WorldWideScience

Sample records for filter vessel ceramic

  1. Thermal and structural analysis of a filter vessel ceramic tubesheet

    Energy Technology Data Exchange (ETDEWEB)

    Mallett, R.H. [Mallett Technology, Inc., Research Triangle Park, NC (United States); Swindeman, R.W. [Oak Ridge National Lab., TN (United States); Zievers, J.F. [Industrial Filter & Pump Mfg. Co., Cicero, IL (United States)

    1995-08-01

    A ceramic tubesheet assembly for a hot gas filter vessel is analyzed using the finite element method to determine stresses under differential pressure loading. The stresses include local concentration effects. Selection of the stress measures for evaluation of structural integrity is discussed. Specification of stress limits based upon limited data is considered. Stress results from this ongoing design analysis technology project are shown for one design concept.

  2. Olivine, dolomite and ceramic filters in one vessel to produce clean gas from biomass.

    Science.gov (United States)

    Rapagnà, Sergio; Gallucci, Katia; Foscolo, Pier Ugo

    2017-07-27

    Heavy organic compounds produced during almond shells gasification in a steam and/or air atmosphere, usually called tar, are drastically reduced in the product gas by using simultaneously in one vessel a ceramic filter placed in the freeboard and a mixture of olivine and dolomite particles in the fluidized bed of the gasifier. The content of tar in the product gas during a reference gasification test with air, in presence of fresh olivine particles only, was 8600mg/Nm(3) of dry gas. By gasifying biomass with steam at the same temperature level of 820°C in a bed of olivine and dolomite (20% by weight), and in the presence of a catalytic ceramic filter inserted in the freeboard of the fluidized bed gasifier, the level of tar was brought down to 57mg/Nm(3) of dry producct gas, with a decrease of more than two orders of magnitude. Copyright © 2017. Published by Elsevier Ltd.

  3. 多管陶瓷对过滤器内耦合效应数值模拟%Numerical Investigation of Coupling Effect in Multipipe Ceramic Filter Vessel

    Institute of Scientific and Technical Information of China (English)

    李海霞; 姬忠礼; 吴小林; CHOI Joo-Hong

    2008-01-01

    The Reynolds stress transport model and the Eulerian two-fluid model provided by the FLUENT code were applied to evaluate the gas-particle two-phase flow in the ceramic filter vessel.The ceramic filter vessel contains six candle filters.which are arranged in the form of equilateral hexagon.The variation of the areal density of the filter cake during the filtration and the back.pulse process were analyzed.The coupling effect between filters.gas and solid,filtration and pulse cleaning process were investigated,respectively.The numerical results show a good approach to predict the particle distribution in the vessel and the particle deposition on the filter element.This study provides the base for the intensive study on the analysis of the gas-particle flow in the filter vessel.

  4. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  5. Assessment of ceramic membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H. [and others

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  6. Ceramic HEPA Filter Program

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  7. Properties of ceramic candle filters

    Energy Technology Data Exchange (ETDEWEB)

    Pontius, D.H.

    1995-06-01

    The mechanical integrity of ceramic filter elements is a key issue for hot gas cleanup systems. To meet the demands of the advanced power systems, the filter components must sustain the thermal stresses of normal operations (pulse cleaning), of start-up and shut-down conditions, and of unanticipated process upsets such as excessive ash accumulation without catastrophic failure. They must also survive the various mechanical loads associated with handling and assembly, normal operation, and process upsets. For near-term filter systems, these elements must survive at operating temperatures of 1650{degrees}F for three years.

  8. Lightweight ceramic filter components: Evaluation and application

    Energy Technology Data Exchange (ETDEWEB)

    Eggerstedt, P.M.

    1995-11-01

    Ceramic candle filtration is an attractive technology for particulate removal at high temperatures. The primary objective of this SBIR research program is to increase the performance, durability, and corrosion resistance of lightweight filter candles and filter tubesheet components (Fibrosic{trademark}), fabricated from vacuum formed chopped ceramic fiber (VFCCF), for use in advanced coal utilization applications. Phase 1 results proved that significant gains in material strength and particle retentivity are possible by treatment of VFCCF materials with colloidal ceramic oxides. Phase 2 effort will show how these treated materials tolerate high temperature and vapor-phase alkali species, on a long-term basis. With good durability and corrosion resistance, high temperature capability, and a low installed and replacement cost, these novel materials will help promote commercial acceptance of ceramic candle filter technology, as well as increase the efficiency and reliability of coal utilization processes in general.

  9. Unsupervised Retinal Vessel Segmentation Using Combined Filters.

    Directory of Open Access Journals (Sweden)

    Wendeson S Oliveira

    Full Text Available Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods.

  10. Unsupervised Retinal Vessel Segmentation Using Combined Filters.

    Science.gov (United States)

    Oliveira, Wendeson S; Teixeira, Joyce Vitor; Ren, Tsang Ing; Cavalcanti, George D C; Sijbers, Jan

    2016-01-01

    Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods.

  11. Three—Dimensional Flow Characteristics in One Ceramic Candle Filter

    Institute of Scientific and Technical Information of China (English)

    TaewonSeo; KihyunKeum; 等

    1999-01-01

    The objective of this study is to characterize the three-dimensional fluid flow in the vessel containing one ceramic candle filter.The three-dimensional governing equations are formulated in this study and the turbulent κ-ε model is adopted for the numerical computation.It is found that the viscous force is dominant in the porous region with compared to inertia force.Pressue decreases linearly when the flow passing through the porous medium.When the face velocity is 0.03 m/s,the pressure drop is about 350Pa.It has also been found that the fluid with the spiral motion to be sunk into the filter in the vessel.

  12. FILTER COMPONENT ASSESSMENT--CERAMIC CANDLES--

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Alvin

    2004-04-23

    Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on development of hot gas filter systems as an enabling technology for advanced coal and biomass-based gas turbine power generation applications. SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report summarizes the results of SWPC's filter component assessment efforts, identifying the performance and stability of porous monolithic, fiber reinforced, and filament wound ceramic hot gas candle filters, potentially for {ge}3 years of viable pressurized fluidized-bed combustion (PFBC) service operating life.

  13. Characterization and Failure Analysis of Ceramic Filters Utilized for Emission Control Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Mei; Jianren Zhou; Ziaul Huque

    1998-03-01

    Advanced integrated gasification combined cycle (IGCC) and pressurized fluidized bed combustion (PFBC) power system requires both hot gas desulfurization and particulate filtration to improve system thermal efficiency and overall performance. Therefore, effective high temperature ceramic filters are indispensable key component in both of the advanced IGCC and PFBC coal based power systems to perform hot gas cleanup work. To meet the environmental particulate emission requirements and improve thermal efficiency, ceramic filters are mainly utilized to cleanup the hot gas particulate to protect downstream heat exchanger and gas turbine components from fouling and corrosion. The mechanical integrity of ceramic filters and an efficient dust cake removal system are the key issues for hot gas cleanup systems. The filters must survive combined stresses due to mechanical, thermal, chemical and steam attack throughout normal operations (cold back pulse cleaning jets), unexpected excessive ash accumulation, and the start up and shut down conditions. To evaluate the design and performance of ceramic filters, different long term filter testing programs were conducted. To fulfill this purpose, two Advanced Particle Filter (APF) systems were complete at Tidd PFBC Demonstration Plant, in Brilliant, Ohio in late 1990 as part of the Department of Energy's (DOE) Clean Coal Technology Program. But the most undesirable thing ever happened was the sudden functional and physical failures of filters prior to its designed life time. In Tidd APF filter vessel, twenty eight (28) filters failed one time. Significant research effort has been carried out to find out the causes that led to the early failure of filters. In this work, the studies are emphasized on the possible failure causes analysis of rigid ceramic candle filters. The objectives of this program were to provide an systematic study on the characterization of filters, material laboratory analysis on filter micro-structure, the

  14. Liquid Permeability of Ceramic Foam Filters

    OpenAIRE

    Zhang, Kexu

    2012-01-01

    This project is in support of the PhD project: ‘Removal of Inclusions from Liquid Aluminium using Electromagnetically Modified Filtration’. The purpose of this project was to measure the tortuosity, and permeability of ~50mm thick: 30, 40, 50 and 80 pores per inch (ppi) commercial alumina ceramic foam filters (CFFs). Measurements have been taken of: cell (pore), window and strut sizes, porosity, tortuosity and liquid permeability. Water velocity from ~0.015-0.77 m/s have been used ...

  15. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  16. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, David A. (Clifton Park, NY); Bacchi, David P. (Schenectady, NY); Connors, Timothy F. (Watervliet, NY); Collins, III, Edwin L. (Albany, NY)

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  17. Nondestructive Evaluation of Ceramic Candle Filters Using Vibration Response

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Roger H. L.; Kiriakidis, Alejandro C.; Peng, Steve W.

    1997-07-01

    This study aims at the development of an effective nondestructive evaluation technique to predict the remaining useful life of a ceramic candle filter during a power plant's annual maintenance shutdown. The objective of the present on-going study is to establish the vibration signatures of ceramic candle filters at varying degradation levels due to different operating hours, and to study the various factors involving the establishment of the signatures.

  18. Preparation and Application of New Porous Environmental Ceramics Filter Medium

    Institute of Scientific and Technical Information of China (English)

    LI Meng; WU Jianfeng; JIN Jianhua; LIU Xinming

    2005-01-01

    A new kind of environmental ceramics medium which was made of industrial solid wastes discharged by Shandong Alum Corporation has been used in the process of drinking water treatment. New techniques were introduced to ensure its remarkable advantages such as high porosity and strength. The results of practical application show that this sort of filter medium has shorter filtration run, shorter mature period and higher filter deposit capability compared with traditional sand filter medium. Moreover, up to 25%- 30% of the daily running costs are expected to be reduced by using this ceramics medium.

  19. Hot gas clean-up with ceramic filter elements

    Energy Technology Data Exchange (ETDEWEB)

    Christ, A.; Gross, R.; Renz, U. [Rheinisch-Westfaelische Technische Hochschule, Aachen (Germany). Lehrstuhl fuer Waermeuebertragung und Klimatechnik

    1998-12-31

    Hot gas cleanup is necessary during the combined cycle combustion of coal, ceramic filters are frequently used for filtration. Pressure and velocity measurements inside the filter elements during pulse cleaning of a single ceramic candle filter element were carried out. The experimental set-up is described and the results for filter element cleaning at {var_theta} = 25,500 and 900{degree}C and cleaning pressures of P{sub B} = 1.4, 1.9 and 2.8 bar are presented and discussed. Numerical simulations of filter element cleaning for the experimental conditions are presented and discussed as well. Regarding the good agreement of experimental results with numerical predictions it is proven that numerical simulations of the back-pulse cleaning should be employed as design tool for filter cleaning systems. 32 figs., 2 tabs.

  20. Removing Pathogens Using Nano-Ceramic-Fiber Filters

    Science.gov (United States)

    Tepper, Frederick; Kaledin, Leonid

    2005-01-01

    A nano-aluminum-oxide fiber of only 2 nanometers in diameter was used to develop a ceramic-fiber filter. The fibers are electropositive and, when formulated into a filter material (NanoCeram(TradeMark)), would attract electro-negative particles such as bacteria and viruses. The ability to detect and then remove viruses as well as bacteria is of concern in space cabins since they may be carried onboard by space crews. Moreover, an improved filter was desired that would polish the effluent from condensed moisture and wastewater, producing potable drinking water. A laboratory- size filter was developed that was capable of removing greater than 99.9999 percent of bacteria and virus. Such a removal was achieved at flow rates hundreds of times greater than those through ultraporous membranes that remove particles by sieving. Because the pore size of the new filter was rather large as compared to ultraporous membranes, it was found to be more resistant to clogging. Additionally, a full-size cartridge is being developed that is capable of serving a full space crew. During this ongoing effort, research demonstrated that the filter media was a very efficient adsorbent for DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and endotoxins. Since the adsorption is based on the charge of the macromolecules, there is also a potential for separating proteins and other particulates on the basis of their charge differences. The separation of specific proteins is a major new thrust of biotechnology. The principal application of NanoCeram filters is based on their ability to remove viruses from water. The removal of more than 99.9999 percent of viruses was achieved by a NanoCeram polishing filter added to the effluent of an existing filtration device. NanoCeram is commercially available in laboratory-size filter discs and in the form of a syringe filter. The unique characteristic of the filter can be demonstrated by its ability to remove particulate dyes such as Metanyl yellow. Its

  1. Segmentation of Vessels by Morphological Filters and Dynamic Thresholding

    Institute of Scientific and Technical Information of China (English)

    YUAN Hui-jing; XIAO Jie; WANG Yong-tian; LIU Yue

    2006-01-01

    A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image by using morphological operators. The second is to segment vessels by dynamic thresholding combined with global thresholding based on the properties of DSA images. Artificial images and actual images have been tested. Experiment results show that the proposed method is efficient and is of great potential for the segmentation of vessels in medical images.

  2. The transition to farming and the ceramic trajectories in Western Eurasia. From ceramic figurines to vessels

    Directory of Open Access Journals (Sweden)

    Mihael Budja

    2006-12-01

    Full Text Available In Eurasia the invention of ceramic technology and production of fired-clay vessels has not necessarily been related to the dynamics of the transition to farming. The invention of ceramic technology in Europe was associated with female and animal figurine making in Gravettian technocomplex. The fired-clay vessels occurred first in hunter-gatherer contexts in Eastern Eurasia a millennia before the agriculture. The adoption of pottery making in Levant seems to correlate with the collapse of the ‘ritual economy’, social decentralisation and community fragmentation in the Levantine Pre-Pottery Neolithic. In South-eastern Europe the adoption of pottery making was closely associated with social, symbolic and ritual hunter-gatherers’ practices.

  3. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.

  4. Numerical Study of the Effects of the Face Velocity on Ceramic Filter

    Institute of Scientific and Technical Information of China (English)

    Seo,Taewon

    1998-01-01

    Time-averaged explicit Navier-Stokes equations with the modified Darcy's law for the three-dimensional cylindrical flow field were formulated to the problem.Numerical investigation of the effects of the face velocity on ceramic candle filter was executed in three-dimensional turbulent flow field.It is found that the flow in the vessel is pushed toward the filter region by the pressure difference between inside and outside of the filter due to the viscosity and inertial resistance.It is also found that the pressure drop is directly proportional to the flow rate and the slope of the pressure drop will be mitigated when the thickness of the filter cake(δ)is larger than 10mm.

  5. Fracture behavior of advanced ceramic hot gas filters: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-03-01

    This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

  6. Ceramic Hot Gas Filter with Integrated Failsafe System

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, S.; Haag, W.; Walch, A.; Scheibner, B.; Mai, R.; Leibold, H.; Seifert, H.

    2002-09-18

    In order to integrate a failsafe system and to improve the cleaning intensity a new cleaning method was recently developed, the CPP (coupled pressure pulse) cleaning (Heidenreich et al. 2001). For the CPP method the cleaning system is directly coupled with the filter candles. One feature of this new technique is that the cleaning gas pressure exceeds the system pressure only by 0.05 to 0.1 MPa, whereas in case of conventional jet pulse systems two times the system pressure (at least 0.6 MPa) is standard. The key advantage of the coupled pressure pulse cleaning is that a safety filter for each filter candle can be integrated in the clean gas side of the filter. Thus, a candle failure is not longer a serious problem. The integrated safety filter enables the operation of the filter system also in case a filter candle breaks. This increases the availability of the filter and prevents an unscheduled costly shut-down of the system. In this paper the design of the ceramic filter wit h the failsafe system and the CPP cleaning will be described. The new developed safety filter elements, their pressure drop and their filtration and clogging behavior will be shown. Tests of single system components, of the whole filter system and first experiences of operating this system will be reported.

  7. Vessel extraction using the Buckmaster-Airy filter

    Science.gov (United States)

    Sanchez, Valentina

    2016-05-01

    A new and powerful technique for vessel extraction from biomedical images using the so called Buckmaster- Airy Filter is designed, prototyped and tested. The design, the prototyping and the testing were performed using computer algebra software, specifically the Maple package ImageTools. Some preliminary experiments were performed ant the results were excellent. Our new technique is based on partial differential equations.. Specifically two dimensional Airy diffusion equation and the two dimensional Buckmaster equation were used for designing the new Buckmaster-Airy Filter. Such new filter is able to enhance the quality of an image, producing simultaneously noise elimination, but without altering the edges of the image. The new Bukmaster-Airy filter is applied to the target image via discrete convolution. The results of some experiments of vessel extraction will be presented; and some lines for future research such as the possible implementation of the Buckmaster-Airy Filter as a new plugging for the program ImageJ, will be proposed.

  8. Cast Steel Filtration Trials Using Ceramic-Carbon Filters

    Directory of Open Access Journals (Sweden)

    Lipowska B.

    2014-12-01

    Full Text Available Trials of cast steel filtration using two types of newly-developed foam filters in which carbon was the phase binding ceramic particles have been conducted. In one of the filters the source of carbon was flake graphite and coal-tar pitch, while in the other one graphite was replaced by a cheaper carbon precursor. The newly-developed filters are fired at 1000°C, i.e. at a much lower temperature than the currently applied ZrO2-based filters. During filtration trials the filters were subjected to the attack of a flowing metal stream having a temperature of 1650°C for 30 seconds.

  9. Ceramic filters for bulk inoculation of nickel alloy castings

    Directory of Open Access Journals (Sweden)

    F. Binczyk

    2011-07-01

    Full Text Available The work includes the results of research on production technology of ceramic filters which, besides the traditional filtering function, playalso the role of an inoculant modifying the macrostructure of cast nickel alloys. To play this additional role, filters should demonstratesufficient compression strength and ensure proper flow rate of liquid alloy. The role of an inoculant is played by cobalt aluminateintroduced to the composition of external coating in an amount from 5 to 10 wt.% . The required compression strength (over 1MPa isprovided by the supporting layers, deposited on the preform, which is a polyurethane foam. Based on a two-level fractional experiment24-1, the significance of an impact of various technological parameters (independent variables on selected functional parameters of theready filters was determined. Important effect of the number of the supporting layers and sintering temperature of filters after evaporationof polyurethane foam was stated.

  10. Novel algorithm by low complexity filter on retinal vessel segmentation

    Science.gov (United States)

    Rostampour, Samad

    2011-10-01

    This article shows a new method to detect blood vessels in the retina by digital images. Retinal vessel segmentation is important for detection of side effect of diabetic disease, because diabetes can form new capillaries which are very brittle. The research has been done in two phases: preprocessing and processing. Preprocessing phase consists to apply a new filter that produces a suitable output. It shows vessels in dark color on white background and make a good difference between vessels and background. The complexity is very low and extra images are eliminated. The second phase is processing and used the method is called Bayesian. It is a built-in in supervision classification method. This method uses of mean and variance of intensity of pixels for calculate of probability. Finally Pixels of image are divided into two classes: vessels and background. Used images are related to the DRIVE database. After performing this operation, the calculation gives 95 percent of efficiency average. The method also was performed from an external sample DRIVE database which has retinopathy, and perfect result was obtained

  11. Mathematical Modeling of Flow Field in Ceramic Candle Filter

    Institute of Scientific and Technical Information of China (English)

    TaewonSeo; Joo-HongChoi; 等

    1998-01-01

    Integrated gasification combined cycle(IGCC)is one of the candidates to achieve stringent environmental regulation among the clean coal technologies.Advancing the technology of the hot gas cleanup systems is the most critical component in the development of the IGCC.Thus the aim of this study is to understand the flow field in the ceramic filter and the influence of ceramic filter in removal of the particles contained in the hot gas flow.The numerical model based on the Reynolds stress turbulence model with the Darycy's law in the porous region is adopted.It is found that the effect of the porosity in the flowfield is negligibly small while the effect of the filter length is significant.It is also found as the permeability decreases,the reattachment point due to the flow separation moves upstream,This is because the fluid is sucked into the filter region due to the pressure drop before the flow separation occurs.The particle follows well with the fluid stream and the particle is directly sucked into the filter due to the pressure drop even in the flow separation region.

  12. Simplified Method for Groundwater Treatment Using Dilution and Ceramic Filter

    Science.gov (United States)

    Musa, S.; Ariff, N. A.; Kadir, M. N. Abdul; Denan, F.

    2016-07-01

    Groundwater is one of the natural resources that is not susceptible to pollutants. However, increasing activities of municipal, industrial, agricultural or extreme land use activities have resulted in groundwater contamination as occured at the Research Centre for Soft Soil Malaysia (RECESS), Universiti Tun Hussein Onn Malaysia (UTHM). Thus, aims of this study is to treat groundwater by using rainwater and simple ceramic filter as a treatment agent. The treatment uses rain water dilution, ceramic filters and combined method of dilute and filtering as an alternate treatment which are simple and more practical compared to modern or chemical methods. The water went through dilution treatment processes able to get rid of 57% reduction compared to initial condition. Meanwhile, the water that passes through the filtering process successfully get rid of as much as 86% groundwater parameters where only chloride does not pass the standard. Favorable results for the combination methods of dilution and filtration methods that can succesfully eliminate 100% parameters that donot pass the standards of the Ministry of Health and the Interim National Drinking Water Quality Standard such as those found in groundwater in RECESS, UTHM especially sulfate and chloride. As a result, it allows the raw water that will use clean drinking water and safe. It also proves that the method used in this study is very effective in improving the quality of groundwater.

  13. PARTICLE TRANSPORTATION AND DEPOSITION IN HOT GAS FILTER VESSELS - A COMPUTATIONAL AND EXPERIMENTAL MODELING APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi

    2002-07-01

    In this project, a computational modeling approach for analyzing flow and ash transport and deposition in filter vessels was developed. An Eulerian-Lagrangian formulation for studying hot-gas filtration process was established. The approach uses an Eulerian analysis of gas flows in the filter vessel, and makes use of the Lagrangian trajectory analysis for the particle transport and deposition. Particular attention was given to the Siemens-Westinghouse filter vessel at Power System Development Facility in Wilsonville in Alabama. Details of hot-gas flow in this tangential flow filter vessel are evaluated. The simulation results show that the rapidly rotation flow in the spacing between the shroud and the vessel refractory acts as cyclone that leads to the removal of a large fraction of the larger particles from the gas stream. Several alternate designs for the filter vessel are considered. These include a vessel with a short shroud, a filter vessel with no shroud and a vessel with a deflector plate. The hot-gas flow and particle transport and deposition in various vessels are evaluated. The deposition patterns in various vessels are compared. It is shown that certain filter vessel designs allow for the large particles to remain suspended in the gas stream and to deposit on the filters. The presence of the larger particles in the filter cake leads to lower mechanical strength thus allowing for the back-pulse process to more easily remove the filter cake. A laboratory-scale filter vessel for testing the cold flow condition was designed and fabricated. A laser-based flow visualization technique is used and the gas flow condition in the laboratory-scale vessel was experimental studied. A computer model for the experimental vessel was also developed and the gas flow and particle transport patterns are evaluated.

  14. Effects of SiC and MgO on aluminabased ceramic foams filters

    Directory of Open Access Journals (Sweden)

    CAO Da-li

    2007-11-01

    Full Text Available Alumina-based foam ceramic filters were fabricated by using alumina, SiC, magnesia powder as major materials. It has been found that this ceramic filter has a uniform macrostructure for filtering molten metals. The influences of SiC and magnesia content, the sintering temperatures on ceramic properties were discussed. Aluminabased foam ceramic filters containing 2.2 mass% magnesia and 7.6 mass% SiC has a compressive strength of 1.36 MPa and a thermal shock resistance of 5 times. Its main phases after 1 hour sintering at 1 500 consist of alumina, silicon carbide, spinel and mullite.

  15. Assessment and evaluation of ceramic filter cleaning techniques: Task Order 19

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Zaharchuk, R.; Harbaugh, L.B.; Klett, M.

    1994-10-01

    The objective of this study was to assess and evaluate the effectiveness, appropriateness and economics of ceramic barrier filter cleaning techniques used for high-temperature and high-pressure particulate filtration. Three potential filter cleaning techniques were evaluated. These techniques include, conventional on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and a novel rapid pulse driven filter cleaning. These three ceramic filter cleaning techniques are either presently employed, or being considered for use, in the filtration of coal derived gas streams (combustion or gasification) under high-temperature high-pressure conditions. This study was divided into six subtasks: first principle analysis of ceramic barrier filter cleaning mechanisms; operational values for parameters identified with the filter cleaning mechanisms; evaluation and identification of potential ceramic filter cleaning techniques; development of conceptual designs for ceramic barrier filter systems and ceramic barrier filter cleaning systems for two DOE specified power plants; evaluation of ceramic barrier filter system cleaning techniques; and final report and presentation. Within individual sections of this report critical design and operational issues were evaluated and key findings were identified.

  16. Modeling the sustainability of a ceramic water filter intervention.

    Science.gov (United States)

    Mellor, Jonathan; Abebe, Lydia; Ehdaie, Beeta; Dillingham, Rebecca; Smith, James

    2014-02-01

    Ceramic water filters (CWFs) are a point-of-use water treatment technology that has shown promise in preventing early childhood diarrhea (ECD) in resource-limited settings. Despite this promise, some researchers have questioned their ability to reduce ECD incidences over the long term since most effectiveness trials conducted to date are less than one year in duration limiting their ability to assess long-term sustainability factors. Most trials also suffer from lack of blinding making them potentially biased. This study uses an agent-based model (ABM) to explore factors related to the long-term sustainability of CWFs in preventing ECD and was based on a three year longitudinal field study. Factors such as filter user compliance, microbial removal effectiveness, filter cleaning and compliance declines were explored. Modeled results indicate that broadly defined human behaviors like compliance and declining microbial effectiveness due to improper maintenance are primary drivers of the outcome metrics of household drinking water quality and ECD rates. The model predicts that a ceramic filter intervention can reduce ECD incidence amongst under two year old children by 41.3%. However, after three years, the average filter is almost entirely ineffective at reducing ECD incidence due to declining filter microbial removal effectiveness resulting from improper maintenance. The model predicts very low ECD rates are possible if compliance rates are 80-90%, filter log reduction efficiency is 3 or greater and there are minimal long-term compliance declines. Cleaning filters at least once every 4 months makes it more likely to achieve very low ECD rates as does the availability of replacement filters for purchase. These results help to understand the heterogeneity seen in previous intervention-control trials and reemphasize the need for researchers to accurately measure confounding variables and ensure that field trials are at least 2-3 years in duration. In summary, the CWF

  17. Virus removal in ceramic depth filters based on diatomaceous earth.

    Science.gov (United States)

    Michen, Benjamin; Meder, Fabian; Rust, Annette; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas

    2012-01-17

    Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses. However, viruses may be retained by adsorption mechanisms due to intermolecular and surface forces. Here, we use three types of bacteriophages to investigate their removal during filtration and batch experiments conducted at different pH values and ionic strengths. Theoretical models based on DLVO-theory are applied in order to verify experimental results and assess surface forces involved in the adsorptive process. This was done by calculation of interaction energies between the filter surface and the viruses. For two small spherically shaped viruses (MS2 and PhiX174), these filters showed no significant removal. In the case of phage PhiX174, where attractive interactions were expected, due to electrostatic attraction of oppositely charged surfaces, only little adsorption was reported in the presence of divalent ions. Thus, we postulate the existence of an additional repulsive force between PhiX174 and the filter surface. It is hypothesized that such an additional energy barrier originates from either the phage's specific knobs that protrude from the viral capsid, enabling steric interactions, or hydration forces between the two hydrophilic interfaces of virus and filter. However, a larger-sized, tailed bacteriophage of the family Siphoviridae was removed by log 2 to 3, which is explained by postulating hydrophobic interactions.

  18. Catalytic ceramic filter for Diesel soot removal. Preliminary investigations

    Energy Technology Data Exchange (ETDEWEB)

    Ciambelli, P.; Palma, V.; Russo, P. [Dipartimento di Ingegneria Chimica e Alimentare, Universita di Salerno, Fisciano, Salerno (Italy); Vaccaro, S. [Dipartimento di Chimica, Universita di Napoli Federico II,, Napoli (Italy)

    1998-12-31

    The catalytic combustion of Diesel soot was studied performing reactivity tests of soot-catalyst mixtures in a tubular flow reactor. The dependence of the reaction rate on the temperature was found. With respect to the uncatalysed combustion the reactivity of the soot in the presence of catalyst increased of some orders of magnitude while the apparent activation energy was found to be less than half. Complementary tests were carried out for studying the regeneration process of ceramic sintered filter samples by uncatalysed and catalysed combustion of the accumulated carbon particles. With respect to the uncatalysed case, the presence of catalyst reduces the carbon ignition temperature so favouring spontaneous filter regeneration. However, the catalyst activity appears to be lower than that observed in the reactivity tests. The results of both series of tests were discussed and compared in order to assess the role of carbon-catalyst contact and of catalyst preparation on its performances. 20 refs.

  19. Characterization of Ceramic Foam Filters Used for Liquid Metal Filtration

    Science.gov (United States)

    Kennedy, Mark William; Zhang, Kexu; Fritzsch, Robert; Akhtar, Shahid; Bakken, Jon Arne; Aune, Ragnhild E.

    2013-06-01

    In the current study, the morphology including tortuosity, and the permeability of 50-mm thick commercially available 30, 40, 50, and 80 pores per inch (PPI) alumina ceramic foam filters (CFFs) have been investigated. Measurements have been taken of cell (pore), window, and strut sizes, porosity, tortuosity, and liquid permeability. Water velocities from ~0.015 to 0.77 m/s have been used to derive both first-order (Darcy) and second-order (Non-Darcy) terms for being used with the Forchheimer equation. Measurements were made using 49-mm "straight through" and 101-mm diameter "expanding flow field" designs. Results from the two designs are compared with calculations made using COMSOL 4.2a® 2D axial symmetric finite element modeling (FEM), as a function of velocity and filter PPI. Permeability results are correlated using directly measurable parameters and compared with the previously published results. Development of improved wall sealing (49 mm) and elimination of wall effects (101 mm) have led to a high level of agreement between experimental, analytic, and FEM methods (±0 to 7 pct on predicted pressure drop) for both types of experiments. Tortuosity has been determined by two inductive methods, one using cold-solidified samples at 60 kHz and the other using liquid metal at 50 Hz, giving comparable results.

  20. Mechanical behavior of ceramic composite hot-gas filters after exposure to severe environments

    Energy Technology Data Exchange (ETDEWEB)

    Pysher, D.J.; Weaver, B.L.; Smith, R.G. [Ceramic Technology Center, St. Paul, MN (United States)] [and others

    1995-08-01

    A novel type of hot-gas filter based on a ceramic fiber reinforced ceramic matrix has been developed, as reported at previous Fossil Energy Materials Conferences, through research activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company. Simulated testing has been done at the Westinghouse Science and Technology Center. This filter technology has been extended to full size, 60 mm OD by 1.5 meter long candle filters and a commercially viable process for producing the filters has been developed filters are undergoing testing and demonstration use throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Demonstration tests of this ceramic composite filter along with other filters are in progress at the Tidd PFBC plant Mechanical tests were performed on the 3 M brand Ceramic Composite Candle Filter after exposure to various corrosive environments in order to assess its ability to function as a hot gas filter in coal-fired applications. Due to the different construction of ceramic composite filters and the thin composite wall versus the typical thick-walled monolithic filter, standard mechanical property tests had to be refined or modified to accurately determine the filters properties. These tests and filter property results will be described Longitudinal tensile and diametral O-ring compression tests were performed on as-produced candle filters as well as on filters which had been exposed to various environments. The exposures were for 1000 hrs at 850{degrees}C in wet air, in wet air containing Na{sub 2}CO{sub 3}, and in wet air containing NaCl. In addition, a filter which bad been coated with ash (Old Grimethorpe) was exposed to wet air at 850{degrees}C for 1000 hours.

  1. Ceramic pot filters lifetime study in coastal Guatemala.

    Science.gov (United States)

    Salvinelli, C; Elmore, A C; García Hernandez, B R; Drake, K D

    2017-02-01

    Ceramic pot filters (CPFs) are an effective means of household water treatment, but the characterization of CPF lifetimes is ongoing. This paper describes a lifetime field study in Guatemala which was made possible by a collaboration between researchers, CPF-using households, and local non-governmental organizations (NGOs). Disinfection data were collected periodically for two years using field coliform enumeration kits as were flow rate data with the assistance of NGO staff. Consumer acceptance was characterized by surveying householders in the four subject villages at the beginning and end of the study. Flow rate data showed that average CPF flow rates decreased below the recommended minimum of 1 L h(-1) after 10 months of use; however, the survey results indicated that the consumers were tolerant of the lower flow rates, and it is reasonable to assume that the daily volume of treated water can be readily increased by refilling the CPFs more frequently. Of greater concern was the finding that disinfection efficacy decreased below the recommended bacterial reduction after 14 months of use because it would not be obvious to users that effectiveness had declined. Finally, the follow-up visits by the researchers and the NGO staff appeared to increase consumer acceptance of the CPFs.

  2. Application of a low cost ceramic filter to a membrane bioreactor for greywater treatment.

    Science.gov (United States)

    Hasan, Md Mahmudul; Shafiquzzaman, Md; Nakajima, Jun; Ahmed, Abdel Kader T; Azam, Mohammad Shafiul

    2015-03-01

    The performance of a low cost and simple ceramic filter to a membrane bioreactor (MBR) process was evaluated for greywater treatment. The ceramic filter was submerged in an acrylic cylindrical column bioreactor. Synthetic greywater (prepared by shampoo, dish cleaner and laundry detergent) was fed continuously into the reactor. The filter effluent was obtained by gravitational pressure. The average flux performance was observed to be 11.5 LMH with an average hydraulic retention time of 1.7 days. Complete biodegradation of surfactant (methylene blue active substance removal: 99-100%) as well as high organic removal performance (biochemical oxygen demand: 97-100% and total organic carbon: >88%) was obtained. The consistency of flux (11.5 LMH) indicated that the filter can be operated for a long time without fouling. The application of this simple ceramic filter would make MBR technology cost-effective in developing countries for greywater reclamation and reuse.

  3. Effectiveness of ceramic filters in capturing Giardia duodenalis cysts in experimentally contaminated water

    OpenAIRE

    Larissa Imaculada da Costa Sobrinho; Francine Alves da Silva Coelho; Matheus Diniz Gonçalves Coelho

    2016-01-01

    Giardia duodenalis is the main water-transmitted protozoan in developing countries. This study evaluated the effectiveness of ceramic filters in capturing G. duodenalis cysts and verified the porosity size needed to remove cysts from contaminated water. The study was conducted in the Laboratory of Parasitology at the University of Taubaté, where each filter unit was made by joining two Pet gallons, latex hose and a ceramic filter. Two porosity sizes were selected: 0.5-1.0 μm and 5-15 μm with ...

  4. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.

    Science.gov (United States)

    Ren, Dianjun; Colosi, Lisa M; Smith, James A

    2013-10-01

    This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.

  5. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment.

    Science.gov (United States)

    Oyanedel-Craver, Vinka A; Smith, James A

    2008-02-01

    Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.

  6. Retinal vessel extraction by means of motion contrast, matched filter and combined corner-edge detector

    Science.gov (United States)

    Yu, Lei; Qi, Yue; Xia, Mingliang; Xuan, Li

    2014-05-01

    The microvasculature network of retina plays an important role in understanding of the retinal function and diagnosis of many diseases. Although it is possible to noninvasively acquire diffraction-limited resolution retinal images at microscopic cellular level, noises and other structures still make it difficult for diagnosis. In this paper, a new vessel extraction method is introduced. First, we use motion contrast method to trace the motion of the blood components and get the main vessel contour. Second, an improved matched filter method is applied to extract the vessel contour while the single-side edges are eliminated. Then, the combined corner/edge detector is adopted to eliminate the elongated fragments caused by the motion artifacts. Finally, we use mathematical morphology method to dilate the edges of vessels acquired in last step and obtain the exact contour of the vessels. The contrast of the vessels is significantly enhanced and the noises as well as other structures are effectively eliminated.

  7. Improved virus removal in ceramic depth filters modified with MgO.

    Science.gov (United States)

    Michen, Benjamin; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas

    2013-02-05

    Ceramic filters, working on the depth filtration principle, are known to improve drinking water quality by removing human pathogenic microorganisms from contaminated water. However, these microfilters show no sufficient barrier for viruses having diameters down to 20 nm. Recently, it was shown that the addition of positively charged materials, for example, iron oxyhydroxide, can improve virus removal by adsorption mechanisms. In this work, we modified a common ceramic filter based on diatomaceous earth by introducing a novel virus adsorbent material, magnesium oxyhydroxide, into the filter matrix. Such filters showed an improved removal of about 4-log in regard to bacteriophages MS2 and PhiX174. This is explained with the electrostatic enhanced adsorption approach that is the favorable adsorption of negatively charged viruses onto positively charged patches in an otherwise negatively charged filter matrix. Furthermore, we provide theoretical evidence applying calculations according to Derjaguin-Landau-Verwey-Overbeek theory to strengthen our experimental results. However, modified filters showed a significant variance in virus removal efficiency over the course of long-term filtration experiments with virus removal increasing with filter operation time (or filter aging). This is explained by transformational changes of MgO in the filter upon contact with water. It also demonstrates that filter history is of great concern when filters working on the adsorption principles are evaluated in regard to their retention performance as their surface characteristics may alter with use.

  8. Efficiency characterization of ceramic filtering materials used for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For ceramic filtering materials, their adsorption capacities, purification efficiencies to remove organic compounds from drinking water, and correlation between adsorption capacities and pore structures were tested and analyzed. The results show that correlation coefficient between the specific surface area and the adsorptive amount of iodine molecule is 0.99;correlation coefficient between the pore volume and the adsorptive value of tannin molecule is 0.92. And correlation coefficient between the most probable diameter and the adsorption parameter is 1.0. A new method of morphology characterization for ceramic filtering materials was developed. Which offered a sort of standard for the evaluation on water purification efficiencies and selection of ceramic filtering materials.

  9. Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria

    Science.gov (United States)

    Simonis, J. J.; Basson, A. K.

    Africa is one of the most water-scarce continents in the world but it is the lack of potable water which results in diarrhoea being the leading cause of death amongst children under the age of five in Africa (696 million children under 5 years old in Africa contract diarrhoea resulting in 2000 deaths per day: WHO and UNICEF, 2009). Most potable water treatment methods use bulk water treatment not suitable or available to the majority of rural poor in Sub-Saharan Africa. One simple but effective way of making sure that water is of good quality is by purifying it by means of a household ceramic water filter. The making and supply of water filters suitable for the removal of suspended solids, pathogenic bacteria and other toxins from drinking water is therefore critical. A micro-porous ceramic water filter with micron-sized pores was developed using the traditional slip casting process. This locally produced filter has the advantage of making use of less raw materials, cost, labour, energy and expertise and being more effective and efficient than other low cost produced filters. The filter is fitted with a silicone tube inserted into a collapsible bag that acts as container and protection for the filter. Enhanced flow is obtained through this filter system. The product was tested using water inoculated with high concentrations of different bacterial cultures as well as with locally polluted stream water. The filter is highly effective (log10 > 4 with 99.99% reduction efficiency) in providing protection from bacteria and suspended solids found in natural water. With correct cleaning and basic maintenance this filter technology can effectively provide drinking water to rural families affected by polluted surface water sources. This is an African solution for the more than 340 million people in Africa without access to clean drinking water (WHO and UNICEF, 2008).

  10. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  11. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.

    Science.gov (United States)

    Gutmann, Bernhard; Obermayer, David; Reichart, Benedikt; Prekodravac, Bojana; Irfan, Muhammad; Kremsner, Jennifer M; Kappe, C Oliver

    2010-10-25

    Silicon carbide (SiC) is a strongly microwave absorbing chemically inert ceramic material that can be utilized at extremely high temperatures due to its high melting point and very low thermal expansion coefficient. Microwave irradiation induces a flow of electrons in the semiconducting ceramic that heats the material very efficiently through resistance heating mechanisms. The use of SiC carbide reaction vessels in combination with a single-mode microwave reactor provides an almost complete shielding of the contents inside from the electromagnetic field. Therefore, such experiments do not involve electromagnetic field effects on the chemistry, since the semiconducting ceramic vial effectively prevents microwave irradiation from penetrating the reaction mixture. The involvement of electromagnetic field effects (specific/nonthermal microwave effects) on 21 selected chemical transformations was evaluated by comparing the results obtained in microwave-transparent Pyrex vials with experiments performed in SiC vials at the same reaction temperature. For most of the 21 reactions, the outcome in terms of conversion/purity/product yields using the two different vial types was virtually identical, indicating that the electromagnetic field had no direct influence on the reaction pathway. Due to the high chemical resistance of SiC, reactions involving corrosive reagents can be performed without degradation of the vessel material. Examples include high-temperature fluorine-chlorine exchange reactions using triethylamine trihydrofluoride, and the hydrolysis of nitriles with aqueous potassium hydroxide. The unique combination of high microwave absorptivity, thermal conductivity, and effusivity on the one hand, and excellent temperature, pressure and corrosion resistance on the other hand, makes this material ideal for the fabrication of reaction vessels for use in microwave reactors.

  12. High-temperature high-pressure gas cleanup with ceramic bag filters. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    Shackleton, M.; Chang, R.; Sawyer, J.; Kuby, W.; Turner-Tamiyasu, E.

    1982-12-06

    Advanced processes designed for the efficient use of coal in the production of energy will benefit from, or even depend upon, highly efficient, economical, high-temperature removal systems for fine particulates. In the case of pressurized fluidized-bed combustion (PFBC), the hot gas cleanup device must operate at approximately 1600/sup 0/F. Existing commercial filter systems are temperature limited due to the filter material, but ceramic fibers intended for refractory insulation offer the promise of a practical high-temperature filter media if they can be incorporated into a design which combines filter performance with acceptable durability. The current work was initiated to further develop and demonstrate on a larger-scale basis, a ceramic fiber filtration system for application to coal-fired PFBC's. The development effort centered around the need to replace the knit metal wire scrim, used in earlier designs as support for the fine fiber ceramic mat filtration medium, with a corrosion-resistant material. This led to the selection of woven ceramic cloth for support of the mat layer. Because of the substantial difference in strength and other material properties between the metal and ceramic cloth, tests were necessary to optimize the filter; pulse parameters such as pulse duration, pulse pressure, and pulse injection orifice size; woven cloth mesh configuration; the technique for clamping the bag to the support; and similar structural, fluid, and control parameters. The demonstration effort included both tests to prove this concept in a real application and a systems analysis to show commercial feasibility of the ceramic filtration approach for hot gas cleanup in PFBC's. 12 references, 57 figures, 23 tables.

  13. Permeability, drying, and sintering of pressure filtered ceramic nanopowders

    Science.gov (United States)

    Sweeney, Sean M.

    2002-01-01

    Three aspects of nanocrystalline ceramic body formation are examined in this work: permeability, drying stress, and sintering behavior. The permeabilities of nanocrystalline 3 mol% yttria-stabilized zirconia (3Y-TZP), silica, and boehmite powder compacts are measured during their formation by constant rate pressure filtration. The classic Carman-Kozeny equation with no account for the effect of adsorbed water often overestimates by a factor of 2 or more the measured permeabilities, with increasing deviation with decreasing permeability. A permeability equation from the literature and one derived here, both taking into account the effect of adsorbed water, show significant improvement over the classic Carman-Kozeny equation for predicting measured permeabilities. The equation derived here allows straightforward predictions to be made of how permeability will change as the critical point of drying (when shrinkage stops) is approached. An approximate expression for the maximum tensile stress occurring in an elastic finite cylinder during drying from all sides is derived. Numerical calculations of the exact state of stress during drying show that for cylinder length-to-diameter ratios up to 2/3, the present expression is more accurate than equations from the literature for an infinite plate and an infinite cylinder. For cylinders with length-to-diameter ratios greater than 2/3, numerical calculations show an equation from the literature for the drying stress in an infinite cylinder to be more accurate. To test the validity of the present expression, the drying rates above which fracture occurs are determined for disk-shaped samples of pressure filtered nanocrystalline 3Y-TZP, boehmite, and silica powders. These maximum safe drying rates are used with the present expression to calculate the maximum drying stresses that can be sustained without fracture, and these stresses are compared to diametral compression-measured strengths of similar samples dried to the critical

  14. Microbiological effectiveness of locally produced ceramic filters for drinking water treatment in Cambodia.

    Science.gov (United States)

    Brown, Joe; Sobsey, Mark D

    2010-03-01

    Low-cost options for the treatment of drinking water at the household level are being explored by the Cambodian government and non-governmental organizations (NGOs) working in Cambodia, where many lack access to improved drinking water sources and diarrhoeal diseases are the most prevalent cause of death in children under 5 years of age. The ceramic water purifier (CWP), a locally produced, low-cost ceramic filter, is now being implemented by several NGOs, and an estimated 100,000+households in the country now use them for drinking water treatment. Two candidate filters were tested for the reduction of bacterial and viral surrogates for waterborne pathogens using representative Cambodian drinking water sources (rainwater and surface water) spiked with Escherichia coli and bacteriophage MS2. Results indicate that filters were capable of reducing key microbes in the laboratory with mean reductions of E. coli of approximately 99% and mean reduction of bacteriophages of 90-99% over >600 litres throughput. Increased effectiveness was not observed in filters with an AgNO3 amendment. At under US$10 per filter, locally produced ceramic filters may be a promising option for drinking water treatment and safe storage at the household level.

  15. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    2000-01-10

    Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  16. Target tracking by distributed autonomous vessels using the derivative-free nonlinear Kalman filter

    Science.gov (United States)

    Rigatos, Gerasimos; Siano, Pierluigi; Raffo, Guilerme

    2015-12-01

    In this paper a distributed control problem for unmanned surface vessels (USVs) is formulated as follows: there are N USVs which pursue another vessel (moving target). At each time instant each USV can obtain measurements of the target's cartesian coordinates. The objective is to make the USVs converge in a synchronized manner towards the target, while avoiding collisions between them and avoiding collisions with obstacles in their motion plane. A distributed control law is developed for the USVs which enables not only convergence of the USVs to the goal position, but also makes possible to maintain the cohesion of the USVs fleet. Moreover, distributed filtering is performed, so as to obtain an estimate of the target vessel's state vector. This provides the desirable state vector to be tracked by each one of the USVs. To this end, a new distributed nonlinear filtering method of improved accuracy and computation speed is introduced. This filtering approach, under the name Derivative-free distributed nonlinear Kalman Filter is based on differential flatness theory and on an exact linearization of the target vessel's dynamic/kinematic model.

  17. Granular-bed and ceramic candle filters in commercial plants: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.B.; Haas, J.C.; Eshelman, M.B.

    1993-04-01

    Advanced coal fired power cycles require the removal of coal ash at high temperature and pressure. Granular-bed and ceramic candle filters can be used for this service. Conceptual designs for commercial size applications are made for each type of filter. The filters are incorporated in the design of a Foster Wheeler 450 MWe second generation pressurized fluidized bed combustion plant which contains a pressurized fluidized combustor and carbonizer. In a second application, the inters are incorporated in the design of a 100 MWe KRW (air) gasifier based power plant. The candle filter design is state of the art as determined from the open literature with an effort to minimize the cost. The granular-bed filter design is based on test work performed at high temperature and low pressure, tests at New York University performed at high pressure and temperate, and new analysis used to simplify the scale up of the filter and reduce overall cost. The incorporation of chemically reactive granites in the granular-bed filter for the removal of additional coal derived contaminants such as alkali or sulfur is considered. The conceptual designs of the granular-bed inter and the ceramic candle filter are compared in terms of the cost of electricity, capital cost, and operating and maintenance costs for each application.

  18. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Directory of Open Access Journals (Sweden)

    Nathalie Kunkel

    2015-09-01

    Full Text Available Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0% were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  19. Evaluation of an all-ceramic tubesheet assembly for a hot gas filter

    Energy Technology Data Exchange (ETDEWEB)

    Bitner, J.L. [Mallett Technology, Inc., Canonsburg, PA (United States); Mallett, R.H. [Mallett Technology, Inc., Research Triangle Park, NC (United States); Eggerstedt, P.M. [Industrial Filter and Pump Mfg. Co., Cicero, IL (United States); Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    A 10-inch thick, all-ceramic tubesheet design is evaluated for differential pressure and thermal conditions. Primary stresses from differential pressure are well within a safe allowable. The calculated peak thermal stresses at local discontinuities approach the modules of rupture for the ceramic material. Kiln tests were performed to demonstrate differential temperatures between hot center and cooler rim do not cause failures or visible tensile cracks. There appear to be mitigating mechanisms and design features in the Industrial Filter and Pump (IF and P) Mfg. Co. all-ceramic tubesheet design concept that add forgiveness in accommodating differential pressure and thermal loading stresses. A material characterization program on the ceramic materials is recommended.

  20. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Science.gov (United States)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  1. Automatic 2D/3D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter.

    Science.gov (United States)

    Zhao, Yitian; Zhao, Yitian; Zheng, Yalin; Liu, Yonghuai; Zhao, Yifan; Luo, Lingling; Yang, Siyuan; Na, Tong; Wang, Yongtian; Liu, Jiang

    2017-09-25

    Automated detection of vascular structures is of great importance in understanding the mechanism, diagnosis and treatment of many vascular pathologies. However, automatic vascular detection continues to be an open issue because of difficulties posed by multiple factors such as poor contrast, inhomogeneous backgrounds, anatomical variations, and the presence of noise during image acquisition. In this paper, we propose a novel 2D/3D symmetry filter to tackle these challenging issues for enhancing vessels from different imaging modalities. The proposed filter not only considers local phase features by using a quadrature filter to distinguish between lines and edges, but also uses the weighted geometric mean of the blurred and shifted responses of the quadrature filter, which allows more tolerance of vessels with irregular appearance. As a result, this filter shows a strong response to the vascular features under typical imaging conditions. Results based on 8 publicly available datasets (six 2D datasets, one 3D dataset and one 3D synthetic dataset) demonstrate its superior performance to other state-ofthe- art methods.

  2. The Influence of Grain Refiners on the Efficiency of Ceramic Foam Filters

    Science.gov (United States)

    Towsey, Nicholas; Schneider, Wolfgang; Krug, Hans-Peter; Hardman, Angela; Keegan, Neil J.

    An extensive program of work has been carried out to evaluate the efficiency of ceramic foam filters under carefully controlled conditions. Work reported at previous TMS meetings showed that in the absence of grain refiners, ceramic foam filters have the capacity for high filtration efficiency and consistent, reliable performance. The current phase of the investigation focuses on the impact grain refiner additions have on filter performance. The high filtration efficiencies obtained using 50 or 80ppi CFF's in the absence of grain refiners diminish when Al-3%Ti-1%B grain refiners are added. This, together with the impact of incoming inclusion loading on filter performance and the level of grain refiner addition are considered in detail. The new generation Al-3%Ti-0.15%C grain refiner has also been included. At typical addition levels (1kg/tonne) the effect on filter efficiency is similar to that for TiB2based grain refiners. The work was again conducted on a production scale using AA1050 alloy. Metal quality was determined using LiMCA and PoDFA. Spent filters were also analysed.

  3. Adaptive wave filtering for dynamic positioning of marine vessels using maximum likelihood identification: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Hassani, V.; Sorensen, A.J.; Pascoal, A.M.

    feedback loop should be filtered by using a so-called wave filtering technique so as to prevent excessive control activity in response to wave frequency components. Furthermore, only the slowly- varying disturbances should be counterbalanced... by the propulsion system, whereas the oscillatory motion induced by the waves (1st-order wave induced loads) should not enter the feedback control loop. To this effect, DP control systems should be designed so as to react to the low fre- quency forces on the vessel...

  4. Determination of metal content in atmospheric dust samples using different vessel and filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, G.; Wentrup, G.J.

    1989-02-01

    In this paper materials like glassfibre and quartzglass filters were analysed with respect to their application for the analysis of metal contents in atmospheric dust samples. Furthermore different vessel materials, resistant to fluoric acid, have been tested too. In summary the most important fact for the determination of metal content in atmospheric dust samples - prior condition the chosen analysis method is suitable and sensitive enough - is the quality of the used materials. These materials are to be chosen thoroughly to the conditions required.

  5. High-performance ceramic filters for energy engineering. Final report; Filter aus Hochleistungskeramik fuer die Energietechnik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Westerheide, R. [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany); Adler, J. [Fraunhofer-Institut fuer Keramische Technologien und Sinterwerkstoffe (IKTS), Dresden (Germany); Buhl, H. [ESK-SIC GmbH, Frechen-Grefrath (Germany); Fister, D. [H.C. Starck GmbH, Laufenburg (Germany); Krein, J. [LLB Lurgi Lentjes Energietechnik GmbH, Frankfurt (Germany); Voelker, W. [Annawerk GmbH, Roedental (Germany); Walch, A. [eds.] [USF Schumacher Umwelt- und Trenntechnik GmbH, Crailsheim (Germany)

    1999-09-30

    The hot gas particulate removal of many advanced coal fired power generation technologies works at temperatures above 800 C. The filter elements for these applications are often based on ceramic materials, e.g. silicon carbide. However, the mostly clay bonded silicon carbide is subject to creep and oxidation due to probable changes of the binder phase. In this work the development of new ceramic filter materials based on silicon carbide and alumina is described. The goal of the development was to increase the potential application temperature. To obtain the goal, the work was performed together with ceramic powder manufacturers, developers of ceramic materials and components as well as with companies who operate test facilities. Different routes were chosen to increase the high temperature resistance in consideration of corrosion resistance, fracture strength and pressure loss of the filter materials. One of these routes was the optimization of the binder phase of the silicon carbide materials. Other routes were concentrated on the base material and the investigation of other possibilities for the silicon carbide bonding, i.e. a recrystallization process of SiC (RSiC) or a self bonding of granulated small grained silicon carbide powder. Additionally filter materials based on alumina were developed. The report covers these material development oriented topics as well as the additional work in materials reliability, coating development and modeling of microstructure. (orig.) [German] In der Kombikraftwerkstechnik wird insbesondere bei Kohlefeuerung die Heissgasreinigung oft bei Temperaturen ueber 800 C eingesetzt. Die Filterelemente fuer diese Anwendungen bestehen oft aus keramischen Materialien. Das haeufig eingesetzte tongebundene Siliciumcarbid unterliegt jedoch besonders aufgrund der Beschaffenheit der Bindephase Kriech- und Oxidationsschaedigungen. In diesem Bericht wird die Entwicklung von neuen keramischen Filtermaterialien, die auf Siliciumcarbid oder

  6. Effect of production variables on microbiological removal in locally-produced ceramic filters for household water treatment.

    Science.gov (United States)

    Lantagne, Daniele; Klarman, Molly; Mayer, Ally; Preston, Kelsey; Napotnik, Julie; Jellison, Kristen

    2010-06-01

    Diarrhoeal diseases cause an estimated 1.87 million child deaths per year. Point-of-use filtration using locally made ceramic filters improves microbiological quality of stored drinking water and prevents diarrhoeal disease. Scaling-up ceramic filtration is inhibited by lack of universal quality control standards. We investigated filter production variables to determine their affect on microbiological removal during 5-6 weeks of simulated normal use. Decreases in the clay:sawdust ratio and changes in the burnable decreased effectiveness of the filter. Method of silver application and shape of filter did not impact filter effectiveness. A maximum flow rate of 1.7 l(-hr) was established as a potential quality control measure for one particular filter to ensure 99% (2- log(10)) removal of total coliforms. Further research is indicated to determine additional production variables associated with filter effectiveness and develop standardized filter production procedures prior to scaling-up.

  7. Smart structures for application in ceramic barrier filter technology. Final report, August 1991--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, S.J.; Lippert, T.E

    1994-12-01

    High temperature optical fiber sensors were developed to measure the in-service stressing that occurs in ceramic barrier filter systems. The optical fiber sensors were based on improvements to the sensor design developed under the DOE/METC Smart Structures for Fossil Energy Applications contract no. DE-AC21-89MC25159. In-house application testing of these sensors on both candle and cross-flow filters were performed in the Westinghouse Science and Technology Center High-Temperature, High-Pressure Filter Test Facility and the results analyzed. This report summarizes the sensor developments, methods to apply the sensors to the filters for in-situ testing, and the test results from the four in-house tests that were performed.

  8. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Directory of Open Access Journals (Sweden)

    Ileana Wald

    2012-01-01

    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  9. Do low-cost ceramic water filters improve water security in rural South Africa?

    OpenAIRE

    Lange, Jens; Materne, Tineke; Grüner, Jörg

    2016-01-01

    This study examines the performance of a low-cost ceramic candle filter system (CCFS) for point of use (POU) drinking water treatment in the village of Hobeni, Eastern Cape Province, South Africa. A stepwise laboratory test documented the negative effects of repeated loading and ambient field temperatures. Moreover, CCFS were distributed in Hobeni and a survey was carried out among their users. The performance of 51 CCFS was evaluated by dip slides and related to human factors. Already after ...

  10. Development of improved low-cost ceramic water filters for viral removal in the Haitian context

    OpenAIRE

    Guerrero-Latorre, Laura; Rusiñol Arantegui, Marta; Hundesa Gonfa, Ayalkibet; Garcia Vallès, Maite; Martínez Manent,Salvador; Joseph, Osnick; Bofill Mas, Silvia; Gironès Llop, Rosina

    2015-01-01

    Household-based water treatment (HWT) is increasingly being promoted to improve water quality and, therefore, health status in low-income countries. Ceramic water filters (CWFs) are used in many regions as sustainable HWT and have been proven to meet World Health Organization (WHO) microbiological performance targets for bacterial removal (24 log); however, the described viral removal efficiencies are insufficient to significantly reduce the associated risk of viral infection. With the object...

  11. Pulse cleaning flow models and numerical computation of candle ceramic filters

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and onedimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.

  12. Bacterial treatment effectiveness of point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Summers, R Scott

    2009-08-01

    Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 10(6)CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 10(3)-10(5)CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.

  13. Some issues on soot removal from exhaust gases by means of a catalytic ceramic filter

    Energy Technology Data Exchange (ETDEWEB)

    Ciambelli, P.; Palma, V.; Russo, P. [Dipt. di Ingegneria Chimica e Alimentare, Univ. di Salerno, Fisciano (Italy); Vaccaro, S. [Dipt. di Chemica, Univ. di Napoli Federico II, Napoli (Italy)

    1999-07-01

    A catalytic filter for soot oxidation was made by deposition of a TiO{sub 2} supported Cu/V/K/Cl based catalyst on the surface of a porous ceramic filter. The filter performances were evaluated and compared with those of powder catalyst and uncatalytic filter. Filter testing was performed by either temperature programmed oxidation of soot previously deposited on the filter or simultaneous soot filtration and filter regeneration performed at a gas-oil burner exhaust. Both experiments showed that the catalyst significantly increases the rate of soot combustion and reduces both light-off and burnout temperatures of soot. At 375 C the catalytic filter was continuously regenerated at the burner exhaust with a soot combustion rate of about 0.1 g/min. Tests performed in the presence of NO showed a further increase of the rate of catalytic combustion together with NO consumption. It is suggested that such a consumption was the result of two competitive reactions, i.e. the catalytic oxidation of NO to NO{sub 2} and the reaction of NO{sub x} with soot. A specific feature of the catalyst is that it is active for both reactions. (orig.)

  14. Experience operation of ceramic filter in Escatron; La experiencia de operacion del filtro ceramico en Escatron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the field of clean and efficient coal combustion technologies pressurized fluidized bed combustion stands out as one with experience and high potential. Being the PFBC a combined cycle, in order to reach the maximum efficiency the gas temperature to the gas turbine has to be as high as possible and with the highest degree of cleanness. The maximum cleanness, near 0 dust, can only be achieved by means of ceramic filters that present an almost absolute barrier to the dust in the gas. Presently the PFBC plants clean the gases by means of high efficiency cyclones that can not achieve an equivalent cleanness and consequently limit the temperature of the gases going to the gas turbine. In this scenery BWE as designer and constructor and ENDESA as final user have joint together to develop a high pressure, high temperature ceramic filter demonstration plant in the 80 MW PFBC power plant of Escatron. This project started in 1994 and finalized in 1999 and has been funded by the European Commission (Thermie Programs), Spain Ministry of Industry and PIE though OCIDE and OCICARBON. It has to be mentioned also the active technical and economical participation of the German Power electric company RWE. The ceramic filter demonstration plant installed in the 80 MW PFBC power plant of Escatron cleans 1/9 of the total gases going to the gas turbine substituting one of the nine secondary existent cyclons. (Author)

  15. Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

    Directory of Open Access Journals (Sweden)

    reza kharghanian

    2012-06-01

    Full Text Available In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are located on the centerline of vessels. In presence of noise and non-uniform illumination the extracted ridge points appear as separated points which consist parts of vessel centerline. In order to connect separated ridge points and extending them for thin vessel extraction, we introduce a bank of directional filters to determine proper direction for extending the ridge end points. The ridge end points grow to provide link between separated parts of centerline using the introduced procedure.   The result of experiment on images in the DRIVE database shows the proposed method outperforms the existing methods. Performance of the proposed method was evaluated based on accuracy, false positive and false negative criteria.

  16. Use of Gabor filters and deep networks in the segmentation of retinal vessel morphology

    Science.gov (United States)

    Leopold, Henry A.; Orchard, Jeff; Zelek, John; Lakshminarayanan, Vasudevan

    2017-02-01

    The segmentation of retinal morphology has numerous applications in assessing ophthalmologic and cardiovascular disease pathologies. The early detection of many such conditions is often the most effective method for reducing patient risk. Computer aided segmentation of the vasculature has proven to be a challenge, mainly due to inconsistencies such as noise, variations in hue and brightness that can greatly reduce the quality of fundus images. Accurate fundus and/or retinal vessel maps give rise to longitudinal studies able to utilize multimodal image registration and disease/condition status measurements, as well as applications in surgery preparation and biometrics. This paper further investigates the use of a Convolutional Neural Network as a multi-channel classifier of retinal vessels using the Digital Retinal Images for Vessel Extraction database, a standardized set of fundus images used to gauge the effectiveness of classification algorithms. The CNN has a feed-forward architecture and varies from other published architectures in its combination of: max-pooling, zero-padding, ReLU layers, batch normalization, two dense layers and finally a Softmax activation function. Notably, the use of Adam to optimize training the CNN on retinal fundus images has not been found in prior review. This work builds on prior work of the authors, exploring the use of Gabor filters to boost the accuracy of the system to 0.9478 during post processing. The mean of a series of Gabor filters with varying frequencies and sigma values are applied to the output of the network and used to determine whether a pixel represents a vessel or non-vessel.

  17. Effectiveness of ceramic filters in capturing Giardia duodenalis cysts in experimentally contaminated water

    Directory of Open Access Journals (Sweden)

    Larissa Imaculada da Costa Sobrinho

    2016-04-01

    Full Text Available Giardia duodenalis is the main water-transmitted protozoan in developing countries. This study evaluated the effectiveness of ceramic filters in capturing G. duodenalis cysts and verified the porosity size needed to remove cysts from contaminated water. The study was conducted in the Laboratory of Parasitology at the University of Taubaté, where each filter unit was made by joining two Pet gallons, latex hose and a ceramic filter. Two porosity sizes were selected: 0.5-1.0 μm and 5-15 μm with or without activated carbon, and the assays were run in triplicate. Approximately 60 μL (53 cysts of G. duodenalis cysts were placed in 2 liters of distilled water. After the preparation of the contaminated water, this solution was run through the filter until the completely filtered. Afterwards, the filtrate was processed according to the methodology described by De Faria (2006, in order to concentrate parasitic elements. The results were statistically evaluated using ANOVA and Tukey tests, showing that the 0.5- 1,0 μm porosity filter candles (with and without activated carbon were able to retain 100% of cysts of G. duodenalis. This is a result significantly superior to the results obtained in the control group (p<0.05. On the other hand, for the candles with porosity of 5 15 μm, total retention occurred only in candles with activated carbon. Based upon our results, it can be concluded that, in candles with both porosity sizes with activated carbon, all filters showed a satisfactory efficacy for filtration of G. duodenalis cysts.

  18. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  19. Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification

    Directory of Open Access Journals (Sweden)

    Zafer Yavuz

    2017-01-01

    Full Text Available Retinal blood vessels have a significant role in the diagnosis and treatment of various retinal diseases such as diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. For this reason, retinal vasculature extraction is important in order to help specialists for the diagnosis and treatment of systematic diseases. In this paper, a novel approach is developed to extract retinal blood vessel network. Our method comprises four stages: (1 preprocessing stage in order to prepare dataset for segmentation; (2 an enhancement procedure including Gabor, Frangi, and Gauss filters obtained separately before a top-hat transform; (3 a hard and soft clustering stage which includes K-means and Fuzzy C-means (FCM in order to get binary vessel map; and (4 a postprocessing step which removes falsely segmented isolated regions. The method is tested on color retinal images obtained from STARE and DRIVE databases which are available online. As a result, Gabor filter followed by K-means clustering method achieves 95.94% and 95.71% of accuracy for STARE and DRIVE databases, respectively, which are acceptable for diagnosis systems.

  20. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.

    Science.gov (United States)

    Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I

    2016-11-01

    Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh(-1)/NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure.

  1. Safe household water treatment and storage using ceramic drip filters: a randomised controlled trial in Bolivia.

    Science.gov (United States)

    Clasen, T; Brown, J; Suntura, O; Collin, S

    2004-01-01

    A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.

  2. Preventing diarrhoea with household ceramic water filters: assessment of a pilot project in Bolivia.

    Science.gov (United States)

    Clasen, Thomas F; Brown, Joseph; Collin, Simon M

    2006-06-01

    In an attempt to prevent diarrhoea in a rural community in central Bolivia, an international non-governmental organization implemented a pilot project to improve drinking water quality using gravity-fed, household-based, ceramic water filters. We assessed the performance of the filters by conducting a five-month randomized controlled trial among all 60 households in the pilot community. Water filters eliminated thermotolerant (faecal) coliforms from almost all intervention households and significantly reduced turbidity, thereby improving water aesthetics. Most importantly, the filters were associated with a 45.3% reduction in prevalence of diarrhoea among the study population (p = 0.02). After adjustment for household clustering and repeated episodes in individuals and controlling for age and baseline diarrhoea, prevalence of diarrhoea among the intervention group was 51% lower than controls, though the protective effect was only borderline significant (OR 0.49, 95% CI: 0.24, 1.01; p = 0.05). A follow-up survey conducted approximately 9 months after deployment of the filters found 67% being used regularly, 13% being used intermittently, and 21% not in use. Water samples from all regularly used filters were free of thermotolerant coliforms.

  3. Field investigation of arsenic in ceramic pot filter-treated drinking water.

    Science.gov (United States)

    Archer, A R; Elmore, A C; Bell, E; Rozycki, C

    2011-01-01

    Ceramic pot filters (CPFs) is one of several household water treatment technologies that is used to treat drinking water in developing areas. The filters have the advantage of being able to be manufactured using primarily locally available materials and local labor. However, naturally-occurring arsenic present in the clay used to make the filters has the potential to contaminate the water in excess of the World Health Organization drinking water standard of 0.01 mg/L. A manufacturing facility in Guatemala routinely rinses filters to reduce arsenic concentrations prior to distribution to consumers. A systemic study was performed to evaluate the change in arsenic concentrations with increasing volumes of rinse water. Arsenic field kit results were compared to standard method laboratory results, and dissolved versus suspended arsenic concentrations in CPF-treated water were evaluated. The results of the study suggest that rinsing is an effective means of mitigating arsenic leached from the filters, and that even in the absence of a formal rinsing program, routine consumer use may result in the rapid decline of arsenic concentrations. More importantly, the results indicate that filter manufacturers should give strong consideration to implementing an arsenic testing program.

  4. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; Goldner, Philippe, E-mail: philippe.goldner@chimie-paristech.fr [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Ferrier, Alban [PSL Research University, Chimie ParisTech–CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Sorbonnes Universités, UPMC Univ Paris 06, 75005 Paris (France); Thiel, Charles W.; Cone, Rufus L. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States); Ramírez, Mariola O.; Bausá, Luisa E. [Departamento Física de Materiales and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Ikesue, Akio [World Laboratory, Mutsuno, Atsuta-ku, Nagoya 456-0023 (Japan)

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  5. Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests.

    Science.gov (United States)

    Sjögren, G; Sletten, G; Dahl, J E

    2000-08-01

    Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P dental restorations and handled in accordance with the manufacturers' instructions were ranked from "noncytotoxic" to "mildly cytotoxic" according to the agar overlay and Millipore filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.

  6. Reducing diarrhea through the use of household-based ceramic water filters: a randomized, controlled trial in rural Bolivia.

    Science.gov (United States)

    Clasen, Thomas F; Brown, Joseph; Collin, Simon; Suntura, Oscar; Cairncross, Sandy

    2004-06-01

    Ceramic water filters have been identified as one of the most promising and accessible technologies for treating water at the household level. In a six-month trial, water filters were distributed randomly to half of the 50 participating households in a rural community in Bolivia; the remaining households continued to use customary water handling practices and served as controls. In four rounds of sampling following distribution of the filters, 100% of the 96 water samples from the filter households were free of thermotolerant coliforms compared with 15.5% of the control household samples. Diarrheal disease risk for individuals in intervention households was 70% lower than for controls (95% confidence interval [CI] = 53-80%; P ceramic water filters enable low-income households to treat and maintain the microbiologic quality of their drinking water.

  7. Ceramic membrane filters for fine particulate removal in coal-fired industrial boilers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W.; Makris, P.; Krecker, J.; Jung, G.; Stubblefield, D.J.

    1998-07-01

    Strategies are being developed at Penn Sate to produce ultralow emissions when firing coal-based fuel, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The research is being conducted at the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Specific activities are identifying/developing a low-temperature NO{sub x} reduction catalyst, studying the occurrence of nitrogen in coal and the fundamental mechanisms of NO{sub x} production, characterizing air toxic emissions, investigating the use of BioLime{trademark} for simultaneous SO{sub 2}/NO{sub x} reduction, and evaluating a ceramic filter for fine particulate control. Results from trace element and polynuclear aromatic hydrocarbon emissions testing when firing coal-based fuels are reported elsewhere in these proceedings. This paper discusses the preliminary results obtained using ceramic membrane filters for fine particulate removal when firing micronized coal in a package boiler.

  8. Effects of ultrasound on the performance improvement of wastewater microfiltration through a porous ceramic filter

    Directory of Open Access Journals (Sweden)

    I. C. C. Rocha

    2009-12-01

    Full Text Available Filtration under an ultrasonic field is a technique that is gaining importance in the wastewater treatment research field, not only due to its ability as a cleaning mechanism, but also as a filtration intensifier. The main objective of this research was the study of the influence of ultrasonic waves on the filtration of theoilfield wastewater (known as produced water in order to increase the operation performance and filter medium regenerative effectiveness. A 0.016 m² hollow cylindrical porous ceramic filter was submitted to the filtration of produced water by two mechanisms: conventional filtration under vacuum and filtration under theinfluence of ultrasonic waves. Experiments were carried out using synthetic produced water by analyzing the variables oil and grease content (O&G and total suspended solids (TSS for each filtration run. Backwashing of the filter medium with distilled water was also performed to evaluate the regeneration efficiency. During conventional filtration, permeate flux decreased gradually, becoming stable around 0.06 cm³.cm-2.s-1. Furthermore, in the filtration assisted by ultrasound, the permeate flux was around 0.15 cm³.cm-2.s-1. Therefore, ultrasonic waves provided an increase of about 150% in the permeate flux. Moreover, the sonication improved filter medium regeneration effectiveness, even under conditions of high TSS and O&G contents. Taking into consideration the very positive results associated with the application of ultrasonicwaves, this filtration technique is likely to become an important industrial process.

  9. Performance Study of Ceramic Filter Module in Recirculated Aquaculture System (RAS)

    Science.gov (United States)

    Ng, L. Y.; Ng, C. Y.

    2017-06-01

    The growth of world population has led to significant increase in seafood demand over the world. Aquaculture has been widely accepted by many countries to increase the seafood production owing to the decline of natural seafood resources. The aquaculture productivity, however, is directly linked to the pond water quality. In this study, attempts were made to employ ceramic micro-filter to improve the pond water quality through filtration processes. There were two batches of filtration processes, short term (1 hour) and long term (48 hours). Significant improvements on real pond water quality were recorded through the short term microfiltration process, which reduced turbidity (96%), total suspended solids (TSS) (80%), biochemical oxygen demand (BOD) (72%), chemical oxygen demand (COD) (55%), ammonia (60%), nitrate (96%) and phosphorus (83%). The long term filtration process also showed high efficiency in the removal of solid particle and organic matters. The results showed that all of the parameters were successfully reduced to acceptable ranges (turbidity<80 NTU, TSS<400 mg/L, BOD<5 mg/L, COD<70 mg/L, phosphate<3 mg/L and ammonia<0.05 mg/L) for fish culturing activity. Based on current study, there was a drastic increase in nitrate content after 24 hours due to the nitrification process by regenerated bacteria in the filtered pond water. Current study showed that the microfiltration using ceramic micro-filter has high potential to be used in recirculating aquaculture system throughout the aquaculture activities in order to maintain the pond water quality, thus, increase the survival rate of cultured species.

  10. Multilevel modeling of retention and disinfection efficacy of silver nanoparticles on ceramic water filters.

    Science.gov (United States)

    Mikelonis, Anne M; Lawler, Desmond F; Passalacqua, Paola

    2016-10-01

    This research examined how variations in synthesis methods of silver nanoparticles affect both the release of silver from ceramic water filters (CWFs) and disinfection efficacy. The silver nanoparticles used were stabilized by four different molecules: citrate, polyvinylpyrrolidone, branched polyethylenimine, and casein. A multilevel statistical model was built to quantify if there was a significant difference in: a) extent of silver lost, b) initial amount of silver lost, c) silver lost for water of different quality, and d) total coliform removal. Experiments were performed on location at Pure Home Water, a CWF factory in Tamale, Ghana using stored rainwater and dugout water (a local surface water). The results indicated that using dugout vs. rainwater significantly affects the initial (p-value 0.0015) and sustained (p-value 0.0124) loss of silver, but that silver type does not have a significant effect. On average, dugout water removed 37.5μg/L more initial silver and had 1.1μg/L more silver in the filtrate than rainwater. Initially, filters achieved 1.9 log reduction values (LRVs) on average, but among different silver and water types this varied by as much as 2.5 LRV units. Overall, bacterial removal effectiveness was more challenging to evaluate, but some data suggest that the branched polyethylenimine silver nanoparticles provided improved initial bacterial removal over filters which were not painted with silver nanoparticles (p-value 0.038).

  11. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    Science.gov (United States)

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  12. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water.

  13. Image Analysis on Detachment Process of Dust Cake on Ceramic Candle Filter

    Institute of Scientific and Technical Information of China (English)

    姬忠礼; 焦海青; 陈鸿海

    2005-01-01

    Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the reservoir pressure, and the filtration velocity on the cleaning effectiveness are analyzed. Experimental results show that there exists an optimum dust cake thickness for pulse-cleaning process. For thin dust cake, the patchy cleaning exists and the cleaning efficiency is low; if the dust cake is too thick, the pressure drop across the dust cake becomes higher and a higher reservoir pressure may be needed. At the same time there also exists an optimum reservoir pressure for a given filtration condition.

  14. Evaluation of a low-cost ceramic micro-porous filter for elimination of common disease microorganisms

    Science.gov (United States)

    Simonis, Jean Jacques; Basson, Albertus Koetzee

    In this research project, the microbiological quality of the water processed by a low cost, newly developed micro-porous ceramic filter is evaluated. As 66% of the human body is made up of water, it is important to ensure the availability of clean, potable water that is free from pathogens. Even clean-looking water can still contain bacteria and other toxic impurities. Annually, millions of people contract severe illnesses from drinking water. One simple but effective way of making sure that water is of good quality is by making use of a household water filter. It is, however, of critical importance that such a low cost water filter is capable of removing suspended solids, pathogenic bacteria and other toxins from the drinking water. A low cost, micro-porous ceramic water filter with micron-sized pores was developed using the slip casting process. Naturally occurring water from two streams and a lake containing different species of bacteria was used in testing the ceramic filter’s effectiveness in eliminating bacteria. The filter proved to be effective in providing protection from bacteria and suspended solids found in natural water. This filtration process is suggested as a possible solution for the problem faced by more than 250 million people in Africa without provision of clean drinking water.

  15. Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment.

    Science.gov (United States)

    van der Laan, H; van Halem, D; Smeets, P W M H; Soppe, A I A; Kroesbergen, J; Wubbels, G; Nederstigt, J; Gensburger, I; Heijman, S G J

    2014-03-15

    In 2012 more than 4 million people used a ceramic pot filter (CPF) as household water treatment system for their daily drinking water needs. In the normal production protocol most low cost filters are impregnated with a silver solution to enhance the microbial removal efficiency. The aim of this study was to determine the role of silver during the filtration and subsequent storage. Twenty-two CPFs with three different silver applications (non, only outside and both sides) were compared in a long-term loading experiment with Escherichia coli (K12 and WR1) and MS2 bacteriophages in natural challenge water under highly controlled laboratory circumstances. No significant difference in Log Removal Values were found between the filters with different silver applications. The results show that the storage time in the receptacle is the dominant parameter to reach E. coli inactivation by silver, and not the contact time during the filtration phase. The hypothesis that the absence of silver would enhance the virus removal, due to biofilm formation on the ceramic filter element, could not be confirmed. The removal effectiveness for viruses is still of major concern for the CPF. This study suggests that the ceramic pot filter characteristics, such as burnt material content, do not determine E. coli removal efficacies, but rather the contact time with silver during storage is the dominant parameter to reach E. coli inactivation.

  16. Do low-cost ceramic water filters improve water security in rural South Africa?

    Science.gov (United States)

    Lange, Jens; Materne, Tineke; Grüner, Jörg

    2016-10-01

    This study examined the performance of a low-cost ceramic candle filter system (CCFS) for point of use (POU) drinking water treatment in the village of Hobeni, Eastern Cape Province, South Africa. CCFSs were distributed in Hobeni and a survey was carried out among their users. The performance of 51 CCFSs was evaluated by dip slides and related to human factors. Already after two-thirds of their specified lifetime, none of the distributed CCFSs produced water without distinct contamination, and more than one-third even deteriorated in hygienic water quality. Besides the water source (springs were preferable compared to river or rain water), a high water throughput was the dominant reason for poor CCFS performance. A stepwise laboratory test documented the negative effects of repeated loading and ambient field temperatures. These findings suggest that not every CCFS type per se guarantees improved drinking water security and that the efficiency of low-cost systems should continuously be monitored. For this purpose, dip slides were found to be a cost-efficient alternative to standard laboratory tests. They consistently underestimated microbial counts but can be used by laypersons and hence by the users themselves to assess critical contamination of their filter systems.

  17. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    Science.gov (United States)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  18. Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane coated point-of-use ceramic water filters.

    Science.gov (United States)

    Zhang, Hongyin; Oyanedel-Craver, Vinka

    2013-09-15

    This study compares the disinfection performance of ceramic water filters impregnated with two antibacterial compounds: silver nanoparticles and a polymer based quaternary amine functiaonalized silsesquioxane (poly(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride (TPA)). This study evaluated these compounds using ceramic disks manufactures with clay obtained from a ceramic filter factory located in San Mateo Ixtatan, Guatemala. Instead of using full size ceramic water filters, manufactured 6.5 cm diameter ceramic water filter disks were used. Results showed that TPA can achieve a log bacterial reduction value of 10 while silver nanoparticles reached up to 2 log reduction using a initial concentration of bacteria of 10(10)-10(11)CFU/ml. Similarly, bacterial transport demonstrated that ceramic filter disks painted with TPA achieved a bacterial log reduction value of 6.24, which is about 2 log higher than the values obtained for disks painted with silver nanoparticles (bacterial log reduction value: 4.42). The release of both disinfectants from the ceramic materials to the treated water was determined measuring the effluent concentrations in each test performed. Regarding TPA, about 3% of the total mass applied to the ceramic disks was released in the effluent over 300 min, which is slightly lower than the release percentage for silver nanoparticles (4%). This study showed that TPA provides a comparable disinfection performance than silver nanoparticles in ceramic water filter. Another advantage of using TPA is the cost as the price of TPA is considerable lower than silver nanoparticles. In spite of the use of TPA in several medical related products, there is only partial information regarding the health risk associated with the ingestion of this compound. Additional long-term toxicological information for TPA should be evaluated before its future application in ceramic water filters.

  19. Development of a ceramics filter technology for aluminum recycling. Discussion on an unnecessary constituent reducing process by means of solid-liquid separation; Recycle arumiyo ceramics filter gijutsu no kaihatsu. Koeki bunrini yoru fuyo seibun teigen process no kento

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T.; Honma, K. [Hokkaido Electric Power Co. Inc., Sapporo (Japan); Narita, T.; Suzuki, T. [Hokkaido University, Sapporo (Japan); Matsubara, H.; Aoki, S. [Japan Fine Ceramics Center, Nagoya (Japan)

    2000-03-24

    A problem in recycling aluminum scraps is the existence of Fe and Pb as impurities, in addition to added alloy elements (Cu, Si, Mg and Zn). Discussion was given on an Fe concentration reducing method, in which molten Al-Cu-Fe-based alloy to simulate scrapped materials is filtered by an alumina ceramics filter at the solid-liquid phase coexisting temperature zone. The ceramics filter was formed by mixing thermally hardening resin into fine powder material. By using a method to drill through-holes during the forming stage, fine pores were optionally controlled in the sub-millimeter to millimeter order. In the filtration, if the Fe concentration is lower than that in the eutectic composition, Cu and Fe are condensed in the permeate phase, whereas primary crystal of aluminum is accumulated on the filter as the remaining phase, enhancing the aluminum purity. Filtration, repeated three times, has reduced the Fe concentration from 0.75 to 0.63% by atoms. If the Fe concentration is higher than eutectic concentration, since Fe is condensed in the form of intermetallic compound of FeAl{sub 3} as the remaining phase on the filter, the Fe concentration is reduced in the permeation phase, and three-time filtration reduced the Fe concentration from 1.5 to 0.70% by atoms. (NEDO)

  20. A post-implementation evaluation of ceramic water filters distributed to tsunami-affected communities in Sri Lanka.

    Science.gov (United States)

    Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D

    2012-06-01

    Sri Lanka was devastated by the 2004 Indian Ocean tsunami. During recovery, the Red Cross distributed approximately 12,000 free ceramic water filters. This cross-sectional study was an independent post-implementation assessment of 452 households that received filters, to determine the proportion still using filters, household characteristics associated with use, and quality of household drinking water. The proportion of continued users was high (76%). The most common household water sources were taps or shallow wells. The majority (82%) of users used filtered water for drinking only. Mean filter flow rate was 1.12 L/hr (0.80 L/hr for households with taps and 0.71 for those with wells). Water quality varied by source; households using tap water had source water of high microbial quality. Filters improved water quality, reducing Escherichia coli for households (largely well users) with high levels in their source water. Households were satisfied with filters and are potentially long-term users. To promote sustained use, recovery filter distribution efforts should try to identify households at greatest long-term risk, particularly those who have not moved to safer water sources during recovery. They should be joined with long-term commitment to building supply chains and local production capacity to ensure safe water access.

  1. Critical parameters in the production of ceramic pot filters for household water treatment in developing countries.

    Science.gov (United States)

    Soppe, A I A; Heijman, S G J; Gensburger, I; Shantz, A; van Halem, D; Kroesbergen, J; Wubbels, G H; Smeets, P W M H

    2015-06-01

    The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study's objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions. Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture. The main conclusions: larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10-20 L/hour without a significant decrease in bacterial removal efficiency.

  2. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier.

    Science.gov (United States)

    Brown, Joe; Sobsey, Mark D; Loomis, Dana

    2008-09-01

    A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time.

  3. A comparison between ceramic membrane filters and conventional fabric filters for fine particulate removal from a coal-fired industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States); Drury, K. [Corning Inc., Painted Post, NY (United States); Makris [Corning Inc., Acton, MA (United States); Stubblefield, D.J. [Corning Inc., Corning, NY (United States)

    1998-12-31

    Penn State is developing technologies for ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF) in industrial boilers. Emissions being addressed are SO{sub 2}, NOx, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Results from trace element and polynuclear aromatic hydrocarbon emissions testing, when firing coal-based fuels, are reported elsewhere in these proceedings. This paper discusses the evaluation of ceramic membrane filters for fine particulate removal in a package boiler when firing micronized coal and CWSF.

  4. 陶瓷滤料改性的研究与应用%Modified Ceramic Filter Material Research and Application in Water Treatment

    Institute of Scientific and Technical Information of China (English)

    闫广勇; 于衍真

    2014-01-01

    This article mainly expounds the modifica tion methods of ceramic filter material and modified ceramic filter material application in water treatment, By comparing the performance study, Found that modified ceramic filter material is a kind of new type,environmental protection, economic and convenient filtering material, suitable for the study of widely.%阐述了陶瓷滤料的改性方法,从改性陶瓷滤料处理含油废水、印染废水及含重金属工业废水等方面论述了改性陶瓷滤料在水处理中的应用。通过对比性能研究,认为改性陶瓷滤料是一种新型的、环保的、经济的、便捷的过滤材料,适合人们广泛研究。

  5. DETECTION OF VESSELS IN HUMAN FOREARMS USING 2D MATCHED FILTERING

    DEFF Research Database (Denmark)

    Savarimuthu, Thiusius Rajeeth; Sørensen, Anders Stengaard

    2008-01-01

    Detektering af blodårer ved brug af 2D matched filtering i billeder af underarmen. Billederne er produseret ved brug af nær infrarødt lys.......Detektering af blodårer ved brug af 2D matched filtering i billeder af underarmen. Billederne er produseret ved brug af nær infrarødt lys....

  6. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    OpenAIRE

    2015-01-01

    International audience; Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfin...

  7. A novel methodology for adaptive wave filtering of marine vessels: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Hassani, V.; Pascoal, A.M.; Sorensen, A.J.

    -frequency (LF) vessel motion and wave-frequency (WF) motions. It was further recognized that in order to reduce the mechanical wear and tear of the propulsion system components, in small to high see states, the estimates entering the DP control feedback loop... the oscillatory motion induced by the waves (1st-order wave induced loads) should not enter the feedback control loop. To this effect, DP control systems should be designed so as to react to the low frequency forces on the vessel only. In practice, position...

  8. Electromagnetically Modified Filtration of Aluminum Melts—Part I: Electromagnetic Theory and 30 PPI Ceramic Foam Filter Experimental Results

    Science.gov (United States)

    Kennedy, Mark William; Akhtar, Shahid; Bakken, Jon Arne; Aune, Ragnhild E.

    2013-06-01

    In the present work, laboratory-scale continuous filtration tests of liquid A356 aluminum alloy have been performed. The tests were conducted using standard 30 PPI (pores per inch) ceramic foam filters combined with magnetic flux densities (~0.1 and 0.2 T), produced using two different induction coils operated at 50 Hz AC. A reference filtration test was also carried out under gravity conditions, i.e., without an applied magnetic field. The obtained results clearly prove that the magnetic field has a significant affect on the distribution of SiC particles. The influence of the electromagnetic Lorentz forces and induced bulk metal flow on the obtained filtration efficiencies and on the wetting behavior of the filter media by liquid aluminum is discussed. The magnitudes of the Lorentz forces produced by the induction coils are quantified based on analytical and COMSOL 4.2® finite element modeling.

  9. Trainable COSFIRE filters for vessel delineation with application to retinal images

    NARCIS (Netherlands)

    Azzopardi, George; Strisciuglio, Nicola; Vento, Mario; Petkov, Nicolai

    Retinal imaging provides a non-invasive opportunity for the diagnosis of several medical pathologies. The automatic segmentation of the vessel tree is an important pre-processing step which facilitates subsequent automatic processes that contribute to such diagnosis. We introduce a novel method for

  10. Trainable COSFIRE filters for vessel delineation with application to retinal images

    NARCIS (Netherlands)

    Azzopardi, G; Strisciuglio, N.; Vento, M.; Petkov, N.

    2015-01-01

    Retinal imaging provides a non-invasive opportunity for the diagnosis of several medical pathologies. The automatic segmentation of the vessel tree is an important pre-processing step which facilitates subsequent automatic processes that contribute to such diagnosis. We introduce a novel method for

  11. Report on system confirmation test of the used filter transporting vessel. 1

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kiyoto; Morita, Shin-ichi; Hanada, Keiji; Ouchi, Kazutoshi; Kawakami, Kazuyoshi; Uryu, Mitsuru; Karino, Motonobu

    1997-05-01

    As an exchanging method of vacuum filter element installed at vacuum system of the Recycle Equipment Test Facility (RETF), the cask method is determined to use at a viewpoint of pollution expansion protection and radiation exposure reduction of workers. A principle proof test was conducted after trial protection of main parts according to design conducted in 1995 fiscal year. As a result, it was found that filter element (after storing a container) could be exhausted without any problem, in falling test of exhausting chute, that a setting method of exchanger onto upper part of the filter unit was required to improve, that a set of filter exchanging medium could be conducted scarcely any problem, that a load required to push a filter element into the determined position was at least 37 kg, and that an allowable interval at jointing with a double-door flange was 0.8 mm and air tightness could be kept if its inclination is less tha 0.85 mm. (G.K.)

  12. The separation efficiency of ceramic barrier filters determined at high temperatures by optical particle size and concentration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hemmer, G.; Umhauer, H.; Kasper, G. [Univ. Karlsruhe, Inst. fuer Mechanische Verfahrenstechnik und Mechanik, Karlsruhe (Germany); Berbner, S. [Freudenberg Nonwovens, Filtration Div., Hopkinsville, KY (United States)

    1999-07-01

    Based on the experiences of earlier investigations a special optical particle counter was developed capable of recording size and quantity (concentration) of the particles directly within a given gas particle stream under the prevailing conditions (true in-situ measurements at high temperatures). In addition to earlier investigations [1], a second type of ceramic filter media with much smaller porosity and a membrane layer on the filtration side was tested. The candles with a length of 1.5 m which are used in industrial applications were mounted in the same hot gas filtration unit already used before. Measurements on the clean gas side at temperatures of up to 1000 C have been conducted using a fraction of quartz particles as test dust. The particle size ranged between 0.3 {mu}m and 10 {mu}m. Filtration velocity (1.5 cm/s) and final pressure drop of dust cake {delta}p (1000 Pa) were kept constant. As a main result the fractional efficiency as function of temperature is discussed and compared with that obtained before for a filter media of type I: The fractional efficiency values of filter type II are at least 100 times higher than that of filter type I. (orig.)

  13. 利用粉煤灰生产陶粒滤料探讨%Fly-asXh produce ceramic particles filter

    Institute of Scientific and Technical Information of China (English)

    郝熙旺

    2012-01-01

    In this paper,combine the biological filter and production process of Ceramic Particles,investigate the production method of fly-ash as a ceramic water filter.From material selection,production process and applications to be described.%本文结合生物滤池技术和陶粒生产工艺,探讨生产用做水处理滤料的粉煤灰陶粒的生产方法,并从原料选择、生产工艺及产品应用方面加以阐述。

  14. Evaluation of the ICET Test Stand to Assess the Performance of a Range of Ceramic Media Filter Elements in Support of ASME AG-1 Subsection FO

    Energy Technology Data Exchange (ETDEWEB)

    Schemmel, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-26

    High Efficiency Particulate Air (HEPA) filters are defined as extended-medium, dry-type filters with: (1) a minimum particle removal efficiency of no less than 99.97 percent for 0.3 micrometer particles, (2) a maximum, clean resistance of 1.0 inch water column (in. WC) when operated at 1,000 cubic feet per minute (CFM), and (3) a rigid casing that extends the full depth of the medium. Specifically, ceramic media HEPA filters provide better performance at elevated temperatures, are moisture resistant and nonflammable, can perform their function if wetted and exposed to greater pressures, and can be cleaned and reused. This paper describes the modification and design of a large scale test stand which properly evaluates the filtration characteristics of a range of ceramic media filters challenged with a nuclear aerosol agent in order to develop Section FO of ASME AG-1.

  15. Assessing the sustainability of the silver-impregnated ceramic pot filter for low-cost household drinking water treatment

    Science.gov (United States)

    van Halem, D.; van der Laan, H.; Heijman, S. G. J.; van Dijk, J. C.; Amy, G. L.

    A low-cost technology to treat water at the household level is the ceramic silver-impregnated pot filter (CSF). The CSF consists of a pot-shaped filter element that is placed in a plastic receptacle. The ceramic pot filter is a promising treatment system to supply safe drinking water especially to people living in rural areas. The focus of this study was to assess the sustainability of a household drinking water treatment system based on five criteria: (i) accessibility, (ii) water quality, (iii) water production, (iv) functionality, and (v) environmental footprint. The removal of Escherichia coli and protozoan (oo)cysts was found to be significant, which was supported by the reduction in diarrhoea cases observed by CSF users in a recent field study. The retention of MS2 bacteriophages as an indicator for virus removal was, however, found to be unsatisfactory. It is therefore recommended that research on virus removal by CSF continues, especially in relation to the colloidal silver application and other potential additives. The criterion of water production was shown to be the limiting factor, because it reduced substantially during treatment of surface water. The fast clogging of the CSF during the first hours of use was caused neither by inorganic nor organic fouling, but by colloidal particles. Two direct effects may be identified from the decreasing flow rate: frequent scrubbing and higher water prices. Frequent scrubbing results in a higher risk of recontamination and breakage. Based on this finding the authors recommend an optimization study to increase the initial flow rate without sacrificing the removal efficiency.

  16. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    Science.gov (United States)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  17. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    Science.gov (United States)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2016-12-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  18. Concerning relationship between production technology of ceramic vessels and their functional purposes: characteristic of the pastes (According to investigations at the Bolgar settlement 2011-2012

    Directory of Open Access Journals (Sweden)

    Bakhmatova Vera N.

    2014-06-01

    Full Text Available Results of research in the mode of preparing molding compositions as one of technological stages in Bulgar pottery production are presented in the article. The subject of study was the common Bulgar ceramics from the Bulgar settlement site of the Golden Horde period (2011-2012 excavations. Four basic functional groups of ceramics were selected: kitchen, transportation, tableware, technical items. The study was conducted with the aim of identifying the dependence of pottery technology on the pottery functional purpose. While analyzing the materials, a complex methodology has been applied: a synthesis of traditional archaeological and natural science methods (A.A. Bobrinsky’s technical and technological method, petrography, X-ray phase analysis. The studies have shown that different functional forms of pottery had generated a variety of approaches to their manufacture. In most cases, special recipes were absent, but a certain differentiation could be traced in the choice of raw materials for the manufacture of vessels for different functional purposes. A further detailed study of the stages associated with raw materials selection and extraction, as well as that of the vessel hollow body design, and the methods of vessel strengthening (drying and firing are in prospect.

  19. Alternative Electrode Materials and Ceramic Filter Minimize Disinfection Byproducts in Point-of-Use Electrochemical Water Treatment

    Science.gov (United States)

    Yoon, Yeojoon; Jung, Youmi; Kwon, Minhwan; Cho, Eunha; Kang, Joon-Wun

    2013-01-01

    Abstract Effects of various electrodes and prefiltration to minimize disinfection byproducts (DBPs) in electrochemical water disinfection was evaluated. The target microorganism, Escherichia coli O157:H7, was effectively inactivated even applying a solar-charged storage battery for the electrolysis process. Extent of microbial inactivation decreased with lower water temperature and higher pH in the free chlorine disinfection system. The RuO2/Ti electrode was most efficient because it produced the lowest concentration of chlorate and the highest generation of free chlorine. Prefiltration using a ceramic filter inhibited formation of halogenated DBPs because it removed precursors of DBPs. For safe point-of-use water treatment, the use of a hybrid prefiltration stage with the electrolysis system is strongly recommended to reduce risks from DBPs. The system is particularly suited to use in developing regions. PMID:24381482

  20. Alternative Electrode Materials and Ceramic Filter Minimize Disinfection Byproducts in Point-of-Use Electrochemical Water Treatment.

    Science.gov (United States)

    Yoon, Yeojoon; Jung, Youmi; Kwon, Minhwan; Cho, Eunha; Kang, Joon-Wun

    2013-12-01

    Effects of various electrodes and prefiltration to minimize disinfection byproducts (DBPs) in electrochemical water disinfection was evaluated. The target microorganism, Escherichia coli O157:H7, was effectively inactivated even applying a solar-charged storage battery for the electrolysis process. Extent of microbial inactivation decreased with lower water temperature and higher pH in the free chlorine disinfection system. The RuO2/Ti electrode was most efficient because it produced the lowest concentration of chlorate and the highest generation of free chlorine. Prefiltration using a ceramic filter inhibited formation of halogenated DBPs because it removed precursors of DBPs. For safe point-of-use water treatment, the use of a hybrid prefiltration stage with the electrolysis system is strongly recommended to reduce risks from DBPs. The system is particularly suited to use in developing regions.

  1. Effect of Fluid Bypassing on the Experimentally Obtained Darcy and Non-Darcy Permeability Parameters of Ceramic Foam Filters

    Science.gov (United States)

    Akbarnejad, Shahin; Saffari Pour, Mohsen; Jonsson, Lage Tord Ingemar; Jönsson, Pӓr Göran

    2017-02-01

    Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.

  2. Development and characterization of Textron continuous fiber ceramic composite hot gas filter materials. Final report, September 30, 1994--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    DiPietro, S.G.; Alvin, M.A.

    1997-12-31

    Uncertainties about the long-term ability of monolithic ceramics to survive in the IGCC or PFBC hot gas filter environment led DOE/METC to consider the merits of using continuous fiber reinforced ceramic composites (CFCCs) as potential next-generation high temperature filter elements. This seems to be a logical strategy to pursue in light of the fact that properly-engineered CFCC materials have shown much-improved damage tolerance and thermal shock behavior as compared to existing monolithic ceramic materials. Textron`s Advanced Hot Gas Filter Development Program was intended to be a two year, two phase program which transitioned developmental materials R and D into prototype filter element fabrication. The first phase was to demonstrate the technical feasibility of fabricating CFCC hot gas filter elements which could meet the pressure drop specifications of less than ten inches of water (iwg) at a face velocity of ten feet per minute (fpm), while showing sufficient integrity to survive normal mechanical loads and adequate environmental resistance to steam/alkali corrosion conditions at a temperature of approximately 870 C (1600 F). The primary objective of the second phase of the program was to scale up fabrication methods developed in Phase 1 to produce full-scale CFCC candle filters for validation testing. Textron encountered significant process-related and technical difficulties in merely meeting the program permeability specifications, and much effort was expended in showing that this could indeed be achieved. Thus, by the time the Phase 1 program was completed, expenditure of program funds precluded continuing on with Phase 2, and Textron elected to terminate their program after Phase 1. This allowed Textron to be able to focus technical and commercialization efforts on their largely successful DOE CFCC Program.

  3. Development and characterization of Textron continuous fiber ceramic composite hot gas filter materials. Final report, September 30, 1994--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    DiPietro, S.G.; Alvin, M.A.

    1997-12-31

    Uncertainties about the long-term ability of monolithic ceramics to survive in the IGCC or PFBC hot gas filter environment led DOE/METC to consider the merits of using continuous fiber reinforced ceramic composites (CFCCs) as potential next-generation high temperature filter elements. This seems to be a logical strategy to pursue in light of the fact that properly-engineered CFCC materials have shown much-improved damage tolerance and thermal shock behavior as compared to existing monolithic ceramic materials. Textron`s Advanced Hot Gas Filter Development Program was intended to be a two year, two phase program which transitioned developmental materials R and D into prototype filter element fabrication. The first phase was to demonstrate the technical feasibility of fabricating CFCC hot gas filter elements which could meet the pressure drop specifications of less than ten inches of water (iwg) at a face velocity of ten feet per minute (fpm), while showing sufficient integrity to survive normal mechanical loads and adequate environmental resistance to steam/alkali corrosion conditions at a temperature of approximately 870 C (1600 F). The primary objective of the second phase of the program was to scale up fabrication methods developed in Phase 1 to produce full-scale CFCC candle filters for validation testing. Textron encountered significant process-related and technical difficulties in merely meeting the program permeability specifications, and much effort was expended in showing that this could indeed be achieved. Thus, by the time the Phase 1 program was completed, expenditure of program funds precluded continuing on with Phase 2, and Textron elected to terminate their program after Phase 1. This allowed Textron to be able to focus technical and commercialization efforts on their largely successful DOE CFCC Program.

  4. Predicting model on ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter based on BP neural network

    Directory of Open Access Journals (Sweden)

    Yu Jingyuan

    2011-08-01

    Full Text Available In present study, BP neural network model was proposed for the prediction of ultimate compressive strength of Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The inputs of the BP neural network model were the applied load on the epispastic polystyrene template (F, centrifugal acceleration (v and sintering temperature (T, while the only output was the ultimate compressive strength (σ. According to the registered BP model, the effects of F, v, T on σ were analyzed. The predicted results agree with the actual data within reasonable experimental error, indicating that the BP model is practically a very useful tool in property prediction and process parameter design of the Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting.

  5. Household-based ceramic water filters for the prevention of diarrhea: a randomized, controlled trial of a pilot program in Colombia.

    Science.gov (United States)

    Clasen, Thomas; Garcia Parra, Gloria; Boisson, Sophie; Collin, Simon

    2005-10-01

    Household water treatment is increasingly recognized as an effective means of reducing the burden of diarrheal disease among low-income populations without access to safe water. Oxfam GB undertook a pilot project to explore the use of household-based ceramic water filters in three remote communities in Colombia. In a randomized, controlled trial over a period of six months, the filters were associated with a 75.3% reduction in arithmetic mean thermotolerant coliforms (TTCs) (P filters than among control households (odds ratio = 0.40, 95% confidence interval = 0.25, 0.63, P filters was not uniform throughout the study communities, suggesting the need to consider the circumstances of the particular setting before implementing this intervention.

  6. Testing of ceramic filter materials at the PCFB test facility; Keraamisten suodinmateriaalien testaus PCFB-koelaitoksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P.; Tiensuu, J. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula, Finland since 1986. In 1989, a 10 MW PCFB test facility was constructed. The test facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main objective of the project Y53 was to evaluate advanced candle filter materials for the Hot Gas Clean-up Unit (HGCU) to be used in a commercial PCFB Demonstration Project. To achieve this goal, the selected candle materials were exposed to actual high temperature, high pressure coal combustion flue gases for a period of 1000-1500 h during the PCFB test runs. The test runs were carried out in three test segments in Foster Wheeler`s PCFB test facility at the Karhula R and D Center. An extensive inspection and sampling program was carried out after the second test segment. Selected sample candles were analyzed by the filter supplier and the preliminary results were encouraging. The material strength had decreased only within expected range. Slight elongation of the silicon carbide candles was observed, but at this phase the elongation can not be addressed to creep, unlike in the candles tested in 1993-94. The third and last test segment was completed successfully in October 1996. The filter system was inspected and several sample candles were selected for material characterization. The results will be available in February - March 1997. (orig.)

  7. High temperature corrosion of advanced ceramic materials for hot-gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kupp, E.R.; Trubelja, M.F.; Spear, K.E.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Experimental corrosion studies of hot gas filter materials and heat exchanger materials in oxidizing combustion environments have been initiated. Filter materials from 3M Co. and DuPont Lanxide Composites Inc. are being tested over a range of temperatures, times and gas flows. It has been demonstrated that morphological and phase changes due to corrosive effects occur after exposure of the 3M material to a combustion environment for as little as 25 hours at 800{degrees}C. The study of heat exchanger materials has focused on enhancing the corrosion resistance of DuPont Lanxide Dimox{trademark} composite tubes by adding chromium to its surfaces by (1) heat treatments in a Cr{sub 2}O{sub 3} powder bed, or (2) infiltrating surface porosity with molten chromium nitrate. Each process is followed by a surface homogenization at 1500{degrees}C. The powder bed method has been most successful, producing continuous Cr-rich layers with thicknesses ranging from 20 to 250 {mu}m. As-received and Cr-modified DuPont Lanxide Dimox{trademark} samples will be reacted with commonly encountered coal-ash slags to determine the Cr effects on corrosion resistance.

  8. Application of Ceramic Filter in Tailings and Treatment of Other Industrial Waste Residue%陶瓷过滤机在选矿尾矿及其它工业废渣处理的应用

    Institute of Scientific and Technical Information of China (English)

    赵德平; 贾彪

    2009-01-01

    介绍了陶瓷过滤机与其他过滤机相比具有生产率高、节能降耗、清洁环保等方面的优点,列举了陶瓷过滤机在国内几大矿山的使用情况,指出陶瓷过滤机在矿山、冶金、化工、建材等行业中废渣、废水处理方面的广泛应用前景.%Ceramic filter has advantages over other filters in high productivity, energy saving and consumption reducing, and environmental protection. The service conditions of the ceramic filter in domestic large mines are cited. It considers that the ceramic filter has extensive use in treatment of waste residue and waste water of mine, metallurgy, chemical industry and building materials.

  9. Effect of silver nanoparticle coatings on mycobacterial biofilm attachment and growth: Implications for ceramic water filters

    Science.gov (United States)

    Larimer, Curtis James

    demonstrated by culturing M. smegmatis on porous membrane filters and Si substrates that were coated with AgNP. In both cases AgNP inhibited biofilm growth with an effect that was concentration or areal coverage dependent.

  10. DEVELOPMENT AND TESTING OF A CERIA-ZIRCONIA TOUGHENED ALUMINA PROTOTYPE FILTER ELEMENT MADE OF RETICULATED CERAMIC FOAM COATED WITH A CERAMIC MEMBRANE ACTING AS BARRIER FILTER FOR FLY ASH

    Energy Technology Data Exchange (ETDEWEB)

    Guilio A. Rossi; Kenneth R. Butcher; Stacia M. Wagner

    1999-02-19

    The objective of this work was to fabricate subscale candle filters using a Ce-ZTA reticulated foam material. Specifically Selee fabricated 60mm diameter cylinders with one closed end and one flanged end. Selee Corporation developed a small pore size (5-10 {micro}m) filtration membrane which was applied to the reticulated foam surface to provide a barrier filter surface. The specific tasks to be performed were as follows: (Task 1) Filter Element Development--To fabricate subscale filter elements from zirconia toughened alumina using the reticulated foam manufacturing process. The filter elements were required to meet dimensional tolerances specified by an appropriate filter system supplier. The subscale filter elements were fabricated with integral flanges and end caps, that is, with no glued joints. (Task 2) Membrane Development--To develop a small pore filtration membrane that is to be applied to the reticulated foam material. This membrane was to provide filtration characteristics that meet gas turbine requirements and pressure drop or permeability requirements specified by the filter system supplier. (Task 3) Subscale Filter Element Fabrication--To fabricate six subscale filter elements with integral flanges and closed ends, as well as fine pore size filtration membranes. Three filters were to have a central clean gas channel, while three would have no central channel. The filters were to be provided to FETC for testing in laboratory systems or pilot scale exposure systems as appropriate. The candles were to meet dimensional tolerances as provided by filter system suppliers.

  11. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  12. Application and advantages of novel clay ceramic particles (CCPs) in an up-flow anaerobic bio-filter (UAF) for wastewater treatment.

    Science.gov (United States)

    Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan

    2013-06-01

    Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased.

  13. Application of ceramic filter in WPA production%陶瓷过滤机在湿法磷酸生产上的应用

    Institute of Scientific and Technical Information of China (English)

    钟进

    2011-01-01

    By using the ceramic filter to filtrate the water from the slurry can realize the water balance in WPA production by dihydrate process. With six HTG-80-1T ceramic filters, about 1.10 million tons can be treated per year with reduction of water into WPA production by 958.2 kt, the purpose of energy conservation and emissions reduction is reached by reducing waste water of 958.2 kt.%在湿法磷酸生产中采用陶瓷过滤机对矿浆进行过滤,以减少带入磷酸生产中的水,实现二水物湿法磷酸生产的水平衡。以投入HTG-80-Ⅱ型陶瓷过滤机6台计,年可过滤矿粉110万t,减少带入磷酸中水95.82万t,减少污水排放95.82万t,达到了节能减排的目的。

  14. Modeling and analysis of porosity and compressive strength of gradient Al2O3-ZrO2 ceramic filter using BP neural network

    Directory of Open Access Journals (Sweden)

    Li Qiang

    2013-07-01

    Full Text Available BP neural network was used in this study to model the porosity and the compressive strength of a gradient Al2O3-ZrO2 ceramic foam filter prepared by centrifugal slip casting. The influences of the load applied on the epispastic polystyrene template (F, the centrifugal acceleration (v and sintering temperature (T on the porosity (P and compressive strength (σ of the sintered products were studied by using the registered three-layer BP model. The accuracy of the model was verified by comparing the BP model predicted results with the experimental ones. Results show that the model prediction agrees with the experimental data within a reasonable experimental error, indicating that the three-layer BP network based modeling is effective in predicting both the properties and processing parameters in designing the gradient Al2O3-ZrO2 ceramic foam filter. The prediction results show that the porosity percentage increases and compressive strength decreases with an increase in the applied load on epispastic polystyrene template. As for the influence of sintering temperature, the porosity percentage decreases monotonically with an increase in sintering temperature, yet the compressive strength first increases and then decreases slightly in a given temperature range. Furthermore, the porosity percentage changes little but the compressive strength first increases and then decreases when the centrifugal acceleration increases.

  15. Experimental investigation of dust deposit within ceramic filter medium during filtration-cleaning cycles%循环过程中陶瓷滤材内粉尘沉积规律实验研究

    Institute of Scientific and Technical Information of China (English)

    迟化昌; 姬忠礼; 孙冬梅; 崔立山

    2009-01-01

    The penetration and deposit of particles within the medium is thought to be one reason that the residual pressure drop ot the rigid ceramic filter Increase with cycle number.In this study,the change in the microstructure of a single layer ceramic filter candle during fiItration-cleaning cycle was observed by scanning clectron microscope(SEM)and thc resistance property of the filter was monitored accordingly.The experimentaI results show that there exists a serious dust deposit within the filter medium,especially at the surface region.This should be responsible tbr the decrease of the filter permeability.The deposit law of dust in the filter medium during filtration-cleaning cycle was then studied by measuring the deposit depth.the deposit amount.the particles distribution within the medium,the sIZe distribution of deposited particles,and so on.Particles migration and fine particles penetration were tound to be the main reasons,for which dust deposit within the filter medium became aggravated with cycle number.Based on a ditlerential form of Ergun equation,an expression for the pressure drop of a used ceramic filter was developed with a good a~cement with experimental results.Then,the effect of dust deposit on the residual pressure drop was studied at the diffcrent face velocities and dust sizes.It was found that faee vclocity and dust size significantly Intluence dust deposit within filter medium,and then the operation performance of the filter.

  16. Ceramic Filter for Small System Drinking Water Treatment: Evaluation of Membrane Pore Size and Importance of Integrity Monitoring

    Science.gov (United States)

    Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...

  17. Long-term durability testing of ceramic cross-flow filter. Final report, September 29, 1987--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, T.E.; Smeltzer, E.E.; Alvin, M.A.; Bachovchin, D.M.

    1993-08-01

    Long term durability testing of the cross flow filter is described. Two high temperature, high pressure test facilities were built and operated. The facilities were designed to simulate dirty gas environments typical of Pressurized Fluidized Bed Combustion (PFBC) and coal gasification. Details of the design and operation of the test facilities and filter testing results are described.

  18. Numerical Analysis of Flow Field in Ceramic Filter During Pulse Cleaning%陶瓷过滤器脉冲反吹系统的流场的数值模拟

    Institute of Scientific and Technical Information of China (English)

    姬忠礼; 彭书; 谭立村

    2003-01-01

    In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning has crucial effects on the long-term stable operation. In order to get a clear insight into the nature of this cleaning process and provide a solid basis for industrial applications, the flow in ceramic candle filter was investigated. The flow in the pulse-jet space and inside the ceramic candle is regarded as two- dimensional, unsteady, compressible flow, and numerical simulation is carried out by computational fluid dynamics. The numerical predictions of flow field are in good agreement with the experimental measurements. Effects of the candle diameter, the separation distance between the nozzle and the candle injector and the length of the candle on the flowfield have been numerically analyzed to provide the basis for the optimum design of the pulse cleaning system.

  19. Miniaturized dielectric waveguide filters

    Science.gov (United States)

    Sandhu, Muhammad Y.; Hunter, Ian C.

    2016-10-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  20. Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon.

    Science.gov (United States)

    Bertin, Lorenzo; Lampis, Silvia; Todaro, Daniela; Scoma, Alberto; Vallini, Giovanni; Marchetti, Leonardo; Majone, Mauro; Fava, Fabio

    2010-08-01

    Four identically configured anaerobic packed bed biofilm reactors were developed and employed in the continuous acidogenic digestion of olive mill wastewaters to produce volatile fatty acids (VFAs), which can be exploited in the biotechnological production of polyhydroxyalkanoates. Ceramic porous cubes or granular activated carbon were used as biofilm supports. Aside packing material, the role of temperature and organic loading rate (OLR) on VFA production yield and mixture composition were also studied. The process was monitored through a chemical, microbiological and molecular biology integrated procedure. The highest wastewater acidification yield was achieved with the ceramic-based technology at 25 degrees C, with an inlet COD and an OLR of about 17 g/L and 13 g/L/day, respectively. Under these conditions, about the 66% of the influent COD (not including its VFA content) was converted into VFAs, whose final amount represented more than 82% of the influent COD. In particular, acetic, propionic and butyric acids were the main VFAs by composing the 55.7, 21.5 and 14.4%, respectively, of the whole VFA mixture. Importantly, the relative concentrations of acetate and propionate were affected by the OLR parameter. The nature of the packing material remarkable influenced the process performances, by greatly affecting the biofilm bacterial community structure. In particular, ceramic cubes favoured the immobilization of Firmicutes of the genera Bacillus, Paenibacillus and Clostridium, which were probably involved in the VFA producing process.

  1. The Practice and Explore of Dewatering Slag Tailings by Using Ceramic Filter%陶瓷过滤机应用于炉渣选矿尾矿脱水的实践与探索

    Institute of Scientific and Technical Information of China (English)

    谢杰; 马松勃

    2014-01-01

    陶瓷过滤机是一种应用较广的脱水设备。本文概述了铜炉渣选矿尾矿应用陶瓷过滤机脱水的生产状况,发现了影响系统生产的各类问题并提出了改进措施;探索研究了工艺、设备及物料性质对选矿尾矿过滤产能的影响,在最佳工艺条件下,陶瓷过滤机产能可达291 kg/(m2· h)。%Ceramic filter is widely used as a kind of dewatering equipment . This paper summarized the pro-duction situation of dewatering the slag beneficiation tailings of copper by using ceramic filter , some prob-lems that affected the system production were found and the corresponding improvement measures were put forward . And also found that the process , equipment and material properties influenced the filter ca-pacity , under the condition of optimum process , ceramic filter capacity can up to 291 kg/( m2.h) .

  2. 拜耳法赤泥质陶粒滤料处理含铜废水%Experimental Study on Treatment of Copper-contained Waste Water with Porous Ceramics Filtering Materials with Red Mud from Bayer Process

    Institute of Scientific and Technical Information of China (English)

    潘嘉芬; 李梦红; 刘爱菊

    2012-01-01

    以自制拜耳法赤泥质陶粒滤料为吸附剂,进行了模拟废水中铜离子吸附效果和吸附饱和陶粒再生的研究.结果表明,拜耳法赤泥质陶粒滤料对废水中铜离子具有较好的吸附效果和耐久性;吸附饱和后的陶粒在pH=3的硝酸溶液中静态洗脱3次即可恢复至新鲜陶粒的吸附水平;拜耳法赤泥质陶粒用于废水中铜离子的吸附无论从技术上、经济上还是从二次资源的再利用上均具有显著优势,适合大规模推广应用.%The porous ceramics filtering materials with red mud derived from Bayer process is used as adsorbent to investigate the removal rate of copper in waste water and the regeneration of saturated porous ceramics. The research indicated that the porous ceramics filtering materials with red mud derived from Bayer process has a significant adsorbing performance and lasting quality. The adsorption-saturated ceramics can be restored to be fresh ceramics with fresh adsorption performance after regenerating 3 times in static status in a nitric acid solution of pH = 3. The copper removal from the waste water with the porous ceramics of red mud derived from Bayer Process has a significant advantage in techniques, economics and re-utilization of resources, and it is suitable for large-scale application.

  3. Bactericidal activity and silver release of porous ceramic candle filter prepared by sintering silica with silver nanoparticles/zeolite for water disinfection

    Science.gov (United States)

    Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Thanh Nguyen, Duc; Hien Nguyen, Quoc

    2014-09-01

    Porous ceramic candle filters (PCCF) were prepared by sintering silica from rice husk with silver nanoparticles (AgNPs)/zeolite A at about 1050 °C to create bactericidal PCCF/AgNPs for water disinfection. The silver content in PCCF/AgNPs was of 300-350 mg kg-1 determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and the average pore size of PCCF/AgNPs was of 50-70 Å measured by Brunauer-Emmett-Teller (BET) method. The bactericidal activity and silver release of PCCF/AgNPs have been investigated by flow test with water flow rate of 5 L h-1 and initial inoculation of E. coli in inlet water of 106 CFU/100 mL. The volume of filtrated water was collected up to 500 L. Results showed that the contamination of E. coli in filtrated water was water was low, far under the WHO guideline of 100 μg L-1 at maximum for drinking water. Based on the content of silver in PCCF/AgNPs and in filtrated water, it was estimated that one PCCF/AgNPs could be used to filtrate of ˜100 m3 water. Thus, as-prepared PCCF/AgNPs releases low content of silver into water and shows effectively bactericidal activity that is promising to apply as point-of-use water treatment technology for drinking water disinfection.

  4. Investigation of influencing parameters during diesel-soot sampling on glass-wool or ceramic filters. Einfluss der Stoerkomponenten beim Sammeln von Dieselruss auf Glasfaser- und Keramikfiltern

    Energy Technology Data Exchange (ETDEWEB)

    Israel, G.; Mollenhauer, K.; Beckmann, C.; Bollmann-Weiss, R.

    1990-07-01

    The nitrification of pyrene during particulate sampling on filters depends on sampling time, NO[sub 2] concentration and the humidity of dilution air. The 1N-pyrene content was doubled during 60 minutes sampling time at 1 ppm NO[sub 2]. The nitrification rates increased with decreasing water content of the samling air. The formation of 1N-pyrene can be calculated by the contents of pyrene, NO[sub 2] and H[sub 2]O: dm(1NPyr)/dt=k x NO[sub 2]/H[sub 2]O = x f x m(Pyr), with k = 15.7 and f = 1.22. The collection efficiency of the ceramic particulate trap exceeds 90% at engine conditions below regeneration temperature. At this condition the sulfate emission was also considerably reduced. During regeneration the efficiency decreases to 65% where by both sulfate and volatile particle mass increase. The particulate trap changes the composition of the emitted particulates and reduces the emissions of pyrene and 1N-pyrene. There is no increase in the emission of pyrene or 1N-pyrene during trap regeneration. (orig.) With 57 refs., 20 tabs., 45 figs.

  5. Filter holder and gasket assembly for candle or tube filters

    Science.gov (United States)

    Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.

    1999-03-02

    A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.

  6. Vessel Operating Units (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for vessels that are greater than five net tons and have a current US Coast Guard documentation number. Beginning in1979, the NMFS...

  7. Fluência em filtros cerâmicos de Al2O3 Creep in Al2O3 ceramic filters

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2001-12-01

    Full Text Available O comportamento de fluência em materiais cerâmicos sólidos é afetado pela sua microestrutura. Fundamentalmente, são três os parâmetros que influenciam o comportamento de fluência nestes materiais: o constituinte mineralógico, a fase vítrea e a porosidade. Além destes fatores microestruturais, a fluência em cerâmicas celulares depende também da sua macroestrutura, constituída de um arranjo tridimensional de filamentos sólidos interligados. Assim, a análise dos resultados de fluência nestes materiais compreende duas etapas: na primeira deve-se identificar o modo de deformação dos filamentos cerâmicos (macroestrutura e na segunda, identificar o(s mecanismo(s de fluência da microestrutura através dos parâmetros n (expoente da tensão aplicada e Q (energia de ativação do processo. Neste trabalho avaliou-se a fluência em filtros cerâmicos de Al2O3 de 10 ppi sob compressão de 0,034; 0,051 e 0,068 MPa às temperaturas de 1500, 1550 e 1600 ºC ao ar. De acordo com os resultados obtidos, supõe-se que o modo de deformação por flambagem dos filamentos paralelos a carga aplicada é um dos principais fatores que contribui para o aumento da taxa de deformação do filtro e, portanto, dos valores de n e Q. Além do modo de deformação dos filamentos, observou-se que o tipo de ensaio de fluência (com ou sem troca de carga também influencia a determinação dos valores de n e Q.The creep behavior of solid ceramics is strongly affected by the microstructure. Fundamentally, there are three microstructural features which influence the creep behavior: the mineral content, the flux content and the apparent porosity. Additionally, the creep of cellular ceramics also depends on their macrostructure constituted by a tridimensional array of struts. Therefore, the creep analysis of these materials should consist of two stages. Firstly, identification of the macrostructure deformation mode and secondly, determination of the stress exponent

  8. Ceramic water filters impregnated with silver nanoparticles as a point-of-use water-treatment intervention for HIV-positive individuals in Limpopo Province, South Africa: a pilot study of technological performance and human health benefits.

    Science.gov (United States)

    Abebe, Lydia Shawel; Smith, James A; Narkiewicz, Sophia; Oyanedel-Craver, Vinka; Conaway, Mark; Singo, Alukhethi; Amidou, Samie; Mojapelo, Paul; Brant, Julia; Dillingham, Rebecca

    2014-06-01

    Waterborne pathogens present a significant threat to people living with the human immunodeficiency virus (PLWH). This study presents a randomized, controlled trial that evaluates whether a household-level ceramic water filter (CWF) intervention can improve drinking water quality and decrease days of diarrhea in PLWH in rural South Africa. Seventy-four participants were randomized in an intervention group with CWFs and a control group without filters. Participants in the CWF arm received CWFs impregnated with silver nanoparticles and associated safe-storage containers. Water and stool samples were collected at baseline and 12 months. Diarrhea incidence was self-reported weekly for 12 months. The average diarrhea rate in the control group was 0.064 days/week compared to 0.015 days/week in the intervention group (p water and decrease days of diarrhea for PLWH in rural South Africa.

  9. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  10. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  11. Vessel enhancing diffusion: a scale space representation of vessel

    OpenAIRE

    Manniesing, Rashindra; Viergever, M.A.; Niessen, Wiro

    2006-01-01

    textabstractA method is proposed to enhance vascular structures within the framework of scale space theory. We combine a smooth vessel filter which is based on a geometrical analysis of the Hessian's eigensystem, with a non-linear anisotropic diffusion scheme. The amount and orientation of diffusion depend on the local vessel likeliness. Vessel enhancing diffusion (VED) is applied to patient and phantom data and compared to linear, regularized Perona-Malik, edge and coherence enhancing diffus...

  12. Ceramic tubesheet design analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mallett, R.H.; Swindeman, R.W.

    1996-06-01

    A transport combustor is being commissioned at the Southern Services facility in Wilsonville, Alabama to provide a gaseous product for the assessment of hot-gas filtering systems. One of the barrier filters incorporates a ceramic tubesheet to support candle filters. The ceramic tubesheet, designed and manufactured by Industrial Filter and Pump Manufacturing Company (EF&PM), is unique and offers distinct advantages over metallic systems in terms of density, resistance to corrosion, and resistance to creep at operating temperatures above 815{degrees}C (1500{degrees}F). Nevertheless, the operational requirements of the ceramic tubesheet are severe. The tubesheet is almost 1.5 m in (55 in.) in diameter, has many penetrations, and must support the weight of the ceramic filters, coal ash accumulation, and a pressure drop (one atmosphere). Further, thermal stresses related to steady state and transient conditions will occur. To gain a better understanding of the structural performance limitations, a contract was placed with Mallett Technology, Inc. to perform a thermal and structural analysis of the tubesheet design. The design analysis specification and a preliminary design analysis were completed in the early part of 1995. The analyses indicated that modifications to the design were necessary to reduce thermal stress, and it was necessary to complete the redesign before the final thermal/mechanical analysis could be undertaken. The preliminary analysis identified the need to confirm that the physical and mechanical properties data used in the design were representative of the material in the tubesheet. Subsequently, few exploratory tests were performed at ORNL to evaluate the ceramic structural material.

  13. 陶瓷滤料处理低含聚污水试验%Experimental Research of Ceramic Filter Material in the Treatment of Low Poly-mer Containing Wastewater

    Institute of Scientific and Technical Information of China (English)

    尹立平

    2016-01-01

    针对常规核桃壳、石英砂滤料处理含聚污水效果较差的问题,开展了陶瓷滤料处理试验。试验对陶瓷滤料运行参数与处理效果之间的关系进行了研究,其最佳工况为滤速13 m/h、反冲洗周期24 h、反冲洗强度10 L/(S·m2)。现场试验表明,陶瓷滤料对含聚浓度低于90 mg/L的污水处理效果较好,含油及悬浮物去除效率都较高。在进水含油浓度低于100 mg/L、悬浮物浓度低于50 mg/L的情况下,出水达到了“5.5.2”指标要求,比现有核桃壳、石英砂滤料处理含聚污水效果更好。%Filtration is the key link of sewage treatment. In view of the poor effect of the conventional walnut shell and quartz sand filter material to deal with the poly-containing wastewater, the processing experiment of ceramic filter material was carried out. The rela-tionship between operation parameters and the treatment effect was studied. The optimum condition is the filter speed of 13 m/h , backwash cycle of 24 h , backwash intensity of 10 L/(S·m2).Field test showed that ceramic filter material is good for the sewage treatment effect which containing polymer concentration below 90 mg/L, oil and suspended solids re-moval efficiency is high, too. In the condition that oil containing below 100 mg/L in input water ,suspended solids content below 50 mg/L,the effluent can meet the"5.5.2"index re-quirements,which better than walnut shell and the quartz sand filter material.

  14. Ka频段陶瓷基板微带带通滤波器设计分析%Design of Ka-band Microstrip Bandpass Filter on Ceramic Substrate

    Institute of Scientific and Technical Information of China (English)

    赵飞; 党元兰; 王璇

    2012-01-01

    为满足微波电路小型化的发展要求,基于陶瓷基板设计了一款Ka频段的微带带通滤波器。分析了滤波器的电路设计原理及工艺设计方案,采用电路优化和三维全波仿真结合的方法对电路进行仿真。在优化后的版图基础上,通过改善膜层附着力、提高加工精度等方式对滤波器的加工进行控制。测试结果满足使用要求,证明了电路及工艺设计方案的正确性。%A Ka-band microstrip bandpass filter using ceramic substrate is designed to meet the requirement of microwave IC miniaturization.The circuit design principle and technology design scheme are analyzed.The circuit is simulated by combining the circuit optimization and 3D full-wave simulation.Based on the optimized layout,the processing of filter is controlled by improving the adhesion of the film and increasing the processing accuracy.The test result proves the validity of the microstrip bandpass filter and its design method.

  15. Choque térmico em filtros cerâmicos do sistema Al2O3-SiC Thermal shock on ceramic filters in the system Al2O3-SiC

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2002-03-01

    Full Text Available Em diversas aplicações as cerâmicas celulares são submetidas a tensões térmicas severas, tal como na filtração de metais fundidos. Contudo, há poucos estudos sobre o desempenho ao choque térmico destes materiais. Uma das razões é que a metodologia para análise desta classe de materiais deve ser distinta daquela utilizada para os materiais cerâmicos densos. Isto porque no caso dos materiais celulares para filtração de metais fundidos o meio causador do choque térmico infiltra-se rapidamente na estrutura reticular de poros, reduzindo o gradiente de temperatura entre a superfície externa e a do interior do corpo. Neste contexto, a proposta do presente trabalho é verificar os efeitos de algumas propriedades dos filtros cerâmicos em seu comportamento mecânico durante testes de choque térmico em água. As propriedades consideradas são a permeabilidade, a condutividade térmica e a área superficial específica dos filtros. Para isto foram utilizados os filtros cerâmicos do sistema de Al2O3-SiC de 8, 10, 20 e 30 ppi (poros por polegada linear.In many applications, open-cell ceramics are expected to undergo severe thermal stresses, for instance, in their use as molten metal filters. However, only a few studies have considered the thermal shock behavior of these materials. One of the main reasons is the theoretical approach used for dense ceramics which may not be valid for porous materials. In this context, the aim of this work is to analyze the effects of permeability, specific surface area and thermal conductivity on the mechanical behavior of ceramic filters subjected to water quenching tests. Al2O3-SiC filters with nominal cell sizes, expressed as the number of pores per linear inch (ppi, ranged from 8 to 30 ppi were used in the experimental tests.

  16. Research vessels

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.

    The role of the research vessels as a tool for marine research and exploration is very important. Technical requirements of a suitable vessel and the laboratories needed on board are discussed. The history and the research work carried out...

  17. Image Analysis on Detachment Process of Dust Cake on Ceramic Candle Filter%陶瓷过滤管表面粉尘层清除过程的图像分析

    Institute of Scientific and Technical Information of China (English)

    姬忠礼; 焦海青; 陈鸿海

    2005-01-01

    Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the reservoir pressure, and the filtration velocity on the cleaning effectiveness are analyzed. Experimental results show that there exists an optimum dust cake thickness for pulse-cleaning process. For thin dust cake, the patchy cleaning exists and the cleaning efficiency is low; if the dust cake is too thick, the pressure drop across the dust cake becomes higher and a higher reservoir pressure may be needed. At the same time there also exists an optimum reservoir pressure for a given filtration condition.

  18. Vessel enhancing diffusion: a scale space representation of vessel structures.

    Science.gov (United States)

    Manniesing, Rashindra; Viergever, Max A; Niessen, Wiro J

    2006-12-01

    A method is proposed to enhance vascular structures within the framework of scale space theory. We combine a smooth vessel filter which is based on a geometrical analysis of the Hessian's eigensystem, with a non-linear anisotropic diffusion scheme. The amount and orientation of diffusion depend on the local vessel likeliness. Vessel enhancing diffusion (VED) is applied to patient and phantom data and compared to linear, regularized Perona-Malik, edge and coherence enhancing diffusion. The method performs better than most of the existing techniques in visualizing vessels with varying radii and in enhancing vessel appearance. A diameter study on phantom data shows that VED least affects the accuracy of diameter measurements. It is shown that using VED as a preprocessing step improves level set based segmentation of the cerebral vasculature, in particular segmentation of the smaller vessels of the vasculature.

  19. 孔梯度陶瓷纤维复合膜管的制备及特性%Preparation and Characterization of Filtering Tube of Ceramic Composite with Pore-gradient Structure

    Institute of Scientific and Technical Information of China (English)

    王耀明; 薛友祥; 孟宪谦; 张联盟

    2007-01-01

    Ceramic filters have a great potential for applications in high temperature dust collection due to their high erosion resistance and mechanical strength at elevated temperatures. In this work, a filtering tube of cordierite ceramic composite with pore-gradient structure was fabricated and studied, which is made up of a porous cordierite ceramic support, a transition layer and a separation layer of fiber-reinforced composite, having a porosity of 35%-40%, 50%-60% and 60%-70%, respectively. The thermal shock resistance test against the temperature difference of ca. 1000℃ and room temperature simulation on dust gas filtration were mainly carried out. The results show that the total filtration efficiency of the dust particulates larger than 0. 1μm is 98.5% and maximum value reaches to 99.9%.%陶瓷过滤管具有孔隙率高、耐腐蚀、耐高温、机械强度高、便于清洗、使用寿命长等优点,是高温烟尘处理用的高效过滤元件.本文研制了一种具有梯度孔结构堇青石陶瓷纤维复合膜过滤元件,该过滤元件是由多孔支撑体、过渡层和分离膜层组成.其中支撑体、过渡层和分离层的气孔率分别为35~40%、50~60%和60~70%.文中主要分析了孔梯度陶瓷纤维复合膜管的材料结构和抗热震性能,同时对复合膜管进行含尘气体过滤的冷态模拟试验.对于烟气中粒径大于或等于0.1μm的颗粒,复合膜管的截留率达到99.8%以上.

  20. 陶粒-沸石-活性炭组合填料生物滤池的研究%Research on Ceramic-zeolite-active Carbon Combined Medium Biological Aerated Filter

    Institute of Scientific and Technical Information of China (English)

    张尊举; 董春艳

    2013-01-01

    采用陶粒、沸石、活性炭填料合理组合作为曝气生物滤池的填料对高校生活污水进行处理。研究了组合填料生物滤池生物膜的培养,不同水力负荷、容积负荷和气水比对污水处理效率的影响,以及该生物滤池对生活污水的处理效果。结果表明,采用组合填料生物滤池,接种挂膜培养周期为25 d,在水力负荷为2.5 m3/(m2·h),气水比3.5:1,组合填料生物滤池出水COD、 BOD5、 SS、 NH3-N和色度平均值达到《城市污水再生利用城市杂用水水质》GB/T 18920-2002水质要求。%As a filter medium, Ceramic, zeolite, activated carbon were combined to use for biological aerated filter in the treatment of campus domestic wastewater. The study focused on the start rule of the combined medium biological aerated filter. Meanwhile, different hydraulic load, load capacity and water ratio on the sewage treatment effect, and the treatment effect of biological aerated filter for domestic wastewater were studied. The results show that, the time needed for the start-up and film formation of combined medium biological aerated filter about 25 d. When the hydraulic load was 2.5 m3/(m2·h) , the water ratio was 3.5:1, combined medium biological aerated filter becomes more reasonable and suitable, achieving good results in practical operation. the average values of COD、 BOD5、 SS、 NH3-N and Chrominance reached the Standards for The reuse of urban recycling water-water quality standard for urban miscellaneous water consumption GB/T 18920-2002.

  1. 负压区的存在对刚性陶瓷过滤器脉冲反吹性能的影响%EFFECT OF NEGATIVE PRESSURE REGION ON PULSE-JET CLEANING PERFORMANCE OF RIGID CERAMIC FILTERS

    Institute of Scientific and Technical Information of China (English)

    姬忠礼; 郭建光

    2000-01-01

    利用压电式压力传感器测定了陶瓷过滤器在脉冲反吹过程中滤管内动态压力的变化规律,表明在脉冲反吹快要结束和正常过滤尚未开始的过渡过程中,滤管内存在严重的负压区。利用单个颗粒轨道模型分析了部分已被吹离滤管表面的小颗粒在负压区的作用下会重新返回到滤管壁,从而证实了负压区是影响刚性陶瓷过滤器稳定运行的重要原因。%In a ceramic filter experimental set-up with three filter candles,the dynamic pressures atthe inner wall of one filter candle during pulse-jet cleaning aremeasured by using resize-electric pressure transducer. The experimentalresults show that the dynamic pressure in wholepulse-jet cleaning process consists of two parts. One is the positivepressure in the filter candlegreater than the pressure outside the filter candle whichcorresponds to the outward radial fluidflow to break up and dislodge the dust cake on the surfaceof the filter tube. The other is anegative pressure region which is responsible for inward radialflow while the pulse-jet is closed.The influences of reservoir pressure on thedynamic pressure are discussed.The calculation results of particle motion indicate that negativepressure region cause a fractionof particles removed re-deposit on the candle surface. Especiallyfiner particles is more easierlyre-deposited on the surface to form thin and dense layer on thefilter candle and to increasegradually the residual pressure drop across the candle. It isconcluded that negative pressureregion may have important effects on the long-term stable operation of thefilter unit.

  2. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  3. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  4. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  5. Vessel tree extraction using locally optimal paths

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; van Ginneken, Bram; de Bruijne, Marleen

    2010-01-01

    This paper proposes a method to extract vessel trees by continually extending detected branches with locally optimal paths. Our approach uses a cost function from a multi scale vessel enhancement filter. Optimal paths are selected based on rules that take into account the geometric characteristics...... of the vessel tree. Experiments were performed on 10 low dose chest CT scans for which the pulmonary vessel trees were extracted. The proposed method is shown to extract a better connected vessel tree and extract more of the small peripheral vessels in comparison to applying a threshold on the output...

  6. Filter unit for use at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ciliberti, D.F.; Lippert, T.E.

    1988-04-05

    A filtering unit for the filtering of particulates from a particulate-containing high temperature gas stream is described comprising a ceramic, tubular filter element, having a closed bottom and side walls and an open top at the upper region thereof, disposed in an aperture in a tube sheet. The walls of the tube sheet about the aperature have an inwardly extending flange thereon, with the open top of the ceramic, tubular filter element adjacent one surface of the tube sheet where filtered gases are discharged, and the closed bottom and side walls exposed to the area of the opposite surface of the tube sheet where a particulate-containing high temperature gas stream to be filtered is present. A ceramic spiral spring is provided at an end of the ceramic, tubular filter element to bias the upper region of the ceramic, tubular filter element into contact with the flange so as to seal the ceramic, tubular filter element to the flange on the tube sheet.

  7. 2D Fast Vessel Visualization Using a Vessel Wall Mask Guiding Fine Vessel Detection

    Directory of Open Access Journals (Sweden)

    Sotirios Raptis

    2010-01-01

    and then try to approach the ridges and branches of the vasculature's using fine detection. Fine vessel screening looks into local structural inconsistencies in vessels properties, into noise, or into not expected intensity variations observed inside pre-known vessel-body areas. The vessels are first modelled sufficiently but not precisely by their walls with a tubular model-structure that is the result of an initial segmentation. This provides a chart of likely Vessel Wall Pixels (VWPs yielding a form of a likelihood vessel map mainly based on gradient filter's intensity and spatial arrangement parameters (e.g., linear consistency. Specific vessel parameters (centerline, width, location, fall-away rate, main orientation are post-computed by convolving the image with a set of pre-tuned spatial filters called Matched Filters (MFs. These are easily computed as Gaussian-like 2D forms that use a limited range sub-optimal parameters adjusted to the dominant vessel characteristics obtained by Spatial Grey Level Difference statistics limiting the range of search into vessel widths of 16, 32, and 64 pixels. Sparse pixels are effectively eliminated by applying a limited range Hough Transform (HT or region growing. Major benefits are limiting the range of parameters, reducing the search-space for post-convolution to only masked regions, representing almost 2% of the 2D volume, good speed versus accuracy/time trade-off. Results show the potentials of our approach in terms of time for detection ROC analysis and accuracy of vessel pixel (VP detection.

  8. AUTOMATIC RETINAL VESSEL TORTUOSITY MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Nidhal Khdhair El Abbadi

    2013-01-01

    Full Text Available Retinal vascular vessels have the role to indicate the retinal diseases and for systematic diseases when there are any abnormalities in retinal vascular pattern. A characteristic of the vascular pattern that is appreciated by clinicians is vascular tortuosity, i.e., how curved or kinked a blood vessel, either vein or artery, appears along its course. In this study we suggest a novel mask filter to track the blood vessel along its course and measuring the blood vessels tortuosity over the entire human retinal vessel network in fundus eye image, by using the arc to chord ratio. The suggested algorithm tested with straight and curve hand drawing lines and gives high accurate results.

  9. Ion transport membrane module and vessel system

    Science.gov (United States)

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  10. Vessel enhancing diffusion: a scale space representation of vessel

    NARCIS (Netherlands)

    R. Manniesing (Rashindra); M.A. Viergever; W.J. Niessen (Wiro)

    2006-01-01

    textabstractA method is proposed to enhance vascular structures within the framework of scale space theory. We combine a smooth vessel filter which is based on a geometrical analysis of the Hessian's eigensystem, with a non-linear anisotropic diffusion scheme. The amount and orient

  11. Wetting behavior of aluminium and filtration with Al2O3 and SiC ceramic foam filters%铝的润湿行为以及Al2O3和SiC陶瓷过滤器的过滤行为

    Institute of Scientific and Technical Information of China (English)

    包萨日娜; Martin SYVERTSEN; Anne KVITHYLD; Thorvald ENGH

    2014-01-01

    检测了工业用Al2O3过滤器和SiC过滤器与液态铝的润湿性并在工厂使用以上2种陶瓷过滤器过滤铝液。实验结果表明:SiC 过滤器比 Al2O3过滤器更易于润湿液态铝。提高液态铝与过滤器的润湿性有助于铝液透过过滤器,提高夹杂物的去除率,同时,易于去除与铝不浸润的杂质。%The wetting behavior between liquid aluminium and substrates made from industrial Al2O3 and SiC based ceramic foam filters (CFF) was investigated. The same CFF filters were also tested in plant scale filtration experiments. The wetting experiment results show that the SiC based filter material is better wetted by liquid aluminium than the Al2O3 based filter material. This indicates that the improved wetting of aluminium on a filter material is an advantage for molten metal to infiltrate the filter during priming. Also, better wetting of Al-filter might increase the removal efficiency of inclusions during filtration due to better contact between filter and metal. Non-wetted inclusions are easier to be removed.

  12. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  13. Ceramic Processing

    Energy Technology Data Exchange (ETDEWEB)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  14. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  15. Ceramic Methyltrioxorhenium

    CERN Document Server

    Herrmann, R; Eickerling, G; Helbig, C; Hauf, C; Miller, R; Mayr, F; Krug von Nidda, H A; Scheidt, E W; Scherer, W; Herrmann, Rudolf; Troester, Klaus; Eickerling, Georg; Helbig, Christian; Hauf, Christoph; Miller, Robert; Mayr, Franz; Nidda, Hans-Albrecht Krug von; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang

    2006-01-01

    The metal oxide polymeric methyltrioxorhenium [(CH3)xReO3] is an unique epresentative of a layered inherent conducting organometallic polymer which adopts the structural motifs of classical perovskites in two dimensions (2D) in form of methyl-deficient, corner-sharing ReO5(CH3) octahedra. In order to improve the characteristics of polymeric methyltrioxorhenium with respect to its physical properties and potential usage as an inherentconducting polymer we tried to optimise the synthetic routes of polymeric modifications of 1 to obtain a sintered ceramic material, denoted ceramic MTO. Ceramic MTO formed in a solvent-free synthesis via auto-polymerisation and subsequent sintering processing displays clearly different mechanical and physical properties from polymeric MTO synthesised in aqueous solution. Ceramic MTO is shown to display activated Re-C and Re=O bonds relative to MTO. These electronic and structural characteristics of ceramic MTO are also reflected by a different chemical reactivity compared with its...

  16. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  17. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  18. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    The results indicated that the ceramic filter was able to operate for longer periods without cleaning; however, there is a limit to the transmembrane ... The suspended solids retention was high with both filters (average of 96%). ... Article Metrics.

  19. 基于血管增强滤波的脑部静脉分割新方法%A New Method for Brain Vein Segmenting Based on Vessel Enhancing Filtering

    Institute of Scientific and Technical Information of China (English)

    许修; 郑彩仙; 王成; 程杰军

    2013-01-01

      目的将本身灰度不均的静脉从有噪声干扰、结构复杂的脑部磁敏感加权图像中准确地分割出来。方法提出基于血管增强滤波联合动态阈值分割和动态阈值区域生长的血管提取方法。前者分割出部分静脉作为种子点,后者生长至几乎全部静脉。结果在重度噪声和干扰的仿真图像中,可以达到90%以上的正确率;在临床图像中,能准确地提取出了静脉,清晰地显示了静脉的脉络结构。结论上述方法可以准确地实现脑部磁敏感加权图像中的静脉分割,有效地避免误分割,同时具有很好的鲁棒性。%Objective To segment veins from brain susceptibility weighted images with inhomogeneous background and veins, noises and complex structures. Methods Based on vessel enhancing filtering, an adaptive threshold segmenting method and an adaptive threshold region growing method were proposed. The former method was used to exactly segment part of veins from the original images. Taking the veins segmented by the former method as seeds, the later method was used to extract nearly al the veins. Results For simulation data with serious noises and interferences, correct rate above 90% was achieved. And for clinical data, the veins were extracted accurately and the structures of veins were displayed clearly. Conclusions The methods can extract veins from the brain susceptibility weighted images exactly and avoid false segmentation of the other structures effectively. The methods are very robust and stable.

  20. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  1. Modelling of Tape Casting for Ceramic Applications

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    Functional ceramics find use in many different applications of great interest, e.g. thermal barrier coatings, piezoactuators, capacitors, solid oxide fuel cells and electrolysis cells, membranes, and filters. It is often the case that the performance of a ceramic component can be increased markedly...... if it is possible to vary the relevant properties (e.g. electrical, electrochemical, or magnetic) in a controlled manner along the extent of the component. Such composites in which ceramic layers of different composition and/or microstructure are combined provide a new and intriguing dimension to the field...... of functional ceramics research. Advances in ceramic forming have enabled low cost shaping techniques such as tape casting and extrusion to be used in some of the most challenging technologies. These advances allow the design of complex components adapted to desired specific properties and applications. However...

  2. 微孔陶瓷过滤装置及其在火电厂冲渣水治理工程上的应用%Microporous ceramic filter and its application to the boiler slag washing wastewater treatment in heat power plant

    Institute of Scientific and Technical Information of China (English)

    徐奇焕

    2001-01-01

    简述了微孔陶瓷过滤装置的原理、结构特点;着重介绍了采用此装置处理锅炉冲渣水悬浮物的工艺过程和运行实况。%The work principle and construction characteristic of the microporous ceramic filter are introduced in brief, especially its application to the technological process for treating suspended substances in boiler slag washing wastewater and its work conditions.

  3. Dissolution vessel

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Tomohiro; Fujioka, Tsunaaki

    1998-05-22

    A basket for containing sheared fuel pieces of spent fuel assemblies in a dissolving vessel main body has many apertures for keeping the concentration of a dissolving liquid at the inner side and the outer side of the basket uniformly. Secured neutron absorbers such as boron stainless and hafnium are appended to one or both surfaces of the basket. Partitioning members are disposed in the basket, and the partitioning members are formed in a lattice-like shape. The partitioning members are also made of secured neutron absorbers such as boron stainless and hafnium. The inside dimension of each division (lattice distance) is determined to about 15cm. Then, it is no more necessary to add soluble neutron absorbers such as gadolinium nitrate to a dissolution solution such as nitric acid thereby enabling to reduce the amount of radioactive wastes. (I.N.)

  4. Simulation on flow process of filtered molten metals

    Institute of Scientific and Technical Information of China (English)

    房文斌; 耿耀宏; 魏尊杰; 安阁英; 叶荣茂

    2002-01-01

    Filtration and flow process of molten metals was analyzed by water simulation experiments. Fluid dynamic phenomena of molten metal cells through a foam ceramic filter was described and calculated by ERGOR equation as well. The results show that the filter is most useful for stable molten metals and the filtered flow is laminar, so that inclusions can be removed more effectively.

  5. Filter holder assembly having extended collar spacer ring

    Science.gov (United States)

    Alvin, Mary Anne; Bruck, Gerald J.

    2002-01-01

    A filter holder assembly is provided that utilizes a fail-safe regenerator unit with an annular spacer ring having an extended metal collar for containment and positioning of a compliant ceramic gasket used in the assembly. The filter holder assembly is disclosed for use with advanced composite, filament wound, and metal candle filters.

  6. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  7. Soot filter for the exhaust gas of internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.

    1980-06-19

    In the previously known soot filters, the exhaust gas flows through the cylindrical filter radially from the outside to the inside. The exhaust gas touches a relatively large area of the filter housing and therefore loses a large part of the thermal energy required for post-combustion. According to the invention, these disadvantages are avoided in the new filter, where the filter material forms hollow spaces at the internal wall of the filter, which take the exhaust gas after it has flowed through the filter and carry it in an axial direction of the filter housing to the exhaust. Due to this design of the filter and the saving in heat, the areas on which the exhaust gas impinges can be kept appreciably smaller and better use can be made of the heat in the exhaust gas. The ceramic filter material can consist of an outer layer of loose ceramic fibres and an inner woven ceramic fibre mat. In order to increase the effectiveness of the filter, the soot filter can be used as a fine filter after a coarse filter.

  8. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  9. Vessel Activity Record

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Vessel Activity Record is a bi-weekly spreadsheet that shows the status of fishing vessels. It records whether fishing vessels are fishing without an observer...

  10. Vessel Operator System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operator cards are required for any operator of a charter/party boat and or a commercial vessel (including carrier and processor vessels) issued a vessel permit from...

  11. Otimização da permeabilidade de filtros de aerossóis para altas temperaturas preparados a partir da técnica de adição de espuma aquosa em suspensão cerâmica Permeability optimization of hot aerosol filters prepared from foaming of ceramic suspensions

    Directory of Open Access Journals (Sweden)

    M. D. M. Innocentini

    2009-03-01

    Full Text Available Este trabalho é parte de um projeto de desenvolvimento de filtros cerâmicos para a remoção de material particulado disperso em correntes gasosas em temperaturas elevadas. Os filtros cerâmicos utilizados para esta finalidade devem apresentar elevada porosidade aliada a uma distribuição homogênea de poros interconectados, resultando em estrutura permeável e com boa resistência mecânica e eficiência de coleta. Uma rota de processamento recentemente desenvolvida é utilizada para o processamento das peças, já que permite a obtenção de todas as características requeridas para uma filtração eficiente. Nesta técnica, os materiais porosos são processados a partir da incorporação de espumas aquosas em uma suspensão cerâmica de alumina e consolidados a partir da adição de cimento aluminoso. Comparado com outras rotas de processamento, este processo é mais atrativo, pois permite a fabricação de peças com geometrias complexas, economicamente viáveis e sem utilização de aditivos tóxicos. O objetivo deste trabalho foi otimizar a composição cerâmica de modo a atender aos requisitos de permeabilidade do filtro, tendo como base sua operação econômica em temperaturas elevadas em processos como incineração de resíduos, produção de cimento ou queima de biomassa em caldeiras em plantas químicas.This work is part of a Brazilian project to develop ceramic filters to treat flue gases from cement plants, biomass boilers and waste incinerators. Ceramic filters used for these purposes must present high porosity, homogeneous porous distribution (interconnected to result in bodies with high mechanical strength, permeability and collection efficiency for fine particles. A method recently developed has been used for the filters processing. In this new processing route, the porous samples were prepared through the incorporation of aqueous foams into alumina-based suspensions. Compared to other techniques, this process seems to be

  12. Avaliação da permeabilidade de filtros de aerossóis para altas temperaturas, preparados a partir da técnica de adição de espuma aquosa em suspensão cerâmica Permeability characterization of hot aerosol filters prepared with foaming of ceramic suspensions

    Directory of Open Access Journals (Sweden)

    M. D. M. Innocentini

    2009-12-01

    Full Text Available Este trabalho é parte de um projeto de desenvolvimento de filtros cerâmicos para a remoção de material particulado disperso em correntes gasosas em temperaturas elevadas. Os filtros cerâmicos utilizados para esta finalidade devem apresentar elevada porosidade aliada a uma distribuição homogênea de poros interconectados, resultando em estrutura permeável e com boa resistência mecânica e eficiência de coleta. Uma rota de processamento recentemente desenvolvida é utilizada para o processamento das peças, já que permite a obtenção de todas as características requeridas para uma filtração eficiente. Nesta técnica, os materiais porosos são processados a partir da incorporação de espumas aquosas em uma suspensão cerâmica de alumina e consolidados a partir da adição de cimento aluminoso. Comparado com outras rotas de processamento, este processo é mais atrativo, pois permite a fabricação de peças com geometrias complexas, economicamente viáveis e sem utilização de aditivos tóxicos. O objetivo deste trabalho foi otimizar a composição cerâmica de modo a atender aos requisitos de permeabilidade do filtro, tendo como base sua operação econômica em temperaturas elevadas em processos como incineração de resíduos, produção de cimento ou queima de biomassa em caldeiras em plantas químicas.This work is part of a project to develop ceramic filters to treat flue gases from cement plants, biomass boilers and waste incinerators. Ceramic filters used for these purposes must present high porosity, homogeneous porous distribution (interconnected to result in bodies with high mechanical strength, permeability and collection efficiency for fine particles. A method recently developed has been used for the filters processing. In this new processing route, the porous samples were prepared through the incorporation of aqueous foams into alumina-based suspensions. Compared to other techniques, this process seems to be an

  13. Evaluation of the Crux IVC Filter in an animal model.

    Science.gov (United States)

    Murphy, Erin H; White, Rodney A; Rosenthal, David; Johnson, Eric D; Zarins, Christopher K; Fogarty, Thomas J; Arko, Frank R

    2008-06-01

    To determine the safety and performance of a new inferior vena cava (IVC) filter in an ovine model and evaluate the retrievability at 5 weeks. The Crux Vena Cava Filter (VCF) is composed of 2 nitinol spiral supports with a polymeric filter suspended between them. Retrieval tails on each end facilitate retrieval. Twelve filters were placed in the infrarenal IVCs of 12 sheep. The vessels were imaged pre and post deployment to assess acute device performance. At 5 weeks, the vessels were re-imaged to evaluate continued device performance and vessel integrity. Nine of 12 filters were retrieved, and the animals were returned to their housing. The other 3 animals were sacrificed, and the filters and vessels were processed for gross and histological examination. At 9 weeks, 4 weeks after filter retrieval, vessel integrity of the remaining 9 animals was again assessed under fluoroscopy. The animals were sacrificed, and the IVCs were explanted for study. All 12 filters were implanted without complications at the intended deployment site and remained fixed over the implantation period. At 5 weeks, the filters intended for recovery were successfully retrieved, with a mean capture time of 9.6+/-13.7 minutes. There were no complications during the 4-week follow-up after filter retrieval. Post-retrieval imaging at 5 and 9 weeks showed no visible signs of vessel wall damage. Histological study of 3 explanted vessels and filters revealed slight neointima encapsulation of the filter elements and minimal incorporation. Gross examination of the post-retrieval vessel walls after the 4-week healing period showed minimal superficial vessel damage; histology showed minimal residual signs of hemorrhage, with little to no inflammatory reaction. The Crux VCF was deployed and safely retrieved without incident at 5 weeks in an animal model. There was no significant damage seen to the IVCs 1 month after filter retrieval.

  14. IF&P Fibrosic{trademark} filters

    Energy Technology Data Exchange (ETDEWEB)

    Eggerstedt, P.M.

    1994-11-01

    The primary objective of this SBIR research program is to increase the performance, durability, and corrosion resistance of lightweight filter candles and filter tubesheet components (Fibrosic{trademark}), fabricated from vacuum formed chopped ceramic fiber (VFCCF), for use in advanced coal utilization applications. Phase I results proved that significant gains in material strength and particle retentivity are possible by treatment of VFCCF materials with colloidal ceramic oxides. Phase II efforts will show how these treated materials tolerate high temperature and vapor-phase alkali species, on a long-term basis. With good durability and corrosion resistance, high temperature capability, and a low installed and replacement cost, these novel materials will help promote commercial acceptance of ceramic candle filter technology, as well as increase the efficiency and reliability of coal utilization processes in general.

  15. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  16. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  17. Military efficacy of individual water purification filters. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, S.A.; Hargett, H.T.

    1990-12-01

    Tests were conducted to determine the effectiveness of Katadyn TM Pocket Filters (KPF) to remove enteric bacteria (Klebsiella terrigena), protozoan cysts (Cryptosporidium parvum), and cyst simulants. Studies used the U.S. Environmental Protection Agency's Guide Standard and Protocol for Testing Microbiological Purifiers for guidance. Results showed that cysts were effectively removed by the filters over a typical 100 gallon use life of the ceramic filter candles used in the KPF. Bacterial removals were shown to also meet the criteria when improvements to end seal gaskets of the ceramic filters were made.

  18. Permeability, Strength and Filtration Performance for Uncoated and Titania-Coated Clay Wastewater Filters

    OpenAIRE

    Masturi; Silvia,, Minetti; Mahardika P. Aji; Euis Sustini; Khairurrijal; Mikrajuddin Abdullah

    2012-01-01

    Problem statement: Wastewater problems continue to be a relevant issue, particularly in urban areas. One promising low-cost material for manufacturing porous ceramics as water filter is clay. Clays can be blended with other materials such as polymers to obtain functional ceramic materials. Approach: Ceramic wastewater filters were fabricated from clay using both sol-gel and simple mixing methods followed by hot-pressing and calcination. Polyethylene Glycol (PEG) was used as a pore-forming age...

  19. Safe Drinking Water for Gunungkidul - Development of a ceramic filtration for point-of-use drinking water treatment in a tropical karst region

    OpenAIRE

    Matthies, Kerstin

    2015-01-01

    This work addresses the development of a locally produced ceramic filter for point-of-use water treatment in the district Gunungkidul in Southern Java, Indonesia, which belongs to the regions without safe water supply. Analyzing local raw material for the filter production and local firing processes as well as filter design and performance, a filter composition and firing procedure was developed for the local production of ceramic filters.

  20. A Simple Candle Filter Safeguard Device

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Henderson, A.K.; Swanson, M.L.

    2002-09-18

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal utilization. Two main designs employ these turbines: those based on pressurized fluidized-bed combustors (PFBCs) and those based on integrated gasification combined cycles (IGCCs). In both designs, the suspended particulates, or dust, must be cleaned from the gas before it enters the turbine to prevent fouling and erosion of the blades. To produce the cleanest gas, barrier filters are being developed and are in commercial use. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the dust on the surface. The three main configurations are candle, cross-flow, and tube. Both candle and tube filters have been tested extensively. They are primarily composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer o n the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle, and individual elements can fail, allowing the particulates to pass through the hole left by the filter element and erode the turbine. Because of the possibility of occasional filter breakage, safeguard devices (SGDs) must be employed to prevent the dust streaming through broken filters from reaching the turbine. The Energy & Environmental Research Center (EERC) safeguard device is composed of three main parts: the ceramic substrate, the adhesive coating, and the safeguard device housing. This report describes the development and laboratory testing of each of those parts as well as the bench-scale performance of both types of complete SGDs.

  1. Ceramic materials testing and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wilfinger, K. R., LLNL

    1998-04-30

    Certain refractory ceramics (notably oxides) have desirable properties suitable for the construction of ceramic waste containers for long term use in nuclear waste disposal applications. In particular, they are far less prone to environmental corrosion than metals under realistic repository conditions. The aqueous corrosion rates of oxides such as magnesium aluminate spinel (MgAl{sub 2}0{sub 4}) and alumina (Al{sub 2}0{sub 4}) fall in the range of a few millimeters per million years. Oxide ceramics are also not likely to be subject to microbiologically influenced corrosion, which apparently can attack most, if not all, of the available engineering metals. Ceramics have a reputation for poor mechanical performance and large, impermeable objects are not easily fabricated by most current fabrication methods. As a result, the most promising approach for incorporating ceramics in large waste packages appears to be to apply a high density ceramic coating to a supporting metallic structure. Ceramic coatings 2048 applied by a thermal spray technique can be made effectively seamless and provide a method for final closure of the waste package while maintaining low average temperatures for the entire assembly. The corrosion resistance of the ceramic should prevent or delay water penetration to the underlying metal, which will in turn provide most of the mechanical strength and toughness required by the application. In this way, the major concerns regarding the ceramic coating become ensuring it is impervious to moisture, its adherence and its resistance to mechanical stresses during handling or resulting from rock fall in the repository. Without water, electrochemical corrosion and microbiologically influenced corrosion processes are considered impossible, so a complete coating should protect the metal vessels for far longer than the current design requirements. Even an imperfect coating should extend the life of the package, delaying the onset and reducing the severity of

  2. Ceramic media amended with metal oxide for the capture of viruses in drinking water.

    Science.gov (United States)

    Brown, J; Sobsey, M D

    2009-04-01

    Ceramic materials that can adsorb and/or inactivate viruses in water may find widespread application in low-tech drinking-water treatment technologies in developing countries, where porous ceramic filters and ceramic granular media filters are increasingly promoted for that purpose. We examined the adsorption and subsequent inactivation of bacteriophages MS2 and (phiX-174 on five ceramic media in batch adsorption studies to determine media suitability for use in a ceramic water filter application. The media examined were a kaolinitic ceramic medium and four kaolinitic ceramic media amended with iron or aluminium oxides that had been incorporated into the kaolinitic clays before firing. Batch adsorption tests indicate increased sorption and inactivation of surrogate viruses by media amended with Fe and Al oxide, with FeOOH-amended ceramic inactivating all bacteriophages up to 8 log10. Unmodified ceramic was a poor adsorbent of bacteriophages at less than 1 log10 adsorption-inactivation and high recovery of sorbed phages. These studies suggest that contact with ceramic media, modified with electropositive Fe or Al oxides, can reduce bacteriophages in waters to a greater extent than unmodified ceramic.

  3. Preparation and Characterization of Nanotitanium Dioxide Coating Film Doped with Fe3+ Ions on Porous Ceramic

    Institute of Scientific and Technical Information of China (English)

    Kejing Xu

    2005-01-01

    The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material-Fe3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time,filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol,amount of Fe3+ ions doped as well as the coating times greatly affect the quality of coating film,the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4,the viscosity is about 6 mPa·S,the amount of doped Fe3+ ions is about 2.0 g/L,the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition,the porosity of porous ceramic is about 42.5%,the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 min.

  4. Boosted learned kernels for data-driven vesselness measure

    Science.gov (United States)

    Grisan, E.

    2017-03-01

    Common vessel centerline extraction methods rely on the computation of a measure providing the likeness of the local appearance of the data to a curvilinear tube-like structure. The most popular techniques rely on empirically designed (hand crafted) measurements as the widely used Hessian vesselness, the recent oriented flux tubeness or filters (e.g. the Gaussian matched filter) that are developed to respond to local features, without exploiting any context information nor the rich structural information embedded in the data. At variance with the previously proposed methods, we propose a completely data-driven approach for learning a vesselness measure from expert-annotated dataset. For each data point (voxel or pixel), we extract the intensity values in a neighborhood region, and estimate the discriminative convolutional kernel yielding a positive response for vessel data and negative response for non-vessel data. The process is iterated within a boosting framework, providing a set of linear filters, whose combined response is the learned vesselness measure. We show the results of the general-use proposed method on the DRIVE retinal images dataset, comparing its performance against the hessian-based vesselness, oriented flux antisymmetry tubeness, and vesselness learned with a probabilistic boosting tree or with a regression tree. We demonstrate the superiority of our approach that yields a vessel detection accuracy of 0.95, with respect to 0.92 (hessian), 0.90 (oriented flux) and 0.85 (boosting tree).

  5. Optimal filtering

    CERN Document Server

    Anderson, Brian D O

    2005-01-01

    This graduate-level text augments and extends beyond undergraduate studies of signal processing, particularly in regard to communication systems and digital filtering theory. Vital for students in the fields of control and communications, its contents are also relevant to students in such diverse areas as statistics, economics, bioengineering, and operations research.Topics include filtering, linear systems, and estimation; the discrete-time Kalman filter; time-invariant filters; properties of Kalman filters; computational aspects; and smoothing of discrete-time signals. Additional subjects e

  6. Compositional attribution of non-provenienced Maya polychrome vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, R.L.; Harbottle, G.; Reents, D.J.; Sayre, E.V.; van Zelst, L.

    1983-01-01

    Procedures and a few of the results of the Maya ceramic project are discussed from the perspective of non-provenienced vessel attribution ranging from site specific through a more inferential level to the rather hypothetical. The examples presented serve to illustrate the manner in which compositional and stylistic covariation are viewed in an investigation of Maya Ceramic art. The large data base from neutron activation analysis including archaeologically recovered pottery as well as the stylistically and iconographically elaborate vessels requires continued refinement in our methods of statistical analysis along with gaining a greater understanding of the sources of ceramic compositional variation in the Maya area. The mutually beneficial collaboration between science, art, and archaeology are emphasized.

  7. BIOASSAY VESSEL FAILURE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Vormelker, P

    2008-09-22

    Two high-pressure bioassay vessels failed at the Savannah River Site during a microwave heating process for biosample testing. Improper installation of the thermal shield in the first failure caused the vessel to burst during microwave heating. The second vessel failure is attributed to overpressurization during a test run. Vessel failure appeared to initiate in the mold parting line, the thinnest cross-section of the octagonal vessel. No material flaws were found in the vessel that would impair its structural performance. Content weight should be minimized to reduce operating temperature and pressure. Outer vessel life is dependent on actual temperature exposure. Since thermal aging of the vessels can be detrimental to their performance, it was recommended that the vessels be used for a limited number of cycles to be determined by additional testing.

  8. Ceramic tape fabrication: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-04-01

    The production flow for green tapes can be roughly divided into the production of slip and the tape casting/tape calendering process. A slip usually consists of ceramic powder, solvents, binders, plasticizers and dispersants. The preparation of the slip is a critical step in the fabrication of ceramic tapes. To obtain a homogeneous slip, the organic additives must first be weighed and dissolved in the solvent. The ceramic powder is then dispersed and existing agglomerates destroyed. A dispersant is added to prevent the reformation of agglomerates. If necessary, the viscosity is then adjusted, and the slip filtered. The exact sequence depends on the type of slip and the equipment used. To destroy the agglomerates, a wide range of mills is employed, from ball mills through attritor mills to ultrasonic devices (mainly on laboratory scale). A wide variety of grinding media, with different sizes, geometries and materials, is also used. The selection depends largely on the characteristics of the slip (e.g.: viscosity, wettability, drying behaviour), the required properties of the ceramic tapes (permitted content of impurities, sintering behaviour) and the quantities to be processed. In most cases, an actual grinding effect, i.e. size reduction of the particles, is avoided. Some of the most commonly used devices are described. At present, tapes with a thickness of 5 {mu}m can be fabricated - in the next years, thicknesses of around 1{mu}m must be reached. To enable this, slip preparation must be further improved and production performed in an absolutely clean environment (for specific products clean rooms are already standard, but even higher clean room standards will be needed in the future). Moreover, new, finer ceramic powders are necessary with particle sizes on the nanometer scale (nanopowders). (orig.)

  9. 旋转圆板型陶瓷膜过滤器平衡过滤油水乳浊液特性研究%Study on the Charicteristics of Filtration of Oil/Water Emulsion with a Circular Plate with Ceramic Membrane Filter

    Institute of Scientific and Technical Information of China (English)

    阿布都瓦依提·玉苏甫; 王建华; 阿不都拉·艾尼瓦尔

    2012-01-01

    采用旋转圆板型陶瓷膜过滤器对5%的O/W(油/水)乳浊液进行了精密平衡过滤.过滤压力为50,100,150 kPa和圆板旋转速度为125,250,500 r/min时,对过滤速度和过滤量的影响进行了对比分析.结果表明,转速为250 r/min,压力为50 kPa时,达到过滤平衡的时间最短且运行稳定,过滤速度较高过滤量较大,在此条件下过滤效果较为理想.%The 5% 0/W (oil/water) emulsion was accurately filtrated by the circular plate with ceramic membrane filter. When the filter pressure was 50 kPa,100 kPa and 150 kPa and the speed of rotation was 125 r/min, 250 r/min and 500 r/min, it could compare and analyse the influnce of filtration speeds and a-mount of filtration. The result inJicated that when the speed of rotation was 250 r/min and filter pressure was 50 kPa?the time of reaching to filtration balance was the shortest and it was stable. The higher the filtration rate was,the larger the amount of filtration was. Therefore,the optimal condition was the speed of rotation 250 r/min and filter pressure 50 kPa for the filtration of 5% O/W (oil/water) emulsion.

  10. Mesopotamian ceramics from the burial mounds of Bahrain, c.2250–1750 BC

    DEFF Research Database (Denmark)

    Laursen, Steffen

    2011-01-01

    Among the ceramic vessels recovered from the burial mounds of Bahrain, a small percentage represents Mesopotamian imports or local emulations of such. In this paper two overall horizons are distinguished in these Mesopotamian ceramics. These are significant because both coincide with major stages...

  11. Vessel Arrival Info - Legacy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Vessel Arrival Info is a spreadsheet that gets filled out during the initial stage of the debriefing process by the debriefer. It contains vessel name, trip...

  12. Guam Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Guam. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  13. Florida Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Florida. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  14. Correlação entre permeabilidade e resistência mecânica de filtros cerâmicos no sistema Al2O3-SiC Relationship between permeability and mechanical strength of Al2O3-SiC ceramic filters

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2000-06-01

    Full Text Available Tem sido crescente o uso de cerâmicas reticulares em processos de refino e purificação de metais fundidos, filtração de gases quentes e combustão catalítica. A aplicação depende da composição química e das propriedades físicas do material (número de poros por polegada linear (ppi, porosidade e diâmetro de poro. Há um consenso de que a melhoria das propriedades dos filamentos resulta em um melhor desempenho mecânico do filtro cerâmico. Entretanto, a análise dos valores de resistência mecânica não pode ser considerada isoladamente, uma vez que para filtros cerâmicos esta tem que estar associada à permeabilidade. Neste trabalho é feita uma análise entre as propriedades fluidodinâmicas e mecânicas de filtros cerâmicos no sistema Al2O3-SiC na faixa de 8 a 90 ppi. Os resultados obtidos permitem considerações tanto no aspecto do processamento cerâmico quanto no modelamento mecânico apresentado na literatura.Reticulate ceramics have been increasingly employed in purification of gases, liquid metals and in catalytic processes. The application area usually depends on the chemical composition and the physical properties (porosity, pore size and pore counting (ppi. In most cases, reticulate ceramics are submitted to compression loads at high temperatures, which makes the durability of these cellular materials be ultimately related to the mechanical quality of the struts. In filtration applications, it is also important the evaluation of fluid dynamic properties of the ceramic, specifically its permeability to fluid flow. In this work, a relationship between mechanical properties and permeability constants of Al2O3-SiC ceramic foam filters with 8 to 90 ppi is presented. Results were associated with the processing technique and with the mechanical modeling presented in the literature.

  15. CeO2对Al2O3基泡沫陶瓷过滤器性能的影响%Effect of CeO2 on Properties of Al2O3-based Ceramic Foam Filters

    Institute of Scientific and Technical Information of China (English)

    马战红; 任凤章

    2012-01-01

    The effects of CeO2 on the properties of ceramic foam by using polymeric sponge impregnation process are studied.The influences of CeO2 different contents on properties of ceramic foam filter,such as cold compression strength(CCS),thermal shock resistance,volume weight,are investigated.The microstructure of samples is analyzed using scanning electron microscopy(SEM).The results show that the CeO2 used as sintering additives can promote the formation of a liquid phase,reduce the sintering temperature of alumina-based ceramic foam,and improve microstructure and properties of the ceramic.The samples with the best thermal shock resistance and high compression strength are obtained by adding 3% CeO2 respectively.%采用有机泡沫浸渍工艺,研究了CeO2对氧化铝基泡沫陶瓷过滤器性能的影响。通过检测试样的常温耐压强度、热震稳定性、通透率等性能以及利用扫描电镜(SEM)对试样的显微结构进行研究,较为详细地探讨不同含量的CeO2对氧化铝基泡沫陶瓷过滤器性能的影响。结果表明,使用CeO2作添加剂可促进液相的生成,降低氧化铝基泡沫陶瓷的烧成温度,改善瓷体的微观组织结构和性能。实验结果表明,当CeO2含量为3%时其热震稳定性和抗压强度最佳。

  16. Carbon nanotube filters

    Science.gov (United States)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  17. ALICE HMPID Radiator Vessel

    CERN Multimedia

    2003-01-01

    View of the radiator vessels of the ALICE/HMPID mounted on the support frame. Each HMPID module is equipped with 3 indipendent radiator vessels made out of neoceram and fused silica (quartz) windows glued together. The spacers inside the vessel are needed to stand the hydrostatic pressure. http://alice-hmpid.web.cern.ch/alice-hmpid

  18. Retinal Image Graph-Cut Segmentation Algorithm Using Multiscale Hessian-Enhancement-Based Nonlocal Mean Filter

    National Research Council Canada - National Science Library

    Zheng, Jian; Lu, Pei-Rong; Xiang, Dehui; Dai, Ya-Kang; Liu, Zhao-Bang; Kuai, Duo-Jie; Xue, Hui; Yang, Yue-Tao

    2013-01-01

    .... By this step, blood vessels of different widths are significantly enhanced. Then, we adopt a nonlocal mean filter to suppress the noise of enhanced image and maintain the vessel information at the same time...

  19. Retinal image graph-cut segmentation algorithm using multiscale Hessian-enhancement-based nonlocal mean filter

    National Research Council Canada - National Science Library

    Zheng, Jian; Lu, Pei-Rong; Xiang, Dehui; Dai, Ya-Kang; Liu, Zhao-Bang; Kuai, Duo-Jie; Xue, Hui; Yang, Yue-Tao

    2013-01-01

    .... By this step, blood vessels of different widths are significantly enhanced. Then, we adopt a nonlocal mean filter to suppress the noise of enhanced image and maintain the vessel information at the same time...

  20. DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

    2002-01-01

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical

  1. DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

    2002-01-01

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical

  2. Nanofiber filter media for air filtration

    Science.gov (United States)

    Raghavan, Bharath Kumar

    Nanofibers have higher capture efficiencies in comparison to microfibers in the submicron particle size range of 100-500 nm because of small fiber diameter and increased surface area of the fibers. Pressure drop across the filter increases tremendously with decrease in fiber diameter in the continuum flow regime. Nanofibers with fiber diameter less than 300 nm are in the slip flow regime as a consequence of which steep increase in pressure drop is considerably reduced due to slip effect. The outlet or inlet gases have broad range of particle size distribution varying from few micrometers to nanometers. The economic benefits include capture of a wide range of particle sizes in the gas streams using compact filters composed of nanofibers and microfibers. Electrospinning technique was used to successfully fabricate polymeric and ceramic nanofibers. The nanofibers were long, continuous, and flexible with diameters in the range of 200--300 nm. Nanofibers were added to the filter medium either by mixing microfibers and nanofibers or by directly electrospinning nanofibers as thin layer on the surface of the microfiber filter medium. Experimental results showed that either by mixing Nylon 6 nanofibers with B glass fibers or by electrospinning Nylon 6 nanofibers as a thin layer on the surface of the microfiber medium in the surface area ratio of 1 which is 0.06 g of nanofibers for 2 g of microfibers performed better than microfiber filter media in air filtration tests. This improved performance is consistent with numerical modeling. The particle loading on a microfibrous filter were studied for air filtration tests. The experimental and modeling results showed that both pressure drop and capture efficiency increased with loading time. Nanofiber filter media has potential applications in many filtration applications and one of them being hot gas filtration. Ceramic nanofibers made of alumina and titania nanofibers can withstand in the range of 1000°C. Ceramic nanofibers

  3. Ultraviolet filters.

    Science.gov (United States)

    Shaath, Nadim A

    2010-04-01

    The chemistry, photostability and mechanism of action of ultraviolet filters are reviewed. The worldwide regulatory status of the 55 approved ultraviolet filters and their optical properties are documented. The photostabilty of butyl methoxydibenzoyl methane (avobenzone) is considered and methods to stabilize it in cosmetic formulations are presented.

  4. Influência das condições de processamento cerâmico na resistência mecânica e na permeabilidade dos filtros de Al2O3-SiC Influence of ceramic processing on the mechanical resistance and permeability of filters in the Al2O3-SiC system

    Directory of Open Access Journals (Sweden)

    V. R. Salvini

    2002-09-01

    Full Text Available Filtros cerâmicos devem apresentar alta permeabilidade e eficiência de retenção de inclusões sólidas, além de uma boa resistência mecânica. No entanto, estas propriedades variam de modos distintos para uma determinada estrutura celular. Poros grandes aumentam a permeabilidade, mas diminuem a eficiência de retenção das inclusões. Em relação ao desempenho do filtro, a porosidade aparente apresenta alta relevância, uma vez que a resistência mecânica diminui e a permeabilidade aumenta para valores de porosidade elevados. Neste trabalho investigou-se a relação entre a resistência mecânica e a permeabilidade para filtros do sistema Al2O3-SiC de 10 ppi (poros por polegada linear. A quantidade da suspensão impregnada na esponja, durante a fabricação do filtro, foi escolhida como variável de controle, pois por meio desta modifica-se a porosidade e o tamanho de poro do filtro. Os resultados obtidos foram comparados aos de filtros de 8 a 90 ppi.Ceramic filters must present not only high permeability and particle trapping efficiency, but also suitable mechanical strength. However, these parameters are influenced in different ways by the cellular structure. Large pores favor permeability, but lower removal efficiency of small particles. Small pores, on the other hand, enhance particle collection, although the filter pressure drop increases. The porosity is also essential for determining ceramic foam performance. Mechanical strength generally decreases with increasing porosity, even though permeability is improved. In this work, the relationship between mechanical strength and permeability has been investigated for 10 ppi (pores per linear inch Al2O3-SiC filters. The amount of slurry impregnated on the organic struts walls during processing has been chosen as the control variable. The results have been compared with those obtained from cellular structures where the pore count variation ranged from 10 to 90 ppi.

  5. Retinal Image Graph-Cut Segmentation Algorithm Using Multiscale Hessian-Enhancement-Based Nonlocal Mean Filter

    OpenAIRE

    Jian Zheng; Pei-Rong Lu; Dehui Xiang; Ya-Kang Dai; Zhao-Bang Liu; Duo-Jie Kuai; Hui Xue; Yue-Tao Yang

    2013-01-01

    We propose a new method to enhance and extract the retinal vessels. First, we employ a multiscale Hessian-based filter to compute the maximum response of vessel likeness function for each pixel. By this step, blood vessels of different widths are significantly enhanced. Then, we adopt a nonlocal mean filter to suppress the noise of enhanced image and maintain the vessel information at the same time. After that, a radial gradient symmetry transformation is adopted to suppress the nonvessel str...

  6. Ceramic Matrix Composites .

    Directory of Open Access Journals (Sweden)

    J. Mukerji

    1993-10-01

    Full Text Available The present state of the knowledge of ceramic-matrix composites have been reviewed. The fracture toughness of present structural ceramics are not enough to permit design of high performance machines with ceramic parts. They also fail by catastrophic brittle fracture. It is generally believed that further improvement of fracture toughness is only possible by making composites of ceramics with ceramic fibre, particulate or platelets. Only ceramic-matrix composites capable of working above 1000 degree centigrade has been dealt with keeping reinforced plastics and metal-reinforced ceramics outside the purview. The author has discussed the basic mechanisms of toughening and fabrication of composites and the difficulties involved. Properties of available fibres and whiskers have been given. The best results obtained so far have been indicated. The limitations of improvement in properties of ceramic-matrix composites have been discussed.

  7. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  8. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  9. Direct-write fabrication of integrated, multilayer ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Dimos, D.; Yang, P.

    1998-03-01

    The need for advanced (electronic) ceramic components with smaller size, greater functionality, and enhanced reliability requires the ability to integrate electronic ceramics in complex 3-D architectures. However, traditional tape casting and screen printing approaches are poorly suited to the requirements of rapid prototyping and small lot manufacturing. To address this need, the authors are developing a direct write approach for fabricating highly integrated, multilayer components using a micropen to deposit slurries in precise patterns. This approach provides the ability to fabricate multifunctional, multimaterial integrated ceramic components (MMICCs) in an agile and rapid way, and has been used to make integrated passive devices such RC filters, inductors, and voltage transformers.

  10. Ceramic art in sculpture

    OpenAIRE

    Rokavec, Eva

    2014-01-01

    Diploma seminar speaks of ceramics as a field of artistic expression and not just as pottery craft. I presented short overview of developing ceramic sculpture and its changing role. Clay inspires design and touch more than other sculpture media. It starts as early as in prehistory. Although it sometimes seems that was sculptural ceramics neglected in art history overview, it was not so in actual praxis. There is a rich tradition of ceramics in the East and also in Europe during the renaissanc...

  11. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    OpenAIRE

    Abebe, Lydia S.; Xinyu Chen; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which...

  12. Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting

    Science.gov (United States)

    Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang

    2016-12-01

    Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.

  13. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.

    2000-06-06

    built to simulate the Kellogg entrained-bed gasifier in use at the Southern Company Services Wilsonville facility, but at 1/10 of the firing rate. At the exit of the unit is a large candle filter vessel typically operated at approximately 1000 F (540 C) in which coupons of materials can be inserted to test their resistance to gasifier ash and gas corrosion. The system also has ports for testing of hydrogen separation membranes that are suitably contained in a pressure housing. In addition, NETL is operating the combustion and environmental research facility (CERF). In recent years, the 0.5 MMBtu/hr (0.5 x 10{sup 6} kJ/hr) CERF has served as a host for exposure of over 60 ceramic and alloy samples at ambient pressure as well as at 200 psig (for tubes). Samples have been inserted in five locations covering 1700-2600 F (930-1430 C), with exposures exceeding 1000 hours. In the present program, the higher priority metals are to be tested at 1500-1600 F (820-870 C) in one CERF location and near 1800-2000 F (980-1090 C) at other locations to compare results with those from the EERC tests.

  14. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The use of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.

  15. Ceramic to metal seal

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gary S. (Albuquerque, NM); Wilcox, Paul D. (Albuquerque, NM)

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  16. Light element ceramics

    OpenAIRE

    Rao, KJ; Varma, KBR; Raju, AR

    1988-01-01

    An overview of a few structually important light element ceramics is presented. Included in the overview are silicon nitide, sialon, aluminium nitride, boron carbide and silicon carbide. Methods of preparation, characterization and industrial applications of these ceramics are summarized. Mechanical properties, industrial production techniques and principal uses of these ceramics are emphasized.

  17. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  18. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  19. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  20. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  1. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  2. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  3. Food Filter

    Institute of Scientific and Technical Information of China (English)

    履之

    1995-01-01

    A typical food-processing plant produces about 500,000 gallons of waste water daily. Laden with organic compounds, this water usually is evaporated or discharged into sewers.A better solution is to filter the water through

  4. Preparation and Characterization of Diatomite/Red Porcelain Porous Ceramic Filter%硅藻土/紫砂多孔过滤陶瓷的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    李倩; 漆小鹏; 邓城

    2016-01-01

    以硅藻土和紫砂黏土为主要原料,采用干压成型方法,在不同温度下(1000~1100℃)烧结制备了硅藻土基多孔陶瓷,测试了样品孔隙率和体积密度的变化,结合压汞仪、扫描电子显微镜和X射线衍射谱等测试手段对材料性能进行表征,并测试了材料的过滤性能。结果表明,随着烧结温度的升高,材料孔隙率从72%下降到58%,最大孔径也在1~10μm变化,高温下硅藻土中的无定型SiO2转变为石英和方石英,制备的多孔陶瓷材料有着较高的过滤速率和优良的水体净化除杂能力。%Diatomite/red porcelain porous ceramics were prepared by means of dry pressing process at different sintering temperature (1000~1100℃). The materials were characterized by mercury injection apparatus, scanning electron microscopy and X-ray diffraction. The porosity and ifltering performance of the materials were tested. Results show that the porosity of materials decrease from 72% to 58% and the maximum pore sizes range from 1 μm to 10 μm with increased temperatures. The amorphous silica of diatomite were transformed into quartz or cristobalite under high temperature. The prepared ceramics exhibit a high ifltration rate and puriifcation ability of water bodies.

  5. Maury Journals - German Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — German vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  6. NCSX Vacuum Vessel Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.

    2005-10-07

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120º vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120º vessel segments are formed by welding two 60º segments together. Each 60º segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02μ, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  7. Sol-gel applications for ceramic membrane preparation

    Science.gov (United States)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  8. Partial nitrification of non-ammonium-rich wastewater within biofilm filters under ambient temperature.

    Science.gov (United States)

    Wang, Hongyu; He, Jiajie; Yang, Kai

    2010-01-01

    This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.

  9. Virtual analysis of influence of a filter on mould filling

    Directory of Open Access Journals (Sweden)

    Zhian Xu

    2011-11-01

    Full Text Available Ceramic filters are used to avoid slag and impurities in foundry applications. When not properly applied, the presence of these filters may have a significant influence on mould filling. 3-D casting simulation has been applied to study the effects of the use of a ceramic filter on the metal flow in a gating system. Instead of using a pressure drop model to represent the behaviour of a fluid metal flow passing through a filter, a real exact filter geometry, which is created by a high resolution CT-scan and a non-destructive imaging technique, in the gating system is applied in the simulation. In this research, nodular cast iron is poured into a block casting. A depressurized gating system is used. After a choke, a filter with different orientations is placed in the system. Mould filling coupled with temperature is simulated. Geometries using different orientations of the filter, and without the filter have been researched. The simulated results show that the filter has no influence on the pouring time of the casting if the choke section is small enough compared to the effective section of the filter. Although the filter has no significant influence on the flow patterns in the block casting itself, the flow patterns in the filter zone are different. When the liquid metal passes a horizontal filter, it will be broken into many small streams and show a shower effect. After the part under the filter is full, the shower effect disappears. When the filter is located at the vertical position, due to the gravity, the shower effect is less. If no filter presents on the system, the liquid metal passes through the filter zone with a high speed and causes surface turbulence.

  10. Preliminary study of chemical compositional data from Amazon ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, Rosimeiri G.; Munita, Casimiro S.; Luz, Fabio A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rosimeiritoy@yahoo.com.br; Neves, Eduardo G. [Museu de Arqueologia e Etnolgia, Sao Paulo, SP (Brazil)]. E-mail: egneves@usp.br; Oliveira, Paulo M.S. [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Inst. de Matematica e Estatistica]. E-mail: poliver@usp.br

    2005-07-01

    Eighty seven ceramic samples from Acutuba, Lago Grande and Osvaldo archaeological sites located in the confluence of the rivers Negro and Solimoes were submitted to chemical analysis using instrumental neutron activation analysis to determine As, Ba, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Rb, Na, Nd, Sb, Sc, Sm, Ta, Tb, Th, Yb, Zn, and U. The database were studied using the Mahalanobis distance, and discriminant analysis. The results showed that the ceramics of each site differ from each other in chemical composition and that they form three different groups. Chemical classification of the ceramics suggests that vessels were made locally, as only ceramics from the same area show homogeneity of data. (author)

  11. 3-D woven, mullite matrix, composite filter

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.E.; Painter, C.J.; Radford, K.C. LeCostaouec, J.F.

    1995-12-01

    Westinghouse, with Techniweave as a major subcontractor, is conducting a three-phase program aimed at providing advanced candle filters for a 1996 pilot scale demonstration in one of the two hot gas filter systems at Southern Company Service`s Wilsonville PSD Facility. The Base Program (Phases I and II) objective is to develop and demonstrate the suitability of the Westinghouse/Techniweave next generation composite candle filter for use in Pressurized Fluidized Bed Combustion (PFBC) and/or Integrated Gasification Combined Cycle (IGCC) power generation systems. The Optional Task (Phase M, Task 5) objective is to fabricate, inspect and ship to Wilsonville Hot gas particulate filters are key components for the successful commercializaion of advanced coal-based power-generation systems such as Pressurized Fluidized-bed Combustion (PFBC), including second-generation PFBC, and Integrated Gasification Combined Cycles (IGCC). Current generation monolithic ceramic filters are subject to catastrophic failure because they have very low resistance to crack propagation. To overcome this problem, a damage-tolerant ceramic filter element is needed.

  12. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  13. PRESSURE-RESISTANT VESSEL

    NARCIS (Netherlands)

    Beukers, A.; De Jong, T.

    1997-01-01

    Abstract of WO 9717570 (A1) The invention is directed to a wheel-shaped pressure-resistant vessel for gaseous, liquid or liquefied material having a substantially rigid shape, said vessel comprising a substantially continuous shell of a fiber-reinforced resin having a central opening, an inner l

  14. 参松养心胶囊水提液陶瓷膜除杂工艺研究%Application of ceramic filter membrane in purification technology of water extract from Shensong Yangxin Capsule

    Institute of Scientific and Technical Information of China (English)

    王曙宾; 郭珊珊; 黄开毅

    2012-01-01

    Objective To observe the effect of different pore diameter membranes on technologies of water extract from Shensong Yangxin Capsule and optimize the parameters. Methods Three different membranes were tested to observe the changes in membrane flux and the retention of effective components. Results The membrane with 100 run diameter had the greater membrane flux, the transfer rates of paeoniflorin was the highest. The optimum conditions were that the operation differential pressure was 0.15-0.22 Mpa, the operation temperature was 20 °C. Conclusion A good result can be obtained by adopting the technology of ceramic membranes filtration to purify Shensong Yangxin Capsule, which provides the foundation for the application of ceramic membranes micro-filtration in the purification of water extract of other Chinese materia medica.%目的 考察不同规格陶瓷膜对中药大品种参松养心胶囊水提液除杂的效果,并优化工艺参数.方法 以参松养心胶囊水提液为研究对象,比较3种不同孔径的陶瓷膜在不同条件下,对膜通量衰减、药液有效成分保留率等方面的影响.结果 滤过孔径为100nm的陶瓷膜对参松养心胶囊水提液滤过效果较好,膜通量及芍药苷转移率均较高,最佳滤过条件为进液压力0.15~0.22 MPa,滤过温度20℃.结论 陶瓷膜滤过技术可较好地对参松养心胶囊水提液进行除杂,该技术可进一步推广到其他中药水提液的除杂工艺中.

  15. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  16. Ceramic laser materials

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin

    2008-12-01

    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  17. Antibacterial ceramic for sandbox. Sunabayo kokin ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K. (Ishizuka Glass Co. Ltd. Nagoya (Japan))

    1993-10-01

    Sands in sandboxes in parks have been called into question of being contaminated by colon bacilli and spawns from ascarides. This paper introduces an antibacterial ceramic for sandbox developed as a new material effective to help reduce the contamination. The ceramic uses natural sand as the main raw material, which is added with borax and silver to contain silver ions that have bacteria and fungus resistance and deodorizing effect. The ceramic has an average grain size ranging from 0.5 mm to 0.7 mm, and is so devised as to match specific gravity, grain size and shape of the sand, hence no separation and segregation can occur. The result of weatherability and antibacterial strength tests on sand for a sandbox mixed with the ceramic at 1% suggests that its efficacy lasts for about three years. Its actual use is under observation. Its efficacy has been verified in a test that measures a survival factor of spawns from dog ascardides contacted with aqueous solution containing the ceramic at 1%. Safety and sanitation tests have proved the ceramic a highly safe product that conforms to the food sanitation law. 5 refs., 3 figs., 3 tabs.

  18. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  19. Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms

    Directory of Open Access Journals (Sweden)

    Matthew Fechser

    2014-01-01

    Full Text Available Air concentrations of respirable crystalline silica were measured in eleven (11 high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44. Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%.

  20. Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms

    Science.gov (United States)

    Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah

    2014-01-01

    Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%. PMID:24464235

  1. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  2. Gel cast foam diesel particulate filters

    Energy Technology Data Exchange (ETDEWEB)

    Binner, J.G.P.; Hughes, S. [IPTME, Loughborough Univ., Loughborough (United Kingdom); Sambrook, R.M. [Dytech Corp. Ltd., Dronfield (United Kingdom)

    2004-07-01

    A new manufacturing route for foam ceramics based on gel casting has been developed and is being commercialised. Gel casting employs an organic monomer that is polymerised to cause the in-situ gelation of a foamed aqueous ceramic slurry. The primary advantage is the inherent flexibility of the process; the foams can be near net shape manufactured in a variety of shapes and sizes and after production are simply dried and fired. In addition, the porosity and pore size distribution can be varied to suit the application and a wide range of ceramics can be foamed with densities ranging from 5-40% of theoretical. Applications are diverse and include the potential to be used as diesel particulate filters (DPF). The present work examines this and concludes that filtration efficiencies of {>=}90% are achievable without generating a significant backpressure for the engine. (orig.)

  3. Efficient photocatalytic degradation of NO by ceramic foam air filters coated with mesoporous TiO2 thin films%陶瓷泡沫空气过滤器涂覆中孔TiO2薄膜用于室内空气净化中高效光催化降解NO

    Institute of Scientific and Technical Information of China (English)

    Wingkei Ho

    2015-01-01

    Ceramic foam air filters with three‐dimensional (3D) porous structures and high surface areas were coated with mesoporous TiO2 thin films by the reverse micellar method. The mesoporous TiO2 thin films efficiently photocatalytically degraded nitrogen oxide (NO). More than 92.5%of NO was de‐graded in a single pass for air filter samples containing different pore densities. The 3D porous structure of the ceramic air filters enhanced flow turbulence and mixing. This provided the catalytic system with excellent gas‐dynamic properties, and sufficient contact between the reactant gas and catalyst surface. The higher pore density of the ceramic foam filters resulted in a higher photocata‐lytic rate. More adsorption sites for water vapor and the reactant and product gases improved the photocatalytic activity. The porous ceramic air filters coated with mesoporous TiO2 had large sur‐face areas, and thus high photocatalytic activity. This overcame the common disadvantages associ‐ated with using powdered TiO2 photocatalysts on substrates. The 3D porous ceramic foam filters coated with mesoporous TiO2 thin films exhibited a higher photocatalytic degradation rate of NO in air than the same thin film deposited on flat ceramic tiles. No deactivation was observed. A consist‐ently high NO degradation rate was obtained between reaction cycles for the TiO2‐coated 3D porous ceramic filters.%由于人们80%的时间呆在室内,室内空气的质量直接影响人类健康,因此近年来室内空气质量越来越受到人们的关注.室内污染物包括CO氮氧化物(NOx)和挥发性有机化合物(VOCs),它们给人体健康带来众多负面影响.更为重要的是,考虑到节能,现代建筑的空气密闭性大都较高,但这种减少吸入新鲜空气的设计直接导致室内各种污染物的累积.有些家用电器,如燃气灶和热水器,在使用的时候会涉及到煤、油和天然气的燃烧,特别是通风较差的情况下会成为室内主要

  4. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  5. Notch filter

    Science.gov (United States)

    Shelton, G. B. (Inventor)

    1977-01-01

    A notch filter for the selective attenuation of a narrow band of frequencies out of a larger band was developed. A helical resonator is connected to an input circuit and an output circuit through discrete and equal capacitors, and a resistor is connected between the input and the output circuits.

  6. Confinement Vessel Dynamic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    R. Robert Stevens; Stephen P. Rojas

    1999-08-01

    A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.

  7. Automated blood vessel extraction using local features on retinal images

    Science.gov (United States)

    Hatanaka, Yuji; Samo, Kazuki; Tajima, Mikiya; Ogohara, Kazunori; Muramatsu, Chisako; Okumura, Susumu; Fujita, Hiroshi

    2016-03-01

    An automated blood vessel extraction using high-order local autocorrelation (HLAC) on retinal images is presented. Although many blood vessel extraction methods based on contrast have been proposed, a technique based on the relation of neighbor pixels has not been published. HLAC features are shift-invariant; therefore, we applied HLAC features to retinal images. However, HLAC features are weak to turned image, thus a method was improved by the addition of HLAC features to a polar transformed image. The blood vessels were classified using an artificial neural network (ANN) with HLAC features using 105 mask patterns as input. To improve performance, the second ANN (ANN2) was constructed by using the green component of the color retinal image and the four output values of ANN, Gabor filter, double-ring filter and black-top-hat transformation. The retinal images used in this study were obtained from the "Digital Retinal Images for Vessel Extraction" (DRIVE) database. The ANN using HLAC output apparent white values in the blood vessel regions and could also extract blood vessels with low contrast. The outputs were evaluated using the area under the curve (AUC) based on receiver operating characteristics (ROC) analysis. The AUC of ANN2 was 0.960 as a result of our study. The result can be used for the quantitative analysis of the blood vessels.

  8. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  9. Cheboygan Vessel Base

    Data.gov (United States)

    Federal Laboratory Consortium — Cheboygan Vessel Base (CVB), located in Cheboygan, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). CVB was established by congressional...

  10. 2013 Tanker Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  11. 2013 Passenger Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  12. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  13. 2011 Cargo Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  14. 2011 Tanker Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  15. 2011 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  16. 2011 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  17. 2011 Passenger Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  18. 2013 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  19. 2013 Cargo Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  20. Blood Vessels in Allotransplantation

    National Research Council Canada - National Science Library

    Abrahimi, P; Liu, R; Pober, J. S

    2015-01-01

    Pober and colleagues present an overview of the various roles played by graft blood vessels in transplantation, including how they function to maintain graft health, how they participate in and are...

  1. Maury Journals - US Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  2. 2013 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  3. Coastal Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains catch (landed catch) and effort for fishing trips made by vessels that have been issued a Federal permit for the Gulf of Mexico reef fish,...

  4. Blood Vessel Tension Tester

    Science.gov (United States)

    1978-01-01

    In the photo, a medical researcher is using a specially designed laboratory apparatus for measuring blood vessel tension. It was designed by Langley Research Center as a service to researchers of Norfolk General Hospital and Eastern Virginia Medical School, Norfolk, Virginia. The investigators are studying how vascular smooth muscle-muscle in the walls of blood vessels-reacts to various stimulants, such as coffee, tea, alcohol or drugs. They sought help from Langley Research Center in devising a method of measuring the tension in blood vessel segments subjected to various stimuli. The task was complicated by the extremely small size of the specimens to be tested, blood vessel "loops" resembling small rubber bands, some only half a millimeter in diameter. Langley's Instrumentation Development Section responded with a miniaturized system whose key components are a "micropositioner" for stretching a length of blood vessel and a strain gage for measuring the smooth muscle tension developed. The micropositioner is a two-pronged holder. The loop of Mood vessel is hooked over the prongs and it is stretched by increasing the distance between the prongs in minute increments, fractions of a millimeter. At each increase, the tension developed is carefully measured. In some experiments, the holder and specimen are lowered into the test tubes shown, which contain a saline solution simulating body fluid; the effect of the compound on developed tension is then measured. The device has functioned well and the investigators say it has saved several months research time.

  5. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  6. Industrial Ceramics: Secondary Schools.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  7. Verification of ceramic structures

    NARCIS (Netherlands)

    Behar-Lafenetre, S.; Cornillon, L.; Rancurel, M.; Graaf, D. de; Hartmann, P.; Coe, G.; Laine, B.

    2012-01-01

    In the framework of the "Mechanical Design and Verification Methodologies for Ceramic Structures" contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instr

  8. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    Science.gov (United States)

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  9. Production of ceramics from coal fly ash

    Directory of Open Access Journals (Sweden)

    Angjusheva Biljana

    2012-01-01

    Full Text Available Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min. Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al(Si,Al2O6] was formed. Ceramics with optimal properties (porosity 2.96±0.5%, bending strength - 47.01±2 MPa, compressive strength - 170 ±5 MPa was produced at 1100ºC using the heating rate of 10ºC/min.

  10. Ceramics As Materials Of Construction

    OpenAIRE

    Zaki, A.; Eteiba, M. B.; Abdelmonem, N.M.

    1988-01-01

    This paper attempts to review the limitations for using the important ceramics in contact with corrosive media. Different types of ceramics are included. Corrosion properties of ceramics and their electrical properties are mentioned. Recommendations are suggested for using ceramics in different media.

  11. Assessment of a membrane drinking water filter in an emergency setting.

    Science.gov (United States)

    Ensink, Jeroen H J; Bastable, Andy; Cairncross, Sandy

    2015-06-01

    The performance and acceptability of the Nerox(TM) membrane drinking water filter were evaluated among an internally displaced population in Pakistan. The membrane filter and a control ceramic candle filter were distributed to over 3,000 households. Following a 6-month period, 230 households were visited and filter performance and use were assessed. Only 6% of the visited households still had a functioning filter, and the removal performance ranged from 80 to 93%. High turbidity in source water (irrigation canals), together with high temperatures and large family size were likely to have contributed to poor performance and uptake of the filters.

  12. CRYSTAL FILTER TEST SET

    Science.gov (United States)

    CRYSTAL FILTERS, *HIGH FREQUENCY, *RADIOFREQUENCY FILTERS, AMPLIFIERS, ELECTRIC POTENTIAL, FREQUENCY, IMPEDANCE MATCHING , INSTRUMENTATION, RADIOFREQUENCY, RADIOFREQUENCY AMPLIFIERS, TEST EQUIPMENT, TEST METHODS

  13. Technology and Organisation of Inka Pottery Production in the Leche Valley. Part II: Study of Fired Vessels

    Science.gov (United States)

    Hayashida, F.; Häusler, W.; Riederer, J.; Wagner, U.

    2003-09-01

    Ceramic finds from the Inka workshops at Tambo Real and La Viña in the Leche Valley in northern Peru were studied by Mössbauer spectroscopy, thin section microscopy and X-ray diffraction. Sherds of Inka style vessels and of local style vessels can be distinguished by their shape, although local techniques appear to have been used in making both types. A reconstruction of the firing techniques by scientific studies of the ceramic material does not reveal a substantial difference in material or in the firing of both forms, although high firing temperatures were necessary to achieve sufficient stability of the large Inka style vessels. It cannot be decided whether the smaller local vessels were fired together with the Inka vessels or separately. Most of the variation in the maximum firing temperature can be explained with the normal temperature and atmosphere fluctuations in an open pit kiln.

  14. Technology and Organisation of Inka Pottery Production in the Leche Valley. Part II: Study of Fired Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, F. [Pennsylvania State University, Department of Anthropology (United States); Haeusler, W. [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Riederer, J. [Rathgen-Forschungslabor (Germany); Wagner, U., E-mail: uwagner@ph.tum.de [Pennsylvania State University, Department of Anthropology (United States)

    2003-09-15

    Ceramic finds from the Inka workshops at Tambo Real and La Vina in the Leche Valley in northern Peru were studied by Moessbauer spectroscopy, thin section microscopy and X-ray diffraction. Sherds of Inka style vessels and of local style vessels can be distinguished by their shape, although local techniques appear to have been used in making both types. A reconstruction of the firing techniques by scientific studies of the ceramic material does not reveal a substantial difference in material or in the firing of both forms, although high firing temperatures were necessary to achieve sufficient stability of the large Inka style vessels. It cannot be decided whether the smaller local vessels were fired together with the Inka vessels or separately. Most of the variation in the maximum firing temperature can be explained with the normal temperature and atmosphere fluctuations in an open pit kiln.

  15. Ceramics and Society: Early Tana Tradition and the Swahili Coast (Data Paper

    Directory of Open Access Journals (Sweden)

    Stephanie Wynne-Jones

    2013-08-01

    Full Text Available The Ceramics and Society dataset (Wynne-Jones and Fleisher 2013 includes a database that documents the analysis of over 2,000 potsherds of the Early Tana Tradition (ETT, a 7th-10th century ceramic tradition found along the eastern African coastline and hinterland. The dataset contains 40 variables for each sherd, including those related to vessel shape, materials, decoration and finishing and production attributes. Referee statement by Paul Lane

  16. Cost-Benefit Analysis Methodology: Install Commercially Compliant Engines on National Security Exempted Vessels?

    Science.gov (United States)

    2015-11-05

    technologies follow: 1. Selective catalytic reduction (SCR) 2. Diesel particulate filter (DPF) – electrically regenerated active (ERADPF...insurmountable obstacles such as vessel range, engine room space, SLM, additional electric power, etc. Recommendations are developed on the basis of both...Cost-Benefit Analysis Methodology: Install Commercially Compliant Engines on National Security Exempted Vessels? Jonathan DeHart 1 (M

  17. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  18. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  19. The APS ceramic chambers

    Energy Technology Data Exchange (ETDEWEB)

    Milton, S.; Warner, D.

    1994-07-01

    Ceramics chambers are used in the Advanced Photon Source (APS) machines at the locations of the pulsed kicker and bumper magnets. The ceramic will be coated internally with a resistive paste. The resistance is chosen to allow the low frequency pulsed magnet field to penetrate but not the high frequency components of the circulating beam. Another design goal was to keep the power density experienced by the resistive coating to a minimum. These ceramics, their associated hardware, the coating process, and our recent experiences with them are described.

  20. Material for dust and flame filters in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Weber, E.; Hoelter, H.

    1980-01-24

    It is proposed to improve ceramic fibres (with a silica content of more than 80%) for use in underground filters. The temperature resistance is increased, above all, if the glass fibres receive a silica coating. A pretreatment with silane is advantageous.

  1. Advanced Ceramics Property Measurements

    Science.gov (United States)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  2. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  3. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  4. Pressurized Vessel Slurry Pumping

    Energy Technology Data Exchange (ETDEWEB)

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  5. Very Versatile Vessel

    Science.gov (United States)

    2009-09-01

    data. This source provides information on aluminum hydrofoil vessels without the added weight of foil structures. The composite armor around the...to Powerboats. New York: International Marine/Ragged Mountain P, 2002. 8. [Asset/ Hydrofoil Advanced Surface Ship Evaluation Tool Module User Manual

  6. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  7. Graywater Discharges from Vessels

    Science.gov (United States)

    2011-11-01

    addition, based on personal contact with the shipping company, storing graywater in ballast tanks while in port can limit vessel stability considering...enters the treatment system and mixes with the aerated liquid already in the aeration chamber. EPDM Air diffuser injects air near the bottom of the

  8. Adaptive ship autopilot with wave filter

    Directory of Open Access Journals (Sweden)

    Steinar Sælid

    1983-01-01

    Full Text Available This paper is concerned with analysis and design of an adaptive autopilot for ships. The design is based on a low and high frequency model of the vessel motion adequate to ship steering. The low frequency model describes the vessel response to rudder control and slowly varying environmental forces. The high frequency model represents the wave induced oscillatory part of the yaw motion. The models are used in a Kalman filter and the rudder control is computed from linear quadratic theory based on the low frequency part of the vector. This yields a very effective filtering of the wave component of the yaw motion. Proper operation of this filter/controller structure requires knowledge of the vessel model parameters and the dominating wave frequency. The vessel parameters are estimated on line by a recursive prediction error method. In order to reduce the computing requirements, the state estimator is operated using scheduled gains. This results in an easy and robust design. The convergence properties are investigated by using the method of Ljung. The performance is confirmed by simulation experiments.

  9. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  10. LOST2: A positioning system for underwater vessels

    Science.gov (United States)

    Beckman, Richard Robert

    2001-10-01

    The LOST2 system is a new accurate underwater positioning system that nonlinearly combines parts of dead-reckoning, acoustic-based positioning, and terrain-based positioning. The system is composed of two major subsystems, a system observer and a constrained extended Kalman filter. Inputs to the system are as follows: (1)high resolution bathymetry, (2)measured ocean depth at the position of the vessel, (3)measured or estimated vessel velocity, (4)slant range to and position of a known point, and (5)an initial prediction of the vessel's location. The system development, simulation studies, results from sea trials and some suggestions for future work are presented. The system is capable of providing position estimates with the same degree of accuracy as present methods, with significantly less hardware. These results prove the concept of the system as a new method to position underwater vessels.

  11. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    Science.gov (United States)

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  12. Ceramic component development analysis -- Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, D.E.

    1998-06-09

    The development of advanced filtration media for advanced fossil-fueled power generating systems is a critical step in meeting the performance and emissions requirements for these systems. While porous metal and ceramic candle-filters have been available for some time, the next generation of filters will include ceramic-matrix composites (CMCs) (Techniweave/Westinghouse, Babcock and Wilcox (B and W), DuPont Lanxide Composites), intermetallic alloys (Pall Corporation), and alternate filter geometries (CeraMem Separations). The goal of this effort was to perform a cursory review of the manufacturing processes used by 5 companies developing advanced filters from the perspective of process repeatability and the ability for their processes to be scale-up to produce volumes. Given the brief nature of the on-site reviews, only an overview of the processes and systems could be obtained. Each of the 5 companies had developed some level of manufacturing and quality assurance documentation, with most of the companies leveraging the procedures from other products they manufacture. It was found that all of the filter manufacturers had a solid understanding of the product development path. Given that these filters are largely developmental, significant additional work is necessary to understand the process-performance relationships and projecting manufacturing costs.

  13. Degradability of dental ceramics.

    Science.gov (United States)

    Anusavice, K J

    1992-09-01

    The degradation of dental ceramics generally occurs because of mechanical forces or chemical attack. The possible physiological side-effects of ceramics are their tendency to abrade opposing dental structures, the emission of radiation from radioactive components, the roughening of their surfaces by chemical attack with a corresponding increase in plaque retention, and the release of potentially unsafe concentrations of elements as a result of abrasion and dissolution. The chemical durability of dental ceramics is excellent. With the exception of the excessive exposure to acidulated fluoride, ammonium bifluoride, or hydrofluoric acid, there is little risk of surface degradation of virtually all current dental ceramics. Extensive exposure to acidulated fluoride is a possible problem for individuals with head and/or neck cancer who have received large doses of radiation. Such fluoride treatment is necessary to minimize tooth demineralization when saliva flow rates have been reduced because of radiation exposure to salivary glands. Porcelain surface stains are also lost occasionally when abraded by prophylaxis pastes and/or acidulated fluoride. In each case, the solutes are usually not ingested. Further research that uses standardized testing procedures is needed on the chemical durability of dental ceramics. Accelerated durability tests are desirable to minimize the time required for such measurements. The influence of chemical durability on surface roughness and the subsequent effect of roughness on wear of the ceramic restorations as well as of opposing structures should also be explored on a standardized basis.

  14. Chemical composition and morphology of oxidic ceramics at filtration of steel deoxidised by aluminium

    Directory of Open Access Journals (Sweden)

    J. Bažan

    2009-10-01

    Full Text Available Composition and morphology of filter ceramics were investigated during filtration of steel deoxidised by aluminium. Filtration was realized with use of filters based on oxidic ceramics Cr2O3, TiO2, SiO2, ZrO2, Al2O3, 3Al2O3•2SiO2 and MgO•Al2O3. It was established that change of interphase (coating occurs during filtration of steel on the surface of capillaries of ceramics, where content of basic oxidic component decreases. Loss of oxidic component in the coating is replaced by increase of oxides of manganese and iron and it is great extent inversely proportional to the value of Gibbs’ energy of oxide, which forms this initial basis of ceramics.

  15. Clinical application of bio ceramics

    Science.gov (United States)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  16. The Design Features of Complex Vessels of Malyshev Neolithic Culture of Lower Priamurye (case study: Malyshevo 1 Settlement

    Directory of Open Access Journals (Sweden)

    Inga V. Filatova

    2015-03-01

    Full Text Available According to the author’s opinion, the solution for cultural genesis issues can be tackled through the analysis of structural peculiarities of hollow bodies of vessels of different ceramic complexes. The ceramics of the Malyshev Culture of the Lower Amur is no exception. The article traces the evolution of researchers’ views in regard to Neolithic culture in inner periodization of the region as well as cultural relevance of early complex ceramics by a well known Soviet archeologist academic A.P. Okladnykov – stage of Lower Amur Neolithic culture. Case study: visualization of ceramic collection of one-layer Neolithic settlement Malyshevo-1 (“At the craftsmen”. Here we identify two vessel groups, which differ through their morphological and decorative features. On the ground of technological assessments of manufacturing techniques by I. G. Glushkov (1996, including methodological developments by A. A. Bobrinsky (1978, the program of hollow body design is researched. The manufacturing techniques are identified (methods of fixing, build-up, straps oiling, types of molding, filling program, cutting and bottom fixing. The mixed programs of hollow body vessels are identified and locations of two pottery traditions are found. A competitive analysis for identifying the peculiarities of Malyshev ceramics and Neolithic materials of the Lower Amur and bordering seaside territories. There are similarities are drawn out between ceramic complexes of Osipov culture of early Neolithic (Lower Amur and Rudninsky culture (Rudninsky type, Sergeev type of early Neolithic (seaside territories.

  17. Convergent Filter Bases

    OpenAIRE

    Coghetto Roland

    2015-01-01

    We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

  18. Convergent Filter Bases

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-09-01

    Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.

  19. Refining of biodiesel by ceramic membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong; Ou, Shiyi; Tan, Yanlai; Tang, Shuze [Department of Food Science and Engineering, Jinan University, Guangzhou 510632 (China); Wang, Xingguo; Liu, Yuanfa [School of Food Science and Technology, Jiangnan University, Wuxi 214112 (China)

    2009-03-15

    A ceramic membrane separation process for biodiesel refining was developed to reduce the considerable usage of water needed in the conventional water washing process. Crude biodiesel produced by refined palm oil was micro-filtered by ceramic membranes of the pore size of 0.6, 0.2 and 0.1 {mu}m to remove the residual soap and free glycerol, at the transmembrane pressure of 0.15 MPa and temperature of 60 C. The flux through membrane maintained at 300 L m{sup -} {sup 2} h{sup -} {sup 1} when the volumetric concentrated ratio reached 4. The content of potassium, sodium, calcium and magnesium in the whole permeate was 1.40, 1.78, 0.81 and 0.20 mg/kg respectively, as determined by inductively coupled plasma-atomic emission spectroscopy. These values are lower than the EN 14538 specifications. The residual free glycerol in the permeate was estimated by water extraction, its value was 0.0108 wt.%. This ceramic membrane technology was a potential environmental process for the refining of biodiesel. (author)

  20. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  1. For-Hire Vessel Directory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Vessel Directory is maintained as the sample frame for the For-Hire Survey. I contains data on for-hire vessels on the Atlantic and Gulf coasts. Data include...

  2. American Samoa Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for American Samoa. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  3. CNMI Abandoned Vessel Inventory, Tinian

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Tinian. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  4. Hawaii Abandoned Vessel Inventory, Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Oahu, Hawaii. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  5. Puerto Rico Abandoned Vessel Inventory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Puerto Rico. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  6. Hawaii Abandoned Vessel Inventory, Maui

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Maui. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  7. CNMI Abandoned Vessel Inventory, Rota

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Rota. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  8. CNMI Abandoned Vessel Inventory, Saipan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Saipan. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  9. Hawaii Abandoned Vessel Inventory, Kauai

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Kauai. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  10. Hawaii Abandoned Vessel Inventory, Molokai

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Molokai, Hawaii. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral...

  11. Vessels in Transit - Web Tool

    Data.gov (United States)

    Department of Transportation — A web tool that provides real-time information on vessels transiting the Saint Lawrence Seaway. Visitors may sort by order of turn, vessel name, or last location in...

  12. Hawaii Abandoned Vessel Inventory, Lanai

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Abandoned Vessel Project Data for Lanai. Abandoned vessels pose a significant threat to the NOAA Trust resources through physical destruction of coral habitats...

  13. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  14. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  15. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  16. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  17. Preparation of porous hydroxyapatite ceramics with starch additives

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; NING Xiao-shan; CHEN Ke-xin; XIAO Qun-fang; ZHOU He-ping

    2005-01-01

    Porous ceramics prepared from nano-sized hydroxyapatite powders by adding water soluble starch and insoluble starch were investigated. The results show that small pores of several micrometers or less can be produced by adding water soluble starch as a pore former. Two kinds of starch have different pore forming mechanisms. The permeability of the porous ceramics can be greatly improved by adding the insoluble starch to channel the small pores rather than solely using water soluble starch. The control of permeability can be achieved by adjusting the content ratio of water soluble starch to insoluble starch. Strength tests show the ceramics have rather high strength. Therefore a kind of porous filtering material with small pores, controllable permeability and good strength can be prepared by using starch additives.

  18. Symptomatic caval penetration by a Celect inferior vena cava filter

    Energy Technology Data Exchange (ETDEWEB)

    Bogue, Conor O.; John, Philip R.; Connolly, Bairbre L.; Rea, David J.; Amaral, Joao G. [Hospital for Sick Children and University of Toronto, Division of Image Guided Therapy, Department of Diagnostic Imaging, Toronto, ON (Canada)

    2009-10-15

    We report a case of penetration of the inferior vena cava (IVC) by all four primary struts of a Celect caval filter in a 17-year-old girl with Klippel-Trenaunay syndrome. The girl presented with acute lower abdominal and right leg pain 17 days after filter insertion. An abdominal radiograph demonstrated that the filter had moved caudally and that the primary struts had splayed considerably since insertion. Contrast-enhanced CT confirmed that all four primary struts had penetrated the IVC wall. There was a small amount of retroperitoneal hemorrhage. The surrounding vessels and viscera were intact. The filter was subsequently retrieved without complication. (orig.)

  19. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  20. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    Science.gov (United States)

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  1. Rolling contact fatigue of ceramics

    OpenAIRE

    Hadfield, Mark

    1993-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Ceramic/ceramic and ceramic/steel contacts under lubricated rolling conditions are studied. This work is of interest to ball bearing manufacturers as the use of ceramics in the design of these components has some advantages over traditional bearing-steel materials. Low density and increased stiffness are the mechanical properties which gas-turbine and machine tool manufacturers are most likel...

  2. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  3. FATIGUE OF DENTAL CERAMICS

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  4. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  5. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  6. Ceramic impregnated superabrasives

    Science.gov (United States)

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  7. Fatigue of dental ceramics.

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  9. Filtration performance of microporous ceramic supports.

    Science.gov (United States)

    Belouatek, Aissa; Ouagued, Abdellah; Belhakem, Mustapha; Addou, Ahmed

    2008-04-24

    The use of inorganic membranes in pollution treatment is actually limited by the cost of such membranes. Advantages of inorganic membranes are their chemical, thermal and pH properties. The purpose of this work was the development of microporous ceramic materials based on clay for liquid waste processing. The supports or ceramic filters having various compositions were prepared and thermally treated at 1100 degrees C. The results show that, at the temperature studied, porosity varied according to the support composition from 12% for the double-layered (ceramic) support to 47% for the activated carbon- filled support with a mean pore diameter between 0.8 and 1.3 microm, respectively. Volumes of 5 l of distilled water were filtered tangentially for 3 h under an applied pressure of 3.5 and 5.5 bar. The retention of tubular supports prepared was tested with molecules of varying size (Evans blue, NaCl and Sacharose). The study of the liquid filtration and flow through these supports showed that the retention rate depends on support composition and pore diameter, and solute molecular weight. The S1 support (mixture of barbotine and 1% (w/w) activated carbon) gave a flux for distilled water of 68 L/m2 h while the double-layered support resulted in a flux of 8 L/m2 h for the same solution at the pressure of 3.5 bar. At a pressure of 5.5 bar an increase in the distilled water flux through the various supports was observed. It was significant for the S1 support (230 L/m h).

  10. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  11. Permeability, Strength and Filtration Performance for Uncoated and Titania-Coated Clay Wastewater Filters

    Directory of Open Access Journals (Sweden)

    Masturi

    2012-01-01

    Full Text Available Problem statement: Wastewater problems continue to be a relevant issue, particularly in urban areas. One promising low-cost material for manufacturing porous ceramics as water filter is clay. Clays can be blended with other materials such as polymers to obtain functional ceramic materials. Approach: Ceramic wastewater filters were fabricated from clay using both sol-gel and simple mixing methods followed by hot-pressing and calcination. Polyethylene Glycol (PEG was used as a pore-forming agent. Results: Varying the clay:PEG ratio modified the membrane permeability between 1.65×10-16 m2 and 3.16×10-15 m2 for the sol-gel membranes and between 1.38×10-16 and 8.72×10-13 m2 for membranes prepared by simple mixing. The strength ranged from 0.28 MPa-1.71 MPa for the sol-gel membranes and from 0.05-0.90 MPa for samples prepared by simple mixing. The filtration performance was tested using aqueous solutions of Methylene Blue (MB. The concentrations of MB remaining in the solution varied from 0.98-1.44% for sol-gel filters and from 1.50-38.05% for filters prepared by simple mixing. Conclusion: We succeeded in making ceramic as filter from clay. The porous ceramic can be used to reducing concentration of pollutant simulated. The model introduced has succeeded to explain the experimental observations with percolation approximation.

  12. Gas impermeable glaze for sealing a porous ceramic surface

    Science.gov (United States)

    Reed, Scott T.; Stone, Ronald G.; Nenoff, Tina M.; Trudell, Daniel E.; Thoma, Steven G.

    2004-04-06

    A process for fabricating a gas impermeable seal on a porous ceramic surface using a thin, glass-based, pinhole free glaze. The process can be used to fabricate gas impermeable end seals on porous alumina tubes used as filter media. The porous alumina tubes can have an inorganic microporous thin film separation membrane on the inner surface, which can be used for high temperature gas separation processes.

  13. Development of iron-aluminide hot-gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Wright, I.G.; Judkins, R.R.

    1996-06-01

    Removal of particles from hot synthesis gas produced by coal gasification is vital to the success of these systems. In Integrated [Coal] Gasification Combined Cycle systems, the synthesis gas is the fuel for gas turbines. To avoid damage to turbine components, it is necessary that particles be removed from the fuel gas prior to combustion and introduction into the turbine. Reliability and durability of the hot-gas filtering devices used to remove the particles is, of course, of special importance. Hot-gas filter materials include both ceramics and metals. Numerous considerations must be made in selecting materials for these filters. Constituents in the hot gases may potentially degrade the properties and performance of the filters to the point that they are ineffective in removing the particles. Very significant efforts have been made by DOE and others to develop effective hot-particle filters and, although improvements have been made, alternative materials and structures are still needed.

  14. Environment Conscious Ceramics (Ecoceramics)

    Science.gov (United States)

    Singh, Mrityunjay; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. These carbonaceous preforms have been fabricated by pyrolysis of solid wood bodies at 1000 C. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches.

  15. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    single cycle[21]. In zirconia , ferroelastic domains appeared during the cubic to tetragonal transformation at -2200’C, where [c] axes were elongated...Mechanism in Tetragonal Zirconia ( TZP ) Ceramics," Adv. in Ceramics 24 (1986) 653-662. 26. K. Mehta, J. F. Jue and A. V. Virkar, "Grinding-Liduced...barium copper oxide (YBa2Cu306+x) and dicalcium silicate (Ca 2 SiO4 ). The cubic to tetragonal transformation in PbTiO3 40 was proven to be

  16. Operating experiences of the TESC BWE filter in the Escatron PFBC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, A.; Guilarte, R.; Nales, T.; Abellanal, I.

    1999-07-01

    A Ceramic Filter based on the TESC (Two Ends Supported Candle) concept by BWE has been operating since November 1997 at the 71 MWe Escatron PFBC Power Plant of ENDESA S.A. The Ceramic Filter is treating 1/9 of the combustion gases (this is 10.5 Kg/s), replacing a secondary cyclone, at temperatures ranging 750--820 C. The aim of this Project is to demonstrate the performance of a Ceramic Filter based on the TESC system, which keeps the ceramic elements working on compression by a pneumatic supporting system. The Escatron PFBC plant burns local lignites working under commercial conditions, and the objective is to optimize the main filtration parameters for these coals. The operating experience will permit evaluation of the design, the prediction of life expectancy of the materials used, while carrying out the tests needed to define commercial operating parameters. At present (December 1998) 4,420 hours of operation have been logged, 2,300 hours through the Ceramic Filter (mainly at full load) and the rest through a bypass cyclone system. The longest continuous Filter run lasted 687 hours, while the average run duration at the present test period is around 500 hours. Some problems regarding massive ash bridging due to the extremely sticky nature of the ash have been the main operating problem. Nevertheless, the operating results together with the very few candle failures (only in two of the runs) have proved that the TESC concept is right and a promising way to commercial hot gas filtration units. This paper describes the Escatron Filter Plant and reviews the operation experiences of the TESC Ceramic Filter at 71 MWe Escatron PFBC Plant.

  17. Filter quality of pleated filter cartridges.

    Science.gov (United States)

    Chen, Chun-Wan; Huang, Sheng-Hsiu; Chiang, Che-Ming; Hsiao, Ta-Chih; Chen, Chih-Chieh

    2008-04-01

    The performance of dust cartridge filters commonly used in dust masks and in room ventilation depends both on the collection efficiency of the filter material and the pressure drop across the filter. Currently, the optimization of filter design is based only on minimizing the pressure drop at a set velocity chosen by the manufacturer. The collection efficiency, an equally important factor, is rarely considered in the optimization process. In this work, a filter quality factor, which combines the collection efficiency and the pressure drop, is used as the optimization criterion for filter evaluation. Most respirator manufacturers pleat the filter to various extents to increase the filtration area in the limit space within the dust cartridge. Six sizes of filter holders were fabricated to hold just one pleat of filter, simulating six different pleat counts, ranging from 0.5 to 3.33 pleats cm(-1). The possible electrostatic charges on the filter were removed by dipping in isopropyl alcohol, and the air velocity is fixed at 100 cm s(-1). Liquid dicotylphthalate particles generated by a constant output atomizer were used as challenge aerosols to minimize particle loading effects. A scanning mobility particle sizer was used to measure the challenge aerosol number concentrations and size distributions upstream and downstream of the pleated filter. The pressure drop across the filter was monitored by using a calibrated pressure transducer. The results showed that the performance of pleated filters depend not only on the size of the particle but also on the pleat count of the pleated filter. Based on filter quality factor, the optimal pleat count (OPC) is always higher than that based on pressure drop by about 0.3-0.5 pleats cm(-1). For example, the OPC is 2.15 pleats cm(-1) from the standpoint of pressure drop, but for the highest filter quality factor, the pleated filter needed to have a pleat count of 2.65 pleats cm(-1) at particle diameter of 122 nm. From the aspect of

  18. Method for fabricating ceramic filaments and high density tape casting method

    Science.gov (United States)

    Collins, Jr., Earl R. (Inventor)

    1990-01-01

    An apparatus and method is disclosed for fabricating mats of ceramic material comprising preparing a slurry of ceramic particles in a binder/solvent, charging the slurry into a vessel, forcing the slurry from the vessel into spinneret nozzles, discharging the slurry from the nozzles into the path of airjets to enhance the sinuous character of the slurry exudate and to dry it, collecting the filaments on a moving belt so that the filaments overlap each other thereby forming a mat, curing the binder therein, compressing and sintering the mat to form a sintered mat, and crushing the sintered mat to produce filament shaped fragments. A process is also disclosed for producing a tape of densely packed, bonded ceramic particles comprising forming a slurry of ceramic particles and a binder/solvent, applying the slurry to a rotating internal molding surface, applying a large centrifugal force to the slurry to compress it and force excess binder/solvent from the particles, evaporating solvent and curing the binder thereby forming layers of bonded ceramic particles and cured binder, and separating the binder layer from the layer of particles. Multilayers of ceramic particles are cast in an analogous manner on top of previously formed layers. When all of the desired layers have been cast the tape is fired to produce a sintered tape. For example, a three-layer tape is produced having outer layers of highly compressed filament shaped fragments of strontium doped lanthanum (LSM) particles and a center layer of yttria stabilized zicronia (YSZ) particles.

  19. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  20. Venus Lander Experiment Vessel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ceramic Composites Inc. (CCI) of Millersville, MD in association with Swales Aerospace of Beltsville, MD have evaluated an innovative approach for the design of a...

  1. Factors affecting continued use of ceramic water purifiers distributed to Tsunami-affected Communities in Sri Lanka

    OpenAIRE

    Casanova, Lisa M.; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D.

    2012-01-01

    Objectives  There is little information about continued use of point-of-use technologies after disaster relief efforts. After the 2004 tsunami, the Red Cross distributed ceramic water filters in Sri Lanka. This study determined factors associated with filter disuse and evaluate the quality of household drinking water. Methods  A cross-sectional survey of water sources and treatment, filter use and household characteristics was administered by in-person oral interview, and household water qual...

  2. Composing morphological filters

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk)

    1995-01-01

    textabstractA morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openin

  3. Composing morphological filters

    NARCIS (Netherlands)

    Heijmans, H.J.A.M.

    1995-01-01

    A morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openings and closi

  4. Passive Power Filters

    CERN Document Server

    Künzi, R

    2015-01-01

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  5. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-05-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  6. Nanocrystalline and Nanoporous Ceramics

    NARCIS (Netherlands)

    Verweij, Henk

    1996-01-01

    Nanocrystalline and nanoporous ceramics, renowned for their special transport properties, have typical applications in the fields of energy, the environment, and separation technology. One example is a solid oxide fuel cell, where an anode with improved characteristics was obtained by an optimized n

  7. Transformation Toughening of Ceramics

    Science.gov (United States)

    1992-03-01

    chanical twing of ualaneeting Ceramica at High Temperatures. ILondo, Patigue-crack growth in overaged and partially stabi- U.K., 198.""IS. Itoribe... Ceramica " Chapter 18 In Mechanical Prop- ŗR. M. !AcMeeding and A. 0. Evans, ’Mechanics of Transformation ertles of Engineering Ceramics. Edited by W.W

  8. Statistic><Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2008-01-01

    Co-organizer for and participant at the exhibition: Statistic><Ceramics The Röhsska Museum of Design and Decorative Arts; Gothenborg 5/2-16/3 2008 Museum fur Kunst und Gewerbe, Hamburg 3/4-27/4 2008...

  9. Advanced hot-gas filter development. Topical report, September 30, 1994--May 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.E.; LeCostaouec, J.F.; Painter, C.J.; Sue, W.A.; Radford, K.C.

    1996-12-31

    The application of high-performance, high-temperature particulate control devices is considered to be beneficial to advanced fossil fuel processing technology, to selected high-temperature industrial processes, and to waste incineration concepts. Ceramic rigid filters represent the most attractive technology for these applications due to their capability to withstand high-temperature corrosive environments. However, current generation monolithic filters have demonstrated poor resistance to crack propagation and can experience catastrophic failure during use. To address this problem, ceramic fiber-reinforced ceramic matrix composite (CMC) filter materials are needed for reliable damage tolerant candle filters. This program is focused on the development of an oxide-fiber reinforced oxide material composite filter material that is cost competitive with prototype next generation filters. This goal would be achieved through the development of a low cost sol-gel fabrication process and a three-dimensional fiber architecture optimized for high volume filter manufacturing. The 3D continuous fiber reinforcement provides a damage tolerant structure which is not subject to delamination-type failures. This report documents the Phase 1, Filter Material Development and Evaluation, results. Section 2 provides a program summary. Technical results, including experimental procedures, are presented and discussed in Section 3. Section 4 and 5 provide the Phase 1 conclusions and recommendations, respectively. The remaining sections cover acknowledgements and references.

  10. Ceramic Laser Materials

    Energy Technology Data Exchange (ETDEWEB)

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  11. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  12. Dust removal and filter technology. Entstaubungs- und Filtertechnik

    Energy Technology Data Exchange (ETDEWEB)

    Stockmann, H.W. (DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). DMT-Institut fuer Staubbekaempfung, Gefahrstoffe und Ergonomie); Henke, B. (DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). DMT-Institut fuer Staubbekaempfung, Gefahrstoffe und Ergonomie)

    1991-01-01

    New approaches were adopted in filter technology to respond to technological changes in mechanized mining and to allow perfect dust removal in keeping with occupational hygiene requirements. Self-supporting filter materials based on ceramic fibres and synthetic granulates were taken to develop filter elements allowing lamination to enhance their separation-active surface area. Filter materials made from thermally fixed fibre nonwovens were processed to form plicated filter bags of the same structural volume but with a surface area increased by a factor of 2.5. Integrated inlet nozzles were developed to allow these elements to be cleaned of dust deposits. These nozzles were also studied in basic filter-technology tests. A test rig supplied design findings which were included in a study to develop new generations of dedusters. A reduction of design volume and an increase of through-put rate greater than 20% could be predicted. Service tests with modified filter materials were run for ventilation-air dust dust removal both for whole faces and for face segments. The benefits of filter technology for face, face opening and drifting were highlighted. New methods for wetting and transport of the dust removed from the dedusters were developed. New concepts of exhaust-air filter separators allow flat storage bunkers to be used in pneumatic conveyance of building materials at the face. (orig.)

  13. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  14. Coal gasification vessel

    Science.gov (United States)

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  15. Qualifications of Candle Filters for Combined Cycle Combustion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tomasz Wiltowski

    2008-08-31

    The direct firing of coal produces particulate matter that has to be removed for environmental and process reasons. In order to increase the current advanced coal combustion processes, under the U.S. Department of Energy's auspices, Siemens Westinghouse Power Corporation (SWPC) has developed ceramic candle filters that can operate at high temperatures. The Coal Research Center of Southern Illinois University (SIUC), in collaboration with SWPC, developed a program for long-term filter testing at the SIUC Steam Plant followed by experiments using a single-filter reactor unit. The objectives of this program funded by the U.S. Department of Energy were to identify and demonstrate the stability of porous candle filter elements for use in high temperature atmospheric fluidized-bed combustion (AFBC) process applications. These verifications were accomplished through extended time slipstream testing of a candle filter array under AFBC conditions using SIUC's existing AFBC boiler. Temperature, mass flow rate, and differential pressure across the filter array were monitored for a duration of 45 days. After test exposure at SIUC, the filter elements were characterized using Scanning Electron Microscopy and BET surface area analyses. In addition, a single-filter reactor was built and utilized to study long term filter operation, the permeability exhibited by a filter element before and after the slipstream test, and the thermal shock resilience of a used filter by observing differential pressure changes upon rapid heating and cooling of the filter. The data acquired during the slipstream test and the post-test evaluations demonstrated the suitability of filter elements in advanced power generation applications.

  16. Rational design of a robust diesel particulate filter

    Energy Technology Data Exchange (ETDEWEB)

    Van Gulijk, C.

    2002-09-19

    The primary goal is to develop a Diesel Particulate Filter that has the same characteristics as the diesel engine: robust, dependable, durable, and energy efficient. Sub-goals include: characterization of the fractal-nature of diesel soot; assess aerosol measuring instruments for the measurement of diesel soot; develop an experimental method to measure filtration efficiencies of soot in ceramic foams based on numbers of particles; and determine filtration mechanisms of ceramic foam filters. At the start of this work it was concluded that no accurate experimental procedures or standards were available for the determination of filtering mechanisms of diesel soot aerosols. Therefore, a reliable method had to be developed before the actual filtration measurements could start. Chapter 2 treats the experimental setup as a whole and evaluates the performance of two major components: the diesel setup, and the aerosol sampling setup. Chapter 3 evaluates the third major component of the experimental setup: the Electrical Low-Pressure Impactor (ELPI), a particle sizer. Evaluation of the instrument has shown several shortcomings that were improved during the course of this work. In chapter 4 the ELPI and the Scanning Mobility Particle Sizer (SNIPS) are compared with regard to accurate aerosol measurements. The comparison is important because the SMPS is the instrument of choice in industry. As part of the evaluation, diesel soot particles are characterized as fractal clusters, which give key insights in how to interpret the experimental results for particle size measurements and filtration efficiency. The second part of this thesis focuses on filter development. A novel filter is developed: the Modified Turbulent Precipitator. Firstly, a strategic blueprint is adopted for selection and development of the Diesel Particulate Filter in chapter 5. Secondly, the hydrodynamic behavior of the system is studied in chapter 6. In chapter 7 filtration of soot particles by ceramic foams

  17. Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization

    Science.gov (United States)

    Halloran, John W.

    2016-07-01

    Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.

  18. FIBROUS CERAMIC-CERAMIC COMPOSITE MATERIALS PROCESSING AND PROPERTIES

    OpenAIRE

    1986-01-01

    The introduction of continuous fibers in a ceramic matrix can improve its toughness, if the fiber-matrix bonding is weak enough, due to matrix microcracking and fiber pull-out. Ceramic-ceramic composite materials are processed according to liquid or gas phase techniques. The most important are made of glass, carbide, nitride or oxide matrices reinforced with carbon, SiC or Al2O3 fibers.

  19. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    Science.gov (United States)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  20. Method of securing filter elements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit body housing.

  1. Design, interface development and structural analyses of SPIDER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Rigato, W., E-mail: wladi.rigato@igi.cnr.i [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Boldrin, M.; DalBello, S.; Marcuzzi, D.; Tollin, M.; Zaccaria, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2010-12-15

    In the framework of the activities foreseen for PRIMA (Padova Research on Injector Megavolt Accelerated) the SPIDER experiment plays an essential role with respect to the goal of extracting from an ITER size negative ion source an ion beam aiming to reach 70 A H-, 50 A D- and 100 keV of acceleration energy. The SPIDER ion source, the 100 keV accelerator, a Short Pulse Calorimeter and a beam dump will be housed inside a vacuum vessel purposely designed for this scope, given the high number of internal and external interfaces between the vessel and the other auxiliary subsystems as diagnostics, pumping, inspection, power supply and cooling. The SPIDER vacuum vessel is a cylindrical vessel made of AISI 304 L stainless steel and composed of four main components: two cylindrical modules (beam source module and pumping module) and two torispherical lids (rear lid and front lid). The whole vessel is approximately 6 m long and the internal diameter is 4 m. The two cylindrical modules are connected by means of a bolted flange vacuum sealed with Viton o-rings. The two lids are connected to the relevant cylindrical module by means of bolted clamps. All the vessel modules and lids feature a large number of ports to interface the vessel and the internally hosted systems with the auxiliary subsystems. In particular three large vertical electrical bushings (internal diameter of about 700 mm) have been positioned on the beam source module. Each bushing consists of a ceramic ring closed by a metallic flange able to assure vacuum tightness and polarized at -112 kV. The bushing positioned on the top of the vessel houses the feedthroughs for power supply and signal cables; the other two positioned on the bottom are dedicated to the inlet/outlet of beam source cooling and gas injection systems. All the vessel modules are mounted on a rail system to facilitate installation and maintenance operations inside the experiment hall. The most important design issues and solutions are presented

  2. Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks

    Science.gov (United States)

    Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie

    2017-03-01

    Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.

  3. Suspended particle filter for Diesel engine exhaust gas. Schwebeteilchenfilter fuer Dieselmaschinenabgase

    Energy Technology Data Exchange (ETDEWEB)

    Mann, G.S.

    1981-06-19

    The purpose of the invention is to create a filter which has a reduced flow resistance for exhaust gases with better separation of the suspended particles. According to the invention this problem is solved by having a filter element consisting of a monolith of very heat-resisting ceramics and a large number of micropores, which permit a large volume of gas to pass through. There are a large number of fine ceramic fibres in the monolith, which extend freely into the ducts. The monolith consists of foam-like material, which has connected walls limiting the pores. The monolith has internal intermediate walls adjacent to inlet and outlet ducts.

  4. Bronze Vessel with Silkworm Motif

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    This artifact was a kind of sacrificial vessel used during the Shang and Zhou dynasties. Most patterns found on these pieces are the fierce and formidable faces of beasts or mysterious dragons, tigers and phoenixes. Rut the pattern on this vessel illustrates the life of a mulberry field.

  5. Sol-gel derived ceramics

    OpenAIRE

    1990-01-01

    The synthesis of ceramic raw materials has become an important factor in ceramic technologies. The increasing demands to the performance of ceramic compounds has caused increased activities for the preparation of tailor-made raw materials. Amongst a variety of new syntheses like flame pyrolysis, reactive spray drying, plasma or laser assisted techniques, the sol-gel process plays an important and increasing role. The process describes the building up of an inorganic (in general an oxide) netw...

  6. Tailored Ceramics for Laser Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Joel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2007-12-10

    Transparent ceramics match or exceed the performance of single-crystal materials in laser applications, with a more-robust fabrication process. Controlling the distribution of optical dopants in transparent ceramics would allow qualitative improvements in amplifier slab design by allowing gain and loss to be varied within the material. My work aims to achieve a controlled pattern or gradient of dopant prior to sintering, in order to produce tailored ceramics.

  7. Flash sintering of ceramic materials

    OpenAIRE

    Dancer, C. E. J.

    2016-01-01

    During flash sintering, ceramic materials can sinter to high density in a matter of seconds while subjected to electric field and elevated temperature. This process, which occurs at lower furnace temperatures and in shorter times than both conventional ceramic sintering and field-assisted methods such as spark plasma sintering, has the potential to radically reduce the power consumption required for the densification of ceramic materials. This paper reviews the experimental work on flash sint...

  8. Ceramics for High Power Lasers

    Science.gov (United States)

    2013-07-01

    ICP-MS) on 25 elements ranging from transition metals, rare earths , alkali, alkaline earths and silicon on a set of selected YAG ceramics and...our knowledge of the origin of optical losses in ceramic laser host materials while initiating a program of research on 2-micron, thulium- doped fiber...During Year 1 of this program, we produced and characterized laser grade Nd:YAG and low optical loss Gd3+ doped YAG and Tm:YAG ceramics . Laser

  9. Longevity of silicate ceramic restorations.

    Science.gov (United States)

    Beier, Ulrike Stephanie; Dumfahrt, Herbert

    2014-09-01

    The demand for esthetic restorations has resulted in an increased use of dental ceramics as a biocompatible and functionally sufficient alternative to conventional restorative materials. Silicate ceramic restorations are widely used for veneers, inlays, onlays, and crowns in dentistry. Long-term data are of crucial importance to optimize clinical practice. The purpose of the present article is to summarize data of the Innsbruck ceramic evaluation up to 261 months with the focus on longevity and failure characteristics.

  10. Preparation and characteristics of porous ceramics

    Institute of Scientific and Technical Information of China (English)

    Dongmei SHAO; Peiping ZHANG; Liyan MA; Juanjuan LIU

    2007-01-01

    Pyrophyllite is always used for making porous ceramics. In order to design the preparation technics of porous ceramics with pyrophyllite reasonably we must know the classifications, characteristics, properties and applications of porous ceramics. The classification and characteristics of porous ceramics are reviewed in this article; and several common preparations with their advantages and disadvantages are also introduced. The authors discussed the problems existing in researching and developing process for porous ceramics, and forecasted the development prospect of porous ceramics.

  11. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  12. Generalized Hampel Filters

    Science.gov (United States)

    Pearson, Ronald K.; Neuvo, Yrjö; Astola, Jaakko; Gabbouj, Moncef

    2016-12-01

    The standard median filter based on a symmetric moving window has only one tuning parameter: the window width. Despite this limitation, this filter has proven extremely useful and has motivated a number of extensions: weighted median filters, recursive median filters, and various cascade structures. The Hampel filter is a member of the class of decsion filters that replaces the central value in the data window with the median if it lies far enough from the median to be deemed an outlier. This filter depends on both the window width and an additional tuning parameter t, reducing to the median filter when t=0, so it may be regarded as another median filter extension. This paper adopts this view, defining and exploring the class of generalized Hampel filters obtained by applying the median filter extensions listed above: weighted Hampel filters, recursive Hampel filters, and their cascades. An important concept introduced here is that of an implosion sequence, a signal for which generalized Hampel filter performance is independent of the threshold parameter t. These sequences are important because the added flexibility of the generalized Hampel filters offers no practical advantage for implosion sequences. Partial characterization results are presented for these sequences, as are useful relationships between root sequences for generalized Hampel filters and their median-based counterparts. To illustrate the performance of this filter class, two examples are considered: one is simulation-based, providing a basis for quantitative evaluation of signal recovery performance as a function of t, while the other is a sequence of monthly Italian industrial production index values that exhibits glaring outliers.

  13. Rheology of Superplastic Ceramics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Constitutive equation of rheglogy describing a phenomenological level of superplastic deformation as functional correlation between tensor components of stress and strain rate has been analyzed for the case of superplastic ceramic flow. Rheological properties of material are taken into account by means of scalar rheological coefficients of shear and volume viscosity, which are functions of temperature, effective stress (or strain rate) and density of material.

  14. Processing Nanostructured Structural Ceramics

    Science.gov (United States)

    2006-08-01

    aspects of the processing of nanostructured ceramics, viz. • • • The production of a flowable and compactable dry nanopowder suitable for use in... composition due to the different synthesis routes used. Therefore, ‘industry-standard’ dispersants can cause flocculation rather than dispersion...stabilised zirconia (3-YSZ) were no higher than for conventional, micron-sized material of the same composition . However, detailed crystallographic

  15. Strain Growth in Containment Vessels

    Institute of Scientific and Technical Information of China (English)

    DONG Q; LI Q M; ZHENG J Y

    2006-01-01

    Strain growth is a phenomenon observed in containment vessels subjected to internal blast loading.The elastic response of the vessel may become larger in a later stage compared to its response during the initial stage.The dynamic responses of infinitely long cylindrical containment vessels subjected to uniformly-distributed internal blast loading are studied using LS-DYNA.The development of bending modes and the interaction between the breathing mode and bending modes are observed.The methodology developed for dynamic elastic buckling analysis is employed to study the strain growth phenomenon in explosion containment vessels.It is shown that the dynamic instable vibration of a containment vessel is the basic mechanism of strain growth.

  16. Dental ceramics: a current review.

    Science.gov (United States)

    Lawson, Nathaniel C; Burgess, John O

    2014-03-01

    Ceramics are used for many dental applications and are characterized in various ways, including by their hardness, brittleness, thermal and electrical insulation, and biocompatibility. The ceramics most commonly used in dentistry are oxides, particularly silicon dioxide (SiO2), or silica; aluminum oxide (Al2O3), or alumina; and zirconium dioxide (ZrO2), or zirconia. This article reviews the microstructure of current dental ceramic materials and how it relates to their mechanical properties, clinical techniques, and optical properties. Typical ceramics currently in use are described, and their clinically relevant properties such as strength, fracture, polishability, and wear are compared. Cementation methods are also discussed.

  17. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  18. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  19. Virus removal efficiency of Cambodian ceramic pot water purifiers.

    Science.gov (United States)

    Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph

    2011-06-01

    Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.

  20. Chemical characterization of marajoara ceramics; Caracterizacao quimica da ceramica marajoara

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, Rosimeiri Galbiati

    2009-07-01

    In this study the elemental concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn were determined by instrumental neutron activation analysis (INAA) in 204 fragments of Marajoara archaeological ceramics, of which 156 were provided by the Archaeology and Ethnology Museum of Sao Paulo University (MAE) and 48 were provided by Dr. Denise Pahl Schaan, Marajo Museum curator. Also, 9 contemporary ceramics produced and marketed at Marajo Island were analyzed. Electron paramagnetic resonance (EPR) analyses were performed in 8 archaeological samples and 1 contemporary sample in order to identify the burning temperature of the samples. X-ray diffraction (XRD) analyses were performed in 13 archaeological samples and 2 contemporary samples for the investigation of their mineralogical composition. Mahalanobis distance was used for the study of outlier while modified filter was used for the study of the temper added to the ceramic paste. Result interpretation was performed using cluster analysis, principal components analysis and discriminant analysis. Procrustes analysis was used for variable selection and it showed that the Ce, Fe, Eu, Hf, K and Th variables are adequate for the characterization of the analyzed samples. The comparative study among the archaeological and contemporary ceramics showed the arrangement of two well-defined and close groups for the archaeological samples and a third, distant group for the contemporary ones. This result indicates that the archaeological and contemporary ceramics differ in their composition. EPR and XRD analysis were inconclusive for the differentiation of archaeological and contemporary ceramics. (author)

  1. Ceramic Ultrafiltration Membrane from Nanosilica Particles

    Science.gov (United States)

    Wahid, Zarina Abdul; Ramli, Rafindde; Muchtar, Andanastuti; Mohammad, Abd Wahab

    This study attempts to develop asymmetric ceramic membrane filter from nanosilica particles for ultrafiltration (UF) membrane. The alumina tube was used as a support and was coated with SiC which acted as an intermediate layer or microfiltration (MF) layer. The UF membrane was developed using the filtration technique through chemical suspension of the particles. Nanosilica was suspended in HCl acid, iso-propanol and acetone before it was deposited on the alumina tube using a special coating assembly. The membranes were characterised for pore size, thickness and microstructure. This study found that the use of nanoparticles for membrane development could easily control the pore size as well as the thickness of the membrane. The uniformity of the membrane thickness could also be achieved through this filtration technique.

  2. Passive Acoustic Vessel Localization

    Science.gov (United States)

    Suwal, Pasang Sherpa

    This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.

  3. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  4. Development and characterization of porous silver-incorporated hydroxyapatite ceramic for separation and elimination of microorganisms.

    Science.gov (United States)

    Yang, Lei; Ning, Xiaoshan; Xiao, Qunfang; Chen, Kexin; Zhou, Heping

    2007-04-01

    A novel filter material for separating and eliminating microorganisms in water and gas was fabricated by incorporating silver ions into porous hydroxyapatite (HA) ceramics prepared by a starch additive technique. The porous ceramics reveal a microstructure of both large and small pores. Microorganism separating and eliminating properties of the porous silver-incorporated HA ceramics (PHA-Ag) were investigated by bacterial and viral filtration tests. The PHA-Ag demonstrated excellent separating and antibacterial effects on Escherichia coli and the mechanisms were studied. Adsorption of bacterial cells to the HA and the barricading effect of small pores contribute to the separating property of PHA-Ag, while the Ag+ ions equip the ceramics with antibacterial property. Furthermore, the PHA-Ag exhibited an observable virus-eliminating property and its probable mechanism was also discussed.

  5. Microbiological effectiveness of mineral pot filters in Cambodia.

    Science.gov (United States)

    Brown, Joe; Chai, Ratana; Wang, Alice; Sobsey, Mark D

    2012-11-06

    Mineral pot filters (MPFs) are household water treatment (HWT) devices that are manufactured and distributed by the private sector, with millions of users in Southeast Asia. Their effectiveness in reducing waterborne microbes has not been previously investigated. We purchased three types of MPFs available on the Cambodian market for systematic evaluation of bacteria, virus, and protozoan surrogate microbial reduction in laboratory challenge experiments following WHO recommended performance testing protocols. Results over the total 1500 L testing period per filter indicate that the devices tested were highly effective in reducing Esherichia coli (99.99%+), moderately effective in reducing bacteriophage MS2 (99%+), and somewhat effective against Bacillus atrophaeus, a spore-forming bacterium we used as a surrogate for protozoa (88%+). Treatment mechanisms for all filters included porous ceramic and activated carbon filtration. Our results suggest that these commercially available filters may be at least as effective against waterborne pathogens as other, locally available treatment options such as ceramic pot filters or boiling. More research is needed on the role these devices may play as interim solutions to the problem of unsafe drinking water in Cambodia and globally.

  6. Guided image filtering.

    Science.gov (United States)

    He, Kaiming; Sun, Jian; Tang, Xiaoou

    2013-06-01

    In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image matting/feathering, dehazing, joint upsampling, etc.

  7. Lower energy costs in the ceramics industry - via ceramic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zander, H.P.

    1983-04-01

    Ceramic fibres, due to their high thermal and chemical resistance, receive increasing attention as insulating material for industrial purposes. After a short characterisation, examples of furnace wall lining are given, and a tunnel-kiln car for baking of sanitation ceramics is investigated with a view to possibilities of supplementary insulation.

  8. Ceramic-on-ceramic total hip arthroplasty: update.

    Science.gov (United States)

    Capello, William N; D'Antonio, James A; Feinberg, Judy R; Manley, Michael T; Naughton, Marybeth

    2008-10-01

    This prospective, randomized, multicenter study of alumina ceramic-on-alumina ceramic bearing couples includes 452 patients (475 hips). Their average age was 53 years with approximately two thirds men and 82% with osteoarthritis. At an average 8-year follow-up, clinical results were excellent and cortical erosions significantly less than in the conventional polyethylene-on-metal bearing group. Nine hips have undergone revision of one or both components for any reason. Of the 380 ceramic liners, 2 (0.5%) have fractured requiring reoperation, and 3 (0.8%) ceramic patients reported a transient squeaking sound, one of which had a head and liner change due to groin pain secondary to psoas tendinitis at 5 years. With no revisions for aseptic loosening and minimal cortical erosions, alumina-ceramic bearing couples are performing in a manner superior to the polyethylene-on-metal bearing in this young, active patient population.

  9. Creation of the permanent inferior vena cava filter for prevention of pulmonary artery embolism

    Directory of Open Access Journals (Sweden)

    Yа.O. Povar

    2016-05-01

    Full Text Available The aim of the study was to create a new permanent cava filter to improve functional capacities of the construction and achieve high clinical parameters. A new geometry of the permanent inferior vena cava filter was presented which has high blood clot-capturing ability, does not cause thrombus fragmentation, makes migration impossible. The inferior vena cava filter does not injure the vessel wall and preserves integrity under long-term use. The inferior vena cava filter installation is safe and controllable, the filter self-positioning and reposition are possible, the delivery system size is 6F, the blood flow changing is minimal.

  10. Southeast Region Headboat Survey-Vessel list/Vessel Directory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a database of vessels that have been on the SRHS through time, their owners/operators, marinas/docks and their contact information. This assists in...

  11. BY FRUSTUM CONFINING VESSEL

    Directory of Open Access Journals (Sweden)

    Javad Khazaei

    2016-09-01

    Full Text Available Helical piles are environmentally friendly and economical deep foundations that, due to environmental considerations, are excellent additions to a variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that was carried out by Frustum Confining Vessel (FCV. FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. The results indicate the helical piles behavior depends essentially on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.

  12. Methodology for reducing the filtering capacitor in low-flicker LED drivers

    Directory of Open Access Journals (Sweden)

    Ali Shagerdmootaab

    2017-05-01

    Full Text Available The amount of light flicker in an AC–DC light-emitting diode (LED driver is dependent on the size of filter capacitors. In this study, a study is conducted on reducing the size of filter capacitor in an AC–DC buck–boost/flyback LED driver using flicker index and per cent flicker light measures. Using this approach, a procedure for minimising the filter capacitance is presented. It is then concluded that relatively small filter capacitors such as film or ceramic capacitors can be chosen while meeting light flicker requirements. Hence, an LED drive with a longer lifetime can be achieved when compared with a driver using electrolytic capacitors. Experimental studies are presented for a 20 W AC–DC buck–boost/flyback LED driver prototype which utilises ceramic capacitors for driving Cree CR22-32L and XLamp XP-G LED strings.

  13. Segmentation of retinal blood vessels using artificial neural networks for early detection of diabetic retinopathy

    Science.gov (United States)

    Mann, Kulwinder S.; Kaur, Sukhpreet

    2017-06-01

    There are various eye diseases in the patients suffering from the diabetes which includes Diabetic Retinopathy, Glaucoma, Hypertension etc. These all are the most common sight threatening eye diseases due to the changes in the blood vessel structure. The proposed method using supervised methods concluded that the segmentation of the retinal blood vessels can be performed accurately using neural networks training. It uses features which include Gray level features; Moment Invariant based features, Gabor filtering, Intensity feature, Vesselness feature for feature vector computation. Then the feature vector is calculated using only the prominent features.

  14. Hot-gas filter manufacturing assessments: Volume 5. Final report, April 15, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Boss, D.E.

    1997-12-31

    The development of advanced filtration media for advanced fossil-fueled power generating systems is a critical step in meeting the performance and emissions requirements for these systems. While porous metal and ceramic candle-filters have been available for some time, the next generation of filters will include ceramic-matrix composites (CMCs), intermetallic alloys, and alternate filter geometries. The goal of this effort was to perform a cursory review of the manufacturing processes used by 5 companies developing advanced filters from the perspective of process repeatability and the ability for their processes to be scale-up to production volumes. It was found that all of the filter manufacturers had a solid understanding of the product development path. Given that these filters are largely developmental, significant additional work is necessary to understand the process-performance relationships and projecting manufacturing costs. While each organization had specific needs, some common among all of the filter manufacturers were access to performance testing of the filters to aide process/product development, a better understanding of the stresses the filters will see in service for use in structural design of the components, and a strong process sensitivity study to allow optimization of processing.

  15. Reactor vessel support system. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  16. Computer Aided Filter Design.

    Science.gov (United States)

    1987-12-01

    FIR filter can be described in the following. [Ref. 2] 1. FIR filters with exact linear phase can be easily designed. Linear phase filters are important...response for the four cases of linear phase filter , i.e., even or odd symmetry with an even or odd number of terms, can be written in the form: H (eJ ) = e...Ansari, The Design and Application of Optimal FIR Fractional Phase Filters , IEEE on Acoutics, Speech and Signal Processing, Vol. 2, 1987, pp.896-899. 77 14

  17. A unified Kalman filter

    Science.gov (United States)

    Stubberud, Allen R.

    2017-01-01

    When considering problems of linear sequential estimation, two versions of the Kalman filter, the continuous-time version and the discrete-time version, are often used. (A hybrid filter also exists.) In many applications in which the Kalman filter is used, the system to which the filter is applied is a linear continuous-time system, but the Kalman filter is implemented on a digital computer, a discrete-time device. The two general approaches for developing a discrete-time filter for implementation on a digital computer are: (1) approximate the continuous-time system by a discrete-time system (called discretization of the continuous-time system) and develop a filter for the discrete-time approximation; and (2) develop a continuous-time filter for the system and then discretize the continuous-time filter. Generally, the two discrete-time filters will be different, that is, it can be said that discretization and filter generation are not, in general, commutative operations. As a result, any relationship between the discrete-time and continuous-time versions of the filter for the same continuous-time system is often obfuscated. This is particularly true when an attempt is made to generate the continuous-time version of the Kalman filter through a simple limiting process (the sample period going to zero) applied to the discrete-time version. The correct result is, generally, not obtained. In a 1961 research report, Kalman showed that the continuous-time Kalman filter can be obtained from the discrete-time Kalman filter by taking limits as the sample period goes to zero if the white noise process for the continuous-time version is appropriately defined. Using this basic concept, a discrete-time Kalman filter can be developed for a continuous-time system as follows: (1) discretize the continuous-time system using Kalman's technique; and (2) develop a discrete-time Kalman filter for that discrete-time system. Kalman's results show that the discrete-time filter generated in

  18. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    . The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved....

  19. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  20. 46 CFR 298.11 - Vessel requirements.

    Science.gov (United States)

    2010-10-01

    ... reconditioning of a Vessel as a condition for issuance of the Letter Commitment. The estimated cost of the Vessel may include escalation for the anticipated construction period of the Vessel. We may contact...

  1. 78 FR 38101 - Passenger Vessels Accessibility Guidelines

    Science.gov (United States)

    2013-06-25

    ... vessels. The proposed guidelines would afford these individuals equal opportunity to travel on passenger vessels for employment, transportation, public accommodation, and leisure. The proposed guidelines would... individuals equal opportunity to travel on passenger vessels for employment, transportation,...

  2. Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S. (ed.)

    1979-09-01

    Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented. (FS)

  3. Metals and Ceramics Division. Annual progress report, ending June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning: (1) engineering materials, including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuel fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theroretical research and x-ray research and applications. Highlights of the work of the metallographic group and the current state of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) are presented. (FS)

  4. Improved Tensile Test for Ceramics

    Science.gov (United States)

    Osiecki, R. A.

    1982-01-01

    For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method should be useful as manufacturing inspection procedure for low-strength brittle materials.

  5. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  6. Retinal Image Denoising via Bilateral Filter with a Spatial Kernel of Optimally Oriented Line Spread Function

    Science.gov (United States)

    He, Yunlong; Zhao, Yanna; Ren, Yanju; Gee, James

    2017-01-01

    Filtering belongs to the most fundamental operations of retinal image processing and for which the value of the filtered image at a given location is a function of the values in a local window centered at this location. However, preserving thin retinal vessels during the filtering process is challenging due to vessels' small area and weak contrast compared to background, caused by the limited resolution of imaging and less blood flow in the vessel. In this paper, we present a novel retinal image denoising approach which is able to preserve the details of retinal vessels while effectively eliminating image noise. Specifically, our approach is carried out by determining an optimal spatial kernel for the bilateral filter, which is represented by a line spread function with an orientation and scale adjusted adaptively to the local vessel structure. Moreover, this approach can also be served as a preprocessing tool for improving the accuracy of the vessel detection technique. Experimental results show the superiority of our approach over state-of-the-art image denoising techniques such as the bilateral filter. PMID:28261320

  7. Method of forming a ceramic matrix composite and a ceramic matrix component

    Energy Technology Data Exchange (ETDEWEB)

    de Diego, Peter; Zhang, James

    2017-05-30

    A method of forming a ceramic matrix composite component includes providing a formed ceramic member having a cavity, filling at least a portion of the cavity with a ceramic foam. The ceramic foam is deposited on a barrier layer covering at least one internal passage of the cavity. The method includes processing the formed ceramic member and ceramic foam to obtain a ceramic matrix composite component. Also provided is a method of forming a ceramic matrix composite blade and a ceramic matrix composite component.

  8. Preparation of Bauxite Ceramic Microsphere

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiaosu; LIU Pingan; LI Xiuyan; SHUI Anze; ZENG Lingke

    2007-01-01

    Ceramic microspheres were prepared by using Chinese bauxite as raw materials through the centrifugal spray drying method. The control technology of microsphere size, degree of sphericity was researched. The ceramic microspheres were sintered by a double sintering process. The microstructure and composition of ceramic microsphere were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray energy spectroscopy. The results show that the degree of sphericity of the ceramic microsphere was good and the particle size was 10-100 μm. The XRD analysis reveals that the main crystalline phase of the ceramic microsphere was α- Al2O3 and mullite (3Al2O3·2SiO2). The product can be used as reinforced material for composite material, especially for antiskid and hard wearing aluminum alloy coating.

  9. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  10. Application of a Morse filter in the processing of brain angiograms

    Science.gov (United States)

    Venegas Bayona, Santiago

    2014-06-01

    The angiograms are frequently used to find anomalies in the blood vessels. Hence, for improving the quality of the images with an angiogram, a Morse filter will be implemented (based on the model of the Morse Potential) in a brain's vessels angiogram using both softwares Maple ® and ImageJ ®. It will be shown the results of applying a Morse filter to an angiogram of the brain vessels. First, the image was processed with ImageJ using the plug-in Anisotropic Diffusion 2D and then, the filter was implemented. As it is illustrated in the results, the edges of the stringy elements are emphasized. Particularly, this is very useful in the medical image processing of blood vessels, like angiograms, due to the narrowing or obstruction which may be caused by illness like aneurysms, thrombosis or other diseases.

  11. A new freeze casting technique for ceramics

    Science.gov (United States)

    Araki, Kiyoshi

    A new freeze casting technique for ceramics capable of manufacturing near room temperature with a sublimable vehicle has been developed in order to eliminate expensive processes under extremely cold temperatures in the conventional freeze casting. Fluid concentrated slurries of Al2O 3 powder in molten camphene (C10H16) were successfully prepared at 55°C with a small amount of a dispersant. These slurries were quickly solidified (frozen) at room temperature to yield a rigid solid green body, where the frozen camphene was easily removed by sublimation (freeze-drying) with negligible shrinkage. Sintering was successfully conducted without any special binder burnout process to yield dense sintered bodies (over 98% T.D). An organic alloy with a eutectic composition in the naphthalene (C 10H8)-camphor (C10H16O) binary system with a eutectic temperature of 31°C was also found to be a successful vehicle for the new ceramic freeze casting. The fabrication processes are almost the same as those with camphene. It was found that vehicles with off-eutectic compositions resulted in large voids in the sintered body due to the ceramic particle rejection by pro-eutectic crystals during freezing. At the eutectic composition, fine lamellar microstructure in the solidified vehicle inhibits the particle rejection. The proposed advantages of the new freeze casting technique with a sublimable vehicle include; (1) elimination of extremely cold temperatures used in conventional freeze casting; (2) elimination of troublesome binder burnout process; and (3) fast manufacturing cycle due to quick solidification. Porous ceramic bodies with unique interconnected pore channels were fabricated by the new freeze casting with lower solid content. The unique channels surrounded by fully dense walls have nearly circular cross-sections unlike conventional aqueous freeze casting. The porosity and the channel diameters are controllable by the solid content in the slurry. The unique channels are

  12. 2011 Tug Towing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  13. 2013 Great Lakes Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  14. Coastal Discard Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data on the type and amount of marine resources that are discarded or interacted with by vessels that are selected to report to the Southeast...

  15. 2013 East Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  16. SC/OQ Vessel Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data tables holding information for the Surf Clam/Ocean Quahog vessel and dealer/processor logbooks (negative and positive), as well as individual tag information...

  17. Vessel Permit System Data Set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GARFO issues federal fishing permits annually to owners of fishing vessels who fish in the Greater Atlantic region, as required by federal regulation. These permits...

  18. 2011 Great Lakes Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  19. 2011 West Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  20. 2011 East Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  1. 2013 West Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  2. Regulation of Blood Vessel Sprouting

    Science.gov (United States)

    Chappell, John C; Wiley, David M; Bautch, Victoria L

    2012-01-01

    Blood vessels are essential conduits of nutrients and oxygen throughout the body. The formation of these vessels involves angiogenic sprouting, a complex process entailing highly integrated cell behaviors and signaling pathways. In this review, we discuss how endothelial cells initiate a vessel sprout through interactions with their environment and with one another, particularly through lateral inhibition. We review the composition of the local environment, which contains an initial set of guidance cues to facilitate the proper outward migration of the sprout as it emerges from a parent vessel. The long-range guidance and sprout stability cues provided by soluble molecules, extracellular matrix components, and interactions with other cell types are also discussed. We also examine emerging evidence for mechanisms that govern sprout fusion with its target and lumen formation. PMID:22020130

  3. Caribbean PR Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains catch (landed catch) and effort for fishing trips made by vessels fishing in Puerto Rico. The catch and effort data for the entire trip are...

  4. Use of ceramic water filtration in the prevention of diarrheal disease: a randomized controlled trial in rural South Africa and zimbabwe.

    Science.gov (United States)

    du Preez, Martella; Conroy, Ronán M; Wright, James A; Moyo, Sibonginkosi; Potgieter, Natasha; Gundry, Stephen W

    2008-11-01

    To determine the effectiveness of ceramic filters in reducing diarrhea, we conducted a randomized controlled trial in Zimbabwe and South Africa, in which 61 of 115 households received ceramic filters. Incidence of non-bloody and bloody diarrhea was recorded daily over 6 months using pictorial diaries for children 24-36 months of age. Poisson regression was used to compare incidence rates in intervention and control households. Adjusted for source quality, intervention household drinking water showed reduced Escherichia coli counts (relative risk, 0.67; 95% CI, 0.50-0.89). Zero E. coli were obtained for drinking water in 56.9% of intervention households. The incidence rate ratio for bloody diarrhea was 0.20 (95% CI, 0.09-0.43; P filter users. The results suggest that ceramic filters are effective in reducing diarrheal disease incidence.

  5. Three-zone pupil filters

    Science.gov (United States)

    Sheppard, Colin J. R.; Campos, Juan; Escalera, Juan C.; Ledesma, Silvia

    2008-07-01

    The performance of pupil filters consisting of three zones each of constant complex amplitude transmittance is investigated. For filters where the transmittance is real, different classes of potentially useful filter are identified. These include leaky filters with an inner zone of low amplitude transmittance, pure phase filters with phase change of π, and equal area filters.

  6. High-temperature corrosion resistance of ceramics and ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  7. Integral Textile Ceramic Structures

    Science.gov (United States)

    Marshall, David B.; Cox, Brian N.

    2008-08-01

    A new paradigm for ceramic composite structural components enables functionality in heat exchange, transpiration, detailed shape, and thermal strain management that significantly exceeds the prior art. The paradigm is based on the use of three-dimensional fiber reinforcement that is tailored to the specific shape, stress, and thermal requirements of a structural application and therefore generally requires innovative textile methods for each realization. Key features include the attainment of thin skins (less than 1 mm) that are nevertheless structurally robust, transpiration holes formed without cutting fibers, double curvature, compliant integral attachment to other structures that avoids thermal stress buildup, and microcomposite ceramic matrices that minimize spalling and allow the formation of smooth surfaces. All these features can be combined into structures of very varied gross shape and function, using a wide range of materials such as all-oxide systems and SiC and carbon fibers in SiC matrices. Illustrations are drawn from rocket nozzles, thermal protection systems, and gas turbine engines. The new design challenges that arise for such material/structure systems are being met by specialized computational modeling that departs significantly in the representation of materials behavior from that used in conventional finite element methods.

  8. Generic Kalman Filter Software

    Science.gov (United States)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on

  9. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  10. Crux vena cava filter.

    Science.gov (United States)

    Murphy, Erin H; Johnson, Eric D; Kopchok, George E; Fogarty, Thomas J; Arko, Frank R

    2009-09-01

    Inferior vena cava filters are widely accepted for pulmonary embolic prophylaxis in high-risk patients with contraindications to anticoagulation. While long-term complications have been associated with permanent filters, retrievable filters are now available and have resulted in the rapid expansion of this technology. Nonetheless, complications are still reported with optional filters. Furthermore, device tilting and thrombus load may prevent retrieval in up to 30% of patients, thereby eliminating the benefits of this technology. The Crux vena cava filter is a novel, self-centering, low-profile filter that is designed for ease of delivery, retrievability and improved efficacy while limiting fatigue-related device complications. This device has been proven safe and user-friendly in an ovine model and has recently been implanted in human subjects.

  11. CrowdFilter

    DEFF Research Database (Denmark)

    Mortensen, Michael Lind; Wallace, Byron C.; Kraska, Tim

    for complex multi-criteria search problems through crowdsourcing. The CrowdFilter system is capable of supporting both criteria-level labels and n-gram rationales, capturing the human decision making process behind each filtering choice. Using the data provided through CrowdFilter we also introduce a novel......Multi-criteria filtering of mixed open/closed-world data is a time-consuming task, requiring significant manual effort when latent open-world attributes are present. In this work we introduce a novel open-world filtering framework CrowdFilter, enabling automatic UI generation and label elicitation...... multi-criteria active learning method; capable of incorporating labels and n-gram rationales per inclusion criteria, and thus capable of determining both clear includes/excludes, as well as complex borderline cases. By incorporating the active learning approach into the elicitation process of Crowd...

  12. Conservative Noise Filters

    Directory of Open Access Journals (Sweden)

    Mona M.Jamjoom

    2016-05-01

    Full Text Available Noisy training data have a huge negative impact on machine learning algorithms. Noise-filtering algorithms have been proposed to eliminate such noisy instances. In this work, we empirically show that the most popular noise-filtering algorithms have a large False Positive (FP error rate. In other words, these noise filters mistakenly identify genuine instances as outliers and eliminate them. Therefore, we propose more conservative outlier identification criteria that improve the FP error rate and, thus, the performance of the noise filters. With the new filter, an instance is eliminated if and only if it is misclassified by a mutual decision of Naïve Bayesian (NB classifier and the original filtering criteria being used. The number of genuine instances that are incorrectly eliminated is reduced as a result, thereby improving the classification accuracy.

  13. High pressure ceramic heat exchanger

    Science.gov (United States)

    Harkins, Bruce D.; Ward, Michael E.

    1998-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present header assembly when used with recuperators reduces the brittle effect of a portion of the ceramic components. Thus, the present header assembly used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present header assembly is comprised of a first ceramic member, a second ceramic member, a strengthening reinforcing member being in spaced relationship to the first ceramic member and the second ceramic member. The header assembly is further comprised of a refractory material disposed in contacting relationship with the first ceramic member, the second ceramic member and the strengthening reinforcing member. The present header assembly provides a high strength load bearing header assembly having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  14. Comparative study of microbial community structure in different filter media of constructed wetland.

    Science.gov (United States)

    Li, Ming; Zhou, Qiaohong; Tao, Min; Wang, Ying; Jiang, Lijuan; Wu, Zhenbin

    2010-01-01

    Comparisons of microbial community structure, in eight filter media of zeolites, anthracite, shale, vermiculite, ceramic filter media, gravel, steel slag and bio-ceramic, were undertaken by analyzing the phospholipid fatty acid (PLFA) composition. A total of 20 fatty acids in the range of C11 to C20 were determined but only 13 PLFAs were detected in steel slag. They consist of saturated fatty acids, branched fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. The variation of fatty acids was revealed in the relative proportions of these fatty acids in different media. The aerobic prokaryotes were the predominant group in all media. The PLFA composition showed significant differences among the eight different media by Tukey's honestly test. It was found that steel slag was significantly different in the microbial community as compared to other filter media, probably due to its alkaline effluent. Steel slag alone is probably not a good choice of substratum in constructed wetlands. The principle components analysis (PCA) showed that zeolites, bio-ceramic, shale and vermiculite had a similar microbial community structure while steel slag and ceramic filter media were distinct from other media.

  15. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  16. Oriented Fiber Filter Media

    Directory of Open Access Journals (Sweden)

    R. Bharadwaj

    2008-06-01

    Full Text Available Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a thick layered media can improve performance by about 40%. The results also show the improved performance is not monotonically correlated to the average fiber angle of the medium.

  17. Fundamentals of Stochastic Filtering

    CERN Document Server

    Crisan, Dan

    2008-01-01

    The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient

  18. Strength and Microstructure of Ceramics.

    Science.gov (United States)

    1991-10-01

    34 microplasticity " stage in crack initiation from the flaw’ " for alumina ceramics has been carried out. Results of (from literal adaptations of the original...us to identify frontal-zone microcracking or even microplasticity . However. bridge degradation as a cause of the fatigue process. "Wear" direct...Ceramics", J. Aust. Ceram. Soc. 16 4-9. [24] A.W. Ruff and S.M. Wiederhorn (1979) "Erosion by Solid Particle Impact ", in Treatise on Materials Science and

  19. 46 CFR 169.249 - Pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels. 169.249 Section 169.249 Shipping COAST... and Certification Inspections § 169.249 Pressure vessels. Pressure vessels must meet the requirements of part 54 of this chapter. The inspection procedures for pressure vessels are contained in...

  20. 46 CFR 182.330 - Pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels. 182.330 Section 182.330 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.330 Pressure vessels. All unfired pressure vessels must be... unfired pressure vessels must meet the applicable requirements of subchapter F (Marine Engineering)...

  1. Clay Corner: Recreating Chinese Bronze Vessels.

    Science.gov (United States)

    Gamble, Harriet

    1998-01-01

    Presents a lesson where students make faux Chinese bronze vessels through slab or coil clay construction after they learn about the history, function, and design of these vessels. Utilizes a variety of glaze finishes in order to give the vessels an aged look. Gives detailed guidelines for creating the vessels. (CMK)

  2. Sphero-conical vessels from dig CLXV at Bolgar fortified settlement

    Directory of Open Access Journals (Sweden)

    Alsu R. Nuretdinova

    2015-12-01

    Full Text Available The authors examine a new set of sphero-conical vessels found at Bolgar fortified settlement, which is known to have had local production of this ceramic type in the second half of 13th – 14th centuries. Thus, its territory yielded several kilns that were used to produce, among other types, the sphero-conical vessels. Presently, the archaeologists have found over five thousand sphero-conical vessels at the settlement through all years of research, and thus they were able to produce their detailed classification. However, one question is still unresolved, i.e. the function of such vessels. In this connection, it is necessary to pay more attention to those places on the studied sites, which had biggest concentrations of the sphero-conical vessels. One such concentration was found at dig CLXV in 2011. The paper presents a comparative typology of 18 sphero-conical vessels, complemented by the data on the chemical composition of their core and glazing on one of the three glazed items found at dig CLXV.

  3. Ozonation and/or Coagulation - Ceramic Membrane Hybrid for Filtration of Impaired-Quality Source Waters

    KAUST Repository

    Ha, Changwon

    2013-09-01

    When microfiltration (MF) and ultrafiltration (UF) membranes are applied for drinking water treatment/wastewater reuse, membrane fouling is an evitable problem, causing the loss of productivity over time. Polymeric membranes have been often reported to experience rapid and/or problematical fouling, restraining sustainable operation. Ceramic membranes can be effectively employed to treat impaired-quality source waters due to their inherent robustness in terms of physical and chemical stability. This research aimed to identify the effects of coagulation and/or ozonation on ceramic membrane filtration for seawater and wastewater (WW) effluent. Two different types of MF and UF ceramic membranes obtained by sintering (i.e., TAMI made of TiO2+ZrO2) and anodic oxidation process (i.e., AAO made of Al2O3) were employed for bench-scale tests. Precoagulation was shown to play an important role in both enhancing membrane filterability and natural organic matter (NOM) removal efficacy for treating a highorganic surface water. The most critical factors were found to be pH and coagulant dosage with the highest efficiency resulting under low pH and high coagulant dose. Due to the ozone-resistance nature of the ceramic membranes, preozonation allowed the ceramic membranes to be operated at higher flux, especially leading to significant flux improvement when treating seawater in the presence of calcium and magnesium. 4 Dissolved ozone in contact with the TAMI ceramic membrane surface accelerated the formation of hydroxyl (˙OH) radicals in WW effluent treatment. Flux restoration of both ceramic membranes, fouled with seawater and WW effluent, was efficiently achieved by high backwash (BW) pressure and ozone in chemically enhanced backwashing (CEB). Ceramic membranes exhibited a pH-dependent permeate flux while filtering WW effluent, showing reduced fouling with increased pH. On the other hand, for filtering seawater, differences in permeate flux between the two membranes was

  4. Osteogenesis process of tricalcium phosphate ceramics in vivo

    Institute of Scientific and Technical Information of China (English)

    戴红莲; 李世普; 闫玉华; 李小溪; 贾莉

    2003-01-01

    To investigate the osteogenesis of calcium phosphate ceramics, β-TCP ceramics were implanted into thecondyle femur of rabbits, and tetracycline was injected termly. Specimens were host at 1, 2, 3, 4, 5, 6 months af-ter implanted. The new bone formation and osteogenesis process were observed by the histomorphology, fluorescentmicroscope, SEM and EPMA. The results demonstrate that, osteogenesis is active, there are abundant osteoblastson the surface of osteoid, mesenchymal cell hyperplasia and incursion is found in materials after 1 month. After 2months, there is blood vessel formation and macrophage soakage within materials. Bone-island appears and connectsby bone-bridge after 3 months. β-TCP ceramics degrade and are dispersed by new formation bone. Woven boneturns into bone lamella by rebuilding and calcification. The materials entirely change their original shape and com-bines with bone tissue as a whole after 6 months. The typical structure of spongy bone forms. It is confirmed thatβ-TCP is a degradable biocompatible artificial bone material which can incorporating in life.

  5. Creep in electronic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  6. Support for the Armor Ceramics symposium at the 40th International Conference on Advanced Ceramics and Composites

    Science.gov (United States)

    2016-05-09

    ICACC-S1-P008-2016. Influence of Curvature on High Velocity Impact of SiC/SiC Composites R. Mansour; M. Kannan; M. Presby; G. Morscher; F. Abdi...end type RBSC radiant tube H. Shin; B. Yun; Y. Kim 5:30 PM-8:00 PM ICACC-S1-P025-2016. The Study on Variables of SiC Granule Prepared from Solar...Cholewa-Kowalska 5:30 PM-8:00 PM ICACC-S9-WW-P067-2016. Ceramic foam filter for the filtration of aluminum with different surface chemistrie C

  7. Generalization of geometrical flux maximizing flow on Riemannian manifolds for improved volumetric blood vessel segmentation.

    Science.gov (United States)

    Gooya, Ali; Liao, Hongen; Sakuma, Ichiro

    2012-09-01

    Geometric flux maximizing flow (FLUX) is an active contour based method which evolves an initial surface to maximize the flux of a vector field on the surface. For blood vessel segmentation, the vector field is defined as the vectors specified by vascular edge strengths and orientations. Hence, the segmentation performance depends on the quality of the detected edge vector field. In this paper, we propose a new method for level set based segmentation of blood vessels by generalizing the FLUX on a Riemannian manifold (R-FLUX). We consider a 3D scalar image I(x) as a manifold embedded in the 4D space (x, I(x)) and compute the image metric by pullback from the 4D space, whose metric tensor depends on the vessel enhancing diffusion (VED) tensor. This allows us to devise a non-linear filter which both projects and normalizes the original image gradient vectors under the inverse of local VED tensors. The filtered gradient vectors pertaining to the vessels are less sensitive to the local image contrast and more coherent with the local vessel orientation. The method has been applied to both synthetic and real TOF MRA data sets. Comparisons are made with the FLUX and vesselsness response based segmentations, indicating that the R-FLUX outperforms both methods in terms of leakage minimization and thiner vessel delineation.

  8. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  9. Bringing Ceramic Parts to Earth

    Institute of Scientific and Technical Information of China (English)

    履之

    1995-01-01

    The benefits of using ceramic engine components are well known:They are tougher than metal parts, weigh less, and can withstand hotter operating temperatures.So why aren’t they being used now? High cost.

  10. Recent progress in ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.

    1998-09-01

    Both fundamental and practical aspects of ceramic joining are understood well enough for many, if not most, applications requiring moderate strengths at room temperature. This paper argues that the two greatest needs in ceramic joining are for techniques to join buried interfaces by selective heating, and methods for joining ceramics for use at temperatures of 800 to 1,200 C. Heating with microwave radiation or with high-energy electron beams has been used to join buried ceramic interfaces, for example SiC to SiC. Joints with varying levels of strength at temperatures of 600 to 1,000 C have been made using four techniques: (1) transient liquid phase bonding; (2) joining with refractory braze alloys; (3) joining with refractory glass compositions; and (4) joining using preceramic polymers. Joint strengths as high as 550 MPa at 1,000 C have been reported for silicon nitride-silicon nitride bonds tested in four-point flexure.

  11. Fast Anisotropic Gauss Filtering

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computin

  12. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  13. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Wells, George; Beaton, Dorcas E; Tugwell, Peter;

    2014-01-01

    The "Discrimination" part of the OMERACT Filter asks whether a measure discriminates between situations that are of interest. "Feasibility" in the OMERACT Filter encompasses the practical considerations of using an instrument, including its ease of use, time to complete, monetary costs, and inter...

  14. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Drainage of cockpit vessels, well deck vessels, and open boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well...

  15. Laboratory Testing of the Boundary Layer Momentum Transfer Rotational Filter Systems, NETL-Innovatech, Inc., CRADA 98-F026, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-22

    A patented dynamic mechanical filter developed by InnovaTech was previously shown to remove fine particulate matter from industrial process gas streams at ambient temperatures and pressures. An all-metal, high-temperature version of this novel media-less filter was fabricated under this Cooperative Research and Development Agreement (CRADA) with DOE/NETL-Morgantown for hot gas testing of the device. The technology is entirely different in both concept and design from conventional vortex separators, cyclones, or porous media filters. This new filtration concept is capable of separating heavy loading of fine particles without blinding, fouling or bridging, and would require minimal operational costs over its anticipated multi-year service life. The all-metal filter design eliminates thermal stress cracking and premature failure prevalent in conventional porous ceramic filters. In contrast, conventional porous media filters (i.e., ceramic cross-flow or candles) easily foul, require periodic cleaning (typically backpulsing), frequent replacement and subsequent disposal.

  16. The Limit of Large Vessels

    Institute of Scientific and Technical Information of China (English)

    Yang Peiju

    2011-01-01

    On Feb 21(st),the industry was shocked by the news that AP Moller-Maersk placed an order of 10 container ships of 18,000 TEU with the South Korean ship yards.The order brings the development of large vessels to a new climax and at the same time puts forward a series of research subjects to the industry,such as what is the limit for the development of large vessels,whether ship safety can be guaranteed,and etc.

  17. Vena cava filter; Vena-cava-Filter

    Energy Technology Data Exchange (ETDEWEB)

    Helmberger, T. [Klinikum Bogenhausen, Institut fuer Diagnostische und Interventionelle Radiologie und Nuklearmedizin, Muenchen (Germany)

    2007-05-15

    Fulminant pulmonary embolism is one of the major causes of death in the Western World. In most cases, deep leg and pelvic venous thrombosis are the cause. If an anticoagulant/thrombotic therapy is no longer possible or ineffective, a vena cava filter implant may be indicated if an embolism is threatening. Implantation of the filter is a simple and safe intervention. Nevertheless, it is necessary to take into consideration that the data base for determining the indications for this treatment are very limited. Currently, a reduction in the risk of thromboembolism with the use of filters of about 30%, of recurrences of almost 5% and fatal pulmonary embolism of 1% has been reported, with a risk of up to 20% of filter induced vena cava thrombosis. (orig.) [German] Die fulminante Lungenembolie zaehlt zu den Haupttodesursachen in der westlichen Welt. In der Mehrzahl der Faelle sind tiefe Bein- und Beckenvenenthrombosen ursaechlich verantwortlich. Ist eine antikoagulative/-thrombotische Therapie nicht (mehr) moeglich oder unwirksam, kann bei drohender Emboliegefahr die Vena-cava-Filterimplantation indiziert sein. Die Filterimplantation ist eine einfache und sehr sichere Intervention. Dennoch muss bei der Indikationsstellung beruecksichtigt werden, dass die Datenlage zur Wirksamkeit sehr limitiert ist. So wird aktuell ueber eine Reduktion des Thrombembolierisikos um 30% bei Embolierezidiven von knapp 5% und fatalen Lungenembolien von 1% unter Filterprophylaxe berichtet, bei einem Risiko von bis zu 20% fuer die filterinduzierte Vena-cava-Thrombose. (orig.)

  18. Ceramic Forum International yearbook 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reh, H. (ed.)

    2004-12-01

    This is the second English-language edition of our 'ceramic forum international Yearbook'. In this year's 'Ceramics World', the perpetually updated textbook section, you will find papers surveying the already in technical ceramics established fields of 'bioceramics' and 'ceramic armouring'. From the traditional ceramics sector, from which news of more and more innovations have been reaching us in recent months, we have picked out 'decorating processes for ceramic tiles' as these are currently enjoying an undreamt-of boom thanks to the development of completely new shaping processes. A soundly researched study on 'rheology in ceramics' completes this section of the yearbook. Interested ceramists will again find everything they need for their day-to-day work - the index will help them to find the information they need fast. This information is available under the following headings: (A) Product News: Short notes on outstanding new machines, kilns, plants and equipment as well as new raw materials on the market, supplied by both European and overseas suppliers. (B) Abstracts: A compilation of abridged articles, all of which published during the last 12 months, discussing interesting processes and products or new directions in research. (C) ESD - European Suppliers Directory: Who supplies what? In English, German, Spanish, Italian and French with about 220 company entries. (D) Appendix: Listing ceramics laboratories in Europe; the periodic system; the most important physical units and the conversion of older ones to SI units (and vice versa); essential formulas for use in the ceramist's daily practice. (orig.)

  19. Method for preparing ceramic composite

    Science.gov (United States)

    Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.

    1996-01-01

    A process for preparing ceramic composite comprising blending TiC particulates, Al.sub.2 O.sub.3 particulates and nickle aluminide and consolidating the mixture at a temperature and pressure sufficient to produce a densified ceramic composite having fracture toughness equal to or greater than 7 MPa m.sup.1/2, a hardness equal to or greater than 18 GPa.

  20. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  1. Multifunctional Ceramic Nanostructured Coatings

    Science.gov (United States)

    2010-12-01

    manual and semiautomatic modes. In case of manual operation the sampling from database is done in compliance with inquiry filters. The restrictions on...availability of card lines selected with prescribed accuracy. In the semiautomatic mode the restrictions related to the position of revealed lines can be...cantilever substrate made from stainless steel ( grade X18H10T, Es = 220 GPa) while the film thickness gradually increased up to tf = 600 nm with its

  2. Weighted guided image filtering.

    Science.gov (United States)

    Li, Zhengguo; Zheng, Jinghong; Zhu, Zijian; Yao, Wei; Wu, Shiqian

    2015-01-01

    It is known that local filtering-based edge preserving smoothing techniques suffer from halo artifacts. In this paper, a weighted guided image filter (WGIF) is introduced by incorporating an edge-aware weighting into an existing guided image filter (GIF) to address the problem. The WGIF inherits advantages of both global and local smoothing filters in the sense that: 1) the complexity of the WGIF is O(N) for an image with N pixels, which is same as the GIF and 2) the WGIF can avoid halo artifacts like the existing global smoothing filters. The WGIF is applied for single image detail enhancement, single image haze removal, and fusion of differently exposed images. Experimental results show that the resultant algorithms produce images with better visual quality and at the same time halo artifacts can be reduced/avoided from appearing in the final images with negligible increment on running times.

  3. Robustifying Vector Median Filter

    Directory of Open Access Journals (Sweden)

    Valentín Gregori

    2011-08-01

    Full Text Available This paper describes two methods for impulse noise reduction in colour images that outperform the vector median filter from the noise reduction capability point of view. Both methods work by determining first the vector median in a given filtering window. Then, the use of complimentary information from componentwise analysis allows to build robust outputs from more reliable components. The correlation among the colour channels is taken into account in the processing and, as a result, a more robust filter able to process colour images without introducing colour artifacts is obtained. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter. Objective measures demonstrate the goodness of the achieved improvement.

  4. Filter cake breaker systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo H.F. [Poland Quimica Ltda., Duque de Caxias, RJ (Brazil)

    2004-07-01

    Drilling fluids filter cakes are based on a combination of properly graded dispersed particles and polysaccharide polymers. High efficiency filter cakes are formed by these combination , and their formation on wellbore walls during the drilling process has, among other roles, the task of protecting the formation from instantaneous or accumulative invasion of drilling fluid filtrate, granting stability to well and production zones. Filter cake minimizes contact between drilling fluid filtrate and water, hydrocarbons and clay existent in formations. The uniform removal of the filter cake from the entire interval is a critical factor of the completion process. The main methods used to breaking filter cake are classified into two groups, external or internal, according to their removal mechanism. The aim of this work is the presentation of these mechanisms as well their efficiency. (author)

  5. Naive Bayesian for Email Filtering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper presents a method of email filter based on Naive Bayesian theory that can effectively filter junk mail and illegal mail. Furthermore, the keys of implementation are discussed in detail. The filtering model is obtained from training set of email. The filtering can be done without the users specification of filtering rules.

  6. Ceramic materials and growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Ohgushi, H.; Yoshikawa, T.; Okumura, M.; Nakajima, H.; Takakura, Y. [Nara Medical Univ. (Japan). Dept. of Orhtopaedic Surgery; Dohi, Y. [Nara Medical Univ. (Japan). Dept. of Public Health; Noshi, T.; Ikeuchi, M. [Nara Medical Univ. (Japan). Dept. of Oral and Maxillofacial Surgery

    2001-07-01

    Recently, many types of growth factors have been purified and used for promoting cell differentiation cascade. The activity of growth factors can be detected in vitro such as culture condition. However, the activity is difficult to detect when these factors are locally administered in vivo, because these dissipate soon after the administration. In order to retain growth factors in local milieu, these can be incorporated with biocompatible porous ceramic materials. Such ceramic/factors composites when implanted in vivo, can trigger certain types of cell differentiation cascade resulted in new tissue formation and tissue regeneration. The paper describes the ceramic / growth factors composites especially hydroxyapatite ceramic (HA) / bone morphogenetic protein (BMP) composite to induce osteoblastic differentiation of mesenchymal stem cells. The HA/BMP composite supported the osteoblastic differentiation on the HA surface and finally resulted in bone bonding to the HA. When the marrow mesenchymal stem cells (MSCs) were impregnated in pore areas of HA ceramics, the composites showed more and rapid bone formation than the HA/BMP and HA/MSCs composite, indicating the synergistic effect of BMP and MSCs. These findings indicate the importance of ceramic surface to evoke osteoblastic differentiation as well as to capture the molecules of growth factors for the cell differentiation. (orig.)

  7. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  8. Research results on productivity stabilization by ultrasonic camera (plant with membrane ceramic elements during vine processing

    Directory of Open Access Journals (Sweden)

    V. T. Antufyev

    2016-01-01

    Full Text Available The article describes solutions to the problems of declining productivity of ceramic membrane elements for wine processing on the final manufacturing phase. A relative stabilization of filtration velocity, venting efficiency and wine lightening were experimentally confirmed during contacts with oscillation waves of ultrasonic transmitter on the ceramic filter. Which significantly reduced the cost of various preservatives to increase periods storage. To study the processes of wine processing by the proposed method it was made an experimental installation on the basis of pilot machine MRp-1/2 for bottling of quiet liquids and an ultrasonic device "Volna– M" UZTA-1/22-OM with a firmly, waveguide which transmits sound, fixed filter frame on the ultrasound emitter. To stabilize the performance of ultrasonic units with ceramic membrane elements without quality deterioration of wines it was empirically determined rational parameters of power of ultrasound input and pressure in the system. The given derived dependencies and graphs allow to define the time of relatively stable operating filter regime. It was revealed a significant cost reduction on filtration, as it allows escape from the contamination of the product by various preservatives, and increasing of storage duration in a sealed container during aseptic filling without a thermal sterilization. Ultrasonic emitter contact by superposition wave vibrations on the ceramic filter increases not only the efficiency of gas removal, but also improves the organoleptic characteristics, stabilizes the filters, improves their productivity. Gas removal creates unfavorable conditions for development of the yeast, which in turn increases the shelf life of semisweet wine.

  9. Long-term retrieval of modified Günther Tulip vena cava Filters: an animal study.

    Science.gov (United States)

    Buecker, Arno; Behrendt, Florian F; Knüchel, Ruth; Kinzel, Sylvia; Mølgaard-Nielsen, Arne; Neuerburg, Joerg; Günther, Rolf W

    2007-10-01

    We modified the Günther Tulip Filter to allow long-term retrieval and tested this modified filter design in an animal experiment. Fourteen modified Günther Tulip Filters (Celect filter) were inserted percutaneously into the inferior venae cavae of 7 domestic adult sheep (2 filters per animal). Before removal, 3 months after filter placement, cavography was performed and the filters were removed. Subsequently, cavography was obtained to check for any signs of bleeding. All venae cavae were prepared, removed, and macroscopically examined for bleeding. Filter placement was easy and successfully performed in all cases. No thrombi were detected inside the filters. All cases showed some narrowing of the vena cava at the level, where the filter legs were connected with the vessel wall. Neither cavograms after filter removal nor macroscopic examinations of the perivascular vena cava tissue showed any significant bleeding. The modified Günther Tulip Filter allowed for successful and uncomplicated filter removal up to 3 months after placement.

  10. Environmental Effects on Non-oxide Ceramics

    Science.gov (United States)

    Jacobson, Nathan S.; Opila, Elizabeth J.

    1997-01-01

    Non-oxide ceramics such as silicon carbide (SiC) and silicon nitride (Si3N4) are promising materials for a wide range of high temperature applications. These include such diverse applications as components for heat engines, high temperature electronics, and re-entry shields for space vehicles. Table I lists a number of selected applications. Most of the emphasis here will be on SiC and Si3N4. Where appropriate, other non-oxide materials such as aluminum nitride (AlN) and boron nitride (BN) will be discussed. Proposed materials include both monolithic ceramics and composites. Composites are treated in more detail elsewhere in this volume, however, many of the oxidation/corrosion reactions discussed here can be extended to composites. In application these materials will be exposed to a wide variety of environments. Table I also lists reactive components of these environments.It is well-known that SiC and Si3N4 retain their strength to high temperatures. Thus these materials have been proposed for a variety of hot-gas-path components in combustion applications. These include heat exchanger tubes, combustor liners, and porous filters for coal combustion products. All combustion gases contain CO2, CO, H2, H2O, O2, and N2. The exact gas composition is dependent on the fuel to air ratio or equivalence ratio. (Equivalence ratio (EQ) is a fuel-to-air ratio, with total hydrocarbon content normalized to the amount of O2 and defined by EQ=1 for complete combustion to CO2 and H2O). Figure 1 is a plot of equilibrium gas composition vs. equivalence ratio. Note that as a general rule, all combustion atmospheres are about 10% water vapor and 10% CO2. The amounts of CO, H2, and O2 are highly dependent on equivalence ratio.

  11. Evaluation of a Silver-Embedded Ceramic Tablet as a Primary and Secondary Point-of-Use Water Purification Technology in Limpopo Province, S. Africa.

    Science.gov (United States)

    Ehdaie, Beeta; Rento, Chloe T; Son, Veronica; Turner, Sydney S; Samie, Amidou; Dillingham, Rebecca A; Smith, James A

    2017-01-01

    The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet's performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the silver

  12. Evaluation of a Silver-Embedded Ceramic Tablet as a Primary and Secondary Point-of-Use Water Purification Technology in Limpopo Province, S. Africa

    Science.gov (United States)

    Ehdaie, Beeta; Rento, Chloe T.; Son, Veronica; Turner, Sydney S.; Samie, Amidou; Dillingham, Rebecca A.

    2017-01-01

    The World Health Organization (WHO) recognizes point-of-use water treatment (PoUWT) technologies as effective means to improve water quality. This paper investigates long-term performance and social acceptance of a novel PoUWT technology, a silver-infused ceramic tablet, in Limpopo Province, South Africa. When placed in a water storage container, the silver-embedded ceramic tablet releases silver ions into water, thereby disinfecting microbial pathogens and leaving the water safe for human consumption. As a result of its simplicity and efficiency, the silver-embedded ceramic tablet can serve as a stand-alone PoUWT method and as a secondary PoUWT to improve exisitng PoUWT methods, such as ceramic water filters. In this paper, three PoUWT interventions were conducted to evaluate the silver-embedded ceramic tablet: (1) the silver-embedded ceramic tablet as a stand-alone PoUWT method, (2) ceramic water filters stand-alone, and (3) a filter-tablet combination. The filter-tablet combination evaluates the silver-embedded ceramic tablet as a secondary PoUWT method when placed in the lower reservoir of the ceramic water filter system to provide residual disinfection post-filtration. Samples were collected from 79 households over one year and analyzed for turbidity, total silver levels and coliform bacteria. Results show that the silver-embedded ceramic tablet effectively reduced total coliform bacteria (TC) and E. coli when used as a stand-alone PoUWT method and when used in combination with ceramic water filters. The silver-embedded ceramic tablet’s performance as a stand-alone PoUWT method was comparable to current inexpensive, single-use PoUWT methods, demonstrating 100% and 75% median reduction in E. coli and TC, respectively, after two months of use. Overall, the the filter-tablet combination performed the best of the three interventions, providing a 100% average percent reduction in E. coli over one year. User surveys were also conducted and indicated that the

  13. Ferroelectric ceramics in a pyroelectric accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua [Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Belgorod State University, Belgorod 308015 (Russian Federation); Miroshnik, V. S.; Volkov, V. I. [Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Oleinik, A. N. [Belgorod State University, Belgorod 308015 (Russian Federation)

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  14. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300{degrees}C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss.

  15. Synthesis and characterization of biomorphic ceramics; Sintese e caracterizacao de ceramicas biomorficas

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, Carlos Renato

    2001-07-01

    Biotemplating represents a recently developed technology for manufacturing of biomorphous ceramics from naturally grown plant structures. This approach allows the production of ceramic materials with cellular structure, where the microstructural features of the ceramic product are similar to the native plant. After processing, the biomorphic ceramic exhibits directed pore morphology in the micrometer range. Biomorphic SiC fibers were produced from bamboo by carbothermal reduction of SiO{sub 2} originally present in the bamboo structure. Bamboo pieces were heated up to 1500 deg C in argon to promote the reaction between carbon and silica. Biomorphic alumina, mullite and zirconia ceramics were manufactured via the sol-gel route by repeated infiltration of low viscous oxide precursors (sols) into rattan, pine and bamboo structures. The raw samples were pyrolyzed at 800 deg C in nitrogen for 1h and subsequently annealed at 1550 deg C in air. The microstructure and physical properties of the biomorphic ceramics were characterized by X-ray diffraction (XRD) and high temperature-XRD, scanning electron microscopy (SEM), porosimetry and picnometry. Thermal analysis (TGA/DTA) was performed on the infiltrated samples in order to evaluate the reactions and the total weight loss during the thermal process. The mechanical properties were evaluated by compressive strength tests. In contrast to conventional processed ceramic foam of similar porosity, the microstructure highly porous biomorphic ceramics shows uniaxial pore morphology with anisotropic properties. These properties are favorable for applications in catalyst support, filters or low-density heat insulation structures, or as biomaterials. (author)

  16. Controlled ceramic porosity and membrane fabrication via alumoxane nanoparticles

    Science.gov (United States)

    Jones, Christopher Daniel

    Carboxylate-alumoxanes, [Al(O)x(OH)y(O2CR) z]n, are organic substituted alumina nano-particles synthesized from boehmite in aqueous solution which are an inexpensive and environmentally-benign precursor for the fabrication of aluminum based ceramic bodies. The carboxylate-ligand on the alumoxane determines the morphology and the porosity of the derived alumina. Investigations of A-, MA-, MEA-, and MEEA-alumoxanes, were undertaken to determine the effects of these organic peripheries on the properties of the alumina at different sintering temperatures including the morphology, surface area, pore volume, pore size, pore size distribution, and crystal phase. The effects of physically or chemically mixing different carboxylate-alumoxanes were also investigated. The alumina derived from the thermolysis of the carboxylate-alumoxanes exhibits small pore diameters and narrow pore size distributions that are desirable for use in ceramic ultrafiltration membranes. In addition, it is possible to form alumina membranes with a range of pore sizes and porosity by changing the organic periphery. This lead to investigating the ability to produce asymmetric alumina filters with characteristics that at the lower end of the ultrafiltration range. The flux, permeability, molecular weight cut-off, roughness, and wettability of the asymmetric alumina membranes derived from carboxylate-alumoxanes are determined. Comparisons of these filters are made with commercially available filters. The ability to dope carboxylate-alumoxanes via a transmetallation reaction followed by thermolysis has previously shown to result in catalytically active alumina based materials. This lead to investigations into forming catalytically active membranes. Dip-coating aqueous solutions of the doped carboxylate-alumoxanes onto porous alumina supports, followed by thermolysis, resulted in the formation of doped-alumina asymmetric filters. In addition, a novel method to form surface-modified carboxylate

  17. Commercial Passenger Fishing Vessel Fishery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the logbook data from U.S.A. Commercial Passenger Fishing Vessels (CPFV) fishing in the U.S.A. EEZ and in waters off of Baja California, from...

  18. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup

    2003-01-01

    The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current...

  19. Pressure vessel and method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Timothy

    2017-09-05

    A pressure vessel includes a pump having a passage that extends between an inlet and an outlet. A duct at the pump outlet includes at least one dimension that is adjustable to facilitate forming a dynamic seal that limits backflow of gas through the passage.

  20. Storing Waste in Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W L; Sickafus, K

    2004-07-20

    Not all the nuclear waste destined for Yucca Mountain is in the form of spent fuel. Some of it will be radioactive waste generated from the production of nuclear weapons. This so-called defense waste exists mainly as corrosive liquids and sludge in underground tanks. An essential task of the U.S. high-level radioactive waste program is to process these defense wastes into a solid material--called a waste form. An ideal waste form would be extremely durable and unreactive with other repository materials. It would be simple to fabricate remotely so that it could be safely transported to a repository for permanent storage. What's more, the material should be able to tolerate exposure to intense radiation without degradation. And to minimize waste volume, the material must be able to contain high concentrations of radionuclides. The material most likely to be used for immobilization of radioactive waste is glass. Glasses are produced by rapid cooling of high-temperature liquids such that the liquid-like non-periodic structure is preserved at lower temperatures. This rapid cooling does not allow enough time for thermodynamically stable crystalline phases (mineral species) to form. In spite of their thermodynamic instability, glasses can persist for millions of years. An alternate to glass is a ceramic waste form--an assemblage of mineral-like crystalline solids that incorporate radionuclides into their structures. The crystalline phases are thermodynamically stable at the temperature of their synthesis; ceramics therefore tend to be more durable than glasses. Ceramic waste forms are fabricated at temperatures below their melting points and so avoid the danger of handling molten radioactive liquid--a danger that exists with incorporation of waste in glasses. The waste form provides a repository's first line of defense against release of radionuclides. It, along with the canister, is the barrier in the repository over which we have the most control. When a waste