and MgO on aluminabased ceramic foams filters

    OpenAIRE

    CAO Da-li; ZHOU Jing-yi; JIN Yong-ming

    2007-01-01

    Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phas...

  3. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  4. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  5. Reactor vessel using metal oxide ceramic membranes

    Science.gov (United States)

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  6. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    Science.gov (United States)

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  7. Transient Heating and Thermomechanical Stress Modeling of Ceramic HEPA Filters

    Energy Technology Data Exchange (ETDEWEB)

    Bogle, Brandon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kelly, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haslam, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-29

    The purpose of this report is to showcase an initial finite-element analysis model of a ceramic High-Efficiency Particulate (HEPA) Air filter design. Next generation HEPA filter assemblies are being developed at LLNL to withstand high-temperature fire scenarios by use of ceramics and advanced materials. The filters are meant for use in radiological and nuclear facilities, and are required to survive 500°C fires over an hour duration. During such conditions, however, collecting data under varying parameters can be challenging; therefore, a Finite Element Analysis model of the filter was conducted using COMSOL ® Multiphysics to analyze the effects of fire. Finite Element Analysis (FEA) modelling offers several opportunities: researchers can quickly and easily consider impacts of potential design changes, material selection, and flow characterization on filter performance. Specifically, this model provides stress references for the sealant at high temperatures. Modeling of full filter assemblies was deemed inefficient given the computational requirements, so a section of three tubes from the assembly was modeled. The model looked at the transient heating and thermomechanical stress development during a 500°C air flow at 6 CFM. Significant stresses were found at the ceramic-metal interfaces of the filter, and conservative temperature profiles at locations of interest were plotted. The model can be used for the development of sealants that minimize stresses at the ceramic-metal interface. Further work on the model would include the full filter assembly and consider heat losses to make more accurate predictions.

  8. Nondestructive Evaluation of Ceramic Candle Filters Using Vibration Response

    International Nuclear Information System (INIS)

    Chen, Roger H.L.; Kiriakidis, Alejandro C.; Peng, Steve W.

    1997-01-01

    This study aims at the development of an effective nondestructive evaluation technique to predict the remaining useful life of a ceramic candle filter during a power plant's annual maintenance shutdown. The objective of the present on-going study is to establish the vibration signatures of ceramic candle filters at varying degradation levels due to different operating hours, and to study the various factors involving the establishment of the signatures

  9. Effects of Sawdust and Rice husk Additives on Physical Properties of Ceramic Filter

    Directory of Open Access Journals (Sweden)

    Majid. Muhi Shukur

    2017-11-01

    Full Text Available Two processes were employed for forming, specifically,  slip casting and semi-dry press were used to manufacture ceramic filters from local raw materials, red clay and combustible materials  (sawdust and rice husk. Different proportions of additives were used as pores forming agents to create porosity in ceramic filter. Dried filters  were fired at temperature to 1000°C.   It was found that the forming technique and additives have great effect on the physical properties of the produced ceramic filters. The slip casting technique was more suitable procedure for producing a porous ceramic filter. As well as, porosity increased as percentage of the combustible materials increased.

  10. Refining of high-temperature uranium melt by filtration through foam-ceramic filters

    International Nuclear Information System (INIS)

    Antsiferov, V.N.; Porozova, S.E.; Filippov, V.B.; Shtutsa, M.G.; Il'enko, E.V.; Kolotygina, N.S.

    2004-01-01

    An opportunity of applying foam-ceramic filters of corundum-mullite composition has been studied in refining natural uranium melts. Uranium melting conditions were chosen depending on technical characteristics of the foam ceramic filters. When their using, a portion of nonmetallic inclusions decreases by 20-30% (as little as 2.0-3.5% ingot weight), their size is reduced and their distribution in the ingot volume is equalized, contamination of uranium by the filter material being failed to be noticed. The parameters of foam-ceramic filters are optimized for provision of stable characteristics of uranium melt filtration process [ru

  11. Ceramic filters analysis for aluminium melting through microtomography technique

    International Nuclear Information System (INIS)

    Rocha, Henrique de Souza; Lopes, Ricardo Tadeu; Jesus, Edgar Francisco Oliveira de; Oliveira, Luis Fernando de; Duhm, Rainer; Feiste, Karsten L.; Reichert, Christian; Reimche, Wilfried; Stegemann, Dieter

    2000-01-01

    In this work a ceramic filters analysis is done through the microtomography for improvement of the aluminium melting process through the filter porosity control. Microtomography were obtained of ceramic filters with pore dimensions of 10, 20 and 30 ppi. The data were calculated by using an reconstruction algorithm for divergent beam implemented in the Nuclear Instrumentation Laboratory of COPPE/UFRJ and analysed through cells and windows separation according to the defined by Ray. For the analyses the Image Pro program were used where the cells have been detached by sphere inserted, adjusting by nine points, in the filter cavities. So, the size of the answer sphere were considered as the cell size. The windows were measured by straight lines secant to the window intersections

  12. Vessel Wall Reaction after Vena Cava Filter Placement

    International Nuclear Information System (INIS)

    Hoekstra, Arend; Elstrodt, Jan M.; Nikkels, Peter G.J.; Tiebosch, Anton T.M.G.

    2002-01-01

    Purpose: To evaluate the interaction between the Cordis Keeper vena caval filter and vessel wall in aporcine model.Methods: Implantation of the filter was performed in five pigs. Radiologic data concerning inferior vena cava(IVC) diameter and filter patency, filter leg span, and stability were collected. At 2 or 6 months post-implantation, histopathologic analysis of the IVC wall was performed.Results: All filters remained patent with no evidence of migration. However, at 6 months follow-up, two legs of one filter penetrated the vessel wall and were adherent to the liver. These preliminary results suggest that with the observed gradual increase in the filter span, the risk of caval wall penetration increases with time, especially in a relatively small IVC(average diameter 16 mm).Conclusion: The Cordis Keeper filter was well tolerated, but seems to be prone to caval wall penetration in the long term

  13. Vessel wall reaction after vena cava filter placement

    NARCIS (Netherlands)

    Hoekstra, A; Elstrodt, JM; Nikkels, PGJ; Tiebosch, ATMG

    2002-01-01

    Purpose: To evaluate the interaction between the Cordis Keeper vena caval filter and vessel wall in a porcine model. Methods: Implantation of the filter was performed in five pigs. Radiologic data concerning inferior vena cava (IVC) diameter and filter patency, filter leg span, and stability were

  14. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.

    Science.gov (United States)

    Ren, Dianjun; Colosi, Lisa M; Smith, James A

    2013-10-01

    This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.

  15. Mixed Non-Uniform Width / Evanescent Mode Ceramic Resonator Waveguide Filter With Wide Spurious Free Bandwidth

    OpenAIRE

    Afridi, S; Sandhu, M; Hunter, I

    2016-01-01

    This paper presents a method to improve the spurious performance of integrated ceramic waveguide filters. Nonuniform width ceramic waveguide resonator and evanescent mode ceramic resonators are employed together to the resonant frequencies of higher order modes. The proposed designs give 75% improvement in stop band response when compared to uniform width ceramic waveguide filter. Simulated results of two six pole chebyshev filters are presented here with improved stop band performance.

  16. Preparation of affordable and multifunctional clay-based ceramic filter matrix for treatment of drinking water.

    Science.gov (United States)

    Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G

    2018-02-01

    Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3  g -1 ), surface area (124.61 m 2  g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.

  17. The transition to farming and the ceramic trajectories in Western Eurasia. From ceramic figurines to vessels

    Directory of Open Access Journals (Sweden)

    Mihael Budja

    2006-12-01

    Full Text Available In Eurasia the invention of ceramic technology and production of fired-clay vessels has not necessarily been related to the dynamics of the transition to farming. The invention of ceramic technology in Europe was associated with female and animal figurine making in Gravettian technocomplex. The fired-clay vessels occurred first in hunter-gatherer contexts in Eastern Eurasia a millennia before the agriculture. The adoption of pottery making in Levant seems to correlate with the collapse of the ‘ritual economy’, social decentralisation and community fragmentation in the Levantine Pre-Pottery Neolithic. In South-eastern Europe the adoption of pottery making was closely associated with social, symbolic and ritual hunter-gatherers’ practices.

  18. Cast Steel Filtration Trials Using Ceramic-Carbon Filters

    Directory of Open Access Journals (Sweden)

    Lipowska B.

    2014-12-01

    Full Text Available Trials of cast steel filtration using two types of newly-developed foam filters in which carbon was the phase binding ceramic particles have been conducted. In one of the filters the source of carbon was flake graphite and coal-tar pitch, while in the other one graphite was replaced by a cheaper carbon precursor. The newly-developed filters are fired at 1000°C, i.e. at a much lower temperature than the currently applied ZrO2-based filters. During filtration trials the filters were subjected to the attack of a flowing metal stream having a temperature of 1650°C for 30 seconds.

  19. Software for tomographic analysis: application in ceramic filters

    International Nuclear Information System (INIS)

    Figuerola, W.B.; Assis, J.T.; Oliveira, L.F.; Lopes, R.T.

    2001-01-01

    New methods for acquiring data have been developed with the technological advances. With this, it has been possible to obtain more precise data and, consequently produce results with greater reliability. Among the variety of acquisition methods available, those that have volume description, as CT (Computerized Tomography) and NMR (Nuclear Magnetic Resonance) stand out. The models of volumetric data (group of data that describe a solid object from a three dimensional space) are being greatly used in diversity of areas as a way of inspection, modeling and simulation of objects in a three - dimensional space. Applications of this model are already found in Mechanic Engineering, Geosciences, Medicine and other areas. In the area of engineering it is sometimes necessary to use industrial CT as the only non-invasive form of inspection the interior of pieces without destroying them. The 3D micro focus X-ray tomography is one technique of non destructive testing used in the most different areas of science and technology, given its capacity to generate clean images (practically free of the unhappiness effect) and high resolution reconstructions. The unsharpness effect minimization and space resolution improvement are consequences of the focal spot size reduction in the X-ray micro focus tube to dimensions smaller than 50 mm. The ceramic filters are used in a wide area in the metallurgic industry, particularly in the cast aluminum where they are used to clean the waste coming through the liquid aluminum. The ceramic filters used in this work are manufactured by FUSICO (German company) and they are constructed from foams. They are manufactured at three models: 10, 20 and 30 ppi (porous per inch). In this paper we present the development of software to analyze and characterize ceramic filters, which can be divided in four stages. This software was developed in C++ language, using objects oriented programming. It is also capable of being executed in multiple platforms (Windows

  20. Filters for mobile radio from high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Peterson, G.E.; Wong, E.; Alford, N.McN.

    1990-01-01

    Mobile radio frequencies lie between 30 MHz and 1,000 MHz. This frequency range is ideal for ceramic high T c superconductors. We have designed Chebyshev, Butterworth and interdigital filters that can employ high T c superconductors in the form of rods, tubes and helices. In general, the performance of these filters at milliwatt power levels is excellent. We will describe fabrication of the superconductors and filter design

  1. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.

  2. Stabilization of Cs/Re trapping filters using magnesium phosphate ceramics

    International Nuclear Information System (INIS)

    Jae Hwan Yang; Jin Myeong Shin; Chang Hwa Lee; Chul Min Heo; Min Ku Jeon; Kweon Ho Kang

    2013-01-01

    The present study a promising method for stabilizing spent filters trapping cesium and technetium by using magnesium phosphate ceramics. Simulated spent filters were fabricated by vaporizing nonradioactive cesium and rhenium (a surrogate of Tc) through the voloxidizer. In order to reveal the characteristics of spent filters, phase structures and thermal stability were analyzed by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and thermogravimetric analysis techniques. Waste forms were fabricated by crushing spent filters and mixing them with magnesium oxide and potassium phosphate. Characterizations of the waste forms were performed by the analyses of compressive strength, apparent porosity, XRD, and scanning electron microscopy. The waste forms showed the excellent mechanical property compared with that of ordinary Portland cement, with the highest compressive strength of 38.1 MPa in the sample with 30 wt% of Cs-filter. Microstructural analysis suggests that waste materials are encapsulated by the binding matrix composed of magnesium potassium phosphate. The results of characterization suggest that fabricating a sound and durable waste form is possible with magnesium phosphate ceramics. (author)

  3. The protective role of ceramic filters against natural radioactivity of water

    International Nuclear Information System (INIS)

    Domanski, T.; Bakir, Y.Y.Y.; El-Zenki, S.; Bem, H.

    1992-01-01

    The paper presents results of measurements of the natural radioactivity of tap water where samples were taken in front of, and behind the ceramic filter commonly used in houses for the purification of tap water. Altogether, 289 samples were taken, processed and measured during 1985-1986 in Kuwait. Results reveal the fact that ceramic filters reduce substantially the natural radioactivity in water (the 'gross' alpha activity reduced by the factor 2.18 ± 18%; the 'gross' beta by 1.53 ± 1.6%. (author)

  4. Effects of Sawdust and Rice husk Additives on Physical Properties of Ceramic Filter

    OpenAIRE

    Majid. Muhi Shukur; Mohsin Abbas Aswad; Saba Mohamed Bader

    2017-01-01

    Two processes were employed for forming, specifically,  slip casting and semi-dry press were used to manufacture ceramic filters from local raw materials, red clay and combustible materials  (sawdust and rice husk). Different proportions of additives were used as pores forming agents to create porosity in ceramic filter. Dried filters  were fired at temperature to 1000°C.   It was found that the forming technique and additives have great effect on the physical properties of the produced ...

  5. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.

    Science.gov (United States)

    Oyanedel-Craver, Vinka A; Smith, James A

    2008-02-01

    Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.

  6. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.

    Science.gov (United States)

    Sil Kar, Sudeshna; Maity, Santi P

    2016-09-01

    Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass

  7. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  8. Microbiological effectiveness of locally produced ceramic filters for drinking water treatment in Cambodia.

    Science.gov (United States)

    Brown, Joe; Sobsey, Mark D

    2010-03-01

    Low-cost options for the treatment of drinking water at the household level are being explored by the Cambodian government and non-governmental organizations (NGOs) working in Cambodia, where many lack access to improved drinking water sources and diarrhoeal diseases are the most prevalent cause of death in children under 5 years of age. The ceramic water purifier (CWP), a locally produced, low-cost ceramic filter, is now being implemented by several NGOs, and an estimated 100,000+households in the country now use them for drinking water treatment. Two candidate filters were tested for the reduction of bacterial and viral surrogates for waterborne pathogens using representative Cambodian drinking water sources (rainwater and surface water) spiked with Escherichia coli and bacteriophage MS2. Results indicate that filters were capable of reducing key microbes in the laboratory with mean reductions of E. coli of approximately 99% and mean reduction of bacteriophages of 90-99% over >600 litres throughput. Increased effectiveness was not observed in filters with an AgNO3 amendment. At under US$10 per filter, locally produced ceramic filters may be a promising option for drinking water treatment and safe storage at the household level.

  9. A dense cell retention culture system using stirred ceramic membrane reactor.

    Science.gov (United States)

    Suzuki, T; Sato, T; Kominami, M

    1994-11-20

    A novel reactor design incorporating porous ceramic tubes into a stirred jar fermentor was developed. The stirred ceramic membrane reactor has two ceramic tubular membrane units inside the vessel and maintains high filtration flux by alternating use for filtering and recovering from clogging. Each filter unit was linked for both extraction of culture broth and gas sparging. High permeability was maintained for long periods by applying the periodical control between filtering and air sparging during the stirred retention culture of Saccharomyces cerevisiae. The ceramic filter aeration system increased the k(L)a to about five times that of ordinary gas sparing. Using the automatic feeding and filtering system, cell mass concentration reached 207 g/L in a short time, while it was 64 g/L in a fed-batch culture. More than 99% of the growing cells were retained in the fermentor by the filtering culture. Both yield and productivity of cells were also increased by controlling the feeding of fresh medium and filtering the supernatant of the dense cells culture. (c) 1994 John Wiley & Sons, Inc.

  10. Design and preliminary analysis of in-vessel core catcher made of high-temperature ceramics material in PWR

    International Nuclear Information System (INIS)

    Xu Hong; Ma Li; Wang Junrong; Zhou Zhiwei

    2011-01-01

    In order to protect the interior wall of pressure vessel from melting, as an additional way to external reactor vessel cooling (ERVC), a kind of in-vessel core catcher (IVCC) made of high-temperature ceramics material was designed. Through the high-temperature and thermal-resistance characteristic of IVCC, the distributing of heat flux was optimized. The results show that the downward average heat flux from melt in ceramic layer reduces obviously and the interior wall of pressure vessel doesn't melt, keeping its integrity perfectly. Increasing of upward heat flux from metallic layer makes the upper plenum structure's temperature ascend, but the temperature doesn't exceed its melting point. In conclusion, the results indicate the potential feasibility of IVCC made of high-temperature ceramics material. (authors)

  11. Development of laundry drainage treatment system with ceramic ultra filter

    International Nuclear Information System (INIS)

    Kanda, Masanori; Kurahasi, Takafumi

    1995-01-01

    A compact laundry drainage treatment system (UF system hereafter) with a ceramic ultra filter membrane (UF membrane hereafter) has been developed to reduce radioactivity in laundry drainage from nuclear power plants. The UF membrane is made of sintered fine ceramic. The UF membrane has 0.01 μm fine pores, resulting in a durable, heat-resistant, and corrosion-resistant porous ceramic filter medium. A cross-flow system, laundry drainage is filtrated while it flows across the UF membrane, is used as the filtration method. This method creates less caking when compared to other methods. The UF membrane is back washed at regular intervals with permeated water to minimize caking of the filter. The UF membrane and cross-flow system provides long stable filtration. The ceramic UF membrane is strong enough to concentrate suspended solids in laundry drainage up to a weight concentration of 10%. The final concentrated laundry drainage can be treated in an incinerator. The performance of the UF system was checked using radioactive laundry drainage. The decontamination factor of the UF system was 25 or more. The laundry drainage treatment capacity and concentration ratio of the UF system, as well as the service life of the UF membrane were also checked by examination using simulated non-radioactive laundry drainage. Even though laundry drainage was concentrated 1000 times, the UF system showed good permeated water quality and permeated water flux. (author)

  12. A study on the characteristics of the flow distribution in the Module Ceramic Filter during filter cleaning

    International Nuclear Information System (INIS)

    Chung, Jin-Do; Kim, Jang-Woo; Chung, Hwi-Bok; Im, Byoung-Uk; Chung, Eun-Ho; Yoon, Sang-Wook

    2010-01-01

    Ceramic filter has demonstrated as an attractive system to improve the efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion the Integrated Gasification Combined Cycle. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic filter. (author)

  13. Improved virus removal in ceramic depth filters modified with MgO.

    Science.gov (United States)

    Michen, Benjamin; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas

    2013-02-05

    Ceramic filters, working on the depth filtration principle, are known to improve drinking water quality by removing human pathogenic microorganisms from contaminated water. However, these microfilters show no sufficient barrier for viruses having diameters down to 20 nm. Recently, it was shown that the addition of positively charged materials, for example, iron oxyhydroxide, can improve virus removal by adsorption mechanisms. In this work, we modified a common ceramic filter based on diatomaceous earth by introducing a novel virus adsorbent material, magnesium oxyhydroxide, into the filter matrix. Such filters showed an improved removal of about 4-log in regard to bacteriophages MS2 and PhiX174. This is explained with the electrostatic enhanced adsorption approach that is the favorable adsorption of negatively charged viruses onto positively charged patches in an otherwise negatively charged filter matrix. Furthermore, we provide theoretical evidence applying calculations according to Derjaguin-Landau-Verwey-Overbeek theory to strengthen our experimental results. However, modified filters showed a significant variance in virus removal efficiency over the course of long-term filtration experiments with virus removal increasing with filter operation time (or filter aging). This is explained by transformational changes of MgO in the filter upon contact with water. It also demonstrates that filter history is of great concern when filters working on the adsorption principles are evaluated in regard to their retention performance as their surface characteristics may alter with use.

  14. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference

    Science.gov (United States)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Sims, P. C.; O'braztsova, A.

    2017-06-01

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference.

  15. The Influence of Grain Refiners on the Efficiency of Ceramic Foam Filters

    Science.gov (United States)

    Towsey, Nicholas; Schneider, Wolfgang; Krug, Hans-Peter; Hardman, Angela; Keegan, Neil J.

    An extensive program of work has been carried out to evaluate the efficiency of ceramic foam filters under carefully controlled conditions. Work reported at previous TMS meetings showed that in the absence of grain refiners, ceramic foam filters have the capacity for high filtration efficiency and consistent, reliable performance. The current phase of the investigation focuses on the impact grain refiner additions have on filter performance. The high filtration efficiencies obtained using 50 or 80ppi CFF's in the absence of grain refiners diminish when Al-3%Ti-1%B grain refiners are added. This, together with the impact of incoming inclusion loading on filter performance and the level of grain refiner addition are considered in detail. The new generation Al-3%Ti-0.15%C grain refiner has also been included. At typical addition levels (1kg/tonne) the effect on filter efficiency is similar to that for TiB2based grain refiners. The work was again conducted on a production scale using AA1050 alloy. Metal quality was determined using LiMCA and PoDFA. Spent filters were also analysed.

  16. Interactions of ceramic, metallic and polymeric filters with gaseous contaminants

    International Nuclear Information System (INIS)

    Haider, A.M.; Ma, Ce; Shadman, Farhang

    1993-01-01

    Outgassing characteristics of ceramic, metallic, and polymeric fitters for H 2 O, O 2 , CO 2 , and CH 4 were explored using APIMS in this study. The outgassing data has been normalized with respect to the parameters that varied from one filter to the other. Hydrocarbon outgassing is also explored both at room temperature from freshly installed filters as well as at elevated temperatures. Polymeric filters appeared to be more transparent but did show hydrocarbon outgassing when heated to 50 C

  17. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures: the filter collection efficiency.

    Science.gov (United States)

    de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R

    2006-08-25

    The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.

  18. Improvement of the steel quality through zirconia base ceramic filter

    International Nuclear Information System (INIS)

    Santos, Benedito M.; Foschini, Cesar R.; Santos, Ieda M.G.; Pinheiro, Adriano S.; Paskocimas, Carlos A.; Leite, Edson R.; Longo, Elson

    1997-01-01

    At the end of production, the steel presents inclusions own to the making process. Ceramics filters, with controlled porosity, are being produced to eliminate the impurities, so as to increase the good quality steel production. This work studies the optimization of the zirconia filters composition and production for siderurgical processes application. The study was done through the granulometric control, using BET, XRD and Hg Porosimetry. (author)

  19. The segregation of silver nanoparticles in low-cost ceramic water filters

    International Nuclear Information System (INIS)

    Larimer, Curtis; Ostrowski, Nicole; Speakman, Jacquelyn; Nettleship, Ian

    2010-01-01

    As an impregnated constituent in low-cost ceramic water filters, silver nanoparticles have a demonstrated antibacterial effect. The bactericidal mechanism is believed to be based on direct contact between silver and the cell wall of a contaminant organism. In this study microstructural analysis was used to examine the effect of the processing method on the distribution of silver nanoparticles in the filter material. Silver nanofluid was impregnated into fired clay ceramic samples by a low-cost soak-and-dry method. Analyses of filter samples by scanning electron microscopy, energy dispersive spectroscopy, and digital optical topological mapping showed that silver was concentrated in near surface pores, a condition that is not optimal for highest probability of silver contact. A simple experiment showed that segregation of silver occurs during the drying phase of impregnation. Drying curves showed that 90% of contained liquid evaporates from the external surface.

  20. Modeling the sustainability of a ceramic water filter intervention.

    Science.gov (United States)

    Mellor, Jonathan; Abebe, Lydia; Ehdaie, Beeta; Dillingham, Rebecca; Smith, James

    2014-02-01

    Ceramic water filters (CWFs) are a point-of-use water treatment technology that has shown promise in preventing early childhood diarrhea (ECD) in resource-limited settings. Despite this promise, some researchers have questioned their ability to reduce ECD incidences over the long term since most effectiveness trials conducted to date are less than one year in duration limiting their ability to assess long-term sustainability factors. Most trials also suffer from lack of blinding making them potentially biased. This study uses an agent-based model (ABM) to explore factors related to the long-term sustainability of CWFs in preventing ECD and was based on a three year longitudinal field study. Factors such as filter user compliance, microbial removal effectiveness, filter cleaning and compliance declines were explored. Modeled results indicate that broadly defined human behaviors like compliance and declining microbial effectiveness due to improper maintenance are primary drivers of the outcome metrics of household drinking water quality and ECD rates. The model predicts that a ceramic filter intervention can reduce ECD incidence amongst under two year old children by 41.3%. However, after three years, the average filter is almost entirely ineffective at reducing ECD incidence due to declining filter microbial removal effectiveness resulting from improper maintenance. The model predicts very low ECD rates are possible if compliance rates are 80-90%, filter log reduction efficiency is 3 or greater and there are minimal long-term compliance declines. Cleaning filters at least once every 4 months makes it more likely to achieve very low ECD rates as does the availability of replacement filters for purchase. These results help to understand the heterogeneity seen in previous intervention-control trials and reemphasize the need for researchers to accurately measure confounding variables and ensure that field trials are at least 2-3 years in duration. In summary, the CWF

  1. Penetration of the consolidant Paraloid® B-72 in Macuxi indigenous ceramic vessels investigated by neutron tomography

    Science.gov (United States)

    Stanojev Pereira, Marco A.; Pugliesi, Reynaldo

    2018-05-01

    The neutron tomography technique was applied in studying the penetration of the consolidant Paraloid® B-72 in contemporary indigenous ceramic vessels. The study was carried out for two distinct and controlled air humidity conditions, 40% and 90%, in which the vessels were exposed, before the consolidant application. The obtained images have proved that the penetration of Paraloid® B-72 in the ceramic does not depend on the humidity condition in which it was applied, moreover allowed a macro-visualization of the consolidant penetration in the ceramic vessel. As the vessels used in the present work were manufactured by an indigenous artisan, Macuxi, according to the same procedures and raw materials used by the ancient artisans, the results obtained can be used as a guide to assist experts, both in the study of archeological objects of Macuxi origin, as well as other objects that had been made by other tribes that lived in the same Amazon region, in Brazil.

  2. Study of loading/air back-pulse cleaning cycles on the performance of ceramic membrane filters

    International Nuclear Information System (INIS)

    Waggoner, Charles; Alderman, Steven; Parsons, Michael; Hogoncamp, Kristina; Alderman, Steven

    2007-01-01

    Available in abstract form only. Full text of publication follows: The most commonly identified threats to conventional glass fiber HEPA filter performance are moisture and rapid blinding of filters by smoke. Regenerable filter media composed of ceramics or sintered metal can be utilized as pre-filters to protect the more vulnerable glass fiber HEPA filters in the event of upset conditions. Additionally, used in a pre-filtering application, the use of these regenerable filters can potentially extend the lifetime of conventional units. A series of tests have been conducted using CeraMem ceramic membrane filters in an effort to evaluate their performance after repeated loading and air back pulse cleaning. This was done in an effort to access filter performance after repeated loading/cleaning cycles. The filters were loaded using a solid potassium chloride aerosol challenge. The filters were evaluated for pressure drop and filtering efficiency changes from one cleaning cycle to the next. Additionally, the particle size distribution of the aerosol penetrating the filters was measured. (authors)

  3. Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.

    Science.gov (United States)

    Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R

    2013-01-02

    The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance.

  4. Ceramic filters for bulk inoculation of nickel alloy castings

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2011-07-01

    Full Text Available The work includes the results of research on production technology of ceramic filters which, besides the traditional filtering function, playalso the role of an inoculant modifying the macrostructure of cast nickel alloys. To play this additional role, filters should demonstratesufficient compression strength and ensure proper flow rate of liquid alloy. The role of an inoculant is played by cobalt aluminateintroduced to the composition of external coating in an amount from 5 to 10 wt.% . The required compression strength (over 1MPa isprovided by the supporting layers, deposited on the preform, which is a polyurethane foam. Based on a two-level fractional experiment24-1, the significance of an impact of various technological parameters (independent variables on selected functional parameters of theready filters was determined. Important effect of the number of the supporting layers and sintering temperature of filters after evaporationof polyurethane foam was stated.

  5. Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria

    Science.gov (United States)

    Simonis, J. J.; Basson, A. K.

    Africa is one of the most water-scarce continents in the world but it is the lack of potable water which results in diarrhoea being the leading cause of death amongst children under the age of five in Africa (696 million children under 5 years old in Africa contract diarrhoea resulting in 2000 deaths per day: WHO and UNICEF, 2009). Most potable water treatment methods use bulk water treatment not suitable or available to the majority of rural poor in Sub-Saharan Africa. One simple but effective way of making sure that water is of good quality is by purifying it by means of a household ceramic water filter. The making and supply of water filters suitable for the removal of suspended solids, pathogenic bacteria and other toxins from drinking water is therefore critical. A micro-porous ceramic water filter with micron-sized pores was developed using the traditional slip casting process. This locally produced filter has the advantage of making use of less raw materials, cost, labour, energy and expertise and being more effective and efficient than other low cost produced filters. The filter is fitted with a silicone tube inserted into a collapsible bag that acts as container and protection for the filter. Enhanced flow is obtained through this filter system. The product was tested using water inoculated with high concentrations of different bacterial cultures as well as with locally polluted stream water. The filter is highly effective (log10 > 4 with 99.99% reduction efficiency) in providing protection from bacteria and suspended solids found in natural water. With correct cleaning and basic maintenance this filter technology can effectively provide drinking water to rural families affected by polluted surface water sources. This is an African solution for the more than 340 million people in Africa without access to clean drinking water (WHO and UNICEF, 2008).

  6. A robust technique based on VLM and Frangi filter for retinal vessel extraction and denoising.

    Directory of Open Access Journals (Sweden)

    Khan Bahadar Khan

    Full Text Available The exploration of retinal vessel structure is colossally important on account of numerous diseases including stroke, Diabetic Retinopathy (DR and coronary heart diseases, which can damage the retinal vessel structure. The retinal vascular network is very hard to be extracted due to its spreading and diminishing geometry and contrast variation in an image. The proposed technique consists of unique parallel processes for denoising and extraction of blood vessels in retinal images. In the preprocessing section, an adaptive histogram equalization enhances dissimilarity between the vessels and the background and morphological top-hat filters are employed to eliminate macula and optic disc, etc. To remove local noise, the difference of images is computed from the top-hat filtered image and the high-boost filtered image. Frangi filter is applied at multi scale for the enhancement of vessels possessing diverse widths. Segmentation is performed by using improved Otsu thresholding on the high-boost filtered image and Frangi's enhanced image, separately. In the postprocessing steps, a Vessel Location Map (VLM is extracted by using raster to vector transformation. Postprocessing steps are employed in a novel way to reject misclassified vessel pixels. The final segmented image is obtained by using pixel-by-pixel AND operation between VLM and Frangi output image. The method has been rigorously analyzed on the STARE, DRIVE and HRF datasets.

  7. formulation of nano-ceramic filters used in separation of heavy metals and nuclear technology

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou El-Nour, F.H.; Abdel-Khalik, M.

    2004-01-01

    the choice of suitable preparation methods and experimental preparation conditions to formulate ceramic filters of stable chemical -and thermal properties and of high mechanical strength and stable structure, which permit their use for separation of heavy metals at high separation conditions and to produce compact matrices suitable for radiation protection are the aim of this study . ceramic filters are characterized by multi- layered body including rigid support and one or more layers with pore size lower than that of the support. the top layer determines.the separation conditions of the whole system. the used ceramic filters include micro-, ultra- and nano-sized materials . alumina and titania substrates were prepared using the wet chemical techniques. optimization of the produced substrates was followed through comparative studies with standard reference commercial substrate. specific surface area measurements and pore size distribution using mercury porosimeter were carried out . the present study led to optimization of the experimental conditions to formulate the suitable substrate used in preparation of filters applied in separation of heavy metals. in addition, their use to produce compact matrices suitable for protection from the hazardous effect of some radioisotopes could applied

  8. Simplified Method for Groundwater Treatment Using Dilution and Ceramic Filter

    Science.gov (United States)

    Musa, S.; Ariff, N. A.; Kadir, M. N. Abdul; Denan, F.

    2016-07-01

    Groundwater is one of the natural resources that is not susceptible to pollutants. However, increasing activities of municipal, industrial, agricultural or extreme land use activities have resulted in groundwater contamination as occured at the Research Centre for Soft Soil Malaysia (RECESS), Universiti Tun Hussein Onn Malaysia (UTHM). Thus, aims of this study is to treat groundwater by using rainwater and simple ceramic filter as a treatment agent. The treatment uses rain water dilution, ceramic filters and combined method of dilute and filtering as an alternate treatment which are simple and more practical compared to modern or chemical methods. The water went through dilution treatment processes able to get rid of 57% reduction compared to initial condition. Meanwhile, the water that passes through the filtering process successfully get rid of as much as 86% groundwater parameters where only chloride does not pass the standard. Favorable results for the combination methods of dilution and filtration methods that can succesfully eliminate 100% parameters that donot pass the standards of the Ministry of Health and the Interim National Drinking Water Quality Standard such as those found in groundwater in RECESS, UTHM especially sulfate and chloride. As a result, it allows the raw water that will use clean drinking water and safe. It also proves that the method used in this study is very effective in improving the quality of groundwater.

  9. Effect of production variables on microbiological removal in locally-produced ceramic filters for household water treatment.

    Science.gov (United States)

    Lantagne, Daniele; Klarman, Molly; Mayer, Ally; Preston, Kelsey; Napotnik, Julie; Jellison, Kristen

    2010-06-01

    Diarrhoeal diseases cause an estimated 1.87 million child deaths per year. Point-of-use filtration using locally made ceramic filters improves microbiological quality of stored drinking water and prevents diarrhoeal disease. Scaling-up ceramic filtration is inhibited by lack of universal quality control standards. We investigated filter production variables to determine their affect on microbiological removal during 5-6 weeks of simulated normal use. Decreases in the clay:sawdust ratio and changes in the burnable decreased effectiveness of the filter. Method of silver application and shape of filter did not impact filter effectiveness. A maximum flow rate of 1.7 l(-hr) was established as a potential quality control measure for one particular filter to ensure 99% (2- log(10)) removal of total coliforms. Further research is indicated to determine additional production variables associated with filter effectiveness and develop standardized filter production procedures prior to scaling-up.

  10. SERS substrates fabricated using ceramic filters for the detection of bacteria

    Science.gov (United States)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A.

    2016-01-01

    SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored.

  11. Evaluation of an all-ceramic tubesheet assembly for a hot gas filter

    Energy Technology Data Exchange (ETDEWEB)

    Bitner, J.L. [Mallett Technology, Inc., Canonsburg, PA (United States); Mallett, R.H. [Mallett Technology, Inc., Research Triangle Park, NC (United States); Eggerstedt, P.M. [Industrial Filter and Pump Mfg. Co., Cicero, IL (United States); Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    A 10-inch thick, all-ceramic tubesheet design is evaluated for differential pressure and thermal conditions. Primary stresses from differential pressure are well within a safe allowable. The calculated peak thermal stresses at local discontinuities approach the modules of rupture for the ceramic material. Kiln tests were performed to demonstrate differential temperatures between hot center and cooler rim do not cause failures or visible tensile cracks. There appear to be mitigating mechanisms and design features in the Industrial Filter and Pump (IF and P) Mfg. Co. all-ceramic tubesheet design concept that add forgiveness in accommodating differential pressure and thermal loading stresses. A material characterization program on the ceramic materials is recommended.

  12. Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter

    Directory of Open Access Journals (Sweden)

    Karwiński A.

    2013-12-01

    Full Text Available Filtration of liquid casting alloys is used in casting technologies for long time. The large quantity of available casting filters allows using them depending on casting technology, dimensions of casting and used alloys. Technological progress of material science allows of using new materials in production of ceramic filters. In this article the Computed Tomography (CT technique was use in order to evaluate the thickness of branch in cross section of 20ppi ceramic-carbon bonded foam filter. Than the 3D image of foam filter was used in computer simulation of flow of liquid metal thru the running system.

  13. A novel methodology for adaptive wave filtering of marine vessels: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Hassani, V.; Pascoal, A.M.; Sorensen, A.J.

    This paper addresses a filtering problem that arises in the design of dynamic positioning systems for ships and offshore rigs subjected to the influence of sea waves. The vessel`s dynamic model adopted captures the sea state as an uncertain...

  14. High-performance ceramic filters for energy engineering. Final report; Filter aus Hochleistungskeramik fuer die Energietechnik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Westerheide, R. [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany); Adler, J. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany); Buhl, H. [ESK-SIC GmbH, Frechen-Grefrath (Germany); Fister, D. [H.C. Starck GmbH, Laufenburg (Germany); Krein, J. [LLB Lurgi Lentjes Energietechnik GmbH, Frankfurt (Germany); Voelker, W. [Annawerk GmbH, Roedental (Germany); Walch, A. [eds.] [USF Schumacher Umwelt- und Trenntechnik GmbH, Crailsheim (Germany)

    1999-09-30

    The hot gas particulate removal of many advanced coal fired power generation technologies works at temperatures above 800 C. The filter elements for these applications are often based on ceramic materials, e.g. silicon carbide. However, the mostly clay bonded silicon carbide is subject to creep and oxidation due to probable changes of the binder phase. In this work the development of new ceramic filter materials based on silicon carbide and alumina is described. The goal of the development was to increase the potential application temperature. To obtain the goal, the work was performed together with ceramic powder manufacturers, developers of ceramic materials and components as well as with companies who operate test facilities. Different routes were chosen to increase the high temperature resistance in consideration of corrosion resistance, fracture strength and pressure loss of the filter materials. One of these routes was the optimization of the binder phase of the silicon carbide materials. Other routes were concentrated on the base material and the investigation of other possibilities for the silicon carbide bonding, i.e. a recrystallization process of SiC (RSiC) or a self bonding of granulated small grained silicon carbide powder. Additionally filter materials based on alumina were developed. The report covers these material development oriented topics as well as the additional work in materials reliability, coating development and modeling of microstructure. (orig.) [German] In der Kombikraftwerkstechnik wird insbesondere bei Kohlefeuerung die Heissgasreinigung oft bei Temperaturen ueber 800 C eingesetzt. Die Filterelemente fuer diese Anwendungen bestehen oft aus keramischen Materialien. Das haeufig eingesetzte tongebundene Siliciumcarbid unterliegt jedoch besonders aufgrund der Beschaffenheit der Bindephase Kriech- und Oxidationsschaedigungen. In diesem Bericht wird die Entwicklung von neuen keramischen Filtermaterialien, die auf Siliciumcarbid oder

  15. Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane coated point-of-use ceramic water filters.

    Science.gov (United States)

    Zhang, Hongyin; Oyanedel-Craver, Vinka

    2013-09-15

    This study compares the disinfection performance of ceramic water filters impregnated with two antibacterial compounds: silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane (poly(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride (TPA)). This study evaluated these compounds using ceramic disks manufactures with clay obtained from a ceramic filter factory located in San Mateo Ixtatan, Guatemala. Instead of using full size ceramic water filters, manufactured 6.5 cm diameter ceramic water filter disks were used. Results showed that TPA can achieve a log bacterial reduction value of 10 while silver nanoparticles reached up to 2 log reduction using a initial concentration of bacteria of 10(10)-10(11)CFU/ml. Similarly, bacterial transport demonstrated that ceramic filter disks painted with TPA achieved a bacterial log reduction value of 6.24, which is about 2 log higher than the values obtained for disks painted with silver nanoparticles (bacterial log reduction value: 4.42). The release of both disinfectants from the ceramic materials to the treated water was determined measuring the effluent concentrations in each test performed. Regarding TPA, about 3% of the total mass applied to the ceramic disks was released in the effluent over 300 min, which is slightly lower than the release percentage for silver nanoparticles (4%). This study showed that TPA provides a comparable disinfection performance than silver nanoparticles in ceramic water filter. Another advantage of using TPA is the cost as the price of TPA is considerable lower than silver nanoparticles. In spite of the use of TPA in several medical related products, there is only partial information regarding the health risk associated with the ingestion of this compound. Additional long-term toxicological information for TPA should be evaluated before its future application in ceramic water filters. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Radioactivity decontamination efficiency of ceramic filter in an incineration volume reduction system of radioactive waste

    International Nuclear Information System (INIS)

    Kanbe, Hiromi; Mayuzumi, Masami; Yoshiki, Sinya; Sema, Toru; Koyama, Hiroaki; Ono, Tetsuo; Nagae, Madoka; Takaoku, Yoshinobu; Hozumi, Masahiro.

    1987-01-01

    The small pilot facility of a cyclone type suspension incineration system of radioactive waste was set up in order to evaluate the decontamination efficiency of a high efficiency ceramic filter. The evaluation was made by use of 54 Mn, 59 Fe, 60 Co, 65 Zn and 137 Cs. 1. The decontamination factor by one line of ceramic filter for every species were over 10 5 . 2. The decontamination factor increased by one oder when water vapor exists in off-gas. The same tendency was also observed when iron dioxide existed at the incineration of cation exchange resin. (author)

  17. The performance of biological anaerobic filters packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) during the restart period: effect of the C/N ratios and filter media.

    Science.gov (United States)

    Yue, Qinyan; Han, Shuxin; Yue, Min; Gao, Baoyu; Li, Qian; Yu, Hui; Zhao, Yaqin; Qi, Yuanfeng

    2009-11-01

    Two lab-scale upflow biological anaerobic filters (BAF) packed with sludge-fly ash ceramic particles (SFCP) and commercial ceramic particles (CCP) were employed to investigate effects of the C/N ratios and filter media on the BAF performance during the restart period. The results indicated that BAF could be restarted normally after one-month cease. The C/N ratio of 4.0 was the thresholds of nitrate removal and nitrite accumulation. TN removal and phosphate uptake reached the maximum value at the same C/N ratio of 5.5. Ammonia formation was also found and excreted a negative influence on TN removal, especially when higher C/N ratios were applied. Nutrients were mainly degraded within the height of 25 cm from the bottom. In addition, SFCP, as novel filter media manufactured by wastes-dewatered sludge and fly ash, represented a better potential in inhibiting nitrite accumulation, TN removal and phosphate uptake due to their special characteristics in comparison with CCP.

  18. Velocity measurements in a rigid ceramic filter in a parallel-flow arrangement

    International Nuclear Information System (INIS)

    Al-Hajeri, M.H.; Aroussi, A.; Witry, A.

    2002-01-01

    Rigid ceramic filters have been developed for cleaning the hot combustion gas streams upstream of the turbine in a combined cycle power plant. To obtain continues operation a periodic cleaning is necessary and the cleaning efficiency depends on the distribution of the filtration cake. Consequently uniform particle deposition on the filter element surface is desired. The flow around three filter elements in cross flow is investigated computationally using the commercial code FLUENT. Three filter elements are placed in a two-dimensional rectangle duct with fixed face velocity and varying the velocity ratio between the approach and face velocity. Particle trajectories are obtained for a number of particle diameters and different inlet (approach) velocity to face filtration velocity ratios to investigate the behavior of particles around the filter element. (author)

  19. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Science.gov (United States)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  20. Effectiveness of ceramic filters in capturing Giardia duodenalis cysts in experimentally contaminated water

    Directory of Open Access Journals (Sweden)

    Larissa Imaculada da Costa Sobrinho

    2016-04-01

    Full Text Available Giardia duodenalis is the main water-transmitted protozoan in developing countries. This study evaluated the effectiveness of ceramic filters in capturing G. duodenalis cysts and verified the porosity size needed to remove cysts from contaminated water. The study was conducted in the Laboratory of Parasitology at the University of Taubaté, where each filter unit was made by joining two Pet gallons, latex hose and a ceramic filter. Two porosity sizes were selected: 0.5-1.0 μm and 5-15 μm with or without activated carbon, and the assays were run in triplicate. Approximately 60 μL (53 cysts of G. duodenalis cysts were placed in 2 liters of distilled water. After the preparation of the contaminated water, this solution was run through the filter until the completely filtered. Afterwards, the filtrate was processed according to the methodology described by De Faria (2006, in order to concentrate parasitic elements. The results were statistically evaluated using ANOVA and Tukey tests, showing that the 0.5- 1,0 μm porosity filter candles (with and without activated carbon were able to retain 100% of cysts of G. duodenalis. This is a result significantly superior to the results obtained in the control group (p<0.05. On the other hand, for the candles with porosity of 5 15 μm, total retention occurred only in candles with activated carbon. Based upon our results, it can be concluded that, in candles with both porosity sizes with activated carbon, all filters showed a satisfactory efficacy for filtration of G. duodenalis cysts.

  1. Reducing diarrhea through the use of household-based ceramic water filters: a randomized, controlled trial in rural Bolivia.

    Science.gov (United States)

    Clasen, Thomas F; Brown, Joseph; Collin, Simon; Suntura, Oscar; Cairncross, Sandy

    2004-06-01

    Ceramic water filters have been identified as one of the most promising and accessible technologies for treating water at the household level. In a six-month trial, water filters were distributed randomly to half of the 50 participating households in a rural community in Bolivia; the remaining households continued to use customary water handling practices and served as controls. In four rounds of sampling following distribution of the filters, 100% of the 96 water samples from the filter households were free of thermotolerant coliforms compared with 15.5% of the control household samples. Diarrheal disease risk for individuals in intervention households was 70% lower than for controls (95% confidence interval [CI] = 53-80%; P ceramic water filters enable low-income households to treat and maintain the microbiologic quality of their drinking water.

  2. Bacterial treatment effectiveness of point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Summers, R Scott

    2009-08-01

    Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 10(6)CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 10(3)-10(5)CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.

  3. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Ferrier, Alban [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonnes Universités, UPMC Univ Paris 06, 75005 Paris (France); Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Ramírez, Mariola O.; Bausá, Luisa E. [Departamento Física de Materiales and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Ikesue, Akio [World Laboratory, Mutsuno, Atsuta-ku, Nagoya 456-0023 (Japan)

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  4. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  5. The Use of Innovative Ceramic-Carbon Bonded Filters Used for Filtration of Liquid Alloys and Evaluation of the Filtration Efficiency

    Directory of Open Access Journals (Sweden)

    Karwiński A.

    2014-08-01

    Full Text Available Extremely intense development of civilization requires from foundry casting technologies very high quality and not expensive castings. In the foundries, there are many treatments that allow increasing of the final properties of produced castings such as refining, modification, heat treatment, etc. One of the methods of increasing the quality of the casting by removing inclusions from the liquid alloy is filtration. The use of ceramic-carbon foam filters in filtration process is still analysed phenomenon that allows improving the final properties of castings. A modern method of research, testing and synthesis of innovative chemical compositions allows improving the properties of such filters. In the paper the evaluation of application properties of developed ceramic-carbon bonded foam filters is presented. The quality of the foam filters is evaluated by Computer Tomography and foundry trials in pouring of liquid metal in test molds. Additionally computer simulations were made to visualize the flow characteristics in the foam filter. The analysed filters are the result of the research work of Foundry Research Institute and the Institute of Ceramics and Building Materials, Refractory Materials Department in Gliwice.

  6. Novel algorithm by low complexity filter on retinal vessel segmentation

    Science.gov (United States)

    Rostampour, Samad

    2011-10-01

    This article shows a new method to detect blood vessels in the retina by digital images. Retinal vessel segmentation is important for detection of side effect of diabetic disease, because diabetes can form new capillaries which are very brittle. The research has been done in two phases: preprocessing and processing. Preprocessing phase consists to apply a new filter that produces a suitable output. It shows vessels in dark color on white background and make a good difference between vessels and background. The complexity is very low and extra images are eliminated. The second phase is processing and used the method is called Bayesian. It is a built-in in supervision classification method. This method uses of mean and variance of intensity of pixels for calculate of probability. Finally Pixels of image are divided into two classes: vessels and background. Used images are related to the DRIVE database. After performing this operation, the calculation gives 95 percent of efficiency average. The method also was performed from an external sample DRIVE database which has retinopathy, and perfect result was obtained

  7. Field investigation of arsenic in ceramic pot filter-treated drinking water.

    Science.gov (United States)

    Archer, A R; Elmore, A C; Bell, E; Rozycki, C

    2011-01-01

    Ceramic pot filters (CPFs) is one of several household water treatment technologies that is used to treat drinking water in developing areas. The filters have the advantage of being able to be manufactured using primarily locally available materials and local labor. However, naturally-occurring arsenic present in the clay used to make the filters has the potential to contaminate the water in excess of the World Health Organization drinking water standard of 0.01 mg/L. A manufacturing facility in Guatemala routinely rinses filters to reduce arsenic concentrations prior to distribution to consumers. A systemic study was performed to evaluate the change in arsenic concentrations with increasing volumes of rinse water. Arsenic field kit results were compared to standard method laboratory results, and dissolved versus suspended arsenic concentrations in CPF-treated water were evaluated. The results of the study suggest that rinsing is an effective means of mitigating arsenic leached from the filters, and that even in the absence of a formal rinsing program, routine consumer use may result in the rapid decline of arsenic concentrations. More importantly, the results indicate that filter manufacturers should give strong consideration to implementing an arsenic testing program.

  8. A Novel Characterization And Application Of PZT Ceramic As A Frequency Filter

    International Nuclear Information System (INIS)

    Fawzy, Y.H.A.; Ashry, H.A.; Soliman, F.A.S.; Swidan, A.M.; Abdelmagid, A.

    2008-01-01

    Nowadays, ceramic filters have become indispensable components in numerous electronic equipment for military and space applications, as well as, commercial ones. So, the present paper is devoted in a trial to shed further light on such new devices. In this concern, a wide frequency range samples, extends from 400 kHz up to 6.5 MHz, were chosen for studying the frequency response and related terminologies, dynamic characteristics, and equivalent circuits and their relation with the elemental composition of the different samples. Also, the filter circuit elements effect on the operation of such devices was investigated

  9. Fe-Ti/Fe (II)-loading on ceramic filter materials for residual chlorine removal from drinking water.

    Science.gov (United States)

    Man, Kexin; Zhu, Qi; Guo, Zheng; Xing, Zipeng

    2018-06-01

    Ceramic filter material was prepared with silicon dioxide (SiO 2 ), which was recovered from red mud and then modified with Fe (II) and Fe-Ti bimetal oxide. Ceramic filter material can be used to reduce the content of residual chlorine from drinking water. The results showed that after a two-step leaching process with 3 M hydrochloric acid (HCl) and 90% sulfuric acid (H 2 SO 4 ), the recovery of SiO 2 exceeded 80%. Fe (II)/Fe-Ti bimetal oxide, with a high adsorption capacity of residual chlorine, was prepared using a 3:1 M ratio of Fe/Ti and a concentration of 0.4 mol/L Fe 2+ . According to the zeta-potential, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, Fe (II) and Fe-Ti bimetal oxide altered the zeta potential and structural properties of the ceramic filter material. There was a synergistic interaction between Fe and Ti in which FeOTi bonds on the material surface and hydroxyl groups provided the active sites for adsorption. Through a redox reaction, Fe (II) transfers hypochlorite to chloride, and FeOTiCl bonds were formed after adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Performance Study of Ceramic Filter Module in Recirculated Aquaculture System (RAS)

    Science.gov (United States)

    Ng, L. Y.; Ng, C. Y.

    2017-06-01

    The growth of world population has led to significant increase in seafood demand over the world. Aquaculture has been widely accepted by many countries to increase the seafood production owing to the decline of natural seafood resources. The aquaculture productivity, however, is directly linked to the pond water quality. In this study, attempts were made to employ ceramic micro-filter to improve the pond water quality through filtration processes. There were two batches of filtration processes, short term (1 hour) and long term (48 hours). Significant improvements on real pond water quality were recorded through the short term microfiltration process, which reduced turbidity (96%), total suspended solids (TSS) (80%), biochemical oxygen demand (BOD) (72%), chemical oxygen demand (COD) (55%), ammonia (60%), nitrate (96%) and phosphorus (83%). The long term filtration process also showed high efficiency in the removal of solid particle and organic matters. The results showed that all of the parameters were successfully reduced to acceptable ranges (turbidityfiltered pond water. Current study showed that the microfiltration using ceramic micro-filter has high potential to be used in recirculating aquaculture system throughout the aquaculture activities in order to maintain the pond water quality, thus, increase the survival rate of cultured species.

  11. An optical method for characterizing carbon content in ceramic pot filters.

    Science.gov (United States)

    Goodwin, J Y; Elmore, A C; Salvinelli, C; Reidmeyer, Mary R

    2017-08-01

    Ceramic pot filter (CPF) technology is a relatively common means of household water treatment in developing areas, and performance characteristics of CPFs have been characterized using production CPFs, experimental CPFs fabricated in research laboratories, and ceramic disks intended to be CPF surrogates. There is evidence that CPF manufacturers do not always fire their products according to best practices and the result is incomplete combustion of the pore forming material and the creation of a carbon core in the final CPFs. Researchers seldom acknowledge the existence of potential existence of carbon cores, and at least one CPF producer has postulated that the carbon may be beneficial in terms of final water quality because of the presence of activated carbon in consumer filters marketed in the Western world. An initial step in characterizing the presence and impact of carbon cores is the characterization of those cores. An optical method which may be more viable to producers relative to off-site laboratory analysis of carbon content has been developed and verified. The use of the optical method is demonstrated via preliminary disinfection and flowrate studies, and the results of these studies indicate that the method may be of use in studying production kiln operation.

  12. Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment.

    Science.gov (United States)

    van der Laan, H; van Halem, D; Smeets, P W M H; Soppe, A I A; Kroesbergen, J; Wubbels, G; Nederstigt, J; Gensburger, I; Heijman, S G J

    2014-03-15

    In 2012 more than 4 million people used a ceramic pot filter (CPF) as household water treatment system for their daily drinking water needs. In the normal production protocol most low cost filters are impregnated with a silver solution to enhance the microbial removal efficiency. The aim of this study was to determine the role of silver during the filtration and subsequent storage. Twenty-two CPFs with three different silver applications (non, only outside and both sides) were compared in a long-term loading experiment with Escherichia coli (K12 and WR1) and MS2 bacteriophages in natural challenge water under highly controlled laboratory circumstances. No significant difference in Log Removal Values were found between the filters with different silver applications. The results show that the storage time in the receptacle is the dominant parameter to reach E. coli inactivation by silver, and not the contact time during the filtration phase. The hypothesis that the absence of silver would enhance the virus removal, due to biofilm formation on the ceramic filter element, could not be confirmed. The removal effectiveness for viruses is still of major concern for the CPF. This study suggests that the ceramic pot filter characteristics, such as burnt material content, do not determine E. coli removal efficacies, but rather the contact time with silver during storage is the dominant parameter to reach E. coli inactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Pulse cleaning flow models and numerical computation of candle ceramic filters.

    Science.gov (United States)

    Tian, Gui-shan; Ma, Zhen-ji; Zhang, Xin-yi; Xu, Ting-xiang

    2002-04-01

    Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one-dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.

  14. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier.

    Science.gov (United States)

    Brown, Joe; Sobsey, Mark D; Loomis, Dana

    2008-09-01

    A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time.

  15. Re-oxidation phenomena during the filtration of steel by means of ceramic filters

    Czech Academy of Sciences Publication Activity Database

    Stránský, K.; Bažant, J.; Dobrovská, J.; Rek, Antonín; Horáková, D.

    2009-01-01

    Roč. 43, č. 5 (2009), s. 261-265 ISSN 1580-2949 Institutional research plan: CEZ:AV0Z20650511 Keywords : filtration of steel * ceramic filters * capillary tube re-oxidation * micro-cleanliness of steel Subject RIV: JG - Metallurgy Impact factor: 0.143, year: 2009 http://www.imt.si/Revija/izvodi/mit095/stransky.pdf

  16. Improvement of retinal blood vessel detection by spur removal and Gaussian matched filtering compensation

    Science.gov (United States)

    Xiao, Di; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi

    2016-03-01

    Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. In this paper, we proposed approaches for improving the quality of blood vessel detection based on our initial blood vessel detection methods. A blood vessel spur pruning method has been developed for removing the blood vessel spurs both on vessel medial lines and binary vessel masks, which are caused by artifacts and side-effect of Gaussian matched vessel enhancement. A Gaussian matched filtering compensation method has been developed for removing incorrect vessel branches in the areas of low illumination. The proposed approaches were applied and tested on the color fundus images from one publicly available database and our diabetic retinopathy screening dataset. A preliminary result has demonstrated the robustness and good performance of the proposed approaches and their potential application for improving retinal blood vessel detection.

  17. Virus removal in ceramic depth filters based on diatomaceous earth.

    Science.gov (United States)

    Michen, Benjamin; Meder, Fabian; Rust, Annette; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas

    2012-01-17

    Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses. However, viruses may be retained by adsorption mechanisms due to intermolecular and surface forces. Here, we use three types of bacteriophages to investigate their removal during filtration and batch experiments conducted at different pH values and ionic strengths. Theoretical models based on DLVO-theory are applied in order to verify experimental results and assess surface forces involved in the adsorptive process. This was done by calculation of interaction energies between the filter surface and the viruses. For two small spherically shaped viruses (MS2 and PhiX174), these filters showed no significant removal. In the case of phage PhiX174, where attractive interactions were expected, due to electrostatic attraction of oppositely charged surfaces, only little adsorption was reported in the presence of divalent ions. Thus, we postulate the existence of an additional repulsive force between PhiX174 and the filter surface. It is hypothesized that such an additional energy barrier originates from either the phage's specific knobs that protrude from the viral capsid, enabling steric interactions, or hydration forces between the two hydrophilic interfaces of virus and filter. However, a larger-sized, tailed bacteriophage of the family Siphoviridae was removed by log 2 to 3, which is explained by postulating hydrophobic interactions.

  18. Compatibility between Hydraulic and Mechanical Properties of Ceramic Water Filters

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-05-01

    Full Text Available In this paper, ceramic water filters were produced by using ten mixtures of different ratios of red clay and sawdust under different production conditions. The physical properties of these filters were tested. The production conditions include five press pressures ranged from 10 to 50MPa and a firing schedule having three different final temperatures of 1000, 1070, and 1100˚C. The tests results of the physical properties were used to obtain best compatibility between the hydraulic and the mechanical properties of these filters. Results showed that as the press pressure and the firing temperature are increased, the bulk density and the compressive and bending strengths of the produced filters are increased, while, the porosity and absorption are decreased. As the sawdust content is increased the bulk density and the compressive and bending strengths are decreased, while, the porosity and absorption are increased. High hydraulic conductivity is obtained at a firing temperature of 1070˚C when the sawdust content is less than 10%. Otherwise, it is increased as sawdust content and the firing temperature are increased. Filters made of mixture 92.5% red clay and 7.5% sawdust formed . under a press pressure of 20MPa and a firing temperature of 1070˚C gave the best compatibility between hydraulic and mechanical properties. In this case, the hydraulic conductivity was 50mm/day, the compressive strength was 14MPa, and the bending strength was 10.8MPa.

  19. Process and device for changing a filter located in a vessel without breaking the confinement of the contaminated area

    International Nuclear Information System (INIS)

    Mueller, Georges.

    1982-01-01

    From the non contaminated area, the filter is enclosed in a leak tight bag which is affixed to the outside periphery of a supporting frame. The filter is placed in the bottom of the bag which is then welded in two places, a cut is then made between the two welds to achieve a sealed membrane separating the two halves of the vessel. An additional supporting frame is then placed on the frame. The new filter is secured in place and the sealed membrane is withdrawn from the contaminated part of the vessel [fr

  20. Experience operation of ceramic filter in Escatron; La experiencia de operacion del filtro ceramico en Escatron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the field of clean and efficient coal combustion technologies pressurized fluidized bed combustion stands out as one with experience and high potential. Being the PFBC a combined cycle, in order to reach the maximum efficiency the gas temperature to the gas turbine has to be as high as possible and with the highest degree of cleanness. The maximum cleanness, near 0 dust, can only be achieved by means of ceramic filters that present an almost absolute barrier to the dust in the gas. Presently the PFBC plants clean the gases by means of high efficiency cyclones that can not achieve an equivalent cleanness and consequently limit the temperature of the gases going to the gas turbine. In this scenery BWE as designer and constructor and ENDESA as final user have joint together to develop a high pressure, high temperature ceramic filter demonstration plant in the 80 MW PFBC power plant of Escatron. This project started in 1994 and finalized in 1999 and has been funded by the European Commission (Thermie Programs), Spain Ministry of Industry and PIE though OCIDE and OCICARBON. It has to be mentioned also the active technical and economical participation of the German Power electric company RWE. The ceramic filter demonstration plant installed in the 80 MW PFBC power plant of Escatron cleans 1/9 of the total gases going to the gas turbine substituting one of the nine secondary existent cyclons. (Author)

  1. Ceramic filters analysis for aluminium melting through microtomography technique; Analise de filtros ceramicos para fundicao de aluminio atraves da tecnica de microtomografia

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Henrique de Souza; Lopes, Ricardo Tadeu; Jesus, Edgar Francisco Oliveira de; Oliveira, Luis Fernando de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear; Duhm, Rainer; Feiste, Karsten L.; Reichert, Christian; Reimche, Wilfried; Stegemann, Dieter [Universidade de Hannover (Germany). IKPH

    2000-07-01

    In this work a ceramic filters analysis is done through the microtomography for improvement of the aluminium melting process through the filter porosity control. Microtomography were obtained of ceramic filters with pore dimensions of 10, 20 and 30 ppi. The data were calculated by using an reconstruction algorithm for divergent beam implemented in the Nuclear Instrumentation Laboratory of COPPE/UFRJ and analysed through cells and windows separation according to the defined by Ray. For the analyses the Image Pro program were used where the cells have been detached by sphere inserted, adjusting by nine points, in the filter cavities. So, the size of the answer sphere were considered as the cell size. The windows were measured by straight lines secant to the window intersections.

  2. Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification

    Directory of Open Access Journals (Sweden)

    Zafer Yavuz

    2017-01-01

    Full Text Available Retinal blood vessels have a significant role in the diagnosis and treatment of various retinal diseases such as diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. For this reason, retinal vasculature extraction is important in order to help specialists for the diagnosis and treatment of systematic diseases. In this paper, a novel approach is developed to extract retinal blood vessel network. Our method comprises four stages: (1 preprocessing stage in order to prepare dataset for segmentation; (2 an enhancement procedure including Gabor, Frangi, and Gauss filters obtained separately before a top-hat transform; (3 a hard and soft clustering stage which includes K-means and Fuzzy C-means (FCM in order to get binary vessel map; and (4 a postprocessing step which removes falsely segmented isolated regions. The method is tested on color retinal images obtained from STARE and DRIVE databases which are available online. As a result, Gabor filter followed by K-means clustering method achieves 95.94% and 95.71% of accuracy for STARE and DRIVE databases, respectively, which are acceptable for diagnosis systems.

  3. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  4. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests.

    Science.gov (United States)

    Sjögren, G; Sletten, G; Dahl, J E

    2000-08-01

    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  5. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-04-30

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench

  6. Vessel guardians: sculpture and graphics related to the ceramics of NorthEastern European hunter-gatherers

    Directory of Open Access Journals (Sweden)

    Ekaterina Aleksandrovna Kashina

    2015-12-01

    Full Text Available North-Eastern European hunter-gatherer ceramic sculptures, relief sculptures and graphic images on vessels are discussed. Five groups of finds are distinguished according to their chronology (4000–2500 BC cal and represented subject (birds, human head, human figure, mammal head etc.. Their production believes to be a female craft, their making had ritual aims and their emerging was independent from any influences of pastoral/agricultural societies.

  7. Preventing diarrhoea with household ceramic water filters: assessment of a pilot project in Bolivia.

    Science.gov (United States)

    Clasen, Thomas F; Brown, Joseph; Collin, Simon M

    2006-06-01

    In an attempt to prevent diarrhoea in a rural community in central Bolivia, an international non-governmental organization implemented a pilot project to improve drinking water quality using gravity-fed, household-based, ceramic water filters. We assessed the performance of the filters by conducting a five-month randomized controlled trial among all 60 households in the pilot community. Water filters eliminated thermotolerant (faecal) coliforms from almost all intervention households and significantly reduced turbidity, thereby improving water aesthetics. Most importantly, the filters were associated with a 45.3% reduction in prevalence of diarrhoea among the study population (p = 0.02). After adjustment for household clustering and repeated episodes in individuals and controlling for age and baseline diarrhoea, prevalence of diarrhoea among the intervention group was 51% lower than controls, though the protective effect was only borderline significant (OR 0.49, 95% CI: 0.24, 1.01; p = 0.05). A follow-up survey conducted approximately 9 months after deployment of the filters found 67% being used regularly, 13% being used intermittently, and 21% not in use. Water samples from all regularly used filters were free of thermotolerant coliforms.

  8. Study on plasma melting treatment of crucibles, ceramic filter elements, asbestos, and fly ash

    International Nuclear Information System (INIS)

    Hoshi, Akiko; Nakasio, Nobuyuki; Nakajima, Mikio

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) decided to adopt an advanced volume reduction program for low-level radioactive wastes. In this program, inorganic wastes are converted to stable glassy products suitable for disposal by a plasma melting system in the Waste Volume Reduction Facilities (WVRF). High melting point wastes such as refractories are excluded from the plasma melting treatment in the WVRF, and wastes difficult to handle such as asbestos are also excluded. However, it is describable to apply the plasma melting treatment to these wastes for stabilization and volume reduction from the viewpoint of disposal. In this paper, plasma melting test of crucibles, ceramic filter elements, asbestos, and simulated fly ashes were carried out as a part of technical support for WVRF. The plasma melting treatment was applicable for crucibles and asbestos because homogeneous and glassy products were obtained by controlling of waste and loading condition. It was found that SiC in ceramic filter elements was volatile with a plasma torch with inert gas, and adding reducer was ineffective against stabilizing volatile metals such as Zn, Pb in a solidified product in the melting test of simulated fly ash. (author)

  9. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.

    Science.gov (United States)

    Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I

    2016-11-01

    Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh -1 /NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A New Method for the Deposition of Metallic Silver on Porous Ceramic Water Filters

    Directory of Open Access Journals (Sweden)

    Kathryn N. Jackson

    2018-01-01

    Full Text Available A new method of silver application to a porous ceramic water filter used for point-of-use water treatment is developed. We evaluated filter performance for filters manufactured by the conventional method of painting an aqueous suspension of silver nanoparticles onto the filter and filters manufactured with a new method that applies silver nitrate to the clay-water-sawdust mixture prior to pressing and firing the filter. Filters were evaluated using miscible displacement flow-through experiments with pulse and continuous-feed injections of E. coli. Flow characteristics were quantified by tracer experiments using [3H]H2O. Experiments using pulse injections of E. coli showed similar performance in breakthrough curves between the two application methods. Long-term challenge tests performed with a continuous feed of E. coli and growth medium resulted in similar log removal rates, but the removal rate by nanosilver filters decreased over time. Silver nitrate filters provided consistent removal with lower silver levels in the effluent and effective bacterial disinfection. Results from continued use with synthetic groundwater over 4 weeks, with a pulse injection of E. coli at 2 and 4 weeks, support similar conclusions—nanosilver filters perform better initially, but after 4 weeks of use, nanosilver filters suffer larger decreases in performance. Results show that including silver nitrate in the mixing step may effectively reduce costs, improve silver retention in the filter, increase effective lifespan, and maintain effective pathogen removal while also eliminating the risk of exposure to inhalation of silver nanoparticles by workers in developing-world filter production facilities.

  11. Backflushable filter insert

    International Nuclear Information System (INIS)

    Keith, R.C.; Vandenberg, T.; Randolph, M.C.; Lewis, T.B.; Gillis, P.J. Jr.

    1988-01-01

    Filter elements are mounted on a tube plate beneath an accumulator chamber whose wall is extended by skirt and flange to form a closure for the top of pressure vessel. The accumulator chamber is annular around a central pipe which serves as the outlet for filtered water passing from the filter elements. The chamber contains filtered compressed air from supply. Periodically the filtration of water is stopped and vessel is drained. Then a valve is opened, allowing the accumulated air to flow from chamber up a pipe and down pipe, pushing the filtered water from pipe back through the filter elements to clean them. The accumulator chamber is so proportioned, relative to the volume of the system communicating therewith during backflushing, that the equilibrium pressure during backflushing cannot exceed the pressure rating of the vessel. However a line monitors the pressure at the top of the vessel, and if it rises too far a bleed valve is automatically opened to depressurise the system. The chamber is intended to replace the lid of an existing vessel to convert a filter using filter aid to one using permanent filter elements. (author)

  12. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier.

    Directory of Open Access Journals (Sweden)

    Nogol Memari

    Full Text Available The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE, Structured Analysis of the Retina (STARE and Child Heart and Health Study in England (CHASE_DB1 datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.

  13. OPTIMIZATION OF ADVANCED FILTER SYSTEMS; TOPICAL

    International Nuclear Information System (INIS)

    R.A. Newby; G.J. Bruck; M.A. Alvin; T.E. Lippert

    1998-01-01

    Reliable, maintainable and cost effective hot gas particulate filter technology is critical to the successful commercialization of advanced, coal-fired power generation technologies, such as IGCC and PFBC. In pilot plant testing, the operating reliability of hot gas particulate filters have been periodically compromised by process issues, such as process upsets and difficult ash cake behavior (ash bridging and sintering), and by design issues, such as cantilevered filter elements damaged by ash bridging, or excessively close packing of filtering surfaces resulting in unacceptable pressure drop or filtering surface plugging. This test experience has focused the issues and has helped to define advanced hot gas filter design concepts that offer higher reliability. Westinghouse has identified two advanced ceramic barrier filter concepts that are configured to minimize the possibility of ash bridge formation and to be robust against ash bridges should they occur. The ''inverted candle filter system'' uses arrays of thin-walled, ceramic candle-type filter elements with inside-surface filtering, and contains the filter elements in metal enclosures for complete separation from ash bridges. The ''sheet filter system'' uses ceramic, flat plate filter elements supported from vertical pipe-header arrays that provide geometry that avoids the buildup of ash bridges and allows free fall of the back-pulse released filter cake. The Optimization of Advanced Filter Systems program is being conducted to evaluate these two advanced designs and to ultimately demonstrate one of the concepts in pilot scale. In the Base Contract program, the subject of this report, Westinghouse has developed conceptual designs of the two advanced ceramic barrier filter systems to assess their performance, availability and cost potential, and to identify technical issues that may hinder the commercialization of the technologies. A plan for the Option I, bench-scale test program has also been developed based

  14. Optimization of an enhanced ceramic micro-filter for concentrating E.coli in water

    Science.gov (United States)

    Zhang, Yushan; Guo, Tianyi; Xu, Changqing; Hong, Lingcheng

    2017-02-01

    Recently lower limit of detection (LOD) is necessary for rapid bacteria detection and analysis applications in clinical practices and daily life. A critical pre-conditioning step for these applications is bacterial concentration, especially for low level of pathogens. Sample volume can be largely reduced with an efficient pre-concentration process. Some approaches such as hollow-fiber ultra-filtration and electrokinetic technique have been applied to bacterial concentration. Since none of these methods can provide a concentrating method with a stable recovery efficiency, bacterial concentration still remains challenging Ceramic micro- filter can be used to concentrate the bacteria but the cross flow system keeps the bacteria in suspension. Similar harvesting bacteria using ultra-filtration showed an average recovery efficiency of 43% [1] and other studies achieved recovery rates greater than 50% [2]. In this study, an enhanced ceramic micro-filter with 0.14 μm pore size was proposed and demonstrated to optimize the concentration of E.coli. A high recovery rate (mean value >90%) and a high volumetric concentration ratio (>100) were achieved. Known quantities (104 to 106 CFU/ml) of E.coli cells were spiked to different amounts of phosphate buffered saline (0.1 to 1 L), and then concentrated to a final retentate of 5 ml to 10 ml. An average recovery efficiency of 95.3% with a standard deviation of 5.6% was achieved when the volumetric con- centration ratio was 10. No significant recovery rate loss was indicated when the volumetric concentration ratio reached up to 100. The effects of multiple parameters on E.coli recovery rate were also studied. The obtained results indicated that the optimized ceramic micro- filtration system can successfully concentrate E.coli cells in water with an average recovery rate of 90.8%.

  15. Research on sintering behavior and microwave dielectric property of (Mg0.95Ca0.05)TiO3 ceramics for cross coupling filter

    Science.gov (United States)

    Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin

    2015-12-01

    The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.

  16. Safe household water treatment and storage using ceramic drip filters: a randomised controlled trial in Bolivia.

    Science.gov (United States)

    Clasen, T; Brown, J; Suntura, O; Collin, S

    2004-01-01

    A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.

  17. Gas stream clean-up filter and method for forming same

    International Nuclear Information System (INIS)

    Mei, J.S.; DeVault, J.; Halow, J.S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products

  18. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  19. A post-implementation evaluation of ceramic water filters distributed to tsunami-affected communities in Sri Lanka.

    Science.gov (United States)

    Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D

    2012-06-01

    Sri Lanka was devastated by the 2004 Indian Ocean tsunami. During recovery, the Red Cross distributed approximately 12,000 free ceramic water filters. This cross-sectional study was an independent post-implementation assessment of 452 households that received filters, to determine the proportion still using filters, household characteristics associated with use, and quality of household drinking water. The proportion of continued users was high (76%). The most common household water sources were taps or shallow wells. The majority (82%) of users used filtered water for drinking only. Mean filter flow rate was 1.12 L/hr (0.80 L/hr for households with taps and 0.71 for those with wells). Water quality varied by source; households using tap water had source water of high microbial quality. Filters improved water quality, reducing Escherichia coli for households (largely well users) with high levels in their source water. Households were satisfied with filters and are potentially long-term users. To promote sustained use, recovery filter distribution efforts should try to identify households at greatest long-term risk, particularly those who have not moved to safer water sources during recovery. They should be joined with long-term commitment to building supply chains and local production capacity to ensure safe water access.

  20. Development of improved low-cost ceramic water filters for viral removal in the Haitian context

    OpenAIRE

    Guerrero Latorre, Laura; Rusiñol Arantegui, Marta; Hundesa Gonfa, Ayalkibet; Garcia Vallès, Maite; Martínez Manent, Salvador; Joseph, Osnick; Bofill Mas, Silvia; Gironès Llop, Rosina

    2015-01-01

    Household-based water treatment (HWT) is increasingly being promoted to improve water quality and, therefore, health status in low-income countries. Ceramic water filters (CWFs) are used in many regions as sustainable HWT and have been proven to meet World Health Organization (WHO) microbiological performance targets for bacterial removal (24 log); however, the described viral removal efficiencies are insufficient to significantly reduce the associated risk of viral infection. With the object...

  1. Adaptive wave filtering for dynamic positioning of marine vessels using maximum likelihood identification: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Hassani, V.; Sorensen, A.J.; Pascoal, A.M.

    This paper addresses a filtering problem that arises in the design of dynamic positioning systems for ships and offshore rigs subjected to the influence of sea waves. The dynamic model of the vessel captures explicitly the sea state as an uncertain...

  2. A group of painted vessels from Singidunum: A contribution to the researches on painted ceramics

    Directory of Open Access Journals (Sweden)

    Nikolić Snežana

    2005-01-01

    Full Text Available About 20 vessels, made of fine clay fired in whitish tones (10YR 8/2, 10YR 8/2-3, 5Y 8/1, with the polished surface ornamented with painting in fading brown, originate from Singidunum. In comparison with analogous material from Donja (Lower Panonia and Dalmatia, the importance of these vessels is to be found in the fact that they were excavated from settlement horizons dated to the second half of the 3rd and early 4th century. Based on the shapes and technological features of ceramics from Lower Panonia and Dalmatia, which have been published, as well as on the observations of the finds from Singidunum, it is to be assumed that they were the output of the same workshop which not only had a small scale of production but also a meager scope of shapes, meaning goblets i.e. cups as favorable form.

  3. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Using mathematical modelling of the changes in the characteristics of the bodies during SHS-process for porous ceramic filters manufacture

    Directory of Open Access Journals (Sweden)

    Юлія Славоміровна Повстяна

    2016-11-01

    Full Text Available Porous ceramic materials possess great lifetime, high mechanical strength, are resistant to household effects and easy to use. The binder volume fraction and normalized pressure as a function of the temperature in the SHS process in the ceramic body have been studied in this work. Basing on theoretical calculations the temperature range of the binder burnout has been determined. The theoretical results can be used to predict and obtain porous ceramic filters with predetermined characteristics. The theoretical calculations were used in the manufacture of experimental samples of porous ceramic bodies obtained on the basis of 18H2N4MA steel scale and the saponite. Pressing in a hydraulic press was used to manufacture ceramic pieces. Unilateral press mould made of stainless steel was used to form the samples. Pressing was carried out in the pressure range of 10-25 MPa. The resulting pieces were formed in cylinders of 30mm in diameter and 40 mm height. Sintering of the samples was conducted in the modernized reactor for the SHS process. Mathematical justification of SHS process made it possible to avoid the formation of cracks in the ceramic bodies and crumble areas

  5. Evaluation of the ICET Test Stand to Assess the Performance of a Range of Ceramic Media Filter Elements in Support of ASME AG-1 Subsection FO

    Energy Technology Data Exchange (ETDEWEB)

    Schemmel, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-26

    High Efficiency Particulate Air (HEPA) filters are defined as extended-medium, dry-type filters with: (1) a minimum particle removal efficiency of no less than 99.97 percent for 0.3 micrometer particles, (2) a maximum, clean resistance of 1.0 inch water column (in. WC) when operated at 1,000 cubic feet per minute (CFM), and (3) a rigid casing that extends the full depth of the medium. Specifically, ceramic media HEPA filters provide better performance at elevated temperatures, are moisture resistant and nonflammable, can perform their function if wetted and exposed to greater pressures, and can be cleaned and reused. This paper describes the modification and design of a large scale test stand which properly evaluates the filtration characteristics of a range of ceramic media filters challenged with a nuclear aerosol agent in order to develop Section FO of ASME AG-1.

  6. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    International Nuclear Information System (INIS)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon; Lee, Young Min

    2011-01-01

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al 2 O 3 +40TiO 2 powder with a particle size of 20 μm and Al 2 O 3 (98%+)powder with a particle size of 45 μm. The metal filters were filter-grade 20 μm, 30 μm, and 50 μm sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 μm sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters

  7. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon [Keimyung University, Daegu (Korea, Republic of); Lee, Young Min [Korea Polytechincs VI, Daegu (Korea, Republic of)

    2011-09-15

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al{sub 2}O{sub 3}+40TiO{sub 2} powder with a particle size of 20 {mu}m and Al{sub 2}O{sub 3} (98%+)powder with a particle size of 45 {mu}m. The metal filters were filter-grade 20 {mu}m, 30 {mu}m, and 50 {mu}m sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 {mu}m sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters.

  8. Miniaturized dielectric waveguide filters

    OpenAIRE

    Sandhu, MY; Hunter, IC

    2016-01-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  9. Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions.

    Science.gov (United States)

    Huang, Jing; Huang, Guohe; An, Chunjiang; He, Yuan; Yao, Yao; Zhang, Peng; Shen, Jian

    2018-03-12

    Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media.

    Science.gov (United States)

    Qiu, Liping; Zhang, Shoubin; Wang, Guangwei; Du, Mao'an

    2010-10-01

    The performance and nitrification properties of three BAFs, with ceramic, zeolite and carbonate media, respectively, were investigated to evaluate the feasibility of employing these materials as biological aerated filter media. All three BAFs shown a promising COD and SS removal performance, while influent pH was 6.5-8.1, air-liquid ratio was 5:1 and HRT was 1.25-2.5 h, respectively. Ammonia removal in BAFs was inhibited when organic and ammonia nitrogen loading were increased, but promoted effectively with the increase pH value. Zeolite and carbonate were more suitable for nitrification than ceramic particle when influent pH below 6.5. It is feasible to employ these media in BAF and adequate bed volume has to be supplied to satisfy the requirement of removal COD, SS and ammonia nitrogen simultaneously in a biofilter. The carbonate with a strong buffer capacity is more suitable to treat the wastewater with variable or lower pH. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. The characteristics and application of sludge-fly ash ceramic particles (SFCP) as novel filter media

    International Nuclear Information System (INIS)

    Han Shuxin; Yue Qinyan; Yue Min; Gao Baoyu; Li Qian; Yu Hui; Zhao Yaqin; Qi Yuanfeng

    2009-01-01

    Novel filter media-sludge-fly ash ceramic particles (SFCP) were prepared using dewatered sludge, fly ash and clay with a mass ratio of 1:1:1. Compared with commercial ceramic particles (CCP), SFCP had higher total porosity, larger total surface area and lower bulk and apparent density. Tests of heavy metal elements in lixivium proved that SFCP were safe for wastewater treatment. A lab-scale upflow anaerobic bioreactor was employed to ascertain the application of SFCP in denitrification process using acetate as carbon source. The results showed that SFCP reactor brought a relative superiority to CCP reactor in terms of total nitrogen (TN) removal at the optimum C/N ratio of 4.03 when volumetric loading rates (VLR) ranged from 0.33 to 3.69 kg TN (m 3 d) -1 . Therefore, SFCP application, as a novel process of treating wastes with wastes, provided a promising way in sludge and fly ash utilization.

  12. Ceramic pot filters lifetime study in coastal Guatemala.

    Science.gov (United States)

    Salvinelli, C; Elmore, A C; García Hernandez, B R; Drake, K D

    2017-02-01

    Ceramic pot filters (CPFs) are an effective means of household water treatment, but the characterization of CPF lifetimes is ongoing. This paper describes a lifetime field study in Guatemala which was made possible by a collaboration between researchers, CPF-using households, and local non-governmental organizations (NGOs). Disinfection data were collected periodically for two years using field coliform enumeration kits as were flow rate data with the assistance of NGO staff. Consumer acceptance was characterized by surveying householders in the four subject villages at the beginning and end of the study. Flow rate data showed that average CPF flow rates decreased below the recommended minimum of 1 L h -1 after 10 months of use; however, the survey results indicated that the consumers were tolerant of the lower flow rates, and it is reasonable to assume that the daily volume of treated water can be readily increased by refilling the CPFs more frequently. Of greater concern was the finding that disinfection efficacy decreased below the recommended bacterial reduction after 14 months of use because it would not be obvious to users that effectiveness had declined. Finally, the follow-up visits by the researchers and the NGO staff appeared to increase consumer acceptance of the CPFs.

  13. Concerning relationship between production technology of ceramic vessels and their functional purposes: characteristic of the pastes (According to investigations at the Bolgar settlement 2011-2012

    Directory of Open Access Journals (Sweden)

    Bakhmatova Vera N.

    2014-06-01

    Full Text Available Results of research in the mode of preparing molding compositions as one of technological stages in Bulgar pottery production are presented in the article. The subject of study was the common Bulgar ceramics from the Bulgar settlement site of the Golden Horde period (2011-2012 excavations. Four basic functional groups of ceramics were selected: kitchen, transportation, tableware, technical items. The study was conducted with the aim of identifying the dependence of pottery technology on the pottery functional purpose. While analyzing the materials, a complex methodology has been applied: a synthesis of traditional archaeological and natural science methods (A.A. Bobrinsky’s technical and technological method, petrography, X-ray phase analysis. The studies have shown that different functional forms of pottery had generated a variety of approaches to their manufacture. In most cases, special recipes were absent, but a certain differentiation could be traced in the choice of raw materials for the manufacture of vessels for different functional purposes. A further detailed study of the stages associated with raw materials selection and extraction, as well as that of the vessel hollow body design, and the methods of vessel strengthening (drying and firing are in prospect.

  14. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    Adamson, D. J.; Terry, M. T.

    2002-01-01

    The Westinghouse Savannah River Company, located at the Savannah River Site in Aiken, South Carolina, is currently testing two types of filter media for possible deployment as in situ regenerable/cleanable High Efficiency Particulate Air (HEPA) filters. The filters are being investigated to replace conventional, disposable, glass-fiber, HEPA filters that require frequent removal, replacement, and disposal. This is not only costly and subjects site personnel to radiation exposure, but adds to the ever-growing waste disposal problem. The types of filter media being tested, as part of a National Energy Technology Laboratory procurement, are sintered nickel metal and ceramic monolith membrane. These media were subjected to a hostile environment to simulate conditions that challenge the high-level waste tank ventilation systems. The environment promoted rapid filter plugging to maximize the number of filter loading/cleaning cycles that would occur in a specified period of time. The filters were challenged using nonradioactive simulated high-level waste materials and atmospheric dust; materials that cause filter pluggage in the field. The filters are cleaned in situ using an aqueous solution. The study found that both filter media were insensitive to high humidity or moisture conditions and were easily cleaned in situ. The filters regenerated to approximately clean filter status even after numerous plugging and in situ cleaning cycles. Air Techniques International is conducting particle retention testing on the filter media at the Oak Ridge Filter Test Facility. The filters are challenged using 0.3-mm di-octyl phthalate particles. Both the ceramic and sintered media have a particle retention efficiency > 99.97%. The sintered metal and ceramic filters not only can be cleaned in situ, but also hold great potential as a long life alternative to conventional HEPA filters. The Defense Nuclear Facility Safety Board Technical Report, ''HEPA Filters Used in the Department of

  15. Compositional attribution of non-provenienced Maya polychrome vessels

    International Nuclear Information System (INIS)

    Bishop, R.L.; Harbottle, G.; Reents, D.J.; Sayre, E.V.; van Zelst, L.

    1983-01-01

    Procedures and a few of the results of the Maya ceramic project are discussed from the perspective of non-provenienced vessel attribution ranging from site specific through a more inferential level to the rather hypothetical. The examples presented serve to illustrate the manner in which compositional and stylistic covariation are viewed in an investigation of Maya Ceramic art. The large data base from neutron activation analysis including archaeologically recovered pottery as well as the stylistically and iconographically elaborate vessels requires continued refinement in our methods of statistical analysis along with gaining a greater understanding of the sources of ceramic compositional variation in the Maya area. The mutually beneficial collaboration between science, art, and archaeology are emphasized

  16. Compositional attribution of non-provenienced Maya polychrome vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, R.L.; Harbottle, G.; Reents, D.J.; Sayre, E.V.; van Zelst, L.

    1983-01-01

    Procedures and a few of the results of the Maya ceramic project are discussed from the perspective of non-provenienced vessel attribution ranging from site specific through a more inferential level to the rather hypothetical. The examples presented serve to illustrate the manner in which compositional and stylistic covariation are viewed in an investigation of Maya Ceramic art. The large data base from neutron activation analysis including archaeologically recovered pottery as well as the stylistically and iconographically elaborate vessels requires continued refinement in our methods of statistical analysis along with gaining a greater understanding of the sources of ceramic compositional variation in the Maya area. The mutually beneficial collaboration between science, art, and archaeology are emphasized.

  17. Studies of characteristics of precoating for precoat filter using powdered ion exchange resin as filter aid

    International Nuclear Information System (INIS)

    Adachi, Tetsuro; Sawa, Toshio; Takahashi, Sankichi; Sindo, Toshikazu.

    1987-01-01

    The characteristics of precoating for a precoat filter using powdered ion exchange resin as filter aid were investigated with 1.5 meters long filter elements. The characteristics of precoating (thickness and distribution of precoat layer) were evaluated at various operating conditions. The results showed that the factors controlling them were size of resin flock and ascending velocity of water in the filter vessel. The size of resin flock was affected by reflocculation of resin flock, and operating conditions causing reflocculation were investigated. Consequently, it seemed that reflocculation depended on the maximum value of resin concentration in the filter vessel. In addition, a relation between sedimentation rate of resin flock and ascending velocity in the filter vessel was noticed by simulation of distribution of ascending velocity and effects on characteristics of precoating were evaluated. (author)

  18. preparation, characterization and formulation of nano-ceramic materials to be used for the separation of some heavy metals

    International Nuclear Information System (INIS)

    Zayed, S.L.M.

    2006-01-01

    the synthesis of asymmetric composite and monolithic ceramic filters, with high performance quality, to be used in heavy metals separation is the aim of this study. asymmetric composite ceramic filter consisted of a macroporous or mesoporous substrate coated with several layers having lower pore size than the substrate usually microporous film. on the other hand, asymmetric monolithic ceramic filter is monolithic system having dual pore size distribution. ceramic filters synthesis was performed using polymeric sol-gel process. the optimization of synthesis parameters as well as the characterization was achieved to obtain ceramic filters with high separative properties. the synthesized ceramic filters were characterized using mercury porosimeter for pore size distribution analysis, BET method for specific surface areas measurements and BJH pore size distribution analysis, XRD analysis for crystalline phase identification and SEM for microstructure and morphology studies

  19. DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE; F

    International Nuclear Information System (INIS)

    John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

    2002-01-01

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical

  20. Do low-cost ceramic water filters improve water security in rural South Africa?

    Science.gov (United States)

    Lange, Jens; Materne, Tineke; Grüner, Jörg

    2016-10-01

    This study examined the performance of a low-cost ceramic candle filter system (CCFS) for point of use (POU) drinking water treatment in the village of Hobeni, Eastern Cape Province, South Africa. CCFSs were distributed in Hobeni and a survey was carried out among their users. The performance of 51 CCFSs was evaluated by dip slides and related to human factors. Already after two-thirds of their specified lifetime, none of the distributed CCFSs produced water without distinct contamination, and more than one-third even deteriorated in hygienic water quality. Besides the water source (springs were preferable compared to river or rain water), a high water throughput was the dominant reason for poor CCFS performance. A stepwise laboratory test documented the negative effects of repeated loading and ambient field temperatures. These findings suggest that not every CCFS type per se guarantees improved drinking water security and that the efficiency of low-cost systems should continuously be monitored. For this purpose, dip slides were found to be a cost-efficient alternative to standard laboratory tests. They consistently underestimated microbial counts but can be used by laypersons and hence by the users themselves to assess critical contamination of their filter systems.

  1. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The use of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.

  2. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    Science.gov (United States)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  3. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    Science.gov (United States)

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  4. Household-based ceramic water filters for the prevention of diarrhea: a randomized, controlled trial of a pilot program in Colombia.

    Science.gov (United States)

    Clasen, Thomas; Garcia Parra, Gloria; Boisson, Sophie; Collin, Simon

    2005-10-01

    Household water treatment is increasingly recognized as an effective means of reducing the burden of diarrheal disease among low-income populations without access to safe water. Oxfam GB undertook a pilot project to explore the use of household-based ceramic water filters in three remote communities in Colombia. In a randomized, controlled trial over a period of six months, the filters were associated with a 75.3% reduction in arithmetic mean thermotolerant coliforms (TTCs) (P Health Organization limits for low risk (1-10 TTCs/100 mL), respectively, compared with 0.9% and 7.3% for control group samples. Overall, prevalence of diarrhea was 60% less among households using filters than among control households (odds ratio = 0.40, 95% confidence interval = 0.25, 0.63, P < 0.0001). However, the microbiologic performance and protective effect of the filters was not uniform throughout the study communities, suggesting the need to consider the circumstances of the particular setting before implementing this intervention.

  5. On the relationship between the Bulgar ceramic vessels production technology and their functional purposes: molding compositions characteristics (after the 2011-2012 studies on the Bulgar settlement site

    Directory of Open Access Journals (Sweden)

    Bakhmatova Vera N.

    2014-06-01

    Full Text Available Results of research in the mode of preparing molding compositions as one of technological stages in Bulgar pottery production are presented in the article. The subject of study was the common Bulgar ceramics from the Bulgar settlement site of the Golden Horde period (2011-2012 excavations. Four basic functional groups of ceramics were selected: kitchen, transportation, tableware, technical items. The study was conducted with the aim of identifying the dependence of pottery technology on the pottery functional purpose. While analyzing the materials, a complex methodology has been applied: a synthesis of traditional archaeological and natural science methods (A.A. Bobrinsky’s technical and technological method, petrography, X-ray phase analysis. The studies have shown that different functional forms of pottery had generated a variety of approaches to their manufacture. In most cases, special recipes were absent, but a certain differentiation could be traced in the choice of raw materials for the manufacture of vessels for different functional purposes. A further detailed study of the stages associated with raw materials selection and extraction, as well as that of the vessel hollow body design, and the methods of vessel strengthening (drying and firing are in prospect.

  6. Ceramic media amended with metal oxide for the capture of viruses in drinking water.

    Science.gov (United States)

    Brown, J; Sobsey, M D

    2009-04-01

    Ceramic materials that can adsorb and/or inactivate viruses in water may find widespread application in low-tech drinking-water treatment technologies in developing countries, where porous ceramic filters and ceramic granular media filters are increasingly promoted for that purpose. We examined the adsorption and subsequent inactivation of bacteriophages MS2 and (phiX-174 on five ceramic media in batch adsorption studies to determine media suitability for use in a ceramic water filter application. The media examined were a kaolinitic ceramic medium and four kaolinitic ceramic media amended with iron or aluminium oxides that had been incorporated into the kaolinitic clays before firing. Batch adsorption tests indicate increased sorption and inactivation of surrogate viruses by media amended with Fe and Al oxide, with FeOOH-amended ceramic inactivating all bacteriophages up to 8 log10. Unmodified ceramic was a poor adsorbent of bacteriophages at less than 1 log10 adsorption-inactivation and high recovery of sorbed phages. These studies suggest that contact with ceramic media, modified with electropositive Fe or Al oxides, can reduce bacteriophages in waters to a greater extent than unmodified ceramic.

  7. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02102.0

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Morse, T. [Flanders Corp., Washington, DC (United States)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermor e National Laboratory (LLNL) and Flanders-Precisionaire (Flanders), to develop ceramic HEP A filters under a Thrust II Initiative for Proliferation Prevention (IPP) project. The research was conducted via the IPP Program at Commonwe alth of Independent States (CIS) Institutes, which are handled under a separate agreement. The institutes (collectively referred to as "CIS Institutes") involved with this project were: Bochvar: Federal State Unitarian Enterprise All-Russia Scientific and Research Institute of Inorganic Materials (FSUE VNIINM); Radium Khlopin: Federal State Unitarian Enterprise NPO Radium Institute named (FSUE NPO Radium Institute); and Bakor: Science and Technology Center Bakor (STC Bakor).

  8. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  9. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  10. Ceramics among Eurasian hunter-gatherers: 32 000 years of ceramic technology use and the perception of containment

    Directory of Open Access Journals (Sweden)

    Mihael Budja

    2016-12-01

    Full Text Available We present two parallel and 32 000 years long trajectories of episodic ceramic technology use in Eurasian pre-Neolithic hunter-gatherer societies. In eastern, Asian trajectory the pottery was produced from the beginning. Ceramic figurines mark the western, European trajectory. The western predates the eastern for about eleven millennia. While ceramic cones and figurines first appeared in Central Europe at c. 31 000 cal BC the earliest vessels in eastern Asia was dated at c. 20 000 cal BC. We discuss women’s agency, perception of containment, ‘cross-craft interactions’, and evolution of private property that that may influenced the inventions of ceramic (pyrotechnology.

  11. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  12. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  13. Comparative elimination of dimethyl disulfide by maifanite and ceramic-packed biotrickling filters and their response to microbial community.

    Science.gov (United States)

    Chen, Xuequan; Liang, Zhishu; An, Taicheng; Li, Guiying

    2016-02-01

    Unpleasant odor emissions have traditionally occupied an important role in environmental concern. In this paper, twin biotrickling filters (BTFs) packed with different packing materials, seeded with Bacillus cereus GIGAN2, were successfully constructed to purify gaseous dimethyl disulfide (DMDS). The maifanite-packed BTF showed superior biodegradation capability to the ceramic-packed counterpart in terms of removal efficiency and elimination capacity under similar conditions. At an empty bed residence time of 123 s, 100% of DMDS could be removed by maifanite-packed BTF when DMDS inlet concentration was below 0.41 g m(-3). To achieve same effect, the inlet concentration must be lower than 0.25 g m(-3) for ceramic-packed BTF. The bacterial communities analyses found higher relative abundance of GIGAN2 in the maifanite-packed BTF, suggesting that maifanite is more suitable for GIGAN2 immobilization and for subsequent DMDS removal. This work indicates maifanite is a promising packing material for real odorous gases purification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Performance of zeolite ceramic membrane synthesized by wet mixing method as methylene blue dye wastewater filter

    Science.gov (United States)

    Masturi; Widodo, R. D.; Edie, S. S.; Amri, U.; Sidiq, A. L.; Alighiri, D.; Wulandari, N. A.; Susilawati; Amanah, S. N.

    2018-03-01

    Problem of pollution in water continues in Indonesia, with its manufacturing sector as biggest contributor to economic growth. One out of many technological solutions is post-treating industrial wastewater by membrane filtering technology. We presented a result of our fabrication of ceramic membrane made from zeolite with simple mixing and he. At 5% of (poring agent):(total weight), its permeability stays around 2.8 mD (10‑14m2) with slight variance around it, attributed to the mixture being in far below percolating threshold. All our membranes achieve remarkable above 90% rejection rate of methylene blue as solute waste in water solvent.

  15. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    Ben Abdallah, M.; Malek, J.; Tourki, R.; Krissian, K.

    2011-01-01

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  16. A rigid porous filter and filtration method

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.

    1998-12-01

    The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  17. Performance characteristics of porous alumina ceramic structures

    International Nuclear Information System (INIS)

    Latella, B.A.; Liu, T.

    2000-01-01

    Porous ceramics have found a wide range of applications as filters for liquids and gases. The suitability of materials for use in these types of applications depends on the microstructure (grain size, pore size and pore volume fraction) and hence the mechanical and thermal properties. In this study alumina ceramics with different levels of porosity and controlled pore sizes were fabricated and the surface damage and fracture properties were examined. Copyright (2000) The Australian Ceramic Society

  18. Evaluation of Alternative Filter Media for the Rotary Microfilter

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-11-09

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic ? stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge.

  19. Evaluation of Alternative Filter Media for the Rotary Microfilter

    International Nuclear Information System (INIS)

    Poirier, M. R.; Herman, D. T.; Bhave, R.

    2011-01-01

    The Savannah River Site is currently developing and testing several processes to treat high level radioactive liquid waste. Each of these processes has a solid-liquid separation process that limits its throughput. Savannah River National Laboratory researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The authors believe the rotary microfilter throughput can be improved by using a better filter membrane. Previous testing showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. Savannah River National Laboratory and Oak Ridge National Laboratory are working together to develop asymmetric ceramic-stainless steel composite filters and asymmetric 100% stainless steel filters to improve the throughput of the rotary microfilter. The Oak Ridge National Laboratory Inorganic Membrane Group fabricated samples of alternative filter membranes. In addition, Savannah River National Laboratory obtained samples of filter membranes from Pall, Porvair, and SpinTek. They tested these samples in a static test cell with feed slurries containing monosodium titanate and simulated sludge

  20. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF).

    Science.gov (United States)

    Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui

    2009-11-01

    Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N.

  1. [Evaluation of drinking-water treatment by Lifestraw® and Ceramic-pot filters].

    Science.gov (United States)

    Pérez-Vidal, Andrea; Díaz-Gómez, Jaime; Salamanca-Rojas, Karen L; Rojas-Torres, Leidy Y

    2016-04-01

    Objective To evaluate under laboratory conditions, the removal efficiency of turbidity and E. coli of two household water filters: LifeStraw® family (MF) and ceramic pot filter (CPF). Methods The two systems were operated over 6 months using two identical control units per system, treating 7.5 L/d of a synthetic substrate used as raw water. The turbidity of the substrate was adjusted with Kaolinite and the E. coli concentration, with a replica of the ATCC 95922 strain. The differences of effluent quality of the systems, in terms of turbidity and E. coli, were evaluated with Analysis of Variance (ANOVA). Operative and maintenance aspects, that could limit or enhance the use of the systems, were also considered in the evaluation. Results The water synthetic substrate quality had an average of 32.2 ± 2.8 NTU for turbidity and 3,9x105 UFC/100 mL for E. coli. Both systems reduce the turbidity to values below 2 NTU with an inactivation of 100 % of E. coli. Statistical differences were found between the systems in terms of turbidity removal, MF being more efficient than the CPF (99,2 ± 0.4 % and 97.6 % ± 1.14, respectively). Conclusions Both systems are suitable for household water supply treatment, acheiving the water quality standards established by Colombian regulations. The MF was more efficient for suspended solids removal and filtration rate, but when economic, operative, and maintenance aspects along with social acceptability and lifespan are considered, the CPF seems more suitable, especially in rural areas.

  2. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  3. Cermet materials, self-cleaning cermet filters, apparatus and systems employing same

    Science.gov (United States)

    Kong, Peter C.

    2005-07-19

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  4. The impact of microwave stray radiation to in-vessel diagnostic components

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Baldzuhn, J.; Biedermann, C.; Cardella, A.; Erckmann, V.; König, R.; Köppen, M.; Zhang, D. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, EURATOM Association, D-17489 Greifswald (Germany); Oosterbeek, J.; Brand, H. von der; Parquay, S. [Technische Universiteit Eindhoven, department Technische Natuurkunde, working group for Plasma Physics and Radiation Technology, Den Doelch 2, 5612 AZ Eindhoven (Netherlands); Jimenez, R. [Centro de Investigationes Energeticas, Medioambientales y Technológicas, Association EURATOM/CIEMAT, Avenida Complutense 22, Madrid 28040 (Spain); Collaboration: W7-X Teasm

    2014-08-21

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m{sup 2} over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  5. Incorporation of low and intermediate level wastes into ceramic clay matrices

    International Nuclear Information System (INIS)

    Kuznetsov, A.S.; Kuznetzov, B.S.; Kuznetzov, B.S.; Na, R.

    1995-01-01

    Conditions for the production of chemically stable high-strength ceramics based on clay are developed using wastes of three types: ashes from radioactive waste burning, hydroxide pulp formed during precipitations in radiochemical technology, suspensions of spent filtering material (filter perlite). The properties of wastes and ceramics are studied by emission spectrography, X-ray phase analysis, mechanical strength and chemical stability of end products are determined. It is shown that the ceramics incorporating 30-50 % wt. of wastes have the apparent density 2.1-2.5 g/cm 3 , the compression strength 40-70 MPa; the radionuclide leaching rate is comparable with the values obtained for borosilicate glasses. (authors)

  6. Corundum ceramic materials modified with silica nanopowders: structure and mechanical properties

    International Nuclear Information System (INIS)

    Kostytsyn, M. A.; Muratov, D. S.; Lysov, D. V.; Chuprunov, K. O.; Yudin, A. G.; Leybo, D. V.

    2016-01-01

    Filtering elements are often used in the metallurgy of rare earth metals. Corundum ceramic is one of the most suitable materials for this purpose. The process of formation and the properties of nanomodified ceramic materials, which are proposed as filtering materials with tunable effective porosity, are described. A silica nanopowder is used as a porosity-increasing agent. Vortex layer apparatus is used for mixing of precursor materials. The obtained results show that nanomodification with the vortex layer apparatus using 0.04 wt. % silica nanopowder as a modifying agent leads to an increase in the compression strength of corundum ceramic by the factor of 1.5. (paper)

  7. Partial nitrification of non-ammonium-rich wastewater within biofilm filters under ambient temperature.

    Science.gov (United States)

    Wang, Hongyu; He, Jiajie; Yang, Kai

    2010-01-01

    This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.

  8. Influence of the rate of filtration of a complexly alloyed nickel melt through a foam-ceramic filter on the sulfur impurity content in the metal

    Science.gov (United States)

    Sidorov, V. V.; Min, P. G.; Folomeikin, Yu. I.; Vadeev, V. E.

    2015-06-01

    The article discusses the possibility of additional refining of a complexly alloyed nickel melt from a sulfur impurity by decreasing the filtration rate during the passage of the melt through a foam-ceramic filter. The degree of sulfur removal from the melt is shown to depend on its content in the alloy and the melt filtration rate.

  9. Filter assembly for metallic and intermetallic tube filters

    Science.gov (United States)

    Alvin, Mary Anne; Lippert, Thomas E.; Bruck, Gerald J.; Smeltzer, Eugene E.

    2001-01-01

    A filter assembly (60) for holding a filter element (28) within a hot gas cleanup system pressure vessel is provided, containing: a filter housing (62), said filter housing having a certain axial length and having a peripheral sidewall, said sidewall defining an interior chamber (66); a one piece, all metal, fail-safe/regenerator device (68) within the interior chamber (66) of the filter housing (62) and/or extending beyond the axial length of the filter housing, said device containing an outward extending radial flange (71) within the filter housing for seating an essential seal (70), the device also having heat transfer media (72) disposed inside and screens (80) for particulate removal; one compliant gasket (70) positioned next to and above the outward extending radial flange of the fail-safe/regenerator device; and a porous metallic corrosion resistant superalloy type filter element body welded at the bottom of the metal fail-safe/regenerator device.

  10. Filtering and concentrating device for processing radioactive waste and operation method therefor, processing facility for radioactive wastes and processing method therefor

    International Nuclear Information System (INIS)

    Serizawa, Ken-ichi; Yamazaki, Masami

    1998-01-01

    A filtering and concentrating device is prepared by assembling a porous ceramic filtering material having a pore diameter of 1 μm or less secured by a support to a filtering device main body. The porous ceramic filtering material preferably comprises a surface portion having pores having a diameter of 1 μm or less and a hollow ceramic material having filtering flow channels having a diameter greater than the pores on the surface portion. The ratio of the diameter and the thickness of the hollow ceramic material is determined to greater than 50 : 1. The filtering and concentrating device precisely filter and concentrate radioactive liquid wastes containing an insoluble solid content generated from a nuclear power plant to conduct solid/liquid separation thereby forming a filtrate and concentrated wastes having a mass concentration of 20% or more. With such a constitution, stable filtration and concentration can be conducted while reducing occurrence of clogging of filtering materials. In addition, the frequency for the exchange of filtering materials can be reduced. (I.N.)

  11. Porous ceramic materials for micro filtration processes I: Al2 O3 fabrication and characterization

    International Nuclear Information System (INIS)

    Salas K, J.; Reyes M, P.E.; Piderit A, G.

    1992-01-01

    Ceramic filters in separation processes are becoming more important every day. The use of these filters or membranes in the micro and ultrafiltration range, which origin goes back to the nuclear industry for uranium isotopes separation by gaseous diffusion and radioactive waste treatments, significantly improves some industrial processes efficiency. The present work describes the research done in the filters, or ceramic membrane supports fabrication field, the obtained operational results and their relation with the microstructure. (author)

  12. Evaluation of a Silver-Embedded Ceramic Tablet as a Primary and Secondary Point-of-Use Water Purification Technology in Limpopo Province, S. Africa.

    Directory of Open Access Journals (Sweden)

    Beeta Ehdaie

    Full Text Available The World Health Organization (WHO recognizes point-of-use water treatment (PoUWT technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1 the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2 ceramic water filters stand-alone, and (3 a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet's performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated

  13. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports. Keywords. Biomimetic synthesis; carbonaceous biopreform; biomorphic Si–SiC ceramic composites; porous cellular SiC ceramics. 1. Introduction. In recent years, there has been tremendous ...

  14. Experimental and Numerical Study of Ceramic Foam Filtration

    Science.gov (United States)

    Laé, E.; Duval, H.; Rivière, C.; Le Brun, P.; Guillot, J.-B.

    Ceramic foam filtration is widely used to enable removal of non metallic inclusions from liquid aluminium. Its performances have been largely studied in the literature and some discrepancies remain amongst the published results. Consequently, a research program was deployed to evaluate the performances of a range of ceramic foam filters used under various conditions and to understand the inclusions capture mechanisms.

  15. Filter element, particularly for cleaning hot gases

    International Nuclear Information System (INIS)

    Hoelter, H.

    1980-01-01

    The fibres of the filter cloth consists of aluminium silicate. The filter cloth lies on a mesh made of ceramic material, e.g. 99% SiO 2 and 1% Cr 2 O 3 . In order to reduce the bending stress at the edges of the filter cloth, particularly when cleaning, there are bend protection devices in the form of curved surfaces made of felt or similar material in the edge areas. (DG) [de

  16. Radioactive liquid waste filtering device

    International Nuclear Information System (INIS)

    Inami, Ichiro; Tabata, Masayuki; Kubo, Koji.

    1988-01-01

    Purpose: To prevent clogging in filter materials and improve the filtration performance for radioactive liquid wastes without increasing the amount of radioactive wastes. Constitution: In a radioactive waste filtering device, a liquid waste recycling pipe and a liquid recycling pump are disposed for recycling the radioactive liquid wastes in a liquid wastes vessel. In this case, the recycling pipe and the recycling pump are properly selected so as to satisfy the conditions capable of making the radioactive liquid wastes flowing through the pipe to have the Reynolds number of 10 4 - 10 5 . By repeating the transportation of radioactive liquid wastes in the liquid waste vessel through the liquid waste recycling pipe by the liquid waste recycling pump and then returning them to the liquid waste vessel again, particles of fine grain size in the suspended liquids are coagulated with each other upon collision to increase the grain size of the suspended particles. In this way, clogging of the filter materials caused by the particles of fine grain size can be prevented, thereby enabling to prevent the increase in the rising rate of the filtration differential pressure, reduce the frequency for the occurrence of radioactive wastes such as filter sludges and improve the processing performance. (Kamimura, M.)

  17. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    Science.gov (United States)

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Preliminary study of chemical compositional data from Amazon ceramics

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Luz, Fabio A.; Neves, Eduardo G.; Oliveira, Paulo M.S.

    2005-01-01

    Eighty seven ceramic samples from Acutuba, Lago Grande and Osvaldo archaeological sites located in the confluence of the rivers Negro and Solimoes were submitted to chemical analysis using instrumental neutron activation analysis to determine As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Rb, Na, Nd, Sb, Sc, Sm, Ta, Tb, Th, Yb, Zn, and U. The database were studied using the Mahalanobis distance, and discriminant analysis. The results showed that the ceramics of each site differ from each other in chemical composition and that they form three different groups. Chemical classification of the ceramics suggests that vessels were made locally, as only ceramics from the same area show homogeneity of data. (author)

  19. Preparation of Porcelanite Ceramic Filter by Slip Casting Technique

    Directory of Open Access Journals (Sweden)

    Majid Muhi Shukur

    2016-09-01

    Full Text Available This work is conducted to study producing solid block porcelanite filter from Iraqi porcelanite rocks and kaolin clay (as binder material by slip casting technique, and investigating its ability of removing contaminant (Pentachlorophenol from water via the adsorption mechanism. Four particle sizes (74, 88, 105 and 125 µm of porcelanite powder were used. Each batch of particle size was mixed with (30 wt. % kaolin as a binding material to improve the mechanical properties. After that, the mixtures were formed by slip casting to disk and cylindrical filter samples, and then fired at 500 and 700 °C to specify the effects of particle size of porcelanite, temperature and formation technique on porcelanite filter properties. Some physical, mechanical and chemical tests have been done on filter samples. Multi-experiments were carried out to evaluate the ability of porcelanite to form the filter. Porosity, permeability and maximum pore diameter were increased with increasing porcelanite particle size and decreased by increasing temperature, whereas the density shows the reverse behavior. In addition, bending, compressive and tensile strength of samples were increased by increasing temperature, and decreased with increasing porcelanite particle size. Efficiency of disk filter sample to remove pentachlorophenol was 95.41% at a temperature of 700°C using 74 µm particle size of porcelanite. While the efficiency of cylindrical filter sample was 97.57% at the same conditions.

  20. Microbiological effectiveness of mineral pot filters in Cambodia.

    Science.gov (United States)

    Brown, Joe; Chai, Ratana; Wang, Alice; Sobsey, Mark D

    2012-11-06

    Mineral pot filters (MPFs) are household water treatment (HWT) devices that are manufactured and distributed by the private sector, with millions of users in Southeast Asia. Their effectiveness in reducing waterborne microbes has not been previously investigated. We purchased three types of MPFs available on the Cambodian market for systematic evaluation of bacteria, virus, and protozoan surrogate microbial reduction in laboratory challenge experiments following WHO recommended performance testing protocols. Results over the total 1500 L testing period per filter indicate that the devices tested were highly effective in reducing Esherichia coli (99.99%+), moderately effective in reducing bacteriophage MS2 (99%+), and somewhat effective against Bacillus atrophaeus, a spore-forming bacterium we used as a surrogate for protozoa (88%+). Treatment mechanisms for all filters included porous ceramic and activated carbon filtration. Our results suggest that these commercially available filters may be at least as effective against waterborne pathogens as other, locally available treatment options such as ceramic pot filters or boiling. More research is needed on the role these devices may play as interim solutions to the problem of unsafe drinking water in Cambodia and globally.

  1. Chemical composition and morphology of oxidic ceramics at filtration of steel deoxidised by aluminium

    Directory of Open Access Journals (Sweden)

    J. Bažan

    2009-10-01

    Full Text Available Composition and morphology of filter ceramics were investigated during filtration of steel deoxidised by aluminium. Filtration was realized with use of filters based on oxidic ceramics Cr2O3, TiO2, SiO2, ZrO2, Al2O3, 3Al2O3•2SiO2 and MgO•Al2O3. It was established that change of interphase (coating occurs during filtration of steel on the surface of capillaries of ceramics, where content of basic oxidic component decreases. Loss of oxidic component in the coating is replaced by increase of oxides of manganese and iron and it is great extent inversely proportional to the value of Gibbs’ energy of oxide, which forms this initial basis of ceramics.

  2. Performance of water filters towards the removal of selected ...

    African Journals Online (AJOL)

    Organic matter removal was found to be 47%, 43%, 53%, 43.4% for bio-sand, slow sand, ceramic and membrane purifier respectively, while, fluoride removal was found to be 95.5% for bone char filter. Furthermore, filters were also assessed in terms of media availability, buying costs, operation, benefits/ effectiveness ...

  3. Performance Evaluation of Two Different Industrial Foam Filters with LiMCA II Data

    Science.gov (United States)

    Syvertsen, Martin; Bao, Sarina

    2015-04-01

    Plant-scale filtration experiments with molten aluminum have been carried out with two different types of 10 × 10 × 2 in, 30 ppi ceramic foam filters. The filters were produced in the same production line where the only difference was the composition of the ceramic slurry used for the filter production. The inclusion contents in the aluminum melt before and after the filters were measured with two constantly running liquid metal cleanliness analyzer (LiMCA) II units. Three methods for analyzing the recorded data are presented. A significant difference in the filtration performance as function of time was found when settling of inclusions in the melt was taken into account. Statistical treatment of the time dependent LiMCA II data was performed.

  4. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  5. Glass-ceramics: Their production from wastes - a review

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. [University of London, London (United Kingdom). Imperial College of Science & Technology, Dept. of Medicine

    2006-02-15

    Glass-ceramics are polycrystalline materials of fine microstructure that are produced by the controlled crystallisation (devitrification) of a glass. Numerous silicate based wastes, such as coal combustion ash, slag from steel production, fly ash and filter dusts from waste incinerators, mud from metal hydrometallurgy, different types of sludge as well as glass cullet or mixtures of them have been considered for the production of glass-ceramics. Developments of glass-ceramics from waste using different processing methods are described comprehensively in this review, covering R&D work carried out worldwide in the last 40 years. Properties and applications of the different glass-ceramics produced are discussed. The review reveals that considerable knowledge and expertise has been accumulated on the process of transformation of silicate waste into useful glass-ceramic products. These glass-ceramics are attractive as building materials for usage as construction and architectural components or for other specialised technical applications requiring a combination of suitable thermo-mechanical properties. Previous attempts to commercialise glass-ceramics from waste and to scale-up production for industrial exploitation are also discussed.

  6. Sol-gel applications for ceramic membrane preparation

    Science.gov (United States)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  7. Technology and Organisation of Inka Pottery Production in the Leche Valley. Part II: Study of Fired Vessels

    International Nuclear Information System (INIS)

    Hayashida, F.; Haeusler, W.; Riederer, J.; Wagner, U.

    2003-01-01

    Ceramic finds from the Inka workshops at Tambo Real and La Vina in the Leche Valley in northern Peru were studied by Moessbauer spectroscopy, thin section microscopy and X-ray diffraction. Sherds of Inka style vessels and of local style vessels can be distinguished by their shape, although local techniques appear to have been used in making both types. A reconstruction of the firing techniques by scientific studies of the ceramic material does not reveal a substantial difference in material or in the firing of both forms, although high firing temperatures were necessary to achieve sufficient stability of the large Inka style vessels. It cannot be decided whether the smaller local vessels were fired together with the Inka vessels or separately. Most of the variation in the maximum firing temperature can be explained with the normal temperature and atmosphere fluctuations in an open pit kiln.

  8. EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Herman, D.; Bhave, R.

    2011-09-13

    SRS is currently developing and testing several processes to treat high level radioactive liquid waste. These processes include the Integrated Salt Disposition Process (ISDP), the Salt Waste Processing Facility (SWPF), and the Small Column Ion Exchange Process (SCIX). Each of these processes has a solid-liquid separation process that limits its throughput. SRNL researchers identified and tested the rotary microfilter as a technology to increase solid-liquid separation throughput. The testing showed significant improvement in filter flux with the rotary microfilter over the baseline crossflow filter (i.e., 2.5-6.5X during scoping tests, as much as 10X in actual waste tests, and approximately 3X in pilot-scale tests). SRNL received funding from DOE EM-21, and subsequently DOE EM-31 to develop the rotary microfilter for high level radioactive service. The work has included upgrading the rotary microfilter for radioactive service, testing with simulated SRS waste streams, and testing it with simulated Hanford waste streams. While the filtration rate is better than that obtained during testing of crossflow filters, the authors believe the rotary microfilter throughput can be improved by using a better filter membrane. The rotary microfilter membrane is made of stainless steel (Pall PMM050). Previous testing, funded by DOE EM-21, showed that asymmetric filters composed of a ceramic membrane on top of a stainless steel support produced higher filter flux than 100% stainless steel symmetric filters in crossflow filter tests. In that testing, the Pall Accusep and Graver filters produced 13-21% larger filter flux than the baseline 0.1 {micro}m Mott filter. While the improvement in flux is not as dramatic as the improvement of the rotary filter over a crossflow filter, a 13-21% increase could reduce the lifetime of a 30 year process by 4-6 years, with significant cost savings. Subsequent rotary filter testing showed the Pall PMM050 stainless steel filter membrane produced

  9. The Design Features of Complex Vessels of Malyshev Neolithic Culture of Lower Priamurye (case study: Malyshevo 1 Settlement

    Directory of Open Access Journals (Sweden)

    Inga V. Filatova

    2015-03-01

    Full Text Available According to the author’s opinion, the solution for cultural genesis issues can be tackled through the analysis of structural peculiarities of hollow bodies of vessels of different ceramic complexes. The ceramics of the Malyshev Culture of the Lower Amur is no exception. The article traces the evolution of researchers’ views in regard to Neolithic culture in inner periodization of the region as well as cultural relevance of early complex ceramics by a well known Soviet archeologist academic A.P. Okladnykov – stage of Lower Amur Neolithic culture. Case study: visualization of ceramic collection of one-layer Neolithic settlement Malyshevo-1 (“At the craftsmen”. Here we identify two vessel groups, which differ through their morphological and decorative features. On the ground of technological assessments of manufacturing techniques by I. G. Glushkov (1996, including methodological developments by A. A. Bobrinsky (1978, the program of hollow body design is researched. The manufacturing techniques are identified (methods of fixing, build-up, straps oiling, types of molding, filling program, cutting and bottom fixing. The mixed programs of hollow body vessels are identified and locations of two pottery traditions are found. A competitive analysis for identifying the peculiarities of Malyshev ceramics and Neolithic materials of the Lower Amur and bordering seaside territories. There are similarities are drawn out between ceramic complexes of Osipov culture of early Neolithic (Lower Amur and Rudninsky culture (Rudninsky type, Sergeev type of early Neolithic (seaside territories.

  10. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    This paper presents the initial findings of field testing of 2 low-cost membrane filters, viz. 30 ìm polymeric mesh and 2–6 ìm macroporous waste-ash based ceramic filter, in a submerged membrane bioreactor (MBR) employing batch anoxic and aerobic conditions. The influent was raw wastewater from a residential complex ...

  11. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    International Nuclear Information System (INIS)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300 degrees C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss

  12. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300{degrees}C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss.

  13. Compositionally Graded Multilayer Ceramic Capacitors.

    Science.gov (United States)

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (filters and power converters.

  14. Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting

    Science.gov (United States)

    Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang

    2016-12-01

    Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.

  15. Use of ceramic water filtration in the prevention of diarrheal disease: a randomized controlled trial in rural South Africa and zimbabwe.

    Science.gov (United States)

    du Preez, Martella; Conroy, Ronán M; Wright, James A; Moyo, Sibonginkosi; Potgieter, Natasha; Gundry, Stephen W

    2008-11-01

    To determine the effectiveness of ceramic filters in reducing diarrhea, we conducted a randomized controlled trial in Zimbabwe and South Africa, in which 61 of 115 households received ceramic filters. Incidence of non-bloody and bloody diarrhea was recorded daily over 6 months using pictorial diaries for children 24-36 months of age. Poisson regression was used to compare incidence rates in intervention and control households. Adjusted for source quality, intervention household drinking water showed reduced Escherichia coli counts (relative risk, 0.67; 95% CI, 0.50-0.89). Zero E. coli were obtained for drinking water in 56.9% of intervention households. The incidence rate ratio for bloody diarrhea was 0.20 (95% CI, 0.09-0.43; P filter users. The results suggest that ceramic filters are effective in reducing diarrheal disease incidence.

  16. Virtual analysis of influence of a filter on mould filling

    Directory of Open Access Journals (Sweden)

    Zhian Xu

    2011-11-01

    Full Text Available Ceramic filters are used to avoid slag and impurities in foundry applications. When not properly applied, the presence of these filters may have a significant influence on mould filling. 3-D casting simulation has been applied to study the effects of the use of a ceramic filter on the metal flow in a gating system. Instead of using a pressure drop model to represent the behaviour of a fluid metal flow passing through a filter, a real exact filter geometry, which is created by a high resolution CT-scan and a non-destructive imaging technique, in the gating system is applied in the simulation. In this research, nodular cast iron is poured into a block casting. A depressurized gating system is used. After a choke, a filter with different orientations is placed in the system. Mould filling coupled with temperature is simulated. Geometries using different orientations of the filter, and without the filter have been researched. The simulated results show that the filter has no influence on the pouring time of the casting if the choke section is small enough compared to the effective section of the filter. Although the filter has no significant influence on the flow patterns in the block casting itself, the flow patterns in the filter zone are different. When the liquid metal passes a horizontal filter, it will be broken into many small streams and show a shower effect. After the part under the filter is full, the shower effect disappears. When the filter is located at the vertical position, due to the gravity, the shower effect is less. If no filter presents on the system, the liquid metal passes through the filter zone with a high speed and causes surface turbulence.

  17. Experimental Investigation of In Situ Cleanable or Regenerative Filters for High Level Radioactive Waste Tanks

    International Nuclear Information System (INIS)

    Adamson, D.J.

    2000-01-01

    The Westinghouse Savannah River Company, located at the Savannah River Site (SRS) in Aiken, South Carolina, is currently testing two types of filter media for application as in situ regenerable/cleanable filters on high-level radioactive liquid waste tanks. Each of the 1.3 million-gallon tanks is equipped with an exhaust ventilation system to provide tank ventilation and to maintain the tank contents at approximately 1-in. water gauge vacuum to prevent the release of radioactive material to the environment. These systems are equipped with conventional, disposable, glass-fiber, High Efficiency Particulate Air (HEPA) filters that require frequent removal, replacement, and disposal. The need for routine replacements is often caused by accelerated filter loading due to the moist operating environment, which structurally weakens the filter media. This is not only costly, but subjects site personnel to radiation exposure and possible contamination. The types of filter media tested, as part of a National Energy Technology Laboratory procurement, were sintered metal and monolith ceramic. The media were subjected to a hostile environment to simulate conditions that challenge the tank ventilation systems. The environment promoted rapid filter plugging to maximize the number of filter loading/cleaning cycles that would occur in a specified period of time. The filters were challenged using non-radioactive, simulated high level waste materials and atmospheric dust, as these materials are most responsible for filter pluggage in the field. The filters were cleaned/regenerated in situ using an aqueous solution of dilute (10% volume) nitric acid. The study found that both filter media were insensitive to high humidity or moisture conditions and were easily cleaned in situ. The filters regenerated to approximately clean filter status even after numerous plugging and cleaning cycles. The filters were leak tested using poly alpha olefin aerosol at the beginning, middle, and end of the

  18. Synthesis and characterization of biomorphic ceramics

    International Nuclear Information System (INIS)

    Rambo, Carlos Renato

    2001-01-01

    Biotemplating represents a recently developed technology for manufacturing of biomorphous ceramics from naturally grown plant structures. This approach allows the production of ceramic materials with cellular structure, where the microstructural features of the ceramic product are similar to the native plant. After processing, the biomorphic ceramic exhibits directed pore morphology in the micrometer range. Biomorphic SiC fibers were produced from bamboo by carbothermal reduction of SiO 2 originally present in the bamboo structure. Bamboo pieces were heated up to 1500 deg C in argon to promote the reaction between carbon and silica. Biomorphic alumina, mullite and zirconia ceramics were manufactured via the sol-gel route by repeated infiltration of low viscous oxide precursors (sols) into rattan, pine and bamboo structures. The raw samples were pyrolyzed at 800 deg C in nitrogen for 1h and subsequently annealed at 1550 deg C in air. The microstructure and physical properties of the biomorphic ceramics were characterized by X-ray diffraction (XRD) and high temperature-XRD, scanning electron microscopy (SEM), porosimetry and picnometry. Thermal analysis (TGA/DTA) was performed on the infiltrated samples in order to evaluate the reactions and the total weight loss during the thermal process. The mechanical properties were evaluated by compressive strength tests. In contrast to conventional processed ceramic foam of similar porosity, the microstructure highly porous biomorphic ceramics shows uniaxial pore morphology with anisotropic properties. These properties are favorable for applications in catalyst support, filters or low-density heat insulation structures, or as biomaterials. (author)

  19. Wine vessels (Vasa vinaria in roman law

    Directory of Open Access Journals (Sweden)

    Aličić Samir

    2017-01-01

    Full Text Available The notion of 'wine vessels' in Roman law comprises all the winecontaining recipients. There is no legal standardization of wine vessels by means of volume, and although the terms amphora, urna and culleus are used to designate both the vessels and the units of measure, these are two different meanings of the terms. In regard of the question, whether the vessels make appurtenance of the wine, jurisprudents of proculean school divided them in two categories. In the first category are those that follow legal status of wine, usually amphoras and other jars (cadi which are used for 'packaging', i. e. 'bottling' of the wine. The second category make mostly vats (cuppae and ceramic cisterns (dolia, which don't follow legal status of wine, making instead part of farming equipment of a landed property (instrumentum fundi and it's appurtenance. But, the roman jurists are not consistent regarding criteria for distinguishing these two categories.

  20. Assessment of a membrane drinking water filter in an emergency setting.

    Science.gov (United States)

    Ensink, Jeroen H J; Bastable, Andy; Cairncross, Sandy

    2015-06-01

    The performance and acceptability of the Nerox(TM) membrane drinking water filter were evaluated among an internally displaced population in Pakistan. The membrane filter and a control ceramic candle filter were distributed to over 3,000 households. Following a 6-month period, 230 households were visited and filter performance and use were assessed. Only 6% of the visited households still had a functioning filter, and the removal performance ranged from 80 to 93%. High turbidity in source water (irrigation canals), together with high temperatures and large family size were likely to have contributed to poor performance and uptake of the filters.

  1. Research results on productivity stabilization by ultrasonic camera (plant with membrane ceramic elements during vine processing

    Directory of Open Access Journals (Sweden)

    V. T. Antufyev

    2016-01-01

    Full Text Available The article describes solutions to the problems of declining productivity of ceramic membrane elements for wine processing on the final manufacturing phase. A relative stabilization of filtration velocity, venting efficiency and wine lightening were experimentally confirmed during contacts with oscillation waves of ultrasonic transmitter on the ceramic filter. Which significantly reduced the cost of various preservatives to increase periods storage. To study the processes of wine processing by the proposed method it was made an experimental installation on the basis of pilot machine MRp-1/2 for bottling of quiet liquids and an ultrasonic device "Volna– M" UZTA-1/22-OM with a firmly, waveguide which transmits sound, fixed filter frame on the ultrasound emitter. To stabilize the performance of ultrasonic units with ceramic membrane elements without quality deterioration of wines it was empirically determined rational parameters of power of ultrasound input and pressure in the system. The given derived dependencies and graphs allow to define the time of relatively stable operating filter regime. It was revealed a significant cost reduction on filtration, as it allows escape from the contamination of the product by various preservatives, and increasing of storage duration in a sealed container during aseptic filling without a thermal sterilization. Ultrasonic emitter contact by superposition wave vibrations on the ceramic filter increases not only the efficiency of gas removal, but also improves the organoleptic characteristics, stabilizes the filters, improves their productivity. Gas removal creates unfavorable conditions for development of the yeast, which in turn increases the shelf life of semisweet wine.

  2. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  3. Effect of Fluid Bypassing on the Experimentally Obtained Darcy and Non-Darcy Permeability Parameters of Ceramic Foam Filters

    Science.gov (United States)

    Akbarnejad, Shahin; Saffari Pour, Mohsen; Jonsson, Lage Tord Ingemar; Jönsson, Pӓr Göran

    2017-02-01

    Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.

  4. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    Science.gov (United States)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  5. Arsenic removal for ceramic water filters

    Directory of Open Access Journals (Sweden)

    Mishant Kumar

    2013-02-01

    Full Text Available Arsenic in drinking water is a hazard to human health and is a known carcinogen (Mass 1992. Resource Development International – Cambodia (RDIC has researched, developed, and manufactured simple ceramic water fi lters (CWF which have proved to be extremely effective in removing pathogens from water. These fi lters however, do not remove arsenic from water, which exists in the source water at levels above the World Health Organisation (WHO guideline of 10μg/L. The aims of this literature based study were to investigate conventional and non-conventional arsenic removal processes, and to discuss the options for applying an arsenic removal technology to the CWFs produced by RDIC. It was found that conventional arsenic removal technologies are diffi cult to implement in the context of household water treatment in a developing country. This study suggested that non-conventional arsenic removal technologies shall be more effective and that field studies must be undertaken to verify the success of such methods.

  6. Float level switch for a nuclear power plant containment vessel

    International Nuclear Information System (INIS)

    Powell, J.G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures

  7. Float level switch for a nuclear power plant containment vessel

    Science.gov (United States)

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  8. New algorithm for detecting smaller retinal blood vessels in fundus images

    Science.gov (United States)

    LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.

    2010-03-01

    About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.

  9. Performance of High Temperature Filter System for Radioactive Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Park, Seung Chul; Hwang, Tae Won; Shin, Sang Won; Ha, Jong Hyun; Kim, Hey Suk; Park, So Jin

    2004-01-01

    Important operation parameters and performance of a high temperature ceramic candle filter system were evaluated through a series of demonstration tests at a pilot-scale vitrification plant. At the initial period of each test, due to the growth of dust cake on the surface of ceramic candles, the pressure drop across the filter media increased sharply. After that it became stable to a certain range and varied continuously proportion to the face velocity of off-gas. On the contrary, at the initial period of each test, the permeability of filter element decreased rapidly and then it became stable. Back flushing of the filter system was effective under the back flushing air pressure range of 3∼5 bar. Based on the dust concentrations measured by iso-kinetic dust sampling at the inlet and outlet point of HTF, the dust collection efficiency of HTF evaluated. The result met the designed performance value of 99.9%. During the demonstration tests including a hundred hour long test, no specific failure or problem affecting the performance of HTF system were observed.

  10. Chemical characterization of marajoara ceramics

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri Galbiati

    2009-01-01

    In this study the elemental concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn were determined by instrumental neutron activation analysis (INAA) in 204 fragments of Marajoara archaeological ceramics, of which 156 were provided by the Archaeology and Ethnology Museum of Sao Paulo University (MAE) and 48 were provided by Dr. Denise Pahl Schaan, Marajo Museum curator. Also, 9 contemporary ceramics produced and marketed at Marajo Island were analyzed. Electron paramagnetic resonance (EPR) analyses were performed in 8 archaeological samples and 1 contemporary sample in order to identify the burning temperature of the samples. X-ray diffraction (XRD) analyses were performed in 13 archaeological samples and 2 contemporary samples for the investigation of their mineralogical composition. Mahalanobis distance was used for the study of outlier while modified filter was used for the study of the temper added to the ceramic paste. Result interpretation was performed using cluster analysis, principal components analysis and discriminant analysis. Procrustes analysis was used for variable selection and it showed that the Ce, Fe, Eu, Hf, K and Th variables are adequate for the characterization of the analyzed samples. The comparative study among the archaeological and contemporary ceramics showed the arrangement of two well-defined and close groups for the archaeological samples and a third, distant group for the contemporary ones. This result indicates that the archaeological and contemporary ceramics differ in their composition. EPR and XRD analysis were inconclusive for the differentiation of archaeological and contemporary ceramics. (author)

  11. Lung vessel segmentation in CT images using graph-cuts

    Science.gov (United States)

    Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.

    2016-03-01

    Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.

  12. Particle filters, a quasi-Monte-Carlo-solution for segmentation of coronaries.

    Science.gov (United States)

    Florin, Charles; Paragios, Nikos; Williams, Jim

    2005-01-01

    In this paper we propose a Particle Filter-based approach for the segmentation of coronary arteries. To this end, successive planes of the vessel are modeled as unknown states of a sequential process. Such states consist of the orientation, position, shape model and appearance (in statistical terms) of the vessel that are recovered in an incremental fashion, using a sequential Bayesian filter (Particle Filter). In order to account for bifurcations and branchings, we consider a Monte Carlo sampling rule that propagates in parallel multiple hypotheses. Promising results on the segmentation of coronary arteries demonstrate the potential of the proposed approach.

  13. Problems and remedy programme of an ion-exchange filter

    International Nuclear Information System (INIS)

    Khattab, M.; Mekhemar, S.

    1994-01-01

    Practical problems of the ion exchange filter of ET-R R-1 reactor are discussed. Remedy program is described. The program includes:- Evaluating the efficiency of the resins. -Discharging of the radio-active resins from the filter - Identification of corrosion and repairing process of the filter vessel - Charging process of the fresh resins. -Evaluating the efficiency of the new resins. Waste radio-active resins were discharged by siphon effect. The chloride content in reactor cooling water decreased from 5.8 ppm to 1.1 ppm after changing the resins. Nevertheless, the chloride content is still much higher than the standard value 0.05 ppm. This is due to the high level of the chloride in the demineralized water produced by the demineralizer, 0.8 ppm. Therefore, it is recommended that the resins of the mixed bed demineralizer be tailored to produce the standard water quality. The filter vessel cannot be quarantined to be in good service condition for a long period. The vessel should be replaced by a new design which would facilitate the process of discharging the radioactive resins and charging the fresh resins. The inner surface of the vessel should be coated or cladded to withstand the aggressive environment of the water. Periodical water chemical analysis is necessary to investigate reactor coolant and filter conditions. The aging effect of the stored water supply to the reactor should be taken into consideration. New demineralized should be installed near the feed water supply tanks so that the stored water could be refreshed. The device save the costs of production of fresh demineralized water. Development of radioactive waste transportation mechanisms and storing are necessary. 12 figs., 4 tabs

  14. Effects of filter materials on microstructure and mechanical properties of AZ91

    Directory of Open Access Journals (Sweden)

    Wu Guohua

    2010-11-01

    Full Text Available The present investigation studied the effects of different kinds of ceramic foam filters (CFF incorporating gas bubbling on the microstructure and mechanical properties of virgin AZ91 alloys, and the reactions between filters and Mg melt during filtration. The results show that the purification process of CFF incorporating gas bubbling process can obviously improve the Rm and A of AZ91 alloy, especially the A. Amongst the selected four kinds of CFF, the MgO filter is the most suitable for filtrating Mg melt, and the filtration effective sequence of four kinds of filtrating materials is as follows: MgO>Al2O3>ZrO2>SiC. With MgO filter incorporating gas bubbling treatment under Ar flow rate of 2 L/min and temperature of 730 °C, the ultimate tensile strength Rm and elongation A can be improved greatly from 175.3 MPa and 2.74% to 195.4 MPa and 4.54%, respectively. No inclusions are found on the fracture surface of the sample filtrated by MgO ceramic foam filter, and the fracture mode is quasi-cleavage crack.

  15. Nitinol Embolic Protection Filters: Design Investigation by Finite Element Analysis

    Science.gov (United States)

    Conti, Michele; de Beule, Matthieu; Mortier, Peter; van Loo, Denis; Verdonck, Pascal; Vermassen, Frank; Segers, Patrick; Auricchio, Ferdinando; Verhegghe, Benedict

    2009-08-01

    The widespread acceptance of carotid artery stenting (CAS) to treat carotid artery stenosis and its effectiveness compared with surgical counterpart, carotid endarterectomy (CEA), is still a matter of debate. Transient or permanent neurological deficits may develop in patients undergoing CAS due to distal embolization or hemodynamic changes. Design, development, and usage of embolic protection devices (EPDs), such as embolic protection filters, appear to have a significant impact on the success of CAS. Unfortunately, some drawbacks, such as filtering failure, inability to cross tortuous high-grade stenoses, malpositioning and vessel injury, still remain and require design improvement. Currently, many different designs of such devices are available on the rapidly growing dedicated market. In spite of such a growing commercial interest, there is a significant need for design tools as well as for careful engineering investigations and design analyses of such nitinol devices. The present study aims to investigate the embolic protection filter design by finite element analysis. We first developed a parametrical computer-aided design model of an embolic filter based on micro-CT scans of the Angioguard™ XP (Cordis Endovascular, FL) EPD by means of the open source pyFormex software. Subsequently, we used the finite element method to simulate the deployment of the nitinol filter as it exits the delivery sheath. Comparison of the simulations with micro-CT images of the real device exiting the catheter showed excellent correspondence with our simulations. Finally, we evaluated circumferential basket-vessel wall apposition of a 4 mm size filter in a straight vessel of different sizes and shape. We conclude that the proposed methodology offers a useful tool to evaluate and to compare current or new designs of EPDs. Further simulations will investigate vessel wall apposition in a realistic tortuous anatomy.

  16. Choque térmico em filtros cerâmicos do sistema Al2O3-SiC Thermal shock on ceramic filters in the system Al2O3-SiC

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2002-03-01

    Full Text Available Em diversas aplicações as cerâmicas celulares são submetidas a tensões térmicas severas, tal como na filtração de metais fundidos. Contudo, há poucos estudos sobre o desempenho ao choque térmico destes materiais. Uma das razões é que a metodologia para análise desta classe de materiais deve ser distinta daquela utilizada para os materiais cerâmicos densos. Isto porque no caso dos materiais celulares para filtração de metais fundidos o meio causador do choque térmico infiltra-se rapidamente na estrutura reticular de poros, reduzindo o gradiente de temperatura entre a superfície externa e a do interior do corpo. Neste contexto, a proposta do presente trabalho é verificar os efeitos de algumas propriedades dos filtros cerâmicos em seu comportamento mecânico durante testes de choque térmico em água. As propriedades consideradas são a permeabilidade, a condutividade térmica e a área superficial específica dos filtros. Para isto foram utilizados os filtros cerâmicos do sistema de Al2O3-SiC de 8, 10, 20 e 30 ppi (poros por polegada linear.In many applications, open-cell ceramics are expected to undergo severe thermal stresses, for instance, in their use as molten metal filters. However, only a few studies have considered the thermal shock behavior of these materials. One of the main reasons is the theoretical approach used for dense ceramics which may not be valid for porous materials. In this context, the aim of this work is to analyze the effects of permeability, specific surface area and thermal conductivity on the mechanical behavior of ceramic filters subjected to water quenching tests. Al2O3-SiC filters with nominal cell sizes, expressed as the number of pores per linear inch (ppi, ranged from 8 to 30 ppi were used in the experimental tests.

  17. Industrial Application of Open Pore Ceramic Foam for Molten Metal Filtration

    Science.gov (United States)

    Gauckler, L. J.; Waeber, M. M.; Conti, C.; Jacob-Dulière, M.

    Ceramic foam filters were used for industrial filtration of aluminum. Results are compared with laboratory experiments which are in good agreement with trajectory analyses of deep bed filtration for the early stage of filtration.

  18. Ceramic to metal joining by using 1064 nm pulsed and CW laser energy source

    International Nuclear Information System (INIS)

    Lee, Young Min; Kim, Soo Won; Choi, Hae Woon; Kim, Joo Han

    2013-01-01

    A novel joining method for ceramic and metallic layers is proposed using laser drilling and surface tension driven liquid metal filling. A high intensity laser beam irradiated a 500 µm thick ceramic filter, and the irradiated laser drilled the ceramic layer. The pulsed or CW laser transmitted through the ceramic layer irradiated the bottom metallic layer; the molten metallic layer then filled the drilled ceramic holes by the capillary force between the liquid metal and ceramic layer. As process variables, average laser power, pulse duration, and the number of pulses were used. The scattering optical properties were also studied for both green and red lasers. There was no significant difference between the colors and the estimated extinction coefficients were -26.94 1/mm and -28.42 1/mm for the green and red lasers, respectively.

  19. Fabrication of porous zirconia using filter paper template

    International Nuclear Information System (INIS)

    Deng Yuhua; Wei Pan

    2005-01-01

    In this work, porous zirconia ceramic was synthesized using filter papers as a template. Special attention is paid to whether the structural of the filter paper can be transferred to the zirconia structure. Microstructure of so synthesized porous zirconia was observed with SEM and the phase was determined by XRD. The surface area and the pore were investigated with an automatic volumetric sorption analyzer. It has been found that the morphology of the template transmit to the porous zirconia quite well. (orig.)

  20. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N.; Luonsi, A.; Levaenen, E.; Maentylae, T.; Vilen, J. [Haemeen ympaeristoekeskus, Tampere (Finland)

    1998-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  1. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N; Luonsi, A; Levaenen, E; Maentylae, T; Vilen, J [Haemeen ympaeristoekeskus, Tampere (Finland)

    1999-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  2. Preparation and electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics

    International Nuclear Information System (INIS)

    Yue Zhenxing; Chen Shaofeng; Qi Xiwei; Gui Zhilun; Li Longtu

    2004-01-01

    For the purpose of multilayer chip EMI filters, the new ferroelectric-ferrite composite ceramics were prepared by mixing PMZNT relaxor ferroelectric powder with composition of 0.85Pb(Mg 1/3 Nb 2/3 )O 3 -0.1Pb(Ni 1/3 Nb 2/3 )O 3 -0.05PbTiO 3 and NiCuZn ferrite powder with composition of (Ni 0.20 Cu 0.20 Zn 0.60 )O(Fe 2 O 3 ) 0.97 at low sintering temperatures. A small amount of Bi 2 O 3 was added to low sintering temperature. Consequently, the dense composite ceramics were obtained at relative low sintering temperatures, which were lower than 940 deg. C. The X-ray diffractometer (XRD) identifications showed that the sintered ceramics retained the presence of distinct ferroelectric and ferrite phases. The sintering studies and scanning electron microscope (SEM) observations revealed that the co-existed two phases affect the sintering behavior and grain growth of components. The electromagnetic properties, such as dielectric constant and initial permeability, change continuously between those of two components. Thus, the low-temperature sintered ferroelectric-ferrite composite ceramics with tunable electromagnetic properties were prepared by adjusting the relative content of two components. These materials can be used for multilayer chip EMI filters with various properties

  3. Integration of semiconductor and ceramic superconductor devices for microwave applications

    NARCIS (Netherlands)

    Klopman, B.B.G.; Klopman, B.B.G.; Wijers, H.W.; Gao, J.; Gao, J.; Gerritsma, G.J.; Rogalla, Horst

    1991-01-01

    Due to the very-low-loss properties of ceramic superconductors, high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature facilitates integration with semiconductor devices. Examples are bandpass amplifiers,

  4. In-place testing of off-gas iodine filters

    International Nuclear Information System (INIS)

    Duce, S.W.; Tkachyk, J.W.; Motes, B.G.

    1980-01-01

    At the Idaho National Engineering Laboratory, both charcoal and silver zeolite (AgX) filters are used for radioactive iodine off-gas cleanup of reactor systems. These filters are used in facilities which are conducting research in the areas of reactor fuel failure, reactor fuel inspection, and loss of fluids from reactor vessels. Iodine retention efficiency testing of these filters is dictated by prudent safety practices and regulatory guidelines. A procedure for determining iodine off-gas filter efficiency in-place has been developed and tested on both AgX and charcoal filters. The procedure involves establishing sample points upstream and downstream of the filter to be tested. A step-by-step approach for filter efficiency testing is presented

  5. Radiation-induced aperiodicity in irradiated ceramics

    International Nuclear Information System (INIS)

    Hobbs, L.W.

    1993-02-01

    The experimental program is designed to reveal details of the metamict (amorphization, or crystal-to-glass) transformation in irradiated ceramics (silica compounds, less-connected lead phosphates). The silica compounds were amorphized using electrons, neutrons, and ions, while the phosphates were amorphized using ions (primarily) and neutrons. Energy-filtered electron microdiffraction, high-resoltuion transmission electron microscopy, and high-performance liquid-phase chromatography are being used

  6. Reactor coolant cleanup device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To enable to introduce reactor water at high temperature and high pressure as it is, as well as effectively adsorb to eliminate cobalt in reactor water. Constitution: The coolant cleanup device comprises a vessel main body inserted to coolant pipeway circuits in a water cooled reactor power plant and filters contained within the vessel main body. The filters are prepared by coating and baking powder of metal oxides such as manganese ferrite having a function capable of adsorbing cobalt in the coolants onto the surface of supports made of metals or ceramics resistant to strong acids and alkalies in the form of three-dimensional network structure, for example, zircaloy-2, SUS 303 and the zirconia (baking) to form a basic filter elements. The basic filter elements are charged in plurality to the vessel main body. (Kawaiami, Y.)

  7. Vessels from Late Medieval cemeteries in the Central Balkans

    Directory of Open Access Journals (Sweden)

    Bikić Vesna

    2011-01-01

    the glass fragments there were parts of bottles with a ring around the neck and a ribbed body (Rippenflaschen, generally known in domestic scholarship under the term Panik type bottle (fig. 10/8. Also identifiable among the recovered glass fragments are drinking vessels of several types, beakers with small or large prunts (Nuppenbecher and Krautstrunk and ribbed (Rippenbecher, common especially in the 15th and 16th centuries (figs. 12/1, 3, 5, 6. There are also pieces with a blue thread applied around the rim and body, similar to the examples from Stalać reproduced herein (fig. 12/3. Quite rarely found are drinking vessels of cobalt blue glass, which are mostly small, except for a few examples of up to 14 cm in height, which is also the height of the abovementioned bottles. Apart from Venice and Dubrovnik (Ragusa, glassware was imported from Hungary. The discovered pottery vessels show a greater diversity, mostly in terms of shape. In addition to liquid containers - jugs, pitchers and beakers, there occur bowls, pots and even apothecary vessels. A vast majority belong to the Serbian ware of the 14th and 15th centuries. Most are glazed, and frequently painted with spirals, bands and blotches in white, green and dark brown or decorated with simple sgrafitto patterns, such as the finds from Novo Brdo (fig. 1, St Peter’s (figs 9; 13/1, 4 and the monastery of Gradac. By far the most interesting of them is the beaker from Končulić with an openwork edge around the base (fig. 12/2, which is commonly found in glass beakers of the same period. Deserving of particular attention are three cylindrical ceramic bottles from Novo Brdo (fig. 2. The presented material allows us to recognize the central issues surrounding the occurrence of vessels in the cemeteries of the 14th to 17th century in Serbia. Given the small number of recorded cases, the presence of vessels in graves as grave goods appears to have been utterly sporadic. Being based on the processed and published results

  8. Purification of gas and liquid media by metal-ceramic SHS-filters

    OpenAIRE

    Geyneman, A. A.; Goncharov, V. D.; Novoselov, A. L.; Shchetinkina, N. Yu.

    2007-01-01

    Industrial samples of fine filters of gas and liquid media from mechanical microparticles have been developed. Porous permeable cermets obtained by self-propagating high-temperature synthesis are the basis of filters

  9. Ozonation and/or Coagulation - Ceramic Membrane Hybrid for Filtration of Impaired-Quality Source Waters

    KAUST Repository

    Ha, Changwon

    2013-09-01

    When microfiltration (MF) and ultrafiltration (UF) membranes are applied for drinking water treatment/wastewater reuse, membrane fouling is an evitable problem, causing the loss of productivity over time. Polymeric membranes have been often reported to experience rapid and/or problematical fouling, restraining sustainable operation. Ceramic membranes can be effectively employed to treat impaired-quality source waters due to their inherent robustness in terms of physical and chemical stability. This research aimed to identify the effects of coagulation and/or ozonation on ceramic membrane filtration for seawater and wastewater (WW) effluent. Two different types of MF and UF ceramic membranes obtained by sintering (i.e., TAMI made of TiO2+ZrO2) and anodic oxidation process (i.e., AAO made of Al2O3) were employed for bench-scale tests. Precoagulation was shown to play an important role in both enhancing membrane filterability and natural organic matter (NOM) removal efficacy for treating a highorganic surface water. The most critical factors were found to be pH and coagulant dosage with the highest efficiency resulting under low pH and high coagulant dose. Due to the ozone-resistance nature of the ceramic membranes, preozonation allowed the ceramic membranes to be operated at higher flux, especially leading to significant flux improvement when treating seawater in the presence of calcium and magnesium. 4 Dissolved ozone in contact with the TAMI ceramic membrane surface accelerated the formation of hydroxyl (˙OH) radicals in WW effluent treatment. Flux restoration of both ceramic membranes, fouled with seawater and WW effluent, was efficiently achieved by high backwash (BW) pressure and ozone in chemically enhanced backwashing (CEB). Ceramic membranes exhibited a pH-dependent permeate flux while filtering WW effluent, showing reduced fouling with increased pH. On the other hand, for filtering seawater, differences in permeate flux between the two membranes was

  10. Modified PZT ceramics as a material that can be used in micromechatronics

    Science.gov (United States)

    Zachariasz, Radosław; Bochenek, Dariusz

    2015-11-01

    Results on investigations of the PZT type ceramics with the following chemical composition: Pb0.94Sr0.06(Zr0.50 Ti0.50)0.99 Cr0.01O3 (PSZTC) which belongs to a group of multicomponent ceramic materials obtained on basis of the PZT type solid solution, are presented in this work. Ceramics PSZTC was obtained by a free sintering method under the following conditions: Tsint = 1250 °C and tsint = 2 h. Ceramic compacts of specimens for the sintering process were made from the ceramic mass consisting of a mixture of the synthesized PSZTC powder and 3% polyvinyl alcohol while wet. The PSZTC ceramic specimens were subjected to poling by two methods: low temperature and high temperature. On the basis of the examinations made it has been found that the ceramics obtained belongs to ferroelectric-hard materials and that is why it may be used to build resonators, filters and ultrasonic transducers. Contribution to the Topical Issue "Materials for Dielectric Applications" edited by Maciej Jaroszewski and Sabu Thomas.

  11. Roi Detection and Vessel Segmentation in Retinal Image

    Science.gov (United States)

    Sabaz, F.; Atila, U.

    2017-11-01

    Diabetes disrupts work by affecting the structure of the eye and afterwards leads to loss of vision. Depending on the stage of disease that called diabetic retinopathy, there are sudden loss of vision and blurred vision problems. Automated detection of vessels in retinal images is a useful study to diagnose eye diseases, disease classification and other clinical trials. The shape and structure of the vessels give information about the severity of the disease and the stage of the disease. Automatic and fast detection of vessels allows for a quick diagnosis of the disease and the treatment process to start shortly. ROI detection and vessel extraction methods for retinal image are mentioned in this study. It is shown that the Frangi filter used in image processing can be successfully used in detection and extraction of vessels.

  12. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Science.gov (United States)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  13. Bottom loaded filter for radioactive liquids

    International Nuclear Information System (INIS)

    Wendland, W.G.

    1980-01-01

    A bottom loaded filter assembly for filtering radioactive liquids through a replaceable cartridge filter is disclosed. The filter assembly includes a lead-filled jacket enveloping a housing having a chamber therein for the filter cartridge. A track arrangement carries a hatch for sealing the chamber. A spacer plug supports the cartridge within guide means associated with the inlet conduit in the chamber. The plug and cartridge drop out of the chamber when the hatch is unbolted and move laterally of the chamber. During cartridge replacement, a new plug and cartridge are supported in the guide means by a spacer bar inserted across the track means under the chamber. The hatch is then slid under the chamber and bolted to the vessel, engaging an o-ring to seal the chamber

  14. Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation.

    Science.gov (United States)

    Phellan, Renzo; Forkert, Nils D

    2017-11-01

    Vessel enhancement algorithms are often used as a preprocessing step for vessel segmentation in medical images to improve the overall segmentation accuracy. Each algorithm uses different characteristics to enhance vessels, such that the most suitable algorithm may vary for different applications. This paper presents a comparative analysis of the accuracy gains in vessel segmentation generated by the use of nine vessel enhancement algorithms: Multiscale vesselness using the formulas described by Erdt (MSE), Frangi (MSF), and Sato (MSS), optimally oriented flux (OOF), ranking orientations responses path operator (RORPO), the regularized Perona-Malik approach (RPM), vessel enhanced diffusion (VED), hybrid diffusion with continuous switch (HDCS), and the white top hat algorithm (WTH). The filters were evaluated and compared based on time-of-flight MRA datasets and corresponding manual segmentations from 5 healthy subjects and 10 patients with an arteriovenous malformation. Additionally, five synthetic angiographic datasets with corresponding ground truth segmentation were generated with three different noise levels (low, medium, and high) and also used for comparison. The parameters for each algorithm and subsequent segmentation were optimized using leave-one-out cross evaluation. The Dice coefficient, Matthews correlation coefficient, area under the ROC curve, number of connected components, and true positives were used for comparison. The results of this study suggest that vessel enhancement algorithms do not always lead to more accurate segmentation results compared to segmenting nonenhanced images directly. Multiscale vesselness algorithms, such as MSE, MSF, and MSS proved to be robust to noise, while diffusion-based filters, such as RPM, VED, and HDCS ranked in the top of the list in scenarios with medium or no noise. Filters that assume tubular-shapes, such as MSE, MSF, MSS, OOF, RORPO, and VED show a decrease in accuracy when considering patients with an AVM

  15. 1D/2D analyses of the lower head vessel in contact with high temperature melt

    International Nuclear Information System (INIS)

    Chang, Jong Eun; Cho, Jae Seon; Suh, Kune Y.; Chung, Chang H.

    1998-01-01

    One- and two-dimensional analyses were performed for the ceramic/metal melt and the vessel to interpret the temperature history of the outer surface of the vessel wall measured from typical Al 2 O 3 /Fe thermite melt tests LAVA (Lower-plenum Arrested Vessel Attack) spanning heatup and cooldown periods. The LAVA tests were conducted at the Korea Atomic Energy Research Institute (KAERI) during the process of high temperature molten material relocation from the delivery duct down into the water in the test vessel pressurized to 2.0 MPa. Both analyses demonstrated reasonable predictions of the temperature history of the LHV (Lower Head Vessel). The comparison sheds light on the thermal hydraulic and material behavior of the high temperature melt within the hemispherical vessel

  16. ROI DETECTION AND VESSEL SEGMENTATION IN RETINAL IMAGE

    Directory of Open Access Journals (Sweden)

    F. Sabaz

    2017-11-01

    Full Text Available Diabetes disrupts work by affecting the structure of the eye and afterwards leads to loss of vision. Depending on the stage of disease that called diabetic retinopathy, there are sudden loss of vision and blurred vision problems. Automated detection of vessels in retinal images is a useful study to diagnose eye diseases, disease classification and other clinical trials. The shape and structure of the vessels give information about the severity of the disease and the stage of the disease. Automatic and fast detection of vessels allows for a quick diagnosis of the disease and the treatment process to start shortly. ROI detection and vessel extraction methods for retinal image are mentioned in this study. It is shown that the Frangi filter used in image processing can be successfully used in detection and extraction of vessels.

  17. A Randomized Controlled Trial to Assess the Impact of Ceramic Water Filters on Prevention of Diarrhea and Cryptosporidiosis in Infants and Young Children-Western Kenya, 2013.

    Science.gov (United States)

    Morris, Jamae Fontain; Murphy, Jennifer; Fagerli, Kirsten; Schneeberger, Chandra; Jaron, Peter; Moke, Fenny; Juma, Jane; Ochieng, J Ben; Omore, Richard; Roellig, Dawn; Xiao, Lihua; Priest, Jeffrey W; Narayanan, Jothikumar; Montgomery, Joel; Hill, Vince; Mintz, Eric; Ayers, Tracy L; O'Reilly, Ciara E

    2018-04-02

    Cryptosporidium is a leading cause of diarrhea among Kenyan infants. Ceramic water filters (CWFs) are used for household water treatment. We assessed the impact of CWFs on diarrhea, cryptosporidiosis prevention, and water quality in rural western Kenya. A randomized, controlled intervention trial was conducted in 240 households with infants 4-10 months old. Twenty-six weekly household surveys assessed infant diarrhea and health facility visits. Stool specimens from infants with diarrhea were examined for Cryptosporidium . Source water, filtered water, and filter retentate were tested for Cryptosporidium and/or microbial indicators. To estimate the effect of CWFs on health outcomes, logistic regression models using generalized estimating equations were performed; odds ratios (ORs) and 95% confidence intervals (CIs) are reported. Households reported using surface water (36%), public taps (29%), or rainwater (17%) as their primary drinking water sources, with no differences in treatment groups. Intervention households reported less diarrhea (7.6% versus 8.9%; OR: 0.86 [0.64-1.16]) and significantly fewer health facility visits for diarrhea (1.0% versus 1.9%; OR: 0.50 [0.30-0.83]). In total, 15% of intervention and 12% of control stools yielded Cryptosporidium ( P = 0.26). Escherichia coli was detected in 93% of source water samples; 71% of filtered water samples met World Health Organization recommendations of filter rinses following passage of large volumes of source water. Water quality was improved among CWF users; however, the short study duration and small sample size limited our ability to observe reductions in cryptosporidiosis.

  18. Moessbauer study of miniature vessels from the Sican burial site of Huaca Loro

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, G., E-mail: gabriela.cervantes@pucp.pe [Pontificia Universidad Catolica del Peru (Peru); Shimada, I. [Southern Illinois University (United States); Haeusler, W.; Wagner, U.; Wagner, F. E. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)

    2011-11-15

    Small handmade ceramic vessels are often found in large quantities in late pre-hispanic elite tombs on the north coast of Peru. These miniature vessels are of poor artistic and technologic qualities compared with other offerings found in tombs and have not received much attention. Our hypothesis is that these miniatures were made hastily by non-elite funeral attendants, which resulted in the observed formal and material variability. Here we report on the results of a systematic archaeological analysis of the shape and of archaeometric analyses by Moessbauer spectroscopy and XRD of the firing conditions of such vessels that were conducted to test the above hypothesis.

  19. Pseudobrookite-type MgTi2O5 water purification filter with controlled particle morphology

    Directory of Open Access Journals (Sweden)

    Yuta Nakagoshi

    2015-09-01

    Full Text Available Pseudobrookite-type oxide-based ceramics, such as Al2TiO5 and MgTi2O5, have recently been studied as porous ceramic membranes. Here, the effect of LiF doping on the morphology of MgTi2O5 particles is presented in detail. Water purification filters were produced using porous MgTi2O5, with different particle morphologies. MgCO3 (basic and TiO2 powders with various LiF contents were wet-ball milled, dried, and then, calcined in air at 1100 °C to obtain the MgTi2O5 powders. The powder compacts were sintered at 1000–1200 °C to produce the MgTi2O5 disk filters. The 0.5 wt.% LiF-doped MgTi2O5 disk filter, with elongated grains, showed well-balanced performance removing boehmite particles with diameter of 0.7 μm. Non-doped MgTi2O5 disk filter with equiaxed grains was suitable for precise filtration.

  20. Laboratory Testing of the Boundary Layer Momentum Transfer Rotational Filter Systems, NETL-Innovatech, Inc., CRADA 98-F026, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-22

    A patented dynamic mechanical filter developed by InnovaTech was previously shown to remove fine particulate matter from industrial process gas streams at ambient temperatures and pressures. An all-metal, high-temperature version of this novel media-less filter was fabricated under this Cooperative Research and Development Agreement (CRADA) with DOE/NETL-Morgantown for hot gas testing of the device. The technology is entirely different in both concept and design from conventional vortex separators, cyclones, or porous media filters. This new filtration concept is capable of separating heavy loading of fine particles without blinding, fouling or bridging, and would require minimal operational costs over its anticipated multi-year service life. The all-metal filter design eliminates thermal stress cracking and premature failure prevalent in conventional porous ceramic filters. In contrast, conventional porous media filters (i.e., ceramic cross-flow or candles) easily foul, require periodic cleaning (typically backpulsing), frequent replacement and subsequent disposal.

  1. A Review of Algorithms for Retinal Vessel Segmentation

    Directory of Open Access Journals (Sweden)

    Monserrate Intriago Pazmiño

    2014-10-01

    Full Text Available This paper presents a review of algorithms for extracting blood vessels network from retinal images. Since retina is a complex and delicate ocular structure, a huge effort in computer vision is devoted to study blood vessels network for helping the diagnosis of pathologies like diabetic retinopathy, hypertension retinopathy, retinopathy of prematurity or glaucoma. To carry out this process many works for normal and abnormal images have been proposed recently. These methods include combinations of algorithms like Gaussian and Gabor filters, histogram equalization, clustering, binarization, motion contrast, matched filters, combined corner/edge detectors, multi-scale line operators, neural networks, ants, genetic algorithms, morphological operators. To apply these algorithms pre-processing tasks are needed. Most of these algorithms have been tested on publicly retinal databases. We have include a table summarizing algorithms and results of their assessment.

  2. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  3. Metals and Ceramics Division. Annual progress report, ending June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning: (1) engineering materials, including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuel fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theroretical research and x-ray research and applications. Highlights of the work of the metallographic group and the current state of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented. (FS)

  4. Metals and Ceramics Division. Annual progress report, ending June 30, 1980

    International Nuclear Information System (INIS)

    1980-09-01

    Research is reported concerning: (1) engineering materials, including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuel fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theroretical research and x-ray research and applications. Highlights of the work of the metallographic group and the current state of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented

  5. Production of ceramics from coal fly ash

    Directory of Open Access Journals (Sweden)

    Angjusheva Biljana

    2012-01-01

    Full Text Available Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min. Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al(Si,Al2O6] was formed. Ceramics with optimal properties (porosity 2.96±0.5%, bending strength - 47.01±2 MPa, compressive strength - 170 ±5 MPa was produced at 1100ºC using the heating rate of 10ºC/min.

  6. Form Follows Function. A new approach to determining vessel function

    Directory of Open Access Journals (Sweden)

    Vincent van der Veen

    2018-05-01

    Full Text Available In this article I present a theoretical model for assigning functions to categories of Roman ceramics. This model was designed to make broad statements about assemblages that are too large to analyse in detail. It is therefore based on the 'ideal use' of a vessel - i.e. the function the potter had in mind when he chose the clay, temper, forming techniques and so on - rather than 'non-ideal' or actual use. Characteristics considered are, among others, shape, size, weight, surface treatment and wall thickness. Seven distinct functions have been identified, taking the inherent multi-functionality of certain vessels into account. In many cases an individual vessel type will be suitable for more than one function. In a case study the commonly made functional distinction between smooth-tempered one-handled flagons (kruiken as tableware and two-handled flagons (kruikamforen as storage vessels is challenged. Furthermore, differences in their deposition within both grave and settlement assemblages are explored.

  7. Coronary artery segmentation in X-ray angiogram using Gabor filters and differential evolution

    International Nuclear Information System (INIS)

    Cervantes S, F.; Hernandez A, A.; Cruz A, I.; Solorio M, S.; Cordova F, T.; Avina C, J. G.

    2016-10-01

    Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (De) is proposed. Because the Gabor filters are governed by three different parameters, the optimal selection of those parameters is highly desirable in order to maximize the vessel detection rate while reducing the computational cost of the training stage. To obtain the optimal set of parameters for the Gabor filters, the area (Az) under the receiver operating characteristic curve is used as objective function. In the experimental results, the proposed method obtained the highest detection performance with Az = 0.956 using a test set of 60 angiograms, and Az = 0.934 with a training set of 20 angiograms compared with different state-of-the-art vessel detection methods. In addition, the experimental results in terms of computational time have also shown that the proposed method can be highly suitable for clinical decision support. (Author)

  8. Coronary artery segmentation in X-ray angiogram using Gabor filters and differential evolution

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes S, F.; Hernandez A, A.; Cruz A, I. [Centro de Investigacion en Matematicas, A. C., Jalisco s/n, Col. Valenciana, 36240 Guanajuato, Gto. (Mexico); Solorio M, S. [IMSS, Unidad de Investigacion, UMAE Hospital de Especialidades No. 1 del Centro Medico Nacional del Bajio, 37260 Leon, Guanajuato (Mexico); Cordova F, T. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, 37150 Leon, Guanajuato (Mexico); Avina C, J. G., E-mail: ivan.cruz@cimat.mx [Universidad de Guanajuato, Departamento de Electronica, 36885 Salamanca, Guanajuato (Mexico)

    2016-10-15

    Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (De) is proposed. Because the Gabor filters are governed by three different parameters, the optimal selection of those parameters is highly desirable in order to maximize the vessel detection rate while reducing the computational cost of the training stage. To obtain the optimal set of parameters for the Gabor filters, the area (Az) under the receiver operating characteristic curve is used as objective function. In the experimental results, the proposed method obtained the highest detection performance with Az = 0.956 using a test set of 60 angiograms, and Az = 0.934 with a training set of 20 angiograms compared with different state-of-the-art vessel detection methods. In addition, the experimental results in terms of computational time have also shown that the proposed method can be highly suitable for clinical decision support. (Author)

  9. Comparative study of the performance of three cross-flow ceramic ...

    African Journals Online (AJOL)

    Several tests using water as effluent are used to analyse the performance of three types of microfiltration cross-flow ceramic membranes. Two of these membranes are commercial (Atech and Membralox/US Filter) and the third one is experimental. The main differences between them lie in their chemical composition ...

  10. Laboratory Testing of the Boundary Layer Momentum Transfer Rotational Filter Systems, NETL-Innovatech, Inc., CRADA 98-F026, Final Report; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2000-01-01

    A patented dynamic mechanical filter developed by InnovaTech was previously shown to remove fine particulate matter from industrial process gas streams at ambient temperatures and pressures. An all-metal, high-temperature version of this novel media-less filter was fabricated under this Cooperative Research and Development Agreement (CRADA) with DOE/NETL-Morgantown for hot gas testing of the device. The technology is entirely different in both concept and design from conventional vortex separators, cyclones, or porous media filters. This new filtration concept is capable of separating heavy loading of fine particles without blinding, fouling or bridging, and would require minimal operational costs over its anticipated multi-year service life. The all-metal filter design eliminates thermal stress cracking and premature failure prevalent in conventional porous ceramic filters. In contrast, conventional porous media filters (i.e., ceramic cross-flow or candles) easily foul, require periodic cleaning (typically backpulsing), frequent replacement and subsequent disposal

  11. Critical parameters in the production of ceramic pot filters for household water treatment in developing countries.

    Science.gov (United States)

    Soppe, A I A; Heijman, S G J; Gensburger, I; Shantz, A; van Halem, D; Kroesbergen, J; Wubbels, G H; Smeets, P W M H

    2015-06-01

    The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study's objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions. Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture. The main conclusions: larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10-20 L/hour without a significant decrease in bacterial removal efficiency.

  12. Factors affecting continued use of ceramic water purifiers distributed to Tsunami-affected Communities in Sri Lanka

    OpenAIRE

    Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D

    2012-01-01

    Objectives  There is little information about continued use of point-of-use technologies after disaster relief efforts. After the 2004 tsunami, the Red Cross distributed ceramic water filters in Sri Lanka. This study determined factors associated with filter disuse and evaluate the quality of household drinking water. Methods  A cross-sectional survey of water sources and treatment, filter use and household characteristics was administered by in-person oral interview, and household water qual...

  13. Automated classification and quantitative analysis of arterial and venous vessels in fundus images

    Science.gov (United States)

    Alam, Minhaj; Son, Taeyoon; Toslak, Devrim; Lim, Jennifer I.; Yao, Xincheng

    2018-02-01

    It is known that retinopathies may affect arteries and veins differently. Therefore, reliable differentiation of arteries and veins is essential for computer-aided analysis of fundus images. The purpose of this study is to validate one automated method for robust classification of arteries and veins (A-V) in digital fundus images. We combine optical density ratio (ODR) analysis and blood vessel tracking algorithm to classify arteries and veins. A matched filtering method is used to enhance retinal blood vessels. Bottom hat filtering and global thresholding are used to segment the vessel and skeleton individual blood vessels. The vessel tracking algorithm is used to locate the optic disk and to identify source nodes of blood vessels in optic disk area. Each node can be identified as vein or artery using ODR information. Using the source nodes as starting point, the whole vessel trace is then tracked and classified as vein or artery using vessel curvature and angle information. 50 color fundus images from diabetic retinopathy patients were used to test the algorithm. Sensitivity, specificity, and accuracy metrics were measured to assess the validity of the proposed classification method compared to ground truths created by two independent observers. The algorithm demonstrated 97.52% accuracy in identifying blood vessels as vein or artery. A quantitative analysis upon A-V classification showed that average A-V ratio of width for NPDR subjects with hypertension decreased significantly (43.13%).

  14. Refining of biodiesel by ceramic membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong; Ou, Shiyi; Tan, Yanlai; Tang, Shuze [Department of Food Science and Engineering, Jinan University, Guangzhou 510632 (China); Wang, Xingguo; Liu, Yuanfa [School of Food Science and Technology, Jiangnan University, Wuxi 214112 (China)

    2009-03-15

    A ceramic membrane separation process for biodiesel refining was developed to reduce the considerable usage of water needed in the conventional water washing process. Crude biodiesel produced by refined palm oil was micro-filtered by ceramic membranes of the pore size of 0.6, 0.2 and 0.1 {mu}m to remove the residual soap and free glycerol, at the transmembrane pressure of 0.15 MPa and temperature of 60 C. The flux through membrane maintained at 300 L m{sup -} {sup 2} h{sup -} {sup 1} when the volumetric concentrated ratio reached 4. The content of potassium, sodium, calcium and magnesium in the whole permeate was 1.40, 1.78, 0.81 and 0.20 mg/kg respectively, as determined by inductively coupled plasma-atomic emission spectroscopy. These values are lower than the EN 14538 specifications. The residual free glycerol in the permeate was estimated by water extraction, its value was 0.0108 wt.%. This ceramic membrane technology was a potential environmental process for the refining of biodiesel. (author)

  15. Reconsidering 'appropriate technology': the effects of operating conditions on the bacterial removal performance of two household drinking-water filter systems

    International Nuclear Information System (INIS)

    Baumgartner, Jill; Murcott, Susan; Ezzati, Majid

    2007-01-01

    We examined the performance of two household water treatment and safe storage (HWTS) systems, the Danvor plastic biosand filter and the Potters for Peace Filtron ceramic filter, under ideal as well as modified operating conditions using systematic and comparable measurements. The operating variables for the biosand filter were (i) pause times between filtration runs (ii) water-dosing volumes and (iii) the effluent volume at which a filtered water sample was collected. For the ceramic filter we examined overflow filtration versus standard filtration. We used the bacterial indicators of total coliforms and Escherichia coli to quantify microbiological removal. With the biosand filter, a 12 h pause time had significantly higher total coliform removal than a 36 h pause time at the 20 l collection point (79.1% versus 73.7%; p < 0.01) and borderline significance at the 10 l collection point (81.0% versus 78.3%; p = 0.07). High-volume filtration (20 l) had significantly lower total coliform removal efficacy than low-volume (10 l) filtration at the 10 l collection point (81.0% versus 84.2%; p = 0.03). We observed a decreasing trend in total coliform removal by sample collection volume with the highest removal efficacy at the 5 l sample collection point (versus at the 10 and 20 l collection points). Using the ceramic filter, mean total coliform and E. coli removal were significantly lower (p < 0.01) in overflow filtration than in standard filtration. The findings indicate that operating conditions can reduce the effectiveness of the systems in a field-based setting and increase environmental risk exposure

  16. Increased generalization capability of trainable COSFIRE filters with application to machine vision

    NARCIS (Netherlands)

    Azzopardi, George; Fernandez-Robles, Laura; Alegre, Enrique; Petkov, Nicolai

    2017-01-01

    The recently proposed trainable COSFIRE filters are highly effective in a wide range of computer vision applications, including object recognition, image classification, contour detection and retinal vessel segmentation. A COSFIRE filter is selective for a collection of contour parts in a certain

  17. Vibrational Spectroscopy as a Promising Toolbox for Analyzing Functionalized Ceramic Membranes.

    Science.gov (United States)

    Kiefer, Johannes; Bartels, Julia; Kroll, Stephen; Rezwan, Kurosch

    2018-01-01

    Ceramic materials find use in many fields including the life sciences and environmental engineering. For example, ceramic membranes have shown to be promising filters for water treatment and virus retention. The analysis of such materials, however, remains challenging. In the present study, the potential of three vibrational spectroscopic methods for characterizing functionalized ceramic membranes for water treatment is evaluated. For this purpose, Raman scattering, infrared (IR) absorption, and solvent infrared spectroscopy (SIRS) were employed. The data were analyzed with respect to spectral changes as well as using principal component analysis (PCA). The Raman spectra allow an unambiguous discrimination of the sample types. The IR spectra do not change systematically with functionalization state of the material. Solvent infrared spectroscopy allows a systematic distinction and enables studying the molecular interactions between the membrane surface and the solvent.

  18. Correlations between chemical composition and provenance of Justino site ceramics by INAA

    International Nuclear Information System (INIS)

    Santos, J.O.; Munita, C.S.; Valerio, M.E.G.; Oliveira, P.M.S.

    2008-01-01

    Instrumental neutron activation analysis (INAA), have been used for the definition of compositional groups of potteries from Justino site, Brazil, according to the chemical similarities of ceramic paste. The outliers were identified by means of robust Mahalanobis distance. The temper effect in the ceramic paste was studied by means of modified Mahalanobis filter. The results were interpreted by means of cluster, principal components, and discriminant analyses. This work provides contributions for the reconstruction of the prehistory of baixo Sao Francisco region, and for the reconstitution of the Brazilian Northeast ceramist population of general frame. (author)

  19. Simulation of RF data with tissue motion for optimizing stationary echo canceling filters

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Torp-Pedersen, S.; Jensen, Jørgen Arendt

    2003-01-01

    Blood velocity estimation is complicated by the strong echoes received from tissue surrounding the vessel under investigation. Proper blood velocity estimation necessitates use of a filter for separation of the different signal components. Development of these filters and new estimators requires ...

  20. Solid ceramic based on mixed-frame titanium phosphate and calcium synthesized in solar furnace

    International Nuclear Information System (INIS)

    Salikhov, T. P.; Kan, V. V.; Urazaeva, Eh. M.; Savatyugina, T. V.; Arushanov, G. M.

    2012-01-01

    The authors synthesized of mixed orthophosphates Ca 0 . 5 Ti 2 (PO 4 ) 3 using concentrated solar radiation. We obtained a porous ceramic filter with the given type of NZP structure and high thermal and hydrolytic stability. (authors)

  1. Cylindrical reinforced-concrete pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    Vaessen, F.

    1975-01-01

    The cylindrical pressure vessel has got a wall and an isolating layer composed of blocks of heat-resistant concrete or of ceramic material. The side of the isolating layer facing the interior of the presssure vessel is coated by a liner made of metallic material. In cold state and without internal pressure, the radius of this liner is smaller by a differential amount than that of the isolating layer. By means of radially displaceable fixing elements consisting of an anchoring tube and a holding tube inserted in it, the liner can be made to rest against the isolating layer. This occurs if the pressure vessel is brought to operational temperature. The anchoring tube is attached to the isolating layer whereas the displaceable holding tube is connected with the liner. The possible relative travelling distance of these two elements is equal to the difference of length of the two radii. In addition, the liner may consist of single parts connected with each other through compensating flanges. There may also be additional springs arranged between the isolating layer and the liner. (DG/PB) [de

  2. Água de beber: a filtração doméstica e a difusão do filtro de água em São Paulo

    Directory of Open Access Journals (Sweden)

    Julio Cesar Bellingieri

    2004-01-01

    Full Text Available This work studies the advent and diffusion of water filter usage in São Paulo State, during the 20th Century. The water filter, a set of two terracotta vessels equipped with a filtering device, was a product of the ceramics industry, one of the first to be developed in São Paulo. This research shows that in São Paulo at the end of 19th and beginning of 20th Centuries, with the growth of cities and rapid urbanisation, a concern about the quality of water increased due to serious public health hazards, mainly epidemics caused by the consumption of unhealthy drinking water. Despite the existence of an incipient market of domestic equipment for water filtration, these were imported and of limited usage. From the 1910’s, ceramics companies, owned by Portuguese and Italian immigrants, started installing filtering devices in terracotta vessels, launching the water filter set. It caught on and became the main domestic filtering equipment after the 1930’s, when several companies specialized in this kind of product and started catering for the national market, such as Filtros Salus (from São Paulo city, Pozzani (Jundiaí and Stéfani (Jaboticabal. Studying the advent and diffusion of the water filter entails knowledge about one of the first consumer goods of the Brazilian industry and, at the same time, knowledge about the history of the ways in which the Brazilian population obtained water to drink.

  3. Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979

    International Nuclear Information System (INIS)

    Peterson, S.

    1979-09-01

    Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented

  4. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The retinal blood vessels were segmented through color space conversion and color channel extraction, image pre-processing, Gabor filtering, image postprocessing, feature construction through application of principal component analysis, k-means clustering and first level classification using Naïve–Bayes classification ...

  5. Reconsidering 'appropriate technology': the effects of operating conditions on the bacterial removal performance of two household drinking-water filter systems

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, Jill [Harvard School of Public Health, Boston, MA (United States); Murcott, Susan [Massachusetts Institute of Technology, Cambridge, MA (United States); Ezzati, Majid [Harvard School of Public Health, Boston, MA (United States)

    2007-04-01

    We examined the performance of two household water treatment and safe storage (HWTS) systems, the Danvor plastic biosand filter and the Potters for Peace Filtron ceramic filter, under ideal as well as modified operating conditions using systematic and comparable measurements. The operating variables for the biosand filter were (i) pause times between filtration runs (ii) water-dosing volumes and (iii) the effluent volume at which a filtered water sample was collected. For the ceramic filter we examined overflow filtration versus standard filtration. We used the bacterial indicators of total coliforms and Escherichia coli to quantify microbiological removal. With the biosand filter, a 12 h pause time had significantly higher total coliform removal than a 36 h pause time at the 20 l collection point (79.1% versus 73.7%; p < 0.01) and borderline significance at the 10 l collection point (81.0% versus 78.3%; p = 0.07). High-volume filtration (20 l) had significantly lower total coliform removal efficacy than low-volume (10 l) filtration at the 10 l collection point (81.0% versus 84.2%; p = 0.03). We observed a decreasing trend in total coliform removal by sample collection volume with the highest removal efficacy at the 5 l sample collection point (versus at the 10 and 20 l collection points). Using the ceramic filter, mean total coliform and E. coli removal were significantly lower (p < 0.01) in overflow filtration than in standard filtration. The findings indicate that operating conditions can reduce the effectiveness of the systems in a field-based setting and increase environmental risk exposure.

  6. A study of magnification effect to precision of computerized diameter measurement of a 3-mm vessel phantom in cineangiograms

    International Nuclear Information System (INIS)

    Yanagihara, Yoshio; Sugahara, Tetsuo; Sugimoto, Naozou; Fukunishi, Yasunobu.

    1994-01-01

    To estimate influence of magnification on digitizing to Precision of computerized measurement of coronary vessel diameter, the two measurement methods, i.e., a combined filter and Entropy filter, were applied to magnified images (x1-x6) of cineangiograms radiographed for a 3-mm vessel phantom. In conclusion, the desirable precision in clinical use, we thought, was obtainable at the magnification of x3 to x4. (author)

  7. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  8. Innovative decontamination technology by abrasion in vibratory vessels

    International Nuclear Information System (INIS)

    Fabbri, Silvio; Ilarri, Sergio

    2007-01-01

    Available in abstract form only. Full text of publication follows: The possibility of using conventional vibratory vessel technology as a decontamination technique is the motivation for the development of this project. The objective is to explore the feasibility of applying the vibratory vessel technology for decontamination of radioactively-contaminated materials such as pipes and metal structures. The research and development of this technology was granted by the U.S. Department of Energy (DOE). Abrasion processes in vibratory vessels are widely used in the manufacture of metals, ceramics, and plastics. Samples to be treated, solid abrasive media and liquid media are set up into a vessel. Erosion results from the repeated impact of the abrasive particles on the surface of the body being treated. A liquid media, generally detergents or surfactants aid the abrasive action. The amount of material removed increases with the time of treatment. The design and construction of the machine were provided by Vibro, Argentina private company. Tests with radioactively-contaminated aluminum tubes and a stainless steel bar, were performed at laboratory level. Tests showed that it is possible to clean both the external and the internal surface of contaminated tubes. Results show a decontamination factor around 10 after the first 30 minutes of the cleaning time. (authors)

  9. A high temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.

  10. Nuclear reactor pressure vessel with an inner metal coating covered with a high temperature resistant thermal insulator

    International Nuclear Information System (INIS)

    1974-01-01

    The thermal insulator covering the metal coating of a reactor vessel is designed for resisting high temperatures. It comprises one or several porous layers of ceramic fibers or of stacked metal foils, covered with a layer of bricks or ceramic tiles. The latter are fixed in position by fasteners comprising pins fixed to the coating and passing through said porous layers and fasteners (nut or bolts) for individually fixing the bricks to said pins, whereas ceramic plugs mounted on said bricks or tiles provide for the thermal insulation of the pins and of the nuts or bolts; such a thermal insulation can be applied to high-temperature reactors or to fast reactors [fr

  11. Mössbauer study of miniature vessels from the Sicán burial site of Huaca Loro

    International Nuclear Information System (INIS)

    Cervantes, G.; Shimada, I.; Häusler, W.; Wagner, U.; Wagner, F. E.

    2011-01-01

    Small handmade ceramic vessels are often found in large quantities in late pre-hispanic elite tombs on the north coast of Peru. These miniature vessels are of poor artistic and technologic qualities compared with other offerings found in tombs and have not received much attention. Our hypothesis is that these miniatures were made hastily by non-elite funeral attendants, which resulted in the observed formal and material variability. Here we report on the results of a systematic archaeological analysis of the shape and of archaeometric analyses by Mössbauer spectroscopy and XRD of the firing conditions of such vessels that were conducted to test the above hypothesis.

  12. The use of ceramic membranes for radioactive solutions purification

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2002-01-01

    Membrane permeation combined with complexation was tested for radioactive wastes processing purpose. The results of experiments with MEMBRALOX and CeRAM INSIDE filtering elements are presented in the paper. The pore size of ceramic membranes was in 1kD-100 nm range. The experiments were performed with non-active and with radioactive model solutions and original radioactive waste samples. To achieve high decontamination factors the process was enhanced by chemical complexation. Such complexants as poly(acrylic) acid and polyacrylic)acid salts of different crosslinking, polyethylenimine and cyanoferrates were tested. The experiments showed the significant increase of retention and decontamination factors while before ultrafiltration macromolecular ligands were added. The effectiveness of complexation by each ligand is strongly dependent on pH and alkali metals concentration. (author)

  13. EDXRF study of Tupiguarani archaeological ceramics

    International Nuclear Information System (INIS)

    Appoloni, C.R.; Aragao, P.H.A.; Santos, A.O. dos; Silva, L.M. da; Barbieri, P.F.; Espinoza Quinones, F.R.; Nascimento Filho, V.F. do

    2000-01-01

    A set of Indian Brazilian pottery fragments belonging to Tupi-Guarani tradition has been studied by EDXRF. The pottery fragments were accidentally discovered in the Santa Dalmacia farm in 1990, sited near Cambe city at the north of Parana Brazilian State. The main objective was to characterize the ceramic paste, as well as the superficial layer of the ceramic fragments, in order to get information about the pigment composition of the plastic decoration. The Energy Dispersive X-ray Fluorescence (EDXRF) methodology was employed to obtain the ceramic paste composition, as well as the superficial layer of the ceramic fragments. The measurements were carried out at CENA. The experimental set up consisted of 238 Pu, 55 Fe and 109 Cd radioactive sources, a X-ray tube (at 15 kV, 40 mA, Mo target and Zr filter), a Si(Li) detector (30 mm 2 , with a Be window ) and a multichannel analyzer. For detection of the elements within the ceramic paste, the fragments were irradiated at the center of the lateral section. While several superficial areas with remaining plastic decoration were also chosen and irradiated at the convex and concave sides of each fragment. X-ray spectra were analyzed at UEL using the AXIL program. A program based on the graphic polygonal representation method was developed and used to correlate the representative intensity data of each fragment. A low Ca content, and a systematic presence of relatively high concentrations of Fe can characterize the ceramic pastes. Ti and Zr are also always present at high levels, and Ni, Cu and in some cases Zn at level of traces; Rb, Sr, Ba and Y are also present at low concentration. The black pigment in the pottery plastic decoration is due to the presence of Mn, the red pigment is due to the presence of Fe, while the white pigment is characterized by the presence of Ba. Other qualitative and quantitative results were obtained for each kind of ceramic fragment groups. For the eleven fragments studied, the polygonal

  14. High-temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  15. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-31

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

  16. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    Science.gov (United States)

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  17. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  18. Symptomatic caval penetration by a Celect inferior vena cava filter

    International Nuclear Information System (INIS)

    Bogue, Conor O.; John, Philip R.; Connolly, Bairbre L.; Rea, David J.; Amaral, Joao G.

    2009-01-01

    We report a case of penetration of the inferior vena cava (IVC) by all four primary struts of a Celect caval filter in a 17-year-old girl with Klippel-Trenaunay syndrome. The girl presented with acute lower abdominal and right leg pain 17 days after filter insertion. An abdominal radiograph demonstrated that the filter had moved caudally and that the primary struts had splayed considerably since insertion. Contrast-enhanced CT confirmed that all four primary struts had penetrated the IVC wall. There was a small amount of retroperitoneal hemorrhage. The surrounding vessels and viscera were intact. The filter was subsequently retrieved without complication. (orig.)

  19. EDXRF study of Tupi-Guarani archaeological ceramics

    Science.gov (United States)

    Appoloni, C. R.; Espinoza Quiñones, F. R.; Aragão, P. H. A.; dos Santos, A. O.; da Silva, L. M.; Barbieri, P. F.; do Nascimento Filho, V. F.; Coimbra, M. M.

    2001-06-01

    A set of Indian Brazilian pottery fragments belonging to Tupi-Guarani tradition has been studied by EDXRF. The main objective was to characterize the ceramic paste, as well as the superficial layer of the ceramic fragments, in order to get qualitative information about the pigment composition of the plastic decoration. Energy Dispersive X-ray Fluorescence (EDXRF) methodology was employed to obtain the ceramic paste composition, as well as the superficial layer of the ceramic fragments. The experimental set-up consisted of 238Pu, 55Fe and 109Cd radioactive sources, a X-ray tube (at 15 kV, 40 mA, Mo target and Zr filter), a Si(Li) detector (30 mm 2, with a Be window) and a multichannel analyzer. X-ray spectra were analyzed using the AXIL program. A program based on the graphic polygonal representation method was developed and used to correlate the representative intensity data of each fragment. A low Ca content and a systematic presence of relatively high concentrations of Fe can characterize the ceramic pastes. Ti and Zr are also always present at high levels, and Ni, Cu and in some cases Zn at level of traces; Rb, Sr, Ba and Y are also present at low concentration. The black pigment in the pottery plastic decoration is due to the presence of Mn, the red pigment is due to the presence of Fe, while the white pigment is characterized by the presence of Ba. For the eleven fragments studied, the polygonal representation method points that the same materials were employed in the pottery production, and the pigments in the plastic decoration were obtained from different inorganic materials.

  20. EDXRF study of Tupi-Guarani archaeological ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, C.R. E-mail: appoloni@uel.br; Espinoza Quinones, F.R.; Aragao, P.H.A.; Santos, A.O. dos; Silva, L.M. da; Barbieri, P.F.; Nascimento Filho, V.F. do; Coimbra, M.M

    2001-06-01

    A set of Indian Brazilian pottery fragments belonging to Tupi-Guarani tradition has been studied by EDXRF. The main objective was to characterize the ceramic paste, as well as the superficial layer of the ceramic fragments, in order to get qualitative information about the pigment composition of the plastic decoration. Energy Dispersive X-ray Fluorescence (EDXRF) methodology was employed to obtain the ceramic paste composition, as well as the superficial layer of the ceramic fragments. The experimental set-up consisted of 238Pu, 55Fe and 109Cd radioactive sources, a X-ray tube (at 15 kV, 40 mA, Mo target and Zr filter), a Si(Li) detector (30 mm{sup 2}, with a Be window) and a multichannel analyzer. X-ray spectra were analyzed using the AXIL program. A program based on the graphic polygonal representation method was developed and used to correlate the representative intensity data of each fragment. A low Ca content and a systematic presence of relatively high concentrations of Fe can characterize the ceramic pastes. Ti and Zr are also always present at high levels, and Ni, Cu and in some cases Zn at level of traces; Rb, Sr, Ba and Y are also present at low concentration. The black pigment in the pottery plastic decoration is due to the presence of Mn, the red pigment is due to the presence of Fe, while the white pigment is characterized by the presence of Ba. For the eleven fragments studied, the polygonal representation method points that the same materials were employed in the pottery production, and the pigments in the plastic decoration were obtained from different inorganic materials.

  1. EDXRF study of Tupi-Guarani archaeological ceramics

    International Nuclear Information System (INIS)

    Appoloni, C.R.; Espinoza Quinones, F.R.; Aragao, P.H.A.; Santos, A.O. dos; Silva, L.M. da; Barbieri, P.F.; Nascimento Filho, V.F. do; Coimbra, M.M.

    2001-01-01

    A set of Indian Brazilian pottery fragments belonging to Tupi-Guarani tradition has been studied by EDXRF. The main objective was to characterize the ceramic paste, as well as the superficial layer of the ceramic fragments, in order to get qualitative information about the pigment composition of the plastic decoration. Energy Dispersive X-ray Fluorescence (EDXRF) methodology was employed to obtain the ceramic paste composition, as well as the superficial layer of the ceramic fragments. The experimental set-up consisted of 238Pu, 55Fe and 109Cd radioactive sources, a X-ray tube (at 15 kV, 40 mA, Mo target and Zr filter), a Si(Li) detector (30 mm 2 , with a Be window) and a multichannel analyzer. X-ray spectra were analyzed using the AXIL program. A program based on the graphic polygonal representation method was developed and used to correlate the representative intensity data of each fragment. A low Ca content and a systematic presence of relatively high concentrations of Fe can characterize the ceramic pastes. Ti and Zr are also always present at high levels, and Ni, Cu and in some cases Zn at level of traces; Rb, Sr, Ba and Y are also present at low concentration. The black pigment in the pottery plastic decoration is due to the presence of Mn, the red pigment is due to the presence of Fe, while the white pigment is characterized by the presence of Ba. For the eleven fragments studied, the polygonal representation method points that the same materials were employed in the pottery production, and the pigments in the plastic decoration were obtained from different inorganic materials

  2. Self-learning framework with temporal filtering for robust maritime vessel detection

    NARCIS (Netherlands)

    Ghahremani, A.; Bondarau, Y.; de With, P.H.N.

    2017-01-01

    With the recent development in ConvNet-based detectors, a successful solution for vessel detection becomes possible. However, it is essential to access a comprehensive annotated training set from different maritime environments. Creating such a dataset is expensive and time consuming. To automate

  3. Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S. (ed.)

    1979-09-01

    Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented. (FS)

  4. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  5. Instrumental neutron activation analysis and the origin of some cult objects and Edomite vessels from the Horvat at Qitmit shrine

    International Nuclear Information System (INIS)

    Gunneweg, J.; Mommsen, H.

    1990-01-01

    Large numbers of cult objects and pottery vessels have been recovered from the shrine at Horvat Qitmit, situated to the south-west of Tel Arad in the north-eastern Judahite Negev of Israel. According to the excavator, the finds date to about 600 B.C. which coincides with the end of the First Temple period. This study is based on the results of excavation of the shrine by I. Beit-Arieh (Beit-Arieh 1986). The ceramic assemblage contains cult objects adorned with anthropomorphic, zoo-morphic and floral stylistic features, as well as ceramic stands decorated with pomegranates, and large anthropomorphic vessels and other household wares, including some painted 'Edomite' pottery. This ceramic assemblage is entirely different from the usual Judahite pottery and therefore might point to a foreign influence in the north-eastern Negev of Judah around 600 B.C. According to Pirchiya Beck, who has studied these cult vessels from an artistic point of view, this foreign influence must have been Phoenician, which has its origin on the eastern shore of the Mediterranean (Beit-Arieh and Beck 1987, 15). The emphasis of the present study is on the determination of the origins of the cult and 'Edomite' pottery as indicators of the culture at the Qitmit shrine. The origins of these pots are of great interest since the material is chronologically and geographically restricted and hence may help to shed new light on cultural and trade relations between Judah and Edom around 600 B.C. Put simply, we want to know whether the cult objects and vessels and 'Edomite' pottery were brought to the Qitmit shrine from foreign lands or locally made at Qitmit. (author)

  6. Celtiberian ceramic productions from the Central Iberian range (Spain): Chemical and petrographic characterization

    International Nuclear Information System (INIS)

    Igea, J.; Perez-Arantegup, J.; Lapuente, P.; Saiz, M. E.; Burillo, F.

    2013-01-01

    As part of an extended program on archaeometric research of the Celtiberian production centres situated along the Central Iberian Range, ceramic fragments of different vessel types from two selected Celtiberian workshops were analyzed: La Rodriga (Guadalajara, Spain) and Allueva II (Teruel, Spain), dated from the 3nd to the 2st centuries BC. The characterization was focused on the chemical analysis by Inductively Coupled Plasma-Mass Spectrometry, and subjected to commonlyused multivariate statistical methods to distinguish between ceramic materials and to discriminate among different compositional groups in each production centre. The analysis was completed by performing petrographic characterization, textural observations, colour measurement and mineralogical analysis of the pieces by means of XRD. The compositional variations from major, minor and trace elements allowed to establish two subgroups in La Rodriga and one ceramic group in Allueva II. The chemical composition differences were confirmed by the petrographic characteristics and the mineralogical composition of the ceramic fabrics. These results enabled us to complete the preliminary archaeometric study in order to improve the knowledge on cultural and commercial influences in this important Celtiberian territory. (Author) 22 refs.

  7. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.

    Science.gov (United States)

    Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng

    2016-06-01

    To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.

  8. Synthesis and characterization of biomorphic ceramics; Sintese e caracterizacao de ceramicas biomorficas

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, Carlos Renato

    2001-07-01

    Biotemplating represents a recently developed technology for manufacturing of biomorphous ceramics from naturally grown plant structures. This approach allows the production of ceramic materials with cellular structure, where the microstructural features of the ceramic product are similar to the native plant. After processing, the biomorphic ceramic exhibits directed pore morphology in the micrometer range. Biomorphic SiC fibers were produced from bamboo by carbothermal reduction of SiO{sub 2} originally present in the bamboo structure. Bamboo pieces were heated up to 1500 deg C in argon to promote the reaction between carbon and silica. Biomorphic alumina, mullite and zirconia ceramics were manufactured via the sol-gel route by repeated infiltration of low viscous oxide precursors (sols) into rattan, pine and bamboo structures. The raw samples were pyrolyzed at 800 deg C in nitrogen for 1h and subsequently annealed at 1550 deg C in air. The microstructure and physical properties of the biomorphic ceramics were characterized by X-ray diffraction (XRD) and high temperature-XRD, scanning electron microscopy (SEM), porosimetry and picnometry. Thermal analysis (TGA/DTA) was performed on the infiltrated samples in order to evaluate the reactions and the total weight loss during the thermal process. The mechanical properties were evaluated by compressive strength tests. In contrast to conventional processed ceramic foam of similar porosity, the microstructure highly porous biomorphic ceramics shows uniaxial pore morphology with anisotropic properties. These properties are favorable for applications in catalyst support, filters or low-density heat insulation structures, or as biomaterials. (author)

  9. Virus removal efficiency of Cambodian ceramic pot water purifiers.

    Science.gov (United States)

    Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph

    2011-06-01

    Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.

  10. Investigation of vessel visibility of iterative reconstruction method in coronary computed tomography angiography using simulated vessel phantom

    International Nuclear Information System (INIS)

    Inoue, Takeshi; Uto, Fumiaki; Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Hoshino, Takashi; Miura, Youhei; Terakawa, Syouichi

    2012-01-01

    Iterative reconstruction methods can reduce the noise of computed tomography (CT) images, which are expected to contribute to the reduction of patient dose CT examinations. The purpose of this study was to investigate impact of an iterative reconstruction method (iDose 4 , Philips Healthcare) on vessel visibility in coronary CT angiography (CTA) by using phantom studies. A simulated phantom was scanned by a CT system (iCT, Philips Healthcare), and the axial images were reconstructed by filtered back projection (FBP) and given a level of 1 to 7 (L1-L7) of the iterative reconstruction (IR). The vessel visibility was evaluated by a quantitative analysis using profiles across a 1.5-mm diameter simulated vessel as well as visual evaluation for multi planar reformation (MPR) images and volume rendering (VR) images in terms of the normalized-rank method with analysis of variance. The peak CT value of the profiles decreased with IR level and full width at half maximum of the profile also decreased with the IR level. For normalized-rank method, there was no statistical difference between FBP and L1 (20% dose reduction) for both MPR and VR images. The IR levels higher than L1 sacrificed the spatial resolution for the 1.5-mm simulated vessel, and their visual vessel visibilities were significantly inferior to that of the FBP. (author)

  11. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2000-01-01

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE)

  12. Ceramic foams porous microstructure characterization by X-ray microtomography

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Appoloni

    2004-12-01

    Full Text Available Knowledge of the porous structure of amorphous materials is of fundamental importance in calculating geometrical parameters such as total porosity, pore size distribution and physical parameters relating to fluid flow inside void space. The present work deals with the measurement of the microstructural parameters of porous ceramic filters. Microtomographic measurements of samples were taken using an X-ray tube. Bremsstrahlung radiation was filtered in transmission mode with a Sn filter at 58.5 and 28.3 keV and the images analyzed in two ways. The first method consisted in analyzing transepts of the images in order to calculate total porosity based on the average particle size and media linear attenuation coefficients. The second method involved a study of the images using an image analysis software, called Imago, which allows one to calculate total porosity and pore size distribution. The total measured porosity of the filter C90 was 73.8%, 71.1%, 74.4% and 71.5% by, respectively, the Arquimedes method, simple gamma ray transmission, transept analysis and analysis of the microtomographic images at 28.3 keV.

  13. Tire Kutu Khan Excavation, Principalities And Ottoman Periods Ceramics / Tire Kutu Han Kazısı, Beylikler Ve Osmanlı Dönemi Seramikleri

    Directory of Open Access Journals (Sweden)

    Hasan UÇAR

    2018-04-01

    completely, the samples belonging to the Period of Principalities are painted in one color and are parallel with the samples found in Ayasuluk. The findings of the Ottoman period are made up of Çanakkale ceramics. These ceramics are seen in many colors as opposed to the Period of Principalities. Among the monochrome glazed pottery, the open-formed vessels of the Period of Principalities and Ottoman Period have similarity in terms of glaze but they are different in terms of their form and height. While the high ring bases in the Period of Principalities are not seen in the other period, they are characteristic for the period of concentric rings in the inner faces of the Ottoman-era single-color glazed plates/pots/bowls. Candlesticks and lamps from lighting devices do not differ from the examples of 18th-19th C. which can be dated to the same period. Unglazed ceramics, one of the finds of Kutu Khan, contain samples from two periods, such as glazed ceramics. The most noteworthy finds are the pitchers. While the examples of the Ottoman period are fairly simple, the pitchers of the Period of Principalities have a special place among the finds in terms of their construction and decorations. Pitchers decorated with printing and scraping methods are in parallel with the pitchers found in other surrounding Principalities with the pitchers from Ayasuluk, the other capital of the Aydınoğulları Principality, in terms of form and appearance. The most important factor that attracts attention in the starting point of neck of these pitchers is the filters. It is emphasized that these filters, which are generally thought to be made for the purpose of not allowing foreign substances into the pitcher, may also have functions for infusion. The finds to be generally evaluated give clues about the distribution of the Aydınoğulları and the subsequent Ottoman ceramics in this region.

  14. Effect of Operating Pressure on Hydrogen Risk in Filtered Containment Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Cho, Song-Won; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The FCVS (Filtered Containment Venting System) has the main objectives of both the depressurization in the containment building and the decontamination of fission products generated under a severe accident. One of the commercial wet-type FCVSs consists of a cylindrical pressure vessel including a scrubbing solution and filters. A FCVS vessel can be installed on the outside of the containment building, and is connected with the containment through a pipe. When the pressure in the containment building approaches the setting value, a valve on a pipe between the containment and the FCVS opens to operate the FCVS. The amount of steam and gas mixtures generated under a severe accident can be released into the FCVS, where the nozzles of a pipe are submerged into a scrubbing solution in a FCVS vessel. Non-condensable gases and fine aerosols can enter a scrubbing solution, and they then pass the filters. The decontaminated gases are finally discharged from the FCVS into the outside environment. Previous studies have introduced critical issues with the operation of the FCVS. Reference [2] assessed the effect of the operating pressure of the FCVS on the hydrogen risk in a FCVS vessel. The volumetric concentrations of hydrogen and steam in a postulated FCVS with a 3 m diameter and 6.5 m height were calculated using the MELCOR computer code (v. 1.8.6). After the operation of the FCVS, the pressure and temperature in the FCVS vessel jumped from the initial conditions of the atmosphere pressure and room temperature. For the FCVS operating pressure of 5 bar, the hydrogen concentration increased from 6% in the containment to 14% in a FCVS vessel, whereas the steam concentration decreased from 58% in the containment to 3% in a FCVS vessel. The increased hydrogen concentration with air in a FCVS vessel can exists within the region of the burn limit in the Shapiro diagram. This possibility of the hydrogen combustion can threaten the integrity of the FCVS. To mitigate the hydrogen risk

  15. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  16. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  17. Development of particle filters for ships; Udvikling af partikelfiltre til skibe

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsen, O.; Norre Holm, J.; Koecks, M. [Teknologisk Institut, Aarhus (Denmark)

    2013-04-01

    The project has resulted in a solution with a well-functioning maritime particle filter which reduces the particle emission significantly. The visible smoke from the vessels funnel, which typically is seen while manoeuvring in the harbour, is also reduced to a minimum. The system is constructed in such a way that the exhaust gases can be bypassed around the filter unit, in this situation to ensure the engines operation in case of filter clogging. The system has been provided with safety functions to prevent an excessive exhaust gas back-pressure and there are fitted remote controlled exhaust valves. Some of the challenges in the project have been the requirement from the engine manufacturer of keeping a low turbocharger back-pressure, besides the space conditions aboard the test vessel and the achievement of sufficient temperatures for regeneration of the particle filter. To oppose the requirement of low exhaust gas back-pressure, the filter housing was designed with space for twice as many monoliths as originally planned. In the funnel casing the original installations were removed to make space for the filter housing, and the system was enlarged with electrically controlled exhaust valves to improve the daily operation of the crew. The regeneration issue was solved by mounting electric automatically controlled heating elements in the filter housing and by an ash exhaust system. Regeneration is carried out by the crew when the vessel lies in harbour in the evening after the last tour of the day. Before mounting the particle filter, measurements were carried out aboard, showing a compound of particle emissions with an expected high NO{sub x}-level of 8.33 g/kW, whereas the other emissions were lower than expected at first. Especially HC and CO were very low, but also the particle mass (PM) had a relatively low value of 0.22 g/kWh. After commissioning the particle filter, a significant reduction of 93% of the particle number (N) was observed. A reduction in N was

  18. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.

    Science.gov (United States)

    Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A

    2015-11-03

    Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.

  19. Ceramic water filters impregnated with silver nanoparticles as a point-of-use water-treatment intervention for HIV-positive individuals in Limpopo Province, South Africa: a pilot study of technological performance and human health benefits.

    Science.gov (United States)

    Abebe, Lydia Shawel; Smith, James A; Narkiewicz, Sophia; Oyanedel-Craver, Vinka; Conaway, Mark; Singo, Alukhethi; Amidou, Samie; Mojapelo, Paul; Brant, Julia; Dillingham, Rebecca

    2014-06-01

    Waterborne pathogens present a significant threat to people living with the human immunodeficiency virus (PLWH). This study presents a randomized, controlled trial that evaluates whether a household-level ceramic water filter (CWF) intervention can improve drinking water quality and decrease days of diarrhea in PLWH in rural South Africa. Seventy-four participants were randomized in an intervention group with CWFs and a control group without filters. Participants in the CWF arm received CWFs impregnated with silver nanoparticles and associated safe-storage containers. Water and stool samples were collected at baseline and 12 months. Diarrhea incidence was self-reported weekly for 12 months. The average diarrhea rate in the control group was 0.064 days/week compared to 0.015 days/week in the intervention group (p water and decrease days of diarrhea for PLWH in rural South Africa.

  20. Kalman filtering applied to a reagent feed system

    International Nuclear Information System (INIS)

    Griffin, C.D.; Croson, D.V.; Feeley, J.J.

    1988-01-01

    Using a Kalman filter solves a troublesome measurement noise problem and, at the same time, improves nuclear safety by detecting leaks to the process' feed tanks. To demonstrate how this technology of optimal estimation can be exploited, this article presents a systematic plan and example of how a Kalman filter was proven in industrial use on a reagent analyzer. A process to recycle uranium from spent fuel elements uses a reagent stream containing boron to dissolve the fuel. The boron is the neutron poison that prevents a nuclear chain reaction during the uranium dissolution. The purpose of the Kalman filter for this system is to reduce the uncertainty in the boron concentration measurement. The filter also provides incipient fault detection by estimating the unmeasured state of any unpoisoned solution, which would dilute the boron solution, entering the feed vessel

  1. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  2. Development and investigation of the prestressed reinforced concrete vessels for the water cooled reactors in the FRG

    International Nuclear Information System (INIS)

    Medovikov, A.I.; Bogopol'skij, V.G.; Nikolaev, Yu.B.; Konevskij, V.N.

    1980-01-01

    An analysis of calculation results for characteristics of stress-strained state of reactor vessel made of prestressed reinforced concrete is presented. Experimental data obtained during the investigation into a model of reactor vessel top cover are given. Thermal shielding system both for boiling water and pressurized-water reactors has been considered and its working capacity has been evaluated. An analysis of experimental data show correctness of the method assumed for calculation of the reactor top cover which permits to exactly determine its stressed-strained state as well as the nature of crack propagation in the vessel and the structure supporting power. Ceramics is suggested to be used as a heat-insulating material

  3. Custom ceramic microchannel-cooled array for high-power fiber-coupled application

    Science.gov (United States)

    Junghans, Jeremy; Feeler, Ryan; Stephens, Ed

    2018-03-01

    A low-SWaP (Size, Weight and Power) diode array has been developed for a high-power fiber-coupled application. High efficiency ( 65%) diodes enable high optical powers while minimizing thermal losses. A large amount of waste heat is still generated and must be extracted. Custom ceramic microchannel-coolers (MCCs) are used to dissipate the waste heat. The custom ceramic MCC was designed to accommodate long cavity length diodes and micro-lenses. The coolers provide similar thermal performance as copper MCCs however they are not susceptible to erosion and can be cooled with standard filtered water. The custom ceramic micro-channel cooled array was designed to be a form/fit replacement for an existing copperbased solution. Each array consisted of three-vertically stacked MCCs with 4 mm CL, 976 nm diodes and beamshaping micro-optics. The erosion and corrosion resistance of ceramic array is intended to mitigate the risk of copperbased MCC corrosion failures. Elimination of the water delivery requirements (pH, resistivity and dissolved oxygen control) further reduces the system SWaP while maintaining reliability. The arrays were fabricated and fully characterized. This work discusses the advantages of the ceramic MCC technology and describes the design parameters that were tailored for the fiber-coupled application. Additional configuration options (form/fit, micro-lensing, alternate coolants, etc.) and on-going design improvements are also discussed.

  4. Miniaturized and Ferrite Based Tunable Bandpass Filters in LCP and LTCC Technologies for SoP Applications

    KAUST Repository

    Arabi, Eyad A.

    2015-01-01

    , namely low temperature co-fired ceramic (LTCC) and the liquid crystal polymers (LCP) is demonstrated. The miniaturized filter is based on a second order topology, which has been modified to improve the selectivity and out-of-band rejection without

  5. Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements.

    Science.gov (United States)

    Jia, Xingyu; Liu, Zhigang; Tao, Long; Deng, Zhongwen

    2017-10-16

    Frequency scanning interferometry (FSI) with a single external cavity diode laser (ECDL) and time-invariant Kalman filtering is an effective technique for measuring the distance of a dynamic target. However, due to the hysteresis of the piezoelectric ceramic transducer (PZT) actuator in the ECDL, the optical frequency sweeps of the ECDL exhibit different behaviors, depending on whether the frequency is increasing or decreasing. Consequently, the model parameters of Kalman filter appear time varying in each iteration, which produces state estimation errors with time-invariant filtering. To address this, in this paper, a time-varying Kalman filter is proposed to model the instantaneous movement of a target relative to the different optical frequency tuning durations of the ECDL. The combination of the FSI method with the time-varying Kalman filter was theoretically analyzed, and the simulation and experimental results show the proposed method greatly improves the performance of dynamic FSI measurements.

  6. Early Medieval ceramics from the Viile Tecii archaeological site (Romania: an optical and XRD study

    Directory of Open Access Journals (Sweden)

    Corina Ionescu

    2007-10-01

    Full Text Available Mineralogical and petrographic studies of Early Medieval potshards exhumed in the Viile Tecii archaeological site (North Transylvania, Romania show a ceramic body composed of a microcrystalline to amorphous matrix, various clasts and voids. The microscopical features and XRD patterns indicate that illitic-kaolinitic clays were used as raw materials, together with quartzitic sands as tempering material. The ceramic vessels were obtained with the potter’s wheel, but the fabric is only slightly oriented, due either to the fast modeling or to the coarseness of the clayish paste. The thermal alteration of mineral phases points to relatively high firing-temperatures, between 800 and 900°C.

  7. Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement

    Directory of Open Access Journals (Sweden)

    Mehmet Nergiz

    2017-11-01

    Full Text Available Retinal vessel segmentation is one of the preliminary tasks for developing diagnosis software systems related to various retinal diseases. In this study, a fully automated vessel segmentation system is proposed. Firstly, the vessels are enhanced using a Frangi Filter. Afterwards, Structure Tensor is applied to the response of the Frangi Filter and a 4-D tensor field is obtained. After decomposing the Eigenvalues of the tensor field, the anisotropy between the principal Eigenvalues are enhanced exponentially. Furthermore, this 4-D tensor field is converted to the 3-D space which is composed of energy, anisotropy and orientation and then a Contrast Limited Adaptive Histogram Equalization algorithm is applied to the energy space. Later, the obtained energy space is multiplied by the enhanced mean surface curvature of itself and the modified 3-D space is converted back to the 4-D tensor field. Lastly, the vessel segmentation is performed by using Otsu algorithm and tensor coloring method which is inspired by the ellipsoid tensor visualization technique. Finally, some post-processing techniques are applied to the segmentation result. In this study, the proposed method achieved mean sensitivity of 0.8123, 0.8126, 0.7246 and mean specificity of 0.9342, 0.9442, 0.9453 as well as mean accuracy of 0.9183, 0.9442, 0.9236 for DRIVE, STARE and CHASE_DB1 datasets, respectively. The mean execution time of this study is 6.104, 6.4525 and 18.8370 s for the aforementioned three datasets respectively.

  8. Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.

    Science.gov (United States)

    Yonekawa, H; Tomita, Y; Watanabe, Y

    2004-01-01

    This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.

  9. First molecular and isotopic evidence of millet processing in prehistoric pottery vessels

    Science.gov (United States)

    Heron, Carl; Shoda, Shinya; Breu Barcons, Adrià; Czebreszuk, Janusz; Eley, Yvette; Gorton, Marise; Kirleis, Wiebke; Kneisel, Jutta; Lucquin, Alexandre; Müller, Johannes; Nishida, Yastami; Son, Joon-Ho; Craig, Oliver E.

    2016-12-01

    Analysis of organic residues in pottery vessels has been successful in detecting a range of animal and plant products as indicators of food preparation and consumption in the past. However, the identification of plant remains, especially grain crops in pottery, has proved elusive. Extending the spectrum is highly desirable, not only to strengthen our understanding of the dispersal of crops from centres of domestication but also to determine modes of food processing, artefact function and the culinary significance of the crop. Here, we propose a new approach to identify millet in pottery vessels, a crop that spread throughout much of Eurasia during prehistory following its domestication, most likely in northern China. We report the successful identification of miliacin (olean-18-en-3β-ol methyl ether), a pentacyclic triterpene methyl ether that is enriched in grains of common/broomcorn millet (Panicum miliaceum), in Bronze Age pottery vessels from the Korean Peninsula and northern Europe. The presence of millet is supported by enriched carbon stable isotope values of bulk charred organic matter sampled from pottery vessel surfaces and extracted n-alkanoic acids, consistent with a C4 plant origin. These data represent the first identification of millet in archaeological ceramic vessels, providing a means to track the introduction, spread and consumption of this important crop.

  10. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  11. Image processing algorithm for robot tracking in reactor vessel

    International Nuclear Information System (INIS)

    Kim, Tae Won; Choi, Young Soo; Lee, Sung Uk; Jeong, Kyung Min; Kim, Nam Kyun

    2011-01-01

    In this paper, we proposed an image processing algorithm to find the position of an underwater robot in the reactor vessel. Proposed algorithm is composed of Modified SURF(Speeded Up Robust Feature) based on Mean-Shift and CAMSHIFT(Continuously Adaptive Mean Shift Algorithm) based on color tracking algorithm. Noise filtering using luminosity blend method and color clipping are preprocessed. Initial tracking area for the CAMSHIFT is determined by using modified SURF. And then extracting the contour and corner points in the area of target tracked by CAMSHIFT method. Experiments are performed at the reactor vessel mockup and verified to use in the control of robot by visual tracking

  12. Dust characterisation for hot gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.; Erickson, T.; Henderson, A.; Hurley, J.; Kuehnel, V.; Katrinak, K.; Nowok, J.; O`Keefe, C.; O`Leary, E.; Swanson, M.; Watne, T. [University of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center (UNDEERC)

    1998-03-01

    Hot gas filtration to remove particulates from the gas flow upstream of the gas turbine is critical to the development of many of the advanced coal-fired power generation technologies such as the Air Blown Gasification Cycle (ABGC), a hybrid gasification combined cycle being developed in the UK. Ceramic candle filters are considered the most promising technology for this purpose. Problems of mechanical failure and of `difficult-to-clean` dusts causing high pressure losses across the filter elements need to be solved. The project investigated the behaviour of high-temperature filter dusts, and the factors determining the ease with which they can be removed from filters. The high-temperature behaviour of dusts from both combustion and gasification systems was investigated. Dust samples were obtained from full-scale demonstration and pilot-scale plant operating around the world. Dust samples were also produced from a variety of coals, and under several different operating conditions, on UNDEERC`s pilot-scale reactor. Key factors affecting dust behaviour were examined, including: the rates of tensile strength developing in dust cakes; the thermochemical equilibria pertaining under filtration conditions; dust adhesivity on representative filter materials; and the build-up and cleaning behaviour of dusts on representative filter candles. The results obtained confirmed the importance of dust temperature, dust cake porosity, cake liquid content, and particle size distribution in determining the strength of a dust cake. An algorithm was developed to indicate the likely sticking propensity of dusts as a function of coal and sorbent composition and combustion conditions. This algorithm was incorporated into a computer package which can be used to judge the degree of difficulty in filter cleaning that can be expected to arise in a real plant based on operating parameters and coal analyzes. 6 figs.

  13. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration.

    Science.gov (United States)

    Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali

    2017-01-01

    This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb 2+ , Cu 2+ , and Cd 2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.

  14. Superficial vessel reconstruction with a multiview camera system

    Science.gov (United States)

    Marreiros, Filipe M. M.; Rossitti, Sandro; Karlsson, Per M.; Wang, Chunliang; Gustafsson, Torbjörn; Carleberg, Per; Smedby, Örjan

    2016-01-01

    Abstract. We aim at reconstructing superficial vessels of the brain. Ultimately, they will serve to guide the deformation methods to compensate for the brain shift. A pipeline for three-dimensional (3-D) vessel reconstruction using three mono-complementary metal-oxide semiconductor cameras has been developed. Vessel centerlines are manually selected in the images. Using the properties of the Hessian matrix, the centerline points are assigned direction information. For correspondence matching, a combination of methods was used. The process starts with epipolar and spatial coherence constraints (geometrical constraints), followed by relaxation labeling and an iterative filtering where the 3-D points are compared to surfaces obtained using the thin-plate spline with decreasing relaxation parameter. Finally, the points are shifted to their local centroid position. Evaluation in virtual, phantom, and experimental images, including intraoperative data from patient experiments, shows that, with appropriate camera positions, the error estimates (root-mean square error and mean error) are ∼1  mm. PMID:26759814

  15. Ceramic balsamaria-bottles: The example of Viminacium

    Directory of Open Access Journals (Sweden)

    Nikolić Snežana

    2006-01-01

    Full Text Available The earliest balsamaria to appear in the Hellenistic and Early Roman periods are ceramic and seldom over 10 cm in height. On the Southern Necropolis of Viminacium (sites Više grobalja and Pećine 21 vessels of this type have been found. The features they have in common are a long slender neck and the absence of handles. Based on the shape of their bodies nine groups have been identified. Although they are similar to glass balsamaria, the term bottle seems more appropriate chiefly on account of their size. Of several proposed suggestions about their basic function, the most plausible seems to be that their primary use was as containers for products packed in small amounts. Although most published finds come from burials, the question of their significance and use in funerary rituals remains inadequately elucidated. It is impossible to say with certainty whether the larger-sized vessels of a later date had the same function as the smaller Hellenistic and Early Roman ones. What is certain is that they are usually found in cremation burials, as shown by both Viminacium's Southern Necropolis, the necropolises of Poetovio and Emona, and individual graves on other sites. To judge from the clay fabric and colour and the manner of manufacture, the ceramic bottles from Viminacium come from different and as yet unidentified production centres. From the stratigraphic data and the grave goods they were found in association with they can be dated to the end of the first and first half of the second century, tentatively regarded as a later phase in their production.

  16. Quantification of Tumor Vessels in Glioblastoma Patients Using Time-of-Flight Angiography at 7 Tesla: A Feasibility Study

    Science.gov (United States)

    Radbruch, Alexander; Eidel, Oliver; Wiestler, Benedikt; Paech, Daniel; Burth, Sina; Kickingereder, Philipp; Nowosielski, Martha; Bäumer, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin; Ladd, Mark; Nagel, Armin Michael; Heiland, Sabine

    2014-01-01

    Purpose To analyze if tumor vessels can be visualized, segmented and quantified in glioblastoma patients with time of flight (ToF) angiography at 7 Tesla and multiscale vessel enhancement filtering. Materials and Methods Twelve patients with newly diagnosed glioblastoma were examined with ToF angiography (TR = 15 ms, TE = 4.8 ms, flip angle = 15°, FOV = 160×210 mm2, voxel size: 0.31×0.31×0.40 mm3) on a whole-body 7 T MR system. A volume of interest (VOI) was placed within the border of the contrast enhancing part on T1-weighted images of the glioblastoma and a reference VOI was placed in the non-affected contralateral white matter. Automated segmentation and quantification of vessels within the two VOIs was achieved using multiscale vessel enhancement filtering in ImageJ. Results Tumor vessels were clearly visible in all patients. When comparing tumor and the reference VOI, total vessel surface (45.3±13.9 mm2 vs. 29.0±21.0 mm2 (pTesla MRI enables characterization and quantification of the internal vascular morphology of glioblastoma and may be used for the evaluation of therapy response within future studies. PMID:25415327

  17. Segmentation of retinal blood vessels using artificial neural networks for early detection of diabetic retinopathy

    Science.gov (United States)

    Mann, Kulwinder S.; Kaur, Sukhpreet

    2017-06-01

    There are various eye diseases in the patients suffering from the diabetes which includes Diabetic Retinopathy, Glaucoma, Hypertension etc. These all are the most common sight threatening eye diseases due to the changes in the blood vessel structure. The proposed method using supervised methods concluded that the segmentation of the retinal blood vessels can be performed accurately using neural networks training. It uses features which include Gray level features; Moment Invariant based features, Gabor filtering, Intensity feature, Vesselness feature for feature vector computation. Then the feature vector is calculated using only the prominent features.

  18. Comparative assessment of ceramic media for drinking water biofiltration.

    Science.gov (United States)

    Sharma, Dikshant; Taylor-Edmonds, Liz; Andrews, Robert C

    2018-01-01

    Media type is a critical design consideration when implementing biofiltration for drinking water treatment. Granular activated carbon (GAC) has been shown to provide superior performance when compared to a wide range of media types, largely due to its higher surface area. Engineered ceramic media is an attractive alternative to GAC as it has a similar surface area but at a lower cost. This pilot-scale biofiltration study compared the performance of GAC, anthracite and two different effective sizes of ceramic (CER) media (1.0 mm and 1.2 mm), in terms of dissolved organic carbon (DOC), head loss, turbidity, and disinfection by-product formation potential (DBPFP). Biological acclimation was monitored using adenosine tri-phosphate (ATP) measurements; biomass was further examined using laccase and esterase enzyme activity assays. When compared to other media types examined, biological GAC had higher (p > 0.05) removals of DOC (9.8 ± 3.8%), trihalomethane formation potential (THMFP, 26.3 ± 10.2%), and haloacetic acid formation potential (HAAFP, 27.2 ± 14.0%). CER media required 6-7 months to biologically acclimate, while filters containing GAC and anthracite were biologically active (>100 ng of ATP/g media) following 30-45 days of operation. Once acclimated, ATP values of 243 and 208 ng/g attained for CER 1.0 and 1.2, respectively, were statistically comparable to GAC (244 ng/g) and higher than anthracite (110 ng/g), however this did not translate into greater organics removal. Esterase and laccase enzyme kinetics were highest for GAC, while CER was shown to have greater biodegradation potential than anthracite. The four media types attained similar turbidity reduction (p > 0.05), however ceramic media filters were observed to have run times which were 1.5-2.3 times longer when compared to anthracite, which could represent potential cost savings in terms of energy for pumping and backwash requirements. Overall, ceramic media was shown to be a potential

  19. Application of morphological bit planes in retinal blood vessel extraction.

    Science.gov (United States)

    Fraz, M M; Basit, A; Barman, S A

    2013-04-01

    The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.

  20. Creation of the permanent inferior vena cava filter for prevention of pulmonary artery embolism

    Directory of Open Access Journals (Sweden)

    Yа.O. Povar

    2016-05-01

    Full Text Available The aim of the study was to create a new permanent cava filter to improve functional capacities of the construction and achieve high clinical parameters. A new geometry of the permanent inferior vena cava filter was presented which has high blood clot-capturing ability, does not cause thrombus fragmentation, makes migration impossible. The inferior vena cava filter does not injure the vessel wall and preserves integrity under long-term use. The inferior vena cava filter installation is safe and controllable, the filter self-positioning and reposition are possible, the delivery system size is 6F, the blood flow changing is minimal.

  1. A miniaturized Microwave Bandpass Filter Based on Modified (Mg0.95Ca0.05TiO3 Substrate

    Directory of Open Access Journals (Sweden)

    Hu Mingzhe

    2016-01-01

    Full Text Available A microwave miniaturized bandpass filter using (Mg0.95Ca0.05TiO3 (abbreviated as 95MCT hereafter ceramic substrate is investigated in the present paper. The paper studies the sintering and microwave dielectric properties of Al2O3, La2O3 and SiO2 co-doped 95MCT. The XRD pattern shows that a secondary phase MgTi2O5 is easily segregated in 95MCT ceramic, however, through co-doping it can be effectively suppressed, and the microwave dielectric properties, especially, the Qf value can be significantly improved. Through optimizing the co-doping ratio of Al2O3, La2O3 and SiO2, the sintering temperature of 95MCT ceramic can be lowered by 80°C, and the microwave dielectric properties can reach Qf=61856GHz and εr=19.84, which indicates the modified 95MCT ceramic have a great potential application in microwave communication devices. Based on this, we also designed a miniaturized microwave bandpass filter (BPF on modified 95MCT substrate. Through a full wave electromagnetic structure simulation, the results show that the center frequency of the BPF is 2.45GHz and the relative bandwidth is 4.09% with the insertion loss of less than 0.2dB in the whole bandpass.

  2. Method of forming a ceramic matrix composite and a ceramic matrix component

    Science.gov (United States)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  3. Progress in Treatment of Oily Wastewater by Inorganic Porous Ceramic Membrane

    Directory of Open Access Journals (Sweden)

    Dai Xiaoyuan

    2017-01-01

    Full Text Available The composition and complexity of oily wastewater contains many solid particles, free oil, emulsified oil and so on.It brought about a series of environmental pollution problems when oily wastewater was directly discharged into rivers, lakes and other water bodies. Therefore, researchers are committed to study how to deal with oily wastewater to deal with oily wastewater to apply it to meet the requirements of water injection.Inorganic porous ceramic membrane has excellent properties among many filtering methods. For example, high temperature and high pressure resistance, resistance to acid and alkali, low energy consumption, no pollution to the environment and has a good prospect in the field of oily wastewater treatment, which has attracted the attention of many scholars not only at home but also on abroad. This article describes the present situation of the research on the treatment of oily wastewater by ceramic membrane in recent years, and expounded the significance of the treatment of oily wastewater to people’s lives and makes an expectation for the development of inorganic porous ceramic membrane in the future.

  4. New ceramics for nuclear industry. Case of fission and fusion reactors

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The ceramics used in the nuclear field are described as is their behaviour under radiation. 1) Power reactors - nuclear fission. Ceramics enter into the fabrication of nuclear fuels: oxides, carbides, uranium or plutonium nitrides or oxy-nitrides. Silicon carbide SiC is used for preparing the fuels of helium cooled high temperature reactors. Its use is foreseen in the design of gas high temperature gas thermal exchangers, as is silicon nitride (Si 3 N 4 ). In the materials for safety or control rods, the intense neutron flows induce nuclear reactions which increase the temperature of the neutron absorbing material. Boron carbide B 4 C, rare earth oxides Ln 2 O 3 , or B 4 C-Cu or B 4 C-Al cermets are employed. Burnable poison materials are formed of Al 2 O 3 -B 4 C or Al 2 O 3 -Ln 2 O 3 cermets. The moderators of thermal neutron reactors are in high purety polycrystalline graphite. For the thermal insulation of reactor vessels and jackets, honeycomb ceramics are used as well as ceramic fibres on an increasing scale (kaolin, alumina and other fibres). 2) fusion reactors (Tokomak). These require refractory materials with a low atomic number. Carbon fibres, boron carbide, some borons (Al B 12 ), silicon nitrides and oxy-nitrides and high density alumina are the substances considered [fr

  5. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    Science.gov (United States)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  6. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  7. Neutron activation analysis of bird bowls and related archaic ceramics from Miletus

    International Nuclear Information System (INIS)

    Kerschner, M.; Mommsen, H.; Beier, T.; Heimermann, D.; Hein, A.

    1993-01-01

    In this paper we present the results of a chemical investigation by neutron activation analysis of sherds of different kinds of bird kotylai, bird bowls and related wares excavated in Kalabaktepe, a hill of the ancient city of Miletus. A new archaeological classification of this well-known group of Archaic ceramics of eastern Greece is presented. A number of kiln wasters of misfired vessels from Kalabaktepe revealed a characteristic local pattern. This pattern helped to clarify the provenance of some of the bird bowls classified archaeologically as of orientalizing type: they have been made in Miletus. But bird kotylai and bird bowls in the ''standard fabric'' as well as other archaeologically related vessels show a different chemical pattern of unknown provenance. (author)

  8. Neutron activation analysis of bird bowls and related archaic ceramics from Miletus

    International Nuclear Information System (INIS)

    Kerschner, M.; Mommsen, H.; Beier, T.; Heimermann, D.; Hein, A.

    1993-01-01

    In this paper we present the results of a chemical investigation by neutron activation analysis of sherds of different kinds of bird kotylai, bird bowls and related wares excavated in Kalabaktepe, a hill of the ancient city of Miletus. A new archaeological classification of this well-known group of Archaic ceramics of eastern Greece is represented. A number of kiln wasters of misfired vessels from Kalabaktepe revealed a characteristic local pattern. This pattern helped to clarify the provenance of some of the bird bowls classified archaeologically as of orientalizing type: they have been made in Miletus. But bird kotylai and bird bowls in the 'standard fabric' as well as other archaeologically related vessels show a different chemical pattern of unknown provenance. (author)

  9. Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis.

    Science.gov (United States)

    Raja, D Siva Sundhara; Vasuki, S

    2015-01-01

    Diabetic retinopathy (DR) is a leading cause of vision loss in diabetic patients. DR is mainly caused due to the damage of retinal blood vessels in the diabetic patients. It is essential to detect and segment the retinal blood vessels for DR detection and diagnosis, which prevents earlier vision loss in diabetic patients. The computer aided automatic detection and segmentation of blood vessels through the elimination of optic disc (OD) region in retina are proposed in this paper. The OD region is segmented using anisotropic diffusion filter and subsequentially the retinal blood vessels are detected using mathematical binary morphological operations. The proposed methodology is tested on two different publicly available datasets and achieved 93.99% sensitivity, 98.37% specificity, 98.08% accuracy in DRIVE dataset and 93.6% sensitivity, 98.96% specificity, and 95.94% accuracy in STARE dataset, respectively.

  10. A new classification system for all-ceramic and ceramic-like restorative materials.

    Science.gov (United States)

    Gracis, Stefano; Thompson, Van P; Ferencz, Jonathan L; Silva, Nelson R F A; Bonfante, Estevam A

    2015-01-01

    Classification systems for all-ceramic materials are useful for communication and educational purposes and warrant continuous revisions and updates to incorporate new materials. This article proposes a classification system for ceramic and ceramic-like restorative materials in an attempt to systematize and include a new class of materials. This new classification system categorizes ceramic restorative materials into three families: (1) glass-matrix ceramics, (2) polycrystalline ceramics, and (3) resin-matrix ceramics. Subfamilies are described in each group along with their composition, allowing for newly developed materials to be placed into the already existing main families. The criteria used to differentiate ceramic materials are based on the phase or phases present in their chemical composition. Thus, an all-ceramic material is classified according to whether a glass-matrix phase is present (glass-matrix ceramics) or absent (polycrystalline ceramics) or whether the material contains an organic matrix highly filled with ceramic particles (resin-matrix ceramics). Also presented are the manufacturers' clinical indications for the different materials and an overview of the different fabrication methods and whether they are used as framework materials or monolithic solutions. Current developments in ceramic materials not yet available to the dental market are discussed.

  11. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  12. The Regeneration of Ceramic Diesel Exhaust Filters by Means of Surface Plasma

    National Research Council Canada - National Science Library

    Helfritch, Dennis

    1995-01-01

    .... Exhaust filtration technology has to be deployed for effective soot control. Most of today's filter-based technologies, however, experience high operational back-pressures causing unfavorable fuel consumption...

  13. OceanRoute: Vessel Mobility Data Processing and Analyzing Model Based on MapReduce

    Science.gov (United States)

    Liu, Chao; Liu, Yingjian; Guo, Zhongwen; Jing, Wei

    2018-06-01

    The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network (MDTN), the mobility of vessels can create the chances of end-to-end communication. The mobility pattern of vessel is one of the key metrics on ocean MDTN network. Because of the high cost, few experiments have focused on research of vessel mobility pattern for the moment. In this paper, we study the traces of more than 4000 fishing and freight vessels. Firstly, to solve the data noise and sparsity problem, we design two algorithms to filter the noise and complement the missing data based on the vessel's turning feature. Secondly, after studying the traces of vessels, we observe that the vessel's traces are confined by invisible boundary. Thirdly, through defining the distance between traces, we design MR-Similarity algorithm to find the mobility pattern of vessels. Finally, we realize our algorithm on cluster and evaluate the performance and accuracy. Our results can provide the guidelines on design of data routing protocols on ocean MDTN.

  14. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  15. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  16. Filter effectiveness in the manufacture of high-chromium steel castings

    Directory of Open Access Journals (Sweden)

    M. Garbiak

    2011-01-01

    Full Text Available The paper presents the results of studies on the application of ceramic filters in the manufacture of cast hearth plates at the WestPomeranian University of Technology in Szczecin. Castings were poured from the heat-resistant G-X40CrNiSi27-4 cast steel in greensand moulds. The development of casting manufacturing technology included the following studies: analysis of the causes of nonmetallicinclusions in high-chromium alloys, computer simulation of mould filling with liquid metal using standard gating systems without filters and new systems with the built-in filter, making pilot castings, quantitative determination of the content of non-metallicinclusions, determination of the oxygen and nitrogen content, and evaluation of the extent of occurrence of the raw casting s urfacedefects. As a result of the conducted studies and analyses, the quality of produced castings was improved, mainly through the reducedcontent of non-metallic inclusions and better raw casting surface quality.

  17. Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sciau, Philippe; Leon, Yoanna; Goudeau, Philippe; Fakra, Sirine C.; Webb, Sam; Mehta, Apurva

    2011-07-06

    We present results of X-ray fluorescence (XRF) microprobe analyses of ancient ceramic cross-sections aiming at deciphering the different firing protocols used for their production. Micro-focused XRF elemental mapping, Fe chemical mapping and Fe K-edge X-ray absorption near edge structure spectroscopy were performed on pre-sigillata ceramics from southern Gaul, and terra Sigillata vessels from Italy and southern Gaul. Pieces from the different workshops and regions showed significant difference in the starting clay material, clay conditioning and kiln firing condition. By contrast, sherds from the same workshop exhibited more subtle differences and possible misfirings. Understanding the precise firing conditions and protocols would allow recreation of kilns for various productions. Furthermore, evolution and modification of kiln design would shed some light on how ancient potters devised solutions to diverse technological problems they encountered.

  18. Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm

    Directory of Open Access Journals (Sweden)

    Fernando Cervantes-Sanchez

    2016-01-01

    Full Text Available This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA in X-ray angiograms. Since the single-scale Gabor filters (SSG are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (Az under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with Az=0.9502 over a training set of 40 images and Az=0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms.

  19. The Challenge of Producing and Marketing Colloidal Silver Water Filters in Nepal

    Directory of Open Access Journals (Sweden)

    Anne Bogler

    2015-07-01

    Full Text Available Background: Obtaining safe drinking water can be a challenge in Nepal. By training potters and setting up production sites for Colloidal Silver Filters, several non-governmental organizations have tried to provide local people with a low-cost option for household water treatment. Out of 19 trained entrepreneurs, only four are currently producing filters. The goal of this evaluation was to find out what conditions lead to the successful continuation of the production and the reasons for failure. Methods: The evaluation of the potters was based on a Qualitative Comparative Analysis and the conditions looked at were: “Production”, “Collaboration”, “Market” and “Potter”. Results: Analysis showed that production problems and insufficient demand led to the termination of ceramic filter production and that both trouble-free production and high demand are necessary for a sustainable business.

  20. Development of a Repeatable Protocol to Uniformly Coat Internal Complex Geometries of Fine Featured 3D Printed Objects with Ceramic Material, including Determination of Viscosity Limits to Properly Coat Certain Pore Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-18

    HEPA filters are commonly used in air filtration systems ranging in application from simple home systems to the more advanced networks used in research and development. Currently, these filters are most often composed of glass fibers with diameter on the order of one micron with polymer binders. These fibers, as well as the polymers used, are known to be fragile and can degrade or become extremely brittle with heat, severely limiting their use in high temperature applications. Ceramics are one promising alternative and can enhance the filtration capabilities compared to the current technology. Because ceramic materials are more thermally resistant and chemically stable, there is great interest in developing a repeatable protocol to uniformly coat fine featured polymer objects with ceramic material for use as a filter. The purpose of this experiment is to determine viscosity limits that are able to properly coat certain pore sizes in 3D printed objects, and additionally to characterize the coatings themselves. Latex paint was used as a surrogate because it is specifically designed to produce uniform coatings.

  1. Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst

    Science.gov (United States)

    Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.

    2017-02-01

    This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

  2. Glass-ceramics with multibarrier structure obtained from industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Berzina, L.; Cimdins, R.; Rozenstrauha, I. [Riga Tech. Univ. (Latvia). Fac. of Chem. Technol.; Bossert, J. [Technisches Inst.: Materialwissenschaft, Friedrich-Schiller-Univ., Jena (Germany); Kravtchenko, I. [Inst. for Problems of Material Science, Kiev (Ukraine)

    1997-12-31

    Recycling problem for various kind of waste is solved by processing the waste to ecological depositable products with multibarrier structure. In order to form a multibarrier structure the ecologically incompatible substances may be diluted and chemically bound until their recycling products gain a structure like natural mineral or glass (I. barrier). After that, remineralized materials are converted into a new product by melting or powder technology using an ecological compatible type of waste as a matrix phase (II. barrier). Waste which are treated this way could be applied to produce ceramic building materials and goods such as floor tiles, stone pavement and casting products. Industrial waste from the metallurgical factory in Latvia ``Liepajas metalurgs`` are metallurgical slag, filter dust, etching waste and sewage used in technologies. The main constituents of chemical compositions of these waste are: Fe, Ca, Si, Mg, Al, Mn etc. In some types of waste a small amount of ecologically risky elements such as Cr, Ni, Zr, Sn and Pb can occur. The combination of metallurgical waste with peat ashes from Riga thermal power station, oil shale ashes or glass waste under controlled sintering procedure gives bulk materials with surface or/and bulkcrystallization. The structure of glass-ceramics built this way may prevent the migration of ecologically risky elements into environment due to corrosion or friction. Physical-chemical properties and thermal behaviour (DTA, dilatometry, melting) of waste define the range of sintering for production of glass-ceramics (powder technology) and decorative glass-ceramic materials (melting and powder technology). (orig.) 5 refs.

  3. Determination of SiC ceramic foams microstructure properties by X-rays microtomography

    International Nuclear Information System (INIS)

    Nagata, Rodrigo; Appoloni, Carlos Roberto; Fernandes, Jaquiel Salvi

    2009-01-01

    Silicon carbide ceramic foams (SiC) can operate at high temperatures, which allow them to be used as heat exchangers, liquid metal filters, composite of rocket nozzles, etc. For many of these applications it is very important to know the foams' porosity. In this work the porosity of SiC ceramic foams was determined by X-rays microtomography, a powerful non-destructive technique that allows the analysis of the sample's internal structure. The samples have pore densities of 30, 45, 60, 80 and 100 pores per inch (ppi). The spatial resolution obtained was 24.8 μm. The cross sections' reconstruction was performed with a cone beam filtered backprojection algorithm. In the analyses, micropores were observed in the foam's lattice wire of the 30 ppi and 45 ppi samples. Micropores were present in few cross sections of 60 ppi sample too, but it was not found in the 80 ppi and 100 ppi samples. The total porosities obtained were Φ = (88.8 ± 4.3) %, Φ = (85.2 ± 1.4) %, Φ = (82.3 ± 1.8) %, Φ (79.9 ± 1.3) % and Φ = (80.4 ± 1.5) %, for the 30, 45, 60, 80 and 100 ppi samples, respectively. (author)

  4. 3D lumped components and miniaturized bandpass filter in an ultra-thin M-LCP for SOP applications

    KAUST Repository

    Arabi, Eyad A.; Shamim, Atif

    2013-01-01

    application. It utilizes mutually coupled inductors and is the smallest reported in the literature with a size of (0.035×0.028×0.00089)λg. Finally, the same filter realized in a competing ceramic technology (LTCC) is compared in performance with the ultra

  5. Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks

    Science.gov (United States)

    Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie

    2017-03-01

    Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.

  6. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  7. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  8. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  9. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    Science.gov (United States)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  10. Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter

    International Nuclear Information System (INIS)

    Druffel, Thad; Geng Kebin; Grulke, Eric

    2006-01-01

    Thin-film filters on optical components have been in use for decades and, for those industries utilizing a polymer substrate, the mismatch in mechanical behaviour has caused problems. Surface damage including scratches and cracks induces haze on the optical filter, reducing the transmission of the optical article. An in-mold anti-reflective (AR) filter incorporating 1/4-wavelength thin films based on a polymer nanocomposite is outlined here and compared with a traditional vacuum deposition AR coating. Nanoindentation and nanoscratch techniques are used to evaluate the mechanical properties of the thin films. Scanning electron microscopy (SEM) images of the resulting indentations and scratches are then compared to the force deflection curves to further explain the phenomena. The traditional coatings fractured by brittle mechanisms during testing, increasing the area of failure, whereas the polymer nanocomposite gave ductile failure with less surface damage

  11. Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter.

    Science.gov (United States)

    Druffel, Thad; Geng, Kebin; Grulke, Eric

    2006-07-28

    Thin-film filters on optical components have been in use for decades and, for those industries utilizing a polymer substrate, the mismatch in mechanical behaviour has caused problems. Surface damage including scratches and cracks induces haze on the optical filter, reducing the transmission of the optical article. An in-mold anti-reflective (AR) filter incorporating 1/4-wavelength thin films based on a polymer nanocomposite is outlined here and compared with a traditional vacuum deposition AR coating. Nanoindentation and nanoscratch techniques are used to evaluate the mechanical properties of the thin films. Scanning electron microscopy (SEM) images of the resulting indentations and scratches are then compared to the force deflection curves to further explain the phenomena. The traditional coatings fractured by brittle mechanisms during testing, increasing the area of failure, whereas the polymer nanocomposite gave ductile failure with less surface damage.

  12. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  13. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    Naslain , R.

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  14. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  15. A thresholding based technique to extract retinal blood vessels from fundus images

    Directory of Open Access Journals (Sweden)

    Jyotiprava Dash

    2017-12-01

    Full Text Available Retinal imaging has become the significant tool among all the medical imaging technology, due to its capability to extract many data which is linked to various eye diseases. So, the accurate extraction of blood vessel is necessary that helps the eye care specialists and ophthalmologist to identify the diseases at the early stages. In this paper, we have proposed a computerized technique for extraction of blood vessels from fundus images. The process is conducted in three phases: (i pre-processing where the image is enhanced using contrast limited adaptive histogram equalization and median filter, (ii segmentation using mean-C thresholding to extract retinal blood vessels, (iii post-processing where morphological cleaning operation is used to remove isolated pixels. The performance of the proposed method is tested on and experimental results show that our method achieve an accuracies of 0.955 and 0.954 on Digital retinal images for vessel extraction (DRIVE and Child heart and health study in England (CHASE_DB1 databases respectively.

  16. Quantification of tumor vessels in glioblastoma patients using time-of-flight angiography at 7 Tesla: a feasibility study.

    Directory of Open Access Journals (Sweden)

    Alexander Radbruch

    Full Text Available PURPOSE: To analyze if tumor vessels can be visualized, segmented and quantified in glioblastoma patients with time of flight (ToF angiography at 7 Tesla and multiscale vessel enhancement filtering. MATERIALS AND METHODS: Twelve patients with newly diagnosed glioblastoma were examined with ToF angiography (TR = 15 ms, TE = 4.8 ms, flip angle = 15°, FOV = 160 × 210 mm(2, voxel size: 0.31 × 0.31 × 0.40 mm(3 on a whole-body 7 T MR system. A volume of interest (VOI was placed within the border of the contrast enhancing part on T1-weighted images of the glioblastoma and a reference VOI was placed in the non-affected contralateral white matter. Automated segmentation and quantification of vessels within the two VOIs was achieved using multiscale vessel enhancement filtering in ImageJ. RESULTS: Tumor vessels were clearly visible in all patients. When comparing tumor and the reference VOI, total vessel surface (45.3 ± 13.9 mm(2 vs. 29.0 ± 21.0 mm(2 (p<0.035 and number of branches (3.5 ± 1.8 vs. 1.0 ± 0.6 (p<0.001 per cubic centimeter were significantly higher, while mean vessel branch length was significantly lower (3.8 ± 1.5 mm vs 7.2 ± 2.8 mm (p<0.001 in the tumor. DISCUSSION: ToF angiography at 7-Tesla MRI enables characterization and quantification of the internal vascular morphology of glioblastoma and may be used for the evaluation of therapy response within future studies.

  17. Ceramic membranes applied in separation of hot gases; Membranas Ceramicas para Separacion de Gases en Caliente

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of this project is to develop and evaluate inorganic membranes of a ceramic type, with nanometric pore size, applied in separation of contaminants and fuel enrichment, gas mixture in coal gasification . etc. Using ceramic materials have the advantage of being highly physical and chemical resistance, which makes these membranes more adequate then metal equivalent for these applications. A support manufacture and the development of natricum membranes technology to estimate the potential fields of applications and industrial viability of ceramic membranes are the intermediate goals so that the project could be considered successful one. The project has been carried out jointly by the following entities: TGI, S. A. (Tecnologia y Gestion de la Innovacion, Spain). CIEMAT (Centro de Investigaciones energeticas, Medioambientales y Tecnologicas, Spain) and CSIC-UAM (Centro mixto Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid. Instituto de Ciencias de Materiales, Spain). The range of activities proposed in this project is to get the sufficient knowledge of preparation and behaviour of separation membranes to be able to procede to the desing and manufacture of an industrial filter. The project phases include; the ameiloration of ceramic support processing methods, the fluid dynamic evaluation, technology for membrane desing and manufacturing, the mounting (setting up) of an experimental installation for testing and evaluation. As a previous step a state of the art review about the following topics was made: high temperature inorganic membranes, technology separation mechanisms, gasifications process and its previous experience applications of membranes and determination of membranes specifications and characteristics of testing conditions. At the end a new inorganic ceramic membrane, with nanometric pore size and useful in several industrial processes (filtration, separation of contaminants, fuel enrichment, purification of gas mixtures

  18. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  19. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  20. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  1. Moessbauer Study of Ceramic Finds from the Galeria de las Ofrendas, Chavin de Huantar

    International Nuclear Information System (INIS)

    Lumbreras, L. G.; Gebhard, R.; Haeusler, W.; Kauffmann-Doig, F.; Riederer, J.; Sieben, G.; Wagner, U.

    2003-01-01

    Ceramic finds from the Galeria de las Ofrendas at Chavin de Huantar and surface finds from the settlement of Chavin were characterised by combining the results of archaeological typology with archaeometric studies using neutron activation analysis, Moessbauer spectroscopy, X-ray diffraction and thin-section microscopy. Sherds from the pyramid Tello are included in the study as representative of local material. The analyses show that the vessels were made from different raw materials and that different firing procedures were used in their production. Sherds of certain styles largely exhibit similar types of Moessbauer patterns and in many instances also have similar element compositions. This supports the archaeological notion that the vessels were brought to Chavin from the provinces, perhaps on the occasion of a festivity.

  2. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  3. Pre-service Acoustic Emission Testing for Metal Pressure Vessel

    International Nuclear Information System (INIS)

    Lee, Jong O; Yoon, Woon Ha; Lee, Tae Hee; Lee, Jong Kyu

    2003-01-01

    The field application of acoustic emission(AE) testing for brand-new metal pressure vessel were performed. We will introduce the test procedure for acoustic emission test such as instrument check distance between sensors, sensor location, whole system calibration, pressurization sequence, noise reduction and evaluation. The data of acoustic emission test contain many noise signal, these noise can be reduced by time filtering which based on the description of observation during AE test

  4. Characterization of ceramics used in mass ceramic industry Goianinha/RN

    International Nuclear Information System (INIS)

    Sales Junior, J.C.C.; Nascimento, R.M. do; Andrade, J.C.S.; Saldanha, K.M.; Dutra, R.P.S.

    2011-01-01

    The preparation of the the ceramic mass is one of the most important steps in the manufacture of ceramic products, since the characteristics of the raw materials used, and the proportions that they are added, directly influence the final properties of ceramic products and the operational conditions of processing. The objective of this paper is to present the results of the characterization of a ceramic mass used in the manufacture of sealing blocks by a red ceramic industry of the city of Goianinha / RN. We analyzed the chemical and mineralogical composition; thermogravimetric and differential thermal analysis; granulometric analysis; evaluation of plasticity; and determining the technological properties of specimens used in test firing at 700, 900 and 1100 ° C. The results show that the ceramic body studied has characteristics that allow use in the manufacture of sealing blocks when burned at a temperature of 900 ° C. (author)

  5. Use of basaltic waste as red ceramic raw material

    Directory of Open Access Journals (Sweden)

    T. M. Mendes

    Full Text Available Abstract Nowadays, environmental codes restrict the emission of particulate matters, which result in these residues being collected by plant filters. This basaltic waste came from construction aggregate plants located in the Metropolitan Region of Londrina (State of Paraná, Brazil. Initially, the basaltic waste was submitted to sieving (< 75 μm and the powder obtained was characterized in terms of density and particle size distribution. The plasticity of ceramic mass containing 0%, 10%, 20%, 30%, 40% and 50% of basaltic waste was measured by Atterberg method. The chemical composition of ceramic formulations containing 0% and 20% of basaltic waste was determined by X-ray fluorescence. The prismatic samples were molded by extrusion and fired at 850 °C. The specimens were also tested to determine density, water absorption, drying and firing shrinkages, flexural strength, and Young's modulus. Microstructure evaluation was conducted by scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry. Basaltic powder has similar physical and chemical characteristics when compared to other raw materials, and contributes to ceramic processing by reducing drying and firing shrinkage. Mechanical performance of mixtures containing basaltic powder is equivalent to mixtures without waste. Microstructural aspects such as pore size distribution were modified by basaltic powder; albite phase related to basaltic powder was identified by X-ray diffraction.

  6. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    Science.gov (United States)

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  7. Relative Vessel Motion Tracking using Sensor Fusion, Aruco Markers, and MRU Sensors

    Directory of Open Access Journals (Sweden)

    Sondre Sanden Tordal

    2017-04-01

    Full Text Available This paper presents a novel approach for estimating the relative motion between two moving offshore vessels. The method is based on a sensor fusion algorithm including a vision system and two motion reference units (MRUs. The vision system makes use of the open-source computer vision library OpenCV and a cube with Aruco markers placed onto each of the cube sides. The Extended Quaternion Kalman Filter (EQKF is used for bad pose rejection for the vision system. The presented sensor fusion algorithm is based on the Indirect Feedforward Kalman Filter for error estimation. The system is self-calibrating in the sense that the Aruco cube can be placed in an arbitrary location on the secondary vessel. Experimental 6-DOF results demonstrate the accuracy and efficiency of the proposed sensor fusion method compared with the internal joint sensors of two Stewart platforms and the industrial robot. The standard deviation error was found to be 31mm or better when the Arcuo cube was placed at three different locations.

  8. Adjusting dental ceramics: An in vitro evaluation of the ability of various ceramic polishing kits to mimic glazed dental ceramic surface.

    Science.gov (United States)

    Steiner, René; Beier, Ulrike S; Heiss-Kisielewsky, Irene; Engelmeier, Robert; Dumfahrt, Herbert; Dhima, Matilda

    2015-06-01

    During the insertion appointment, the practitioner is often faced with the need to adjust ceramic surfaces to fit a restoration to the adjacent or opposing dentition and soft tissues. The purpose of this study was to assess the ceramic surface smoothness achieved with various commercially available ceramic polishing kits on different commonly used ceramic systems. The reliability of the cost of a polishing kit as an indicator of improved surface smoothness was assessed. A total of 350 ceramic surfaces representing 5 commonly available ceramic systems (IPS Empress Esthetic, IPS e.max Press, Cergo Kiss, Vita PM 9, Imagine PressX) were treated with 5 types of ceramic polishing systems (Cerapreshine, 94006C, Ceramiste, Optrafine, Zenostar) by following the manufacturers' guidelines. The surface roughness was measured with a profilometer (Taylor Hobson; Precision Taylor Hobson Ltd). The effects of ceramic systems and polishing kits of interest on surface roughness were analyzed by 2-way ANOVA, paired t test, and Bonferroni corrected significance level. The ceramic systems and polishing kits statistically affected surface roughness (Pceramic surface. No correlation could be established between the high cost of the polishing kit and low surface roughness. None of the commonly used ceramic polishing kits could create a surface smoother than that of glazed ceramic (Pceramic polishing kits is not recommended as a reliable indicator of better performance of ceramic polishing kits (P>.30). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  10. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  11. Nonrigid registration with tissue-dependent filtering of the deformation field

    International Nuclear Information System (INIS)

    Staring, Marius; Klein, Stefan; Pluim, Josien P W

    2007-01-01

    In present-day medical practice it is often necessary to nonrigidly align image data. Current registration algorithms do not generally take the characteristics of tissue into account. Consequently, rigid tissue, such as bone, can be deformed elastically, growth of tumours may be concealed, and contrast-enhanced structures may be reduced in volume. We propose a method to locally adapt the deformation field at structures that must be kept rigid, using a tissue-dependent filtering technique. This adaptive filtering of the deformation field results in locally linear transformations without scaling or shearing. The degree of filtering is related to tissue stiffness: more filtering is applied at stiff tissue locations, less at parts of the image containing nonrigid tissue. The tissue-dependent filter is incorporated in a commonly used registration algorithm, using mutual information as a similarity measure and cubic B-splines to model the deformation field. The new registration algorithm is compared with this popular method. Evaluation of the proposed tissue-dependent filtering is performed on 3D computed tomography (CT) data of the thorax and on 2D digital subtraction angiography (DSA) images. The results show that tissue-dependent filtering of the deformation field leads to improved registration results: tumour volumes and vessel widths are preserved rather than affected

  12. Integration of semiconductor and ceramic superconductor devices for microwave applications

    International Nuclear Information System (INIS)

    Klopman, B.B.G.; Weijers, H.W.; Gao, J.; Gerritsma, G.J.; Rogalla, H.

    1991-01-01

    Due to the very low-loss properties of ceramic superconductors high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature, facilitates the integration with semiconductor devices. Examples are bandpass amplifiers, microwave-operated SQUIDs combined with GaAs preamplifiers, detectors, and MOSFET low-frequency amplifiers. This paper discusses the design of such circuits on a single one inch alumina substrate using surface mount techniques. Furthermore data on circuits that have been realized in our laboratory will be presented

  13. Control Carbon to Prevent corium Stratification In-Vessel Retention

    Energy Technology Data Exchange (ETDEWEB)

    Go, A Ra; Hong, Seung Hyun; Kim, Sang Nyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    As a result, the thermal margin decreases, and the nuclear reactor vessel may be destroyed. To control Carbons, which is the major cause of stratification, Ruthenium and Hafnium are inserted inside the lower reactor head which initiates a chemical reaction with Carbon. SPARTAN program is used to confirm a reaction probability which is measured in bond energy and strength etc. To analyze the possibility of bonding with Carbon, the initial property of Ruthenium and Carbon are measured during the calculated absorbing process. After following that theory, the Spartan program is able to determine if it can insert the metal. After verifying the combination of Ruthenium and Carbon, the Spartan program analyzes the impact of the Carbon to prevent the corium stratification. It determines the possibility of the success with the introduction of the IVR concept. Ruthenium is suitable to Carbon bonding process to decrease affect to corium behavior which do not form stratification. The metal which can combine with Carbon should be satisfied with temperature as high as 2800 .deg. C. Therefore, the further research works are determined by using the Spartan program to calculate the Carbon and Ruthenium bonding energy, and to check other bonding results as follows. After check the results, review this theory to insert the Ruthenium in reactor vessel. APR1400 and OPR1000, Korea Hydro and Nuclear power plant core meltdown accident has been evaluated a high level in severe accident. When the reactor core is melted down, it is stratified into the metal layer and the ceramic layer. As the heat conductivity of metal layer is higher than that of the ceramic layer, heat concentration occurs in the upper part of the bottom hemisphere which comes into contact with the metal layer.

  14. Tribology of ceramics: Report of the Committee on Tribology of Ceramics

    Science.gov (United States)

    1988-01-01

    The current state of knowledge of ceramic surface structures, composition, and reactivity is reviewed. The tribological requirements of advanced mechanical systems now being deployed (in particular, heat engines) exceed the capabilities of traditional metallic-based materials because of the high temperatures encountered. Advanced ceramic materials for such applications are receiving intense scrutiny, but there is a lack of understanding of the properties and behavior of ceramic surfaces and the influence of processing on the properties of ceramics is described. The adequacy of models, ranging form atomic to macro, to describe and to predict ceramic friction and wear are discussed, as well as what is known about lubrication at elevated temperatures. From this analysis, recommendations are made for coordination, research, and development that will lead to better performance of ceramic materials in tribological systems.

  15. An approach to localize the retinal blood vessels using bit planes and centerline detection.

    Science.gov (United States)

    Fraz, M M; Barman, S A; Remagnino, P; Hoppe, A; Basit, A; Uyyanonvara, B; Rudnicka, A R; Owen, C G

    2012-11-01

    The change in morphology, diameter, branching pattern or tortuosity of retinal blood vessels is an important indicator of various clinical disorders of the eye and the body. This paper reports an automated method for segmentation of blood vessels in retinal images. A unique combination of techniques for vessel centerlines detection and morphological bit plane slicing is presented to extract the blood vessel tree from the retinal images. The centerlines are extracted by using the first order derivative of a Gaussian filter in four orientations and then evaluation of derivative signs and average derivative values is performed. Mathematical morphology has emerged as a proficient technique for quantifying the blood vessels in the retina. The shape and orientation map of blood vessels is obtained by applying a multidirectional morphological top-hat operator with a linear structuring element followed by bit plane slicing of the vessel enhanced grayscale image. The centerlines are combined with these maps to obtain the segmented vessel tree. The methodology is tested on three publicly available databases DRIVE, STARE and MESSIDOR. The results demonstrate that the performance of the proposed algorithm is comparable with state of the art techniques in terms of accuracy, sensitivity and specificity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension.

    Science.gov (United States)

    Innocentini, Murilo D M; Rodrigues, Vanessa P; Romano, Roberto C O; Pileggi, Rafael G; Silva, Gracinda M C; Coury, José R

    2009-02-15

    Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties.

  17. Filtered atmospheric venting of LWR containments

    International Nuclear Information System (INIS)

    Hoegberg, L.; Ahlstroem, P.E.; Bachofner, E.; Graeslund, C.; Johansson, K.; Nilsson, L.; Persson, Aa.; Eriksson, B.

    1981-03-01

    The FILTRA project is a cooperative Swedish programme which started in February 1980. It is aimed at investigating the possibility of reducing the risk for a large release of radioactivity, assuming a severe reactor accident. The project has been focused on filtered venting of the reactor containment. The first stage of the project has dealt with two types of severe accident sequences, namely core meltdown as a result of the complete loss of water supplies to the reactor pressure vessel and insufficient cooling of the reactor containment. Some important conclusion are the following. The applicability of computer models used to describe various phenomena in the accident sequence must be scrutinized. The details of the design of the containment are important and must be taken into consideration in a more accurate manner than in previous analyses. A pressure relief area of less than 1 m 2 appears to be adequate. The following principles should guide the technical design of filtered venting systems, namely reduction of the risk for the release of those radioactive substances which could cause long term land contamination, provision for a passive function of the vent filter system during the first 24 hours and achievement of filtering capabilities which make leakages in severe accidents comparable to the leakages of radioactive substances in less severe accidents, which do not necessarily actuate the pressure relief system. Nothing indicates that a system for filtered venting of a BWR containment would have a significant negative effect on the safety within the framework of the design basis. Efforts should be directed towards designing a filtered venting system for a BWR such as Barsebaeck. (authors)

  18. Electrospun ceramic fibermats for filtration applications in lunar missions for in-habitat applications

    Science.gov (United States)

    Biswas, Apratim

    In the absence of atmosphere and hydrosphere, there are few collisions between dust particles in the lunar environment. Further, particles become charged in presence of cosmic rays and similarly charged particles repel each other. Hence particles retain sharp edges and often have high aspect ratios. When exposed to lunar dust, humans show symptoms similar to hay fever. Such particles are also damaging to equipment. Humans and robots, used in operations, can bring such dust particles inside the human habitat making them airborne. High efficiency particulate air (HEPA) filters provide an effective way to trap such particles. But due to environment conditions, polymer based filters are susceptible to mechanical erosion. The presence of high energy radiation, due to the absence of atmosphere and magnetic fields, is also damaging to polymers. Ceramic materials are resistant to abrasion and radiation and hence were chosen as the preferred class of materials for the filtration media. Among all the ceramics, TiO2 was selected for its photocatalytic activity which may play a key role in energy-efficient survival in space or lunar stations. Such fibers are multi-functional with the advantage of self-cleaning property in presence of radiation. However ceramic fibers, including TiO 2 fibers, have a significant disadvantage of their own. They are brittle and were considered too prone to failure to be successfully used as a filtration media when they reach nanometer dimensions. This dissertation describes the advances in fabrication and understanding of fundamentals in overcoming these challenges. In absence of crack initiation sites, amorphous ceramic fibers have near theoretical strength and strain to failure. Amorphous TiO2 -SiO2 fibermats, with lower flaw populations and exceptional surface quality, have been developed. They can be rolled to a radius of curvature of 3.4 mm -- exhibiting flexibility. The fibermats are also mechanically robust and can withstand the stress

  19. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  20. Formulation and synthesis by melting process of titanate enriched glass-ceramics and ceramics

    International Nuclear Information System (INIS)

    Advocat, T.; Fillet, C.; Lacombe, J.; Bonnetier, A.; McGlinn, P.

    1999-01-01

    The main objective of this work is to provide containment for the separated radionuclides in stable oxide phases with proven resistance to leaching and irradiation damage and in consequence to obtain a glass ceramic or a ceramic material using a vitrification process. Sphene glass ceramic, zirconolite glass ceramic and zirconolite enriched ceramic have been fabricated and characterized by XRD, SEM/EDX and DTA

  1. Substrate Integrated Waveguide Cross-Coupling Filter with Multilayer Hexagonal Cavity

    Directory of Open Access Journals (Sweden)

    B. Wu

    2013-01-01

    Full Text Available Hexagonal cavities and their applications to multilayer substrate integrated waveguide (SIW filters are presented. The hexagonal SIW cavity which can combine flexibility of rectangular one and performance of circular one is convenient for bandpass filter’s design. Three types of experimental configuration with the same central frequency of 10 GHz and bandwidth of 6%, including three-order and four-order cross-coupling topologies, are constructed and fabricated based on low temperature cofired ceramic (LTCC technology. Both theoretical and experimental results are presented.

  2. Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water.

    Science.gov (United States)

    Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard

    2006-04-15

    Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.

  3. Avaliação da permeabilidade de filtros de aerossóis para altas temperaturas, preparados a partir da técnica de adição de espuma aquosa em suspensão cerâmica Permeability characterization of hot aerosol filters prepared with foaming of ceramic suspensions

    Directory of Open Access Journals (Sweden)

    M. D. M. Innocentini

    2009-12-01

    Full Text Available Este trabalho é parte de um projeto de desenvolvimento de filtros cerâmicos para a remoção de material particulado disperso em correntes gasosas em temperaturas elevadas. Os filtros cerâmicos utilizados para esta finalidade devem apresentar elevada porosidade aliada a uma distribuição homogênea de poros interconectados, resultando em estrutura permeável e com boa resistência mecânica e eficiência de coleta. Uma rota de processamento recentemente desenvolvida é utilizada para o processamento das peças, já que permite a obtenção de todas as características requeridas para uma filtração eficiente. Nesta técnica, os materiais porosos são processados a partir da incorporação de espumas aquosas em uma suspensão cerâmica de alumina e consolidados a partir da adição de cimento aluminoso. Comparado com outras rotas de processamento, este processo é mais atrativo, pois permite a fabricação de peças com geometrias complexas, economicamente viáveis e sem utilização de aditivos tóxicos. O objetivo deste trabalho foi otimizar a composição cerâmica de modo a atender aos requisitos de permeabilidade do filtro, tendo como base sua operação econômica em temperaturas elevadas em processos como incineração de resíduos, produção de cimento ou queima de biomassa em caldeiras em plantas químicas.This work is part of a project to develop ceramic filters to treat flue gases from cement plants, biomass boilers and waste incinerators. Ceramic filters used for these purposes must present high porosity, homogeneous porous distribution (interconnected to result in bodies with high mechanical strength, permeability and collection efficiency for fine particles. A method recently developed has been used for the filters processing. In this new processing route, the porous samples were prepared through the incorporation of aqueous foams into alumina-based suspensions. Compared to other techniques, this process seems to be an

  4. Otimização da permeabilidade de filtros de aerossóis para altas temperaturas preparados a partir da técnica de adição de espuma aquosa em suspensão cerâmica Permeability optimization of hot aerosol filters prepared from foaming of ceramic suspensions

    Directory of Open Access Journals (Sweden)

    M. D. M. Innocentini

    2009-03-01

    Full Text Available Este trabalho é parte de um projeto de desenvolvimento de filtros cerâmicos para a remoção de material particulado disperso em correntes gasosas em temperaturas elevadas. Os filtros cerâmicos utilizados para esta finalidade devem apresentar elevada porosidade aliada a uma distribuição homogênea de poros interconectados, resultando em estrutura permeável e com boa resistência mecânica e eficiência de coleta. Uma rota de processamento recentemente desenvolvida é utilizada para o processamento das peças, já que permite a obtenção de todas as características requeridas para uma filtração eficiente. Nesta técnica, os materiais porosos são processados a partir da incorporação de espumas aquosas em uma suspensão cerâmica de alumina e consolidados a partir da adição de cimento aluminoso. Comparado com outras rotas de processamento, este processo é mais atrativo, pois permite a fabricação de peças com geometrias complexas, economicamente viáveis e sem utilização de aditivos tóxicos. O objetivo deste trabalho foi otimizar a composição cerâmica de modo a atender aos requisitos de permeabilidade do filtro, tendo como base sua operação econômica em temperaturas elevadas em processos como incineração de resíduos, produção de cimento ou queima de biomassa em caldeiras em plantas químicas.This work is part of a Brazilian project to develop ceramic filters to treat flue gases from cement plants, biomass boilers and waste incinerators. Ceramic filters used for these purposes must present high porosity, homogeneous porous distribution (interconnected to result in bodies with high mechanical strength, permeability and collection efficiency for fine particles. A method recently developed has been used for the filters processing. In this new processing route, the porous samples were prepared through the incorporation of aqueous foams into alumina-based suspensions. Compared to other techniques, this process seems to be

  5. Scale up issues involved with the ceramic waste form: ceramic-container interactions and ceramic cracking quantification

    International Nuclear Information System (INIS)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P. Jr.

    1999-01-01

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits

  6. Mullite (3Al2O3·2SiO2 ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure

    Directory of Open Access Journals (Sweden)

    M.F. Serra

    2016-03-01

    Partial densification was achieved (30% and highly converted materials were obtained. The developed microstructure consisted in a dense ceramic matrix with homogenous interconnected porosity, with a narrow pore size distribution below 20 μm. The developed material gives enough information for designing mullite ceramics materials with either porous or dense microstructures with structural, insulating or filtering applications employing RHA as silica source and calcined alumina as the only other raw material.

  7. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  8. Filtration system for nuclear power plant

    International Nuclear Information System (INIS)

    Otani, Takashi; Nakamizo, Hiroshi.

    1991-01-01

    The filtration system of the present invention comprises a filtering device incorporating ceramic filament element bundles, a pool return line for returning filtrates to a side banker pool or fuel storage pool, a waste sludge discharge line for discharging waste sludges captured in the filter elements by way of washing operation and a settling separation vessel. Ceramics of excellent radiation resistance and having an extremely thin multi-layered structure at the surface are used for the filter elements. Highly radioactive cruds captured at the surface of the elements by liquid passage are removed by supplying water or gas in a pulsative manner in the direction opposite to the liquid passage thereby cleaning the surface of the elements at a high speed. The thus removed high radioactive cruds are concentrically confined within the settling separation layer by gravitational settling separation. Thus, there is no more necessary for disposing the filtration element bundles after use, so that the amount of wastes can be reduced, the radiation dosage can be lowered and the facility can be simplified. (N.H.)

  9. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  10. The effect of water-soluble polymers on the microstructure and properties of freeze-cast alumina ceramics

    Science.gov (United States)

    Pekor, Christopher Michael

    Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.

  11. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    OpenAIRE

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  12. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  13. An optical fiber Bragg grating and piezoelectric ceramic voltage sensor.

    Science.gov (United States)

    Yang, Qing; He, Yanxiao; Sun, Shangpeng; Luo, Mandan; Han, Rui

    2017-10-01

    Voltage measurement is essential in many fields like power grids, telecommunications, metallurgy, railways, and oil production. A voltage-sensing unit, consisting of fiber Bragg gratings (FBGs) and piezoelectric ceramics, based on which an optical over-voltage sensor was proposed and fabricated in this paper. No demodulation devices like spectrometer or Fabry-Perot filter were needed to gain the voltage signal, and a relatively large sensing frequency range was acquired in this paper; thus, the cost of the sensing system is more acceptable in engineering application. The voltage to be measured was directly applied to the piezoelectric ceramic, and deformation of the ceramics and the grating would be caused because of the inverse piezoelectric effect. With a reference grating, the output light intensity change will be caused by the FBG center wavelength change; thus, the relationship between the applied voltage and the output light intensity was established. Validation of the sensor was accomplished in the frequency range from 50 Hz to 20 kHz and switching impulse waves with a test platform; good linearity of the input-output characteristic was achieved. A temperature validation test was completed, showing that the sensor maintains good temperature stability. Experimental results show that the optical over-voltage sensor can be used for voltage monitoring, and if applied with a voltage divider, the sensor can be used to measure high voltage.

  14. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  15. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    Science.gov (United States)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  16. Deodorant ceramic catalyst. Dasshu ceramics shokubai

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K. (Kobe Steel Ltd., Kobe (Japan)); Naka, R. (Hitachi Ltd., Tokyo (Japan))

    1993-07-01

    Concerning debromination to be used for the filter of deodorizing device, those of long life and high deodorizing performance are demanded a great deal. As one of this kind of debromination, a deodorant ceramic catalyst (mangantid) has been developed and put for practical use as deodorant for refrigerator. In this article, the information and knowledge obtained by the development of mangantid, the features as well as several properties of the product are stated. The deodorizing methods currently used practically are roughly divided into 6 kinds such as the adsorption method, the direct combustion method, the catalytic method and the oxidation method, but each of them has its own merit and demerit, hence it is necessary to select the method in accordance with the kind of odor and its generating condition. Mangantid is a compound body of high deodorant material in a honeycomb configuration, and has the features that in comparison with the existing deordorants, its pressure loss is smaller, its deodorizing rate is bigger, and acidic, neutral and basic gaseous components can be removed in a well-balanced manner. Deodorization with mangantid has the mechanism to let the odorous component contact and react with the catalyst and change the component to the non-odorous component in the temperature range from room temperature to the low temperature region. 5 refs., 11 figs., 1 tab.

  17. Different Analytical Procedures for the Study of Organic Residues in Archeological Ceramic Samples with the Use of Gas Chromatography-mass Spectrometry.

    Science.gov (United States)

    Kałużna-Czaplińska, Joanna; Rosiak, Angelina; Kwapińska, Marzena; Kwapiński, Witold

    2016-01-01

    The analysis of the composition of organic residues present in pottery is an important source of information for historians and archeologists. Chemical characterization of the materials provides information on diets, habits, technologies, and original use of the vessels. This review presents the problem of analytical studies of archeological materials with a special emphasis on organic residues. Current methods used in the determination of different organic compounds in archeological ceramics are presented. Particular attention is paid to the procedures of analysis of archeological ceramic samples used before gas chromatography-mass spectrometry. Advantages and disadvantages of different extraction methods and application of proper quality assurance/quality control procedures are discussed.

  18. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers.

    Science.gov (United States)

    Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris

    2007-01-01

    Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).

  19. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  20. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  1. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  2. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  3. [Comparison of color reappearance between metal-ceram restoration and foundry-ceram restoration using crystaleye spectrophotometer].

    Science.gov (United States)

    Shi, Tao; Zhang, Ning; Kong, Fan-wen; Zhan, De-song

    2010-10-01

    To study the color reappearance effect of metal-ceram restoration and foundry-ceram restoration using Crystaleye spectrophotometer. 58 metal-ceram restorations and 58 foundry-ceram restorations according to the result of the Crystaleye spectrophotometer were made respectively. The deltaE between restorations and natural teeth as referenced were analyzed. And satisfaction of dentists and patients were evaluated. The deltaE between metal-ceram restorations and natural teeth was 7.13 +/- 0.74. The deltaE between foundry-ceram restorations and teeth was 1.47 +/- 0.84. There were statistical differences between the deltaE (P spectrophotometer can provide accurate reference for foundry-ceram restoration, but for metal-ceram restoration it is not accurate.

  4. Werkstoffwoche 98. Vol. 7. Symposium 9: Ceramics. Symposium 14: Simulation of ceramics

    International Nuclear Information System (INIS)

    Heinrich, J.; Ziegler, G.; Hermel, W.; Riedel, H.

    1999-01-01

    The leading subject of this proceedings volume is ceramic materials, with papers on the following subject clusters: Processing (infiltration, sintering, forming) - Physics and chemistry of ceramics (functional ceramics, SiC, ceramic precursors, microstructural properties) - Novel concepts (composites, damage induced by oxidation and mechanical stress, performance until damage under mechanical and thermal stress, layers, nanocomposites). 28 of the conference papers have been prepared for individual retrieval from the ENERGY database. (orig./CB) [de

  5. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 3 - Ceramics and ceramic-matrix composites

    Science.gov (United States)

    Levine, Stanley R. (Editor)

    1992-01-01

    The present volume discusses ceramics and ceramic-matrix composites in prospective aerospace systems, monolithic ceramics, transformation-toughened and whisker-reinforced ceramic composites, glass-ceramic matrix composites, reaction-bonded Si3N4 and SiC composites, and chemical vapor-infiltrated composites. Also discussed are the sol-gel-processing of ceramic composites, the fabrication and properties of fiber-reinforced ceramic composites with directed metal oxidation, the fracture behavior of ceramic-matrix composites (CMCs), the fatigue of fiber-reinforced CMCs, creep and rupture of CMCs, structural design methodologies for ceramic-based materials systems, the joining of ceramics and CMCs, and carbon-carbon composites.

  6. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients.

    Science.gov (United States)

    Hernigou, Philippe; Roubineau, François; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-04-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantagesCoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion.However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with fracture of a component.We recommend that surgeons weigh the potential advantages and disadvantages of current CoC THA in comparison with other bearing surfaces when considering young very active patients who are candidates for THA. Cite this article: Hernigou P, Roubineau F, Bouthors C, Flouzat-Lachaniette C-H. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients. EFORT Open Rev 2016;1:107-111. DOI: 10.1302/2058-5241.1.000027.

  7. Temperature control system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  8. A new design of a miniature filter on microstrip resonators with an interdigital structure of conductors

    Science.gov (United States)

    Belyaev, B. A.; Serzhantov, A. M.; Bal'va, Ya. F.; Leksikov, An. A.; Galeev, R. G.

    2015-05-01

    A microstrip bandpass filter of new design based on original resonators with an interdigital structure of conductors has been studied. The proposed filters of third to sixth order are distinguished for their high frequency-selective properties and much smaller size than analogs. It is established that a broad stop band, extending up to a sixfold central bandpass frequency, is determined by low unloaded Q of higher resonance mode and weak coupling of resonators in the pass band. It is shown for the first time that, as the spacing of interdigital stripe conductors decreases, the Q of higher resonance mode monotonically drops, while the Q value for the first operating mode remains high. A prototype fourth-order filter with a central frequency of 0.9 GHz manufactured on a ceramic substrate with dielectric permittivity ɛ = 80 has microstrip topology dimensions of 9.5 × 4.6 × 1 mm3. The electrodynamic 3D model simulations of the filter characteristics agree well with the results of measurements.

  9. The development of dairying in Europe: potential evidence from food residues on ceramics

    Directory of Open Access Journals (Sweden)

    Oliver E. Craig

    2002-12-01

    Full Text Available Providing evidence of dairying is crucial to the understanding of the development and intensification of Neolithic farming practices in Europe, beyond the early stages of domestication. Until recently, research in this field had been limited to traditional archaeological methods, such as the study of pottery styles, faunal remains and specialised material artefacts. Although suggestive, these methods are unable to provide direct evidence of dairying. Advances in biomolecular methods now allow the identification of remnants of dairy products on ceramic vessels and the application of these methods to Neolithic ceramic assemblages across Europe is underway. There is no doubt that these new methods offer much scope for investigating hypotheses such as the ‘secondary products revolution’, but there are limitations. The cost of analyses prohibits indiscriminate sampling and differential survival is likely to prevent direct comparison of samples from different sites. Only by incorporating these techniques within the wider frameworks of archaeological research may theories be properly tested. Approaches to achieve this goal are discussed.

  10. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  11. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Reis, A.S.; Oliveira, J.N.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2014-01-01

    The clay used in the manufacture of structural ceramic products must meet quality requirements that are influenced by their chemical, physical, mineralogical and microstructural characteristics, which control the ceramic properties of the final products. This paper aims to characterize the clay used in the manufacture of ceramic roof tiles and bricks. The clay was characterized through XRF, XRD, thermogravimetry and differential thermal analysis, Atterberg limits and particle size distribution. Specimens were shaped, dried at 110°C, and burned at 900 deg C in an industrial kiln. After that, they were submitted to tests of water absorption, apparent porosity, bulk density and flexural strength. The results show that the chemical composition of clay has significant amount of silica and alumina and adequate levels of kaolinite for use in structural ceramic. The ceramic properties evaluated in the specimens partially meet the requirements of the Brazilian standard-clays for structural ceramics. (author)

  12. Particulate hot gas stream cleanup technical issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the tenth in a series of quarterly reports describing the activities performed under Contract No. DE-AC21-94MC31160. Analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance address aspects of filter operation that are apparently linked to the characteristics of the collected ash or the performance of the ceramic bed filter elements. Task I is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APFS) and to relate these ash properties to the operation and performance of these filters. Task 2 concerns testing and failure analysis of ceramic filter elements. Under Task I during the past quarter, analyses were performed on a particulate sample from the Transport Reactor Demonstration Unit (TRDU) located at the University of North Dakota Energy and Environmental Research Center. Analyses are in progress on ash samples from the Advanced Particulate Filter (APF) at the Pressurized Fluidized-Bed Combustor (PFBC) that was in operation at Tidd and ash samples from the Pressurized Circulating Fluid Bed (PCFB) system located at Karhula, Finland. A site visit was made to the Power Systems Development Facility (PSDF) to collect ash samples from the filter vessel and to document the condition of the filter vessel with still photographs and videotape. Particulate samples obtained during this visit are currently being analyzed for entry into the Hot Gas Cleanup (HGCU) data base. Preparations are being made for a review meeting on ash bridging to be held at Department of Energy Federal Energy Technology Center - Morgantown (DOE/FETC-MGN) in the near future. Most work on Task 2 was on hold pending receipt of additional funds; however, creep testing of Schumacher FT20 continued. The creep tests on Schumacher FT20 specimens just recently ended and data analysis and comparisons to other data are ongoing. A summary and analysis of these creep results will be sent out shortly. Creep

  13. Beam control and diagnostic functions in the NIF transport spatial filter

    International Nuclear Information System (INIS)

    Holdener, F.R.; Ables, E.; Bliss, E.S.

    1996-10-01

    Beam control and diagnostic systems are required to align the National Ignition Facility (NIF) laser prior to a shot as well as to provide diagnostics on 192 beam lines at shot time. A design that allows each beam's large spatial filter lenses to also serve as objective lenses for beam control and diagnostic sensor packages helps to accomplish the task at a reasonable cost. However, this approach also causes a high concentration of small optics near the pinhole plane of the transport spatial filter (TSF) at the output of each beam. This paper describes the optomechanical design in and near the central vacuum vessel of the TSF

  14. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  15. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  16. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Science.gov (United States)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  17. Processing of porous zirconia ceramics by direct consolidation with starch

    International Nuclear Information System (INIS)

    Garrido, Liliana B; Albano, Maria P

    2008-01-01

    Porous ceramics are used especially for those environments with high temperatures, heavy wear and in a corrosive medium. Zirconium-based materials are useful for such applications as sensors, filters, support for catalytic reactions, porous components for sofc and in biomedical applications. A conventional method for producing porous ceramics consists of the addition and later decomposition by calcination (pyrolisis) of different organic materials that act as pore formers. Several wet processing possibilities have been developed. Among these is a technique of direct consolidation with starch. This process begins with the preparation of an aqueous suspension of the ceramic with the dispersants needed to stabilize it, to which the starch is added. After casting in a waterproof mold, the suspension thermally hardens into the desired shape. The dry compacts undergo the sintering cycle to obtain pieces almost in their final form. This study aims to optimize the processing of porous zirconium ceramics using starch as a pore and binder forming agent. Zirconium with 3% yttrium molar stabilized in tetragonal phase was used. The aqueous suspensions (52-55% vol) of the zirconium-starch mixtures with different compositions were stabilized with a commercial solution of ammonium polyacrylate as a dispersant and were hardened in plastic molds at 90 o C for 30 min. The influence of added volume of starch on the physical characteristics of the pieces in green state was established while maintaining the temperature, the gelling time and the conditions of constant drying. The sintering was carried out at 1000-1500 o C-2h. The characteristics of the sintered product were evaluated by measuring density, volumetric contraction, intrusion of Hg and the evolution of the crystalline phases by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microstructural properties of ceramic (pore volume, the relation between open and closed porosity, size distribution, morphology of

  18. Elasto-Plastic Stress Analysis in Rotating Disks and Pressure Vessels Made of Functionally Graded Materials

    Directory of Open Access Journals (Sweden)

    Amir T. Kalali

    Full Text Available Abstract A new elastio-plastic stress solution in axisymmetric problems (rotating disk, cylindrical and spherical vessel is presented. The rotating disk (cylindrical and spherical vessel was made of a ceramic/metal functionally graded material, i.e. a particle-reinforced composite. It was assumed that the material's plastic deformation follows an isotropic strain-hardening rule based on the von-Mises yield criterion. The mechanical properties of the graded material were modeled by the modified rule of mixtures. By assuming small strains, Hencky's stress-strain relation was used to obtain the governing differential equations for the plastic region. A numerical method for solving those differential equations was then proposed that enabled the prediction of stress state within the structure. Selected finite element results were also presented to establish supporting evidence for the validation of the proposed approach.

  19. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  20. Concept and construction process of the ceramic curtain of Vila-real Library

    Directory of Open Access Journals (Sweden)

    A. Peñín Llobell

    2016-12-01

    Full Text Available The construction of the Library of Vila-real, selected in 2012 in the VIII Latin American Biennial of Architecture and Urbanism, highlights the importance of collaboration with industry for the development and application of its outer membrane. The analysis of the construction process of the ceramic cylindrical curtain that defines it, performed by white glazed ceramic, 5 cm diameter and 7.5 m height, reveals this fact. The system builds an interstitial space, essential for its use and environmental integration. At the same time it links the building to both local industrial fabric, which aims to establish itself as one of its exponents, and to the Mediterranean culture of filters. The procedure followed is ascribed to the postartesanal and pragmatic perspective that beyond the modern heroes, introduced characters like Jean Prouvé and that today, we state, should find natural and legal channels for its development, on behalf of the progress of the construction sector.

  1. Results from Evaluation of Proposed ASME AG-1 Section FI Metal Media Filters - 13063

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, John A.; Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A. [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd Starkville, MS 39759 (United States)

    2013-07-01

    High efficiency particulate air (HEPA) filtration technology is commonly used in Department of Energy (DOE) facilities that require control of radioactive particulate matter (PM) emissions due to treatment or management of radioactive materials. Although HEPA technology typically makes use of glass fiber media, metal and ceramic media filters are also capable of filtering efficiencies beyond the required 99.97%. Sintered metal fiber filters are good candidates for use in DOE facilities due to their resistance to corrosive environments and resilience at high temperature and elevated levels of relative humidity. Their strength can protect them from high differential pressure or pressure spikes and allow for back pulse cleaning, extending filter lifetime. Use of these filters has the potential to reduce the cost of filtration in DOE facilities due to life cycle cost savings. ASME AG-1 section FI has not been approved due to a lack of protocols and performance criteria for qualifying section FI filters. The Institute for Clean Energy Technology (ICET) with the aid of the FI project team has developed a Section FI test stand and test plan capable of assisting in the qualification ASME AG-1 section FI filters. Testing done at ICET using the FI test stand evaluates resistance to rated air flow, test aerosol penetration and resistance to heated air of the section FI filters. Data collected during this testing consists of temperature, relative humidity, differential pressure, flow rate, upstream particle concentration, and downstream particle concentration. (authors)

  2. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon.

    Science.gov (United States)

    Bertin, Lorenzo; Lampis, Silvia; Todaro, Daniela; Scoma, Alberto; Vallini, Giovanni; Marchetti, Leonardo; Majone, Mauro; Fava, Fabio

    2010-08-01

    Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Influence of thermophoresis on particle removal in a moving granular bed filter and heat exchanger

    International Nuclear Information System (INIS)

    Rudnick, S.N.; First, M.W.; Price, J.M.

    1981-01-01

    Bench-scale investigations were made to determine the influence of thermophoresis on particle removal in a moving granular bed filter. A continuous flow of 2-mm diameter ceramic granules at ambient temperature entered the top of the filter and moved slowly downward under the influence of gravity countercurrent to the gas stream. At an inlet gas temperature of 240 0 C, gas mass velocity of 0.12 kg/(s.m 2 ), and granule velocities up to 0.015 cm/s, clean bed collection efficiency for a submicrometer sodium chloride aerosol was found to increase the more the gas was cooled, indicating that thermophoretic forces were playing a measurable role in particle collection

  4. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  5. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  6. Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy

    Science.gov (United States)

    Yu, H.; Barriga, S.; Agurto, C.; Zamora, G.; Bauman, W.; Soliz, P.

    2012-03-01

    Retinal vasculature is one of the most important anatomical structures in digital retinal photographs. Accurate segmentation of retinal blood vessels is an essential task in automated analysis of retinopathy. This paper presents a new and effective vessel segmentation algorithm that features computational simplicity and fast implementation. This method uses morphological pre-processing to decrease the disturbance of bright structures and lesions before vessel extraction. Next, a vessel probability map is generated by computing the eigenvalues of the second derivatives of Gaussian filtered image at multiple scales. Then, the second order local entropy thresholding is applied to segment the vessel map. Lastly, a rule-based decision step, which measures the geometric shape difference between vessels and lesions is applied to reduce false positives. The algorithm is evaluated on the low-resolution DRIVE and STARE databases and the publicly available high-resolution image database from Friedrich-Alexander University Erlangen-Nuremberg, Germany). The proposed method achieved comparable performance to state of the art unsupervised vessel segmentation methods with a competitive faster speed on the DRIVE and STARE databases. For the high resolution fundus image database, the proposed algorithm outperforms an existing approach both on performance and speed. The efficiency and robustness make the blood vessel segmentation method described here suitable for broad application in automated analysis of retinal images.

  7. The influence of ultrasound on wine and wine materials acidity during clarification process in tubular membrane filters

    Directory of Open Access Journals (Sweden)

    A. A. Ponedelchenko

    2016-01-01

    Full Text Available Researches on the experimental ultrasonic installation were carried out, using industrial equipment for bottling liquids and ultrasonic apparatus "Volna-M" UZTA-1/22-OM, for clarification and filtering of table wines by tangential microfiltration using membrane ceramic filtering elements with a pore size of 0.2 micron at a pressure of 0.5-2.0 bar. Membrane ultrafiltration upon application of ultrasound of 30-40 microns amplitude and a frequency of 20 kHz ± 1.65 Hz at high filter performance and work stability changes the quantitative content of the valuable wine components slightly. But much attention to the increase of titratable acidity and pH medium due to possible degradation and esterification intensification of higher acids and alcohols was paid. At the same time more intense and rich aroma and distinct flavor with berry notes appears in wine that along with the physical- and chemical indicators helped to improve organoleptic characteristics and to increase the tasting evaluation of wines. At the same time, the content of phenolic and nitrogen compounds is reduced resulting in wines stability to protein and colloidal opacification. It became possible to refuse multiple regeneration of ceramic filter elements for the  ecovery of their performance, as well as the use of preservatives and antiseptics at a high wines bottling stability. It is shown that the filtration with the dosing of ultrasound in the wine industry allows not only reducing the cost of consumables, equipment and removing some of the traditional processes, but also providing the cold sterilization of wine materials with an increase in their quality.

  8. Ceramic membrane technologies for gas separation

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Ciacchi, F.T.

    2000-01-01

    Solid state electrochemical cells based on oxygen-ion or proton conduction (pure ionic or mixed ionic/electronic conductors) allow selective transport of oxygen (oxygen-ion conducting materials) or hydrogen (for proton conducting materials) in the form of ionic flux at high temperatures. Thus these systems can act as filters for molecular oxygen or hydrogen and can be used for both generation or removal of these gases selectively. The usage of such devices are numerous including control of atmosphere in industrial environments to production of power and chemicals, in petroleum and medical industries, and in combustion processes. In this paper, a brief overview of the technology has been given and various doped materials for construction of such devices, such as zirconia, ceria, bismuth oxides or lanthanum gallates have been briefly reviewed. Copyright (2000) The Australian Ceramic Society

  9. Polar vessel hullform design based on the multi-objective optimization NSGA II

    Directory of Open Access Journals (Sweden)

    DUAN Fei

    2017-12-01

    Full Text Available [Objectives] With the increasing exploitation of the Arctic abundant oil and gas resources, a large number of ships which meet the polar navigational requirements are needed.[Methods] In this paper, the fast elitist Non-Dominated Sorting Genetic Algorithm (NSGA Ⅱ is applied to the hull optimization, and the multi-objective optimization method of polar vessel design is proposed. With the optimization goal of resistance and icebreaking resistance, filtering hull forms through the standard of polar vessel displacement and EEDI, fast ship hull optimization that satisfy the ice-ship dead weight and EEDI requirements has been achieved. Taking a 65 000 t shuttle tanker as an example, full parametric modeling method is adopted, the hull optimization of three different bow forms is conducted through the polar vessel multi-objective optimization method.[Results] The ship hull after optimization can satisfy the IA class navigation require, where the resistance in calm water decreases up to 12.94%, and the minimum propulsion power in ice field has a 27.36% reduction.[Conclusions] The feasibility and validity of the NSGA Ⅱ applying in polar vessel design is verified.

  10. Performance evaluation of 3-D enhancement filters for detection of lung cancer from 3-D chest X-ray CT images

    International Nuclear Information System (INIS)

    Shimizu, Akinobu; Hagai, Makoto; Toriwaki, Jun-ichiro; Hasegawa, Jun-ichi.

    1995-01-01

    This paper evaluates the performance of several three dimensional enhancement filters used in procedures for detecting lung cancer shadows from three dimensional (3D) chest X-ray CT images. Two dimensional enhancement filters such as Min-DD filter, Contrast filter and N-Quoit filter have been proposed for enhancing cancer shadows in conventional 2D X-ray images. In this paper, we extend each of these 2D filters to a 3D filter and evaluate its performance experimentally by using CT images with artificial and true lung cancer shadows. As a result, we find that these 3D filters are effective for determining the position of a lung cancer shadow in a 3D chest CT image, as compared with the simple procedure such as smoothing filter, and that the performance of these filters become lower in the hilar area due to the influence of the vessel shadows. (author)

  11. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  12. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  13. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  14. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  15. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  16. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  17. A Morphological Hessian Based Approach for Retinal Blood Vessels Segmentation and Denoising Using Region Based Otsu Thresholding.

    Directory of Open Access Journals (Sweden)

    Khan BahadarKhan

    Full Text Available Diabetic Retinopathy (DR harm retinal blood vessels in the eye causing visual deficiency. The appearance and structure of blood vessels in retinal images play an essential part in the diagnoses of an eye sicknesses. We proposed a less computational unsupervised automated technique with promising results for detection of retinal vasculature by using morphological hessian based approach and region based Otsu thresholding. Contrast Limited Adaptive Histogram Equalization (CLAHE and morphological filters have been used for enhancement and to remove low frequency noise or geometrical objects, respectively. The hessian matrix and eigenvalues approach used has been in a modified form at two different scales to extract wide and thin vessel enhanced images separately. Otsu thresholding has been further applied in a novel way to classify vessel and non-vessel pixels from both enhanced images. Finally, postprocessing steps has been used to eliminate the unwanted region/segment, non-vessel pixels, disease abnormalities and noise, to obtain a final segmented image. The proposed technique has been analyzed on the openly accessible DRIVE (Digital Retinal Images for Vessel Extraction and STARE (STructured Analysis of the REtina databases along with the ground truth data that has been precisely marked by the experts.

  18. Ceramic Filter for Small System Drinking Water Treatment: Evaluation of Membrane Pore Size and Importance of Integrity Monitoring

    Science.gov (United States)

    Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...

  19. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  20. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  1. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    Science.gov (United States)

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  2. IAE-adaptive Kalman filter for INS/GPS integrated navigation system

    Institute of Scientific and Technical Information of China (English)

    Bian Hongwei; Jin Zhihua; Tian Weifeng

    2006-01-01

    A marine INS/GPS adaptive navigation system is presented in this paper. GPS with two antenna providing vessel's altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.

  3. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    OpenAIRE

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis

  4. Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.

    Science.gov (United States)

    Dutta, S R; Passi, D; Singh, P; Bhuibhar, A

    2015-03-01

    Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.

  5. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  6. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Science.gov (United States)

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  7. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  8. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  9. Long-term durability testing of ceramic cross-flow filter. Final report, September 29, 1987--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, T.E.; Smeltzer, E.E.; Alvin, M.A.; Bachovchin, D.M.

    1993-08-01

    Long term durability testing of the cross flow filter is described. Two high temperature, high pressure test facilities were built and operated. The facilities were designed to simulate dirty gas environments typical of Pressurized Fluidized Bed Combustion (PFBC) and coal gasification. Details of the design and operation of the test facilities and filter testing results are described.

  10. Randomized clinical trial of implant-supported ceramic-ceramic and metal-ceramic fixed dental prostheses: preliminary results.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J

    2014-02-01

    The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0

  11. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  12. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  13. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  14. Study on severe fuel damage and in-vessel melt progression

    International Nuclear Information System (INIS)

    Kim, Hee Dong; Kim, Sang Baik; Lee, Gyu Jung

    1992-06-01

    In-vessel core melt progression describes the progression of the state of a reactor core from core uncovery up to reactor vessel melt through in uncovered accidents or through temperature stabilization in accidents recovered by core reflooding. Melt progression can be thought as two parts; early melt progression and late melt progression. Early phase of core melt progression includes the progression of core material melting and relocation, which mostly consist of metallic materials. On the other hand, the late phase of core melt progression involves ceramic material melt and relocation to the lower plenum and heat-up the reactor vessel lower head. A large number of information are available for the early melt progression through experiments such as SFD, DF, FLHT test and utilized in the severe accident analysis codes. However, understanding of the late phase melt progression phenomenology is based primary on TMI-2 core examinations and not much experimental information is available. Especilally, the great uncertainties exist in vessel failure mode, melt composition, mass, and temperature. Further research is planned to perform to reduce the uncertainties in understanding of core melt down accidents as parts of long term melt progression research program. A study on the core melt progression at KAERI has been being performed through the Severe Accident Research Program with USNRC. KAERI staff had participated in the PBF SFD experiments at INEL and analyses of experiments were performed using SCDAP code. Experiments of core melt program have not been carried out at KAERI yet. It is planned that further research on core melt down accidents will be performed, which is related to design of future generations of nuclear reactors as parts of long-term project for improvement of nuclear reactor safety. (Author)

  15. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.

    Science.gov (United States)

    Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín

    2017-12-01

    Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Primo vessel inside a lymph vessel emerging from a cancer tissue.

    Science.gov (United States)

    Lee, Sungwoo; Ryu, Yeonhee; Cha, Jinmyung; Lee, Jin-Kyu; Soh, Kwang-Sup; Kim, Sungchul; Lim, Jaekwan

    2012-10-01

    Primo vessels were observed inside the lymph vessels near the caudal vena cava of a rabbit and a rat and in the thoracic lymph duct of a mouse. In the current work we found a primo vessel inside the lymph vessel that came out from the tumor tissue of a mouse. A cancer model of a nude mouse was made with human lung cancer cell line NCI-H460. We injected fluorescent nanoparticles into the xenografted tumor tissue and studied their flow in blood, lymph, and primo vessels. Fluorescent nanoparticles flowed through the blood vessels quickly in few minutes, and but slowly in the lymph vessels. The bright fluorescent signals of nanoparticles disappeared within one hour in the blood vessels but remained much longer up to several hours in the case of lymph vessels. We found an exceptional case of lymph vessels that remained bright with fluorescence up to 24 hours. After detailed examination we found that the bright fluorescence was due to a putative primo vessel inside the lymph vessel. This rare observation is consistent with Bong-Han Kim's claim on the presence of a primo vascular system in lymph vessels. It provides a significant suggestion on the cancer metastasis through primo vessels and lymph vessels. Copyright © 2012. Published by Elsevier B.V.

  17. Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters

    Science.gov (United States)

    Yu, Huili; Zhang, Jieting

    2012-04-01

    In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.

  18. Mid-term results of the BIOLOX delta ceramic-on-ceramic total hip arthroplasty.

    Science.gov (United States)

    Lee, Y K; Ha, Y C; Yoo, J-I; Jo, W L; Kim, K-C; Koo, K H

    2017-06-01

    We conducted a prospective study of a delta ceramic total hip arthroplasty (THA) to determine the rate of ceramic fracture, to characterise post-operative noise, and to evaluate the mid-term results and survivorship. Between March 2009 and March 2011, 274 patients (310 hips) underwent cementless THA using a delta ceramic femoral head and liner. At each follow-up, clinical and radiological outcomes were recorded. A Kaplan-Meier analysis was undertaken to estimate survival. Four patients (four hips) died and 18 patients (20 hips) were lost to follow-up within five years. The remaining 252 patients (286 hips) were followed for a mean of 66.5 months (60 to 84). There were 144 men (166 hips) and 108 women (120 hips) with a mean age of 49.7 years (16 to 83) at surgery. The mean pre-operative Harris Hip Score of 47.1 points improved to 93.8 points at final follow-up. Six patients reported squeaking in seven hips; however, none were audible. Radiolucent lines involving Gruen zones one and/or seven were seen in 52 hips (18.2%). No hip had detectable wear, focal osteolysis or signs of loosening. One hip was revised because of fracture of the ceramic liner, which occurred due to an undetected malseating of the ceramic liner at the time of surgery. One hip was revised for a periprosthetic fracture of the femur, and one hip was treated for periprosthetic joint infection. The six-year survivorship with re-operation for any reason as the endpoint was 99.0% (95% confidence interval 97.8% to 100%). The rate of delta ceramic fracture was 0.3% (one of 286). While ceramic head fracture was dominant in previous ceramic-on-ceramic THA, fracture of the delta ceramic liner due to malseating is a concern. Cite this article: Bone Joint J 2017;99-B:741-8. ©2017 The British Editorial Society of Bone & Joint Surgery.

  19. Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review.

    Science.gov (United States)

    Gallo, Jiri; Goodman, Stuart Barry; Lostak, Jiri; Janout, Martin

    2012-09-01

    Ceramic on ceramic (COC) total hip arthroplasty (THA) was developed to reduce wear debris and accordingly, the occurrence of osteolysis and aseptic loosening especially in younger patients. Based on the excellent tribological behavior of current COC bearings and the relatively low biological activity of ceramic particles, significant improvement in survivorship of these implants is expected. We used manual search to identify all relevant studies reporting clinical data on COC THAs in PubMed. The objective was to determine whether current COC THA offers a better clinical outcome and survivorship than non-COC THA. Studies with early generation ceramic bearings yielded 68% to 84% mean survivorship at 20 years follow-up which is comparable with the survivorship of non-COC THAs. Studies on current ceramic bearings report a 10-year revision-free interval of 92% to 99%. These outcomes are comparable to the survivorship of the best non-COC THAs. However, there are still concerns regarding fracture of sandwich ceramic liners, squeaking, and impingement of the femoral neck on the rim of the ceramic liner leading to chipping, especially in younger and physically active patients. Current COC THA leads to equivalent but not improved survivorship at 10 years follow-up in comparison to the best non-COC THA. Based on this review, we recommend that surgeons weigh the potential advantages and disadvantages of current COC THA in comparison to other bearing surfaces when considering young very active patients who are candidates for THA.

  20. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  1. Ceramic transactions: Environmental and waste management issues in the ceramic industry. Volume 39

    International Nuclear Information System (INIS)

    Mellinger, G.B.

    1994-01-01

    A symposium on environmental and waste management issues in the ceramic industry took place in Cincinnati, Ohio, April 19-22, 1993. The symposium was held in conjunction with the 95th Annual Meeting of the American Ceramic Society and was sponsored by the Ceramic Manufacturing Council, Legislative and Regulatory Affairs Committee with the Glass and Optical Materials, Basic Science, Cements, Nuclear, Refractory Ceramics, Structural Clay Products, Whitewares, Design, Electronics, Engineering Ceramics, and Materials and Equipment Divisions. This volume documents several of the papers that were presented at the symposium. Papers presented in this volume are categorized under the following headings: vitrification of hazardous and mixed wastes; waste glass properties and microstructure; processing of nuclear waste disposal glasses; waste form qualification; glass dissolution: modeling and mechanisms; systems and field testing of waste forms

  2. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  3. Filtered atmospheric venting of light water reactor containments

    International Nuclear Information System (INIS)

    Hedgran, A.; Ahlstroem, P.E.; Nilsson, L.; Persson, Aa.

    1982-11-01

    The aim of filtered venting is to improve the function of the reactor containment in connection with very severe accidents. By equipping the containment with a safety valve for pressure relief and allowing the released gases to pass through an effective filter, it should be possible to achieve a considerable protective effect. The work has involved detailed studies of the core meltdown sequence, how the molten core material runs out of the reactor vessel, what effect it has on concrete and other structures and how final cooling of the molten core material takes place. On the basis of previous Swedish studies, the project has chosen to study a filter concept that consists of a gravel bed of large volume. This filter plant shall not only retain the radioactive particles that escape from the containment through the vent line, but shall also condense the accompanying steam. After the government decided in 1981 that Barsebaeck was to be equipped with filtered venting and issued specifications regarding its performance, the project aimed at obtaining results that could be used to design and verify a plant for filtered venting at the Barsebaeck nuclear power station. As far as the other Swedish nuclear power plants at Oskarshamn, Ringhals and Forsmark are concerned, the results are only applicable to a limited extent. Additional studies are required for these nuclear power plants before the value of filtered venting can be assessed. Based on the results of experiments and analyses, the project has made a safety analysis with Barsebaeck as a reference plant in order to study how the introduction of filtered venting affects the safety level at a station. In summary, the venting function appears to entail a not insignificant reduction of risks for boiling water reactors of the Barsebaeck type. For a number of types of such very severe core accident cases, the filter design studied ensures a substantial reduction of the releases. However it has not been possible within the

  4. Air-cleaning devices for vented filtered LMFBR containment

    International Nuclear Information System (INIS)

    Muhlestein, L.D.; Hilliard, R.K.

    1982-07-01

    An effort lasting several years is summarized which evaluated, developed and tested air cleaning devices for potential use in breeder reactor containment venting applications. State-of-technology evaluations were completed for both a hypothetical head release accident and a primary vessel melt-through accident. Commercially available systems or components were tested which included HEPA filters, sand and gravel beds, and aqueous scrubbers. Large-scale demonstration tests were completed and results are presented for two- and three-stage conventional aqueous scrubber systems; and for a newly developed passive, submerged gravel scrubber

  5. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  6. All-ceramic crowns: bonding or cementing?

    Science.gov (United States)

    Pospiech, Peter

    2002-12-01

    Despite the wide variety of all-ceramic systems available today, the majority of dental practitioners hesitate to recommend and insert all-ceramic crowns. This article regards the nature of the ceramic materials, the principles of bonding and adhesion, and the clinical problems of the acid-etch technique for crowns. Advantages and disadvantages are discussed, and the influences of different factors on the strength of all-ceramic crowns are presented. Finally, the conclusion is drawn that conventional cementing of all-ceramic crowns is possible when the specific properties of the ceramics are taken into consideration.

  7. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  8. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  9. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  10. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  11. Correlation analysis between ceramic insulator pollution and acoustic emissions

    Directory of Open Access Journals (Sweden)

    Benjamín Álvarez-Nasrallah

    2015-01-01

    Full Text Available Most of the studies related to insulator pollution are normally performed based on individual analysis among leakage current, relative humidity and equivalent salt deposit density (ESDD. This paper presents a correlation analysis between the leakage current and the acoustic emissions measured in a 230 kV electrical substations in the city of Barranquilla, Colombia. Furthermore, atmospheric variables were considered to develop a characterization model of the insulator contamination process. This model was used to demonstrate that noise emission levels are a reliable indicator to detect and characterize pollution on high voltage insulators. The correlation found amount the atmospheric, electrical and sound variables allowed to determine the relations for the maintenance of ceramic insulators in high-polluted areas. In this article, the results on the behavior of the leakage current in ceramic insulators and the sound produced with different atmospheric conditions are shown, which allow evaluating the best time to clean the insulator at the substation. Furthermore, by experimentation on site and using statistical models, the correlation between ambient variables and the leakage current of insulators in an electrical substation was obtained. Some of the problems that bring the external noise were overcome using multiple microphones and specialized software that enabled properly filter the sound and better measure the variables.

  12. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    Science.gov (United States)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  13. Positron annihilation in transparent ceramics

    Science.gov (United States)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  14. Positron annihilation in transparent ceramics

    International Nuclear Information System (INIS)

    Husband, P; Selim, F A; Bartošová, I; Slugeň, V

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics. (paper)

  15. Factors affecting continued use of ceramic water purifiers distributed to tsunami-affected communities in Sri Lanka.

    Science.gov (United States)

    Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D

    2012-11-01

    There is little information about continued use of point-of-use technologies after disaster relief efforts. After the 2004 tsunami, the Red Cross distributed ceramic water filters in Sri Lanka. This study determined factors associated with filter disuse and evaluate the quality of household drinking water. A cross-sectional survey of water sources and treatment, filter use and household characteristics was administered by in-person oral interview, and household water quality was tested. Multivariable logistic regression was used to model probability of filter non-use. At the time of survey, 24% of households (107/452) did not use filters; the most common reason given was breakage (42%). The most common household water sources were taps and wells. Wells were used by 45% of filter users and 28% of non-users. Of households with taps, 75% had source water Escherichia coli in the lowest World Health Organisation risk category (<1/100 ml), vs. only 30% of households reporting wells did. Tap households were approximately four times more likely to discontinue filter use than well households. After 2 years, 24% of households were non-users. The main factors were breakage and household water source; households with taps were more likely to stop use than households with wells. Tap water users also had higher-quality source water, suggesting that disuse is not necessarily negative and monitoring of water quality can aid decision-making about continued use. To promote continued use, disaster recovery filter distribution efforts must be joined with capacity building for long-term water monitoring, supply chains and local production. © 2012 Blackwell Publishing Ltd.

  16. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  17. Design of pore size of macroporous ceramic substrates

    International Nuclear Information System (INIS)

    Szewald, O.; Kotsis, I.

    2000-01-01

    A method has been developed for the design of macro-porous ceramic substrates. Based on geometrical and regression models detailed technology was worked out for producing these 100% open porous filters, which were made using quasi homo-disperse fractions of corundum of diameters of several tens and hundreds microns and glassy binding material. Axial pressing was used as a forming process. Pore networks with size distribution that can be defined by a curve having one maximum were provided applying the above technology. Based on geometrical considerations and measurements it was proved that these maximums are at characteristic pore sizes that depend only on characteristic size of the original grain fractions and on the extent of the axial forming pressure. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  18. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  19. The mid-term efficacy and safety of a permanent nitinol IVC filter (TrapEase)

    International Nuclear Information System (INIS)

    Liu, Wei Chiang; Do, Young Soo; Choo, Sung Wook; Kim, Dong Ik; Kim, Young Wook; Kim, Duk Kyung; Shin, Sung Wook; Park, Kwang Bo; Jeon, Yong Hwan; Choo, In Wook

    2005-01-01

    1) To evaluate the mid-term efficacy and safety of a permanent nitinol inferior vena cava (IVC) filter; 2) to evaluate filter effectiveness, filter stability and caval occlusion. A prospective evaluation of the TrapEase IVC filter was performed on 42 patients (eight men, 34 women) ranging in age from 22 to 78 years (mean age 66 years). All patients were ill with a high risk of pulmonary embolism (PE). Indications for filter placement were: 1) deep vein thrombosis with recurrent thromboembolism; 2) and/or free-floating thrombus with contraindication to anticoagulation; and 3) complications in achieving adequate anticoagulation. Follow-up evaluations (mean: 15.4 months, range: 2 to 28 months) were performed at 6- and 12-month intervals after the procedure and included clinical histories, chart reviews, plain film, Doppler ultrasounds, and contrasted abdominal CT scans. In follow-up evaluations, the data analysis revealed no cases of symptomatic PE. There were no cases of filter migration, insertion site thrombosis, filter fracture, or vessel wall perforation. During the study, there was one case of filter thrombosis; early symptomatic thrombosis that was successfully treated in the hospital. Of the 42 subjects, eight dead. These deaths were not related to the filter device or the implantation procedure, but to the underlying disease. This study demonstrates that the TrapEase permanent IVC filter is a safe and an effective device with low complication rates and is best used in patients with thromboembolic disease with a high risk of PE

  20. System on Package (SoP) Millimeter Wave Filters for 5G Applications

    KAUST Repository

    Showail, Jameel

    2018-05-01

    Bandpass filters are an essential component of wireless communication systems that only transmits frequencies corresponding to the communication band and rejects all other frequencies. As the deployment of 5G draws nearer, first deployments are expected in 2020 [1], the need for viable filters at the new frequency bands becomes more imminent. Size and performance are two critical considerations for a filter that will be used in emerging mobile communication applications. The high frequency of 5G communication, 28 GHz as opposed to sub 6 GHz for nearly all previous communication protocols, means that previously utilized lumped component based solutions cannot be implemented since they are ill-suited for mm-wave applications. The focus of this work is the miniaturization of a high-performance filter. The Substrate Integrated Waveguide (SIW) is a high performance and promising structure and Low Temperature Co-Fired Ceramic (LTCC) is a high-performance material that both can operate at higher frequencies than the technologies used for previous telecommunication generations. To miniaturize the structure, a compact folded four-cavity SIW filter is designed, implemented and tested. The feeding structure is integrated into the filter to exploit the System on Package (SoP) attributes of LTCC and further reduce the total area of the filter individually and holistically when looking at the final integrated system. Two unique three dimensional (3D) integrated SoP LTCC two-stage SIW single cavity filters and one unique four-cavity filter all with embedded planar resonators are designed, fabricated and tested. The embedded resonators create a two-stage effect in a single cavity filter. The better single cavity design provides a 15% fractional bandwidth at a center frequency of 28.12 GHz, and with an insertion loss of -0.53 dB. The fabricated four-cavity filter has a 3-dB bandwidth of .98GHz centered at 27.465 GHz, and with an insertion loss of -2.66 dB. The designs presented

  1. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  2. Characterization and evaluation of ceramic properties of clay used in structural ceramics

    International Nuclear Information System (INIS)

    Savazzini-Reis, A.; Della-Sagrillo, V.P.; Valenzuela-Diaz, F.R.

    2016-01-01

    The Brazilian red ceramic industry monthly consumes about 10.3 million tons of clay, its main raw material. In most potteries, characterization of the clay is made empirically, which can result in tiles and blocks not according to standards. This sense, this paper aims to characterize clays used in the manufacturing of red ceramic products in factory located in Colatina-ES, which appears as a ceramic pole with about twenty small and midsize industries. The clays were characterized by: Xray fluorescence, X-ray diffraction, thermal analysis (TG/DSC), granulometry and Atterberg limits. Specimens of clay and mixture containing four clays were shaped. Specimens were shaped, dried at 110°C, and burned in a kiln for 24 h. The ceramics and mechanical characteristics were evaluated: flexural strength, water absorption, apparent porosity, apparent specific mass and shrinkage by drying and firing. The characterization showed that kaolinitic clay presents high plasticity, but high porosity. The mixture formed by the four clays does not meet the requirements of the Brazilian standard clays for red ceramic. (author)

  3. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  4. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  5. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  6. Producing ceramic laminate composites by EPD

    International Nuclear Information System (INIS)

    Nicholson, P.S.; Sarkar, P.; Datta, S.

    1996-01-01

    The search for tough structural ceramics to operate at high temperatures in hostile environments has led to the development of ceramic composites. This class of material includes laminar ceramic-ceramic composites, continuous-fiber-reinforced ceramic composites and functionally graded materials. The present authors developed electrophoretic deposition (EPD) to synthesize lamellar, fiber-reinforced and functionally graded composites. This paper briefly describes the synthesis and characterization of these EPD composites and introduces a novel class of lamellar composites with nonplanar layers. The synthesis of the latter demonstrates the facility of the EPD process for the synthesis of ceramic composites. The process is totally controllable via suspension concentration, deposition current, voltage and time

  7. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  8. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  9. Changes in the decontamination factor of cesium iodide on evaporation of a scrubbing solution in the Filtered Containment Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Ha, Kwang Soon; Kim, Sungil; Cho, Song-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    When the pressure in the containment building approaches a setting value, the FCVS(Filtered Containment Venting System) operates. The amount of steam and gas mixtures generated during a severe accident can be released into the FCVS. Non-condensable gases and fine aerosols can pass a scrubbing solution and the filters in the FCVS vessel. The decontaminated gases are finally discharged from the FCVS to the outside environment. Previous study observed that a scrubbing solution in the FCVS vessel was constantly evaporating owing to high-temperature steam released continuously from the containment building. A scrubbing solution in the FCVS vessel was completely evaporated at about 31 hours after the FCVS operation. Pool evaporation in the FCVS vessel can negatively affect the decontamination feature of the FCVS because it reduces the scrubbing depth for fission products in an aerosol form. This study carefully evaluated the decontamination factor of metal iodide aerosols especially cesium iodide (CsI), on a scrubbing solution in the FCVS. This paper summarizes the calculated results on the decontamination factor of CsI in the FCVS vessel, which was presented at the international OECD-NEA/NUGENIA-SARNET workshop. This study estimated the decontamination factor of CsI on a scrubbing solution in the FCVS. The MELCOR computer code simulated that an SBO occurred in the OPR 1000. The FCVS consists of a cylindrical vessel with a 3 m diameter and 6.5 m height, and it includes a scrubbing solution of 21 tons. Accumulated mass of CsI aerosol was calculated in a scrubbing solution and the atmosphere in the FCVS vessel and the outside environment. In the early FCVS operation, the decontamination factor of CsI aerosol rapidly increased owing to steam condensation in a scrubbing solution. When the temperature of a pool approached its saturation temperature, the decontamination factor of CsI aerosol started to decrease.

  10. Hydrodynamic calculation of a filter sand bed type used in the containment venting systems

    International Nuclear Information System (INIS)

    Cuevas V, D.; Sainz M, E.; Ortiz V, J.

    2015-09-01

    The filtered venting of the containment has been adopted in European countries to mitigate the consequences of excess pressure containment during a severe accident. When venting has taken place, the fission products are released directly into the environment, unless a filter on the same path is placed, so that various types of filters are used to trap the fission products. The venting filters of the containment currently installed use different filtration technologies that involve more than one medium. Those using water as the first stage of filtration are called wet systems and are equipped with additional steps to remove water drops and fine aerosols emissions. And even they may also be equipped with an element containing certain absorption means for the filtration of gaseous iodine species. Other designs based on filtration of deep bed as the primary retention step; called dry filters, use filtration media of metal fiber, ceramic or sand to trap aerosols. This paper evaluates the hydraulic characteristics of the filter sand bed type designed by EDF as a candidate to be installed in the containment of BWR Mark II (type of primary containment of the nuclear power plant of Laguna Verde). The evaluation of filter sand bed type was performed using the software package of open source OpenFOAM. Models of each zone of the filtered device were generated and through a series of parametric calculations of computational fluid mechanics relevant hydrodynamic characteristics of the device were obtained, such as pressure drops against mass flow rate and pressure fields and speed at different operating conditions. On the other hand, the model validation of the sand bed filter when comparing the results of experimental tests on a sand column of PITEAS program (1985-1986) against OpenFOAM simulation was realized. The results are very close to those obtained experimentally. (Author)

  11. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  12. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    Science.gov (United States)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  13. Polymer-ceramic piezoelectric composites (PZT)

    International Nuclear Information System (INIS)

    Bassora, L.A.; Eiras, J.A.

    1992-01-01

    Polymer-ceramic piezoelectric transducers, with 1-3 of connectivity were prepared with different concentration of ceramic material. Piezoelectric composites, with equal electromechanical coupling factor and acoustic impedance of one third from that ceramic transducer, were obtained when the fractionary volume of PZT reach 30%. (C.G.C.)

  14. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    Science.gov (United States)

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-02-27

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  15. Development of an elution device for ViroCap virus filters.

    Science.gov (United States)

    Fagnant, Christine Susan; Toles, Matthew; Zhou, Nicolette Angela; Powell, Jacob; Adolphsen, John; Guan, Yifei; Ockerman, Byron; Shirai, Jeffry Hiroshi; Boyle, David S; Novosselov, Igor; Meschke, John Scott

    2017-10-19

    Environmental surveillance of waterborne pathogens is vital for monitoring the spread of diseases, and electropositive filters are frequently used for sampling wastewater and wastewater-impacted surface water. Viruses adsorbed to electropositive filters require elution prior to detection or quantification. Elution is typically facilitated by a peristaltic pump, although this requires a significant startup cost and does not include biosafety or cross-contamination considerations. These factors may pose a barrier for low-resource laboratories that aim to conduct environmental surveillance of viruses. The objective of this study was to develop a biologically enclosed, manually powered, low-cost device for effectively eluting from electropositive ViroCap™ virus filters. The elution device described here utilizes a non-electric bilge pump, instead of an electric peristaltic pump or a positive pressure vessel. The elution device also fully encloses liquids and aerosols that could contain biological organisms, thereby increasing biosafety. Moreover, all elution device components that are used in the biosafety cabinet are autoclavable, reducing cross-contamination potential. This device reduces costs of materials while maintaining convenience in terms of size and weight. With this new device, there is little sample volume loss due to device inefficiency, similar virus yields were demonstrated during seeded studies with poliovirus type 1, and the time to elute filters is similar to that required with the peristaltic pump. The efforts described here resulted in a novel, low-cost, manually powered elution device that can facilitate environmental surveillance of pathogens through effective virus recovery from ViroCap filters while maintaining the potential for adaptability to other cartridge filters.

  16. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  17. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  18. Radiopaque Strontium Fluoroapatite Glass-Ceramics

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2–Al2O3–Y2O3–SrO–Na2O–K2O/Rb2O/Cs2O–P2O5–F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F – leucite, KAlSi2O6, (b) Sr5(PO4)3F – leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F – pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal

  19. Radiopaque Strontium Fluoroapatite Glass-Ceramics.

    Science.gov (United States)

    Höland, Wolfram; Schweiger, Marcel; Dittmer, Marc; Ritzberger, Christian

    2015-01-01

    The controlled precipitation of strontium fluoroapatite crystals was studied in four base glass compositions derived from the SiO2-Al2O3-Y2O3-SrO-Na2O-K2O/Rb2O/Cs2O-P2O5-F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: (a) Sr5(PO4)3F - leucite, KAlSi2O6, (b) Sr5(PO4)3F - leucite, KAlSi2O6, and nano-sized NaSrPO4, (c) Sr5(PO4)3F - pollucite, CsAlSi2O6, and nano-sized NaSrPO4, and (d) Sr5(PO4)3F - Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4. The proof of crystal phase formation was possible by X-ray diffraction. The microstructures, which were studied using scanning electron microscopy, demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needle-like morphology. The study of the crystal growth of needle-like Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism. The formation of leucite, pollucite, and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite - pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal expansion (CTE). These

  20. Radiopaque strontium fluoroapatite glass-ceramics

    Directory of Open Access Journals (Sweden)

    Wolfram eHöland

    2015-10-01

    Full Text Available The controlled precipitation of strontium fluoroapatite crystals, was studied in four base glass compositions derived from the SiO2 – Al2O3 – Y2O3 – SrO – Na2O – K2O/Rb2O/Cs2O – P2O5 – F system. The crystal phase formation of these glasses and the main properties of the glass-ceramics, such as thermal and optical properties and radiopacity were compared with a fifth, a reference glass-ceramic. The reference glass-ceramic was characterized as Ca-fluoroapatite glass-ceramic. The four strontium fluoroapatite glass-ceramics showed the following crystal phases: a Sr5(PO43F – leucite, KAlSi2O6 , b Sr5(PO43F – leucite, KAlSi2O6, and nano-sized NaSrPO4 c Sr5(PO43F – pollucite, CsAlSiO4 , and nano-sized NaSrPO4, d Sr5(PO43F – Rb-leucite, RbAlSi2O6, and nano-sized NaSrPO4.The proof of crystal phase formation was possible by X-ray diffraction (XRD. The microstructures, which were studied using scanning electron microscopy (SEM demonstrated a uniform distribution of the crystals in the glass matrix. The Sr-fluoroapatites were precipitated based on an internal crystallization process, and the crystals demonstrated a needlelike morphology. The study of the crystal growth of needlelike Sr-fluoroapatites gave a clear evidence of an Ostwald ripening mechanism.The formation of leucite, pollucite and Rb-leucite was based on a surface crystallization mechanism. Therefore, a twofold crystallization mechanism was successfully applied to develop these types of glass-ceramics. The main focus of this study was the controlled development of glass-ceramics exhibiting high radiopacity in comparison to the reference glass-ceramic. This goal could be achieved with all four glass-ceramics with the preferred development of the Sr-fluoroapatite – pollucite-type glass-ceramic. In addition to this main development, it was possible to control the thermal properties. Especially the Rb-leucite containing glass-ceramic showed the highest coefficient of thermal