WorldWideScience

Sample records for films thermal modeling

  1. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  2. Thermal propagation and stability in superconducting films

    International Nuclear Information System (INIS)

    Gray, K.E.; Kampwirth, R.T.; Zasadzinski, J.F.; Ducharme, S.P.

    1983-01-01

    Thermal propagation and stable hot spots (normal domains) are studied in various high Tsub(c) superconducting films (Nb 3 Sn, Nb, NbN and Nb 3 Ge). A new energy balance is shown to give reasonable quantitative agreement of the dependence of the propagation velocity on the length of short normal domains. The steady state (zero velocity) measurements indicate the existence of two distinct situations for films on high thermal conductivity (sapphire) substrates. For low power per unit area the film and substrate have the same temperature, and the thermal properties of the substrate dominate. However, for higher power densities in short hot spots, the coupling is relatively weak and the thermal properties of the film alone are important. Here a connection is made between the critical current stability of superconducting films and a critical hot spot size for thermal propagation. As a result efficient heat removal is shown to dominate the stabilisation of superconducting films. The strong and weak coupling situations also lead to modifications of the models for propagation velocities on sapphire substrates. Self-healing of hot spots and other phenomena in superconducting film are explained. The potential use of the thermal propagation model in applications of superconductors, especially switches is discussed. (author)

  3. Thermal conductivity of sputtered amorphous Ge films

    International Nuclear Information System (INIS)

    Zhan, Tianzhuo; Xu, Yibin; Goto, Masahiro; Tanaka, Yoshihisa; Kato, Ryozo; Sasaki, Michiko; Kagawa, Yutaka

    2014-01-01

    We measured the thermal conductivity of amorphous Ge films prepared by magnetron sputtering. The thermal conductivity was significantly higher than the value predicted by the minimum thermal conductivity model and increased with deposition temperature. We found that variations in sound velocity and Ge film density were not the main factors in the high thermal conductivity. Fast Fourier transform patterns of transmission electron micrographs revealed that short-range order in the Ge films was responsible for their high thermal conductivity. The results provide experimental evidences to understand the underlying nature of the variation of phonon mean free path in amorphous solids

  4. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  5. Thermal diffusivity of diamond films using a laser pulse technique

    International Nuclear Information System (INIS)

    Albin, S.; Winfree, W.P.; Crews, B.S.

    1990-01-01

    Polycrystalline diamond films were deposited using a microwave plasma-enhanced chemical vapor deposition process. A laser pulse technique was developed to measure the thermal diffusivity of diamond films deposited on a silicon substrate. The effective thermal diffusivity of a diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by laser pulses. An analytical model is presented to calculate the effective inplane (face-parallel) diffusivity of a two-layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film

  6. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue

    2005-01-01

    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  7. Thermal Analysis of Sintered Silver Nanoparticles Film

    Directory of Open Access Journals (Sweden)

    M. Keikhaie

    2014-07-01

    Full Text Available Thin bonded films have many applications in antireflection and reflection coating, insulating and conducting films and semiconductor industries. Thermal conductivity is one of the most important parameter for power packaging since the thermal resistance of the interconnections is directly related to the heat removal capability and thermal management of the power package. The defects in materials play very important role on the effective thermal conductivity. In this paper, finite element method (FEM was utilized to simulate the effect of pores on the effective thermal conductivity of sintered silver nanoparticles film. The simulation results indicate that the effective thermal conductivity of film is different at different directions and would be enhanced when the pore angle is 90. The simulation results will help us to further understand the heat transfer process across highly porous structures and will provide us a powerful guide to design coating with high thermal insulation or conductor property. Because of there is no similar experimental data for this simulation results, this paper is a comparative work among three different models.

  8. Adsorption properties of thermally sputtered calcein film

    Science.gov (United States)

    Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.

    2014-05-01

    High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).

  9. Thermal conductivity of oriented polymer films

    NARCIS (Netherlands)

    Nysten, B.; Gonry, P.; Issi, J.P.; Govaert, L.E.; Lemstra, P.J.; Tong, T.W.

    1994-01-01

    The effect of stretching on the thermal cond. of polyethylene (PE) films is presented and compared to results obtained previously for oriented polyacetylene films and PE fibers. As expected, the longitudinal thermal cond. increases with the stretching level and thermal cond. values comparable to

  10. Plastic response of thin films due to thermal cycling

    NARCIS (Netherlands)

    Nicola, L.; van der Giessen, E.; Needleman, A.; Ahzi, S; Cherkaoui, M; Khaleel, MA; Zbib, HM; Zikry, MA; Lamatina, B

    2004-01-01

    Discrete dislocation simulations of thin films on semi-infinite substrates under cyclic thermal loading are presented. The thin film is modelled as a two-dimensional single crystal under plane strain conditions. Dislocations of edge character can be generated from initially present sources and glide

  11. Simultaneous measurements of thermal conductivity and electrical conductivity of micro-machined Silicon films

    International Nuclear Information System (INIS)

    Hagino, H; Kawahara, Y; Goto, A; Miyazaki, K

    2012-01-01

    The in-plane effective thermal conductivity of free-standing Si thin films with periodic micropores was measured at -100 to 0 °C. The Si thin films with micropores were prepared from silicon-on-insulator (SOI) wafers by standard microfabrication processes. The dimensions of the free-standing Si thin films were 200μm×150μm×2 μm, with staggered 4 μm pores having an average pitch of 4 mm. The Si thin film serves both as a heater and thermometer. The average temperature rise of the thin film is a function of its in-plane thermal conductivity. The effective thermal conductivity was calculated using a simple one-dimensional heat conduction model. The measured thermal conductivity was much lower than that expected based on classical model evaluations. A significant phonon size effect was observed even in the microsized structures, and the mean free path for phonons is very long even at the room temperature.

  12. Development of In-plane Thermal Conductivity Calculation Methods in Thin Films

    Directory of Open Access Journals (Sweden)

    A. A. Barinov

    2017-01-01

    Full Text Available The future nanoelectronics development involves using the smaller- -and-smaller-sized circuit components based on the micro- and nanostructures. This causes a growth of the specific heat flows up to 100 W/cm2. Since performance of electronic devices is strongly dependent on the temperature there is a challenge to create the heat transfer models, which take into account the size effect and ensure a reliable estimate of the thermal conductivity. This is one of the crucial tasks for development of new generations of integrated circuits.The paper studies heat transfer processes using the silicon thin films as an example. Thermal conductivity calculations are performed taking into account the influence of the classical size effect in the context of the Sondheimer model based on the solution of the Boltzmann transport equation.The paper, for the first time, presents and considers the influence of various factors on the thermal conductivity of thin films, namely temperature, film thickness, polarization of the phonon waves (transverse and longitudinal, velocity and relaxation time versus frequency for the phonons of different wave types.Based on the analysis, three models with different accuracy are created to estimate the influence of detailing processes under consideration on the thermal conductivity in a wide range of temperatures (from 10 K to 450 К and film thickness (from 10 nm to 100 µm.So in the model I for the first time in calculating thermal conductivity of thin films we properly and circumstantially take into account the dependence of the velocity and the relaxation time of phonons on the frequency and polarization. The obtained values are in a good agreement with available experimental data and theoretical models of other authors. In the following models we use few average methods for relaxation times and velocities, which leads to significant reduction in calculating accuracy up to the values exceeding 100%.Therefore, when calculating

  13. Development of a micro-thermal flow sensor with thin-film thermocouples

    Science.gov (United States)

    Kim, Tae Hoon; Kim, Sung Jin

    2006-11-01

    A micro-thermal flow sensor is developed using thin-film thermocouples as temperature sensors. A micro-thermal flow sensor consists of a heater and thin-film thermocouples which are deposited on a quartz wafer using stainless steel masks. Thin-film thermocouples are made of standard K-type thermocouple materials. The mass flow rate is measured by detecting the temperature difference of the thin-film thermocouples located in the upstream and downstream sections relative to a heater. The performance of the micro-thermal flow sensor is experimentally evaluated. In addition, a numerical model is presented and verified by experimental results. The effects of mass flow rate, input power, and position of temperature sensors on the performance of the micro-thermal flow sensor are experimentally investigated. At low values, the mass flow rate varies linearly with the temperature difference. The linearity of the micro-thermal flow sensor is shown to be independent of the input power. Finally, the position of the temperature sensors is shown to affect both the sensitivity and the linearity of the micro-thermal flow sensor.

  14. Analysis of simplified heat transfer models for thermal property determination of nano-film by TDTR method

    Science.gov (United States)

    Wang, Xinwei; Chen, Zhe; Sun, Fangyuan; Zhang, Hang; Jiang, Yuyan; Tang, Dawei

    2018-03-01

    Heat transfer in nanostructures is of critical importance for a wide range of applications such as functional materials and thermal management of electronics. Time-domain thermoreflectance (TDTR) has been proved to be a reliable measurement technique for the thermal property determinations of nanoscale structures. However, it is difficult to determine more than three thermal properties at the same time. Heat transfer model simplifications can reduce the fitting variables and provide an alternative way for thermal property determination. In this paper, two simplified models are investigated and analyzed by the transform matrix method and simulations. TDTR measurements are performed on Al-SiO2-Si samples with different SiO2 thickness. Both theoretical and experimental results show that the simplified tri-layer model (STM) is reliable and suitable for thin film samples with a wide range of thickness. Furthermore, the STM can also extract the intrinsic thermal conductivity and interfacial thermal resistance from serial samples with different thickness.

  15. Extending the 3ω method: thermal conductivity characterization of thin films.

    Science.gov (United States)

    Bodenschatz, Nico; Liemert, André; Schnurr, Sebastian; Wiedwald, Ulf; Ziemann, Paul

    2013-08-01

    A lock-in technique for measurement of thermal conductivity and volumetric heat capacity of thin films is presented. The technique is based on the 3ω approach using electrical generation and detection of oscillatory heat along a thin metal strip. Thin films are deposited onto the backside of commercial silicon nitride membranes, forming a bilayer geometry with distinct thermal parameters. Stepwise comparison to an adapted heat diffusion model delivers these parameters for both layers. Highest sensitivity is found for metallic thin films.

  16. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Yong; Park, No-Won [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Hong, Ji-Eun [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoon, Soon-Gil, E-mail: sgyoon@cnu.ac.kr [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Koh, Jung-Hyuk [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Sang-Kwon, E-mail: sangkwonlee@cau.ac.kr [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-01-25

    Highlights: • We investigated thermal transport of the antimony telluride thin films. • The contribution of the electronic thermal conductivity increased up to ∼77% at 300 K. • We theoretically analyze and explain the high contribution of electronic component. - Abstract: We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb{sub 2}Te{sub 3}) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3-ω method. Out-of-plane thermal conductivity of the Sb{sub 2}Te{sub 3} thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity (κ{sub e}) in total thermal conductivity (κ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results.

  17. Thermal decomposition of titanium deuteride thin films

    International Nuclear Information System (INIS)

    Malinowski, M.E.

    1983-01-01

    The thermal desorption spectra of deuterium from essentially clean titanium deuteride thin films were measured by ramp heating the films in vacuum; the film thicknesses ranged from 20 to 220 nm and the ramp rates varied from 0.5 to about 3 0 C s - 1 . Each desorption spectrum consisted of a low nearly constant rate at low temperatures followed by a highly peaked rate at higher temperatures. The cleanliness and thinness of the films permitted a description of desorption rates in terms of a simple phenomenological model based on detailed balancing in which the low temperature pressure-composition characteristics of the two-phase (α-(α+#betta#)-#betta#) region of the Ti-D system were used as input data. At temperatures below 340 0 C the model predictions were in excellent agreement with the experimentally measured desorption spectra. Interpretations of the spectra in terms of 'decomposition trajectories'' are possible using this model, and this approach is also used to explain deviations of the spectra from the model at temperatures of 340 0 C and above. (Auth.)

  18. Thermal analysis of continuous and patterned multilayer films in the presence of a nanoscale hot spot

    Science.gov (United States)

    Juang, Jia-Yang; Zheng, Jinglin

    2016-10-01

    Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal barriers at the material layer interfaces crucially impact the temperature field hence play a key role in determining the hot spot geometry, transient response and power consumption. With a representative generic media model, we further explored the possibility of optimizing thermal performances by designing layers of heat sink and thermal barrier. The modeling approach demonstrates an effective way to characterize thermal behaviors of micro and nano-scale electronic devices with multilayer thin film structures. The insights into the thermal transport scheme will be critical for design and operations of such electronic devices.

  19. Wide-range measurement of thermal effusivity using molybdenum thin film with low thermal conductivity for thermal microscopes

    Science.gov (United States)

    Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru

    2017-07-01

    Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.

  20. Influence of Absorption of Thermal Radiation in the Surface Water Film on the Characteristics and Ignition Conditions

    Directory of Open Access Journals (Sweden)

    Syrodoy Samen V.

    2016-01-01

    Full Text Available The results of the mathematical modeling of homogeneous particle ignition process of coal-water fuel covered with water film have been presented in article. The set co-occurring physical (inert heating, evaporation of water film and thermochemical (thermal degradation, inflammation process have been considered. Heat inside the film has been considered as the model of radiation-conductive heat transfer. Delay times have been determined according to the results of numerical modeling of the ignition. It has been shown that the water film can have a significant impact on performance and the ignition conditions. It has been found that heating main fuel layer occurs in the process of evaporation of water film. For this reason, the next (after the evaporation of the water film thermal preparation (coal heating, thermal decomposition of the organic part of the fuel and inflammation occur faster.

  1. Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Mohr, Markus; Daccache, Layal; Horvat, Sebastian; Brühne, Kai; Jacob, Timo; Fecht, Hans-Jörg

    2017-01-01

    Diamond combines several outstanding material properties such as the highest thermal conductivity and highest elastic moduli of all materials. This makes diamond an interesting candidate for a multitude of applications. Nonetheless, nanocrystalline diamond films, layers and coatings, usually show properties different to those of single crystalline diamond. This is usually attributed to the larger volume fraction of the grain boundaries with atomic structure different from the single crystal. In this work we measured Young's modulus and thermal conductivity of nanocrystalline diamond films with average grain sizes ranging from 6 to 15 nm. The measured thermal conductivities are modeled considering the thermal boundary conductance between grains as well as a grain size effect on the phonon mean free path. We make a comparison between elastic modulus and thermal boundary conductance of the grain boundaries G_k for different nanocrystalline diamond films. We conclude that the grain boundaries thermal boundary conductance G_k is a measure of the cohesive energy of the grain boundaries and therefore also of the elastic modulus of the nanocrystalline diamond films.

  2. Thermal conductivity of a film of single walled carbon nanotubes measured with infrared thermal imager

    Science.gov (United States)

    Feng, Ya; Inoue, Taiki; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    Heat dissipation has restricted the modern miniaturization trend with the development of electronic devices. Theoretically proven to be with high axial thermal conductivity, single walled carbon nanotubes (SWNT) have long been expected to cool down the nanoscale world. Even though the tube-tube contact resistance limits the capability of heat transfer of the bulk film, the high intrinsic thermal conductivity of SWNT still glorify the application of films of SWNT network as a thermal interface material. In this work, we proposed a new method to straightly measure the thermal conductivity of SWNT film. We bridged two cantilevered Si thin plate with SWNT film, and kept a steady state heat flow in between. With the infrared camera to record the temperature distribution, the Si plates with known thermal conductivity can work as a reference to calculate the heat flux going through the SWNT film. Further, the thermal conductivity of the SWNT film can be obtained through Fourier's law after deducting the effect of thermal radiation. The sizes of the structure, the heating temperature, the vacuum degree and other crucial impact factors are carefully considered and analyzed. The author Y. F. was supported through the Advanced Integration Science Innovation Education and Research Consortium Program by the Ministry of Education, Culture, Sport, Science and Technology.

  3. Using Mosaicity to Tune Thermal Transport in Polycrystalline AlN Thin Films

    KAUST Repository

    Singh, Shivkant

    2018-05-17

    The effect of controlling the c-axis alignment (mosaicity) to the cross-plane thermal transport in textured polycrystalline aluminum nitride (AlN) thin films is experimentally and theoretically investigated. We show that by controlling the sputtering conditions we are able to deposit AlN thin films with varying c-axis grain tilt (mosaicity) from 10° to 0°. Microstructural characterization shows that the films are nearly identical in thickness and grain size, and the difference in mosaicity alters the grain interface quality. This has a significant effect to thermal transport where a thermal conductivity of 4.22 W/mK vs. 8.09 W/mK are measured for samples with tilt angles of 10° vs. 0° respectively. The modified Callaway model was used to fit the theoretical curves to the experimental results using various phonon scattering mechanisms at the grain interface. It was found that using a non-gray model gives an overview of the phonon scattering at the grain boundaries, whereas treating the grain boundary as an array of dislocation lines with varying angle relative to the heat flow, best describes the mechanism of the thermal transport. Lastly, our results show that controlling the quality of the grain interface provides a tuning knob to control thermal transport in polycrystalline materials.

  4. Using Mosaicity to Tune Thermal Transport in Polycrystalline AlN Thin Films

    KAUST Repository

    Singh, Shivkant; Shervin, Shahab; Sun, Haiding; Yarali, Milad; Chen, Jie; Lin, Ronghui; Li, Kuang-Hui; Li, Xiaohang; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2018-01-01

    The effect of controlling the c-axis alignment (mosaicity) to the cross-plane thermal transport in textured polycrystalline aluminum nitride (AlN) thin films is experimentally and theoretically investigated. We show that by controlling the sputtering conditions we are able to deposit AlN thin films with varying c-axis grain tilt (mosaicity) from 10° to 0°. Microstructural characterization shows that the films are nearly identical in thickness and grain size, and the difference in mosaicity alters the grain interface quality. This has a significant effect to thermal transport where a thermal conductivity of 4.22 W/mK vs. 8.09 W/mK are measured for samples with tilt angles of 10° vs. 0° respectively. The modified Callaway model was used to fit the theoretical curves to the experimental results using various phonon scattering mechanisms at the grain interface. It was found that using a non-gray model gives an overview of the phonon scattering at the grain boundaries, whereas treating the grain boundary as an array of dislocation lines with varying angle relative to the heat flow, best describes the mechanism of the thermal transport. Lastly, our results show that controlling the quality of the grain interface provides a tuning knob to control thermal transport in polycrystalline materials.

  5. Air-Lubricated Thermal Processor For Dry Silver Film

    Science.gov (United States)

    Siryj, B. W.

    1980-09-01

    Since dry silver film is processed by heat, it may be viewed on a light table only seconds after exposure. On the other hand, wet films require both bulky chemicals and substantial time before an image can be analyzed. Processing of dry silver film, although simple in concept, is not so simple when reduced to practice. The main concern is the effect of film temperature gradients on uniformity of optical film density. RCA has developed two thermal processors, different in implementation but based on the same philosophy. Pressurized air is directed to both sides of the film to support the film and to conduct the heat to the film. Porous graphite is used as the medium through which heat and air are introduced. The initial thermal processor was designed to process 9.5-inch-wide film moving at speeds ranging from 0.0034 to 0.008 inch per second. The processor configuration was curved to match the plane generated by the laser recording beam. The second thermal processor was configured to process 5-inch-wide film moving at a continuously variable rate ranging from 0.15 to 3.5 inches per second. Due to field flattening optics used in this laser recorder, the required film processing area was plane. In addition, this processor was sectioned in the direction of film motion, giving the processor the capability of varying both temperature and effective processing area.

  6. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  7. Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling

    Science.gov (United States)

    Huebner, Torsten; Martens, Ulrike; Walowski, Jakob; Münzenberg, Markus; Thomas, Andy; Reiss, Günter; Kuschel, Timo

    2018-06-01

    In general, it is difficult to access the thermal conductivity of thin insulating films experimentally by electrical means. Here, we present a new approach utilizing the tunnel magneto-Seebeck effect (TMS) in combination with finite-element modeling (FEM). We detect the laser-induced TMS and the absolute thermovoltage of laser-heated magnetic tunnel junctions with 2.6 nm thin barriers of MgAl2O4 (MAO) and MgO, respectively. A second measurement of the absolute thermovoltage after a dielectric breakdown of the barrier grants insight into the remaining thermovoltage of the stack. Thus, the pure TMS without any parasitic Nernst contributions from the leads can be identified. In combination with FEM via COMSOL, we are able to extract values for the thermal conductivity of MAO (0.7 W (K · m)‑1) and MgO (5.8 W (K · m)‑1), which are in very good agreement with theoretical predictions. Our method provides a new promising way to extract the experimentally challenging parameter of the thermal conductivity of thin insulating films.

  8. Thickness dependent ferromagnetism in thermally decomposed NiO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in

    2016-11-15

    We report the effects of film thickness, annealing temperature and annealing environments on thermal decomposition behavior and resulting magnetic properties of NiO (t=50–300 nm) thin films. All the NiO films were prepared directly on thermally oxidized Si at ambient temperature using magnetron sputtering technique and post annealed at different temperatures (T{sub A}) under vacuum and oxygen atmospheres. As-deposited films exhibit face centered cubic structure with large lattice constant due to strain induced during sputtering process. With increasing T{sub A}, the lattice constant decreases due to the release of strain and thickness dependent thermal decomposition reaction of NiO into Ni has been observed for the NiO films annealed at 500 °C under vacuum condition. As a result, the antiferromagnetic nature of the as-deposited NiO films transforms into ferromagnetic one with dominant thickness dependent ferromagnetic behavior at room temperature. In addition, the existence of both Ni and NiO phases in the annealed NiO films shows noticeable exchange bias under field cooling condition. The behavior of thermal decomposition was not observed for the NiO films annealed under oxygen condition which results in no detectable change in the magnetic properties. The observed results are discussed on the basis of thickness dependent thermal decomposition in NiO films with increasing T{sub A} and changing annealing conditions. - Highlights: • Preparation of highly strained single layer NiO films with different thicknesses. • Study the effects of annealing under different environments on crystal structure. • Understanding the origin of thickness dependent thermal decomposition reaction. • Investigate the role of thermal decomposition reaction on the magnetic properties. • Study the interaction between NiO and Ni phases on the exchange bias mechanism.

  9. Thermal Transport in Diamond Films for Electronics Thermal Management

    Science.gov (United States)

    2018-03-01

    AFRL-RY-WP-TR-2017-0219 THERMAL TRANSPORT IN DIAMOND FILMS FOR ELECTRONICS THERMAL MANAGEMENT Samuel Graham Georgia Institute of Technology MARCH... ELECTRONICS THERMAL MANAGEMENT 5a. CONTRACT NUMBER FA8650-15-C-7517 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61101E 6. AUTHOR(S) Samuel...seeded sample (NRL 010516, Die A5). The NCD membrane and Al layer thicknesses, tNCD, were measured via transmission electron microscopy (TEM). The

  10. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  11. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  12. Thermal spike model interpretation of sputtering yield data for Bi thin films irradiated by MeV {sup 84}Kr{sup 15+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-gare, Algiers (Algeria); Ouichaoui, S., E-mail: souichaoui@gmail.com [Université des Sciences et de la Technologie H. Boumediene (USTHB), Faculté de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-gare, Algiers (Algeria); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, P.O. Box 1906, Bellville 7535 (South Africa); Dib, A. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-gare, Algiers (Algeria); Msimanga, M. [iThemba LABS, National Research Foundation, P. Bag 11, Wits 2050, Johannesburg (South Africa); Department of Physics, Tshwane University of Technology, P. Bag X680, Pretoria 001 (South Africa)

    2015-07-01

    A modified thermal spike model initially proposed to account for defect formation in metals within the high heavy ion energy regime is adapted for describing the sputtering of Bi thin films under MeV Kr ions. Surface temperature profiles for both the electronic and atomic subsystems have been carefully evaluated versus the radial distance and time with introducing appropriate values of the Bi target electronic stopping power for multi-charged Kr{sup 15+} heavy ions as well as different target physical proprieties like specific heats and thermal conductivities. Then, the total sputtering yields of the irradiated Bi thin films have been determined from a spatiotemporal integration of the local atomic evaporation rate. Besides, an expected non negligible contribution of elastic nuclear collisions to the Bi target sputtering yields and ion-induced surface effects has also been considered in our calculation. Finally, the latter thermal spike model allowed us to derive numerical sputtering yields in satisfactorily agreement with existing experimental data both over the low and high heavy ion energy regions, respectively, dominated by elastic nuclear collisions and inelastic electronic collisions, in particular with our data taken recently for Bi thin films irradiated by 27.5 MeV Kr{sup 15+} heavy ions. An overall consistency of our model calculation with the predictions of sputtering yield theoretical models within the target nuclear stopping power regime was also pointed out.

  13. Thermal conductivities of thin, sputtered optical films

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO 2 /Si 3 N 4 ) n and Al(Al 2 O 3 /AIN) n . Sputtered films of more conventional materials like SiO 2 , Al 2 O 3 , Ta 2 O 5 , Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented

  14. Distribution analysis of thermal effusivity for sub-micrometer YBCO thin films using thermal microscope

    International Nuclear Information System (INIS)

    Yagi, T.; Taketoshi, N.; Kato, H.

    2004-01-01

    Thermal effusivity measurements have been carried out for sub-micrometer YBCO superconducting films using thermal microscope based upon thermoreflectance technique. Two samples were prepared: c-axis aligned YBCO thin films with 800 nm in thickness synthesized on MgO and SrTiO 3 substrates. Measured thermal effusivities perpendicular to the surface, i.e. in parallel with c-axis were determined to be 1770 J/m 2 s 0.5 K on MgO substrate and 1420 J/m 2 s 0.5 K for that on SrTiO 3 substrate, respectively. The scatter of the measurements is estimated to be lower than ±5.2%. These values are consistent with reported values of YBCO single crystal in the direction of c-axis. In addition, 2D profiling image, that is, in-plane distribution of thermal effusivity was well obtained for the YBCO film on MgO substrate by operating this thermal microscope in a scanning mode. Its standard deviation of the in-plane thermal effusivity scattering due to the non-uniformity is evaluated to be ±5.7%

  15. Thermal degradation of ternary blend films containing PVA/chitosan/vanillin

    Science.gov (United States)

    Kasai, Deepak; Chougale, Ravindra; Masti, Saraswati; Narasgoudar, Shivayogi

    2018-05-01

    The ternary chitosan/poly (vinyl alcohol)/vanillin blend films were prepared by solution casting method. The influence of equal weight percent of poly (vinyl alcohol) and vanillin on thermal stability of the chitosan blend films were investigated by using thermogravimetric analysis (TGA). The kinetic parameters such as enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy (ΔG*) in the first and second decomposition steps based on the thermogravimetric data were calculated. The thermal stabilities of the blend films were confirmed by thermodynamic parameters obtained in the activation energies, which indicated that increase in the equal weight percent of PVA/vanillin decreased the thermal stability of the chitosan film.

  16. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong

    2017-08-30

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film\\'s structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  17. Thermal conductivity of mesoporous films measured by Raman spectroscopy

    Science.gov (United States)

    Stoib, B.; Filser, S.; Petermann, N.; Wiggers, H.; Stutzmann, M.; Brandt, M. S.

    2014-04-01

    We measure the in-plane thermal conductance of mesoporous Ge and SiGe thin films using the Raman-shift method and, based on a finite differences simulation accounting for the geometry of the sample, extract the in-plane thermal conductivity. For a suspended thin film of laser-sintered SiGe nanoparticles doped with phosphorus, we find an effective in-plane thermal conductivity of 0.05 W/m K in vacuum for a temperature difference of 400 K and a mean temperature of 500 K. Under similar conditions, the effective in-plane thermal conductivity of a laser-sintered undoped Ge nanoparticle film is 0.5 W/m K. Accounting for a porosity of approximately 50%, the normalized thermal conductivities are 0.1 W/m K and 1 W/m K, respectively. The thermoelectric performance is discussed, considering that the electrical in-plane conductivity is also affected by the mesoporosity.

  18. Development of thermal scanning probe microscopy for the determination of thin films thermal conductivity: application to ceramic materials for nuclear industry

    International Nuclear Information System (INIS)

    David, L.

    2006-10-01

    Since the 1980's, various thermal metrologies have been developed to understand and characterize the phenomena of transport of thermal energy at microscopic and submicroscopic scales. Thermal Scanning Probe Microscopy (SThM) is promising. Based on the analysis of the thermal interaction between an heated probe and a sample, it permits to probe the matter at the level of micrometric size in volumes. Performed in the framework of the development of this technique, this work more particularly relates to the study of thin films thermal conductivity. We propose a new modelling of the prediction of measurement with SThM. This model allows not only the calibration of the method for the measurement of bulk material thermal conductivity but also to specify and to better describe the probe - sample thermal coupling and to estimate, from its inversion, thin films thermal conductivity. This new approach of measurement has allowed the determination of the thermal conductivity of micrometric and sub-micrometric thicknesses of meso-porous silicon thin film in particular. Our estimates for the micrometric thicknesses are in agreement with those obtained by the use of Raman spectrometry. For the lower thicknesses of film, we give new data. Our model has, moreover, allowed a better definition of the in-depth resolution of the apparatus. This one is strongly linked to the sensitivity of SThM and strongly depends on the probe-sample thermal coupling area and on the geometry of the probe used. We also developed the technique by the vacuum setting of SThM. Our first results under this environment of measurement are encouraging and validate the description of the coupling used in our model. Our method was applied to the study of ceramics (SiC, TiN, TiC and ZrC) under consideration in the composition of future nuclear fuels. Because of the limitations of SThM in terms of sensitivity to thermal conductivity and in-depth resolution, measurements were also undertaken with a modulated thermo

  19. A Sandwiched/Cracked Flexible Film for Multi-Thermal Monitoring and Switching Devices

    KAUST Repository

    Tai, Yanlong; Chen, Tao; Lubineau, Gilles

    2017-01-01

    Polydimethylsiloxane (PDMS)-based flexible films have substantiated advantages in various sensing applications. Here, we demonstrate the highly sensitive and programmable thermal-sensing capability (thermal index, B, up to 126 × 103 K) of flexible films with tunable sandwiched microstructures (PDMS/cracked single-walled carbon nanotube (SWCNT) film/PDMS) when a thermal stimulus is applied. We found that this excellent performance results from the following features of the film's structural and material design: (1) the sandwiched structure allows the film to switch from a three-dimensional to a two-dimensional in-plane deformation and (2) the stiffness of the SWCNT film is decreased by introducing microcracks that make deformation easy and that promote the macroscopic piezoresistive behavior of SWCNT crack islands and the microscopic piezoresistive behavior of SWCNT bundles. The PDMS layer is characterized by a high coefficient of thermal expansion (α = 310 × 10-6 K-1) and low stiffness (∼2 MPa) that allow for greater flexibility and higher temperature sensitivity. We determined the efficacy of our sandwiched, cracked, flexible films in monitoring and switching flexible devices when subjected to various stimuli, including thermal conduction, thermal radiation, and light radiation.

  20. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  1. Transparent lithiated polymer films for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Mabe, Andrew N., E-mail: andrew.n.mabe@gmail.com [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Auxier, John D. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Urffer, Matthew J. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Penumadu, Dayakar [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Schweitzer, George K. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Miller, Laurence F. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-09-11

    Novel water-soluble {sup 6}Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using {sup 6}Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum {sup 6}Li loading obtained that resulted in a transparent film was 4.36% by mass ({sup 6}Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of {sup 6}Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein. -- Highlights: • A transparent polymer scintillator containing 3.85 wt% {sup 6}Li has been synthesized. • This class of polymeric thermal neutron scintillation detector is water-soluble. • Salicylic acid, presumably in the form of lithium salicylate, is used as a fluor. • The material emits 373 photons/α ({sup 241}Am) and an average of 139 photons/β ({sup 36}Cl). • The material emits 360 photons per thermal neutron capture event.

  2. Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques

    Science.gov (United States)

    Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.

    2015-06-01

    Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.

  3. Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method

    Science.gov (United States)

    Lugo, J. M.; Oliva, A. I.

    2017-02-01

    The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films' thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.

  4. Thermal cycling characteristics of plasma synthesized mullite films

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, O.R.; Hou, P.Y.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-01

    The authors have developed a plasma-based technique for the synthesis of mullite and mullite-like films on silicon carbide substrate material. The method, which they refer to as MePIIID (for Metal Plasma Immersion Ion Implantation and Deposition), uses two vacuum arc plasma sources and simultaneous pulse biasing of the substrate in a low pressure oxygen atmosphere. The Al:Si ratio can be controlled via the separate plasma guns, and the film adhesion, structure and morphology can be controlled via the ion energy which in turn is controlled by the pulse bias voltage. The films are amorphous as-deposited, and crystalline mullite is formed by subsequent annealing at 1000 C for 2 hours in air. Adhesion between the aluminum-silicon oxide film and the substrate increases after this first annealing. They have tested the behavior of films when subjected to repetitive thermal cycling between room temperature and 1100 C, and found that the films retain their adhesion and quality. Here they review the plasma synthesis technique and the characteristics of the mullite films prepared in this way, and summarize the status of the thermal cycling experiments.

  5. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    International Nuclear Information System (INIS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-01-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO 2 ). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh o o is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface deformation. Hence, surface deformation caused by liquid

  6. Comparison of four-probe thermal and thermoelectric transport measurements of thin films and nanostructures with microfabricated electro-thermal transducers

    Science.gov (United States)

    Kim, Jaehyun; Fleming, Evan; Zhou, Yuanyuan; Shi, Li

    2018-03-01

    Two different four-probe thermal and thermoelectric measurement methods have been reported for measuring the thermal conductivity, Seebeck coefficient, and electrical conductivity of suspended thin films and nanostructures with microfabricated electro-thermal transducers. The thermal contact resistance was extracted from the measured thermoelectric voltage drop at the contacts in the earlier four-probe method based on the assumption of constant thermal and thermoelectric properties along the sample. In comparison, the latter four-probe method can directly obtain the contact thermal resistance together with the intrinsic sample thermal resistance without making this assumption. Here, the measurement theory and data reduction processes of the latter four-probe measurement method are re-examined and improved. The measured thermal conductivity result of this improved method on representative thin film samples are found to agree with those obtained from the earlier four-probe method, which has obtained similar Seebeck coefficient and electrical conductivity as those measured with a different method for a supported thin film. The agreement provides further validation of the latest four-probe thermal transport measurement method of thin films and nanostructures.

  7. Stress in film/substrate system due to diffusion and thermal misfit effects

    International Nuclear Information System (INIS)

    Shao Shanshan; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2009-01-01

    The stress in film/substrate systems has been analysed taking into consideration the coupling effects of diffusion and thermal misfit within the framework of Fick's second law. The solution of diffusion-induced stress in a film/substrate system involving the thermal misfit stress feedback is developed. The effects of modulus ratios, diffusivity ratios, thickness ratios of the substrate and the film and the partial molar volume of the diffusing component on the stress distribution in the film/substrate system are then discussed with the help of the finite difference method. Results indicate that the stresses in the film/substrate system vary with diffusion time. Diffusion enhances the magnitudes of film stress when the thermal misfit stress is compressive in the film. Furthermore, the absolute values of stress in the film increase with the increasing modulus ratios of the substrate and film, while they reduce with the increasing partial molar volume of the diffusing component and the diffusivity ratio of the substrate and the film.

  8. Phonon and thermal properties of exfoliated TaSe2 thin films

    International Nuclear Information System (INIS)

    Yan, Z.; Jiang, C.; Renteria, J.; Pope, T. R.; Tsang, C. F.; Stickney, J. L.; Salguero, T. T.; Goli, P.; Balandin, A. A.

    2013-01-01

    We report on the phonon and thermal properties of thin films of tantalum diselenide (2H-TaSe 2 ) obtained via the “graphene-like” mechanical exfoliation of crystals grown by chemical vapor transport. The ratio of the intensities of the Raman peak from the Si substrate and the E 2g peak of TaSe 2 presents a convenient metric for quantifying film thickness. The temperature coefficients for two main Raman peaks, A 1g and E 2g , are −0.013 and −0.0097 cm −1 / o C, respectively. The Raman optothermal measurements indicate that the room temperature thermal conductivity in these films decreases from its bulk value of ∼16 W/mK to ∼9 W/mK in 45-nm thick films. The measurement of electrical resistivity of the field-effect devices with TaSe 2 channels shows that heat conduction is dominated by acoustic phonons in these van der Waals films. The scaling of thermal conductivity with the film thickness suggests that the phonon scattering from the film boundaries is substantial despite the sharp interfaces of the mechanically cleaved samples. These results are important for understanding the thermal properties of thin films exfoliated from TaSe 2 and other metal dichalcogenides, as well as for evaluating self-heating effects in devices made from such materials

  9. Phonon and thermal properties of exfoliated TaSe2 thin films

    Science.gov (United States)

    Yan, Z.; Jiang, C.; Pope, T. R.; Tsang, C. F.; Stickney, J. L.; Goli, P.; Renteria, J.; Salguero, T. T.; Balandin, A. A.

    2013-11-01

    We report on the phonon and thermal properties of thin films of tantalum diselenide (2H-TaSe2) obtained via the "graphene-like" mechanical exfoliation of crystals grown by chemical vapor transport. The ratio of the intensities of the Raman peak from the Si substrate and the E2g peak of TaSe2 presents a convenient metric for quantifying film thickness. The temperature coefficients for two main Raman peaks, A1g and E2g, are -0.013 and -0.0097 cm-1/oC, respectively. The Raman optothermal measurements indicate that the room temperature thermal conductivity in these films decreases from its bulk value of ˜16 W/mK to ˜9 W/mK in 45-nm thick films. The measurement of electrical resistivity of the field-effect devices with TaSe2 channels shows that heat conduction is dominated by acoustic phonons in these van der Waals films. The scaling of thermal conductivity with the film thickness suggests that the phonon scattering from the film boundaries is substantial despite the sharp interfaces of the mechanically cleaved samples. These results are important for understanding the thermal properties of thin films exfoliated from TaSe2 and other metal dichalcogenides, as well as for evaluating self-heating effects in devices made from such materials.

  10. Thermal degradation kinetics and estimation of lifetime of radiation grafted polypropylene films

    International Nuclear Information System (INIS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Bhalla, Vinod Kumar

    2017-01-01

    In this research work, thermal stability and degradation behavior of acrylic acid grafted polypropylene (PP-g-PAAc) films were investigated by using thermogravimetric (TGA) analysis at four different heating rates 5, 10, 15 and 20 °C/min over a temperature range of 40–550 °C in nitrogen atmosphere. The kinetic parameters namely activation energy (E a ), reaction order (n) and frequency factor (Z) were calculated by three multiple heating rate methods. The thermal stability of PP-g-PAAc films is found to decrease with increase in degree of grafting. The TGA data and thermal kinetic parameters were also used to predict the lifetime of grafted PP films. The estimated lifetime of neat PP as well as grafted PP decreased with increase in temperature by all the three methods. Studies also indicated that E a and lifetime of PP-g-PAAc films decreased with increase in degree of grafting, which may also be helpful in biodegradation of grafted PP films. - Highlights: • Thermal stability of grafted polypropylene films have been observed lower than for neat polypropylene film. • Multiple heating rate methods have been used for determination of activation energy. • Activation energies of grafted polypropylene films were lower than polypropylene film. • The lifetimes of grafted polypropylene films were shorter than for neat polypropylene film.

  11. Sensitive coating for water vapors detection based on thermally sputtered calcein thin films.

    Science.gov (United States)

    Kruglenko, I; Shirshov, Yu; Burlachenko, J; Savchenko, A; Kravchenko, S; Manera, M G; Rella, R

    2010-09-15

    In this paper the adsorption properties of thermally sputtered calcein thin films towards water and other polar molecules vapors are studied by different characterization techniques: quartz crystal microbalance, surface plasmon resonance and visible spectroscopy. Sensitivity of calcein thin films to water vapors resulted much higher as compared with those of a number of dyes whose structure was close to that of calcein. All types of sensors with calcein coatings have demonstrated linear concentration dependences in the wide range of water vapor pressure from low concentrations up to 27,000 ppm (close to saturation). At higher concentrations of water vapor all sensors demonstrate the abrupt increase of the response (up to two orders). A theoretical model is advanced explaining the adsorption properties of calcein thin films taking into account their chemical structure and peculiarities of molecular packing. The possibility of application of thermally sputtered calcein films in sensing technique is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  13. Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-state thin film microbattery

    International Nuclear Information System (INIS)

    Kim, Han-Ki; Yoon, Young Soo

    2004-01-01

    We report on the fabrication of a LiCoO 2 film for an all-solid-state thin film microbattery by using a rapid-thermal-annealing (RTA) process. The LiCoO 2 films were grown by rf magnetron sputtering using a synthesized LiCoO 2 target in a [O 2 /(Ar+O 2 )] ratio of 10%. Scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) analysis results showed that the surface layer on the as-deposited LiCoO 2 film was completely removed by rapid thermal annealing process in oxygen ambient for 20 min. In addition, the thin film microbattery fabricated with the annealed LiCoO 2 film shows fairly stable cyclability with a specific discharge capacity of 56.49 μAh/cm2 μm. These results show the possibility of the RTA LiCoO 2 film and rapid thermal annealing process being a promising cathode material and annealing process for thin film microbatteries, respectively

  14. Nanoscale thermal-mechanical probe determination of 'softening transitions' in thin polymer films

    International Nuclear Information System (INIS)

    Zhou Jing; Berry, Brian; Douglas, Jack F; Karim, Alamgir; Snyder, Chad R; Soles, Christopher

    2008-01-01

    We report a quantitative study of the softening behavior of glassy polystyrene (PS) films at length scales on the order of 100 nm using nano-thermomechanometry (nano-TM), an emerging scanning probe technique in which a highly doped silicon atomic force microscopy (AFM) tip is resistively heated on the surface of a polymer film. The apparent 'softening temperature' T s of the film is found to depend on the logarithm of the square root of the thermal ramping rate R. This relation allows us to estimate a quasi-equilibrium (or zero rate) softening transition temperature T s0 by extrapolation. We observe marked shifts of T s0 with decreasing film thickness, but the nature of these shifts, and even their sign, depend strongly on both the thermal and mechanical properties of the supporting substrate. Finite element simulations suggest that thin PS films on rigid substrates with large thermal conductivities lead to increasing T s0 with decreasing film thickness, whereas softer, less thermally conductive substrates promote reductions in T s0 . Experimental observations on a range of substrates confirm this behavior and indicate a complicated interplay between the thermal and mechanical properties of the thin PS film and the substrate. This study directly points to relevant factors for quantitative measurements of thermophysical properties of materials at the nanoscale using this nano-TM based method.

  15. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    Science.gov (United States)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface

  16. The thermal stability of the carbon-palladium films for hydrogen sensor applications

    Science.gov (United States)

    Rymarczyk, Joanna; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław

    2017-08-01

    The thermal stability of two types of C-Pd films prepared in PVD process were studied. These films are composed of Pd nanograins embedded in a multiphase carbonaceous matrix. These films were distinguished by Pd content. These films were annealed in a range of temperatures 50÷1000°C. The structural, topographical and molecular changes were studied by scanning electron microscopy (SEM), infrared spectroscopy (FTIR) and X-ray diffraction (XRD) methods. The results show that investigated films are thermally stable up to 200°C.

  17. Research of electrosurgical unit with novel antiadhesion composite thin film for tumor ablation: Microstructural characteristics, thermal conduction properties, and biological behaviors.

    Science.gov (United States)

    Shen, Yun-Dun; Lin, Li-Hsiang; Chiang, Hsi-Jen; Ou, Keng-Liang; Cheng, Han-Yi

    2016-01-01

    The objective of this study was to use surface functionalization to evaluate the antiadhesion property and thermal injury effects on the liver when using a novel electrosurgical unit with nanostructured-doped diamond-like carbon (DLC-Cu) thin films for tumor ablations. The physical and chemical properties of DLC-Cu thin films were characterized by contact angle goniometer, scanning electron microscope, and transmission electron microscope. Three-dimensional (3D) hepatic models were reconstructed using magnetic resonance imaging to simulate a clinical electrosurgical operation. The results indicated a significant increase of the contact angle on the nanostructured DLC-Cu thin films, and the antiadhesion properties were also observed in an animal model. Furthermore, the surgical temperature in the DLC-Cu electrosurgical unit was found to be significantly lower than the untreated unit when analyzed using 3D models and thermal images. In addition, DLC-Cu electrodes caused a relatively small injury area and lateral thermal effect. The results indicated that the nanostructured DLC-Cu thin film coating reduced excessive thermal injury and tissue adherence effect in the liver. © 2015 Wiley Periodicals, Inc.

  18. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  19. Stripe domains and magnetoresistance in thermally deposited nickel films

    International Nuclear Information System (INIS)

    Sparks, P.D.; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C.

    2004-01-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21±0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane

  20. Stripe domains and magnetoresistance in thermally deposited nickel films

    Science.gov (United States)

    Sparks, P. D.; Stern, N. P.; Snowden, D. S.; Kappus, B. A.; Checkelsky, J. G.; Harberger, S. S.; Fusello, A. M.; Eckert, J. C.

    2004-05-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21+/-0.02 up to 120nm thickness. There is a negative magnetoresistance for fields out of the plane.

  1. Stripe domains and magnetoresistance in thermally deposited nickel films

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, P.D. E-mail: sparks@hmc.edu; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C

    2004-05-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21{+-}0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane.

  2. Thermal stability of ultrasoft Fe-Zr-N films

    NARCIS (Netherlands)

    Chechenin, NG; van Veen, A; Schut, H; Chezan, AR; Boerma, D; Vystavel, T; De Hosson, JTM

    2003-01-01

    The thermal stability of nanocrystalline ultrasoft magnetic (Fe98Zr2)(1-x)N-x films with x = 0.10-0.25 was studied using thermal desorption spectrometry, positron beam analysis and high resolution transmission electron microscopy. The results demonstrate that grain growth during the heat treatment

  3. Effect of thermal annealing of lead oxide film

    International Nuclear Information System (INIS)

    Hwang, Oh Hyeon; Kim, Sang Su; Suh, Jong Hee; Cho, Shin Hang; Kim, Ki Hyun; Hong, Jin Ki; Kim, Sun Ung

    2011-01-01

    Oxygen partial pressure in a growth process of lead oxide determines chemical and physical properties as well as crystalline structure. In order to supply oxygen, two ring-shape suppliers have been installed in a growth chamber. Films have been deposited using vacuum thermal evaporation from a raw material of yellow lead oxide powder (5N). Growth rate is controlled to be about 400 A/s, and film thickness more than 50 μm has been achieved. After deposition, the film is annealed at various temperatures under an oxygen atmosphere. In this study, an optimum growth condition for a good X-ray detector has been achieved by fine control of oxygen flow-rate and by thermal treatment. An electrical resistivity of 4.5x10 12 Ω cm is measured, and is comparable with the best data of PbO.

  4. Thermal Characteristics of Plastic Film Tension in Roll-to-Roll Gravure Printed Electronics

    Directory of Open Access Journals (Sweden)

    Kui He

    2018-02-01

    Full Text Available In the printing section of a roll-to-roll gravure printed electronics machine, the plastic film tension is directly associated with the product quality. The temperature distribution of the plastic film in the printing section is non-uniform, because of the higher drying temperature and the lower room temperature. Furthermore, the drying temperature and the room temperature are not constants in industrial production. As the plastic film is sensitive to temperature, the temperature of the plastic film will affects the web tension in the printing section. In this paper, the thermal characteristics of the plastic film tension in roll-to-roll gravure printed electronics are studied in order to help to improve the product quality. First, the tension model including the factor of temperature is derived based on the law of mass conservation. Then, some simulations and experiments are carried out in order to in-depth research the effects of the drying temperature and room temperature based on the relations between system inputs and outputs. The results show that the drying temperature and room temperature have significant influences on the web tension. The research on the thermal characteristics of plastic film tension would benefit the tension control accuracy for further study.

  5. Effects of thermal treatment on the anodic growth of tungsten oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Y., E-mail: yqchai85@gmail.com; Tam, C.W.; Beh, K.P.; Yam, F.K.; Hassan, Z.

    2015-08-03

    This work reports the investigation of the effects of thermal treatment on anodic growth tungsten oxide (WO{sub 3}). The increase of the thermal treatment temperature above 400 °C significantly influences WO{sub 3} film where high porosity structure reduces to more compact film. As-grown film is amorphous, which transforms to monoclinic/orthorhombic phase upon annealing at 300–600 °C. With the reducing of porous structure, preferential growth of (002) plane shifts to (020) plane at 600 °C with more than twentyfold increase of peak's intensity compared to the film annealed at 500 °C. Films annealed at low thermal treatment show better ion intercalation and reversibility during electrochemical measurements; however, it has larger optical band gap. Photoelectrochemical measurement reveals that film annealed at 400 °C exhibits the best photocatalytic performance among the films annealed at 300–600 °C. - Highlights: • Porosity of the WO{sub 3} reduces as annealing temperature increases above 400 °C. • As-grown film is amorphous which transforms to monoclinic/orthorhombic upon annealing. • As-grown film shows better ion intercalation in electrochemical process. • Optical band gap of WO{sub 3} reduces as the annealing temperature increases. • Film annealed at 400 °C exhibits best photocatalytic performance.

  6. Surface and sub-surface thermal oxidation of thin ruthenium films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Kokke, S.; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low

  7. Analysis of dual-phase-lag thermal behaviour in layered films with temperature-dependent interface thermal resistance

    International Nuclear Information System (INIS)

    Liu, K-C

    2005-01-01

    This work analyses theoretically the dual-phase-lag thermal behaviour in two-layered thin films with an interface thermal resistance, which is predicted by the radiation boundary condition model. The effect of the interface thermal resistance on the transmission-reflection phenomenon, induced by a pulsed volumetric source adjacent to the exterior surface of one layer, is investigated. Due to the difference between the two layers in the relaxation times, τ q and τ T , and the nonlinearity of the interfacial boundary condition, complexity is introduced and some mathematical difficulties are involved in solving the present problem. A hybrid application of the Laplace transform method and a control-volume formulation are used along with the linearization technique. The results show that the effect of the thermophysical properties on the behaviour of the energy passing across the interface gradually reduces with increasing interface thermal resistance. The lagging thermal behaviour depends on the magnitude of τ T and τ q more than on the ratio of τ T /τ q

  8. Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-07-15

    In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.

  9. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  10. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    Science.gov (United States)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  11. Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol.

    Science.gov (United States)

    Liu, Mei; Zhou, Yibin; Zhang, Yang; Yu, Chen; Cao, Shengnan

    2014-09-01

    The effect of sorbitol on the physicochemical, mechanical and thermal properties of chitosan films with different degrees of deacetylation (DD; i.e., DD85% and DD95%) was investigated. The thickness, moisture content (MC), water solubility (WS) and water-vapor permeability (WVP) of the films were evaluated. Sorbitol addition reduced MC, increased WS and significantly (psorbitol increased the strain and decreased stress for both DD films, but DD95% could sustain higher strain and DD85% could sustain higher stress. Thermogravimetrics analysis and differential scanning calorimetry showed that sorbitol elicited a lower degradation temperature for both films, and that DD95% films exhibited higher thermal stability than DD85% films. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Composition and microstructure of beryllium carbide films prepared by thermal MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu-dan; Luo, Jiang-shan; Li, Jia; Meng, Ling-biao; Luo, Bing-chi; Zhang, Ji-qiang; Zeng, Yong; Wu, Wei-dong, E-mail: wuweidongding@163.com

    2016-02-15

    Highlights: • Non-columnar-crystal Be{sub 2}C films were firstly prepared by thermal MOCVD. • Beryllium carbide was always the dominant phase in the films. • α-Be and carbon existed in films deposited below and beyond 400 °C, respectively. • Morphology evolved with temperatures and no columnar grains were characterized. • The preferred substrate temperature for depositing high quality Be{sub 2}C films was 400 °C. - Abstract: Beryllium carbide films without columnar-crystal microstructures were prepared on the Si (1 0 0) substrate by thermal metal organic chemical vapor deposition using diethylberyllium as precursor. The influence of the substrate temperature on composition and microstructure of beryllium carbide films was systematically studied. Crystalline beryllium carbide is always the dominant phase according to XRD analysis. Meanwhile, a small amount of α-Be phase exists in films when the substrate temperature is below 400 °C, and hydrocarbon or amorphous carbon exists when the temperature is beyond 400 °C. Surfaces morphology shows transition from domes to cylinders, to humps, and to tetraquetrous crystalline needles with the increase of substrate temperature. No columnar grains are characterized throughout the thickness as revealed from the cross-section views. The average densities of these films are determined to be 2.04–2.17 g/cm{sup 3}. The findings indicate the substrate temperature has great influences on the composition and microstructure of the Be{sub 2}C films grown by thermal MOCVD.

  13. Thermal dewetting behavior of polystyrene composite thin films with organic-modified inorganic nanoparticles.

    Science.gov (United States)

    Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi

    2014-07-29

    The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.

  14. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    Science.gov (United States)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  15. Phonon and thermal properties of exfoliated TaSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.; Jiang, C.; Renteria, J. [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Pope, T. R.; Tsang, C. F.; Stickney, J. L.; Salguero, T. T., E-mail: salguero@uga.edu, E-mail: balandin@ee.ucr.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Goli, P. [Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Balandin, A. A., E-mail: salguero@uga.edu, E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States)

    2013-11-28

    We report on the phonon and thermal properties of thin films of tantalum diselenide (2H-TaSe{sub 2}) obtained via the “graphene-like” mechanical exfoliation of crystals grown by chemical vapor transport. The ratio of the intensities of the Raman peak from the Si substrate and the E{sub 2g} peak of TaSe{sub 2} presents a convenient metric for quantifying film thickness. The temperature coefficients for two main Raman peaks, A{sub 1g} and E{sub 2g}, are −0.013 and −0.0097 cm{sup −1}/{sup o}C, respectively. The Raman optothermal measurements indicate that the room temperature thermal conductivity in these films decreases from its bulk value of ∼16 W/mK to ∼9 W/mK in 45-nm thick films. The measurement of electrical resistivity of the field-effect devices with TaSe{sub 2} channels shows that heat conduction is dominated by acoustic phonons in these van der Waals films. The scaling of thermal conductivity with the film thickness suggests that the phonon scattering from the film boundaries is substantial despite the sharp interfaces of the mechanically cleaved samples. These results are important for understanding the thermal properties of thin films exfoliated from TaSe{sub 2} and other metal dichalcogenides, as well as for evaluating self-heating effects in devices made from such materials.

  16. Spin current relaxation time in thermally evaporated pentacene films

    OpenAIRE

    Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji

    2017-01-01

    The spin current relaxation time [tau] in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ~8.0x10^-7 m^2/Vs and ~2.0x10^-8 m^2/s, respectively. Using those values and the previou...

  17. Thermal Effect on the Structural, Electrical, and Optical Properties of In-Line Sputtered Aluminum Doped Zinc Oxide Films Explored with Thermal Desorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2014-01-01

    Full Text Available This work investigates the thermal effect on the structural, electrical, and optical properties of aluminum doped zinc oxide (AZO films. The AZO films deposited at different temperatures were measured using a thermal desorption system to obtain their corresponding thermal desorption spectroscopy (TDS. In addition to obtaining information of thermal desorption, the measurement of TDS also has the effect of vacuum annealing on the AZO films. The results of measuring TDS imply part of the doped aluminum atoms do not stay at substituted zinc sites in AZO films. The (002 preferential direction of the AZO films in X-ray diffraction spectra shifts to a lower angle after measurement of TDS. The grain size grows and surface becomes denser for all AZO films after measurement of TDS. The carrier concentration, mobility, and average optical transmittance increase while the electrical resistivity decreases for AZO films after measurement of TDS. These results indicate that the AZO films deposited at 200°C are appropriate selections if the AZO films are applied in device fabrication of heat-produced process.

  18. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  19. Thermal and structural properties of spray pyrolysed CdS thin film

    Indian Academy of Sciences (India)

    Unknown

    Thermal diffusivity and conductivity in these films decrease at least two orders compared with bulk. ... Afifi et al. (1986) prepared evaporated thin film on glass substrate. ... phase of CdS and the identification of the peaks indicate that the film is ...

  20. In-Situ Testing of the Thermal Diffusivity of Polysilicon Thin Films

    Directory of Open Access Journals (Sweden)

    Yi-Fan Gu

    2016-10-01

    Full Text Available This paper presents an intuitive yet effective in-situ thermal diffusivity testing structure and testing method. The structure consists of two doubly clamped beams with the same width and thickness but different lengths. When the electric current is applied through two terminals of one beam, the beam serves as thermal resistor and the resistance R(t varies as temperature rises. A delicate thermodynamic model considering thermal convection, thermal radiation, and film-to-substrate heat conduction was established for the testing structure. The presented in-situ thermal diffusivity testing structure can be fabricated by various commonly used micro electro mechanical systems (MEMS fabrication methods, i.e., it requires no extra customized processes yet provides electrical input and output interfaces for in-situ testing. Meanwhile, the testing environment and equipment had no stringent restriction, measurements were carried out at normal temperatures and pressures, and the results are relatively accurate.

  1. Implementation of wall film condensation model to two-fluid model in component thermal hydraulic analysis code CUPID - 15237

    International Nuclear Information System (INIS)

    Lee, J.H.; Park, G.C.; Cho, H.K.

    2015-01-01

    In the containment of a nuclear reactor, the wall condensation occurs when containment cooling system and structures remove the mass and energy release and this phenomenon is of great importance to ensure containment integrity. If the phenomenon occurs in the presence of non-condensable gases, their accumulation near the condensate film leads to significant reduction in heat transfer during the condensation. This study aims at simulating the wall film condensation in the presence of non-condensable gas using CUPID, a computational multi-fluid dynamics code, which is developed by the Korea Atomic Energy Research Institute (KAERI) for the analysis of transient two-phase flows in nuclear reactor components. In order to simulate the wall film condensation in containment, the code requires a proper wall condensation model and liquid film model applicable to the analysis of the large scale system. In the present study, the liquid film model and wall film condensation model were implemented in the two-fluid model of CUPID. For the condensation simulation, a wall function approach with heat and mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model and then, introduces the simulation result using CUPID with the model for a conceptual condensation problem in a large system. (authors)

  2. Thermal annealing of amorphous Ti-Si-O thin films

    OpenAIRE

    Hodroj , Abbas; Chaix-Pluchery , Odette; Audier , Marc; Gottlieb , Ulrich; Deschanvres , Jean-Luc

    2008-01-01

    International audience; Ti-Si-O thin films were deposited using an aerosol chemical vapor deposition process at atmospheric pressure. The film structure and microstructure were analysed using several techniques before and after thermal annealing. Diffraction results indicate that the films remain X-ray amorphous after annealing whereas Fourier transform infrared spectroscopy gives evidence of a phase segregation between amorphous SiO2 and well crystallized anatase TiO2. Crystallization of ana...

  3. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Jagannadham, Kasichainula

    2015-01-01

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600 °C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600 °C. TiN film deposited at 600 °C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600 °C on Si(111) wafer but the film deposited at 500 °C showed cubic CrN and hexagonal Cr 2 N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600 °C. Nitride film of tungsten deposited at 600 °C on Si(100) wafer was nitrogen deficient, contained both cubic W 2 N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500 °C were nonstoichiometric and contained cubic W 2 N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600 °C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films

  4. Characterization of Hf/Mg co-doped ZnO thin films after thermal treatments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chih-Hung; Chung, Hantsun [Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Jian-Zhang, E-mail: jchen@ntu.edu.tw [Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan (China); Cheng, I-Chun, E-mail: iccheng@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-11-03

    Rf-sputtered Mg{sub 0.05}Zn{sub 0.95}O thin films become amorphous/nanocrystalline with the addition of hafnium oxide. All films (thickness: ∼ 100 nm) sputter-deposited from Hf{sub x}Mg{sub 0.05}Zn{sub 0.95−x}O targets are highly transparent (> 80%) from 400 to 800 nm. The Tauc bandgap ΔE (eV) increases with the Hf content. However, the bandgap decreases after thermal treatment. The reduction in the bandgap is positively correlated with the Hf content and annealing temperature. The residual stresses of films sputtered from Mg{sub 0.05}Zn{sub 0.95}O and Hf{sub 0.025}Mg{sub 0.05}Zn{sub 0.925}O targets are determined based on X-ray diffraction (XRD) data using a bi-axial stress model. The residual stresses of as-deposited films are compressive. As the annealing temperature increases, the residual stresses are relaxed and even become tensile. The bandgap narrowing after thermal treatment is attributed to the stress relaxation that changes the repulsion between the oxygen 2p and zinc 4s bands. Slight grain growth may also result in bandgap reduction because bandgap modification caused by the quantum confinement effect becomes significant in amorphous/nanocrystalline materials. The amorphous thin films reveal good thermal stability after 600 °C annealing for up to 2 h, as evidenced by the XRD and transmission spectra. - Highlights: • Thin films are sputtered from Hf{sub x}Mg{sub 0.05}Zn{sub 0.95−x}O targets at room temperature. • Bandgap increases with Hf content but decreases with post-annealing temperature. • Bandgap narrowing after annealing partly results from the relaxation of stresses. • Bandgap narrowing partly results from quantum confinement effect by nanomaterials. • Hf doping increases resistivity due to the lattice disorder and enlarged bandgap.

  5. Thermal properties and corrosion resistance of organoclay/epoxy resin film

    Science.gov (United States)

    Baiquni, M.; Soegijono, B.

    2018-03-01

    Hybrid materials organoclay/epoxy resin films were prepared by varying organoclay content in epoxy resin as a matrix. The film were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermal conductivity. TGA and FT-IR results confirmed that the melting temperature shifted to a lower point. The thermal conductivity and corrosion resistant generally increase with increasing organoclay content. The changes on these properties may due to cross link between organoclay and epoxy.

  6. Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.

    2002-02-01

    The mechanical response of plasma-enhanced chemical vapor deposited SiO2 to thermal cycling is examined by substrate curvature measurement and depth-sensing indentation. Film properties of deposition stress and stress hysteresis that accompanied thermal cycling are elucidated, as well as modulus, hardness, and coefficient of thermal expansion. Thermal cycling is shown to result in major plastic deformation of the film and a switch from a compressive to a tensile state of stress; both athermal and thermal components of the net stress alter in different ways during cycling. A mechanism of hydrogen incorporation and release from as-deposited silanol groups is proposed that accounts for the change in film properties and state of stress.

  7. Thermal and Mechanical Properties of Poly(butylene succinate Films Reinforced with Silica

    Directory of Open Access Journals (Sweden)

    Sangviroon Nanthaporn

    2015-01-01

    Full Text Available In recent year, bioplastics have become more popular resulting from the growing concerns on environmental issues and the rising fossil fuel price. However, their applications were limited by its mechanical and thermal properties. The aim of this research is thus to improve mechanical and thermal properties of PBS bioplastic films by reinforcing with silica. Due to the poor interfacial interaction between the PBS matrix and silica, glycidyl methacrylate grafted poly(butylene succinate (PBS-g-GMA was used as a compatibilizer in order to improve the interaction between bioplastic films and filler. PBS-g-GMA was prepared in a twin-screw extruder and analyzed by the FTIR spectrometer. PBS and silica were then mixed in a twin-screw extruder and processed into films by a chill-roll cast extruder. The effects of silica loading on thermal and mechanical properties of the prepared bioplastic films were investigated. It was found that the mechanical properties of PBS/silica composite films were improved when 1%wt of silica was added. However, the mechanical properties decreased with increasing silica loading due to the agglomeration of silica particles. The results also show that the silica/PBS films with PBS-g-GMA possessed improved mechanical properties over the films without the compatibilizer.

  8. Microstructural, thermal and antibacterial properties of electron beam irradiated Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Asha, S.; Sanjeev, Ganesh, E-mail: ganeshsanjeev@rediffmail.com [Microtron Center, Department of Studies in Physics, Mangalore University, Mangalagangotri - 574199 (India); Sangappa [Department of Studies in Physics, Mangalore University, Mangalagangotri - 574199 (India); Naik, Prashantha; Chandra, K. Sharat [Department of Biosciences, Mangalore University, Mangalagangotri - 574199 (India)

    2014-04-24

    The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated the antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.

  9. Interface thermal resistance of nanostructured FeCoCu film and Si substrate

    Science.gov (United States)

    Nikolaenko, Yuri M.; Medvedev, Yuri V.; Genenko, Yuri A.; Ghafari, Mohammad; Hahn, Horst

    2006-05-01

    Results of measurement of thermal resistance (RFS ) of film substrate interface of 10 nm (Fe1-x Cox )1-y Cuy film on Si substrate with 50 nm SiO2 sublayer are presented. The estimated magnitude is two orders greater then RFS of epitaxial manganite films on StTiO3 substrate with and without sublayer. The significant increase of RFS is explained by granular structure of film with average size of grain about 10 nm. In this case the additional thermal barier in the film-substrate interface is appeared. It provides the change of regime of phonons propagation from ballistic to diffusion one. The principle possibility of variation of RFS in wide range as a task of nanotechnology is discussed.

  10. Study of thermal and mechanical properties of PCL films

    International Nuclear Information System (INIS)

    Siqueira, A.R. de; Vieira, A.B. da Silva; Leite, I.F.

    2016-01-01

    In the current situation of the market, it is remarkable the concern for the development of materials that offer better properties and biodegradable behavior. The scientific researches seeks development and improvement of materials for applications in products increasingly biodegradable. To do so, this research aims at obtaining films composed of polymer poly(ε-caprolactone)(PCL), aliphatic polyester synthetic and biodegradable, and silicates in layers, specifically in the State of Paraiba, prepared by the method of solution. This mixture makes it possible to form different nanostructures intercalated morphology and/or exfoliated, which therefore provides improvement in the thermal properties of the final product. After analyzing the results of X-ray diffraction (XRD) was observed predominantly exfoliated morphologies to PCL films containing different silicate content and an increase in thermal stability when there was a lower concentration of clay as thermal analysis (TGA). (author)

  11. Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.

    Science.gov (United States)

    Jaing, Cheng-Chung

    2011-03-20

    This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.

  12. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    Science.gov (United States)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It

  13. Physical vapor deposited films of a perylene derivative: supramolecular arrangement and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Jose Diego; Alessio, Priscila; Silva, Matheus Rodrigues Medeiros; Aroca, Ricardo Flavio; Souza, Agda Eunice de; Constantino, Carlos Jose Leopoldo, E-mail: case@fct.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Presidente Prudente, SP (Brazil). Dept. de Fisica

    2017-07-15

    The analysis of supramolecular arrangement is essential to understand the role of this key factor on the optical and electrical properties of organic thin films. In this work, thin solid films of bis(phenethylimido) perylene (PhPTCD) fabricated using physical vapor deposition (PVD) technique (thermal evaporation), deposited simultaneously onto different substrates (Ag mirror, Ge, and quartz plates) contingent on the characterization technique. The main objective is to study the PhPTCD supramolecular arrangement and the thermal stability of this arrangement in PVD films. The ultraviolet-visible absorption reveals a controlled growth of the PVD films, and the micro-Raman scattering data show that the PhPTCD molecule is not thermally degraded in the conditions of these experiments. The microscopy also shows a homogeneous morphological surface of the PVD film at macro and micro scales, with molecular aggregates at nanoscale. Besides, the PVD film roughness does not follow substrate roughness. The X-ray diffraction indicates a crystalline structure for PhPTCD powder and an amorphous form for PhPTCD PVD film. The infrared absorption spectroscopy points to a preferential flat-on organization of the molecules in the PVD films. In addition, the annealing process (200 deg C for 20 minutes) does not affect the supramolecular arrangement of the PhPTCD PVD films. (author)

  14. Physical vapor deposited films of a perylene derivative: supramolecular arrangement and thermal stability

    International Nuclear Information System (INIS)

    Fernandes, Jose Diego; Alessio, Priscila; Silva, Matheus Rodrigues Medeiros; Aroca, Ricardo Flavio; Souza, Agda Eunice de; Constantino, Carlos Jose Leopoldo

    2017-01-01

    The analysis of supramolecular arrangement is essential to understand the role of this key factor on the optical and electrical properties of organic thin films. In this work, thin solid films of bis(phenethylimido) perylene (PhPTCD) fabricated using physical vapor deposition (PVD) technique (thermal evaporation), deposited simultaneously onto different substrates (Ag mirror, Ge, and quartz plates) contingent on the characterization technique. The main objective is to study the PhPTCD supramolecular arrangement and the thermal stability of this arrangement in PVD films. The ultraviolet-visible absorption reveals a controlled growth of the PVD films, and the micro-Raman scattering data show that the PhPTCD molecule is not thermally degraded in the conditions of these experiments. The microscopy also shows a homogeneous morphological surface of the PVD film at macro and micro scales, with molecular aggregates at nanoscale. Besides, the PVD film roughness does not follow substrate roughness. The X-ray diffraction indicates a crystalline structure for PhPTCD powder and an amorphous form for PhPTCD PVD film. The infrared absorption spectroscopy points to a preferential flat-on organization of the molecules in the PVD films. In addition, the annealing process (200 deg C for 20 minutes) does not affect the supramolecular arrangement of the PhPTCD PVD films. (author)

  15. Thermal Expansion of Self-Organized and Shear-Oriented Cellulose Nanocrystal Films

    Science.gov (United States)

    Jairo A. Diaz; Xiawa Wu; Ashlie Martini; Jeffrey P. Youngblood; Robert J. Moon

    2013-01-01

    The coefficient of thermal expansion (CTE) of cellulose nanocrystal (CNC) films was characterized using novel experimental techniques complemented by molecular simulations. The characteristic birefringence exhibited by CNC films was utilized to calculate the in-plane CTE of selforganized and shear-oriented self-standing CNC films from room temperature to 100 °...

  16. Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification

    Science.gov (United States)

    Wang, Han; Wang, Shaokai; Lu, Weibang; Li, Min; Gu, Yizhou; Zhang, Yongyi; Zhang, Zuoguang

    2018-06-01

    Graphite films have excellent in-plane thermal conductivity but extremely low through-thickness thermal conductivity because of their intrinsic inter-layer spaces. To improve the inter-layer heat transfer of graphite films, we developed a simple interfacial modification with a short duration mixed-acid treatment. The effects of the mixture ratio of sulfuric and nitric acids and treatment time on the through-thickness thermal properties of graphite films were studied. The modification increased the through-thickness thermal conductivity by 27% and 42% for the graphite film and its composite, respectively. X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy results indicated that the acidification process had two competing effects: the positive contribution made by the enhanced interaction between the graphite layers induced by the functional groups and the negative effect from the destruction of the graphite layers. As a result, an optimal acidification method was found to be sulfuric/nitric acid treatment with a mixture ratio of 3:1 for 15 min. The resultant through-thickness thermal conductivity of the graphite film could be improved to 0.674 W/mK, and the corresponding graphite/epoxy composite shows a through-thickness thermal conductivity of 0.587 W/mK. This method can be directly used for graphite films and their composite fabrication to improve through-thickness thermal conductivity.

  17. Modelling and analysis of the stress distribution in a multi-thin film system Pt/USG/Si

    Science.gov (United States)

    Yao, W. Z.; Roqueta, F.; Craveur, J. C.; Belhenini, S.; Gardes, P.; Tougui, A.

    2018-04-01

    Residual stress analysis is commonly achieved through curvature measurement with the help of Stoney’s formula. However, this conventional approach is inadequate for multi-layer thin film systems, which are widely used in today’s microelectronics. Also, for the thin film case, the residual stress is composed of thermal stress and intrinsic stress. Measuring the wafer curvature at room temperature provides a value for the average stresses in the layer, the two components cannot be distinguished by the existing methodologies of curvature measurement. To alleviate these problems, a modified curvature method combining finite element (FE) modelling is proposed to study the stress distribution in a Pt/USG/Si structure. A 2D FE model is firstly built in order to calculate the thermal stress in the multilayer structure, the obtained thermal stresses in respective films are verified by an analytical model. Then, we calculate the warpage of the multilayer structure by considering the intrinsic stress in the respective films. The residual stresses in the films are determined by minimizing the difference between the simulated warpage and that of experimental measurement. The proposed approach can be used to calculate not only the average residual stress but also thermal and intrinsic stress components in the USG and Platinum films. The obtained residual and intrinsic stresses from a numerical model are compared with the values of other studies. There is no limitation for the application of our methodologies regarding the number of the layers in the stack.

  18. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  19. Difficulties in modeling dispersed-flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    Dispersed Flow Film Boiling (DFFB) is characterized by important departures from thermal and velocity equilibrium that make it suitable for modeling with two-fluid models. The fundamental limitations and difficulties imposed by the one-dimensional nature of these models are extensively discussed. The validity of the assumptions and empirical laws used to close the system of conservation equations is critically reviewed, in light of the multidimensional aspects of the problem. Modifications that could improve the physics of the models are identified. (orig.) [de

  20. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    Science.gov (United States)

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  1. Thermal Conductivity in Nanostructured Films: From Single Cellulose Nanocrystals to Bulk Films

    Science.gov (United States)

    Jairo A. Diaz; Zhijiang Ye; Xiawa Wu; Arden L. Moore; Robert J. Moon; Ashlie Martini; Dylan J. Boday; Jeffrey P. Youngblood

    2014-01-01

    We achieved a multiscale description of the thermal conductivity of cellulose nanocrystals (CNCs) from single CNCs (~­0.72−5.7 W m−1 K−1) to their organized nanostructured films (~­0.22−0.53 W m−1 K−1) using...

  2. Morphology and thermal properties of PLA films plasticized with aliphatic oligoesters

    International Nuclear Information System (INIS)

    Inacio, Erika M.; Dias, Marcos L.; Lima, Maria Celiana P.

    2015-01-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  3. Effect of thickness on optical properties of thermally evaporated SnS films

    International Nuclear Information System (INIS)

    Selim, M.S.; Gouda, M.E.; El-Shaarawy, M.G.; Salem, A.M.; Abd El-Ghany, W.A.

    2013-01-01

    The effect of film thickness on the structure and optical properties of thermally evaporated SnS film has been studied. SnS films with different thicknesses in the range 152–585 nm were deposited onto clean glass substrates at room temperature. X-ray diffraction study revealed that SnS films of thickness ≥ 283 nm are crystalline, whereas films of lower thickness exhibit poor crystalline with more amorphous background. The crystalline nature of the lower film thickness has been confirmed using transmission electron microscope and the corresponding electron diffraction pattern. The thicker film samples showed nearly stoichiometric chemical composition; however, thinner samples are deficient in S and rich in Sn. The optical property of the deposited films has been investigated in the wavelength range 350–2500 nm. The refractive index increases notably with increasing film thickness. The refractive index for the investigated film thicknesses are adequately described by the effective-single-oscillator model. The static refractive index and the static dielectric constant have been calculated. Analysis of the optical absorption coefficient revealed the presence of direct optical transition and the corresponding band gap values were found to decrease as the film thickness increases. - Highlights: ► X-ray diffraction was used to study the structure of SnS films. ► Transmission electron microscope confirms the crystalline state of SnS films. ► The refractive index increases notably with increasing the film thickness. ► The optical band gap of SnS films decreases with increasing film thickness

  4. Rapid thermal annealing of Ti-rich TiNi thin films: A new approach to fabricate patterned shape memory thin films

    International Nuclear Information System (INIS)

    Motemani, Y.; Tan, M.J.; White, T.J.; Huang, W.M.

    2011-01-01

    This paper reports the rapid thermal annealing (RTA) of Ti-rich TiNi thin films, synthesized by the co-sputtering of TiNi and Ti targets. Long-range order of aperiodic alloy could be achieved in a few seconds with the optimum temperature of 773 K. Longer annealing (773 K/240 s), transformed the film to a poorly ordered vitreous phase, suggesting a novel method for solid state amorphization. Reitveld refinement analyses showed significant differences in structural parameters of the films crystallized by rapid and conventional thermal annealing. Dependence of the elastic modulus on the valence electron density (VED) of the crystallized films was studied. It is suggested that RTA provides a new approach to fabricate patterned shape memory thin films.

  5. Morphology and thermal stability of Ti-doped copper nitride films

    International Nuclear Information System (INIS)

    Fan Xiaoyan; Wu Zhiguo; Li Huajun; Geng Baisong; Li Chun; Yan Pengxun

    2007-01-01

    A weakly Ti-doped copper nitride (Cu 3 N) film was prepared by cylindrical magnetron sputtering. The XPS results indicate that Ti atoms do not substitute for the Cu atoms but probably locate at the grain boundaries. The columnar grains size is about half of that of the undoped Cu 3 N film and the surface is smoother. For weakly Ti-doped Cu 3 N films, a dense layer appears on top of the columnar crystals. The RMS of the Cu film formed by annealing of the weakly Ti-doped Cu 3 N film is more than twice larger than that of the film before annealing. Compared with the undoped Cu 3 N film, it possesses fine thermal stability both in vacuum and in atmosphere

  6. Thermal stability of tungsten sub-nitride thin film prepared by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.X. [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730050 (China); Wu, Y.Z., E-mail: youzhiwu@163.com [School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050 (China); Mu, B. [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050 (China); Qiao, L. [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730050 (China); Li, W.X.; Li, J.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, P., E-mail: pengwang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730050 (China)

    2017-03-15

    Tungsten sub-nitride thin films deposited on silicon samples by reactive magnetron sputtering were used as a model system to study the phase stability and microstructural evolution during thermal treatments. XRD, SEM&FIB, XPS, RBS and TDS were applied to investigate the stability of tungsten nitride films after heating up to 1473 K in vacuum. At the given experimental parameters a 920 nm thick crystalline film with a tungsten and nitrogen stoichiometry of 2:1 were achieved. The results showed that no phase and microstructure change occurred due to W{sub 2}N film annealing in vacuum up to 973 K. Heating up to 1073 K led to a partial decomposition of the W{sub 2}N phase and the formation of a W enrichment layer at the surface. Increasing the annealing time at the same temperature, the further decomposition of the W{sub 2}N phase was negligible. The complete decomposition of W{sub 2}N film happened as the temperature reached up to 1473 K.

  7. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V. [Department of Physics, Mahatma Fule Arts, Commerce & SitaramjiChoudhari Science College, Warud, Dist. Amravati (MS), India-444906 (India); Pahurkar, V. G.; Muley, G. G., E-mail: gajananggm@yahoo.co.in [Department of Physics, SantGadge Baba Amravati University, Amravati (MS), India-444602 (India); Talwatkar, S. S. [Department of Physics, D K Marathe and N G Acharya College, Chembur, Mumbai (MS), India-440071 (India); Sunatkari, A. L. [Department of Physics, Siddharth College of Arts, Science and Commerce, Fort, Mumbai (MS), India-440001 (India)

    2016-05-06

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  8. Transient thermal protection of film covering circular aperture by sublimation and weak decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, Mark A.; Miles, Robin R.; Hsieh, Henry, E-mail: hsieh6@llnl.gov

    2015-03-15

    Highlights: • Precise sublimating layers can provide protection in transient thermal environments. • Sensitivity analysis shows that the uncertainty in properties has modest influence. • It is likely that methane layers are a good choice for IFE targets. - Abstract: Unwanted heating of sensitive surfaces in harsh thermal environments can be prevented by precise application of sacrificial materials such as sublimation layers and pyrolyzing films. The use of sublimation for the protection of circular polyimide membranes subjected to brief (∼100 ms) heating by infrared radiation and hot (6000 K) inert gas convection is analyzed. Selection of sublimation material and sublimation layer and membrane thickness is considered with emphasis on providing sufficient thermal protection yet negligible unwanted material remaining at the end of a specified heating period. Though the analysis here is general, the motivation is protection of the polyimide films covering the laser entrance holes on IFE (inertial fusion energy) hohlraums being injected into the hot gas (xenon) protecting IFE reactor chambers. Both one and two dimensional thermal models are used to develop a robust thermal concept. Sensitivity analyses (SA) methods are exercised to show where the design may be vulnerable and which input parameters have the greatest effect on performance and likelihood of success. For the design and conditions considered, methane sublimating layers are probably preferred over xenon or pentane.

  9. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  10. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  11. Improvement of Sol-Gel Derived PbZrxTi1-xO3 Film Properties Using Thermal Press Treatment

    Science.gov (United States)

    Kaneda, Toshihiko; Kim, Joo-Nam; Tokumitsu, Eisuke; Shimoda, Tatsuya

    2010-09-01

    A thermal press treatment was introduced in the sol-gel process of PbZrxTi1-xO3 (PZT) thin films for the first time and the crystalline and electrical characteristics of the PZT films were investigated. The thermal press treatment was applied to the amorphous PZT gel film before crystallization annealing. It is found that the crystalline orientation and grain size of the PZT film fabricated with the thermal press treatment are different from those of the film fabricated by the conventional sol-gel process without the thermal press treatment, even though the crystallization conditions are exactly the same. It is demonstrated that the electrical properties, especially leakage current density and breakdown field, are significantly improved for the PZT film fabricated with the thermal press treatment. Furthermore, we also demonstrate that the fatigue property is improved by introducing the thermal press treatment.

  12. Dynamics of a thermally driven film climbing the outside of a vertical cylinder.

    Science.gov (United States)

    Smolka, Linda B

    2017-10-01

    The dynamics of a film climbing the outside of a vertical cylinder under the competing effects of a thermally driven surface tension gradient and gravity is examined through numerical simulations of a thin-film model for the film height. The model, including boundary conditions, depends on three parameters, the scaled cylinder radius R[over ̂], the upstream film height h_{∞}, and the downstream precursor film thickness b, and reduces to the model for Marangoni driven film climbing a vertical plate in the limit R[over ̂]→∞. The axisymmetric advancing front displays dynamics similar to that found along a vertical plate where, depending on h_{∞}, the film forms a single Lax shock, an undercompressive double shock, or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form for sufficiently small cylinders (below R[over ̂]≈1.15 when b=0.1). The substrate curvature controls the height of the Lax shock, bounds on h_{∞} that define the three distinct solutions, and the maximum growth rate of contact line perturbations to the Lax shock when R[over ̂]=O(1), whereas the three solutions and the stability of the Lax shock converge to the behavior one observes on a vertical plate when R[over ̂]≥O(10). An energy analysis reveals that the azimuthal curvatures of the base state and perturbation, which arise from the annular geometry of the film, promote instability of the advancing contact line.

  13. Novel polypyrrole films with excellent crystallinity and good thermal stability

    International Nuclear Information System (INIS)

    Jeeju, Pullarkat P.; Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M.; Jayalekshmi, Sankaran

    2012-01-01

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: ► Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. ► The solution casted films exhibit semi-crystallinity and good thermal stability. ► Percentage crystallinity estimated using XRD and DSC analysis is about 65%. ► Raman studies support the enhancement in crystallinity based on XRD and DSC data. ► The conductivity of the film is 30 times higher than that of HCl doped sample.

  14. Novel polypyrrole films with excellent crystallinity and good thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Jeeju, Pullarkat P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Varma, Sreekanth J.; Francis Xavier, Puthampadath A.; Sajimol, Augustine M. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India); Jayalekshmi, Sankaran, E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin-22, Kerala (India)

    2012-06-15

    Polypyrrole has drawn a lot of interest due to its high thermal and environmental stability in addition to high electrical conductivity. The present work highlights the enhanced crystallinity of polypyrrole films prepared from the redoped sample solution. Initially hydrochloric acid doped polypyrrole was prepared by chemical oxidative polymerization of pyrrole using ammonium peroxidisulphate as oxidant. The doped polypyrrole was dedoped using ammonia solution and then redoped with camphor sulphonic acid. Films were coated on ultrasonically cleaned glass substrates from the redoped sample solution in meta-cresol. The enhanced crystallinity of the polypyrrole films has been established from X-ray diffraction (XRD) studies. The room temperature electrical conductivity of the redoped polypyrrole film is about 30 times higher than that of the hydrochloric acid doped pellet sample. The results of Raman spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) of the samples support the enhancement in crystallinity. Percentage crystallinity of the samples is estimated from XRD and DSC data. The present work is significant, since crystallinity of films is an important parameter for selecting polymers for specific applications. - Highlights: Black-Right-Pointing-Pointer Polypyrrole films redoped with CSA have been prepared from meta-cresol solution. Black-Right-Pointing-Pointer The solution casted films exhibit semi-crystallinity and good thermal stability. Black-Right-Pointing-Pointer Percentage crystallinity estimated using XRD and DSC analysis is about 65%. Black-Right-Pointing-Pointer Raman studies support the enhancement in crystallinity based on XRD and DSC data. Black-Right-Pointing-Pointer The conductivity of the film is 30 times higher than that of HCl doped sample.

  15. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces.

    Science.gov (United States)

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-12-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  16. Thermal stability of diamond-like carbon–MoS{sub 2} thin films in different environments

    Energy Technology Data Exchange (ETDEWEB)

    Niakan, H., E-mail: hamid.niakan@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y. [Canadian Light Source, 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada); Szpunar, J.A.; Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada)

    2014-07-01

    Diamond-like carbon (DLC) based coatings are ideal for low friction and wear resistant applications. For those tribological applications, the coatings may expose to high temperature environments. Therefore, the thermal stability of the coating is very important for its long-term performance. In this work, DLC–MoS{sub 2} composite thin films were synthesized using biased target ion beam deposition technique in which MoS{sub 2} was produced by sputtering a MoS{sub 2} target using Ar ion beams while DLC was deposited by an ion source with CH{sub 4} gas as carbon source. DLC films without MoS{sub 2} deposited under similar conditions were used as reference samples. After the deposition, DLC and DLC–MoS{sub 2} thin films were heat-treated in ambient air and low pressure environments at different temperatures ranging from 100 to 600 °C for 2 h. The effect of annealing on the structure, mechanical and tribological properties of the resulting films were studied by means of Raman spectroscopy, X-ray absorption near edge structure, scanning electron microscopy, nanoindentation, and ball-on-disk testing. The results showed that the structure, hardness, Young's modulus, friction coefficient and wear coefficient of the DLC films were stable up to 200 °C annealing in air and 300 °C in low pressure. At higher temperature, the annealing led to the transformation of sp{sup 3} to sp{sup 2}, which degraded the mechanical and tribological properties of the thin films. Comparing with the DLC films, the DLC–MoS{sub 2} thin films showed a slower rate of graphitization and higher structure stability throughout the range of annealing temperatures, indicating a relatively higher thermal stability. - Highlights: • Thermal stability of diamond-like carbon (DLC) and DLC–MoS{sub 2} films were evaluated. • DLC–MoS{sub 2} films can be synthesized by biased target ion beam deposition technique. • Comparing with DLC films, the DLC–MoS{sub 2} thin films showed higher

  17. Thermal expansion coefficient measurement from electron diffraction of amorphous films in a TEM.

    Science.gov (United States)

    Hayashida, Misa; Cui, Kai; Malac, Marek; Egerton, Ray

    2018-05-01

    We measured the linear thermal expansion coefficients of amorphous 5-30 nm thick SiN and 17 nm thick Formvar/Carbon (F/C) films using electron diffraction in a transmission electron microscope. Positive thermal expansion coefficient (TEC) was observed in SiN but negative coefficients in the F/C films. In case of amorphous carbon (aC) films, we could not measure TEC because the diffraction radii required several hours to stabilize at a fixed temperature. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Modification of mechanical and thermal property of chitosan-starch blend films

    Science.gov (United States)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M. E.; Khan, Ruhul A.; Dafader, N. C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-10-01

    Chitosan-starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan-starch films, glycerol and mustard oil of different composition were used. Chitosan-starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan-starch films. Water uptake of the films reduced significantly than the pure chitosan-starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.

  19. Decomposition of thermally unstable substances in film evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Matz, G

    1982-10-01

    It is widely known that film evaporators are considered to permit really gentle evaporation of heat-sensitive substances. Nevertheless, decomposition of such substance still occurs to an extent depending upon the design and operation of the evaporator. In the following a distinction is made between evaporators with films not generated mechanically, namely the long tube evaporator (lTE) or climbing film evaporator, the falling film evaporator (FFE) and the multiple phase helical tube (MPT) or helical coil evaporators (TFE). Figs 1 and 2 illustrate the mode of operation. A theory of the decomposition of thermally unstable substances in these evaporators is briefly outlined and compared with measurements. Such a theory cannot be developed without any experimental checks; on the other hand, meausrements urgently need a theoretical basis if only to establish what actually has to be measured. All experiments are made with a system of readily adjustable decomposability, namely with aqueous solutions of saccharose; the thermal inversion of this compound can be controlled by addition of various amounts or concentrations of hydrochloric acid. In the absence of any catalysis by hydrochloric acid, the decomposition rates within in the temperature interval studied (60-130/sup 0/C) are so low that the experiments would take much too long and determination of the concentration differences (generally by polarimetric methods) would be very complicated. Such slight effects would also be very unfavourable for comparison with theory. (orig.)

  20. The film thickness dependent thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiudi; Xu Gang, E-mail: xiudixiao@163.com; Xiong Bin; Chen Deming; Miao Lei [Chinese Academy of Sciences, Key Laboratory of Renewable Energy and Gas Hydrates, Guangzhou Institute of Energy Conversion (China)

    2012-03-15

    The monolayer Al{sub 2}O{sub 3}:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 Degree-Sign C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al{sub 2}O{sub 3}:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 Degree-Sign C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers.

  1. Thermal evolution of CaO-doped HfO{sub 2} films and powders

    Energy Technology Data Exchange (ETDEWEB)

    Barolin, S A; Sanctis, O A de [Lab. Materiales Ceramicos, FCEIyA, Universidad Nacional de Rosario, IFIR-CONICET (Argentina); Caracoche, M C; Martinez, J A; Taylor, M A; Pasquevich, A F [Departamento de Fisica, FCE, Universidad Nacional de La Plata, IFLP-CONICET (Argentina); Rivas, P C, E-mail: oski@fceia.unr.edu.a [Facultad de Ciencias Agronomicas y Forestales, Universidad Nacional de La Plata, IFLP (Argentina)

    2009-05-01

    Solid solutions of ZrO2 and HfO2 are potential electrolyte materials for intermediate-temperature SOFC because both are oxygen-ion conductors. The main challenge for these compounds is to reduce the relatively high value of the activation energies vacancies diffusion, which is influenced by several factors. In this work the thermal evolution of CaO-HfO{sub 2} materials have been investigated. (CaO)y-Hf(1-y)O(2-y) (y = 0.06, 0.14 y 0.2) coatings and powders were synthesized by chemical solution deposition (CSD). Films were deposited onto alumina substrates by Dip Coating technique, the burning of organic waste was carried out at 500 deg. C under normal atmosphere and then the films were thermally treated at intervals of temperature rising to a maximum temperature of 1250 deg. C. By means Glazing Incidence X-ray Diffraction (rho-2theta configuration) the phases were studied in the annealed films. On the other hand, the thermal evolution and crystallization process of powders were analyzed in-situ by HT-XRD. The phenomena crystallization occurred in films and powders were analyzed. The activation energies of diffusion of oxygen vacancies of HfO2-14 mole% CaO and HfO2-20 mole% CaO films were measured from the thermal evolution of the relaxation constant measured by Perturbed Angular Correlation Technique.

  2. Patterned magnetite films prepared via soft lithography and thermal decomposition

    International Nuclear Information System (INIS)

    An Lijuan; Li, Zhaoqiang; Li Wei; Nie Yaru; Chen Zhimin; Wang Yanping; Yang Bai

    2006-01-01

    A method for the fabrication of patterned magnetite (Fe 3 O 4 ) films is presented. We first prepared an ordered 2D array of Fe(acac) 3 through a selective deposition technique on patterned self-assembled monolayers. Using thermal decomposition at elevated temperature (300 o C), we transformed the patterned Fe(acac) 3 into patterned Fe 3 O 4 films in a short reaction time. These patterned films have been confirmed by using optical photographs, field emission scanning electron microscopy and atomic force microscopy

  3. The absorption of thermal radiation by water films

    International Nuclear Information System (INIS)

    Pearson, K.G.; Elliott, D.

    1977-04-01

    Except at the shortest wavelengths (i.e. <2μm) liquid water is relatively opaque to thermal radiation. It is also a poor reflector, reflecting back only about 2% of normal incident radiation. It is shown that when radiation falls on a plane water surface from a parallel heated surface about 93.5% of the incident radiation enters the surface, the remaining 6.5% being reflected back to the source. It is also shown that, for source temperatures up to the maximum of interest in reactor safety studies, a large fraction of the thermal radiation which enters the water is absorbed on passing through a distance approaching 0.5 mm. Since liquid water films of such thickness can be expected to exist on the pressure tubes of an SGHWR following a loss of coolant accident it follows that, irrespective of the condition of the pressure tube wall, the absorptivity of the pressure tubes will in effect be about 0.9. Data are presented for experiments performed to determine the absorptivity of water films on a polished surface whose dry absorptivity was measured to be 0.18. The presence of the water film, of estimated thickness 0.3 mm, increased the absorptivity of the surface to a value close to unity. (author)

  4. Optical pump-and-probe test system for thermal characterization of thin metal and phase-change films

    International Nuclear Information System (INIS)

    Watabe, Kazuo; Polynkin, Pavel; Mansuripur, Masud

    2005-01-01

    A single-shot optical pump-and-probe test system is reported. The system is designed for thermal characterization of thin-film samples that can change their phase state under the influence of a short and intense laser pulse on a subnanosecond time scale. In combination with numerical analysis, the system can be used to estimate thermal constants of thin films, such as specific heat and thermal conductivity. In-plane and out-of plane thermal conductivity can be estimated independently. The system is intended for use in research on optical data storage and material processing with pulsed laser light. The system design issues are discussed. As application examples, we report on using the system to study thermal dynamics in two different thin-film samples: a gold film on a glass substrate (a single-phase system) and the quadrilayer phase-change stack typical in optical data-storage applications

  5. Electrically and thermally activated ageing mechanisms in metallised polymer film capacitors

    International Nuclear Information System (INIS)

    Lee, Yuen Pen

    2001-01-01

    This dissertation describes a combined computational and experimental study to understand the fundamental electrostatic, thermal, electromagnetic, and discharge related processes during the ageing of metallised polymer film capacitors. In the event of internal breakdowns, these capacitors are capable of 'self-healing' through a controlled isolation of defects on the electrode surfaces by mosaic patterning the electrode. The objective of this project is to develop viable computer models to unravel electrothermally activated ageing processes in capacitors. To provide the necessary validation to any capacitor models developed, our work is supported by comprehensive experiments including industrial standard accelerated life tests and associated breakdown damage analyses of tested capacitors. These have enabled an empirical identification of main factors affecting the reliability and lifetime of capacitors. Relevant raw data and the qualitative picture enabled by these data are crucial to the development and refinement of viable computational models of capacitors. Given the complexity of ageing processes, it is both very difficult and unnecessary to develop a one-for-all model that describes indiscriminately all relevant processes. The approach adapted in this work has been to prioritise key ageing processes and modularise each process with its own computer model. The overall picture of capacitor ageing can then be unravelled by integrating all modules together. For instance, the fine geometrical features of the electrode mosaic pattern and the capacitor's laminated structure have been assessed through a concept of field intensification using a 2D electrostatic finite element computation. With fine geometrical features accounted for by the field intensification concept, fast electric events in capacitors can be simulated using a simple equivalent circuit model. Similar assessment of heat transfer has led to an equally efficient modelling of thermal events in capacitors

  6. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  7. Using high thermal stability flexible thin film thermoelectric generator at moderate temperature

    Science.gov (United States)

    Zheng, Zhuang-Hao; Luo, Jing-Ting; Chen, Tian-Bao; Zhang, Xiang-Hua; Liang, Guang-Xing; Fan, Ping

    2018-04-01

    Flexible thin film thermoelectric devices are extensively used in the microscale industry for powering wearable electronics. In this study, comprehensive optimization was conducted in materials and connection design for fabricating a high thermal stability flexible thin film thermoelectric generator. First, the thin films in the generator, including the electrodes, were prepared by magnetron sputtering deposition. The "NiCu-Cu-NiCu" multilayer electrode structure was applied to ensure the thermal stability of the device used at moderate temperature in an air atmosphere. A design with metal layer bonding and series accordant connection was then employed. The maximum efficiency of a single PN thermocouple generator is >11%, and the output power loss of the generator is <10% after integration.

  8. Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sabato, S.F. [Radiation Technology Center, IPEN-CNEN/SP, Av. Lineu Prestes 2242, 05508 900 Sao Paulo, SP (Brazil)], E-mail: sfsabato@ipen.br; Nakamurakare, N.; Sobral, P.J.A. [Food Engineering Department, ZEA/FZEA/USP, Av. Duque de Caxias Norte 225, 13635 900 Pirassununga, SP (Brazil)

    2007-11-15

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia (Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  9. Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins

    International Nuclear Information System (INIS)

    Sabato, S.F.; Nakamurakare, N.; Sobral, P.J.A.

    2007-01-01

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia (Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction

  10. Measurement of thermal conductance of La0.7Sr0.3MnO3 thin films deposited on SrTiO3 and MgO substrates

    Science.gov (United States)

    Aryan, A.; Guillet, B.; Routoure, J. M.; Fur, C.; Langlois, P.; Méchin, L.

    2015-01-01

    We present measurements of the thermal conductance of thin-film-on-substrate structures that could serve as thin film uncooled bolometers. Studied samples were 75 nm thick epitaxial La0.7Sr0.3MnO3 thin films deposited on SrTiO3 (0 0 1) and MgO (0 0 1) substrates patterned in square geometries of areas ranging from 50 μm × 50 μm to 200 μm × 200 μm. The model allows estimating thermal boundary conductance values at the interface between film and substrate of 0.28 ± 0.08 × 106 W K-1 m-2 for LSMO/STO (0 0 1) and 5.8 ± 3.0 × 106 W K-1 m-2 for LSMO/MgO (0 0 1) from measurements performed in the static regime. Analytical expressions of thermal conductance and thermal capacitance versus modulation frequency are compared to measurements of the elevation temperature due to absorbed incoming optical power. The overall good agreement found between measurements and model finally provides the possibility to calculate the bolometric response of thin film bolometers, thus predicting their frequency response for various geometries.

  11. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  12. Properties of Nanostructure Bismuth Telluride Thin Films Using Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Swati Arora

    2017-01-01

    Full Text Available Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te and bismuth (Bi were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD and scanning electron microscopy (SEM to show granular growth.

  13. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    International Nuclear Information System (INIS)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David

    2017-01-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  14. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  15. Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jiezhu; Wang Qing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Haque, M A [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-05-26

    We performed simultaneous characterization of electrical and thermal conductivity of 55 nm thick polyaniline (PANI) thin films doped with different levels of camphor sulfonic acids (CSAs). The effect of the doping level is more pronounced on electrical conductivity than on thermal conductivity of PANIs, thereby greatly affecting their ratio that determines the thermoelectric efficiency. At the 60% (the molar ratio of CSA to phenyl-N repeat unit of PANI) doping level, PANI exhibited the maximum electrical and thermal conductivity due to the formation of mostly delocalized structures. Whereas polarons are the charge carriers responsible for the electrical conduction, phonons are believed to play a dominant role in the heat conduction in nanoscale doped PANI thin films.

  16. Tuning thermal conductivity in homoepitaxial SrTiO{sub 3} films via defects

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Charles M. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Wilson, Richard B.; Cahill, David G. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Schäfer, Anna; Schubert, Jürgen [Peter Grünberg Institute (PGI9-IT), JARA-Fundamentals of Future Information Technology, Research Centre Jülich, D-52425 Jülich (Germany); Mundy, Julia A.; Holtz, Megan E. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Muller, David A. [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States); Schlom, Darrell G. [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501 (United States); Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853 (United States)

    2015-08-03

    We demonstrate the ability to tune the thermal conductivity of homoepitaxial SrTiO{sub 3} films deposited by reactive molecular-beam epitaxy by varying growth temperature, oxidation environment, and cation stoichiometry. Both point defects and planar defects decrease the longitudinal thermal conductivity (k{sub 33}), with the greatest decrease in films of the same composition observed for films containing planar defects oriented perpendicular to the direction of heat flow. The longitudinal thermal conductivity can be modified by as much as 80%—from 11.5 W m{sup −1}K{sup −1} for stoichiometric homoepitaxial SrTiO{sub 3} to 2 W m{sup −1}K{sup −1} for strontium-rich homoepitaxial Sr{sub 1+δ}TiO{sub x} films—by incorporating (SrO){sub 2} Ruddlesden-Popper planar defects.

  17. The measuring technique developed to evaluate the thermal diffusivity of the multi-layered thin film specimens

    Directory of Open Access Journals (Sweden)

    Li Tse-Chang

    2017-01-01

    Full Text Available In the present study, the thermal diffusivities of the Al, Si and ITO films deposited on the SUS304 steel substrate are evaluated via the present technique. Before applying this technique, the temperature for the thin film of the multi-layered specimen is developed theoretically for the one- dimensional steady heat conduction in response to amplitude and frequency of the periodically oscillating temperature imposed by a peltier placed beneath the specimen's substrate. By the thermal-electrical data processing system excluding the lock-in amplifier, the temperature frequency a3 has been proved first to be independent of the electrical voltage applied to the peltier and the contact position of the thermocouples. The experimental data of phase difference for three kinds of specimen are regressed well by a straight line with a slope. Then, the thermal diffusivity of the thin film is thus determined if the slope value and the film- thickness are available. In the present arrangements for the thermocouples, two thermal diffusivity values are quite close each other and valid for every kind of specimen. This technique can provide an efficient, low-cost method for the thermal diffusivity measurements of thin films.

  18. DLC and AlN thin films influence the thermal conduction of HPLED light

    Science.gov (United States)

    Hsu, Ming Seng; Hsu, Ching Yao; Huang, Jen Wei; Shyu, Feng Lin

    2015-08-01

    Thermal dissipation had an important influence in the effect and life of light emitting diodes (LED) because it enables transfer the heat away from electric device to the aluminum plate that can be used for heat removal. In the industrial processing, the quality of the thermal dissipation decides by the gumming technique between the PCB and aluminum plate. In this study, we fabricated double layer ceramic thin films of diamond like carbon (DLC) and alumina nitride (AlN) by vacuum sputtering soldered the substrate of high power light emitting diodes (HPLED) light to check the heat conduction. The ceramic dielectric coatings were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray photoelectron spectroscopy (XPS) patterns reveal those ceramic phases were successfully grown onto the substrate. The work temperatures show DLC and AlN films coating had limited the heat transfer by the lower thermal conductivity of these ceramic films. Obviously, it hadn't transferred heat and limited work temperature of HPLED better than DLC thin film only.

  19. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  20. Calibration of photographic and spectroscopic films. 1: Film batch variations of reciprocity failure in IIaO film. 2: Thermal and aging effects in relationship to reciprocity failure. 3: Shifting of reciprocity failure points as a function of thermal and aging effects. Semiannual report, December 1986

    International Nuclear Information System (INIS)

    Peters, K.A.; Atkinson, P.F.; Hammond, E.C. Jr.

    1986-01-01

    Reciprocity failure was examined for IIaO spectroscopic film. Three separate experiments were performed in order to study film batch variations, thermal and aging effects in relationship to reciprocity failure, and shifting of reciprocity failure points as a function of thermal and aging effects. The failure was examined over ranges of time between 5 and 60 seconds. The variation to illuminance was obtained by using thirty neutral density filters. A standard sensitometer device imprinted the wedge pattern on the film as exposure time was subjected to variation. The results indicate that film batch differences, temperature, and aging play an important role in reciprocity failure of IIaO spectroscopic film. A shifting of the failure points was also observed in various batches of film

  1. A dynamic film model of the pulsating heat pipe

    International Nuclear Information System (INIS)

    Nikolayev, Vadim S.

    2011-01-01

    This article deals with the numerical modeling of the pulsating heat pipe (PHP) and is based on the film evaporation/condensation model recently applied to the single-bubble PHP (Das et al., 2010, 'Thermally Induced Two-Phase Oscillating Flow Inside a Capillary Tube', Int. J. Heat Mass Transfer, 53(19-20), pp. 3905-3913). The described numerical code can treat the PHP of an arbitrary number of bubbles and branches. Several phenomena that occur inside the PHP are taken into account: coalescence of liquid plugs, film junction or rupture, etc. The model reproduces some of the experimentally observed regimes of functioning of the PHP such as chaotic or intermittent oscillations of large amplitudes. Some results on the PHP heat transfer are discussed. (author)

  2. Microstructural modifications induced by rapid thermal annealing in plasma deposited SiOxNyHz films

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bravo, D.; Lopez, F.J.; Fernandez, M.; Martinez, F.L.

    2003-01-01

    The effect of rapid thermal annealing (RTA) processes on the structural properties of SiO x N y H z films was investigated. The samples were deposited by the electron cyclotron resonance plasma method, using SiH 4 , O 2 and N 2 as precursor gases. For SiO x N y H z films with composition close to that of SiO 2 , which have a very low H content, RTA induces thermal relaxation of the lattice and improvement of the structural order. For films of intermediate composition and of compositions close to SiN y H z , the main effect of RTA is the release of H at high temperatures (T>700 deg. C). This H release is more significant in films containing both Si-H and N-H bonds, due to cooperative reactions between both kinds of bonds. In these films the degradation of structural order associated to H release prevails over thermal relaxation, while in those films with only N-H bonds, thermal relaxation predominates. For annealing temperatures in the 500-700 deg. C range, the passivation of dangling bonds by the nonbonded H in the films and the transition from the paramagnetic state to the diamagnetic state of the K center result in a decrease of the density of paramagnetic defects. The H release observed at high annealing temperatures is accompanied by an increase of density of paramagnetic defects

  3. Spin-pump-induced spin transport in a thermally evaporated pentacene film

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Yasuo; Shikoh, Eiji, E-mail: shikoh@elec.eng.osaka-cu.ac.jp [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Teki, Yoshio [Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2015-12-14

    We report the spin-pump-induced spin transport properties of a pentacene film prepared by thermal evaporation. In a palladium(Pd)/pentacene/Ni{sub 80}Fe{sub 20} tri-layer sample, a pure spin-current is generated in the pentacene layer by the spin-pumping of Ni{sub 80}Fe{sub 20}, which is independent of the conductance mismatch problem in spin injection. The spin current is absorbed into the Pd layer, converted into a charge current with the inverse spin-Hall effect in Pd, and detected as an electromotive force. This is clear evidence for the pure spin current at room temperature in pentacene films prepared by thermal evaporation.

  4. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    Science.gov (United States)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav; Kim, Kwang-Je

    2018-05-08

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.

  5. Thermally stimulated currents in α-HgI2 polycrystalline films

    International Nuclear Information System (INIS)

    Shiu, Y.-T.; Huang, T.-J.; Shih, C.-T.; Su, C.-F.; Lan, S.-M.; Chiu, K.-C.

    2007-01-01

    A study of thermally stimulated currents (TSC) is applied to α-HgI 2 polycrystalline films grown by physical vapour deposition with various thermal boundary conditions. Five TSC peaks are clearly observed and numerically fitted. The activation energy and the density of the trapping centre that corresponds to each TSC peak are then calculated. Finally, the effects of the deposition conditions on the TSC results are discussed

  6. Significant Enhancement of Thermal Conductivity in Nanofibrillated Cellulose Films with Low Mass Fraction of Nanodiamond.

    Science.gov (United States)

    Song, Na; Cui, Siqi; Hou, Xingshuang; Ding, Peng; Shi, Liyi

    2017-11-22

    High thermal conductive nanofibrillated cellulose (NFC) hybrid films based on nanodiamond (ND) were fabricated by a facile vacuum filtration technique. In this issue, the thermal conductivity (TC) on the in-plane direction of the NFC/ND hybrid film had a significant enhancement of 775.2% at a comparatively low ND content (0.5 wt %). The NFC not only helps ND to disperse in the aqueous medium stably but also plays a positive role in the formation of the hierarchical structure. ND could form a thermal conductive pathway in the hierarchical structures under the intermolecular hydrogen bonds. Moreover, the hybrid films composed of zero-dimensional ND and one-dimensional NFC exhibit remarkable mechanical properties and optical transparency. The NFC/ND hybrid films possessing superior TC, mechanical properties, and optical transparency can open applications for portable electronic equipment as a lateral heat spreader.

  7. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  8. Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrate

    International Nuclear Information System (INIS)

    Brooks, K.G.; Reaney, I.M.; Klissurska, R.; Huang, Y.; Bursill, L.A.; Setter, N.

    1994-01-01

    The nucleation, growth and orientation of lead zirconate titanate thin films prepared from organometallic precursor solutions by spin coating on (111) oriented platinum substrates and crystallized by rapid thermal annealing was investigated. The effects of pyrolysis temperature, post-pyrolysis thermal treatments, excess lead addition, and Nb dopant substitution are reported. The use of post pyrolysis oxygen anneals at temperatures in the regime of 350-450 deg C was found to strongly effect the kinetics of subsequent amorphous-pyrochlore perovskite crystallization by rapid thermal annealing. It has also allowed films of reproducible microstructure and textures (both (100) and (111)) to be prepared by rapid thermal annealing. It is suggested that such anneals and pyrolysis temperature affect the oxygen concentration/average Pb valence in the amorphous films prior to annealing. The changes in Pb valence state then affect the stability of the transient pyrochlore phase and thus the kinetics of perovskite crystallization. Nb dopant was also found to influence the crystallization kinetics. 28 refs., 18 figs

  9. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    Science.gov (United States)

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. Published by Elsevier B.V.

  10. Isothermal relaxation current and microstructure changes of thermally aged polyester films impregnated by epoxy resin

    Science.gov (United States)

    Jiang, Xiongwei; Sun, Potao; Peng, Qingjun; Sima, Wenxia

    2018-01-01

    In this study, to understand the effect of thermal aging on polymer films degradation, specimens of polyester films impregnated by epoxy resin with different thermal aging temperatures (80 and 130 °C) and aging times (500, 1600, 2400 and 3000 h) are prepared, then charge de-trapping properties of specimens are investigated via the isothermal relaxation current (IRC) measurement, the distributions of trap level and its corresponding density are obtained based on the modified IRC model. It is found that the deep trap density increases remarkably at the beginning of thermal aging (before 1600 h), but it decreases obviously as the aging degree increases. At elevated aging temperature and, in particular considering the presence of air gap between two-layer insulation, the peak densities of deep traps decrease more significant in the late period of aging. It can be concluded that it is the released energy from de-trapping process leads to the fast degradation of insulation. Moreover, after thermal aging, the microstructure changes of crystallinity and molecular structures are analyzed via the x-ray diffraction experiment and Fourier transform infrared spectrometer. The results indicate that the variation of the deep trap density is closely linked with the changes of microstructure, a larger interface of crystalline/amorphous phase, more defects and broken chains caused by thermal aging form higher deep trap density stored in the samples.

  11. Ion assisted deposition of thermally evaporated Ag and Al films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Makous, J.L.; Kim, S.Y.; University of Arizona, Physics Department, Tucson, Arizona 85721; Aju University, Physics Department, Suwon, Korea)

    1989-01-01

    Optical, electrical, and microstructural effects of Ar ion bombardment and Ar incorporation on thermally evaporated Ag and Al thin films are investigated. The results show that as the momentum supplied to the growing films by the bombarding ions per arriving metal atom increases, the refractive index at 632.8 nm increases and the extinction coefficient decreases, lattice spacing expands, grain size decreases, electrical resistivity increases, and trapped Ar increases slightly. In Ag films, stress reverses from tensile to compressive and in Al films compressive stress increases. In the Al films the change in optical constants can be explained by the variation in void volume. The reversal of stress from tensile to compressive in Ag films requires a threshold level of momentum. The increase in electrical resistivity is related to the decrease in grain size and increase in trapped Ar in both types of film. Many of these properties correlate well with the momentum transferred, suggesting that the momentum is an important physical parameter in describing the influence of ion beam on growing thin films and determining the characteristics of thin metal films prepared by ion assisted deposition

  12. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    Science.gov (United States)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  13. Transport properties of MnTe films with cracks produced in thermal cycling process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang; Wang, Zhenhua; Zhang, Zhidong [Institute of Metal Research, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang (China)

    2017-10-15

    As a promising material in antiferromagnetic spintronics, MnTe films manifested complex characteristics according to previous reports. In this work, we investigate in details the temperature dependence of resistivity of MnTe films grown on SiO{sub 2}/Si substrate and focus on the divaricating of cooling and warming resistivity-temperature (R-T) curves. It is found that such a divaricating in resistivity is associated with cracks produced in thermal cycles. By comparing the crystalline character and the morphology before and after the cycles, we verify the appearance of cracks and the release of stress in the films. Based on the temperature dependence of thermal-expansion coefficient of Si and MnTe, the origin of the cracks is the mismatched thermal-expansion coefficient (α). The humps, which only appear in the R-T curve of the first cooling process, are attributed to the produced cracks and/or the unreleased stress. (orig.)

  14. The thickness of DLC thin film affects the thermal conduction of HPLED lights

    Science.gov (United States)

    Hsu, Ming Seng; Huang, Jen Wei; Shyu, Feng Lin

    2016-09-01

    Thermal dissipation had an important influence in the quantum effect and life of light emitting diodes (LED) because it enabled heat transfer away from electric devices to the aluminum plate for heat removal. In the industrial processing, the quality of the thermal dissipation was decided by the gumming technique between the PCB and aluminum plate. In this study, we made the ceramic thin films of diamond like carbon (DLC) by vacuum sputtering between the substrate and high power light emitting diodes (HPLED) light to check the influence of heat transfer by DLC thin films. The ceramic dielectric coatings were characterized by several subsequent analyses, especially the measurement of real work temperature of HPLEDs. The X-Ray photoelectron spectroscopy (XPS) patterns revealed that ceramic phases were successfully grown onto the substrate. At the same time, the real work temperatures showed the thickness of DLC thin film coating effectively affected the thermal conduction of HPLEDs.

  15. Experimental Investigation of Zinc Antimonide Thin Films under Different Thermal Boundary Conditions

    DEFF Research Database (Denmark)

    Mir Hosseini, Seyed Mojtaba; Rosendahl, Lasse Aistrup; Rezaniakolaei, Alireza

    for all cases, showing that the electrical potential difference is increasing by temperature for all cases with the same slope. Also the value of Seebeck coefficient (α) is almost constant for all cases. The obtained value of α can compete with developed bulk TEG materials in literature. The thin film...... is able to operate in relatively high range of temperature with long working period without failure. Furthermore, effects of implementing thermal cycling on stability analysis of a TEG sample are considered. By testing the thermoelectric thin film specimen during a thermal cycling, behavior of the TEG...

  16. Structural, morphological and optical properties of thermal annealed TiO thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 deg. C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO 2 phase for the annealing temperature above 400 deg. C

  17. Thermal plasma fabricated lithium niobate-tantalate films on sapphire substrate

    International Nuclear Information System (INIS)

    Kulinich, S.A.; Yoshida, T.; Yamamoto, H.; Terashima, K.

    2003-01-01

    We report the deposition of LiNb 1-x Ta x O 3 (0≤x≤1) films on (001) sapphire substrates in soft vacuum using a radio frequency thermal plasma. The growth rate, crystallinity, c-axis orientation, and surface roughness were examined as functions of substrate temperature, precursor feed rate, and substrate surface condition. The film Nb/Ta ratio was well controlled by using an appropriate uniform mixture of lithium-niobium and lithium-tantalum alkoxide solutions. The epitaxy and crystallinity of the films were much improved when the film growth rate was raised from 20 to 180-380 nm/min, where the films with the (006) rocking curve full width at half maximum values as low as 0.12 deg. -0.2 deg. could be produced. The film roughness could be reduced by using a liquid precursor with higher metal concentrations, achieving the root-mean-square value on the order of 5 nm. The refractive indices of the films are in good correspondence with their composition and crystallinity

  18. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    Administrator

    Synthesis and characterization of thermally oxidized ZnO films. A P RAMBU1,* and N IFTIMIE2 .... R. −. Δ. = = (1) where Ra is the sensor resistance in the air and Rg is the .... ple, Aida and coworkers (2006) reported that the total oxidation is ...

  19. Role of thermal stresses on pulsed laser irradiation of thin films under conditions of microbump formation and nonvaporization forward transfer

    Science.gov (United States)

    Meshcheryakov, Yuri P.; Shugaev, Maxim V.; Mattle, Thomas; Lippert, Thomas; Bulgakova, Nadezhda M.

    2013-11-01

    This paper presents a theoretical analysis of the processes in thin solid films irradiated by short and ultrashort laser pulses in the regimes of film structuring and laser-induced forward transfer. The regimes are considered at which vaporization of the film materials is insignificant and film dynamics is governed mainly by mechanical processes. Thermoelastoplastic modeling has been performed for a model film in one- and two-dimensional geometries. A method has been proposed to estimate the height of microbumps produced by nanosecond laser irradiation of solid films. Contrary to femtosecond laser pulses, in nanosecond pulse regimes, stress waves across the film are weak and cannot induce film damage. The main role in laser-induced dynamics of irradiated films is played by radial thermal stresses which lead to the formation of a bending wave propagating along the film and drawing the film matter to the center of the irradiation spot. The bending wave dynamics depends on the hardness of the substrate underlying the film. The causes of the receiver substrate damage sometimes observed upon laser-induced forward transfer in the scheme of the direct contact between the film and the receiver are discussed.

  20. Laser irradiation and thermal treatment inducing selective crystallization in Sb2O3-Sb2S3 glassy films

    Science.gov (United States)

    Avila, L. F.; Pradel, A.; Ribeiro, S. J. L.; Messaddeq, Y.; Nalin, M.

    2015-02-01

    The influence of both thermal treatment and laser irradiation on the structural and optical properties of films in the Sb2O3-Sb2S3 system was investigated. The films were prepared by RF-sputtering using glass compositions as raw materials. Irreversible photodarkening effect was observed after exposure the films to a 458 nm solid state laser. It is shown, for the first time, the use of holographic technique to measure "in situ", simultaneously and independently, the phase and amplitude modulations in glassy films. The films were also photo-crystallized and analysed "in situ" using a laser coupled to a micro-Raman equipment. Results showed that Sb2S3 crystalline phase was obtained after irradiation. The effect of thermal annealing on the structure of the films was carried out. Different from the result obtained by irradiation, thermal annealing induces the crystallization of the Sb2O3 phase. Photo and thermal induced effects on films were studied using UV-Vis and Raman spectroscopy, atomic force microscopy (AFM), thermal analysis (DSC), X-ray diffraction, scanning electron microscopy (MEV) and energy-dispersive X-ray spectroscopy (EDX).

  1. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    Science.gov (United States)

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  3. Supramolecular structure of a perylene derivative in thin films made by vacuum thermal evaporation

    International Nuclear Information System (INIS)

    Fernandes, Jose Diego

    2015-01-01

    The supramolecular arrangement of organic thin films is a factor that influences both optical and electrical properties of these films and, consequently, the technological applications involving organic electronics. In this dissertation, thin films of a perylene derivative (bis butylimido perylene, acronym BuPTCD) were produced by physical vapor deposition (PVD) using vacuum thermal evaporation. The aim of this work was to investigate the supramolecular arrangement of BuPTCD films, which implies to control the thickness at nanometer scale and to determine the molecular organization, the morphology (at nano and micrometer scales) and the crystallinity, besides the stability of this arrangement as a function of the temperature. Optical properties (such as absorption and emission) and electrical properties (such as conductivity and photoconductivity) were also determined. The UV-Vis absorption spectra revealed a controlled growth (uniform) of the BuPTCD films. Atomic force and optical microscopy images showed a homogeneous surface of the film at nano and micrometer scales, respectively. The X-ray diffraction showed that the BuPTCD powder and PVD film have different crystalline structures, with the BuPTCD molecules head-on oriented in the PVD films, supported on the substrate surface by the side group (FTIR). This structure favors the light emission (photoluminescence) by the formation of excimers. The thermal treatment (200°C for 10 min) does not affect the molecular organization of the PVD films, showing a thermal stability of the BuPTCD supramolecular arrangement under these circumstances. The electrical measurements (DC) showed a linear increase of the current as a function of the tension, which is characteristic of ohmic behavior. Also, the films exhibited an increase of current by 2 orders of magnitude when exposed to light (photoconductive properties). Finally, BuPTCD films were exposed to vapor of trifluoroacetic acid (TFA) to verify the sensitivity of the Bu

  4. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Sogne, E. [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); European School of Molecular Medicine (SEMM), IFOM-IEO, Milano (Italy); Merlini, M. [Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, via Mangiagalli 32, 20133 Milano (Italy); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-08-07

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  5. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    International Nuclear Information System (INIS)

    Borghi, F.; Lenardi, C.; Podestà, A.; Milani, P.; Sogne, E.; Merlini, M.; Ducati, C.

    2016-01-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  6. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    KAUST Repository

    Borghi, F.

    2016-08-05

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments. Published by AIP Publishing.

  7. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    KAUST Repository

    Borghi, F.; Sogne, Elisa; Lenardi, C.; Podestà , A.; Merlini, M.; Ducati, C.; Milani, P.

    2016-01-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments. Published by AIP Publishing.

  8. Structural and thermal properties of γ – irradiated Bombyx mori silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Madhukumar, R.; Asha, S.; Rao, B. Lakshmeesha; Shivananda, C. S.; Harish, K. V.; Sangappa, E-mail: syhalabhavi@yahoo.co.in [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Sarojini, B. K. [Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore - 574199 (India); Somashekar, R. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore - 570006 (India)

    2015-06-24

    The gamma radiation-induced change in structural and thermal properties of Bombyx mori silk fibroin films were investigated and have been correlated with the applied radiation doses. Irradiation of samples were carried out in dry air at room temperature using Co-60 source, and radiation doses are in the range of 0 - 300 kGy. Structural and thermal properties of the irradiated silk films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) and compared with unirradiated sample. Interesting results are discussed in this report.

  9. Study of thermal and mechanical properties of PCL films; Estudo das propriedades termicas de filmes a base de PCL

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, A.R. de; Vieira, A.B. da Silva; Leite, I.F., E-mail: itamaraf@gmail.com [Universidade Federal da Paraiba (UFPB), Joaoo Pessoa, PB (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    In the current situation of the market, it is remarkable the concern for the development of materials that offer better properties and biodegradable behavior. The scientific researches seeks development and improvement of materials for applications in products increasingly biodegradable. To do so, this research aims at obtaining films composed of polymer poly(ε-caprolactone)(PCL), aliphatic polyester synthetic and biodegradable, and silicates in layers, specifically in the State of Paraiba, prepared by the method of solution. This mixture makes it possible to form different nanostructures intercalated morphology and/or exfoliated, which therefore provides improvement in the thermal properties of the final product. After analyzing the results of X-ray diffraction (XRD) was observed predominantly exfoliated morphologies to PCL films containing different silicate content and an increase in thermal stability when there was a lower concentration of clay as thermal analysis (TGA). (author)

  10. Mobility activation in thermally deposited CdSe thin films

    Indian Academy of Sciences (India)

    Effect of illumination on mobility has been studied from the photocurrent decay characteristics of thermally evaporated CdSe thin films deposited on suitably cleaned glass substrate held at elevated substrate temperatures. The study indicates that the mobilities of the carriers of different trap levels are activated due to the ...

  11. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs

    Science.gov (United States)

    Zhou, Yan; Ramaneti, Rajesh; Anaya, Julian; Korneychuk, Svetlana; Derluyn, Joff; Sun, Huarui; Pomeroy, James; Verbeeck, Johan; Haenen, Ken; Kuball, Martin

    2017-07-01

    Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (κDia) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of κDia in the measured 25-225 °C range. Device simulation using the experimental κDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD.

  12. Effect of magnetic field on the growth of Be films prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Li, Kai; Luo, Bing-chi; Tan, Xiu-lan; Zhang, Ji-qiang; Wu, Wei-dong; Liu, Ying

    2014-01-01

    Highlights: • The Be films were prepared on Si (1 0 0) substrates with and without a magnetic field by thermal evaporation, respectively. • The grain diameter in the Be film transited from 300 nm to 18 nm by application of the magnetic field. • The surface roughness of the Be film decreased from 61 nm to 3 nm by application of the magnetic field. • The Be film grown with the magnetic field was easily oxidized due to its refined grains and the oxidation was gradually decreased with increasing the etching depth in the film. - Abstract: Grain refinement of beryllium deposits is studied as a significant subject for beryllium capsule in the Inertial Confinement Fusion project. The Be films were prepared on the Si (1 0 0) substrates by thermal evaporation with and without a magnetic field, respectively. The two separate groups of prepared Be films were characterized. The results showed the grain diameter in the Be film transited from 300 nm to 18 nm and the surface roughness of the Be film decreased from 61 nm to 3 nm by application of the magnetic field during the deposition process of Be coating. However, the Be film grown with the magnetic field was easily oxidized in comparison with that grown without magnetic field due to the refined grains, and the oxidation was gradually decreased with the increase of etching depth in the Be film. The reason for grain refinement of Be film was also qualitatively described

  13. Static magnetism and thermal switching in randomly oriented L10 FePt thin films

    Science.gov (United States)

    Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.

    2018-05-01

    Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.

  14. Development of Ultrafast Laser Flash Methods for Measuring Thermophysical Properties of Thin Films and Boundary Thermal Resistances

    Science.gov (United States)

    Baba, Tetsuya; Taketoshi, Naoyuki; Yagi, Takashi

    2011-11-01

    Reliable thermophysical property values of thin films are important to develop advanced industrial technologies such as highly integrated electronic devices, phase-change memories, magneto-optical disks, light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), semiconductor lasers (LDs), flat-panel displays, and power electronic devices. In order to meet these requirements, the National Metrology Institute of Japan of the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has developed ultrafast laser flash methods heated by picosecond pulse or nanosecond pulse with the same geometrical configuration as the laser flash method, which is the standard method to measure the thermal diffusivity of bulk materials. Since these pulsed light heating methods induce one-dimensional heat diffusion across a well-defined length of the specimen thickness, the absolute value of thermal diffusivity across thin films can be measured reliably. Using these ultrafast laser flash methods, the thermal diffusivity of each layer of multilayered thin films and the boundary thermal resistance between the layers can be determined from the observed transient temperature curves based on the response function method. The thermophysical properties of various thin films important for modern industries such as the transparent conductive films used for flat-panel displays, hard coating films, and multilayered films of next-generation phase-change optical disks have been measured by these methods.

  15. Process Modeling With Inhomogeneous Thin Films

    Science.gov (United States)

    Machorro, R.; Macleod, H. A.; Jacobson, M. R.

    1986-12-01

    Designers of optical multilayer coatings commonly assume that the individual layers will be ideally homogeneous and isotropic. In practice, it is very difficult to control the conditions involved in the complex evaporation process sufficiently to produce such ideal films. Clearly, changes in process parameters, such as evaporation rate, chamber pressure, and substrate temperature, affect the microstructure of the growing film, frequently producing inhomogeneity in structure or composition. In many cases, these effects are interdependent, further complicating the situation. However, this process can be simulated on powerful, interactive, and accessible microcomputers. In this work, we present such a model and apply it to estimate the influence of an inhomogeneous layer on multilayer performance. Presently, the program simulates film growth, thermal expansion and contraction, and thickness monitoring procedures, and includes the effects of uncertainty in these parameters or noise. Although the model is being developed to cover very general cases, we restrict the present discussion to isotropic and nondispersive quarterwave layers to understand the particular effects of inhomogeneity. We studied several coating designs and related results and tolerances to variations in evaporation conditions. The model is composed of several modular subprograms, is written in Fortran, and is executed on an IBM-PC with 640 K of memory. The results can be presented in graphic form on a monochrome monitor. We are currently installing and implementing color capability to improve the clarity of the multidimensional output.

  16. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  17. Effect of nitrogen doping on the thermal conductivity of GeTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fallica, Roberto; Longo, Massimo; Wiemer, Claudia [Laboratorio MDM, IMM-CNR, Agrate Brianza (Italy); Varesi, Enrico; Fumagalli, Luca; Spadoni, Simona [Micron Semiconductor Italia, Agrate Brianza (Italy)

    2013-12-15

    The 3{omega} method was employed to determine the effect of nitrogen doping (5 at.%) on the thermal conductivity of sputtered thin films of stoichiometric GeTe (a material of interest for phase change memories). It was found that nitrogen doping has a detrimental effect on the thermal conductivity of GeTe in both phases, but less markedly in the amorphous (-25%) than in the crystalline one (-40%). On the opposite, no effect could be detected on the measured thermal boundary resistance between these films and SiO{sub 2}, within the experimental error. Our results agree with those obtained by molecular dynamic simulation of amorphous GeTe. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion.

    Science.gov (United States)

    Wickman, B; Bastos Fanta, A; Burrows, A; Hellman, A; Wagner, J B; Iandolo, B

    2017-01-16

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance.

  19. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  20. Determination of the mechanical, diffractometer and thermal properties of chitosan and hydroxypropyl methylcellulose films (HPMC)

    International Nuclear Information System (INIS)

    Rotta, Jefferson; Minatti, Edson; Barreto, Pedro L.M.

    2009-01-01

    This work examined the mechanical, diffractometry and thermal properties of chitosan-hydroxypropyl methylcellulose (HPMC) films. The solutions of chitosan and hydroxypropyl methylcellulose were mixed at different proportions (100/0; 70/30; 50/50; 30/70 and 0/100) respectively, and 20 m L was casting at Petri dishes to posterior analysis of dried films. The miscibility of polymers has been assessed by X-ray diffraction, differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). It was shown that although weak hydrogen bonding exists between the polymer functional groups, the films are not fully miscible at a dry state. (author)

  1. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Shinde, P.S.; Oh, Y.W.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y.

    2012-01-01

    Highlights: ► The ecofriendly deposition of Ga-doped zinc oxide. ► Influence of Ga doping onto physicochemical properties in aqueous media. ► Electron–phonon coupling by Raman. ► Chemical bonding structure and valence band analysis by XPS. - Abstract: Ga-doped ZnO thin films are synthesized by chemical spray pyrolysis onto corning glass substrates in aqueous media. The influence of gallium doping on to the photoelectrochemical, structural, Raman, XPS, morphological, optical, electrical, photoluminescence and thermal properties have been investigated in order to achieve good quality films. X-ray diffraction study depicts the films are polycrystalline and fit well with hexagonal (wurtzite) crystal structure with strong orientations along the (0 0 2) and (1 0 1) planes. Presence of E 2 high mode in Raman spectra indicates that the gallium doping does not change the wurtzite structure. The coupling strength between electron and LO phonon has experimentally estimated. In order to understand the chemical bonding structure and electronic states of the Ga-doped ZnO thin films XPS analysis have been studied. SEM images shows the films are adherent, compact, densely packed with hexagonal flakes and spherical grains. Optical transmittance and reflectance measurements have been carried out. Room temperature PL spectra depict violet, blue and green emission in deposited films. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in these polycrystalline films.

  2. Formation of VO{sub 2} by rapid thermal annealing and cooling of sputtered vanadium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ba, Cheikhou O. F., E-mail: cheikhou.ba.1@ulaval.ca; Fortin, Vincent; Bah, Souleymane T.; Vallée, Réal [Centre d' optique, photonique et laser (COPL), Université Laval, Québec G1V 0A6 (Canada); Pandurang, Ashrit [Thin Films and Photonics Research Group (GCMP), Department of Physics and Astronomy, Université de Moncton, Moncton, New Brunswick E1A 3E9 (Canada)

    2016-05-15

    Sputtered vanadium-rich films were subjected to rapid thermal annealing-cooling (RTAC) in air to produce vanadium dioxide (VO{sub 2}) thin films with thermochromic switching behavior. High heating and cooling rates in the thermal oxidation process provided an increased ability to control the film's microstructure. X-ray diffraction patterns of the films revealed less intense VO{sub 2} peaks compared to traditional polycrystalline samples fabricated with a standard (slower) cooling time. Such films also exhibit a high optical switching reflectance contrast, unlike the traditional polycrystalline VO{sub 2} thin films, which show a more pronounced transmittance switching. The authors find that the RTAC process stabilizes the VO{sub 2} (M2) metastable phase, enabling a rutile-semiconductor phase transition (R-M2), followed by a semiconductor–semiconductor phase transition (M2-M1).

  3. Chemical states and optical properties of thermally evaporated Ge-Te and Ge-Sb-Te amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Singh, D.; Shandhu, S. [Semiconductor Laboratory, Department of Physics, Guru Nanak Dev University Amritsar (India); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductor Laboratory, Department of Physics, Guru Nanak Dev University Amritsar (India)

    2012-07-15

    Thin amorphous films of Ge{sub 22}Sb{sub 22}Te{sub 56} and Ge{sub 50}Te{sub 50} have been prepared from their respective polycrystalline bulk on glass substrates by thermal evaporation technique. The amorphous nature of the films was checked with X-ray diffraction studies. Amorphous-to-crystalline transition of the films has been induced by thermal annealing and the structural phases have been identified by X-ray diffraction. The phase transformation temperature of the films was evaluated by temperature dependent sheet resistance measurement. The chemical structure of the amorphous films has been investigated using X-ray photoelectron spectroscopy and the role of Sb in phase change Ge{sub 22}Sb{sub 22}Te{sub 56} film is discussed. Survey and core level (Ge 3d, Te 3d, Te 4d, Sb 3p, Sb 3d, O 1s, C 1s) band spectra has been recorded and analyzed. For optical studies, the transmittance and the reflectance spectra were measured over the wavelength ranges 400-2500 nm using UV-vis-NIR spectroscopy. The optical band gap, refractive index and extinction coefficient are also presented for thermally evaporated amorphous thin films.

  4. Modification of mechanical and thermal property of chitosan–starch blend films

    International Nuclear Information System (INIS)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M.E.; Khan, Ruhul A.; Dafader, N.C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-01-01

    Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively. - Highlights: ► Chitosan–starch blend films (thickness 0.2 mm) were prepared by casting. ► To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. ► Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. ► Properties of the modified films such as tensile strength, elongation at break, water uptake, TGA, DMA, SEM, FTIR were studied. ► Results indicate that modification of chitosan–starch film with mustard oil improved the properties of the blend films which could be further modified by HEMA using gamma radiation.

  5. Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, S. [Laboratory for Tribology and Interface Nanotechnology, University of Ljubljana, Ljubljana (Slovenia); Kovač, J. [Jozef Stefan Institute, Jamova 19, 1000 Ljubljana (Slovenia); Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [Laboratory for Tribology and Interface Nanotechnology, University of Ljubljana, Ljubljana (Slovenia)

    2016-10-15

    Highlights: • The effect of the ZDDP concentrations onto the steel, H-DLC and Si-DLC surfaces is investigated. • ZDDP film structure on the DLC coatings is different from steel. • Different concentrations of ZDDP do not affect the final chemical structure of the ZDDP film on any of the studied surfaces. • The thickness of the thermal film is linear with the concentration for a given surface. • The reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings. - Abstract: This work focuses on the ZDDP concentration (1, 5 and 20 wt%) to form a ZDDP film on surfaces during static thermal tests at 150 °C. Silicon-doped and hydrogenated DLC coatings, as well as steel as reference, were studied using Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The results show that, on the three surfaces, the structure of the ZDDP thermal film consists of identical groups of pyrophosphate and zinc oxide, while the sulphuric groups are dissimilar. On the steel surface, the sulphuric part consists of a mixture of organic sulphide and sulphohydryl groups, but on H-DLC and Si-DLC only organic sulphide groups are found; there are no sulphohydryl groups. Moreover, both ATR-FTIR and XPS show that different concentrations of ZDDP do not affect the final chemical structure of the ZDDP thermal film on any of the studied surfaces. In addition, the XPS results show that the thickness of the thermal film is linear with the concentration for the whole range from 1 to 20 wt%, supporting also its uniform chemical structure. These thicknesses further show that the reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings.

  6. APCVD hexagonal boron nitride thin films for passive near-junction thermal management of electronics

    Science.gov (United States)

    KC, Pratik; Rai, Amit; Ashton, Taylor S.; Moore, Arden L.

    2017-12-01

    The ability of graphene to serve as an ultrathin heat spreader has been previously demonstrated with impressive results. However, graphene is electrically conductive, making its use in contact with electronic devices problematic from a reliability and integration perspective. As an alternative, hexagonal boron nitride (h-BN) is a similarly structured material with large in-plane thermal conductivity but which possesses a wide band gap, thereby giving it potential to be utilized for directing contact, near-junction thermal management of electronics without shorting or the need for an insulating intermediate layer. In this work, the viability of using large area, continuous h-BN thin films as direct contact, near-junction heat spreaders for electronic devices is experimentally evaluated. Thin films of h-BN several square millimeters in size were synthesized via an atmospheric pressure chemical vapor deposition (APCVD) method that is both simple and scalable. These were subsequently transferred onto a microfabricated test device that simulated a multigate transistor while also allowing for measurements of the device temperature at various locations via precision resistance thermometry. Results showed that these large-area h-BN films with thicknesses of 77-125 nm are indeed capable of significantly lowering microdevice temperatures, with the best sample showing the presence of the h-BN thin film reduced the effective thermal resistance by 15.9% ± 4.6% compared to a bare microdevice at the same power density. Finally, finite element simulations of these experiments were utilized to estimate the thermal conductivity of the h-BN thin films and identify means by which further heat spreading performance gains could be attained.

  7. Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol.

    Science.gov (United States)

    Li, Yong; Liu, Yanjun; Luo, Dan

    2017-10-16

    We demonstrate an optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol. The thermal response mechanism is mainly based on the thermal expansion effect induce by toluene, where the ethanol is used for refractive index adjustment to determine the initial refection band position of cholesteric film. The ethanol-toluene mixture was used to adjust the color tunability with the temperature in relation with the habits of people (blue as cold, green as safe and red as hot). A broad temperature range of 86 °C and highly sensitivity of 1.79 nm/ °C are achieved in proposed thermal sensor, where the reflective color red-shifts from blue to red when environmental temperature increases from -6 °C to 80 °C. This battery-free thermal sensor possesses features including simple fabrication, low-cost, and broad temperature sensing range, showing potential application in scientific research and industry.

  8. Thermoelectric properties of V{sub 2}O{sub 5} thin films deposited by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.; Loureiro, J., E-mail: joa.loureiro@gmail.com; Nogueira, A.; Elangovan, E.; Pinto, J.V.; Veiga, J.P.; Busani, T.; Fortunato, E.; Martins, R.; Ferreira, I., E-mail: imf@fct.unl.pt

    2013-10-01

    This work reports the structural, optical, electrical and thermoelectric properties of vanadium pentoxide (V{sub 2}O{sub 5}) thin films deposited at room temperature by thermal evaporation on Corning glass substrates. A post-deposition thermal treatment up to 973 K under atmospheric conditions induces the crystallization of the as-deposited amorphous films with an orthorhombic V{sub 2}O{sub 5} phase with grain sizes around 26 nm. As the annealing temperature rises up to 773 K the electrical conductivity increases. The films exhibit thermoelectric properties with a maximum Seebeck coefficient of −218 μV/K and electrical conductivity of 5.5 (Ω m){sup −1}. All the films show NIR-Vis optical transmittance above 60% and optical band gap of 2.8 eV.

  9. Morphology and thermal properties of PLA films plasticized with aliphatic oligoesters; Morfologia e propriedades termicas de filmes de PLA plastificados com oligoesteres alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Inacio, Erika M.; Dias, Marcos L., E-mail: erika.minacio@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Lima, Maria Celiana P. [Instituto Federal do Rio de Janeiro (IFRJ), Duque de Caxias, RJ (Brazil)

    2015-07-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  10. Morphology and thermal properties of PLA films plasticised with aliphatic oligoesters; Morfologia e propriedades termicas de filmes de PLA plastificados com oligoesteres alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Inacio, Erika M.; Dias, Marcos L., E-mail: erika.minacio@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Lima, Maria Celiana P. [Instituto Federal do Rio de Janeiro (IFRJ), Duque de Caxias, RJ (Brazil)

    2013-07-01

    The addition of plasticizers to poly(lactic acid) (PLA) is one of the known ways of changing its ductility, making possible the modification of its mechanical and thermal properties. In this work, it was synthesized two biodegradable aliphatic oligoesters: oligo(trimethylene sebacate) (OST) and oligo(trimethylene malonate) (OMT), and these oligomers were used as plasticizer in cast films of commercial film grade PLA at concentrations of 1, 5 and 10 wt% of each plasticizer. X-ray diffraction (XRD) was used to investigate the morphology and differential scanning calorimetry (DSC) was also used aiming the evaluation of the thermal properties of these films. The PLA films containing no plasticizer showed an amorphous behavior, and the addition of PMT on the PLA films acted, simultaneously, decreasing the Tg, and rising the material's crystallinity. In contrast, the increased addition of OST to the PLA films did not change the Tg, and equally, did not have a significant changes in the material's crystallinity. Therefore, it was possible to observe the effect of the concentration of oligomers on the crystallinity of the films as well as the no plasticizer effect of the OST. (author)

  11. In-plane thermal conductivity measurements of ZnO-, ZnS-, and YSZ thin-films on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, David; Gather, Florian; Kronenberger, Achim; Kuhl, Florian; Meyer, Bruno K.; Klar, Peter J. [I. Physikalisches Institut, Justus-Liebig-University, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

    2012-07-01

    In this work we present in-plane thermal conductivity measurements of ZnO-, ZnS-, and YSZ thin-films. Borosilicate glass with a thickness of 50 microns and low thermal conductivity for improving the signal to noise ratio was used as substrate material. The above different films are deposited by rf-sputtering and have a thickness of about 1 micron. Our approach is a steady-state measurement. A wide metal wire on the film is used as a heater and two parallel lying narrow wires at distances of 100 microns and 200 microns from the heater wire, respectively, serve as the temperature sensors. The wire structure design is transfered on to the thin films by photolithography and metal evaporation. Measurements of the in-plane thermal conductivities of the above mentioned materials are presented and compared with corresponding results in the literature.

  12. Fabrication of oxide-free graphene suspension and transparent thin films using amide solvent and thermal treatment

    International Nuclear Information System (INIS)

    Oh, Se Young; Kim, Sung Hwan; Chi, Yong Seung; Kang, Tae Jin

    2012-01-01

    Graphical abstract: New methodology for suspended graphene sheets of high-quality (oxide-free), high-yield (high concentration) using amide solvent exfoliation and thermal treatment at 800 °C. We confirmed that the van der Waals force between the graphene layers decreases as increasing thermal treatment temperatures as shown XRD data (b). Highlights: ► Propose of new methodology to prepare oxide-free graphene sheets suspension. ► The graphene suspension concentration is enhanced by thermal treatment. ► Decrease of van der Waals force between the graphene layers by high temperature and pressure. ► This method has the potential as technology for mass production. ► It could be applied in transparent and flexible electronic devices. - Abstract: High quality graphene sheets were produced from graphite by liquid phase exfoliation using N-methyl-2-pyrrolidone (NMP) and a subsequent thermal treatment to enhance the exfoliation. The exfoliation was enhanced by treatment with organic solvent and high thermal expansion producing high yields of the high-quality and defect-free graphene sheets. The graphene was successfully deposited on a flexible and transparent polymer film using the vacuum filtration method. SEM images of thin films of graphene treated at 800 °C showed uniform structure with no defects commonly found in films made of graphene produced by other techniques. Thin films of graphene prepared at higher temperatures showed superior transmittance and conductivity. The sheet-resistance of the graphene film treated at 800 °C was 2.8 × 10 3 kΩ/□ with 80% transmittance.

  13. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    Science.gov (United States)

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  14. Microstructural, nanomechanical, and microtribological properties of Pb thin films prepared by pulsed laser deposition and thermal evaporation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Broitman, Esteban, E-mail: esbro@ifm.liu.se [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping (Sweden); Flores-Ruiz, Francisco J. [Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden and Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230 (Mexico); Di Giulio, Massimo [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Gontad, Francisco; Lorusso, Antonella; Perrone, Alessio [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce, Italy and INFN-Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-03-15

    In this work, the authors compare the morphological, structural, nanomechanical, and microtribological properties of Pb films deposited by thermal evaporation (TE) and pulsed laser deposition (PLD) techniques onto Si (111) substrates. Films were investigated by scanning electron microscopy, surface probe microscopy, and x-ray diffraction in θ-2θ geometry to determine their morphology, root-mean-square (RMS) roughness, and microstructure, respectively. TE films showed a percolated morphology with densely packed fibrous grains while PLD films had a granular morphology with a columnar and tightly packed structure in accordance with the zone growth model of Thornton. Moreover, PLD films presented a more polycrystalline structure with respect to TE films, with RMS roughness of 14 and 10 nm, respectively. Hardness and elastic modulus vary from 2.1 to 0.8 GPa and from 14 to 10 GPa for PLD and TE films, respectively. A reciprocal friction test has shown that PLD films have lower friction coefficient and wear rate than TE films. Our study has demonstrated for first time that, at the microscale, Pb films do not show the same simple lubricious properties measured at the macroscale.

  15. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Zhu, Chengling; Chen, Zhixin; Lu, Tao; Xu, Da; Li, Yao; Zhu, Shenmin

    2018-06-21

    The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m -1 K -1 ) and through-plane (4.596 W m -1 K -1 ) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm -1 . The strategy reported here may open a new avenue to the development of high-performance thermal management films.

  16. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    Science.gov (United States)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  17. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chyu, M.K. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:EU{sup 3+}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  18. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  19. Decomposition of thin titanium deuteride films: thermal desorption kinetics studies combined with microstructure analysis

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; Kaszkur, Zbigniew; Smithers, M.A.; Smithers, Mark A.

    2008-01-01

    The thermal evolution of deuterium from thin titanium films, prepared under UHV conditions and deuterated in situ at room temperature, has been studied by means of thermal desorption mass spectrometry (TDMS) and a combination of scanning electron microscopy (SEM), transmission electron microscopy

  20. On the simplifications for the thermal modeling of tilting-pad journal bearings under thermoelastohydrodynamic regime

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Fillon, Michel; Santos, Ilmar

    2012-01-01

    formulation for inclusion of the heat transfer effects between oil film and pad surface. Such simplified approach becomes necessary when modeling the behavior of tilting-pad journal bearings operating on controllable lubrication regime. Three different simplified heat transfer models are tested, by comparing...... are strongly dependent on the Reynolds number for the oil flow in the bearing. For bearings operating in laminar regime, the decoupling of the oil film energy equation solving procedure, with no heat transfer terms included, with the pad heat conduction problem, where the oil film temperature is applied......The relevance of calculating accurately the oil film temperature build up when modeling tilting-pad journal bearings is well established within the literature on the subject. This work studies the feasibility of using a thermal model for the tilting-pad journal bearing which includes a simplified...

  1. The Influence of a TiN Film on the Electronic Contribution to the Thermal Conductivity of a TiC Film in a TiN-TiC Layer System

    Science.gov (United States)

    Jagannadham, K.

    2018-01-01

    TiC and TiN films were deposited by reactive magnetron sputtering on Si substrates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization of the microstructure and interface structure have been carried out and the stoichiometric composition of TiC is determined. Thermal conductivity and interface thermal conductance between different layers in the films are evaluated by the transient thermo reflectance (TTR) and three-omega (3- ω) methods. The results showed that the thermal conductivity of the TiC films increased with temperature. The thermal conductivity of TiC in the absence of TiN is dominated by phonon contribution. The electronic contribution to the thermal conductivity of TiC in the presence of TiN is found to be more significant. The interface thermal conductance of the TiC/TiN interface is much larger than that of interfaces at Au/TiC, TiC/Si, or TiN/Si. The interface thermal conductance between TiC and TiN is reduced by the layer formed as a result of interdiffusion.

  2. Effect of Thermal Cycling on Zinc Antimonide Thin Film Thermoelectric Characteristics

    DEFF Research Database (Denmark)

    Mirhosseini, M.; Rezania, A.; Rosendahl, L.

    2017-01-01

    In this study, performance and stability of zinc antimonide thin film thermoelectric sample is analyzed under transient thermal conditions. The thermoelectric materials are deposited on glass based substrate where the heat flow is parallel with the thermoelectric element length. The specimen...

  3. Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process

    Science.gov (United States)

    Zhu, Nai-Wei; Hu, Ming; Xia, Xiao-Xu; Wei, Xiao-Ying; Liang, Ji-Ran

    2014-04-01

    The VO2 thin film with high performance of metal-insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow-up RTP modification in nitrogen atmosphere. The crystallization and components of VO2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-°C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively.

  4. Thermal behaviour and corrosion resistance of nano-ZnO/polyurethane film

    Science.gov (United States)

    Virgawati, E.; Soegijono, B.

    2018-03-01

    Hybrid materials Nano-ZnO/polyurethane film was prepared with different zinc oxide (ZnO) content in polyurethane as a matrix. The film was deposited on low carbon steel plate using high volume low pressure (HVLP) method. To observe thermal behaviour of the film, the sample was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to see whether any chemical reaction of ZnO in polyurethane occured. TGA and FTIR results showed that the decomposition temperature shifted to a higher point and the chemical reaction of zinc oxide in polyurethane occurred. The surface morphology changed and the corrosion resistance increased with an increase of ZnO content

  5. Effect of temperature oscillation on thermal characteristics of an aluminum thin film

    Science.gov (United States)

    Ali, H.; Yilbas, B. S.

    2014-12-01

    Energy transport in aluminum thin film is examined due to temperature disturbance at the film edge. Thermal separation of electron and lattice systems is considered in the analysis, and temperature variation in each sub-system is formulated. The transient analysis of frequency-dependent and frequency-independent phonon radiative transport incorporating electron-phonon coupling is carried out in the thin film. The dispersion relations of aluminum are used in the frequency-dependent analysis. Temperature at one edge of the film is oscillated at various frequencies, and temporal response of phonon intensity distribution in the film is predicted numerically using the discrete ordinate method. To assess the phonon transport characteristics, equivalent equilibrium temperature is introduced. It is found that equivalent equilibrium temperature in the electron and lattice sub-systems oscillates due to temperature oscillation at the film edge. The amplitude of temperature oscillation reduces as the distance along the film thickness increases toward the low-temperature edge of the film. Equivalent equilibrium temperature attains lower values for the frequency-dependent solution of the phonon transport equation than that corresponding to frequency-independent solution.

  6. Physical properties of very thin SnS films deposited by thermal evaporation

    International Nuclear Information System (INIS)

    Cheng Shuying; Conibeer, Gavin

    2011-01-01

    SnS films with thicknesses of 20–65 nm have been deposited on glass substrates by thermal evaporation. The physical properties of the films were investigated using X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and ultraviolet–visible-near infrared spectroscopy at room temperature. The results from XRD, XPS and Raman spectroscopy analyses indicate that the deposited films mainly exhibit SnS phase, but they may contain a tiny amount of Sn 2 S 3 . The deposited SnS films are pinhole free, smooth and strongly adherent to the surfaces of the substrates. The color of the SnS films changes from pale yellow to brown with the increase of the film thickness from 20 nm to 65 nm. The very smooth surfaces of the thin films result in their high reflectance. The direct bandgap of the films is between 2.15 eV and 2.28 eV which is much larger than 1.3 eV of bulk SnS, this is deserving to be investigated further.

  7. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lin [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Li Fan, E-mail: lfan@ncu.edu.cn [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Chen Yiwang, E-mail: ywchen@ncu.edu.cn [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang Xiaofeng [Institute of Polymers, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China)

    2011-08-15

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: > ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. > ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. > Thermal stability of these films is improved compared with those of physically blending ones.

  8. Synthesis of transparent ZnO/PMMA nanocomposite films through free-radical copolymerization of asymmetric zinc methacrylate acetate and in-situ thermal decomposition

    International Nuclear Information System (INIS)

    Zhang Lin; Li Fan; Chen Yiwang; Wang Xiaofeng

    2011-01-01

    In this paper, a new and simple approach for in-situ preparation of transparent ZnO/poly(metyl methacrylate) (ZnO/PMMA) nanocomposite films was developed. Poly(methyl methacrylate)-co-poly(zinc methacrylate acetate) (PMMA-co-PZnMAAc) copolymer was synthesized via free-radical polymerization between methyl methacrylate (MMA) and zinc methacrylate acetate (ZnMAAc), where asymmetric ZnMAAc with only one terminal double bond (C=C) was applied to act as the precursor for ZnO nanocrystals and could avoid cross-link. Subsequently, transparent ZnO/PMMA nanocomposite films were obtained by in-situ thermal decomposition. Scanning electron microscope (SEM) image revealed that ZnO nanocrystals were homogeneously dispersed in PMMA matrix. With thermal decomposition time increasing, the absorption intensity in UV region and photoluminescence intensity of ZnO/PMMA nanocomposite films enhanced. However, the optical properties diminished when the thermal decomposition temperature increased. The TGA measurement displayed ZnO/PMMA nanocomposite films prepared by the in-situ synthesis method possessed better thermal stability compared with those prepared by the physical blending method and pristine PMMA films. - Highlights: → ZnO/PMMA hybrid films were prepared via free-radical polymerization and in-situ thermal decomposition. → ZnO NCs are homogeneously dispersed in the PMMA matrix and these films have good optical properties. → Thermal stability of these films is improved compared with those of physically blending ones.

  9. Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers

    International Nuclear Information System (INIS)

    Cheng, Chao-Lin; Fang, Weileun; Tsai, Ming-Han

    2015-01-01

    Many standard CMOS processes, provided by existing foundries, are available. These standard CMOS processes, with stacking of various metal and dielectric layers, have been extensively applied in integrated circuits as well as micro-electromechanical systems (MEMS). It is of importance to determine the material properties of the metal and dielectric films to predict the performance and reliability of micro devices. This study employs an existing approach to determine the coefficients of thermal expansion (CTEs) of metal and dielectric films for standard CMOS processes. Test cantilevers with different stacking of metal and dielectric layers for standard CMOS processes have been designed and implemented. The CTEs of standard CMOS films can be determined from measurements of the out-of-plane thermal deformations of the test cantilevers. To demonstrate the feasibility of the present approach, thin films prepared by the Taiwan Semiconductor Manufacture Company 0.35 μm 2P4M CMOS process are characterized. Eight test cantilevers with different stacking of CMOS layers and an auxiliary Si cantilever on a SOI wafer are fabricated. The equivalent elastic moduli and CTEs of the CMOS thin films including the metal and dielectric layers are determined, respectively, from the resonant frequency and static thermal deformation of the test cantilevers. Moreover, thermal deformations of cantilevers with stacked layers different to those of the test beams have been employed to verify the measured CTEs and elastic moduli. (paper)

  10. Determination of temperature and residual laser energy on film fiber-optic thermal converter for diode laser surgery.

    Science.gov (United States)

    Liu, Weichao; Kong, Yaqun; Shi, Xiafei; Dong, Xiaoxi; Wang, Hong; Zhao, Jizhi; Li, Yingxin

    2017-12-01

    The diode laser was utilized in soft tissue incision of oral surgery based on the photothermic effect. The contradiction between the ablation efficiency and the thermal damage has always been in diode laser surgery, due to low absorption of its radiation in the near infrared region by biological tissues. Fiber-optic thermal converters (FOTCs) were used to improve efficiency for diode laser surgery. The purpose of this study was to determine the photothermic effect by the temperature and residual laser energy on film FOTCs. The film FOTC was made by a distal end of optical fiber impacting on paper. The external surface of the converter is covered by a film contained amorphous carbon. The diode laser with 810 nm worked at the different rated power of 1.0 W, 1.5 W, 2.0 W, 3.0 W, 4.0 W, 5.0 W, 6.0 W, 7.0 W, 8.0 W in continuous wave (CW)and pulse mode. The temperature of the distal end of optical fiber was recorded and the power of the residual laser energy from the film FOTC was measured synchronously. The temperature, residual power and the output power were analyzed by linear or exponential regression model and Pearson correlations analysis. The residual power has good linearity versus output power in CW and pulse modes (R 2  = 0.963, P film FOTCs increases exponentially with adjusted R 2  = 0.959 in continuous wave mode, while in pulsed mode with adjusted R 2  = 0.934. The temperature was elevated up to about 210 °C and eventually to be a stable state. Film FOTCs centralized approximately 50% of laser energy on the fiber tip both in CW and pulsed mode while limiting the ability of the laser light to interact directly with target tissue. Film FOTCs can concentrate part of laser energy transferred to heat on distal end of optical fiber, which have the feasibility of improving efficiency and reducing thermal damage of deep tissue.

  11. Influence of Philosamia ricini silk fibroin components on morphology, secondary structure and thermal properties of chitosan biopolymer film.

    Science.gov (United States)

    Prasong, S; Nuanchai, K; Wilaiwan, S

    2009-09-15

    This study aimed to prepare Eri (Philosamia ricini) Silk Fibroin (SF)/chitosan (CS) blend films by a solvent evaporation method and to compare the blend films with both native SF and CS films. Influence of SF ratios on the morphology, secondary structure and thermal decomposition of the CS blend films were investigated. The native SF and CS films were uniform and homogeneous without phase separation. For the blend films, the uniform can be found less than 60% of SF composition. All of SF/CS blend films showed both SF and CS characteristics. FT-IR results showed that the blend films composed of both random coil and beta-sheet with predominant of beta-sheet form. Interaction of intermolecular between SF and CS have occurred which were measured by thermogravimetric thermograms. Increasing of SF contents was leading to the increase of beta-sheet structures which were enhanced the thermal stability of the CS blend films.

  12. Thermal analysis of compositionally modulated Fe/Y films

    International Nuclear Information System (INIS)

    Kajiura, M.; Morishita, T.; Togami, Y.; Tsushima, K.

    1987-01-01

    Structures of compositionally modulated Fe/Y films were studied by thermal analysis. The exothermic peak found in the DSC curve of (Fe 12 A/Y 12 A) most probably corresponds to crystallization of an amorphous material. SEM analysis suggested that the composition of crystallized (Fe 12 A/Y 12 A) was YFe2. It is concluded that a compositionally modulated (Fe 12 A/Y 12 A) is amorphous in structure as well as in magnetic properties

  13. Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices

    Science.gov (United States)

    Liu, Yang; Kim, Eunju; Han, Jeong In

    2016-01-01

    During the initial development of wearable computing devices, the conductive fibers of Al thin film on cylindrical PET monofilament were fabricated by thermal evaporation. Their electrical current-voltage characteristics curves were excellent for incorporation into wearable devices such as fiber-based cylindrical capacitors or thin film transistors. Their surfaces were modified by UV exposure and dip coating of acryl or PVP to investigate the surface effect. The conductive fiber with PVP coating showed the best conductivities because the rough surface of the PET substrate transformed into a smooth surface. The conductivities of PET fiber with and without PVP were 6.81 × 103 Ω-1cm-1 and 5.62 × 103 Ω-1cm-1, respectively. In order to understand the deposition process of Al thin film on cylindrical PET, Al thin film on PET fiber was studied using SEM (Scanning Electron Microscope), conductivities and thickness measurements. Hillocks on the surface of conductive PET fibers were observed and investigated by AFM on the surface. Hillocks were formed and grown during Al thermal evaporation because of severe compressive strain and plastic deformation induced by large differences in thermal expansion between PET substrate and Al thin film. From the analysis of hillock size distribution, it turns out that hillocks grew not transversely but longitudinally. [Figure not available: see fulltext.

  14. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Science.gov (United States)

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Thermally Annealed Iron (Oxide) Thin Film on an Alumina Barrier Layer, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    Herein we show characterization of an Fe thin film on Al_2O_3 after thermal annealing under H_2 using Al Ka X-rays. The XPS survey spectrum, narrow Fe 2p scan, and valence band regions are presented. The survey spectrum shows aluminum signals due to exposure of the underlying Al_2O_3 film during Fe nanoparticle formation.

  16. Preparation of poly (arylene ether nitrile)/NzdFeB composite film with excellent thermal properties and tensile strength

    Science.gov (United States)

    Pan, Hai; Xu, Mingzhen; Liu, Xiaobo

    2017-12-01

    PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.

  17. Ion-beam mixing and thermal annealing of Al--Nb and Al--Ta thin films

    International Nuclear Information System (INIS)

    Rai, A.K.; Bhattacharya, R.S.; Mendiratta, M.G.; Subramanian, P.R.; Dimiduk, D.M.

    1988-01-01

    Ion-beam mixing and thermal annealing of thin, alternating layers of Al and Nb, as well as Al and Ta, were investigated by selected area diffraction and Rutherford backscattering. The individual layer thicknesses were adjusted to obtain the overall compositions as Al 3 Nb and Al 3 Ta. The films were ion mixed with 1 MeV Au + ions at a dose of 1 x 10 16 ions cm/sup -2/ . Uniform mixing and amorphization were achieved for both Al--Nb and Al--Ta systems. Equilibrium crystalline Al 3 Nb and Al 3 Ta phases were formed after annealing of ion mixed amorphous films at 400 0 C for 6 h. Unmixed films, however, remained unreacted at 400 0 C for 1 h. Partial reaction was observed in the unmixed film of Al--Nb at 400 0 C for 6 h. After annealing at 500 0 C for 1 h, a complete reaction and formation of Al 3 Nb and Al 3 Ta phases in the respective films were observed. The influence of thermodynamics on the phase formation by ion mixing and thermal annealing is discussed

  18. The thermal-spike model description of the ion-irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Youmei; Zhang Chonghong; Zhu Zhiyong; Wang Zhiguang; Jin Yunfan; Liu Jie; Wang Ying

    2004-01-01

    To describe the role of electronic energy loss (dE/dX) e for chemical modification of polyimide (PI), multi-layer stacks (corresponding to different dE/dX) were irradiated by different swift heavy ions (1.158 GeV Fe 56 and 1.755 GeV Xe 136 ) under vacuum and at room temperature. Chemical changes of modified PI films were studied by Fourier transform infrared (FTIR) spectroscopy. The chain disruption rate of PI was investigated in the fluence range from 1 x 10 11 to 6 x 10 12 ions/cm 2 and a wider energy stopping power range (2.2-5.1 keV/nm for Fe 56 ions and 8.6-11.5 keV/nm for Xe 136 ions). Alkyne formation was observed over the electronic energy loss range of interest. By applying the saturated track model assumption (the damage process only occur in a cylinder of area σ), the mean degradation and alkyne formation radii in tracks were induced for Fe and Xe ion irradiation, respectively. The results were validated by the thermal-spike model. The analysis of the irradiated PI films shows that the predictions of the thermal-spike model of Szenes are in qualitative agreement with the curve shape of experimental results

  19. Thermal expansion coefficient and thermomechanical properties of SiN(x) thin films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Tien, Chuen-Lin; Lin, Tsai-Wei

    2012-10-20

    We present a new method based on fast Fourier transform (FFT) for evaluating the thermal expansion coefficient and thermomechanical properties of thin films. The silicon nitride thin films deposited on Corning glass and Si wafers were prepared by plasma-enhanced chemical vapor deposition in this study. The anisotropic residual stress and thermomechanical properties of silicon nitride thin films were studied. Residual stresses in thin films were measured by a modified Michelson interferometer associated with the FFT method under different heating temperatures. We found that the average residual-stress value increases when the temperature increases from room temperature to 100°C. Increased substrate temperature causes the residual stress in SiN(x) film deposited on Si wafers to be more compressive, but the residual stress in SiN(x) film on Corning glass becomes more tensile. The residual-stress versus substrate-temperature relation is a linear correlation after heating. A double substrate technique is used to determine the thermal expansion coefficients of the thin films. The experimental results show that the thermal expansion coefficient of the silicon nitride thin films is 3.27×10(-6)°C(-1). The biaxial modulus is 1125 GPa for SiN(x) film.

  20. A one-dimensional semi-empirical model considering transition boiling effect for dispersed flow film boiling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Jou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Pan, Chin, E-mail: cpan@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2017-05-15

    Highlights: • Seven heat transfer mechanisms are studied numerically by the model. • A semi-empirical method is proposed to account for the transition boiling effect. • The parametric effects on the heat transfer mechanisms are investigated. • The thermal non-equilibrium phenomenon between vapor and droplets is investigated. - Abstract: The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e., vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that the transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing situation in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30–140 bar, heat flux of 204–1837 kW/m{sup 2} and mass flux of 380–5180 kg/m{sup 2} s, shows very good agreement with RMS of 8.80% and standard deviation of 8.81%. Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.

  1. Effect of Al doping on phase formation and thermal stability of iron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Mukul, E-mail: mgupta@csr.res.in [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Pandey, Nidhi [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201 303 (India); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India); Horisberger, Michael [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stahn, Jochen [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2015-11-25

    In the present work, we systematically studied the effect of Al doping on the phase formation of iron nitride (Fe–N) thin films. Fe–N thin films with different concentration of Al (Al = 0, 2, 3, 6, and 12 at.%) were deposited using dc magnetron sputtering by varying the nitrogen partial pressure between 0 and 100%. The structural and magnetic properties of the films were studied using x-ray diffraction and polarized neutron reflectivity. It was observed that at the lowest doping level (2 at.% of Al), nitrogen rich non-magnetic Fe–N phase gets formed at a lower nitrogen partial pressure as compared to the un-doped sample. Interestingly, we observed that as Al doping is increased beyond 3 at.%, nitrogen rich non-magnetic Fe–N phase appears at higher nitrogen partial pressure as compared to un-doped sample. The thermal stability of films were also investigated. Un-doped Fe–N films deposited at 10% nitrogen partial pressure possess poor thermal stability. Doping of Al at 2 at.% improves it marginally, whereas, for 3, 6 and 12 at.% Al doping, it shows significant improvement. The obtained results have been explained in terms of thermodynamics of Fe–N and Al–N. - Highlights: • Doping effects of Al on Fe–N phase formation is studied. • Phase formation shows a non-monotonic behavior with Al doping. • Low doping levels of Al enhance and high levels retard the nitridation process. • Al doping beyond 3 at.% improve thermal stability of Fe–N films.

  2. Evolution of free volume in ultrasoft magnetic FeZrN films during thermal annealing

    NARCIS (Netherlands)

    Chechenin, NG; van Veen, A; Schut, H; Chezan, AR; Boerma, DO; Vystavel, T; De Hosson, JTM; DeHaven, PW; Field, DP; Harkness, SD; Sutliff, JA; Szpunar, JA; Tang, L; Thomson, T; Vaudin, MD

    2002-01-01

    The thermal stability of nanocrystalline ultra-soft magnetic (Fe98Zr2)(1-x)N-x films with x=0.10-0.25 was studied using high-resolution transmission electron microscopy (HRTEM), positron beam analysis (PBA) and thermal desorption spectrometry (TDS). The results demonstrate that grain growth during

  3. Annealing effect of thermal spike in MgO thin film prepared by cathodic vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daoyun, E-mail: zhudy@gdut.edu.cn [Experiment Teaching Department, Guangdong University of Technology, Guangzhou 510006 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhao, Shoubai [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510400 (China); Zheng, Changxi; Chen, Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, Zhenhui, E-mail: stshzh@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-12-16

    MgO films were prepared by using pulsed cathodic vacuum arc deposition technique. The substrate bias voltage was in the range of −150 to −750 V. Film structure was investigated by X-ray diffraction (XRD). The annealing effect of thermal spike produced by the impacting of energetic ions was analyzed. The calculated results showed that the lifetime of a thermal spike generated by an energetic ion with the energy of 150 eV was less than one picosecond and it was sufficient to allow Mg{sup 2+} or O{sup 2-} to move one bond length to satisfy the intrinsic stress relief in the affected volume. The MgO(200) lattice spacings of the films deposited at different bias voltages were all larger than the ideal value of 2.1056 Å. As the bias amplitude increased the lattice spacing decreased, which indicated that the compressive stress in the film was partially relieved with increasing impacting ion energy. The stress relief also could be reflected from the film orientation with bias voltage. The biaxial elastic modulus for MgO(100), MgO(110) and MgO(111) planes were calculated and they were M{sub (100)} = 199 GPa, M{sub (110)} = 335 GPa and M{sub (111)} = 340 GPa, respectively. The M values indicated that the preferred orientation will be MgO(200) due to the minimum energy configuration when the lattice strain was large. It was confirmed by the XRD results in our experiments. - Highlights: • MgO thin films with preferred orientation were obtained by CVAD technique. • Annealing effect of a thermal spike in MgO film was discussed. • Lattice spacing of MgO film decreased with the increase of bias voltage. • Film preferred orientation changed from (200) to (220) as the bias voltage increased.

  4. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films

    CERN Document Server

    Chen, S J; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    Photoluminescence (PL) properties of ZnO films grown on (001) InP substrates by thermal oxidization of metallic Zn films, in which oxygen vacancies and interstitial Zn ions are compensated by P ions diffusing from (001) InP substrates, are investigated. X-ray diffraction spectra indicate that P ions have diffused into the Zn films and chemically combined with Zn ions to form Zn sub 3 P sub 2. Intense free exciton emission dominates the PL spectra of ZnO films with very weak deep-level emission. Low-temperature PL spectra at 79 K are dominated by neutral-donor bound exciton emission at 3.299 eV (I sub 4) with a linewidth of 17.3 meV and neutral-acceptor bound exciton emission at 3.264 eV. The free exciton emission increases with increasing temperature and eventually dominates the emission spectrum for temperature higher than 170 K. Furthermore, the visible emission around 2.3 eV correlated with oxygen deficiencies and interstitial Zn defects was quenched to a remarkable degree by P diffusing from InP substrate...

  5. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films

    International Nuclear Information System (INIS)

    Chen, S J; Liu, Y C; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    Photoluminescence (PL) properties of ZnO films grown on (001) InP substrates by thermal oxidization of metallic Zn films, in which oxygen vacancies and interstitial Zn ions are compensated by P ions diffusing from (001) InP substrates, are investigated. X-ray diffraction spectra indicate that P ions have diffused into the Zn films and chemically combined with Zn ions to form Zn 3 P 2 . Intense free exciton emission dominates the PL spectra of ZnO films with very weak deep-level emission. Low-temperature PL spectra at 79 K are dominated by neutral-donor bound exciton emission at 3.299 eV (I 4 ) with a linewidth of 17.3 meV and neutral-acceptor bound exciton emission at 3.264 eV. The free exciton emission increases with increasing temperature and eventually dominates the emission spectrum for temperature higher than 170 K. Furthermore, the visible emission around 2.3 eV correlated with oxygen deficiencies and interstitial Zn defects was quenched to a remarkable degree by P diffusing from InP substrates

  6. Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC

    Science.gov (United States)

    Akbari, S.; Kovač, J.; Kalin, M.

    2016-10-01

    This work focuses on the ZDDP concentration (1, 5 and 20 wt%) to form a ZDDP film on surfaces during static thermal tests at 150 °C. Silicon-doped and hydrogenated DLC coatings, as well as steel as reference, were studied using Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The results show that, on the three surfaces, the structure of the ZDDP thermal film consists of identical groups of pyrophosphate and zinc oxide, while the sulphuric groups are dissimilar. On the steel surface, the sulphuric part consists of a mixture of organic sulphide and sulphohydryl groups, but on H-DLC and Si-DLC only organic sulphide groups are found; there are no sulphohydryl groups. Moreover, both ATR-FTIR and XPS show that different concentrations of ZDDP do not affect the final chemical structure of the ZDDP thermal film on any of the studied surfaces. In addition, the XPS results show that the thickness of the thermal film is linear with the concentration for the whole range from 1 to 20 wt%, supporting also its uniform chemical structure. These thicknesses further show that the reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings.

  7. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.

    Science.gov (United States)

    Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet

    2011-02-01

    We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.

  8. Preparation by thermal evaporation under vacuum of thin nickel films without support

    International Nuclear Information System (INIS)

    Prugne, P.; Garin, P.; Lechauguette, G.

    1959-01-01

    This note deals with the preparation of nickel films without support by means of the technique described but using a new evaporation apparatus. In effect it was necessary, in order to obtain these nickel films, to modify the thermal evaporation conditions. An attempt to obtain a film without support after evaporation in a conventional apparatus led almost invariably to defeat. This appeared to be due to the high concentration of oxygen and of various vapors (diffusion pumps, degassing, etc.) present in the residual atmosphere of the conventional evaporation system. Reprint of a paper published in 'Le Vide, N. 74, March-April 1958, p. 82-83

  9. Confinement of solar thermal energy by Nesa film; Nesa maku ni yoru taiyo netsu energy no fujikome

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A; Yano, K; Kasuga, M; Daigo, Y [Yamanashi University, Yamanashi (Japan). Faculty of Engineering

    1997-11-25

    This paper reports a Nesa (SnO2) film as selective transmissive film for effective confinement of solar thermal energy. Solar light spectrum ranges from 0.3 to 2.0{mu}m, while thermal radiation from bodies at 100-200degC is infrared ray more than 2{mu}m. Consequently, a solar water heater using the film which can pass rays below 2.0{mu}m while reflect rays over 2.0{mu}m for windows is very efficient. The Nesa film reflects rays with wavelengths more than plasma wavelengths (controllable from 1 to several {mu}m) by plasma action of free electrons. The Nesa films with different carrier densities were fabricated by spraying deposition method at dopant rates (Sb/Sn) from 0 to 2mol%. The solar water heaters were prepared using normal glass and specific glass coated with the Nesa film as selective transmissive film. The heater using the glass coated with the Nesa film of 2{mu}m plasma wavelength for windows could efficiently confine solar heat. The Nesa film of 700nm plasma wavelength which can pass visible light while reflect infrared ray was effective to reduce cooling/heating losses. 3 refs., 6 figs.

  10. Variation of microstructural and optical properties in SILAR grown ZnO thin films by thermal treatment.

    Science.gov (United States)

    Valanarasu, S; Dhanasekaran, V; Chandramohan, R; Kulandaisamy, I; Sakthivelu, A; Mahalingam, T

    2013-08-01

    The influence of thermal treatment on the structural and morphological properties of the ZnO films deposited by double dip Successive ionic layer by adsorption reaction is presented. The effect of annealing temperature and time in air ambient is presented in detail. The deposited films were annealed from 200 to 400 degrees C in air and the structural properties were determined as a function of annealing temperature by XRD. The studies revealed that films were exhibiting preferential orientation along (002) plane. The other structural parameters like the crystallite size (D), micro strain (epsilon), dislocation density (delta) and stacking fault (alpha) of as-deposited and annealed ZnO films were evaluated and reported. The optical properties were also studied and the band gap of the ZnO thins films varied from 3.27 to 3.04 eV with the annealing temperature. SEM studies revealed that the hexagonal shaped grains with uniformly distributed morphology in annealed ZnO thin films. It has been envisaged using EDX analysis that the near stoichiometric composition of the film can be attained by thermal treatment during which microstructural changes do occur.

  11. Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process

    International Nuclear Information System (INIS)

    Zhu Nai-Wei; Hu Ming; Xia Xiao-Xu; Wei Xiao-Ying; Liang Ji-Ran

    2014-01-01

    The VO 2 thin film with high performance of metal–insulator transition (MIT) is prepared on R-sapphire substrate for the first time by magnetron sputtering with rapid thermal process (RTP). The electrical characteristic and THz transmittance of MIT in VO 2 film are studied by four-point probe method and THz time domain spectrum (THz-TDS). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and search engine marketing (SEM) are employed to analyze the crystalline structure, valence state, surface morphology of the film. Results indicate that the properties of VO 2 film which is oxidized from the metal vanadium film in oxygen atmosphere are improved with a follow-up RTP modification in nitrogen atmosphere. The crystallization and components of VO 2 film are improved and the film becomes compact and uniform. A better phase transition performance is shown that the resistance changes nearly 3 orders of magnitude with a 2-°C hysteresis width and the THz transmittances are reduced by 64% and 60% in thermal and optical excitation respectively. (interdisciplinary physics and related areas of science and technology)

  12. Nanodiamond particles/PVDF nanocomposite flexible films: thermal, mechanical and physical properties

    Science.gov (United States)

    Jaleh, Babak; Sodagar, Shima; Momeni, Amir; Jabbari, Ameneh

    2016-08-01

    Recently, polymer nanocomposites reinforced with nanoparticles have attracted a lot of attention due to their unique physical and mechanical properties. In this work, poly (vinylidene fluoride)/nanodiamond particles nanocomposite films were prepared by solution casting method with various nanodiamond particles contents. The samples were investigated by Fourier transform infrared spectroscopy and x-ray diffraction technique. The results revealed an obvious α to β-phase transformation compared to pure PVDF. The most (or the maximum) phase transformation from α to β-phase (>90%) was found for nanocomposite film with 8% wt nanodiamond particles. Scanning electron micrographs showed considerable decrease in the size of spherulitic crystal structure of PVDF with adding nanoparticles. The photoluminescence property of nanocomposite films was investigated by photoluminescence spectroscopy and the optical band gap value was calculated from the UV-visible absorption spectra. The results showed that after the incorporation of nanoparticles into PVDF, the value of optical band gap decreased. Thermal stability of samples was studied by thermogravimetric analysis. Due to an increase in the electroactive phase (β) percentage by adding nanoparticles, the resistance of samples to thermal degradation improved. The mechanical properties of samples were investigated by tensile test and hardness measurements. The elastic modulus and hardness of samples were enhanced by adding nanodiamond particles and elongation to fracture decreased.

  13. Effects of thermal annealing on elimination of deep defects in amorphous In–Ga–Zn–O thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haochun; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hiramatsu, Hidenori [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ueda, Shigenori [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Ohashi, Naoki [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Kumomi, Hideya [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Kamiya, Toshio, E-mail: tkamiya@msl.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2016-09-01

    We investigated the effects of thermal annealing for high-density subgap states in amorphous In–Ga–Zn–O (a-IGZO) films by focusing on low-quality defective films deposited without O{sub 2} supply (LQ films). It was found that most of the subgap states were thermally unstable and decreased dramatically by annealing at ≤ 400 °C in O{sub 2}. These defects (but with different shapes) were further reduced by 600 °C annealing, whose subgap states appeared similar to that of a-IGZO films deposited at an optimum condition (high quality, HQ films) and annealed at 300 °C. However, electron Hall mobilities and field-effect mobilities of their thin-film transistors (TFTs) were low for the LQ films/TFTs even annealed at 600 °C compared to those for the HQ films/TFTs. It implies that not only the subgap states but also heavier structural disorder deteriorated the electron transport in the LQ films. The present results also suggest that although a-IGZO deposition without O{sub 2} supply is sometimes employed in particular for DC sputtering, supplying some O{sub 2} gas would be better to produce good TFTs at lower temperatures. - Highlights: • Effects of thermal annealing on subgap states in a-In–Ga–Zn–O films were studied. • Hard X-ray photoemission spectroscopy was employed. • Low-quality films require annealing at 600 °C to make an operating transistor. • This temperature is much higher than those for high-quality films (300–400 °C). • The high temperature is required because some subgap states are very stable.

  14. Coupling analysis of frictional heat of fluid film and thermal deformation of mechanical seal end faces

    International Nuclear Information System (INIS)

    Zhou Jianfeng; Gu Boqin

    2007-01-01

    The heat transfer model of the rotating ring and the stationary ring of mechanical seal was built. The method to calculate the frictional heat that transferred by the rings was given. the coupling analysis of the frictional heat of fluid film and thermal deformation of end faces was carried out by using FEA and BP ANN, and the relationship among the rotational speed ω, the fluid film thickness h i on the inner diameter of sealing face and the radial separation angle β of deformed end faces was obtained. Corresponding to a given ω, h i and β can be obtained by the equilibrium condition between the closing force and the bearing force of fluid film. The relationship between the leakage rate and the closing force was analyzed, and the fundamental of controlling the leakage rate by regulating the closing force was also discussed. (authors)

  15. Effect of dopants and thermal treatment on properties of Ga-Al-ZnO thin films fabricated by hetero targets sputtering system

    International Nuclear Information System (INIS)

    Hong, JeongSoo; Matsushita, Nobuhiro; Kim, KyungHwan

    2013-01-01

    In this study, we fabricated Ga and Al doped ZnO (Ga-Al-ZnO; GAZO) thin films by using the facing targets sputtering system under various conditions such as input current and thermal treatment temperature. The properties of the as-deposited GAZO thin films were examined by four-point, UV/Vis spectrometry, X-ray diffraction, atomic force microscopy and field-emission scanning electron microscopy. The result showed that the lowest sheet resistance of the films was 59.3 ohm/sq and transmittance was about 85%. After thermal treatment, the properties of GAZO thin films were improved. The lowest sheet resistance (47.3 ohm/sq) of the GAZO thin films were obtained at thermal treatment temperature of 300 °C, considered to be the result of continuous substitutions by dopants and improved crystallinity by the thermal treatment. - Highlights: ► Ga and Al doped ZnO thin films were prepared by hetero targets sputtering system. ► Free electrons were increased due to the continuous substitutions of Ga and Al. ► Crystallinity was improved by recombination of particles with increasing of temperature

  16. Polyether ether ketone film. Polyether ether ketone film

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S. (Sumitomo Chemical Co. Ltd., Tokyo (Japan))

    1990-07-05

    The characteristics and the film making process of polyether ether ketone (PEEK) resin, and the characteristics and the applications of PEEK film, are described. PEEK is aromatic polyketone with super thermal resistance. Though it is a crystalline polymer of which the crystallinity is controlled to 48% in a highest degree, it has also amorphous property, thus it shows unique property. The characteristics of PEEK resin are found in thermal resistance, incombusti-bility, transparency, chemical resistance, light resistance and radiation resistance. As for the film making process, casting method by T-die is generally adopted. The general properties of PEEK film are excellent in high thermal resistance, good electrical properties, chemical resistance, hydrolysis resistance, radiation resistance and imcombusti-bility. In the application of PEEK film, new development is expected in following fields; a high performance composite, flexible print substrate with high thermal resistance, insulating tape with thermal resistance, and a general film in the nuclear energy industry. 5 figs., 5 tabs.

  17. Thermal stability of amorphous carbon films grown by pulsed laser deposition

    Science.gov (United States)

    Friedmann, T. A.; McCarty, K. F.; Barbour, J. C.; Siegal, M. P.; Dibble, Dean C.

    1996-03-01

    The thermal stability in vacuum of amorphous tetrahedrally coordinated carbon (a-tC) films grown on Si has been assessed by in situ Raman spectroscopy. Films were grown in vacuum on room-temperature substrates using laser fluences of 12, 22, and 45 J/cm2 and in a background gas of either hydrogen or nitrogen using a laser fluence of 45 J/cm2. The films grown in vacuum at high fluence (≳20J/cm2) show little change in the a-tC Raman spectra with temperature up to 800 °C. Above this temperature the films convert to glassy carbon (nanocrystalline graphite). Samples grown in vacuum at lower fluence or in a background gas (H2 or N2) at high fluence are not nearly as stable. For all samples, the Raman signal from the Si substrate (observed through the a-tC film) decreases in intensity with annealing temperature indicating that the transparency of the a-tC films is decreasing with temperature. These changes in transparency begin at much lower temperatures (˜200 °C) than the changes in the a-tC Raman band shape and indicate that subtle changes are occurring in the a-tC films at lower temperatures.

  18. Structural, optical and electrical properties of CuIn{sub 5}S{sub 8} thin films grown by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Gannouni, M., E-mail: gm_mounir@yahoo.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2011-05-19

    Highlights: > In this work, thin films of CuIn{sub 5}S{sub 8} were successfully deposited onto glass substrates by thermal evaporation and annealed in air. > Post-depositional annealing effects on structural, optical and electrical properties of thermal evaporated CuIn{sub 5}S{sub 8} thin films were studied. > The results reported in this work make this material attractive as an absorber material in solar cells applications. - Abstract: Stoichiometric compound of copper indium sulfur (CuIn{sub 5}S{sub 8}) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 A. Thin films of CuIn{sub 5}S{sub 8} were deposited onto glass substrates under the pressure of 10{sup -6} Torr using thermal evaporation technique. CuIn{sub 5}S{sub 8} thin films were then thermally annealed in air from 100 to 300 deg. C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn{sub 5}S{sub 8} thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 deg. C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 10{sup 4} cm{sup -1} was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 deg. C. It was found that CuIn{sub 5}S{sub 8} thin film is an n-type semiconductor at 300 deg. C.

  19. Thermal stability of sulfonated Poly(Ether Ether Ketone) films : on the role of Protodesulfonation

    NARCIS (Netherlands)

    Koziara, B.T.; Kappert, E.J.; Ogieglo, W.; Nijmeijer, Kitty; Hempenius, M.A.; Benes, N.E.

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material,

  20. Film models for transport phenomena with fog formation: The classical film model

    NARCIS (Netherlands)

    Brouwers, Jos; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  1. Film models for transport phenomena with fog formation: the classical film model

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  2. Thermally tunable VO2-SiO2 nanocomposite thin-film capacitors

    Science.gov (United States)

    Sun, Yifei; Narayanachari, K. V. L. V.; Wan, Chenghao; Sun, Xing; Wang, Haiyan; Cooley, Kayla A.; Mohney, Suzanne E.; White, Doug; Duwel, Amy; Kats, Mikhail A.; Ramanathan, Shriram

    2018-03-01

    We present a study of co-sputtered VO2-SiO2 nanocomposite dielectric thin-film media possessing continuous temperature tunability of the dielectric constant. The smooth thermal tunability is a result of the insulator-metal transition in the VO2 inclusions dispersed within an insulating matrix. We present a detailed comparison of the dielectric characteristics of this nanocomposite with those of a VO2 control layer and of VO2/SiO2 laminate multilayers of comparable overall thickness. We demonstrated a nanocomposite capacitor that has a thermal capacitance tunability of ˜60% between 25 °C and 100 °C at 1 MHz, with low leakage current. Such thermally tunable capacitors could find potential use in applications such as sensing, thermal cloaks, and phase-change energy storage devices.

  3. Young's Modulus and Coefficient of Linear Thermal Expansion of ZnO Conductive and Transparent Ultra-Thin Films

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2011-01-01

    Full Text Available A new technique for measuring Young's modulus of an ultra-thin film, with a thickness in the range of about 10 nm, was developed by combining an optical lever technique for measuring the residual stress and X-ray diffraction for measuring the strain in the film. The new technique was applied to analyze the mechanical properties of Ga-doped ZnO (GZO films, that have become the focus of significant attention as a substitute material for indium-tin-oxide transparent electrodes. Young's modulus of the as-deposited GZO films decreased with thickness; the values for 30 nm and 500 nm thick films were 205 GPa and 117 GPa, respectively. The coefficient of linear thermal expansion of the GZO films was measured using the new technique in combination with in-situ residual stress measurement during heat-cycle testing. GZO films with 30–100 nm thickness had a coefficient of linear thermal expansion in the range of 4.3 × 10−6 – 5.6 × 10−6 °C−1.

  4. Influence of electron irradiation on the structural and thermal properties of silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Asha, S.; Sangappa,; Sanjeev, Ganesh, E-mail: ganeshanjeev@rediffmail.com [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore - 574 199 (India)

    2015-06-24

    Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.

  5. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vessel that is Cooled by Liquid Hydrogen in Film Boiling

    International Nuclear Information System (INIS)

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-01-01

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels

  6. Narrow thermal hysteresis of NiTi shape memory alloy thin films with submicrometer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Huilong; Hamilton, Reginald F., E-mail: rfhamilton@psu.edu; Horn, Mark W. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-09-15

    NiTi shape memory alloy (SMA) thin films were fabricated using biased target ion beam deposition (BTIBD), which is a new technique for fabricating submicrometer-thick SMA thin films, and the capacity to exhibit shape memory behavior was investigated. The thermally induced shape memory effect (SME) was studied using the wafer curvature method to report the stress-temperature response. The films exhibited the SME in a temperature range above room temperature and a narrow thermal hysteresis with respect to previous reports. To confirm the underlying phase transformation, in situ x-ray diffraction was carried out in the corresponding phase transformation temperature range. The B2 to R-phase martensitic transformation occurs, and the R-phase transformation is stable with respect to the expected conversion to the B19′ martensite phase. The narrow hysteresis and stable R-phase are rationalized in terms of the unique properties of the BTIBD technique.

  7. Thermal treatment influence on the preparation of BPSCCO superconductor thin films

    International Nuclear Information System (INIS)

    Torsoni, Guilherme Botega; Carvalho, Claudio Luiz

    2011-01-01

    Full text: Nowadays, with the evolution of technology, superconducting thin films application in microelectronics is essential for production of some equipment with reduced size and low energy consumption. There are different ways to prepare thin films, however deposition in liquid phase have received special attention, whose main features are: fast deposition, reduced cost and the possibility of covering large areas. Basically, the method consists to deposit a polymeric precursor solution, with synthesis based on the methodology developed by M. Pechini, on a crystalline substrate using a spin coating equipment also called spinner. In the deposition process by spinner, must be considered some physical parameters, such as, rotation speed, viscosity solution, substrate acceleration and rotating time, evaporation rate and temperature solution. Immediately after the deposition, the material is submitted to different thermal treatments, this consists of two stages, in other words, calcination and sintering stages. The objective of the first stage is to remove the organic compounds, which can be done at temperatures around 500 deg C - 600 deg C, and the other stage, it can be done around 750 deg C and 850 deg C, it means the same interval of phase formation. In this work, films were made with five layers of deposition on Si substrate in three different sintering temperatures, 750, 800 and 850 deg C and it was studied the evolution of the films due to thermal treatment applied. Characterizations were made by x-ray diffraction, microscopy by field emission gun and energy dispersive x-ray (EDS). X-ray diffractograms shown that 2212 phase was obtained in all samples submitted to different temperatures, for higher sintering temperature was not observed any kind of crystalline planes orientation and the electron microscopy and EDS showed that the films are also more homogeneous. (author)

  8. Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia); Segura, Alfredo [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Maghraoui-Meherzi, Hager [Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia)

    2016-09-15

    MnS thin films have been successfully prepared by thermal evaporation method at different substrate temperatures using different masses of MnS powder. The prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV–visible spectrophotometry. The XRD measurements show that the films crystallized in the pure α-MnS for substrate temperatures above 100 °C. The optical bandgap of thin films is found to be in the range of 3.2–3.3 eV. A factorial experimental design was used for determining the influence of the two experimental parameters on the films growth. - Highlights: • α-MnS films were deposited on glass and quartz substrates using the thermal evaporation technique. • The effect of substrate temperature on the properties of the MnS films has been studied. • The factorial design was used to determine the most influence parameters.

  9. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao; Shen Ji

    2011-01-01

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  10. Study on boron-film thermal neutron converter prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Song Zifeng; Ye Shuzhen; Chen Ziyu; Song Liao [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China); Shen Ji, E-mail: shenji@ustc.edu.c [Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2011-02-15

    The boron film converter used in the position-sensitive thermal neutron detector is discussed and the method of preparing this converter layer via Pulsed Laser Deposition (PLD) is introduced. The morphology and the composition were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). Both boron and boride existed on the layer surface. It was shown that the energy intensity of laser beam and the substrate temperature both had an important influence on the surface morphology of the film.

  11. H-isotope retention and thermal/ion-induced release in boronized films

    International Nuclear Information System (INIS)

    Walsh, D.S.; Doyle, B.L.; Wampler, W.R.; Hays, A.K.

    1990-01-01

    Over the past decade, it has been clearly demonstrated that the composition of the very near surface (∼100nm) of plasma-interactive components plays a determinant role in most processes which occur in the plasma-edge of Tokamaks. Two very successful techniques to effect control of the plasma-wall interaction are (1) in-situ deposition of amorphous carbon or boron-carbon films and (2) the use of He/C conditioning discharges or He glow discharge cleaning to modify the near surface of bulk graphite components. We have deposited boronized layers into Si using plasma-assisted CVD and sputter deposition. The PCVD deposition conditions were as close as possible to those used in TFTR, and some films deposited in TFTR have also been studied. Using these two deposition techniques, B x CH y films have been produced with x varying from 1/2 -- 4, and y from ∼1 (sputtered) to ∼3 (PCVD). Most films also contained significant amounts of 0. Thermal and ion-induced release of H-isotopes from BC films is qualitatively similar to that measured for graphite. Implanted H saturates in these films at a H/host atom ratio of 0.7 which is considerably higher than that of graphite(∼0.4). As-deposited PCVD films are already saturated with H, while sputtered films are not. Sputtered BC films therefore possess an inherent H-pumping capability which could prove to be extremely beneficial to TFTR. 16 refs., 5 figs., 1 tab

  12. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films.

    Science.gov (United States)

    Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E

    2015-03-11

    Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.

  13. Characterization of thin-film multilayers using magnetization curves and modeling of low-angle X-ray diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M. [Emory & Henry College, VA (United States); Chaiken, A.; Michel, R.P. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    We have characterized thin-film multilayers grown by ion-beam sputtering using magnetization curves and modeling of low-angle x-ray diffraction data. In our films, we use ferromagnetic layer = Co, Fe, and NiFe and spacer layer = Si, Ge, FeSi{sub 2}, and CoSi{sub 2}. We have studied the effects of (1) deposition conditions; (2) thickness of layers; (3) different layer materials; and (4) annealing. We find higher magnetization in films grown at 1000V rather than 500V and in films with spacer layers of 50{angstrom} rather than 100{angstrom}. We find higher coercivity in films with cobalt grown on germanium rather than silicon, metal grown on gold underlayers rather than on glass substrates, and when using thinner spacer layers. Finally, modeling reveals that films grown with disilicide layers are more thermally stable than films grown with silicon spacer layers.

  14. Simultaneous thermal stability and phase change speed improvement of Sn15Sb85 thin film through erbium doping

    Science.gov (United States)

    Zou, Hua; Zhu, Xiaoqin; Hu, Yifeng; Sui, Yongxing; Sun, Yuemei; Zhang, Jianhao; Zheng, Long; Song, Zhitang

    2016-12-01

    In general, there is a trade off between the phase change speed and thermal stability in chalcogenide phase change materials, which leads to sacrifice the one in order to ensure the other. For improving the performance, doping is a widely applied technological process. Here, we fabricated Er doped Sn15Sb85 thin films by magnetron sputtering. Compared with the pure Sn15Sb85, we show that Er doped Sn15Sb85 thin films exhibit simultaneous improvement over the thermal stability and the phase change speed. Thus, our results suggest that Er doping provides the opportunity to solve the contradiction. The main reason for improvement of both thermal stability and crystallization speed is due to the existence of Er-Sb and Er-Sn bonds in Er doped Sn15Sb85 films. Hence, Er doped Sn15Sb85 thin films are promising candidates for the phase change memory application, and this method could be extended to other lanthanide-doped phase change materials.

  15. Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum.

    Science.gov (United States)

    de Morais Lima, Maria; Carneiro, Lucia Cesar; Bianchini, Daniela; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa; Prentice, Carlos; Moreira, Angelita da Silveira

    2017-03-01

    Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest T m and Δ m H. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan-xanthan complexes in the films. © 2017 Institute of Food Technologists®.

  16. Numerical research on the thermal performance of high altitude scientific balloons

    International Nuclear Information System (INIS)

    Dai, Qiumin; Xing, Daoming; Fang, Xiande; Zhao, Yingjie

    2017-01-01

    Highlights: • A model is presented to evaluate the IR radiation between translucent surfaces. • Comprehensive ascent and thermal models of balloons are established. • The effect of IR transmissivity on film temperature distribution is unneglectable. • Atmospheric IR radiation is the primary thermal factor of balloons at night. • Solar radiation is the primary thermal factor of balloons during the day. - Abstract: Internal infrared (IR) radiation is an important factor that affects the thermal performance of high altitude balloons. The internal IR radiation is commonly neglected or treated as the IR radiation between opaque gray bodies. In this paper, a mathematical model which considers the IR transmissivity of the film is proposed to estimate the internal IR radiation. Comprehensive ascent and thermal models for high altitude scientific balloons are established. Based on the models, thermal characteristics of a NASA super pressure balloon are simulated. The effects of film IR property on the thermal behaviors of the balloon are discussed in detail. The results are helpful for the design and operation of high altitude scientific balloons.

  17. Study of 'liquid gold' coatings: Thermal decomposition and formation of metallic thin films

    International Nuclear Information System (INIS)

    Deram, V.; Turrell, S.; Darque-Ceretti, E.; Aucouturier, M.

    2006-01-01

    Organo-metallic solutions called liquid gold are largely used to obtain thin gilded films which are employed for decorative, technological and functional uses. However, these films often prove to be fragile with respect to use, resulting in loss of brilliance or even eventual film removal. An understanding of the behaviour of the layers requires good knowledge of the materials themselves. The present work was undertaken to better understand the evolution of the structural properties of liquid gold as it undergoes heat-processing. Accordingly, we followed the thermal decomposition processes of liquid gold coatings and the formation of the gilded metal layer using a combination of experimental techniques. First, thermal analyses coupled with mass spectrometry and infrared spectroscopy gave information concerning the decomposition of the organic medium. It has been found that the process of film formation can be decomposed into three steps, the second of which is an abrupt transition between 300 and 350 deg. C. Details on this transition have been obtained using real-time X-ray Diffraction and Rutherford Backscattering Spectrometry. Above 350 deg. C, the microstructure of the coating is reorganized to obtain a final layer which contains particles, of the size of a few hundreds nanometers, as shown by Transmission Electron Microscopy

  18. Effect of thermal annealing on the properties of transparent conductive In–Ga–Zn oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ling [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049, China and School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Fan, Lina; Li, Yanhuai; Song, Zhongxiao; Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn, E-mail: chlliu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Chunliang, E-mail: mafei@mail.xjtu.edu.cn, E-mail: chlliu@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-03-15

    Amorphous In–Ga–Zn oxide (IGZO) thin films were prepared using radio frequency magnetron sputtering at room temperature. Upon thermal annealing at temperatures even up to 500 °C, the amorphous characteristics were still maintained, but the electronic properties could be considerably enhanced. This could be ascribed to the increased optical band gap and the increased oxygen vacancies, as corroborated by the microstructure characterizations. In addition, the surface became smoother upon thermal annealing, guaranteeing good interface contact between electrode and a-IGZO. The optical transmittance at 400–800 nm exceeded 90% for all samples. All in all, thermal annealing at appropriate temperatures is expected to improve the performances of relevant a-IGZO thin film transistors.

  19. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    Science.gov (United States)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  20. Investigation of nanocrystalline thin cobalt films thermally evaporated on Si(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, W., E-mail: wkozl@std2.phys.uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Balcerski, J.; Szmaja, W. [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Piwoński, I. [Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163, 90-236 Łódź (Poland); Batory, D. [Institute of Materials Science and Engineering, Łódź University of Technology, Stefanowskiego 1/15, 90-924 Łódź (Poland); Miękoś, E. [Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź (Poland); and others

    2017-03-15

    We have made a quantitative study of the morphological and magnetic domain structures of 100 nm thick nanocrystalline cobalt films thermally evaporated on naturally oxidized Si(100) substrates. The morphological structure is composed of densely packed grains with the average grain size (35.6±0.8) nm. The grains exhibit no geometric alignment and no preferred elongation on the film surface. In the direction perpendicular to the film surface, the grains are aligned in columns. The films crystallize mainly in the hexagonal close-packed phase of cobalt and possess a crystallographic texture with the hexagonal axis perpendicular to the film surface. The magnetic domain structure consists of domains forming a maze stripe pattern with the average domain size (102±6) nm. The domains have their magnetizations oriented almost perpendicularly to the film surface. The domain wall energy, the domain wall thickness and the critical diameter for single-domain particle were determined. - Highlights: • 100 nm thick nanocrystalline cobalt films on Si(100) were studied quantitatively. • The grains are densely packed and possess the average size (35.6±0.8) nm. • The films have a texture with the hexagonal axis perpendicular to the film surface. • The magnetic domains form a maze stripe pattern with the average size (102±6) nm. • The domains are magnetized almost perpendicularly to the film surface.

  1. Evolution of structural and magnetic properties of sputtered nanocrystalline Co thin films with thermal annealing

    International Nuclear Information System (INIS)

    Kumar, Dileep; Gupta, Ajay

    2007-01-01

    Ultrafine grain films of cobalt prepared using ion-beam sputtering have been studied using X-ray diffraction (XRD), X-ray reflectivity (XRR), atomic force microscopy (AFM) and magneto-optical Kerr effect (MOKE) measurements. As-prepared films have very smooth surface owing to the ultrafine nature of the grains. Evolution of the structure and morphology of the film with thermal annealing has been studied and the same is correlated with the magnetic properties. Above an annealing temperature of 300 deg. C, the film gradually transforms from HCP to FCC phase that remains stable at room temperature. A significant contribution of the surface energy, due to small grain size, results in stabilisation of the FCC phase at room temperature. It is found that other processes like stress relaxation, grain texturing and growth also exhibit an enhanced rate above 300 deg. C, and may be associated with an enhanced mobility of the atoms above this temperature. Films possess a uniaxial anisotropy, which exhibits a non-monotonous behaviour with thermal annealing. The observed variation in the anisotropy and coercivity with annealing can be understood in terms of variations in the internal stresses, surface roughness, and grain structure

  2. Room-Temperature Voltage Tunable Phonon Thermal Conductivity via Reconfigurable Interfaces in Ferroelectric Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Ihlefeld, Jon F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Foley, Brian M. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering; Scrymgeour, David A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Michael, Joseph R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); McKenzie, Bonnie B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Medlin, Douglas L. [Sandia National Laboratories, Livermore, CA; Wallace, Margeaux [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Trolier-McKinstry, Susan [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Hopkins, Patrick E. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering

    2015-02-19

    Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. Here, we demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.

  3. Field noise near ferromagnetic films

    Science.gov (United States)

    McMichael, Robert; Liu, Hau-Jian; Yoon, Seungha

    Thermally driven magnetization fluctuations can be viewed as a nuisance noise source or as interesting physics. For example, mag noise in a field sensor may set the minimum detectable field of that sensor. On the other hand, the field noise spectrum reflects the dynamics of the magnetic components, which are essential for device operation. Here, we model the field noise spectrum near the surface of a magnetic film due to thermal spin waves, and we calculate its effect on the T1 relaxation rate of a nearby nitrogen-vacancy (NV) center spin. The model incorporates four components: the spin wave dispersion of the magnetization in a finite-thickness film, thermal excitation of spin waves, the coupling geometry between waves in the film and an external point dipole and finally, the relaxation dynamics of the NV spin. At a distance of 100 nm above a 50 nm thick permalloy film, we find that the strongest stray fields are along the film normal and parallel to the magnetization, on the order of 1 mA m-1 Hz- 1 / 2 or 1 nT Hz- 1 / 2, yielding relaxation times on the order of 10 μs. The spin wave field noise can dominate the intrinsic relaxation, (T1 1 ms) of the NV center spin.

  4. Adhesion and thermal stability enhancement of IZO films by adding a primer layer on polycarbonate substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan; Zhang, Xiaofeng; Yan, Yue; Zhong, Yanli; Li, Lei; Zhang, Guanli [Beijing Institute of Aeronautical Materials (BIAM), Haidian District, Beijing, 100095 (China)

    2015-04-01

    A silicone-based primer layer was developed to improve the adhesion and thermal stability of amorphous transparent indium zinc oxide (IZO) films on polycarbonate (PC). The IZO films deposited by direct current magnetron sputtering at room temperature on primer-treated and untreated PCs were evaluated ex situ in terms of surface morphology, adhesion, optical, and electrical properties during annealing at 120 C in air. Nano-scratch tests indicated the adhesion of IZO films on primer-treated substrates was superior to that on untreated PCs. This superior adhesion can be attributed to the strong Si-O-Si inorganic bonds abundant in the primer layer and better matches of the primer layer in the terms of thermal expansion to the IZO. Moreover, the electrical resistivity of IZO films prepared on primer-treated PCs remained stable during the annealing treatment, whereas those of IZO films on untreated PCs presented a continuously increasing trend, which was attributed to the decrease in carrier concentration that resulted from oxygen adsorption. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. X-ray diffraction study of thermal stress relaxation in ZnO films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Conchon, F. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Renault, P.O., E-mail: pierre.olivier.renault@univ-poitiers.f [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Le Bourhis, E.; Krauss, C.; Goudeau, P. [Institut P' , Universite de Poitiers-Ensma-UPR CNRS 3346, 86962 Futuroscope (France); Barthel, E.; Grachev, S. Yu.; Sondergard, E. [Lab. Surface du Verre et Interfaces (SVI), UMR 125, 93303 Aubervilliers (France); Rondeau, V.; Gy, R. [Lab. Recherche de Saint-Gobain (SGR), 93303 Aubervilliers (France); Lazzari, R.; Jupille, J. [Institut des Nanosciences de Paris (INSP), UMR 7588, 75015 Paris (France); Brun, N. [Lab. Physique des Solides (LPS), UMR 8502, 91405 Orsay (France)

    2010-12-30

    X-ray diffraction stress analyses have been performed on two different thin films deposited onto silicon substrate: ZnO and ZnO encapsulated into Si{sub 3}N{sub 4} layers. We showed that both as-deposited ZnO films are in a high compressive stress state. In situ X-ray diffraction measurements inside a furnace revealed a relaxation of the as-grown stresses at temperatures which vary with the atmosphere in the furnace and change with Si{sub 3}N{sub 4} encapsulation. The observations show that Si{sub 3}N{sub 4} films lying on both sides of the ZnO film play an important role in the mechanisms responsible for the stress relaxation during heat treatment. The different temperatures observed for relaxation in ambient and argon atmospheres suggest that the thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films. The present observations pave the way to fine tuning of the residual stresses through thermal treatment parameters.

  6. Effects of moisture content on mechanical properties, transparency, and thermal stability of yuba film.

    Science.gov (United States)

    Zhang, Siran; Kim, Nayeon; Yokoyama, Wallace; Kim, Yookyung

    2018-03-15

    Yuba is the skin formed at the surface during the heating of soymilk. The 3rd, 7th, and 11th films were evaluated for properties at different RH. At 39% RH, the 11th film had the lowest moisture, while the 3rd film had the highest moisture. However, at 75% RH, reverse moisture results were obtained. The tensile strengths of the 3rd and 11th films were highest at 15% moisture, whereas the tensile strength of the 7th film was highest at 25% moisture. Elongation of the 3rd (127%) and 11th (85%) films were highest at 25% moisture. The light transmittance of the films was low and opaque at 5% moisture. The films were transparent at 23%-28% moisture, but became opaque as the moisture increased. The films at 39% RH (ΔH, 113-203J/g) had higher thermal stability than those at 87% RH (ΔH, 315-493J/g). Moisture content markedly changed the yuba film properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Interaction of Au with thin ZrO2 films: influence of ZrO2 morphology on the adsorption and thermal stability of Au nanoparticles.

    Science.gov (United States)

    Pan, Yonghe; Gao, Yan; Kong, Dandan; Wang, Guodong; Hou, Jianbo; Hu, Shanwei; Pan, Haibin; Zhu, Junfa

    2012-04-10

    The model catalysts of ZrO(2)-supported Au nanoparticles have been prepared by deposition of Au atoms onto the surfaces of thin ZrO(2) films with different morphologies. The adsorption and thermal stability of Au nanoparticles on thin ZrO(2) films have been investigated using synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The thin ZrO(2) films were prepared by two different methods, giving rise to different morphologies. The first method utilized wet chemical impregnation to synthesize the thin ZrO(2) film through the procedure of first spin-coating a zirconium ethoxide (Zr(OC(2)H(5))(4)) precursor onto a SiO(2)/Si(100) substrate at room temperature followed by calcination at 773 K for 12 h. Scanning electron microscopy (SEM) investigations indicate that highly porous "sponge-like nanostructures" were obtained in this case. The second method was epitaxial growth of a ZrO(2)(111) film through vacuum evaporation of Zr metal onto Pt(111) in 1 × 10(-6) Torr of oxygen at 550 K followed by annealing at 1000 K. The structural analysis with low energy electron diffraction (LEED) of this film exhibits good long-range ordering. It has been found that Au forms smaller particles on the porous ZrO(2) film as compared to those on the ordered ZrO(2)(111) film at a given coverage. Thermal annealing experiments demonstrate that Au particles are more thermally stable on the porous ZrO(2) surface than on the ZrO(2)(111) surface, although on both surfaces, Au particles experience significant sintering at elevated temperatures. In addition, by annealing the surfaces to 1100 K, Au particles desorb completely from ZrO(2)(111) but not from porous ZrO(2). The enhanced thermal stability for Au on porous ZrO(2) can be attributed to the stronger interaction of the adsorbed Au with the defects and the hindered migration or coalescence resulting from the porous structures. © 2012 American Chemical Society

  8. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    Science.gov (United States)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  9. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    Science.gov (United States)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  10. Far-infrared spectroscopy of thermally annealed tungsten silicide films

    International Nuclear Information System (INIS)

    Amiotti, M.; Borghesi, A.; Guizzetti, G.; Nava, F.; Santoro, G.

    1991-01-01

    The far-infrared transmittance spectrum of tungsten silicide has been observed for the first time. WSi 2 polycrystalline films were prepared by coevaporation and chemical-vapour deposition on silicon wafers, and subsequently thermally annealed at different temperatures. The observed structures are interpreted, on the basis of the symmetry properties of the crystal, such as infrared-active vibrational modes. Moreover, the marked lineshape dependence on annealing temperature enables this technique to analyse the formation of the solid silicide phases

  11. The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Macedo, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Couto, F.M. [Physics Sciences Laboratory, Norte Fluminense State University, 28013-602 Campos–RJ (Brazil); Rodrigues, M.S.; Lopes, C. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Pedrosa, P. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Polcar, T. [Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Engineering Materials & nCATS, FEE, University of Southampton, Highfield Campus, SO17 1BJ, Southampton (United Kingdom); Marques, L.; Vaz, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-08-01

    The ternary aluminium oxynitride (AlN{sub x}O{sub y}) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlN{sub x} and AlO{sub y} and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlN{sub x}O{sub y} thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlO{sub y} and AlN{sub x} systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N{sub 2} and/or O{sub 2}) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group. - Highlights: • AlN{sub x}, AlO{sub y} and AlN{sub x}O{sub y} films were deposited by magnetron sputtering. • Discharge characteristics were compared between systems. • Different x and y coefficients were obtained.

  12. Highly transparent and thermal-stable silver nanowire conductive film covered with ZnMgO by atomic-layer-deposition

    Science.gov (United States)

    Wang, Lei; Huang, Dongchen; Li, Min; Xu, Hua; Zou, Jianhua; Tao, Hong; Peng, Junbiao; Xu, Miao

    2017-12-01

    Solution-processed silver nanowires (AgNWs) have been considered as a promising material for next generation flexible transparent conductive electrodes. However AgNWs films have several intrinsic drawbacks, such as thermal stability and storage stability. Herein, we demonstrate a laminated ZnO/MgO (ZnMgO, ZMO) as a protective layer on the AgNWs films using atomic layer deposition (ALD). The fabricated films exhibited a low sheet resistance of 16 Ω/sq with high transmittance of 91% at 550 nm, an excellent thermal stability and bending property. The ZMO film grows perpendicularly on the surface of the AgNWs, making a perfect coverage of bulk silver nanowires and junction, which can effectively prompt the electrical transport behavior and enhance stability of the silver nanowires network.

  13. Thermal Stability of Copper-Aluminum Alloy Thin Films for Barrierless Copper Metallization on Silicon Substrate

    Science.gov (United States)

    Wang, C. P.; Dai, T.; Lu, Y.; Shi, Z.; Ruan, J. J.; Guo, Y. H.; Liu, X. J.

    2017-08-01

    Copper thin films with thickness of about 500 nm doped with different aluminum concentrations have been prepared by magnetron sputtering on Si substrate and their crystal structure, microstructure, and electrical resistivity after annealing at various temperatures (200°C to 600°C) for 1 h or at 400°C for different durations (1 h to 11 h) investigated by grazing-incidence x-ray diffraction (GIXRD) analysis, scanning electron microscopy (SEM), and four-point probe (FPP) measurements. Cu-1.8Al alloy thin film exhibited good thermal stability and low electrical resistivity (˜5.0 μΩ cm) after annealing at 500°C for 1 h or 400°C for 7 h. No copper silicide was observed at the Cu-Al/Si interface by GIXRD analysis or SEM for this sample. This result indicates that doping Cu thin film with small amounts of Al can achieve high thermal stability and low electrical resistivity, suggesting that Cu-1.8Al alloy thin film could be used for barrierless Cu metallization on Si substrate.

  14. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  15. Modelling of film condensation on the reactor containment walls

    International Nuclear Information System (INIS)

    Leduc, Christian

    1995-01-01

    A containment code used in nuclear plant safety analysis must be able to predict evolutions of steam, air and hydrogen concentrations and pressure in the containment of a pressurized water reactor in an accidental situation. Steam condensation on cold walls is an essential factor for these evolutions as it allows the release of an important heat flow, and locally reduces steam concentration. In this research thesis, the author proposes a film condensation model in presence of un-condensable gases. The film flow is supposed to be laminar. Three different approaches are used to model transfers in boundary layers: global correlations in which a hybrid Grashof number is used which expresses the mass and thermal nature of convection, a boundary layer calculation using wall rules for a forced convection regime, and a boundary layer calculation using a k-epsilon model with a low Reynolds number for a natural convection regime. Each approach requires very different mesh fineness at the vicinity of the wall. Models are implemented in the 3-D TRIO-VF thermo-hydraulic code. The obtained theoretical heat transfer coefficients are compared with experimental results [fr

  16. Mechanical and thermal properties of physically-blended-plastic films

    International Nuclear Information System (INIS)

    Abu Issa, M. S.

    1983-10-01

    Low density polyethylene (LDPE) and isotactic polypropylene (PP) blend were produced in film form and were characterized by a number of techniques such as wide-angle x-ray diffraction (WAXD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and instron tensile testing. Results of WAXD and DTA showed conclusively that the two components in the blend are incompatible. SEM micrographs indicated that the 60/40 and 40/60 PP/PE blends show approximately fine homogeneous dispersion of the minor component into the matrix of the major component. The mechanical properties of the blend films improved with respect to the PE homo polymer. The improvement was more remarkable with the increase of the PP component in the blend. Results obtained in this work were explained in terms of crystallinity and the crystallite orientation. 28 refs., 29 figs., 5 tabs. (A.M.H.)

  17. An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video

    Directory of Open Access Journals (Sweden)

    Dong Huilong

    2016-03-01

    Full Text Available A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ, increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.

  18. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  19. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    International Nuclear Information System (INIS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn 3 O 4 , corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells

  20. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    Science.gov (United States)

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Optical and thermal investigation of GeO2–PbO thin films doped with Au and Ag nanoparticles

    International Nuclear Information System (INIS)

    Carvalho, E.A.; Carmo, A.P.; Bell, M.J.V.; Anjos, V.; Kassab, L.R.P.; Silva, D.M. da

    2012-01-01

    The present work reports on the thermo-optical study of germanate thin films doped with Au and Ag nanoparticles. Transmission Electron Microscopy images, UV–visible absorption and Micro-Raman scattering evidenced the presence of nanoparticles and the formation of collective excitations, the so called surface plasmons. Moreover, the effects of the metallic nanoparticles in the thermal properties of the films were observed. The thermal lens technique was proposed to evaluate the Thermal Diffusivity (D) of the samples. It furnishes superficial spatial resolution of about 100 μm, so it is appropriate to study inhomogeneous samples. It is shown that D may change up to a factor 3 over the surface of a film because of the differences in the nanoparticles concentration distribution.

  2. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    Science.gov (United States)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  3. Magnetic and thermal properties of amorphous TbFeCo alloy films

    Science.gov (United States)

    Wang, Ke; Dong, Shuo; Huang, Ya; Qiu, Yuzhen

    2017-07-01

    Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.

  4. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity.

    Science.gov (United States)

    Ding, Jiheng; Ur Rahman, Obaid; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-09-29

    Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml -1 ) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 10 4 S m -1 and a superior thermal conductivity of 1842 W m -1 K -1 . Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.

  5. Mesoscale simulation of elastocaloric cooling in SMA films

    International Nuclear Information System (INIS)

    Wendler, Frank; Ossmer, Hinnerk; Chluba, Christoph; Quandt, Eckhard; Kohl, Manfred

    2017-01-01

    A model for the evolution of the mechanical and thermal properties of shape memory alloy (SMA) films during elastocaloric cycling is developed and compared with experiments. The focus is on Ti-Ni-Cu-Co films of 20 μm thickness showing ultra-low fatigue properties. The films undergo a highly localized pseudoelastic transformation under tensile load cycling featuring strain and temperature band patterns that depend on the loading conditions. The corresponding temperature change is of special interest for film-based elastocaloric cooling applications. Starting from a thermodynamics-based Gibbs free energy model comprising mechanical and chemical contributions, we include a martensite-austenite interface free energy term, for which formulations from a phase-field model are adapted. A 3D continuum mechanics description is modified to treat plane stress conditions appropriate for polycrystalline thin films. The nucleation mechanism of strain bands under dynamic loading is described by introducing a spatial random distribution of the transformation stress barriers reflecting the degree of material inhomogeneity. Heat transfer due to conduction and convection is taken into account. The simulations predict the correlated mechanical and thermal local response of the films including band formation and evolution, tilt angle as well as strain-rate dependence. Macroscopic stress-strain characteristics and thermal evolution curves well represent the experimental results.

  6. Negative thermal expansion and magnetocaloric effect in Mn-Co-Ge-In thin films

    Science.gov (United States)

    Liu, Y.; Qiao, K. M.; Zuo, S. L.; Zhang, H. R.; Kuang, H.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.

    2018-01-01

    MnCoGe-based alloys with magnetostructural transition show giant negative thermal expansion (NTE) behavior and magnetocaloric effects (MCEs) and thus have attracted a lot of attention. However, the drawback of bad mechanical behavior in these alloys obstructs their practical applications. Here, we report the growth of Mn-Co-Ge-In films with thickness of about 45 nm on (001)-LaAlO3, (001)-SrTiO3, and (001)-Al2O3 substrates. The films grown completely overcome the breakable nature of the alloy and promote its multifunctional applications. The deposited films have a textured structure and retain first-order magnetostructural transition. NTE and MCE behaviors associated with the magnetostructural transition have been studied. The films exhibit a completely repeatable NTE around room temperature. NTE coefficient α can be continuously tuned from the ultra-low expansion (α ˜ -2.0 × 10-7/K) to α ˜ -6.56 × 10-6/K, depending on the growth and particle size of the films on different substrates. Moreover, the films exhibit magnetic entropy changes comparable to the well-known metamagnetic films. All these demonstrate potential multifunctional applications of the present films.

  7. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    Science.gov (United States)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  8. Review of US Nanocorp - SNL Joint Development of Thermal-Sprayed Thin-Film Cathodes for Thermal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; DAI,JINXIANG; XIAO,T. DANNY; REISNER,DAVID E.

    2000-11-14

    The use of plasma spray to deposit thin metal-sulfide cathode films is described in this paper. Conventional electroactive stack components in thermal batteries are constructed from pressed-powder parts that are difficult to fabricate in large diameters in thicknesses <0.010. Plasma-sprayed electrodes do not steer from this difficulty, allowing greater energy densities and specific energies to be realized. Various co-spraying agents have been found suitable for improving the mechanical as well as electrochemical properties of plasma-sprayed cathodes for thermal batteries. These electrodes generally show equal or improved performance over conventional pressed-powder electrodes. A number of areas for future growth and development of plasma-spray technology is discussed.

  9. Data of thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid as crosslinking agent.

    Science.gov (United States)

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-06-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: "Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent" González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

  10. Thermal valorization of post-consumer film waste in a bubbling bed gasifier.

    Science.gov (United States)

    Martínez-Lera, S; Torrico, J; Pallarés, J; Gil, A

    2013-07-01

    The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m3 and cold gas efficiencies up to 60%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Balen, Rodrigo; Vidotto da Costa, Wilian; Lara Andrade, Jéssica de; Piai, Juliana Francis [Programa de Pós-Graduação em Química, Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Zona Sete, Maringá, PR (Brazil); Muniz, Edvani Curti [Programa de Pós-Graduação em Química, Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Zona Sete, Maringá, PR (Brazil); Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura, Universidade Paranaense (UNIPAR), 87502-210, Umuarama, PR (Brazil); Programa de Pós- Graduação em Ciências de Materiais & Engenharia, Universidade Tecnológica Federal do Paraná (UTFPR-LD), 86036-370, Londrina, PR (Brazil); Companhoni, Mychelle Vianna; Nakamura, Tânia Ueda [Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Zona Sete, Maringá, PR (Brazil); and others

    2016-11-01

    Highlights: • Films and fibers of PMMA/ZnO nanocomposite were prepared. • ZnO NPs incorporated into PMMA fibers reduces their diameter and beads presence. • PMMA films containing ZnO exhibit higher thermal stability than pure polymer. • PMMA/ZnO nanocomposites show improved optical properties compared to pure polymer. • PMMA/ZnO shows potential for applications in tissue engineering. - Abstract: Films and fibers of PMMA/ZnO nanocomposites (100/0, 99/01, 97/03, 95/05, 90/10, and 85/15 wt.%) were produced by casting and electrospinning, respectively. Their structural, thermal, and optical properties were investigated by XRD, SEM, TGA, PAS, and PL. The incorporation of ZnO NPs reduced the diameter of PMMA fibers and the presence of beads. The surfaces of the fibers exhibited greater hydrophobicity, compared to the films, with contact angles of around 120° and 94°, respectively. PMMA films containing ZnO exhibited higher thermal stability than the pure polymer, while the corresponding fibers did not show any changes in thermal stability. The dispersion of the ZnO NPs at the surface and in the bulk of the nanocomposites appeared to be relatively homogeneous. ZnO improved the optical properties of the PMMA, with an intense absorption band near 370 nm observed for all the nanocomposites, which also exhibited luminescence with emission in the near-UV region, both attributed to ZnO. Biological tests demonstrated that fibers and films with up to 1% of ZnO exhibited good performance in the proliferation of fibroblast cells, indicating their potential for applications in tissue engineering. The fibers provided higher cell viability than the films, presumably due to their greater surface area and/or more suitable surface morphology. Nanocomposites with 15% ZnO inhibited cell proliferation, due to the cytotoxicity of the ZnO NPs. Although several applications of PMMA have been suggested by biomedical researchers, until now there have been no reports on the specific

  12. Structural, thermal, optical properties and cytotoxicity of PMMA/ZnO fibers and films: Potential application in tissue engineering

    International Nuclear Information System (INIS)

    Balen, Rodrigo; Vidotto da Costa, Wilian; Lara Andrade, Jéssica de; Piai, Juliana Francis; Muniz, Edvani Curti; Companhoni, Mychelle Vianna; Nakamura, Tânia Ueda

    2016-01-01

    Highlights: • Films and fibers of PMMA/ZnO nanocomposite were prepared. • ZnO NPs incorporated into PMMA fibers reduces their diameter and beads presence. • PMMA films containing ZnO exhibit higher thermal stability than pure polymer. • PMMA/ZnO nanocomposites show improved optical properties compared to pure polymer. • PMMA/ZnO shows potential for applications in tissue engineering. - Abstract: Films and fibers of PMMA/ZnO nanocomposites (100/0, 99/01, 97/03, 95/05, 90/10, and 85/15 wt.%) were produced by casting and electrospinning, respectively. Their structural, thermal, and optical properties were investigated by XRD, SEM, TGA, PAS, and PL. The incorporation of ZnO NPs reduced the diameter of PMMA fibers and the presence of beads. The surfaces of the fibers exhibited greater hydrophobicity, compared to the films, with contact angles of around 120° and 94°, respectively. PMMA films containing ZnO exhibited higher thermal stability than the pure polymer, while the corresponding fibers did not show any changes in thermal stability. The dispersion of the ZnO NPs at the surface and in the bulk of the nanocomposites appeared to be relatively homogeneous. ZnO improved the optical properties of the PMMA, with an intense absorption band near 370 nm observed for all the nanocomposites, which also exhibited luminescence with emission in the near-UV region, both attributed to ZnO. Biological tests demonstrated that fibers and films with up to 1% of ZnO exhibited good performance in the proliferation of fibroblast cells, indicating their potential for applications in tissue engineering. The fibers provided higher cell viability than the films, presumably due to their greater surface area and/or more suitable surface morphology. Nanocomposites with 15% ZnO inhibited cell proliferation, due to the cytotoxicity of the ZnO NPs. Although several applications of PMMA have been suggested by biomedical researchers, until now there have been no reports on the specific

  13. Control of Nanoplane Orientation in voBN for High Thermal Anisotropy in a Dielectric Thin Film: A New Solution for Thermal Hotspot Mitigation in Electronics.

    Science.gov (United States)

    Cometto, Olivier; Samani, Majid K; Liu, Bo; Sun, Shuangxi; Tsang, Siu Hon; Liu, Johan; Zhou, Kun; Teo, Edwin H T

    2017-03-01

    High anisotropic thermal materials, which allow heat to dissipate in a preferential direction, are of interest as a prospective material for electronics as an effective thermal management solution for hot spots. However, due to their preferential heat propagation in the in-plane direction, the heat spreads laterally instead of vertically. This limitation makes these materials ineffective as the density of hot spots increases. Here, we produce a new dielectric thin film material at room temperature, named vertically ordered nanocrystalline h-BN (voBN). It is produced such that its preferential thermally conductive direction is aligned in the vertical axis, which facilitates direct thermal extraction, thereby addressing the increasing challenge of thermal crosstalk. The uniqueness of voBN comes from its h-BN nanocrystals where all their basal planes are aligned in the direction normal to the substrate plane. Using the 3ω method, we show that voBN exhibits high anisotropic thermal conductivity (TC) with a 16-fold difference between through-film TC and in-plane TC (respectively 4.26 and 0.26 W·m -1 ·K -1 ). Molecular dynamics simulations also concurred with the experimental data, showing that the origin of this anisotropic behavior is due to the nature of voBN's plane ordering. While the consistent vertical ordering provides an uninterrupted and preferred propagation path for phonons in the through-film direction, discontinuity in the lateral direction leads to a reduced in-plane TC. In addition, we also use COMSOL to simulate how the dielectric and thermal properties of voBN enable an increase in hot spot density up to 295% compared with SiO 2 , without any temperature increase.

  14. Enhanced coercivity thermal stability realized in Nd–Fe–B thin films diffusion-processed by Nd–Co alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Hui; Fu, Yanqing [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Li, Guojian; Liu, Tie [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Cui, Weibin, E-mail: cuiweibin@epm.neu.edu.cn [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China); Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Liu, Wei; Zhang, Zhidong [Shenyang National Laboratory for Materials Science, Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang 110016 (China); Wang, Qiang, E-mail: wangq@mail.neu.edu.cn [Key laboratory of electromagnetic processing of materials (EPM), Ministry of Education, Northeastern University, Shenyang 110819 (China)

    2017-03-15

    A proposed Nd{sub 2}Fe{sub 14}B-core/Nd{sub 2}(Fe, Co){sub 14}B-shell microstructure was realized by diffusion-processing textured Nd{sub 14}Fe{sub 77}B{sub 9} single-layer film with Nd{sub 100−x}Co{sub x} (x=10, 20 and 40) alloys to improve the coercivity thermal stability. The ambient coercivity was increased from around 1 T in single-layer film to nearly 2 T in diffusion-processed films, which was due to the Nd-rich grain boundaries as seen from transmission electron microscopy (TEM) images. The coercivity thermal stability was improved by the core/shell microstructure because Nd-rich grain boundaries provided the high ambient coercivity and Co-rich shell provided the improved coercivity stability. - Highlights: • Core–shell microstructure proposed for enhancing the coercivity thermal stability. • Coercivity enhanced to nearly 2 T by diffusion-processing with Nd–Co alloy. • Good squareness and highly textured microstructure obtained. • Nd-rich phases observed by TEM after diffusion process. • Coercivity thermal stability improved with minor Co addition in grain boundary regions.

  15. XPS study of influence of exposure to air on thermal stability and kinetics of hydrogen decomposition of MgH{sub 2} films obtained by direct hydrogenation from gaseous phase of metallic Mg

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolsky, V.D., E-mail: dobersh@ipms.kiev.ua; Khyzhun, O.Y.; Sinelnichenko, A.K.; Ershova, O.G.; Solonin, Y.M.

    2017-02-15

    Highlights: • Air influence on thermal stability of MgH{sub 2} have been studied by XPS. • XPS spectra of MgH{sub 2} films obtained at different hydrogen pressures have been studied. • Changes in the chemical state of MgH{sub 2} films depending on time of exposure to air are analyzed. • Correlation exists between chemical surface condition of MgH{sub 2} films and their thermal stableness. • Process of hydrogen desorption from MgH{sub 2} films is studied using TDS for model samples. - Abstract: Mechanism of influence of exposure to air on thermal stability of MgH{sub 2} obtained by direct hydrogenation from the gas phase, the nature of the hydride sensitivity to the negative impact of air and the role of its surface chemical state have not been studied enough. The present article presents data of X-ray photoelectron spectroscopy (XPS) measurements of the Mg 2s, O 1s, C 1s core-level spectra of surface of hydride MgH{sub 2} films derived by gas phase hydrogenation of model samples of metallic Mg, and the evolution of changes in the chemical state of the surface of the hydride films depending on the time of exposure to air and formation conditions (hydrogen pressure and hydrogenation regime). Based on results of XPS, X-ray diffraction (XRD), and thermodesorption spectroscopy (TDS), the existence of a relationship (correlation) between chemical surface condition of hydride MgH{sub 2} films obtained at different hydrogen pressures (3.0 MPa and 11.5 MPa) and their thermal stableness and temperature of the beginning of hydride decomposition has been established.

  16. Tuning the surface chemistry of lubricant-derived phosphate thermal films: The effect of boron

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, F. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Rossi, A., E-mail: antonella.rossi@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, I-09100, Cagliari (Italy); Lainé, E.; Woodward, P. [Enabling Research, Infineum UK Ltd., Milton Hill, Steventon, Oxfordshire OX13 6BD (United Kingdom); Spencer, N.D., E-mail: nicholas.spencer@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland)

    2017-02-28

    Highlights: • The additives bulk interactions in “neat” blends at high temperatures is evaluated. • The competition among the different additives to react with air-oxidized steel surfaces under pure thermal condition is investigated. • Different thermal films are grown, their in depth-composition and thickness is determined by ARXPS. • A reaction mechanism is proposed for elucidating the composition of the thermals films. - Abstract: Understanding the interactions among the various additives in a lubricant is important because they can have a major influence on the performance of blends under tribological conditions. The present investigation is focused on the interactions occurring between ZnDTP and dispersant molecules in an oil formulation, and on their reactivity under purely thermal conditions in the presence of air-oxidized iron surfaces. Nuclear magnetic resonance spectroscopy (NMR) was performed on undiluted blends at different temperatures, while angle-resolved X-ray photoelectron spectroscopy (ARXPS) was exploited to investigate the surface reactivity on oxidized iron surfaces. The results indicate that the dispersant, generally added to blends for preventing the deposition of sludge, varnish and soot on the surface, might also inhibit the reaction of all other additives with the steel surface.

  17. Atomic Force Microscopy Based Thermal Lithography of Poly(tert-butyl acrylate) Block Copolymer Films for Bioconjugation

    NARCIS (Netherlands)

    Duvigneau, Joost; Schönherr, Holger; Vancso, Gyula J.

    2008-01-01

    In this paper, we report on the local thermal activation of thin polymer films for area-selective surface chemical modification on micrometer and nanometer length scales. The thermally induced activation of tert-butyl ester moieties in polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) block

  18. Structure and density for As23Se67Ge10 amorphous films

    International Nuclear Information System (INIS)

    Shchurova, T.N.; Savchenko, N.D.

    1999-01-01

    The effect of thermal annealing and argon laser irradiation on structure and volume for thin amorphous As 23 Se 67 Ge 10 films deposited by thermal evaporation has been investigated. The short-range structure for the annealed films has been found to be more ordered as compared to the irradiated films. The decrease in film volume under thermal annealing and its increase under laser irradiation have been shown. The changes in film volume have been discussed in the context of non-ergodic model for the amorphous state equilibrium taking into account forces acting from the substrate

  19. Effect of thermal annealing on the structural and optical properties of tris-(8-hydroxyquinoline)aluminum(III) (Alq3 ) films.

    Science.gov (United States)

    Cuba, M; Muralidharan, G

    2015-05-01

    Tris-(8-hydroxyquionoline)aluminum (Alq3 ) was synthesized and coated on to a glass substrate using the dip coating method. The structural and optical properties of the Alq3 film after thermal annealing from 50°C to 300°C in 50° steps was studied. The films have been prepared with 2 to 16 layers (42-324 nm). The thickness and thermal annealing of Alq3 films were optimized for maximum luminescence yield. The Fourier transform infrared spectrum confirms the formation of quinoline with absorption in the region 700 - 500/cm. Partial sublimation and decomposition of quinoline ion was observed with the Alq3 films annealed at 300°C. The X-ray diffraction pattern of the Alq3 film annealed at 50°C to 150°C reveals the amorphous nature of the films. The Alq3 film annealed above 150°C were crystalline nature. Film annealed at 150°C exhibits a photoluminescence intensity maximum at 512 nm when excited at 390 nm. The Alq3 thin film deposited with 10 layers (220 nm) at 150°C exhibited maximum luminescence yield. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Magnetic field and temperature dependent measurements of hall coefficient in thermal evaporated Tin-Doped Cadmium Oxide Thin films

    International Nuclear Information System (INIS)

    Hamadi, O.; Shakir, N.; Mohammed, F.

    2010-01-01

    CdO:Sn thin films are deposited onto glass substrates by thermal evaporation under vacuum. The studied films are polycrystalline and have an NaCl structure. The Hall effect is studied for films with different thickness as substrates are maintained at different temperatures. The temperature dependence of the Hall mobility is also investigated. (authors)

  1. A thermal sensor for water using self-heated NTC thick-film segmented thermistors

    OpenAIRE

    Nikolić, Maria Vesna; Radojčić, B. M.; Aleksić, Obrad; Luković, Miloljub D.; Nikolić, Pantelija

    2011-01-01

    A simple thermal (heat loss) sensor system was designed in a small plastic tube housing using a negative thermal coefficient (NTC) thick-film thermistor as a self-heating sensor. The voltage power supply [range constant voltage (RCV)-range constant voltage] uses the measured input water temperature to select the applied voltage in steps (up and down) in order to enable operation of the sensor at optimal sensitivity for different water temperatures. The input water temperature was measured usi...

  2. Ultra-high carrier mobility InSb film by rapid thermal annealing on glass substrate

    Directory of Open Access Journals (Sweden)

    Charith Jayanada Koswaththage

    2016-11-01

    Full Text Available InSb films were deposited on both mica and glass substrates using thermal evaporation and subjected to FA or RTA. Crystallinity, composition and electrical properties were investigated. High Hall electron mobility as high as 25,000 cm2/(Vs was obtained with the capped InSb film by keeping the In:Sb ratio after RTA at 520°C for 30 sec or more without adopting epitaxial growth on glass.

  3. Nanoscale modeling for ultrathin liquid films: Spreading and coupled layering

    Science.gov (United States)

    Phillips, David Michael

    The hard disk drive (HDD) industry is currently experiencing a compound annual growth rate of 100% for the areal density. Current production drives have an areal density of 80 Gbit in-2, and drives with an areal density of 100 Gbit in-2 have been recently demonstrated. While much of this growth has been fueled by the development of new read/write heads, some of this gain was achieved by reducing the spacing between the heads and the magnetic media. This in turn reduces the spacing at the head-disk interface (HDI). The HDI in a HDD system consists of a slider, which contains the read/write heads, flying over the disk surface on an air bearing. The current designed separation distance, or fly height, is less than 10 nm. This spacing is expected to reduce to a mere 5 nm within the next few years. With the reduced fly height, intermittent contacts at the HDI become more probable. Only a thin lubricant film of perfluoropolyether (PFPE) and a sputtered carbon overcoat on the disk surface protect the slider and the stored data from mechanical and thermal damage. The PFPE film is quite thin, with a thickness of less than 2 nm or about a monolayer of molecules. During an HDI contact, the PFPE film is considered sacrificial and is often depleted in the contact area. In order to maintain adequate protection for the disk surface, PFPE molecules from the surrounding film must replenish the depleted area. This replenishment ability directly opposes the requirement that the PFPE film must not spin-off of the disk surface due to the disk rotation rate, which is as high as 10,000 RPM in current drives. To balance the PFPE films to sufficiently meet both requirements, HDD manufacturers functionalized the endgroups of the PFPE molecules to allow some portion of the lubricant film to reversibly bond with the disk overcoat. The result is a lubricant film that has a slower replenishment but does not spin-off. The work presented here focuses on the replenishment ability of thin films of

  4. Current-induced metal-insulator transition in VO x thin film prepared by rapid-thermal-annealing

    International Nuclear Information System (INIS)

    Cho, Choong-Rae; Cho, SungIl; Vadim, Sidorkin; Jung, Ranju; Yoo, Inkyeong

    2006-01-01

    The phenomenon of metal-insulator transition (MIT) in polycrystalline VO x thin films and their preparations have been studied. The films were prepared by sputtering of vanadium thin films succeeded by Rapid Thermal Annealing (RTA) in oxygen ambient at 500 deg. C. Crystalline, compositional, and morphological characterizations reveal a continuous change of phase from vanadium metal to the highest oxide phase, V 2 O 5 , with the time of annealing. Electrical MIT switching has been observed in these films. Sweeping mode, electrode area, and temperature dependent MIT has been studied in Pt/VO x /Pt vertical structure. The important parameters for MIT in VO x have been found to be the current density and the electric field, which depend on carrier density in the films

  5. X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625

    Energy Technology Data Exchange (ETDEWEB)

    Bakare, M.S. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Voisey, K.T., E-mail: Katy.voisey@nottingham.ac.uk [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Roe, M.J.; McCartney, D.G. [Materials, Mechanics and Structures Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-15

    There is a well known performance gap in corrosion resistance between thermally sprayed corrosion resistant coatings and the equivalent bulk materials. Interconnected porosity has an important and well known effect, however there are additional relevant microstructural effects. Previous work has shown that a compositional difference exists between the regions of resolidified and non-melted material that exist in the as-sprayed coatings. The resolidified regions are depleted in oxide forming elements due to formation of oxides during coating deposition. Formation of galvanic cells between these different regions is believed to decrease the corrosion resistance of the coating. In order to increase understanding of the details of this effect, this work uses X-ray photoelectron spectroscopy (XPS) to study the passive films formed on thermally sprayed coatings (HVOF) and bulk Inconel 625, a commercially available corrosion resistant Ni-Cr-Mo-Nb alloy. Passive films produced by potentiodynamic scanning to 400 mV in 0.5 M sulphuric acid were compared with air-formed films. The poorer corrosion performance of the thermally sprayed coatings was attributed to Ni(OH){sub 2}, which forms a loose, non-adherent and therefore non-protective film. The good corrosion resistance of wrought Inconel 625 is due to formation of Cr, Mo and Nb oxides.

  6. Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films.

    Science.gov (United States)

    Xiao, Lin; Ma, He; Liu, Junku; Zhao, Wei; Jia, Yi; Zhao, Qiang; Liu, Kai; Wu, Yang; Wei, Yang; Fan, Shoushan; Jiang, Kaili

    2015-12-09

    Adaptive camouflage in thermal imaging, a form of cloaking technology capable of blending naturally into the surrounding environment, has been a great challenge in the past decades. Emissivity engineering for thermal camouflage is regarded as a more promising way compared to merely temperature controlling that has to dissipate a large amount of excessive heat. However, practical devices with an active modulation of emissivity have yet to be well explored. In this letter we demonstrate an active cloaking device capable of efficient thermal radiance control, which consists of a vanadium dioxide (VO2) layer, with a negative differential thermal emissivity, coated on a graphene/carbon nanotube (CNT) thin film. A slight joule heating drastically changes the emissivity of the device, achieving rapid switchable thermal camouflage with a low power consumption and excellent reliability. It is believed that this device will find wide applications not only in artificial systems for infrared camouflage or cloaking but also in energy-saving smart windows and thermo-optical modulators.

  7. Phase transition and thermal expansion studies of alumina thin films prepared by reactive pulsed laser deposition.

    Science.gov (United States)

    Balakrishnan, G; Thirumurugesan, R; Mohandas, E; Sastikumar, D; Kuppusami, P; Songl, J I

    2014-10-01

    Aluminium oxide (Al2O3) thin films were deposited on Si (100) substrates at an optimized oxygen partial pressure of 3 x 10(-3) mbar at room temperature by pulsed laser deposition (PLD). The films were characterized by high temperature X-ray diffraction (HTXRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The HTXRD pattern showed the cubic y-Al2O3 phase in the temperature range 300-973 K. At temperatures ≥ 1073 K, the δ and θ-phases of Al2O3 were observed. The mean linear thermal expansion coefficient and volume thermal expansion coefficient of γ-Al2O3 was found to be 12.66 x 10(-6) K(-1) and 38.87 x 10(-6) K(-1) in the temperature range 300 K-1073 K. The field emission scanning electron microscopy revealed a smooth and structureless morphology of the films deposited on Si (100). The atomic force microscopy study indicated the increased crystallinity and surface roughness of the films after annealing at high temperature.

  8. Enhancement of electron transfer from CdSe core/shell quantum dots to TiO2 films by thermal annealing

    International Nuclear Information System (INIS)

    Shao, Cong; Meng, Xiangdong; Jing, Pengtao; Sun, Mingye; Zhao, Jialong; Li, Haibo

    2013-01-01

    We demonstrated the enhancement of electron transfer from CdSe/ZnS core/shell quantum dots (QDs) to TiO 2 films via thermal annealing by means of steady-state and time-resolved photoluminescence (PL) spectroscopy. The significant decrease in PL intensities and lifetimes of the QDs on TiO 2 films was clearly observed after thermal annealing at temperature ranging from 100 °C to 300 °C. The obtained rates of electron transfer from CdSe core/shell QDs with red, yellow, and green emissions to TiO 2 films were significantly enhanced from several times to an order of magnitude (from ∼10 7 s −1 to ∼10 8 s −1 ). The improvement in efficiencies of electron transfer in the TiO 2 /CdSe QD systems was also confirmed. The enhancement could be considered to result from the thermal annealing reduced distance between CdSe QDs and TiO 2 films. The experimental results revealed that thermal annealing would play an important role on improving performances of QD based optoelectronic devices. -- Highlights: • Annealing-induced enhancement of electron transfer from CdSe to TiO 2 is reported. • CdSe QDs on TiO 2 and SiO 2 films are annealed at various temperatures. • Steady-state and time-resolved PL spectroscopy of CdSe QDs is studied. • The enhancement is related to the reduced distance between CdSe QDs and TiO 2

  9. Achieving a Collapsible, Strong, and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber.

    Science.gov (United States)

    Wu, Kai; Fang, Jinchao; Ma, Jinrui; Huang, Rui; Chai, Songgang; Chen, Feng; Fu, Qiang

    2017-09-06

    Boron nitride nanosheet (BNNS) films receive wide attention in both academia and industry because of their high thermal conductivity (TC) and good electrical insulation capability. However, the brittleness and low strength of the BNNS film largely limit its application. Herein, functionalized BNNSs (f-BNNSs) with a well-maintained in-plane crystalline structure were first prepared utilizing urea in the aqueous solution via ball-milling for the purpose of improving their stability in water and enhancing the interaction with the polymer matrix. Then, a biodegradable and highly thermally conductive film with an orderly oriented structure based on cellulose nanofibers (CNFs) and f-BNNSs was prepared just by simple vacuum-assisted filtration. The modification of the BNNS and the introduction of the CNF result in a better orientation of the f-BNNS, sufficient connection between f-BNNS themselves, and strong interaction between f-BNNS and CNF, which not only make the prepared composite film strong and tough but also possess higher in-plane TC. An increase of 70% in-plane TC, 63.2% tensile strength, and 77.8% elongation could be achieved for CNF/f-BNNS films, compared with that for CNF/BNNS films at the filler content of 70%. Although at such a high f-BNNS content, this composite film can be bended and folded. It is even more interesting to find that the in-plane TC could be greatly enhanced with the decrease of the thickness of the film, and a value of 30.25 W/m K can be achieved at the thickness of ∼30 μm for the film containing 70 wt % f-BNNS. We believe that this highly thermally conductive film with good strength and toughness could have potential applications in next-generation highly powerful and collapsible electronic devices.

  10. Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition

    Directory of Open Access Journals (Sweden)

    Kenichi Miyazaki

    2016-05-01

    Full Text Available We investigated the effects of chromium (Cr and niobium (Nb co-doping on the temperature coefficient of resistance (TCR and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2 films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−yCrxNbyO2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.

  11. Magnetic and thermal properties of amorphous TbFeCo alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke, E-mail: K.Wang@hqu.edu.cn; Dong, Shuo; Huang, Ya; Qiu, Yuzhen

    2017-07-15

    Highlights: • Significant increase in magnetization is observed in TbFeCo upon crystallization. • The crystallization temperature is determined in the range between 400 and 450 °C. • The activation barriers for structural changes are obtained successfully. • Better thermal stability against crystallization and oxidation is demonstrated in FeCo-rich sample than Tb-rich type. - Abstract: Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.

  12. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  13. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    International Nuclear Information System (INIS)

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-01-01

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E 0 and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M 1 /M 2 as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin 2 ψ method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to ∼1.4%) of point or cluster defects, due to the atomic peening mechanism. The M 1 /M 2 mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage

  14. The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

    Science.gov (United States)

    Awad, M. A.; Raaif, M.

    2018-05-01

    Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.

  15. Synthesis and electrical characterization of low-temperature thermal-cured epoxy resin/functionalized silica hybrid-thin films for application as gate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Na, Moonkyong, E-mail: nmk@keri.re.kr [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); System on Chip Chemical Process Research Center, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 (Korea, Republic of); Kang, Young Taec [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Department of Polymer Science and Engineering, Pusan National University, Busan, 609-735 (Korea, Republic of); Kim, Sang Cheol [HVDC Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of); Kim, Eun Dong [Creative and Fundamental Research Division, Korea Electrotechnology Research Institute, Changwon, 642-120 (Korea, Republic of)

    2013-07-31

    Thermal-cured hybrid materials were synthesized from homogenous hybrid sols of epoxy resins and organoalkoxysilane-functionalized silica. The chemical structures of raw materials and obtained hybrid materials were characterized using Fourier transform infrared spectroscopy. The thermal resistance of the hybrids was enhanced by hybridization. The interaction between epoxy matrix and the silica particles, which caused hydrogen bonding and van der Waals force was strengthened by organoalkoxysilane. The degradation temperature of the hybrids was improved by approximately 30 °C over that of the parent epoxy material. The hybrid materials were formed into uniformly coated thin films of about 50 nm-thick using a spin coater. An optimum mixing ratio was used to form smooth-surfaced hybrid films. The electrical property of the hybrid film was characterized, and the leakage current was found to be well below 10{sup −6} A cm{sup −2}. - Highlights: • Preparation of thermal-curable hybrid materials using epoxy resin and silica. • The thermal stability was enhanced through hybridization. • The insulation property of hybrid film was investigated as gate dielectrics.

  16. Effects of the process temperature and rolling speed on the thermal roll-to-roll imprint lithography of flexible polycarbonate film

    International Nuclear Information System (INIS)

    Sohn, Ki-Ju; Lee, Woo Il; Park, Jae Hong; Jang, Hyun-Ik; Lee, Dong-Eon

    2013-01-01

    Thermal roll-to-roll imprint lithography (R2RIL) is a simple and low-cost process for the mass production of micro/nanopatterns. However, in that it relies on highly viscous thermoplastic resists, it is limited in its ability to imprint precise patterns at a high speed. Moreover, the concentrated imprint force applied in R2RIL can damage the resist material which is structurally vulnerable at high process temperatures. Therefore, it is important to understand the temperature- and time-dependent characteristics of the resist material as well as the imprinting mechanism when using thermal R2RIL. In this work, the effects of the process temperature and rolling speed on thermal R2RIL of polycarbonate (PC) films were investigated to improve the process efficiency. Micro-scale line patterns were successfully transferred onto PC films from nickel (Ni) mold stamps. Consequently, line patterns with widths in the range of 5–80 µm were achieved at a traveling speed of 28.6 mm s –1 and process temperature of 150 °C, which is just above the glass transition temperature (T g ). In addition, the patterning performance was investigated for different temperatures, rolling speeds and pattern sizes. The imprinted pattern profiles were measured by an alpha-step surface profiler to investigate the patterning performance. The results show that a much better imprint performance was achieved at 150 °C, compared to the result at temperatures below T g . The physical mechanisms of thermal R2RIL on a PC film were studied by a finite-element analysis and the patterning process was successfully demonstrated by a visco-plastic deformation model. (paper)

  17. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    International Nuclear Information System (INIS)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon; Fu, Dejun; Yoon, Hyungdo

    2011-01-01

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  18. Improved electrical conduction properties in unintentionally-doped ZnO thin films treated by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Lee, Choeun; Shim, Eunhee; Jung, Eiwhan; Lee, Jinyong; Kim, Deukyoung; Lee, Sejoon [Dongguk University-Seoul, Seoul (Korea, Republic of); Fu, Dejun [Wuhan University, Wuhan (China); Yoon, Hyungdo [Korea Electronics Technology Institute, Seongnam (Korea, Republic of)

    2011-10-15

    The effects of thermal treatments on the electrical conduction properties for the unintentionally doped ZnO thin films were investigated. Despite the decreased carrier density in the annealed ZnO thin films, the conductivity was increased because the contribution of the effective carrier mobility to the conductivity of the unintentionally-doped ZnO thin films is greater than that of the carrier density. The resistivity exponentially decreased with increasing RTA temperature, and this result was confirmed to come from the enhanced effective carrier-mobility, which originated from the increased crystallite size in the annealed ZnO thin films.

  19. Evaluating Origin of Electron Traps in Tris(8-hydroxyquinoline) Aluminum Thin Films using Thermally Stimulated Current Technique

    OpenAIRE

    Matsushima, Toshinori; Adachi, Chihaya

    2008-01-01

    We measured the energy distributions and concentrations of electron traps in O_2-unexposed and O_2-exposed tris(8-hydroxyquinoline) aluminum (Alq_3) films using a thermally stimulated current (TSC) technique to investigate how doping O_2 molecules in Alq_3 films affect the films' electron trap and electron transport characteristics. The results of our TSC studies revealed that Alq_3 films have an electron trap distribution with peak depths ranging from 0.075 to 0.1 eV and peak widths ranging ...

  20. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  1. HR-EELS study of hydrogen bonding configuration, chemical and thermal stability of detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Sh.; Akhvlediani, R. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Petit, T.; Girard, H.A.; Arnault, J.C. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif sur Yvette (France); Hoffman, A., E-mail: choffman@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2014-06-01

    Nano-diamond films composed of 3–10 nm grains prepared by the detonation method and deposited onto silicon substrates by drop-casting were examined by high resolution electron energy loss spectroscopy (HR-EELS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). The impact of (i) ex-situ ambient annealing at 400 °C and (ii) ex-situ hydrogenation on hydrogen bonding and its thermal stability were examined. In order to clarify the changes in hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing, in-situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and medium temperature ambient annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the nano-diamond surfaces. In-situ 1000 °C annealing results in irreversible changes of the film surface and partial nano-diamond silicidation.

  2. Defects and morphological changes in nanothin Cu films on polycrystalline Mo analyzed by thermal helium desorption spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Seijbel, L.J.; Thijsse, B.J.

    2005-01-01

    Thermal helium desorption spectrometry (THDS) has been used for the investigation of defects and thermal stability of thin Cu films (5-200 A ) deposited on a polycrystalline Mo substrate in ultrahigh vacuum. These films are metastable at room temperature. On heating, the films transform into islands, giving rise to a relatively broad peak in the helium desorption spectra. The temperature of this island formation is dependent on film thickness, being 417 K for 10 A and 1100 K for a 200 A film. The activation energy for island formation was found to be 0.3±0.1 eV for 75 A film. Grain boundaries have a strong effect on island formation. The defect concentration in the as-deposited films is ∼5x10 -4 , for films thicker than 50 A and more for thinner films. Helium release from monovacancies was identified in the case of a 200 A film. Helium release was also seen during sublimation of the Cu film (∼1350 K). Overlayer experiments were used to identify helium trapped close to the film surface. An increase of the substrate temperature during deposition resulted in a film that had already formed islands. Argon-ion assistance (250 eV) during film deposition with an ion/atom ratio of ∼0.1 resulted in a significant enhancement of helium trapping in the films. The argon concentration in the films was found to be 10 -3 . The temperature of island formation was increased due to argon-ion assistance. The helium and argon desorption spectra are found to be similar, which is due to most of the helium becoming trapped in the defects created by the argon beam. The role of the Mo surface in affecting the defects at the film-substrate interface is investigated. The effect of variation of helium fluence and helium implantation energy is also considered. The present THDS results of Cu/poly-Mo are compared to those of Cu/Mo(100) and Cu/Mo(100) reported earlier

  3. Effect of layered silicate content on the morphology and thermal properties of Poly(vinyl alcohol) films

    International Nuclear Information System (INIS)

    Silva, Jessica R.M.B. da; Santos, Barbara F.F. dos; Leite, Itamara F.

    2015-01-01

    This study aims to evaluate the effect of layered silicate content on the morphology and thermal properties of PVA films. The PVA/layered silicate (AN) films were prepared by intercalation solution, using 1 to 2% of bentonite with respect to the PVA total weight. Then the films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Results of the FTIR revealed interaction between the functional groups of the PVA and the layered silicate. The XRD analysis showed that nanocomposites with intercalated and partially exfoliated morphology were obtained. The results of TG showed that the nanocomposite PVA/2%AN showed higher thermal stability compared to PVA/1%AN. The DSC results showed that the addition of AN to the PVA did not affect crystallization rate, as well as promoted a reduction in glass transition temperature and melting of the PVA. (author)

  4. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability.

    Science.gov (United States)

    Tsai, Mei-Hui; Tseng, I-Hsiang; Chiang, Jen-Chi; Li, Jheng-Jia

    2014-06-11

    Coupling agent-functionalized boron nitride (f-BN) and glycidyl methacrylate-grafted graphene (g-TrG) are simultaneously blended with polyimide (PI) to fabricate a flexible, electrically insulating and thermally conductive PI composite film. The silk-like g-TrG successfully fills in the gap between PI and f-BN to complete the thermal conduction network. In addition, the strong interaction between surface functional groups on f-BN and g-TrG contributes to the effective phonon transfer in the PI matrix. The thermal conductivity (TC) of the PI/f-BN composite films containing additional 1 wt % of g-TrG is at least doubled to the value of PI/f-BN and as high as 16 times to that of the pure PI. The hybrid film PI/f-BN-50/g-TrG-1 exhibits excellent flexibility, sufficient insulating property, the highest TC of 2.11 W/mK, and ultralow coefficient of thermal expansion of 11 ppm/K, which are perfect conditions for future flexible substrate materials requiring efficient heat dissipation.

  5. Phonon Scattering and Confinement in Crystalline Films

    Science.gov (United States)

    Parrish, Kevin D.

    The operating temperature of energy conversion and electronic devices affects their efficiency and efficacy. In many devices, however, the reference values of the thermal properties of the materials used are no longer applicable due to processing techniques performed. This leads to challenges in thermal management and thermal engineering that demand accurate predictive tools and high fidelity measurements. The thermal conductivity of strained, nanostructured, and ultra-thin dielectrics are predicted computationally using solutions to the Boltzmann transport equation. Experimental measurements of thermal diffusivity are performed using transient grating spectroscopy. The thermal conductivities of argon, modeled using the Lennard-Jones potential, and silicon, modeled using density functional theory, are predicted under compressive and tensile strain from lattice dynamics calculations. The thermal conductivity of silicon is found to be invariant with compression, a result that is in disagreement with previous computational efforts. This difference is attributed to the more accurate force constants calculated from density functional theory. The invariance is found to be a result of competing effects of increased phonon group velocities and decreased phonon lifetimes, demonstrating how the anharmonic contribution of the atomic potential can scale differently than the harmonic contribution. Using three Monte Carlo techniques, the phonon-boundary scattering and the subsequent thermal conductivity reduction are predicted for nanoporous silicon thin films. The Monte Carlo techniques used are free path sampling, isotropic ray-tracing, and a new technique, modal ray-tracing. The thermal conductivity predictions from all three techniques are observed to be comparable to previous experimental measurements on nanoporous silicon films. The phonon mean free paths predicted from isotropic ray-tracing, however, are unphysical as compared to those predicted by free path sampling

  6. Effect of thermal treatment on the CO and H2O sensing properties of MoO3 thin films

    International Nuclear Information System (INIS)

    Torres-Luengo, M; Martínez, H M; Torres, J; López-Carreño, L D

    2014-01-01

    MoO 3 thin films were prepared on Corning glass substrates using the chemical spray pyrolysis technique. A 0.1 M solution of ammonium molybdate tetrahydrate was used as precursor one. 5ml and 20 ml of the precursor solution was sprayed with the substrate temperature maintained at 623 K. Thermal treatment involved drying at 393 K for 8 h with continuous N 2 flow, followed by a vacuum annealing at 473 K for 2 h in a residual inert atmosphere. XRD indicates that the crystallographic structure corresponded to the orthorhombic α-MoO 3 phase. Electrical characterization was carried out in a system operating under high vacuum conditions. The samples could be cooled down to LN 2 temperature and heated in a controlled way up to 473 K. To elucidate the electrical response of the films to CO and H 2 O exposure, the I-V characteristic curve was measured over the whole temperature range. The electrical resistance of the films decreased with increasing temperature. In 5 ml films, the sensitivity to both gases increased which thermal treatment, reaching values between 40% and 60% at room temperature. On the contrary, the 20 ml films' sensitivity decreased almost half of their original values after thermal treatment

  7. Compositional changes in the channel layer of an amorphous In–Ga–Zn-O thin film transistor after thermal annealing

    International Nuclear Information System (INIS)

    Kang, Jiyeon; Lee, Su Jeong; Myoung, Jae-Min; Kim, Chul-Hong; Chae, Gee Sung; Jun, Myungchul; Hwang, Yong Kee; Lee, Woong

    2012-01-01

    In order to investigate the possible reason for the improved device performances of amorphous In–Ga–Zn-O (a-IGZO) thin film transistors after thermal annealing, changes in the elemental concentrations in the a-IGZO channel regions and related device performances due to thermal annealing were observed. It was found that thermal annealing introduces a substantial level of oxygen deficiencies in the channel layer accompanying significantly enhanced device performances. The improved device performances are attributed to the oxygen deficiency which is believed to be averaged over the entire structure to function as shallow donors increasing the carrier concentrations. Such a deduction was supported by the changes in the absorption spectra of the a-IGZO films with various thermal histories. (paper)

  8. Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis

    International Nuclear Information System (INIS)

    Yun, J; Shim, J-I; Shin, D-S

    2013-01-01

    We demonstrate a modeling method based on the three-dimensional electrical and thermal circuit analysis to extract current, voltage and temperature distributions of light-emitting diodes (LEDs). In our model, the electrical circuit analysis is performed first to extract the current and voltage distributions in the LED. Utilizing the result obtained from the electrical circuit analysis as distributed heat sources, the thermal circuit is set up by using the duality between Fourier's law and Ohm's law. From the analysis of the thermal circuit, the temperature distribution at each epitaxial film is successfully obtained. Comparisons of experimental and simulation results are made by employing an InGaN/GaN multiple-quantum-well blue LED. Validity of the electrical circuit analysis is confirmed by comparing the light distribution at the surface. Since the temperature distribution at each epitaxial film cannot be obtained experimentally, the apparent temperature distribution is compared at the surface of the LED chip. Also, experimentally obtained average junction temperature is compared with the value calculated from the modeling, yielding a very good agreement. The analysis method based on the circuit modeling has an advantage of taking distributed heat sources as inputs, which is essential for high-power devices with significant self-heating. (paper)

  9. Effects of high-temperature thermal annealing on the electronic properties of In-Ga-Zn oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qin; Song, Zhong Xiao; Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn, E-mail: liyhemail@gmail.com; Li, Yan Huai, E-mail: mafei@mail.xjtu.edu.cn, E-mail: liyhemail@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xu, Ke Wei [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an, Shaanxi 710049, China and Department of Physics and Opt-electronic Engineering, Xi' an University of Arts and Science, Xi' an, Shaanxi 710065 (China)

    2015-03-15

    Indium gallium zinc oxide (IGZO) thin films were deposited by radio-frequency magnetron sputtering at room-temperature. Then, thermal annealing was conducted to improve the structural ordering. X-ray diffraction and high-resolution transmission electron microscopy demonstrated that the as-deposited IGZO thin films were amorphous and crystallization occurred at 800 and 950 °C. As a result of crystallization at high temperature, the carrier concentration and the Hall mobility of IGZO thin films were sharply increased, which could be ascribed to the increased oxygen vacancies and improved structural ordering of the thin films.

  10. Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Steyer, P., E-mail: philippe.steyer@insa-lyon.fr [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Joly-Pottuz, L. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Billard, A. [LERMPS-UTBM, Site de Montbéliard, 90010 Belfort Cédex (France); Qiao, J.; Cardinal, S. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Sanchette, F. [LASMIS-UTT, UMR CNRS 6279, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Pelletier, J.M.; Esnouf, C. [MATEIS Laboratory-INSA de Lyon, Bât. B. Pascal, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France)

    2014-06-30

    Bulk metallic glasses have attracted considerable attention over the last decades for their outstanding mechanical features (high strength, super-elasticity) and physico-chemical properties (corrosion resistance). Recently, some attempts to assign such original behavior from bulk materials to modified surfaces have been reported in the literature based on multicomponent alloys. In this paper we focused on the opportunity to form a metallic glass coating from the binary Zr–Cu system using a magnetron co-sputtering physical vapor deposition process. The composition of the films can be easily controlled by the relative intensities applied to both pure targets, which made possible the study of the whole Zr–Cu system (from 13.4 to 85.0 at.% Cu). The chemical composition of the films was obtained by energy dispersive X-ray spectroscopy, and their microstructure was characterized by scanning and transmission electron microscopy. The thermal stability of the films was deduced from an in situ X-ray diffraction analysis (from room temperature up to 600 °C) and correlated with the results of the differential scanning calorimetry technique. Their mechanical properties were determined by nanoindentation experiments. - Highlights: • We reported deposition of Zr-Cu thin film metallic glasses by co-sputtering • Films were XRD-amorphous in a wide composition range (33.3 – 85.0 at.% Cu) • Microstructure investigation revealed some local nanodomains • We examined the thermal stability by means of in situ X-ray diffraction • Nanoindentation was used to obtained mechanical properties of thin films.

  11. Structure, optical properties and thermal stability of HfErO films deposited by simultaneous RF and VHF magnetron sputtering

    International Nuclear Information System (INIS)

    Zhang, H.Y.; He, H.J.; Zhang, Z.; Jin, C.G.; Yang, Y.; Wang, Y.Y.; Ye, C.; Zhuge, L.J.; Wu, X.M.

    2015-01-01

    HfErO films are deposited on Si substrates by simultaneous radio frequency (RF) and very high frequency (VHF) magnetron sputtering technique. The content of the doped ingredient of Er and the body composition of HfO x are, respectively, controlled through the VHF and RF powers. Low content of Er doping in the HfErO films can be achieved, because the VHF source of 27.12 MHz has higher ion energy and lower ion flux than the RF source resulting in low sputtering rate in the magnetron sputtering system. The structure, optical properties and thermal stability of the HfErO films are investigated in this work. Results show that the doped content of Er is independently controlled by the VHF power. The oxygen vacancies are created by the Er incorporation. The hafnium in the HfErO films forms mixed valence of Hf 2+ and Hf 4+ . The HfErO films are composed with the structures of HfO 2 , HfO and ErO x , which can be optimized through the VHF power. At high VHF power, the Hf-Er-O bonds are formed, which demonstrates that the Er atoms are doped into the lattice of HfO 2 in the HfErO films. The HfErO films have bad thermal stability as the crystallization temperature decreases from 900 to 800 C. After thermal annealing, cubic phase of HfO 2 are stabilized, which is ascribed to the oxygen vacancies creation by the Er incorporation. The optical properties such as the refractive index and the optical band gap of the HfErO films are optimized by the VHF power. (orig.)

  12. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  13. Effect of low thermal budget annealing on surface passivation of silicon by ALD based aluminum oxide films.

    Science.gov (United States)

    Vandana; Batra, Neha; Gope, Jhuma; Singh, Rajbir; Panigrahi, Jagannath; Tyagi, Sanjay; Pathi, P; Srivastava, S K; Rauthan, C M S; Singh, P K

    2014-10-21

    Thermal ALD deposited Al2O3 films on silicon show a marked difference in surface passivation quality as a function of annealing time (using a rapid thermal process). An effective and quality passivation is realized in short anneal duration (∼100 s) in nitrogen ambient which is reflected in the low surface recombination velocity (SRV passivation. Both as-deposited and low thermal budget annealed films show the presence of positive fixed charges and this is never been reported in the literature before. The role of field and chemical passivation is investigated in terms of fixed charge and interface defect densities. Further, the importance of the annealing step sequence in the MIS structure fabrication protocol is also investigated from the view point of its effect on the nature of fixed charges.

  14. Multiscale thermal transport.

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  15. Modelling of film condensation in presence of non condensable gases

    International Nuclear Information System (INIS)

    Genevieve Geffraye; Dominique Bestion; Vladimir Kalitvianski

    2005-01-01

    Full text of publication follows: This paper presents recent developments in the modelling of the condensation due to heat removal from a wall with a possible presence of hydrogen, nitrogen, or air. This work is mainly concerned with nuclear reactor safety with particular reference to situations related to new reactor design, cold shutdown state and severe accident analysis. Film condensation of steam in presence of nitrogen and helium in a tube has been investigated in the COTURNE experiment in a rather large range of parameters, pressure (from 0.1 to 7 Mpa), heat flux (0.1 to 6 W/cm 2 ), mass fraction of noncondensable gas (0 to 1) and also in presence of superheated steam. The experiment represents a Steam Generator tube of a Pressurised Water Reactor and can simulate both co-current or countercurrent flow of steam and water.The models are implemented in the CATHARE code used for nuclear reactor thermal-hydraulics. The code uses two mass balance equations for liquid and gas, two momentum balance equations for liquid and gas and two energy balance equations for liquid and gas. Additional mass transport equations can be added for each non condensable gas. Heat transfers from wall to liquid film, from liquid to interface and gas to interface are modelled. The liquid film heat transfer coefficient is first investigated in pure saturated steam conditions in the pressure range from 0.1 to 7 Mpa. The CATHARE film condensation model in pure steam conditions is derived from Chen's correlation. Chen proposes a general correlation for the film condensation, covering the wavy-laminar and the turbulent film regimes and taking into account the interfacial friction effect. A large data base of laminar film regime was used including COTURNE data other available data found in the literature. The analysis of these data base suggests an influence of the liquid Reynolds number, according to the Nusselt theory, and also of the Eoetvoes number, with surface tension effects. A

  16. Study of 'liquid gold' coatings: Thermal decomposition and formation of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deram, V. [Laboratoire de Spectrochimie Infrarouge et Raman, Universite des Sciences et Technologies de Lille, UMR CNRS 8516, Bat C5 - 59655 Villeneuve d' Ascq (France) and Ecole Nationale Superieure des Mines de Paris, Centre de Mise en Forme des Materiaux, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis (France)]. E-mail: virginie.deram@ensmp.fr; Turrell, S. [Laboratoire de Spectrochimie Infrarouge et Raman, Universite des Sciences et Technologies de Lille, UMR CNRS 8516, Bat C5 - 59655 Villeneuve d' Ascq (France); Darque-Ceretti, E. [Ecole Nationale Superieure des Mines de Paris, Centre de Mise en Forme des Materiaux, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis (France); Aucouturier, M. [Centre de Recherche et de Restauration des Musees de France, UMR CNRS 171, Palais du Louvre, Porte des Lions, 14 quai F. Mitterrand, 75001 Paris Cedex (France)

    2006-09-25

    Organo-metallic solutions called liquid gold are largely used to obtain thin gilded films which are employed for decorative, technological and functional uses. However, these films often prove to be fragile with respect to use, resulting in loss of brilliance or even eventual film removal. An understanding of the behaviour of the layers requires good knowledge of the materials themselves. The present work was undertaken to better understand the evolution of the structural properties of liquid gold as it undergoes heat-processing. Accordingly, we followed the thermal decomposition processes of liquid gold coatings and the formation of the gilded metal layer using a combination of experimental techniques. First, thermal analyses coupled with mass spectrometry and infrared spectroscopy gave information concerning the decomposition of the organic medium. It has been found that the process of film formation can be decomposed into three steps, the second of which is an abrupt transition between 300 and 350 deg. C. Details on this transition have been obtained using real-time X-ray Diffraction and Rutherford Backscattering Spectrometry. Above 350 deg. C, the microstructure of the coating is reorganized to obtain a final layer which contains particles, of the size of a few hundreds nanometers, as shown by Transmission Electron Microscopy.

  17. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, Artak, E-mail: karapetyan@cinam.univ-mrs.fr [Aix Marseille Université, CINaM, 13288, Marseille (France); Institute for Physical Research of NAS of Armenia, Ashtarak-2 0203 (Armenia); Reymers, Anna [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Giorgio, Suzanne; Fauquet, Carole [Aix Marseille Université, CINaM, 13288, Marseille (France); Sajti, Laszlo [Laser Zentrum Hannover e.V. Hollerithallee 8, 30419 Hannover (Germany); Nitsche, Serge [Aix Marseille Université, CINaM, 13288, Marseille (France); Nersesyan, Manuk; Gevorgyan, Vladimir [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Marine, Wladimir [Aix Marseille Université, CINaM, 13288, Marseille (France)

    2015-03-15

    Structural and optical characterization of crystalline Cu{sub 2}O thin films obtained by thermal oxidation of Cu films at two different temperatures 800 °C and 900 °C are investigated in this work. X-ray diffraction measurements indicate that synthesized films consist of single Cu{sub 2}O phase without any interstitial phase and show a nano-grain structure. Scanning Electron Microscopy observations indicate that the Cu{sub 2}O films have a micro-scale roughness whereas High Resolution Transmission Electron Microscopy highlights that the nanocrystalline structure is formed by superposition of nearly spherical nanocrystals smaller than 30 nm. Photoluminescence spectra of these films exhibit at room temperature two well-resolved emission peaks at 1.34 eV due to defects energy levels and at 1.97 eV due to phonon-assisted recombination of the 1s orthoexciton in both film series. Emission characteristics depending on the laser power is deeply investigated to determine the origin of recorded emissions. Time-integrated spectra of the 1s orthoexciton emission reveals the presence of oxygen defects below the conduction band edge under non-resonant two-photon excitation using a wide range of excitations wavelengths. Optical absorption coefficients at room temperature are obtained from an accurate analysis of their transmission and reflection spectra, whereas the optical band gap energy is estimated at about 2.11 eV. Results obtained are of high relevance especially for potential applications in semiconductor devices such as solar cells, optical sources and detectors. - Highlights: • Nanostructured Cu{sub 2}O thin films were synthesized by thermal oxidation of Cu films. • The PL spectra of nanostructured thin films revealed two well-resolved emission peaks. • The PL properties were investigated under a broad range of experimental conditions. • Inter-band transition in the infrared range has been associated to V{sub Cu} and V{sub O} vacancies. • Absorption

  18. Mechanical, Thermal and Surface Investigations of Chitosan/Agar/PVA Ternary Blended Films

    Directory of Open Access Journals (Sweden)

    Esam A. El-Hefian

    2011-01-01

    Full Text Available The mechanical and thermal properties of chitosan/agar/poly vinyl alcohol (CS/AG/PVA ternary blended films having various proportions considering chitosan as the main component were investigated. The various variables static water contact angle such as contact angle, drop base area, drop volume and drop height was also studied in correlation with the variation of time. Results obtained from mechanical measurements showed a noticeable increase in the tensile strength (TS coincided with a sharp decrease in elongation percent at break (E% of blended films with increasing agar and PVA contents. The DSC results prevailed the development of an interaction between chitosan individual components: agar and PVA. Moreover, an enhancement of the wettability of the blends was obtained with increasing agar and PVA contents. It was also found that the pure CS film and the blended films with 90/05/05 and 80/10/10 compositions were more affected by time than blended films with other compositions when the contact angle, the drop height and the drop length were studied as a function of time. In addition, when the drop is initially placed on the substrate, the drop area and the drop volume of all films remained almost constant up to a certain time after which they showed a slight difference with the elapse of time.

  19. Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Jessica I. Lozano-Navarro

    2018-01-01

    Full Text Available The aim of this study is to analyze the properties of a series of polysaccharide composite films, such as apparent density, color, the presence of functional groups, morphology, and thermal stability, as well as the correlation between them and their antimicrobial and optical properties. Natural antioxidants such as anthocyanins (from cranberry; blueberry and pomegranate; betalains (from beetroot and pitaya; resveratrol (from grape; and thymol and carvacrol (from oregano were added to the films. Few changes in the position and intensity of the FTIR spectra bands were observed despite the low content of extract added to the films. Due to this fact, the antioxidants were extracted and identified by spectroscopic analysis; and they were also quantified using the Folin-Denis method and a gallic acid calibration curve, which confirmed the presence of natural antioxidants in the films. According to the SEM analysis, the presence of natural antioxidants has no influence on the film morphology because the stretch marks and white points that were observed were related to starch presence. On the other hand, the TGA analysis showed that the type of extract influences the total weight loss. The overall interpretation of the results suggests that the use of natural antioxidants as additives for chitosan-starch film preparation has a prominent impact on most of the critical properties that are decisive in making them suitable for food-packing applications.

  20. Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties

    Science.gov (United States)

    Díaz-Zavala, Nancy P.; Melo-Banda, José A.; García-Alamilla, Ricardo; Martínez-Hernández, Ana L.; Zapién-Castillo, Samuel

    2018-01-01

    The aim of this study is to analyze the properties of a series of polysaccharide composite films, such as apparent density, color, the presence of functional groups, morphology, and thermal stability, as well as the correlation between them and their antimicrobial and optical properties. Natural antioxidants such as anthocyanins (from cranberry; blueberry and pomegranate); betalains (from beetroot and pitaya); resveratrol (from grape); and thymol and carvacrol (from oregano) were added to the films. Few changes in the position and intensity of the FTIR spectra bands were observed despite the low content of extract added to the films. Due to this fact, the antioxidants were extracted and identified by spectroscopic analysis; and they were also quantified using the Folin-Denis method and a gallic acid calibration curve, which confirmed the presence of natural antioxidants in the films. According to the SEM analysis, the presence of natural antioxidants has no influence on the film morphology because the stretch marks and white points that were observed were related to starch presence. On the other hand, the TGA analysis showed that the type of extract influences the total weight loss. The overall interpretation of the results suggests that the use of natural antioxidants as additives for chitosan-starch film preparation has a prominent impact on most of the critical properties that are decisive in making them suitable for food-packing applications. PMID:29329275

  1. Thermal modelling using discrete vasculature for thermal therapy: a review

    Science.gov (United States)

    Kok, H.P.; Gellermann, J.; van den Berg, C.A.T.; Stauffer, P.R.; Hand, J.W.; Crezee, J.

    2013-01-01

    Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality. PMID:23738700

  2. In situ thermal residual stress evolution in ultrathin ZnO and Ag films studied by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Renault, P.O., E-mail: Pierre.olivier.renault@univ-poitiers.fr [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Krauss, C.; Le Bourhis, E.; Geandier, G. [Institut P' , CNRS, Universite de Poitiers, UPR 3346, 86962 Futuroscope (France); Benedetto, A. [Saint-Gobain Recherche (SGR), 93303 Aubervilliers (France); Grachev, S.Y.; Barthel, E. [Lab. Surface du Verre et Interfaces (SVI), UMR-CNRS 125, 93303 Aubervilliers (France)

    2011-12-30

    Residual-stress evolution in sputtered encapsulated ZnO/Ag/ZnO stack has been studied in-situ by synchrotron x-ray diffraction when heat treated. The ZnO/Ag/ZnO stack encapsulated into Si{sub 3}N{sub 4} layers and deposited on (001) Si substrates was thermally heated from 25 Degree-Sign C to 600 Degree-Sign C and cooled down to 25 Degree-Sign C. X-ray diffraction 2D patterns captured continuously during the heat treatment allowed monitoring the diffraction peak shifts of both Ag (15 nm thick) and ZnO (10 nm and 50 nm thick) sublayers. Due to the mismatch between the coefficients of thermal expansion, the silicon substrate induced compressive thermal stresses in the films during heating. We first observed a linear increase of the compressive stress state in both Ag and ZnO films and then a more complex elastic-stress evolution starts to operate from about 100 Degree-Sign C for Ag and about 250 Degree-Sign C for ZnO. Thermal contraction upon cooling seems to dominate so that the initial compressive film stresses relax by about 300 and 700 MPa after thermal treatment for ZnO and Ag, respectively. The overall behavior is discussed in terms of structural changes induced by the heat treatment.

  3. Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films

    Science.gov (United States)

    El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.

    2006-08-01

    Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).

  4. Room temperature and thermal decomposition of magnesium hydride/deuteride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Leardini, F.; Bodega, J.; Macia, M.D.; Diaz-Chao, P.; Ferrer, I.J.; Fernandez, J.F.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Magnesium hydride (MgH{sub 2}) can be considered an interesting material to store hydrogen as long as two main drawbacks were solved: (i) its high stability and (ii) slow (de)hydriding kinetics. In that context, magnesium hydride films are an excellent model system to investigate the influence of structure, morphology and dimensionality on kinetic and thermodynamic properties. In the present work, we show that desorption mechanism of Pd-capped MgH{sub 2} at room temperature is controlled by a bidimensional interphase mechanism and a similar rate step limiting mechanism is observed during thermal decomposition of MgH{sub 2}. This mechanism is different to that occurring in bulk MgH{sub 2} (nucleation and growth) and obtained activation energies are lower than those reported in bulk MgH{sub 2}. We also investigated the Pd-capping properties upon H-absorption/desorption by means of RBS and isotope experiments. (orig.)

  5. Optical and electrical properties of thermally evaporated In49Se48Sn3 films

    International Nuclear Information System (INIS)

    Salem, A.M.; El-Gendy, Y.A.; El-Sayad, E.A.

    2009-01-01

    Nearly stoichiometric thin films of In 49 Se 48 Sn 3 were deposited at room temperature, by conventional thermal evaporation of the presynthesized materials, onto precleaned glass substrates. The microstructural studies on the as-deposited and annealed films, using transmission electron microscopy and diffraction (TEMD), revealed that the as-deposited films are amorphous in nature, while those annealed at 498 K are crystalline. The optical properties of the investigated films were determined from the transmittance and reflectance data, in the spectral range 650-2500 nm. An analysis of the optical absorption spectra revealed a non-direct energy gap characterizing the amorphous films, while both allowed and forbidden direct energy gaps characterized the crystalline films. The electrical resistance of the deposited films was carried out during heating and cooling cycles in the temperature range 300-600 K. The results show an irreproducible behavior, while after crystallization the results become reproducible. The analysis of the temperature dependence of the resistance (ln(R) vs. 1000/T) for crystalline films shows two straight lines corresponding to both extrinsic and intrinsic conduction. The room temperature I-V characteristics of the as-deposited films sandwiched between similar Ag metal electrodes shows an ohmic behavior, while non-ohmic behavior attributed to space charge limited conduction has been observed when the films are sandwiched between dissimilar Ag/Al metal electrodes.

  6. Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging

    OpenAIRE

    Ortega Toro, Rodrigo; Contreras, Jessica; Talens Oliag, Pau; Chiralt A.

    2015-01-01

    Structural and physical properties (barrier, mechanical, and optical properties) and thermal behaviour of corn starch-PCL blend films, containing glycerol as plasticizer, obtained by compression moulding, at 160 °C and 130 bars, were studied. The stability on the films properties was also evaluated. Blend films showed phase separation of the polymers in a heterogeneous matrix with starch rich regions and PCL rich regions. Nevertheless, a small miscibility of PCL in the starch phase was detec...

  7. Testing and linearity calibration of films of phenol compounds exposed to thermal neutron field for EPR dosimetry.

    Science.gov (United States)

    Gallo, S; Panzeca, S; Longo, A; Altieri, S; Bentivoglio, A; Dondi, D; Marconi, R P; Protti, N; Zeffiro, A; Marrale, M

    2015-12-01

    This paper reports the preliminary results obtained by Electron Paramagnetic Resonance (EPR) measurements on films of IRGANOX® 1076 phenols with and without low content (5% by weight) of gadolinium oxide (Gd2O3) exposed in the thermal column of the Triga Mark II reactor of LENA (Laboratorio Energia Nucleare Applicata) of Pavia (Italy). Thanks to their size, the phenolic films here presented are good devices for the dosimetry of beams with high dose gradient and which require accurate knowledge of the precise dose delivered. The dependence of EPR signal as function of neutron dose was investigated in the fluence range between 10(11) cm(-2) and 10(14) cm(-2). Linearity of EPR response was found and the signal was compared with that of commercial alanine films. Our analysis showed that gadolinium oxide (5% by weight) can enhance the thermal neutron sensitivity more than 18 times. Irradiated dosimetric films of phenolic compound exhibited EPR signal fading of about 4% after 10 days from irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Study of Perylenetetracarboxylic Acid Dimethylimide Films by Cyclic Thermal Desorption and Scanning Probe Microscopy

    Science.gov (United States)

    Pochtennyi, A. E.; Lappo, A. N.; Il'yushonok, I. P.

    2018-02-01

    Some results of studying the direct-current (DC) conductivity of perylenetetracarboxylic acid dimethylimide films by cyclic oxygen thermal desorption are presented. The microscopic parameters of hopping electron transport over localized impurity and intrinsic states were determined. The bandgap width and the sign of major current carriers were determined by scanning probe microscopy methods (atomic force microscopy, scanning probe spectroscopy, and photoassisted Kelvin probe force microscopy). The possibility of the application of photoassisted scanning tunneling microscopy for the nanoscale phase analysis of photoconductive films is discussed.

  9. X-ray scattering study of thermal nanopore templating in hybrid films of organosilicate precursor and reactive four-armed porogen

    International Nuclear Information System (INIS)

    Yoon, Jinhwan; Heo, Kyuyoung; Oh, Weontae; Jin, Kyeong Sik; Jin, Sangwoo; Kim, Jehan; Kim, Kwang-Woo; Chang, Taihyun; Ree, Moonhor

    2006-01-01

    The miscibility and the mechanism for thermal nanopore templating in films prepared from spin-coating and subsequent drying of homogenous solutions of curable polymethylsilsesquioxane dielectric precursor and thermally labile, reactive triethoxysilyl-terminated four-armed poly(ε-caprolactone) porogen were investigated in detail by in situ two-dimensional grazing incidence small-angle x-ray scattering analysis. The dielectric precursor and porogen components in the film were fully miscible. On heating, limited aggregations of the porogen, however, took place in only a small temperature range of 100-140 deg. C as a result of phase separation induced by the competition of the curing and hybridization reactions of the dielectric precursor and porogen; higher porogen loading resulted in relatively large porogen aggregates and a greater size distribution. The developed porogen aggregates underwent thermal firing above 300 deg. C without further growth and movement, and ultimately left their individual footprints in the film as spherical nanopores

  10. Investigations of the thermal treatment effect on the generation of cadmium sulfide clusters in polymeric films

    International Nuclear Information System (INIS)

    Stanculescu, Anca; Socol, M.; Stanculescu, F.

    2002-01-01

    In the last years a special interest has been paid to the field of nanometer-sized semiconductor compound crystalline clusters synthesized in different matrix (inorganic or organic), due to their special physical and chemical properties intermediate between the molecular and bulk limits. To obtain the thin film samples of CdS particles embedded in a polymeric transparent matrix, as bisphenol A polycarbonate, we followed a process containing three important steps: preparation of the so-called 'mother solution', film deposition and thermal treatment. The samples obtained after the first two steps were heat treated at different temperatures (90 deg. C and 150 deg. C) for 0.5 h, 1 h and 1.5 h, and we have analyzed the influence of these parameters on the film quality using UV-VIS spectrophotometric methods. This paper presents a study of the influence of the thermal treatment on the CdS clusters' generation process and film quality and homogeneity. The parameters of the processing procedure of the polymeric film, as the cooling rate, have a great influence on the rate of germination and development of the crystalline phase. A slow cooling rate is a more favorable process for CdS clusters' formation, indicated .by structured features of the fundamental absorption situated between 350-450 nm. When the temperature for thermal treatment increases to 90 deg. C a sharp rise and a shift to shorter wavelengths of the absorption onset edge was observed. This shift proves the existence of a weak quantum confinement effects. We concluded that these two parameters have some equivalent effects on the CdS clusters' generation in polymeric matrix. Varying the treatment duration with a fixed temperature produces similar results as the fixed duration, varied temperature treatment. (authors)

  11. Comparison of the Thermal Degradation of Heavily Nb-Doped and Normal PZT Thin Films.

    Science.gov (United States)

    Yang, Jeong-Suong; Kang, YunSung; Kang, Inyoung; Lim, SeungMo; Shin, Seung-Joo; Lee, JungWon; Hur, Kang Heon

    2017-03-01

    The degradation of niobium-doped lead zirconate titanate (PZT) and two types of PZT thin films were investigated. Undoped PZT, two-step PZT, and heavily Nb-doped PZT (PNZT) around the morphotropic phase boundary were in situ deposited under optimum condition by RF-magnetron sputtering. All 2- [Formula: see text]-thick films had dense perovskite columnar grain structure and self-polarized (100) dominant orientation. PZT thin films were deposited on Pt/TiO x bottom electrode on Si wafer, and PNZT thin film was on Ir/TiW electrode with the help of orientation control. Sputtered PZT films formed on microelectromechanical system (MEMS) gyroscope and the degradation rates were compared at different temperatures. PNZT showed the best resistance to the thermal degradation, followed by two-step PZT. To clarify the effect of oxygen vacancies on the degradation of the film at high temperature, photoluminescence measurement was conducted, which confirmed that oxygen vacancy rate was the lowest in heavy PNZT. Nb-doping PZT thin films suppressed the oxygen deficit and made high imprint with self-polarization. This defect distribution and high internal field allowed PNZT thin film to make the piezoelectric sensors more stable and reliable at high temperature, such as reflow process of MEMS packaging.

  12. Effect of deposition temperature and thermal annealing on the dry etch rate of a-C: H films for the dry etch hard process of semiconductor devices

    International Nuclear Information System (INIS)

    Lee, Seung Moo; Won, Jaihyung; Yim, Soyoung; Park, Se Jun; Choi, Jongsik; Kim, Jeongtae; Lee, Hyeondeok; Byun, Dongjin

    2012-01-01

    The effect of deposition and thermal annealing temperatures on the dry etch rate of a-C:H films was investigated to increase our fundamental understanding of the relationship between thermal annealing and dry etch rate and to obtain a low dry etch rate hard mask. The hydrocarbon contents and hydrogen concentration were decreased with increasing deposition and annealing temperatures. The I(D)/I(G) intensity ratio and extinction coefficient of the a-C:H films were increased with increasing deposition and annealing temperatures because of the increase of sp 2 bonds in the a-C:H films. There was no relationship between the density of the unpaired electrons and the deposition temperature, or between the density of the unpaired electrons and the annealing temperature. However, the thermally annealed a-C:H films had fewer unpaired electrons compared with the as-deposited ones. Transmission electron microscopy analysis showed the absence of any crystallographic change after thermal annealing. The density of the as-deposited films was increased with increasing deposition temperature. The density of the 600 °C annealed a-C:H films deposited under 450 °C was decreased but at 550 °C was increased, and the density of all 800 °C annealed films was increased. The dry etch rate of the as-deposited a-C:H films was negatively correlated with the deposition temperature. The dry etch rate of the 600 °C annealed a-C:H films deposited at 350 °C and 450 °C was faster than that of the as-deposited film and that of the 800 °C annealed a-C:H films deposited at 350 °C and 450 °C was 17% faster than that of the as-deposited film. However, the dry etch rate of the 550 °C deposited a-C:H film was decreased after annealing at 600 °C and 800 °C. The dry etch rate of the as-deposited films was decreased with increasing density but that of the annealed a-C:H films was not. These results indicated that the dry etch rate of a-C:H films for dry etch hard masks can be further decreased by

  13. Structure, optical properties and thermal stability of HfErO films deposited by simultaneous RF and VHF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y. [Soochow University, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China); Nanjing University of Posts and Telecommunications, School of Tongda, Nanjing (China); Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); He, H.J.; Zhang, Z.; Jin, C.G.; Yang, Y.; Wang, Y.Y.; Ye, C. [Soochow University, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China); Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); Zhuge, L.J. [Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); Soochow University, Analysis and Testing Center, Suzhou (China); Wu, X.M. [Soochow University, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China); Soochow University, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou (China); Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai (China)

    2015-01-23

    HfErO films are deposited on Si substrates by simultaneous radio frequency (RF) and very high frequency (VHF) magnetron sputtering technique. The content of the doped ingredient of Er and the body composition of HfO{sub x} are, respectively, controlled through the VHF and RF powers. Low content of Er doping in the HfErO films can be achieved, because the VHF source of 27.12 MHz has higher ion energy and lower ion flux than the RF source resulting in low sputtering rate in the magnetron sputtering system. The structure, optical properties and thermal stability of the HfErO films are investigated in this work. Results show that the doped content of Er is independently controlled by the VHF power. The oxygen vacancies are created by the Er incorporation. The hafnium in the HfErO films forms mixed valence of Hf{sup 2+} and Hf{sup 4+}. The HfErO films are composed with the structures of HfO{sub 2}, HfO and ErO{sub x}, which can be optimized through the VHF power. At high VHF power, the Hf-Er-O bonds are formed, which demonstrates that the Er atoms are doped into the lattice of HfO{sub 2} in the HfErO films. The HfErO films have bad thermal stability as the crystallization temperature decreases from 900 to 800 C. After thermal annealing, cubic phase of HfO{sub 2} are stabilized, which is ascribed to the oxygen vacancies creation by the Er incorporation. The optical properties such as the refractive index and the optical band gap of the HfErO films are optimized by the VHF power. (orig.)

  14. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñor, Ana L.

    2014-06-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  15. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñ or, Ana L.; Mejia, Israel I.; Sotelo-Lerma, Mé rida; Guo, Zaibing; Alshareef, Husam N.; Quevedo-Ló pez, Manuel Angel Quevedo

    2014-01-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  16. Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography

    International Nuclear Information System (INIS)

    Li, Hao; Geng, Yongyou; Wu, Yiqun

    2012-01-01

    In the current work, the etching selectivity of the AgInSbTe phase-change film in laser thermal lithography is reported for the first time. Film phase change induced by laser irradiation and etching selectivity to crystalline and amorphous states in different etchants, including hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, sodium hydroxide, sodium sulfide, ammonium sulfide and ammonium hydroxide, are investigated. The results indicated that ammonium sulfide solvent (2.5 mol/L) had excellent etching selectivity to crystalline and amorphous states of the AgInSbTe film, and the etching characteristics were strongly influenced by the laser power density and laser irradiation time. The etching rate of the crystalline state of the AgInSbTe film was 40.4 nm/min, 20 times higher than that of the amorphous state under optimized irradiation conditions (power density: 6.63 mW/μm 2 and irradiation time: 330 ns), with ammonium sulfide solvent (2.5 mol/L) as etchant. The step profile produced in the selective etching was clear, and smooth surfaces remained both on the step-up and step-down with a roughness of less than 4 nm (10 x 10 μm). The excellent performance of the AgInSbTe phase-change film in selective etching is significant for fabrication of nanostructures with super-resolution in laser thermal lithography. (orig.)

  17. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  18. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    Science.gov (United States)

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effect of electron beam irradiation on structural and thermal properties of gamma poly (vinylidene fluoride) (γ-PVDF) films

    Science.gov (United States)

    Tan, Zhongyang; Wang, Xuemei; Fu, Chao; Chen, Chunhai; Ran, Xianghai

    2018-03-01

    In this study, we successfully prepared the pure PVDF film containing almost exclusive γ-phase (γ-PVDF) using 15 wt% solution in N, N-dimethylformamide. These γ-PVDF films were irradiated by 3.0 MeV electron beam in vacuum at room temperature up to 358 kGy. The effect of the irradiation on the chemical structural and thermal properties of pristine and irradiated γ-PVDF films were detailedly investigated by FTIR, XRD and DSC, respectively. DSC results show that two single and different melting endotherms from the successive heating curves correspond to γ-phase and α-phase, respectively. FTIR results show that the characteristic absorption peaks corresponding to γ-phase do not shift, and the C˭C bond formation is not significantly observed in the irradiated γ-PVDF films until above 30 kGy. XRD results show that the crystal form of γ-PVDF is not influenced significantly by irradiation. All PVDF films exhibit a single melting endotherm, irrespective of the irradiation dose. Two superpositioned crystallization peaks were observed for PVDF films only irradiated at high dose of 232 and 358 kGy, which can be related to the fractionated crystallization of irradiated PVDF. The dependences of thermal characteristics on the irradiation dose were detailedly investigated by DSC in this study.

  20. Mathematical modeling of wiped-film evaporators

    International Nuclear Information System (INIS)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes

  1. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chason, E.; Karlson, M. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Colin, J. J.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Magnfält, D.; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2016-04-14

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.

  2. Thermal Stability of Sulfonated Poly(Ether Ether Ketone) Films: on the Role of Protodesulfonation

    OpenAIRE

    Koziara, Beata; Kappert, Emiel; Ogieglo, Wojciech; Nijmeijer, Dorothea C.; Hempenius, Mark A.; Benes, Nieck Edwin

    2016-01-01

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material, most likely via a slight cross-linking by H-substitution. It is well-known that the sulfonate proton plays a major role in the desulfonation reactions, and exchanging the protons with other cations ...

  3. The Relationship between Nanocluster Precipitation and Thermal Conductivity in Si/Ge Amorphous Multilayer Films: Effects of Cu Addition

    Directory of Open Access Journals (Sweden)

    Ahmad Ehsan Mohd Tamidi

    2016-01-01

    Full Text Available We have used a molecular dynamics technique to simulate the relationship between nanocluster precipitation and thermal conductivity in Si/Ge amorphous multilayer films, with and without Cu addition. In the study, the Green-Kubo equation was used to calculate thermal conductivity in these materials. Five specimens were prepared: Si/Ge layers, Si/(Ge + Cu layers, (Si + Cu/(Ge + Cu layers, Si/Cu/Ge/Cu layers, and Si/Cu/Ge layers. The number of precipitated nanoclusters in these specimens, which is defined as the number of four-coordinate atoms, was counted along the lateral direction of the specimens. The observed results of precipitate formation were considered in relation to the thermal conductivity results. Enhancement of precipitation of nanoclusters by Cu addition, that is, densification of four-coordinate atoms, can prevent the increment of thermal conductivity. Cu dopant increases the thermal conductivity of these materials. Combining these two points, we concluded that Si/Cu/Ge is the best structure to improve the conversion efficiency of the Si/Ge amorphous multilayer films.

  4. Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq3 composite films.

    Science.gov (United States)

    Cuba, M; Muralidharan, G

    2015-11-01

    The 30 wt% of ZnO (weight percentage of ZnO has been optimised) incorporated tris- (8-hydroxyquinoline)aluminum (Alq3) has been synthesised and coated on to glass substrates using dip coating method. The structural and optical properties of the Alq3/ZnO composite film after thermal annealing from 50 to 300 °C insteps 50° has been studied and reported. XRD pattern reveals the presence of crystalline ZnO in all the annealed films. The films annealed above 150 °C reveal the presence of crystalline Alq3 along with crystalline ZnO. The FTIR spectra confirm the presence of hydroxyquinoline and ZnO vibration in all the annealed composite films. The composite films annealed above 150 °C show a partial sublimation and degradation of hydroxyquinoline compounds. The ZnO incorporated composite films (Alq3/ZnO) exhibit two emission peaks, one corresponding to ZnO at 487 nm and another at 513 nm due to Alq3. The films annealed at 200 °C exhibit maximum photoluminescence (PL) intensity than pristine film at 513 nm when excited at 390 nm.

  5. Fabrication and characterization of In2S3 thin films deposited by thermal evaporation technique

    International Nuclear Information System (INIS)

    Timoumi, A.; Bouzouita, H.; Kanzari, M.; Rezig, B.

    2005-01-01

    Indium sulphide, In 2 S 3 , thin films present an alternative to conventional CdS films as buffer layer for CIS-based thin film solar cells. The objective is to eliminate toxic cadmium for environmental reasons. Indium sulphide is synthesized and deposited by single source vacuum thermal evaporation method on glass substrates. The films are analyzed by X-ray diffraction (XRD) and spectrophotometric measurements. They have a good crystallinity, homogeneity and adhesion. The X-ray diffraction analysis confirmed the initial amorphous nature of the deposited InS film and phase transition into crystalline In 2 S 3 formed upon annealing at free air for 250 deg. C substrate temperature for 2 h. The optical constants of the deposited films were obtained from the analysis of the experimental recorded transmission and reflectance spectral data over the wavelength range of 300-1800 nm. We note that the films annealed at 250 deg. C for 2 h show a good homogeneity with 80% transmission. An analysis of the optical absorption data of the deposited films revealed an optical direct band gap energy in the range of 2.0-2.2 eV

  6. Thermal valorization of post-consumer film waste in a bubbling bed gasifier

    International Nuclear Information System (INIS)

    Martínez-Lera, S.; Torrico, J.; Pallarés, J.; Gil, A.

    2013-01-01

    Highlights: • Film waste from packaging is a common waste, a fraction of which is not recyclable. • Gasification can make use of the high energy value of the non-recyclable fraction. • This waste and two reference polymers were gasified in a bubbling bed reactor. • This experimental research proves technical feasibility of the process. • It also analyzes impact of composition and ER on the performance of the plant. - Abstract: The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m 3 and cold gas efficiencies up to 60%

  7. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  8. Experimental studies on the electronic structure of pyrite FeS2 films prepared by thermally sulfurizing iron films

    International Nuclear Information System (INIS)

    Zhang Hui; Wang Baoyi; Zhang Rengang; Zhang Zhe; Wei Long; Qian Haijie; Su Run; Kui Rexi

    2006-01-01

    Pyrite FeS 2 films have been prepared by thermally sulfurizing iron films deposited by magnetron sputtering. The electronic structures were studies by X-ray absorption near edge structure and X-ray photoemission spectrum. The results show that an S 3p valence band with relatively higher intensity compared to the calculation exists in 2-10 eV range and a high density below the Fermi level of Fe 3d states were detected. A second gap of 2.8 eV in the unoccupied density of states was found above the conduction band which was 2.4 eV by experimentally calculation. The difference between t 2g and e g which were formed in an octahedral crystal field was computed to be 2.1 eV. (authors)

  9. Influence of coil current modulation on polycrystalline diamond film deposition by irradiation of Ar/CH4/H2 inductively coupled thermal plasmas

    Science.gov (United States)

    Betsuin, Toshiki; Tanaka, Yasunori; Arai, T.; Uesugi, Y.; Ishijima, T.

    2018-03-01

    This paper describes the application of an Ar/CH4/H2 inductively coupled thermal plasma with and without coil current modulation to synthesise diamond films. Induction thermal plasma with coil current modulation is referred to as modulated induction thermal plasma (M-ITP), while that without modulation is referred to as non-modulated ITP (NM-ITP). First, spectroscopic observations of NM-ITP and M-ITP with different modulation waveforms were made to estimate the composition in flux from the thermal plasma by measuring the time evolution in the spectral intensity from the species. Secondly, we studied polycrystalline diamond film deposition tests on a Si substrate, and we studied monocrystalline diamond film growth tests using the irradiation of NM-ITP and M-ITP. From these tests, diamond nucleation effects by M-ITP were found. Finally, following the irradiation results, we attempted to use a time-series irradiation of M-ITP and NM-ITP for polycrystalline diamond film deposition on a Si substrate. The results indicated that numerous larger diamond particles were deposited with a high population density on the Si substrate by time-series irradiation.

  10. Thermally-driven H interaction with HfO2 films deposited on Ge(100) and Si(100)

    Science.gov (United States)

    Soares, G. V.; Feijó, T. O.; Baumvol, I. J. R.; Aguzzoli, C.; Krug, C.; Radtke, C.

    2014-01-01

    In the present work, we investigated the thermally-driven H incorporation in HfO2 films deposited on Si and Ge substrates. Two regimes for deuterium (D) uptake were identified, attributed to D bonded near the HfO2/substrate interface region (at 300 °C) and through the whole HfO2 layer (400-600 °C). Films deposited on Si presented higher D amounts for all investigated temperatures, as well as, a higher resistance for D desorption. Moreover, HfO2 films underwent structural changes during annealings, influencing D incorporation. The semiconductor substrate plays a key role in this process.

  11. BaSi2 formation mechanism in thermally evaporated films and its application to reducing oxygen impurity concentration

    Science.gov (United States)

    Hara, Kosuke O.; Yamamoto, Chiaya; Yamanaka, Junji; Arimoto, Keisuke; Nakagawa, Kiyokazu; Usami, Noritaka

    2018-04-01

    Thermal evaporation is a simple and rapid method to fabricate semiconducting BaSi2 films. In this study, to elucidate the BaSi2 formation mechanism, the microstructure of a BaSi2 epitaxial film fabricated by thermal evaporation has been investigated by transmission electron microscopy. The BaSi2 film is found to consist of three layers with different microstructural characteristics, which is well explained by assuming two stages of film deposition. In the first stage, BaSi2 forms through the diffusion of Ba atoms from the deposited Ba-rich film to the Si substrate while in the second stage, the mutual diffusion of Ba and Si atoms in the film leads to BaSi2 formation. On the basis of the BaSi2 formation mechanism, two issues are addressed. One is the as-yet unclarified reason for epitaxial growth. It is found important to quickly form BaSi2 in the first stage for the epitaxial growth of upper layers. The other issue is the high oxygen concentration in BaSi2 films around the BaSi2-Si interface. Two routes of oxygen incorporation, i.e., oxidation of the Si substrate surface and initially deposited Ba-rich layer by the residual gas, are identified. On the basis of this knowledge, oxygen concentration is decreased by reducing the holding time of the substrate at high temperatures and by premelting of the source. In addition, X-ray diffraction results show that the decrease in oxygen concentration can lead to an increased proportion of a-axis-oriented grains.

  12. Effect of thermal history on the structure of chemically and vapor deposited silver films on glass

    International Nuclear Information System (INIS)

    Shelby, J.E.; Nichols, M.C.; Smith, D.K. Jr.; Vitko, J. Jr.

    1981-01-01

    The observation of silver agglomeration in second surface mirrors used for solar applications has emphasized consideration of the effect of thermal history on the optical properties of mirrors. Thermal history effects may arise from the processing of mirrors, the application of protective coatings, or from outdoor exposure. Mirrors may be subject to elevated temperatures (T less than or equal to 400 0 C) for short periods of time, or to low temperatures (T less than or equal to 60 0 C) for long (less than or equal to 30 years) periods of time. Although a significant amount of work has been done on thermally driven agglomeration of silver films, most of these studies have been restricted to vapor deposited films on vitreous silica. Large area reflectors, such as those used in heliostats, will almost certainly be deposited by commercial chemical methods on substrates of soda-lime-silicate or other glasses which differ considerably from vitreous silica in composition and properties. The present study addresses the effect of this change in deposition technique and substrate on silver agglomeration. These problems were studied by optical and scanning electron microscopy, reflectometry, and x-ray diffraction. The results indicate that both the method used to deposit the silver and the type of glass affect the agglomeration process and the character of the reflective film

  13. Transformation of photoluminescence and Raman scattering spectra of Si-rich Al{sub 2}O{sub 3} films at thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Vergara Hernandez, E. [UPIITA-Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM-Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Jedrzejewski, J.; Balberg, I. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel)

    2014-11-15

    The effect of thermal annealing on optical properties of Al{sub 2}O{sub 3} films with the different Si contents was investigated using the photoluminescence and Raman scattering methods. Si-rich Al{sub 2}O{sub 3} films were prepared by RF magnetron co-sputtering of Si and Al{sub 2}O{sub 3} targets on long quartz glass substrates. Photoluminescence (PL) spectra of as grown Si-rich Al{sub 2}O{sub 3} films are characterized by four PL bands with the peak positions at 2.90, 2.70, 2.30 and 1.45 eV. The small intensity Raman peaks related to the scattering in the amorphous Si phase has been detected in as grown films as well. Thermal annealing at 1150 °C for 90 min stimulates the formation of Si nanocrystals (NCs) in the film area with the Si content exceeded 50%. The Raman peak related to the scattering on optic phonons in Si NCs has been detected for this area. After thermal annealing the PL intensity of all mentioned PL bands decreases in the film area with smaller Si content (≤50%) and increases in the film area with higher Si content (≥50%). Simultaneously the new PL band with the peak position at 1.65 eV appears in the film area with higher Si content (≥50%). The new PL band (1.65 eV) is attributed to the exciton recombination inside of small size Si NCs (2.5–2.7 nm). In bigger size Si NCs (3.5–5.0 nm) the PL band at 1.65 eV has been not detected due to the impact, apparently, of elastic strain appeared at the Si/Al{sub 2}O{sub 3} interface. Temperature dependences of PL spectra for the Si-rich Al{sub 2}O{sub 3} films have been studied in the range of 10–300 K with the aim to reveal the mechanism of recombination transitions for the mentioned above PL bands 2.90, 2.70, 2.30 and 1.45 eV in as grown films. The thermal activation of PL intensity and permanent PL peak positions in the temperature range 10–300 K permit to assign these PL bands to defect related emission in Al{sub 2}O{sub 3} matrix.

  14. The anomalous low temperature resistivity of thermally evaporated α-Mn thin film

    International Nuclear Information System (INIS)

    Ampong, F.K.; Boakye, F.; Nkum, R.K.

    2010-01-01

    Electrical resistivity measurements have been carried out on thermally evaporated α-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5x10 -6 Torr. The results show a resistance minimum, a notable characteristic of α-Mn but at a (rather high) temperature of 194±1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 μΩm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.

  15. The anomalous low temperature resistivity of thermally evaporated alpha-Mn thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ampong, F.K., E-mail: kampxx@yahoo.co [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); Boakye, F.; Nkum, R.K. [Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana)

    2010-08-15

    Electrical resistivity measurements have been carried out on thermally evaporated alpha-Mn thin film between 300 and 1.4 K using the van der Pauw four probe technique. The film was grown on a glass substrate held at a temperature of 373 K, in an ambient pressure of 5x10{sup -6} Torr. The results show a resistance minimum, a notable characteristic of alpha-Mn but at a (rather high) temperature of 194+-1 K. Below the resistivity maximum which corresponds to 70 K, the resistivity drops by only 0.02 muOMEGAm indicating a rather short range magnetic ordering. The low temperature results show a tendency towards saturation of the resistivity as the temperature approaches zero suggesting a Kondo scattering.

  16. Thermal stability of atomic layer deposition Al2O3 film on HgCdTe

    Science.gov (United States)

    Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.

    2015-06-01

    Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.

  17. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  18. Comparison of structural properties of thermally evaporated CdTe thin films on different substrates

    International Nuclear Information System (INIS)

    Tariq, G.H.; Anis-ur-Rehman, M.

    2011-01-01

    The direct energy band gap in the range of 1.5 eV and the high absorption coefficient (105 cm/sup -1/) makes Cadmium Telluride (CdTe) a suitable material for fabrication of thin film solar cells. Thin film solar cells based on CdTe (1 cm area) achieved efficiency of 15.6% on a laboratory scale. CdTe thin films were deposited by thermal evaporation technique under vacuum 2 X 10/sup -5/mbar on glass and stainless steel (SS) substrates. During deposition substrates temperature was kept same at 200 deg. C for all samples. The structural properties were determined by the X-ray Diffraction (XRD) patterns. All samples exhibit polycrystalline nature. Dependence of different structural parameters such as lattice parameter, micro strain, and grain size and dislocation density on thickness was studied. Also the influence of the different substrates on these parameters was investigated. The analysis showed that the preferential orientation of films was dependent on the substrate type. (author)

  19. Enhanced Charge Extraction of Li-Doped TiO₂ for Efficient Thermal-Evaporated Sb₂S₃ Thin Film Solar Cells.

    Science.gov (United States)

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-02-28

    We provided a new method to improve the efficiency of Sb₂S₃ thin film solar cells. The TiO₂ electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb₂S₃ solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO₂ films. Compared with the undoped TiO₂, Li-doped mesoporous TiO₂ dramatically improved the photo-voltaic performance of the thermal-evaporated Sb₂S₃ thin film solar cells, with the average power conversion efficiency ( PCE ) increasing from 1.79% to 4.03%, as well as the improved open-voltage ( V oc ), short-circuit current ( J sc ) and fill factors. The best device based on Li-doped TiO₂ achieved a power conversion efficiency up to 4.42% as well as a V oc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb₂S₃ solar cells. This study showed that Li-doping on TiO₂ can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb₂S₃-based solar cells.

  20. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  1. Metal Chloride Induced Formation of Porous Polyhydroxybutyrate (PHB) Films: Morphology, Thermal Properties and Crystallinity

    Science.gov (United States)

    Tan, W. L.; Yaakob, N. N.; Zainal Abidin, A.; Abu Bakar, M.; Abu Bakar, N. H. H.

    2016-06-01

    Polyhydroxybutyrate (PHB) films with highly porous structures were synthesized using a one phase system comprising of metal chloride/methanol/PHB/chloroform (MCl2/CH3OH/PHB/CHCl3). SEM analyses confirmed that the MCl2 (where M = Cu2+ or Ni2+) induced porous structures with pore sizes ranging from 0.3 - 2.0 μm. The average pore size increased with the increasing MCl2 content. There existed weak physical interactions between the PHB chains and MCl2 as revealed by FTIR and NMR spectroscopies. The residue of MCl2 in the porous PHB film does not exert significant influence on the thermal stability of PHB. Nevertheless, the crystallinity of the prepared film is enhanced, as MCl2 acts as the nucleation sites to promote the growth of spherullites.

  2. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  3. Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity.

    Science.gov (United States)

    Li, Jihui; Li, Yongshen; Song, Yunna; Niu, Shuai; Li, Ning

    2017-11-01

    In this paper, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) was synthesized through esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation and characterized, and PVA/PA polymer film was prepared by PVA/PA polymer and characterized, and the influence of dosage of PA on the thermal stability, mechanical properties and surface resistivity of PVA/PA polymer film were researched, and the influence of sonication time on the mechanical properties of PVA/PA polymer film was investigated. Based on those, it was concluded that the hydroxyl group on the chain of PVA and the phosphonic group on PA were connected together in the form of phosphonate bond, and the hydroxyl group on the chain of PVA were connected together in the form of ether bond after the intermolecular dehydration; in the meantime, it was also confirmed that PVA/PA polymer film prepared from 1.20mL of PA not only had the high thermal stability and favorable ductility but also the low surface resistivity in comparison with PVA/PA polymer film with 0.00mL of PA, and the ductility of PVA/PA polymer film was very sensitive to the sonication time. Copyright © 2017. Published by Elsevier B.V.

  4. Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tiggelaar, R.M. [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Thakur, D.B.; Nair, H.; Lefferts, L.; Seshan, K. [Catalytic Processes and Materials, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Gardeniers, J.G.E., E-mail: j.g.e.gardeniers@utwente.nl [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-05-01

    Nickel and other metal nanoparticles are known to be active as catalysts in the synthesis of carbon nanofibers. In this paper we investigate how dewetting and break-up of nickel thin films depends on film thickness, film–substrate interaction and pretreatment conditions. This is evaluated for films evaporated on oxidized silicon and fused silica substrates with or without tantalum coating, which were subsequently exposed to different pretreatment atmospheres (vacuum, nitrogen, air and hydrogen; 1 h, 650 °C). Atomic force microscopy, scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the films. Pretreated Ni films were subjected to a thermal catalytic chemical vapor deposition procedure with brief ethylene exposures (0.5–3 min, 635 °C). It was found that only on the spherical nanoparticles originating from a hydrogen pretreatment of a Ni film with Ta adhesion layer, homogeneously distributed, randomly-oriented, well-attached, and semi-crystalline carbon nanofibers be synthesized. - Highlights: • On the formation of nanoparticles required for carbon nanofiber (CNF) synthesis • Various evaporated thin films on oxidized silicon and fused silica: Ni and Ni/Ta • Pretreatment of nickel-based thin films in vacuum, nitrogen, air and hydrogen • Only on reduced Ni/Ta fast – within 3 min – initiation of CNF nucleation and growth.

  5. Reversible p-type conductivity in H passivated nitrogen and phosphorous codoped ZnO thin films using rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mannam, Ramanjaneyulu, E-mail: ramu.nov9@gmail.com [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India); Kumar, E. Senthil [SRM Research Institute, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603203, Tamil Nadu (India); DasGupta, Nandita [Microelectronics and MEMS Laboratory, Electrical Engineering Department, Indian Institute of Technology Madras, Chennai 600036 (India); Ramachandra Rao, M.S., E-mail: msrrao@iitm.ac.in [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai 600036 (India)

    2017-04-01

    Highlights: • Electrical transport measurements revel that the (P, N) codoped ZnO thin films exhibited change in conductivity from p-type to n-type over a span of 120 days. • Hydrogen and carbon are found to be the main unintentional impurities in n-type (P, N) codoped ZnO thin films. • Rapid thermal annealing has been used to remove both H and C from the films. • Carbon can be removed at an annealing temperature of 600 °C, whereas, the dissociation of N−H complex takes place only at 800 °C. • The n-type (P, N) codoped ZnO thin film exhibited change in conductivity to p-type at an annealing temperature of 800 °C. - Abstract: We demonstrate reversible p-type nature of pulsed laser deposited (P, N) codoped ZnO thin films using rapid thermal annealing process. As grown thin films exhibited change in conductivity from p to n-type over a span of 120 days. Non-annealed n-type thin films contain unintentional donor impurities such as hydrogen and carbon. X-ray photoelectron spectroscopy and Raman measurements conclusively show that hydrogen passivates nitrogen acceptors by forming N−H complex. Carbon can be annealed out at 600 °C, whereas, the dissociation of N−H complex takes place at 800 °C. The films revert its p-type nature at an annealing temperature of 800 °C.

  6. Free convection film flows and heat transfer laminar free convection of phase flows and models for heat-transfer analysis

    CERN Document Server

    Shang, De-Yi

    2012-01-01

    This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...

  7. Strongly anisotropic thermal conductivity and adequate breathability of bilayered films for heat management of on-skin electronics

    Science.gov (United States)

    Zhou, Tianle; Wei, Hao; Tan, Huaping; Wang, Xin; Zeng, Haibo; Liu, Xiaoheng; Nagao, Shijo; Koga, Hirotaka; Nogi, Masaya; Sugahara, Tohru; Suganuma, Katsuaki

    2018-07-01

    Thin-film wearable electronics are required to be directly laminated on to human skin for reliable, sensitive bio-sensing but with minimal irritation to the user after long-time use. Excellent heat management films with strongly anisotropic thermal conductivity (K) and adequate breathability are increasingly desirable for shielding the skin from heating while allowing the skin to breathe properly. Here, interfacial self-assembly of a graphene oxide (GO) film covering an ambient-dried bacterial cellulose aerogel (AD-BCA) film followed by laser reduction was proposed to prepare laser-reduced GO (L-rGO)/AD-BCA bilayered films. The AD-BCA substrate provides low cross-plane K (K ⊥  ≈  0.052 W mK‑1), high breathability, and high compressive and tensile resistance by ‘partially’ inheriting the pore structure from bacterial cellulose (BC) gel. The introduction of an upper L-rGO film, which is only 0.31 wt% content, dramatically increases the in-plane K (K // ) from 0.3 W mK‑1 in AD-BCA to 10.72 W mK‑1 owing to the highly in-plane oriented, continuous, uniform assembling geometry of the GO film; while K ⊥ decreases to a lower value of 0.033 W mK‑1, mainly owing to the air pockets between L-rGO multilayers caused by the laser reduction. The bilayered films achieve a K // /K ⊥ of 325, which is substantially larger even than that of graphite and similar polymer composites. They permit high transmission rates for water vapor (416.78 g/m2/day, >204 g/m2/day of normal skin) and O2 (449.35 cm3/m2/day). The combination of strongly anisotropic thermal conductivity and adequate breathability facilitates applications in heat management in on-skin electronics.

  8. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Science.gov (United States)

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    International Nuclear Information System (INIS)

    Bhattacharya, Debarati; Rao, T.V. Chandrasekhar; Bhushan, K.G.; Ali, Kawsar; Debnath, A.; Singh, S.; Arya, A.; Bhattacharya, S.; Basu, S.

    2015-01-01

    Monophasic and homogeneous Ni 10 Zr 7 nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni 10 Zr 7 alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize. • Quantitative

  10. Thermal evolution of nanocrystalline co-sputtered Ni–Zr alloy films: Structural, magnetic and MD simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debarati, E-mail: debarati@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rao, T.V. Chandrasekhar; Bhushan, K.G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ali, Kawsar [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Debnath, A. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Arya, A. [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bhattacharya, S. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Basu, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-11-15

    Monophasic and homogeneous Ni{sub 10}Zr{sub 7} nanocrystalline alloy films were successfully grown at room temperature by co-sputtering in an indigenously developed three-gun DC/RF magnetron sputtering unit. The films could be produced with long-range crystallographic and chemical order in the alloy, thus overcoming the widely acknowledged inherent proclivity of the glass forming Ni–Zr couple towards amorphization. Crystallinity of these alloys is a desirable feature with regard to improved efficacy in applications such as hydrogen storage, catalytic activity and nuclear reactor engineering, to name a few. Thermal stability of this crystalline phase, being vital for transition to viable applications, was investigated through systematic annealing of the alloy films at 473 K, 673 K and 923 K for various durations. While the films were stable at 473 K, the effect of annealing at 673 K was to create segregation into nanocrystalline Ni (superparamagnetic) and amorphous Ni + Zr (non-magnetic) phases. Detailed analyses of the physical and magnetic structures before and after annealing were performed through several techniques effectual in analyzing stratified configurations and the findings were all consistent with each other. Polarized neutron and X-ray reflectometry, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectroscopy and X-ray photoelectron spectroscopy were used to gauge phase separation at nanometer length scales. SQUID based magnetometry was used to investigate macroscopic magnetic properties. Simulated annealing performed on this system using molecular dynamic calculations corroborated well with the experimental results. This study provides a thorough understanding of the creation and thermal evolution of a crystalline Ni–Zr alloy. - Highlights: • Nanocrystalline Ni{sub 10}Zr{sub 7} alloy thin films deposited successfully by co-sputtering. • Creation of a crystalline alloy in a binary system with a tendency to amorphize.

  11. Modeling of thermal, electronic, hydrodynamic, and dynamic deposition processes for pulsed-laser deposition of thin films

    International Nuclear Information System (INIS)

    Liu, C.L.; LeBoeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Chen, K.R.; Puretzky, A.A.

    1994-11-01

    Various physical processes during laser ablation of solids for pulsed-laser deposition (PLD) are studied using a variety of computational techniques. In the course of the authors combined theoretical and experimental effort, they have been trying to work on as many aspects of PLD processes as possible, but with special focus on the following areas: (a) the effects of collisional interactions between the particles in the plume and in the background on the evolving flow field and on thin film growth, (b) interactions between the energetic particles and the growing thin films and their effects on film quality, (c) rapid phase transformations through the liquid and vapor phases under possibly nonequilibrium thermodynamic conditions induced by laser-solid interactions, (d) breakdown of the vapor into a plasma in the early stages of ablation through both electronic and photoionization processes, (c) hydrodynamic behavior of the vapor/plasma during and after ablation. The computational techniques used include finite difference (FD) methods, particle-in-cell model, and atomistic simulations using molecular dynamics (MD) techniques

  12. Effects of Doping Concentration on the Structural and Optical Properties of Spin-Coated In-doped ZnO Thin Films Grown on Thermally Oxidized ZnO Film/ZnO Buffer Layer/Mica Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byunggu; Leem, Jae-Young [Inje University, Gimhae (Korea, Republic of)

    2017-01-15

    ZnO buffer layers were deposited on mica substrates using a sol-gel spin coating method. Then, a thin film of metallic Zn was deposited onto the ZnO buffer layer/mica substrate using a thermal evaporator, and the deposited Zn thin films were then thermally oxidized in a furnace at 500 ℃ for 2 h in air. Finally, In-doped ZnO (IZO) thin films with different In concentrations were grown on the oxidized ZnO film/ZnO buffer layer/mica substrates using the sol-gel spin-coating method. All the IZO films showed ZnO peaks with similar intensities. The full width at half maximum values of the ZnO (002) peak for the IZO thin films decreased with an increase in the In concentration to 1 at%, because the crystallinity of the films was enhanced. However, a further increase in the In concentration caused the crystal quality to degrade. This might be attributed to the fact that the higher In doping resulted in an increase in the number of ionized impurities. The Urbach energy (EU) values of the IZO thin film decreased with an increase in the In concentration to 1 at % because of the enhanced crystal quality of the films. The EU values for the IZO thin films increased with the In concentration from 1 at%to 3 at%, reflecting the broadening of localized band tail state near the conduction band edge of the films.

  13. Effects of Doping Concentration on the Structural and Optical Properties of Spin-Coated In-doped ZnO Thin Films Grown on Thermally Oxidized ZnO Film/ZnO Buffer Layer/Mica Substrate

    International Nuclear Information System (INIS)

    Kim, Byunggu; Leem, Jae-Young

    2017-01-01

    ZnO buffer layers were deposited on mica substrates using a sol-gel spin coating method. Then, a thin film of metallic Zn was deposited onto the ZnO buffer layer/mica substrate using a thermal evaporator, and the deposited Zn thin films were then thermally oxidized in a furnace at 500 ℃ for 2 h in air. Finally, In-doped ZnO (IZO) thin films with different In concentrations were grown on the oxidized ZnO film/ZnO buffer layer/mica substrates using the sol-gel spin-coating method. All the IZO films showed ZnO peaks with similar intensities. The full width at half maximum values of the ZnO (002) peak for the IZO thin films decreased with an increase in the In concentration to 1 at%, because the crystallinity of the films was enhanced. However, a further increase in the In concentration caused the crystal quality to degrade. This might be attributed to the fact that the higher In doping resulted in an increase in the number of ionized impurities. The Urbach energy (EU) values of the IZO thin film decreased with an increase in the In concentration to 1 at % because of the enhanced crystal quality of the films. The EU values for the IZO thin films increased with the In concentration from 1 at%to 3 at%, reflecting the broadening of localized band tail state near the conduction band edge of the films.

  14. Improvement of thermal stability of nano-granular TMR films by using a Mg-Al-O insulator matrix

    Science.gov (United States)

    Kanie, S.; Koyama, S.

    2018-05-01

    A new metal-insulator nano-granular tunneling magnetoresistance (TMR) film made of (Fe-Co)-(Mg-Al-O) has been investigated. It is confirmed that the film has granular structure in which crystal Fe-Co granules are surrounded by an amorphous Mg-Al-O matrix. A large MR ratio of 11.8 % at room temperature is observed for a 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film annealed at 395 °C. The electrical resistivity increases rapidly by annealing at above the changing point (500 °C). The changing point is about 300 °C higher than that of conventional (Fe-Co)-(Mg-F) nano-granular TMR films. The 42 vol.%(Fe0.6Co0.4)-(Mg-Al-O) film also exhibits less degradation in the MR ratio at high annealing temperatures such as 600 °C. These results suggest the (Fe-Co)-(Mg-Al-O) film is superior to the (Fe-Co)-(Mg-F) film in thermal stability.

  15. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.

    Science.gov (United States)

    Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J

    2000-01-01

    We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.

  16. Magneto-transport properties of oriented Mn{sub 2}CoAl films sputtered on thermally oxidized Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, G. Z.; Du, Y.; Zhang, X. M.; Liu, E. K.; Wang, W. H., E-mail: wenhong.wang@iphy.ac.cn; Wu, G. H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, H. G. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2014-06-16

    Spin gapless semiconductors are interesting family of materials by embracing both magnetism and semiconducting due to their unique band structure. Its potential application in future spintronics requires realization in thin film form. In this Letter, we report fabrication and transport properties of spin gapless Mn{sub 2}CoAl films prepared on thermally oxidized Si substrates by magnetron sputtering deposition. The films deposited at 673 K are well oriented to (001) direction and display a uniform-crystalline surface. Magnetotransport measurements on the oriented films reveal a semiconducting-like resistivity, small anomalous Hall conductivity, and linear magnetoresistance representative of the transport signatures of spin gapless semiconductors. The magnetic properties of the films have also been investigated and compared to that of bulk Mn{sub 2}CoAl, showing small discrepancy induced by the composition deviation.

  17. Linear Coefficient of Thermal Expansion of Porous Anodic Alumina Thin Films from Atomic Force Microscopy

    OpenAIRE

    Zhang, Richard X; Fisher, Timothy; Raman, Arvind; Sands, Timothy D

    2009-01-01

    In this article, a precise and convenient technique based on the atomic force microscope (AFM) is developed to measure the linear coefficient of thermal expansion of a porous anodic alumina thin film. A stage was used to heat the sample from room temperature up to 450 K. Thermal effects on AFM probes and different operation modes at elevated temperatures were also studied, and a silicon AFM probe in the tapping mode was chosen for the subsequent measurements due to its temperature insensitivi...

  18. Thermal oxidation effect on structural and optical properties of heavily doped phosphorus polycrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Birouk, B.; Madi, D. [Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Cite Ouled Aissa, BP 98, Jijel (Algeria)

    2011-08-15

    The study reported in this paper contributes to better understanding the thermal oxidation effect on structural and optical properties of polycrystalline silicon heavily in situ P-LPCVD films. The deposits, doped at levels 3 x 10{sup 19} and 1.6 x 10{sup 20} cm{sup -3}, have been elaborated from silane decomposition (400 mTorrs, 605 C) on monosilicon substrate oriented left angle 111 right angle. The thermal oxidation was performed at temperatures: 850 C during 1 hour, 1000, 1050, and 1100 C during 15 minutes. The XRD spectra analysis pointed out significant left angle 111 right angle texture evolution, while in the case of left angle 220 right angle and left angle 311 right angle textures, the intensities are practically invariant (variations fall in the uncertainty intervals). The optical characterizations showed that refractive index and absorption coefficient are very sensitive to the oxidation treatment, mainly when the doping level is not very high. We think that atomic oxygen acts as defects passivating agent leading to carriers' concentration increasing. Besides, the optical behavior is modeled in visible and near infrared, by a seven-term polynomial function n {sup 2}=f({lambda} {sup 2}), with alternate signs, instead of theoretically unlimited terms number from Drude's model. It has been shown that fitting parameters fall on Gaussian curves like they do in the theoretical model. (orig.)

  19. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    International Nuclear Information System (INIS)

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L.S.; Tavolaro, A.

    2016-01-01

    Highlights: • Graphene was exfoliated in liquid phase also in the presence of zeolite 4A. • Films were obtained by drop-casting. • SEM, Raman, low-frequency noise and thermal electric measurements show that the presence of zeolite improves the quality of the FLG films. - Abstract: In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al 2 O 3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm 2 . The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  20. Electrical characteristics and preparation of (Ba0.5Sr0.5)TiO3 films by spray pyrolysis and rapid thermal annealing

    International Nuclear Information System (INIS)

    Koo, Horngshow; Ku, Hongkou; Kawai, Tomoji; Chen Mi

    2007-01-01

    Functional films of (Ba 0.5 Sr 0.5 )TiO 3 on Pt (1000 A)/Ti (100 A)/SiO 2 (2000 A)/Si substrates are prepared by spray pyrolysis and subsequently rapid thermal annealing. Barium nitrate, strontium nitrate and titanium isopropoxide are used as starting materials with ethylene glycol as solvent. For (Ba 0.5 Sr 0.5 )TiO 3 functional thin film, thermal characteristics of the precursor powder scratched from as-sprayed films show a remarkable peak around 300-400degC and 57.7% weight loss up to 1000degC. The as-sprayed precursor film with coffee-like color and amorphous-like phase is transformed into the resultant film with white, crystalline perovskite phase and characteristic peaks (110) and (100). The resultant films show correspondent increases of dielectric constant, leakage current and dissipation factor with increasing annealing temperatures. The dielectric constant is 264 and tangent loss is 0.21 in the resultant films annealed at 750degC for 5 min while leakage current density is 1.5x10 -6 A/cm 2 in the film annealed at 550degC for 5 min. (author)

  1. Stress and phase changes in a low-thermal-expansion Al-3at.%Ge alloy film on oxidized silicon wafers

    International Nuclear Information System (INIS)

    Tu, K.N.; Rodbell, K.P.; Herd, S.R.; Mikalsen, D.J.

    1993-01-01

    The alloy of Al-3at.%Ge has been found to have a low thermal expansion and contraction in the temperature range of room temperature to 400 C. The reason for the low thermal contraction (or expansion) is the precipitation (or dissolution) of Ge in the alloy. The Ge precipitates have a diamond structure in which each Ge atom occupies a much larger atomic volume than a Ge atom dissolved substitutionally in Al. The volume difference compensates for the effect of thermal expansion and contraction with changing temperature which in turn reduces the thermal stress due to thermal mismatch. The technique of wafer bending was used to determine the stress of the alloy film on oxidized silicon wafers upon thermal cycling; indeed, it is much lower than that of pure Al on identical wafers. The morphology of precipitation and dissolution of Ge in Al has been studied by transmission and scanning electron microscopy. It is found that the precipitation follows a discontinuous mode and occurs predominantly along grain boundaries. In dissolving the Ge precipitates into Al, voids are left behind because of the volume difference. It is proposed that this may explain the enhancement of nucleation of voids in the alloy film upon thermal cycling. (orig.)

  2. The influences of a novel anti-adhesion device, thermally cross-linked gelatin film on peritoneal dissemination of tumor cells: The in vitro and in vivo experiments using murine carcinomatous peritonitis models.

    Science.gov (United States)

    Miyamoto, Hiroe; Tsujimoto, Hiroyuki; Horii, Tsunehito; Ozamoto, Yuki; Ueda, Joe; Takagi, Toshitaka; Saitoh, Naoto; Hagiwara, Akeo

    2017-10-10

    To create anti-adhesive materials to be more effective and safer, we developed a thermally cross-linked gelatin film that showed superior anti-adhesive effects with excellent peritoneal regeneration. However, it may act as a convenient scaffold for tumor cell growth, thereby accelerating peritoneal dissemination when used in surgery for abdominal tumors. In this study, we tried to clarify this issue using mouse carcinomatous peritonitis models. First, we examined the in vitro tumor cell growth of mouse B16 melanoma or Colon26 cells on the gelatin film or the conventional hyarulonate/carboxymethylcellulose film. Tumor cell growth on each film was significantly lower than that of the control (no film). Next, we conducted the following in vivo experiments: After the parietal peritoneum was partially removed and covered with each film or without any film, mice were inoculated intraperitoneally with B16 melanoma or Colon26/Nluc cells expressing NanoLuc luciferase gene. At 7 days after the operation, we measured the weight of B16 melanoma tumors or the NanoLuc activity of Colon26/Nluc cells using in vivo imaging at the injured sites. There were no significant differences in the weight of the tumors and the NanoLuc activity among the three groups. We also observed the survival time of mice receiving the same operation and treatments. There was no significant difference in the survival time among the three groups. These results suggest that the gelatin film will likely not accelerate peritoneal dissemination as a convenient scaffold for tumor cell growth when used in surgery for abdominal tumors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  3. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    International Nuclear Information System (INIS)

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-01

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO 2 ), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide

  4. Determination of structural and mechanical properties, diffractometry, and thermal analysis of chitosan and hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol

    Directory of Open Access Journals (Sweden)

    Jefferson Rotta

    2011-06-01

    Full Text Available In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v in water and chitosan (2% w/v in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100 of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM, differential scanning calorimetry (DSC, and thermal gravimetric analysis (TGA. The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.

  5. Human Thermal Model Evaluation Using the JSC Human Thermal Database

    Science.gov (United States)

    Bue, Grant; Makinen, Janice; Cognata, Thomas

    2012-01-01

    Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.

  6. Effect of grain alignment on interface trap density of thermally oxidized aligned-crystalline silicon films

    Science.gov (United States)

    Choi, Woong; Lee, Jung-Kun; Findikoglu, Alp T.

    2006-12-01

    The authors report studies of the effect of grain alignment on interface trap density of thermally oxidized aligned-crystalline silicon (ACSi) films by means of capacitance-voltage (C-V) measurements. C-V curves were measured on metal-oxide-semiconductor (MOS) capacitors fabricated on ⟨001⟩-oriented ACSi films on polycrystalline substrates. From high-frequency C-V curves, the authors calculated a decrease of interface trap density from 2×1012to1×1011cm-2eV-1 as the grain mosaic spread in ACSi films improved from 13.7° to 6.5°. These results demonstrate the effectiveness of grain alignment as a process technique to achieve significantly enhanced performance in small-grained (⩽1μm ) polycrystalline Si MOS-type devices.

  7. A simple model for the prediction of thermal conductivity of Ge2Sb2Te5 thin film

    International Nuclear Information System (INIS)

    Jin, Jae Sik

    2013-01-01

    A modified version of the Mayadas-Shatzkes (MS) model is proposed for the prediction of the thermal conductivity of both amorphous and crystalline of Ge 2 Sb 2 Te 5 (GST) phase-change materials at room temperature. The structural parameters of the original MS model are extended to describe the additional disorder scattering effects caused by the ternary components of the GST. The effect of disorder due to the alloy composition on the grain boundary scattering can be interpreted with the aid of thermal models. It is also found that for all phases of GST, the contribution of disorder scattering to the thermal resistance is nearly uniform. This is consistent with the fact that the GST phase changes without any destruction of the structural basis such as the building blocks.

  8. Influence of thermal treatment in N{sub 2} atmosphere on chemical, microstructural and optical properties of indium tin oxide and nitrogen doped indium tin oxide rf-sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stroescu, H.; Anastasescu, M.; Preda, S.; Nicolescu, M.; Stoica, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Stefan, N. [National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, RO-77125, Bucharest-Magurele (Romania); Kampylafka, V.; Aperathitis, E. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Gartner, M., E-mail: mgartner@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2013-08-31

    We report the influence of the normal thermal treatment (TT) and of rapid thermal annealing (RTA) on the microstructural, optical and electrical properties of indium tin oxide (ITO) and nitrogen doped indium tin oxide (ITO:N) thin films. The TT was carried out for 1 h at 400 °C and the RTA for 1 min up to 400 °C, both in N{sub 2} atmosphere. The ITO and ITO:N films were deposited by reactive sputtering in Argon, and respectively Nitrogen plasma, on Si with (100) and (111) orientation. The present study brings data about the microstructural and optical properties of ITO thin films with thicknesses around 300–400 nm. Atomic Force Microscopy analysis showed the formation of continuous and homogeneous films, fully covered by quasi-spherical shaped particles, with higher roughness values on Si(100) as compared to Si(111). Spectroscopic ellipsometry allowed the determination of film thickness, optical band gap as well as of the dispersion curves of n and k optical constants. X-ray diffraction analysis revealed the presence of diffraction peaks corresponding to the same nominal bulk composition of ITO, but with different intensities and preferential orientation depending on the substrate, atmosphere of deposition and type of thermal treatment. - Highlights: ► Stability of the films can be monitored by experimental ellipsometric spectra. ► The refractive index of indium tin oxide film on 0.3–30 μm range is reported. ► Si(100) substrate induces rougher film surfaces than Si(111). ► Rapid thermal annealing and normal thermal treatment lead to stable conductive film. ► The samples have a higher preferential orientation after rapid thermal annealing.

  9. Preparation, Characterization and Thermal Degradation of Polyimide (4-APS/BTDA/SiO2 Composite Films

    Directory of Open Access Journals (Sweden)

    Arash Dehzangi

    2012-04-01

    Full Text Available Polyimide/SiO2 composite films were prepared from tetraethoxysilane (TEOS and poly(amic acid (PAA based on aromatic diamine (4-aminophenyl sulfone (4-APS and aromatic dianhydride (3,3,4,4-benzophenonetetracarboxylic dianhydride (BTDA via a sol-gel process in N-methyl-2-pyrrolidinone (NMP. The prepared polyimide/SiO2 composite films were characterized using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM and thermogravimetric analysis (TGA. The FTIR results confirmed the synthesis of polyimide (4-APS/BTDA and the formation of SiO2 particles in the polyimide matrix. Meanwhile, the SEM images showed that the SiO2 particles were well dispersed in the polyimide matrix. Thermal stability and kinetic parameters of the degradation processes for the prepared polyimide/SiO2 composite films were investigated using TGA in N2 atmosphere. The activation energy of the solid-state process was calculated using Flynn–Wall–Ozawa’s method without the knowledge of the reaction mechanism. The results indicated that thermal stability and the values of the calculated activation energies increased with the increase of the TEOS loading and the activation energy also varied with the percentage of weight loss for all compositions.

  10. In situ monitoring of thermal crystallization of ultrathin tris(8-hydroxyquinoline) aluminum films using surface-enhanced Raman scattering.

    Science.gov (United States)

    Muraki, Naoki

    2014-01-01

    Thermal crystallization of 3, 10, and 60 nm-thick tris(8-hydroxyquinoline)aluminum (Alq3) films is studied using surface-enhanced Raman scattering with a constant heating rate. An abrupt higher frequency shift of the quinoline-stretching mode is found to be an indication of a phase transition of Alq3 molecules from amorphous to crystalline. While the 60 nm-thick film shows the same crystallization temperature as a bulk sample, the thinner films were found to have a lower crystallization temperature and slower rate of crystallization. Non-isothermal kinetics analysis is performed to quantify kinetic properties such as the Avrami exponent constants and crystallization rates of ultrathin Alq3 films.

  11. Preparation of InSe Thin Films by Thermal Evaporation Method and Their Characterization: Structural, Optical, and Thermoelectrical Properties

    Directory of Open Access Journals (Sweden)

    Sarita Boolchandani

    2018-01-01

    Full Text Available The indium selenium (InSe bilayer thin films of various thickness ratios, InxSe(1-x (x = 0.25, 0.50, 0.75, were deposited on a glass substrate keeping overall the same thickness of 2500 Ǻ using thermal evaporation method under high vacuum atmosphere. Electrical, optical, and structural properties of these bilayer thin films have been compared before and after thermal annealing at different temperatures. The structural and morphological characterization was done using XRD and SEM, respectively. The optical bandgap of these thin films has been calculated by Tauc’s relation that varies within the range of 1.99 to 2.05 eV. A simple low-cost thermoelectrical power measurement setup is designed which can measure the Seebeck coefficient “S” in the vacuum with temperature variation. The setup temperature variation is up to 70°C. This setup contains a Peltier device TEC1-12715 which is kept between two copper plates that act as a reference metal. Also, in the present work, the thermoelectric power of indium selenide (InSe and aluminum selenide (AlSe bilayer thin films prepared and annealed in the same way is calculated. The thermoelectric power has been measured by estimating the Seebeck coefficient for InSe and AlSe bilayer thin films. It was observed that the Seebeck coefficient is negative for InSe and AlSe thin films.

  12. Thermal fatigue. Materials modelling

    International Nuclear Information System (INIS)

    Siegele, D.; Fingerhuth, J.; Mrovec, M.

    2012-01-01

    In the framework of the ongoing joint research project 'Thermal Fatigue - Basics of the system-, outflow- and material-characteristics of piping under thermal fatigue' funded by the German Federal Ministry of Education and Research (BMBF) fundamental numerical and experimental investigations on the material behavior under transient thermal-mechanical stress conditions (high cycle fatigue V HCF and low cycle fatigue - LCF) are carried out. The primary objective of the research is the further development of simulation methods applied in safety evaluations of nuclear power plant components. In this context the modeling of crack initiation and growth inside the material structure induced by varying thermal loads are of particular interest. Therefore, three scientific working groups organized in three sub-projects of the joint research project are dealing with numerical modeling and simulation at different levels ranging from atomistic to micromechanics and continuum mechanics, and in addition corresponding experimental data for the validation of the numerical results and identification of the parameters of the associated material models are provided. The present contribution is focused on the development and experimental validation of material models and methods to characterize the damage evolution and the life cycle assessment as a result of thermal cyclic loading. The individual purposes of the subprojects are as following: - Material characterization, Influence of temperature and surface roughness on fatigue endurances, biaxial thermo-mechanical behavior, experiments on structural behavior of cruciform specimens and scatter band analysis (IfW Darmstadt) - Life cycle assessment with micromechanical material models (MPA Stuttgart) - Life cycle assessment with atomistic and damage-mechanical material models associated with material tests under thermal fatigue (Fraunhofer IWM, Freiburg) - Simulation of fatigue crack growth, opening and closure of a short crack under

  13. Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing

    International Nuclear Information System (INIS)

    Ceresoli, Monica; Ferrarese Lupi, Federico; Seguini, Gabriele; Perego, Michele; Sparnacci, Katia; Gianotti, Valentina; Antonioli, Diego; Laus, Michele; Boarino, Luca

    2014-01-01

    This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190–340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s. (paper)

  14. Diketopyrrolopyrrole-based polymer:fullerene nanoparticle films with thermally stable morphology for organic photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Natalie P. [Univ. of Newcastle, Callaghan NSW (Australia). Centre for Organic Electronics; Vaughan, Ben [Univ. of Newcastle, Callaghan NSW (Australia). Centre for Organic Electronics; CSIRO Energy Technology, Newcastle (Australia); Williams, Evan L. [Inst. of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), Singapore (Singapore); Kroon, Renee [Univ. of South Australia, Mawson Lakes Campus, SA (Australia). Ian Wark Research Inst.; Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Chemical and Biological Engineering/Polymer Technology; Anderrson, Mats R. [Univ. of South Australia, Mawson Lakes Campus, SA (Australia). Ian Wark Research Inst.; Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Chemical and Biological Engineering/Polymer Technology; Kilcoyne, A. L. David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Sonar, Prashant [Inst. of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), Singapore (Singapore); Queensland Univ. of Technology (QUT), Brisbane (Australia). School of Chemistry, Physics and Mechanical Engineering; Zhou, Xiaojing [Univ. of Newcastle, Callaghan NSW (Australia). Centre for Organic Electronics; Dastoor, Paul C. [Univ. of Newcastle, Callaghan NSW (Australia). Centre for Organic Electronics; Belcher, Warwick J. [Univ. of Newcastle, Callaghan NSW (Australia). Centre for Organic Electronics

    2017-02-02

    Polymer:fullerene nanoparticles (NPs) offer two key advantages over bulk heterojunction (BHJ) films for organic photovoltaics (OPVs), water-processability and potentially superior morphological control. Once an optimal active layer morphology is reached, maintaining this morphology at OPV operating temperatures is key to the lifetime of a device. Here in this paper we study the morphology of the PDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene}):PC71BM ([6,6]-phenyl C71 butyric acid methyl ester) NP system and then compare the thermal stability of NP and BHJ films to the common poly(3-hexylthiophene) (P3HT): phenyl C61 butyric acid methyl ester (PC61BM) system. We find that material Tg plays a key role in the superior thermal stability of the PDPP-TNT:PC71BM system; whereas for the P3HT:PC61BM system, domain structure is critical.

  15. Superfluidity in two-dimensions. A thermal conductivity study of 4He and 3He- 4He mixture films

    International Nuclear Information System (INIS)

    Finotello, D.

    1992-01-01

    We review measurement of the thermal transport of 4 He films and 3 He- 4 He mixture films near the superfluid transition. These measurements were performed on helium films of thickness ranging from 12 to 156 A and mixture films with 3 He concentration up to 2%. The superfluid transition temperature for these films ranged from 1.2 to 2.2. K. We discuss universal features of the data as well as the behavior of the ratio of the vortex diffusion constant to vortex core-parameter, the sharpness of the transition and the superfluid transition temperature as a function of thickness and concentration. We also describe new experiments that will contribute to a better understanding of the observed behavior (Author)

  16. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    Science.gov (United States)

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  17. Modeling of Melting and Resolidification in Domain of Metal Film Subjected to a Laser Pulse

    Directory of Open Access Journals (Sweden)

    Majchrzak E.

    2016-03-01

    Full Text Available Thermal processes in domain of thin metal film subjected to a strong laser pulse are discussed. The heating of domain considered causes the melting and next (after the end of beam impact the resolidification of metal superficial layer. The laser action (a time dependent bell-type function is taken into account by the introduction of internal heat source in the energy equation describing the heat transfer in domain of metal film. Taking into account the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered, the mathematical model of the process is based on the dual phase lag equation supplemented by the suitable boundary-initial conditions. To model the phase transitions the artificial mushy zone is introduced. At the stage of numerical modeling the Control Volume Method is used. The examples of computations are also presented.

  18. Thermal stability of Ti3SiC2 thin films

    International Nuclear Information System (INIS)

    Emmerlich, Jens; Music, Denis; Eklund, Per; Wilhelmsson, Ola; Jansson, Ulf; Schneider, Jochen M.; Hoegberg, Hans; Hultman, Lars

    2007-01-01

    The thermal stability of Ti 3 SiC 2 (0 0 0 1) thin films is studied by in situ X-ray diffraction analysis during vacuum furnace annealing in combination with X-ray photoelectron spectroscopy, transmission electron microscopy and scanning transmission electron microscopy with energy dispersive X-ray analysis. The films are found to be stable during annealing at temperatures up to ∼1000 deg. C for 25 h. Annealing at 1100-1200 deg. C results in the rapid decomposition of Ti 3 SiC 2 by Si out-diffusion along the basal planes via domain boundaries to the free surface with subsequent evaporation. As a consequence, the material shrinks by the relaxation of the Ti 3 C 2 slabs and, it is proposed, by an in-diffusion of O into the empty Si-mirror planes. The phase transformation process is followed by the detwinning of the as-relaxed Ti 3 C 2 slabs into (1 1 1)-oriented TiC 0.67 layers, which begin recrystallizing at 1300 deg. C. Ab initio calculations are provided supporting the presented decomposition mechanisms

  19. Patterning of metallic electrodes on flexible substrates for organic thin-film transistors using a laser thermal printing method

    International Nuclear Information System (INIS)

    Chen, Kun-Tso; Lin, Yu-Hsuan; Ho, Jeng-Rong; Chen, Chih-Kant; Liu, Sung-Ho; Liao, Jin-Long; Cheng, Hua-Chi

    2011-01-01

    We report on a laser thermal printing method for transferring patterned metallic thin films on flexible plastic substrates using a pulsed CO 2 laser. Aluminium and silver line patterns, with micrometre scale resolution on poly(ethylene terephthalate) substrates, are shown. The printed electrodes demonstrate good conductivity and fulfil the properties for bottom-contact organic thin-film transistors. In addition to providing the energy for transferring the film, the absorption of laser light results in a rise in the temperature of the film and the substrate. This also further anneals the film and softens the plastic substrate. Consequently, it is possible to obtain a film with better surface morphology and with its film thickness implanted in part into the plastic surface. This implantation reveals excellent characteristics in adhesion and flexure resistance. Being feasible to various substrates and executable at ambient temperatures renders this approach a potential alternative for patterning metallic electrodes.

  20. Optical modelling of photoluminescence emitted by thin doped films

    International Nuclear Information System (INIS)

    Pigeat, P.; Easwarakhanthan, T.; Briancon, J.L.; Rinnert, H.

    2011-01-01

    Photoluminescence (PL) spectra emitted by doped films are deformed owing to film thickness-dependent wave interference. This hampers knowing well their PL generating mechanisms as well as designing photonic devices with suitable geometries that improve their PL efficiency. We develop in this paper an energy model for PL emitted by doped films considering the interaction between the wavelength-differing incident standing and emitted waves, their energy transfer in-between, and the interferences undergone by both. The film optical constants are estimated fitting the model to the measured PL. This simple model has thus allowed us to interpret the evolution of PL emitted by Er-doped AlN films prepared on Si substrates by reactive magnetron sputtering. The shapes, the amplitudes, and the illusive sub-spectral features of the PL spectra depend essentially on the film thickness. The model further predicts high sensitivity for PL emitted by non-homogenously doped stacked-films to incident light wavelengths and film-thickness variations. This property has potential applications in tracking wavelength variations and in measuring physical quantities producing thickness variations. This model may be used to optimise PL efficiency of photonic devices through different film geometries and optical properties.

  1. Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2018-03-01

    The optimization of microstructural and optoelectrical properties of a thin layer is an important step prior device fabrication process, so an enhancement in these properties of thermally evaporated CdTe thin films is reported in this communication. The films having thickness 450 nm and 850 nm were deposited on thoroughly cleaned glass and indium tin oxide (ITO) substrates followed by annealing at 450 °C in air atmosphere. These films were characterized for microstructural and optoelectrical properties employing X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, UV-Vis spectrophotometer and source meter. The films found to be have zinc-blende cubic structure with preferred reflection (111) while the crystallographic parameters and direct energy band gap are strongly influenced by the film thickness. The surface morphology studies show that the films are uniform, smooth, homogeneous and nearly dense-packed as well as free from voids and pitfalls as where elemental analysis revealed the presence of Cd and Te element in the deposited films. The electrical analysis showed linear behavior of current with voltage while conductivity is decreased for higher thickness. The results show that the microstructural and optoelectrical properties of CdTe thin layer could be enhanced by varying thickness and films having higher thickness might be processed as promising absorber thin layer to the CdTe-based solar cells.

  2. Semiconducting Properties of Nanostructured Amorphous Carbon Thin Films Incorporated with Iodine by Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Kamaruzaman, Dayana; Ahmad, Nurfadzilah; Annuar, Ishak; Rusop, Mohamad

    2013-11-01

    Nanostructured iodine-post doped amorphous carbon (a-C:I) thin films were prepared from camphor oil using a thermal chemical vapor deposition (TCVD) technique at different doping temperatures. The structural properties of the films were studied by field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Raman, and Fourier transform infrared (FTIR) studies. FESEM and EDS studies showed successful iodine doping. FTIR and Raman studies showed that the a-C:I thin films consisted of a mixture of sp2- and sp3-bonded carbon atoms. The optical and electrical properties of a-C:I thin films were determined by UV-vis-NIR spectroscopy and current-voltage (I-V) measurement respectively. The optical band gap of a-C thin films decreased upon iodine doping. The highest electrical conductivity was found at 400 °C doping. Heterojunctions are confirmed by rectifying the I-V characteristics of an a-C:I/n-Si junction.

  3. Robust design and thermal fatigue life prediction of anisotropic conductive film flip chip package

    International Nuclear Information System (INIS)

    Nam, Hyun Wook

    2004-01-01

    The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF(Anisotropic Conductive Film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue life of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear bi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design Of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2 nd DOE was conducted to obtain RSM equation for the choose 3 design parameter. The coefficient of determination (R 2 ) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for Feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430μm, and 78μm, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter

  4. Thermally stimulated currents in polycrystalline diamond films and their application to ultraviolet dosimetry

    International Nuclear Information System (INIS)

    Trajkov, E.; Prawer, S.

    1999-01-01

    Quantifying individual exposure to solar ultraviolet radiation (UVR) is imperative to understanding the epidemiology of UVR related skin cancer. The development of personal UVR dosimeters is hence essential for obtaining data regarding individual UVR exposure, which can then be used to establish appropriate protective measures for occupational and recreational exposure. Because diamond is a tissue equivalent material and has a wide band-gap, CVD polycrystalline diamond has been proposed for use in solar-blind UV dosimetry. It has been reported that the photoconductivity in polycrystalline diamond films is enhanced after UV illumination Photo-generated carriers can be trapped at some deep levels after illumination. Because these levels are deep the thermal release of carriers is a slow process at room temperature. Therefore the new carrier distribution reached after illumination can result in a metastable state because the temperature is too low to restore the initial equilibrium. The sample can be bought back to initial equilibrium by heating. If the current is recorded during heating of the samples one can observe current peaks corresponding to the thermal release of trapped carriers, the so-called thermally stimulated currents (TSC). From first-order kinetics, we find that the TSC intensity is proportional to the initial density of trapped carriers, n to . Since n to varies with the radiation dose, the measurement of TSC can find an application in radiation dosimetry since the measurement of TSC gives a direct measure of that dose. Nitrogen can be used to introduce deep traps in diamond. This investigation will involve examining the affect of the nitrogen concentration on the irradiation response of the films. Furthermore, we will analyse the fading rate of the TSC signal. If diamond films are to have a practical application in UVR dosimetry, then ideally we require a linear relationship between the dose response and the TSC, and we also require a low fading rate

  5. Thermal sensation models: a systematic comparison.

    Science.gov (United States)

    Koelblen, B; Psikuta, A; Bogdan, A; Annaheim, S; Rossi, R M

    2017-05-01

    Thermal sensation models, capable of predicting human's perception of thermal surroundings, are commonly used to assess given indoor conditions. These models differ in many aspects, such as the number and type of input conditions, the range of conditions in which the models can be applied, and the complexity of equations. Moreover, the models are associated with various thermal sensation scales. In this study, a systematic comparison of seven existing thermal sensation models has been performed with regard to exposures including various air temperatures, clothing thermal insulation, and metabolic rate values after a careful investigation of the models' range of applicability. Thermo-physiological data needed as input for some of the models were obtained from a mathematical model for human physiological responses. The comparison showed differences between models' predictions for the analyzed conditions, mostly higher than typical intersubject differences in votes. Therefore, it can be concluded that the choice of model strongly influences the assessment of indoor spaces. The issue of comparing different thermal sensation scales has also been discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Thermal and optical properties of polycrystalline CdS thin films deposited by the gradient recrystallization and growth (GREG) technique using photoacoustic methods

    International Nuclear Information System (INIS)

    Albor-Aguilera, M.L.; Gonzalez-Trujillo, M.A.; Cruz-Orea, A.; Tufino-Velazquez, M.

    2009-01-01

    In this work we report the study of the thermal and optical properties of polycrystalline CdS thin films deposited by the gradient recrystallization and growth technique. CdS films were grown on pyrex glass substrates. These studies were carried out using an open photoacoustic cell made out of an electret microphone. From X-ray diffraction, atomic force microscope and photoluminescence measurements we observed polycrystalline CdS films with good morphology and crystalline quality. We obtained a thermal diffusivity coefficient of our samples with values ranging from 3.15 to 3.89 x 10 -2 cm 2 /s. For comparison, we measured a value of 1.0 x 10 -2 cm 2 /s for the thermal diffusivity coefficient of a CdS single crystal. We measured an energy gap value of 2.42 eV for our samples by using a photoacoustic spectroscopy system

  7. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  8. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  9. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  10. Study of structural and morphological properties of thermally evaporated Sn{sub 2}Sb{sub 6}S{sub 11} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mehrez, N., E-mail: najia.benmehrez@gmail.com [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Khemiri, N. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Kanzari, M. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Institut Préparatoire aux Etudes d’Ingénieurs de Tunis Montfleury, Université de Tunis (Tunisia)

    2016-10-01

    In this study, we report the structural and morphological properties of the new material Sn{sub 2}Sb{sub 6}S{sub 11} thin films prepared on glass substrates by vacuum thermal evaporation at various substrate temperatures (30, 60, 100, 140, 180 and 200 °C). Sn{sub 2}Sb{sub 6}S{sub 11} ingot was synthesized by the horizontal Bridgman technique. The structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The films were characterized for their structural properties by using XRD. All films were polycrystalline in nature. The variations of the structural parameters of the films with the substrate temperature were investigated. The results show that the crystallite sizes increase as the substrate temperature increases. The morphological properties of the films were analyzed by atomic force microscopy (AFM). The roughness and the topography of the surface of the films strongly depend on the substrate temperature. - Highlights: • Sn{sub 2}Sb{sub 6}S{sub 11} powder was successfully synthesized by the horizontal Bridgman technique. • Sn{sub 2}Sb{sub 6}S{sub 11} films were grown by thermal evaporation at different substrate temperatures. • Structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were investigated. • The effect of the substrate temperature on structural and morphological of Sn{sub 2}Sb{sub 6}S{sub 11} films properties was studied.

  11. Thermal, mechanical and permeation properties of gamma-irradiated multilayer food packaging films containing a buried layer of recycled low-density polyethylene

    International Nuclear Information System (INIS)

    Chytiri, Stavroula; Goulas, Antonios E.; Riganakos, Kyriakos A.; Kontominas, Michael G.

    2006-01-01

    The effect of gamma radiation (doses 5-60kGy) on the thermal, mechanical and permeation properties, as well as on IR-spectra of experimental five-layer food packaging films were studied. Films contained a middle buried layer of recycled low-density polyethylene (LDPE) comprising 25-50% by weight of the multilayer structure. Representative films containing 100% virgin LDPE as the buried layer were taken as controls. Results showed that the percentage of recycled LDPE in the multilayer structure did not significantly (p<0.05) affect the melting temperature, tensile strength, percent elongation at break, Young's modulus, oxygen, carbon dioxide and water vapour transmission rate values and the IR-spectra of the non-irradiated and irradiated multilayer films. Irradiation (mainly the higher dose of 60kGy) induced certain small, but statistically significant (p<0.05) differences in the mechanical properties of multilayer films (with or without recycled LDPE layer) while no significant differences were observed in the thermal properties and in the gas and water vapour permeability of multilayer films. The above findings are discussed in relation to the good quality of the pre-consumer scrap used in the present study

  12. Analytical modeling of thin film neutron converters and its application to thermal neutron gas detectors

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, F; Esch, P Van, E-mail: piscitelli@ill.fr [Institut Laue-Langevin (ILL), 6, Jules Horowitz, 38042 Grenoble (France)

    2013-04-15

    A simple model is explored mainly analytically to calculate and understand the PHS of single and multi-layer thermal neutron detectors and to help optimize the design in different circumstances. Several theorems are deduced that can help guide the design.

  13. FABRICATION OF Cu-Al-Ni SHAPE MEMORY THIN FILM BY THERMAL EVOPRATION

    OpenAIRE

    Özkul, İskender; Canbay, Canan Aksu; Tekataş, Ayşe

    2017-01-01

    Among the functional, materials shape memory alloysare important because of their unique properties. So, these materials haveattracted more attention to be used in micro/nano electronic andelectromechanic systems. In this work, thermal evaporation method has been usedto produce CuAlNi shape memory alloy thin film. The produced CuAlNi thin filmhas been characterized and the presence of the martensite phase wasinvestigated and compared with the CuAlNi alloy sample. CuAlNi shape memoryalloy thin...

  14. Thermally evaporated thin films of SnS for application in solar cell devices

    International Nuclear Information System (INIS)

    Miles, Robert W.; Ogah, Ogah E.; Zoppi, Guillaume; Forbes, Ian

    2009-01-01

    SnS (tin sulphide) is of interest for use as an absorber layer and the wider energy bandgap phases e.g. SnS 2 , Sn 2 S 3 and Sn/S/O alloys of interest as Cd-free buffer layers for use in thin film solar cells. In this work thin films of tin sulphide have been thermally evaporated onto glass and SnO 2 :coated glass substrates with the aim of optimising the properties of the material for use in photovoltaic solar cell device structures. In particular the effects of source temperature, substrate temperature, deposition rate and film thickness on the chemical and physical properties of the layers were investigated. Energy dispersive X-ray analysis was used to determine the film composition, X-ray diffraction to determine the phases present and structure of each phase, transmittance and reflectance versus wavelength measurements to determine the energy bandgap and scanning electron microscopy to observe the surface topology and topography and the properties correlated to the deposition parameters. Using the optimised conditions it is possible to produce thin films of tin sulphide that are pinhole free, conformal to the substrate and that consist of densely packed columnar grains. The composition, phases present and the optical properties of the layers deposited were found to be highly sensitive to the deposition conditions. Energy bandgaps in the range 1.55 eV-1.7 eV were obtained for a film thickness of 0.8 μm, and increasing the film thickness to > 1 μm resulted in a reduction of the energy bandgap to less than 1.55 eV. The applicability of using these films in photovoltaic solar cell device structures is also discussed.

  15. Thermal-induced SPR tuning of Ag-ZnO nanocomposite thin film for plasmonic applications

    Science.gov (United States)

    Singh, S. K.; Singhal, R.

    2018-05-01

    The formation of silver (Ag) nanoparticles in a ZnO matrix were successfully synthesized by RF-magnetron sputtering at room temperature. As prepared Ag-ZnO nanocomposite (NCs) thin films were annealed in vacuum at three different temperatures of 300 °C, 400 °C and 500 °C, respectively. The structural modifications for as-deposited and annealed films were estimated by X-ray diffraction and TEM techniques. The crystalline behavior preferably along the c-axis of the hexagonal wurtzite structure was observed in as-deposited Ag-ZnO film and improved significantly with increasing the annealing temperature. The crystallite size of as-deposited film was measured to be 13.6 nm, and increases up to 28.5 nm at higher temperatures. The chemical composition and surface structure of the as-deposited films were estimated by X-ray photoelectron spectroscopy. The presence of Ag nanoparticles with average size of 8.2 ± 0.2 nm, was confirmed by transmission electron microscopy. The strong surface plasmon resonance (SPR) band was observed at the wavelength of ∼565 nm for as-deposited film and a remarkable red shift of ∼22 nm was recorded after the annealing treatment as confirmed by UV-visible spectroscopy. Atomic force microscopy confirmed the grain growth from 60.38 nm to 79.42 nm for as-deposited and higher temperature annealed film respectively, with no significant change in the surface roughness. Thermal induced modifications such as disordering and lattice defects in Ag-ZnO NCs thin films were carried out by Raman spectroscopy. High quality Ag-ZnO NCs thin films with minimum strain and tunable optical properties could be useful in various plasmonic applications.

  16. Squeezing-out dynamics in free-standing smectic films

    Energy Technology Data Exchange (ETDEWEB)

    S̀liwa, Izabela, E-mail: izasliwa@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznaǹ (Poland); Vakulenko, A.A. [Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178 (Russian Federation); Zakharov, A.V., E-mail: alexandre.zakharov@yahoo.ca [Saint Petersburg Institute for Machine Sciences, The Russian Academy of Sciences, Saint Petersburg 199178 (Russian Federation)

    2016-05-06

    Highlights: • We model the dynamics of layer transitions. • We model the thermally activated nucleation of a small hole. • We model the dynamics of squeezing-out one layer. - Abstract: We have carried out a theoretical study of the dynamics of the squeezing-out of one layer from the N-layer free-standing smectic film (FSSF) coupled with a meniscus, during the layer-thinning process. Squeezing-out is initiated by a thermally activated nucleation process in which a density fluctuation forms a small void in the center of the circular FSSF. The pressure gradient develops between the squeezed-out and nonsqueezed-out areas and is responsible for the driving out of one or several layer(s) from the N-layer smectic film. The dynamics of the boundary between these areas in the FSSF is studied by the use of the conservation laws for mass and linear momentum with accounting for the coupling between the meniscus and the smectic film. This coupling has a strong effect on the dynamics of the squeezing-out process and may significantly change the time which is needed to completely squeezed-out one or several layer(s) from the N-layer smectic film.

  17. Cu-Al alloy formation by thermal annealing of Cu/Al multilayer films deposited by cyclic metal organic chemical vapor deposition

    Science.gov (United States)

    Moon, Hock Key; Yoon, Jaehong; Kim, Hyungjun; Lee, Nae-Eung

    2013-05-01

    One of the most important issues in future Cu-based interconnects is to suppress the resistivity increase in the Cu interconnect line while decreasing the line width below 30 nm. For the purpose of mitigating the resistivity increase in the nanoscale Cu line, alloying Cu with traces of other elements is investigated. The formation of a Cu alloy layer using chemical vapor deposition or electroplating has been rarely studied because of the difficulty in forming Cu alloys with elements such as Al. In this work, Cu-Al alloy films were successfully formed after thermal annealing of Cu/Al multilayers deposited by cyclic metal-organic chemical vapor deposition (C-MOCVD). After the C-MOCVD of Cu/Al multilayers without gas phase reaction between the Cu and Al precursors in the reactor, thermal annealing was used to form Cu-Al alloy films with a small Al content fraction. The resistivity of the alloy films was dependent on the Al precursor delivery time and was lower than that of the aluminum-free Cu film. No presence of intermetallic compounds were detected in the alloy films by X-ray diffraction measurements and transmission electron spectroscopy.

  18. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties

    International Nuclear Information System (INIS)

    Patro, T Umasankar; Wagner, H Daniel

    2011-01-01

    Structural arrangements of nanoplatelets in a polymer matrix play an important role in determining their properties. In the present study, multilayered composite films of poly(vinyl alcohol) (PVA) with Laponite clay are assembled by layer-by-layer (LBL) deposition. The LBL films are found to be hydrated, flexible and transparent. A facile and solvent-free method—by depositing self-assembled monolayers (SMA) of a functional silane on substrates—is demonstrated for preparing free-standing LBL films. Evolution of nanostructures in LBL films is correlated with thermal and mechanical properties. A well-dispersed solvent-cast PVA/Laponite composite film is also studied for comparison. We found that structurally ordered LBL films with an intercalated nanoclay system exhibits tensile strength, modulus and toughness, which are significantly higher than that of the conventional nanocomposites with well-dispersed clay particles and that of pure PVA. This indicates that clay platelets are oriented in the applied stress direction, leading to efficient interfacial stress transfer. In addition, various grades of composite LBL films are prepared by chemical crosslinking and their mechanical properties are assessed. On account of these excellent properties, the LBL films may find potential use as optical and structural elements, and as humidity sensors.

  19. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties.

    Science.gov (United States)

    Patro, T Umasankar; Wagner, H Daniel

    2011-11-11

    Structural arrangements of nanoplatelets in a polymer matrix play an important role in determining their properties. In the present study, multilayered composite films of poly(vinyl alcohol) (PVA) with Laponite clay are assembled by layer-by-layer (LBL) deposition. The LBL films are found to be hydrated, flexible and transparent. A facile and solvent-free method-by depositing self-assembled monolayers (SMA) of a functional silane on substrates-is demonstrated for preparing free-standing LBL films. Evolution of nanostructures in LBL films is correlated with thermal and mechanical properties. A well-dispersed solvent-cast PVA/Laponite composite film is also studied for comparison. We found that structurally ordered LBL films with an intercalated nanoclay system exhibits tensile strength, modulus and toughness, which are significantly higher than that of the conventional nanocomposites with well-dispersed clay particles and that of pure PVA. This indicates that clay platelets are oriented in the applied stress direction, leading to efficient interfacial stress transfer. In addition, various grades of composite LBL films are prepared by chemical crosslinking and their mechanical properties are assessed. On account of these excellent properties, the LBL films may find potential use as optical and structural elements, and as humidity sensors.

  20. Influence of multi-depositions on the final properties of thermally evaporated TlBr films

    International Nuclear Information System (INIS)

    Destefano, N.; Mulato, M.

    2010-01-01

    Thallium bromide is a promising candidate material for photodetectors in medical imaging systems. This work investigates the structural, optical and electrical properties of thermally evaporated TlBr films. The main fabrication parameter is the number of depositions. The use of sequential runs is aimed to increase the thickness of the films, as necessary, for technological applications. We deposited films using one-four runs, that led to maximum thickness of about 50 μm. Crystallographic and morphological changes were observed with varying deposition runs. Nevertheless, the optical gap and electrical resistivity in the dark remained constant at about 2.85 eV and 10 9 Ω cm, respectively. Thicker samples have a larger ratio of photo-to-dark signal under medical X-ray exposure, with a larger linear region as a function of applied voltage. The results are discussed aiming at future technological applications in medical imaging.

  1. The effect of thermal annealing on pentacene thin film transistor with micro contact printing.

    Science.gov (United States)

    Shin, Hong-Sik; Yun, Ho-Jin; Baek, Kyu-Ha; Ham, Yong-Hyun; Park, Kun-Sik; Kim, Dong-Pyo; Lee, Ga-Won; Lee, Hi-Deok; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We used micro contact printing (micro-CP) to fabricate inverted coplanar pentacene thin film transistors (TFTs) with 1-microm channels. The patterning of micro-scale source/drain electrodes without etch process was successfully achieved using Polydimethylsiloxane (PDMS) elastomer stamp. We used the Ag nano particle ink as an electrode material, and the sheet resistance and surface roughness of the Ag electrodes were effectively reduced with the 2-step thermal annealing on a hotplate, which improved the mobility, the on-off ratio, and the subthreshold slope (SS) of the pentacene TFTs. In addition, the device annealing on a hotplate in a N2 atmosphere for 30 sec can enhance the off-current and the mobility properties of OTFTs without damaging the pentacene thin films and increase the adhesion between pentacene and dielectric layer (SiO2), which was investigated with the pentacene films phase change of the XRD spectrum after device annealing.

  2. Low thermal budget annealing technique for high performance amorphous In-Ga-ZnO thin film transistors

    Directory of Open Access Journals (Sweden)

    Joong-Won Shin

    2017-07-01

    Full Text Available In this paper, we investigate a low thermal budget post-deposition-annealing (PDA process for amorphous In-Ga-ZnO (a-IGZO oxide semiconductor thin-film-transistors (TFTs. To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA and rapid thermal annealing (RTA methods were applied, and the results were compared with those of the conventional annealing (CTA method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C and short annealing time (2 min because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.

  3. Low thermal budget annealing technique for high performance amorphous In-Ga-ZnO thin film transistors

    Science.gov (United States)

    Shin, Joong-Won; Cho, Won-Ju

    2017-07-01

    In this paper, we investigate a low thermal budget post-deposition-annealing (PDA) process for amorphous In-Ga-ZnO (a-IGZO) oxide semiconductor thin-film-transistors (TFTs). To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA) and rapid thermal annealing (RTA) methods were applied, and the results were compared with those of the conventional annealing (CTA) method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C) and short annealing time (2 min) because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.

  4. Thermal behaviour properties and corrosion resistance of organoclay/polyurethane film

    Science.gov (United States)

    Kurniawan, O.; Soegijono, B.

    2018-03-01

    Organoclay/polyurethane film composite was prepared by adding organoclay with different content (1, 3, and 5 wt.%) in polyurethane as a matrix. TGA and DSC showed decomposition temperature shifted to a lower point as organoclay content change. FT-IR spectra showed chemical bonding of organoclay and polyurethane as a matrix, which means that the bonding between filler and matrix occured and the composite was stronger but less bonding occur in composite with 5 wt.% organoclay. The corrosion resistance overall increased with the increasing organoclay content. Composite with 5 wt.% organoclay had more thermal stability and corrosion resistance may probably due to exfoliation of organoclay.

  5. Experimental determination of thermal conductivities of dielectric thin films; Determination experimentale des conductivites thermiques de couches minces dielectriques

    Energy Technology Data Exchange (ETDEWEB)

    Scudeller, Y.; Hmina, N.; Lahmar, J.; Bardon, J.P. [Nantes Univ., 44 (France)

    1996-12-31

    This paper presents a method of measurement of thermal conductivity of sub-micron dielectric films in a direction perpendicular to the substrate. These films (oxides, nitrides, diamond..) are mainly used for the electrical insulation of semiconductor circuits and in optical treatments of high energy lasers. The principle of the method used and the experimental device are described. The results obtained with silicon oxides are discussed. (J.S.) 13 refs.

  6. Optical and Morphological Studies of Thermally Evaporated PTCDI-C8 Thin Films for Organic Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Ronak Rahimi

    2013-01-01

    Full Text Available PTCDI-C8 due to its relatively high photosensitivity and high electron mobility has attracted much attention in organic semiconductor devices. In this work, thin films of PTCDI-C8 with different thicknesses were deposited on silicon substrates with native silicon dioxide using a vacuum thermal evaporator. Several material characterization techniques have been utilized to evaluate the structure, morphology, and optical properties of these films. Their optical constants (refractive index and extinction coefficient have been extracted from the spectroscopic ellipsometry (SE. X-ray reflectivity (XRR and atomic force microscopy (AFM were employed to determine the morphology and structure as well as the thickness and roughness of the PTCDI-C8 thin films. These films revealed a high degree of structural ordering within the layers. All the experimental measurements were performed under ambient conditions. PTCDI-C8 films have shown to endure ambient condition which allows pots-deposition characterization.

  7. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    DEFF Research Database (Denmark)

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline

    2011-01-01

    Silver can be used as the back contact and reflector in thin film silicon solar cells. When deposited on textured substrates, silver films often exhibit reduced reflectance due to absorption losses by the excitation of surface plasmon resonances. We show that thermal annealing of the silver back...

  8. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata Starch

    Directory of Open Access Journals (Sweden)

    Muhammed L. Sanyang

    2015-06-01

    Full Text Available The use of starch based films as a potential alternative choice to petroleum derived plastics is imperative for environmental waste management. This study presents a new biopolymer (sugar palm starch for the preparation of biodegradable packaging films using a solution casting technique. The effect of different plasticizer types (glycerol (G, sorbitol (S and glycerol-sorbitol (GS combination with varying concentrations (0, 15, 30 and 45, w/w% on the tensile, thermal and barrier properties of sugar palm starch (SPS films was evaluated. Regardless of plasticizer types, the tensile strength of plasticized SPS films decreased, whereas their elongation at break (E% increased as the plasticizer concentrations were raised. However, the E% for G and GS-plasticized films significantly decreased at a higher plasticizer concentration (45% w/w due to the anti-plasticization effect of plasticizers. Change in plasticizer concentration showed an insignificant effect on the thermal properties of S-plasticized films. The glass transition temperature of SPS films slightly decreased as the plasticizer concentration increased from 15% to 45%. The plasticized films exhibited increased water vapor permeability values from 4.855 × 10−10 to 8.70 × 10−10 g·m−1·s−1·Pa−1, irrespective of plasticizer types. Overall, the current study manifested that plasticized sugar palm starch can be regarded as a promising biopolymer for biodegradable films.

  9. Effect of substrate properties and thermal annealing on the resistivity of molybdenum thin films

    International Nuclear Information System (INIS)

    Schmid, U.; Seidel, H.

    2005-01-01

    In this study, the influence of substrate properties (e.g. roughness characteristics and chemical composition) on the electrical resistivity of evaporated molybdenum thin films is investigated as a function of varying parameters, such as film thickness (25-115 nm) and post-deposition annealing with temperatures up to T PDA = 900 deg. C. A thermally oxidized silicon wafer with very low surface roughness was used as one substrate type. In contrast, a low temperature co-fired ceramics substrate with a glass encapsulant printed in thick film technology is the representative for rough surface morphology. The electrical resistivity follows the prediction of the size effect up to T PDA = 600 deg. C independent of substrate nature. On the silicon-based substrate, the thickness-independent portion of the film resistivity ρ g in the 'as deposited' state is about 29 times higher than the corresponding bulk value for a mono-crystalline sample. Thin films of this refractory metal on the SiO 2 /Si substrate exhibit an average grain size of 4.9 nm and a negative temperature coefficient of resistivity (TCR). On the glass/ceramic-based substrate, however, ρ g is half the value as compared to that obtained on the SiO 2 /Si substrate and the TCR is positive

  10. Effect of Thermal Annealing on Carbon in In-situ Phosphorous-Doped Si1-xCx films

    International Nuclear Information System (INIS)

    Adam, Thomas; Loubet, Nicolas; Reznicek, Alexander; Paruchuri, Vamsi; Sampson, Ron; Sadana, Devendra

    2012-01-01

    The effect of thermal heat treatment on carbon in in-situ phosphorous-doped silicon-carbon is studied as a function of annealing temperature and type. Films of 0 to 2% carbon were deposited using cyclic chemical vapor deposition at reduced pressures. Secondary ion-mass spectroscopy and high-resolution X-ray diffraction were employed to extract the total and substitutional carbon concentration in samples with phosphorous levels of mid-10 20 cm -3 . It was found that millisecond laser annealing drastically improves substitutionality while high thermal budget treatments (furnace, rapid-thermal, or spike annealing) resulted in an almost complete loss of substitutional carbon, independent of preceding or subsequent laser heat treatments.

  11. Efeito do tratamento térmico e enzimático nas propriedades de filmes de gelatina Effect of thermal and enzymatic treatment on the properties of gelatin films

    Directory of Open Access Journals (Sweden)

    Rosemary Aparecida de Carvalho

    2006-09-01

    Full Text Available Dentre os fatores que afetam a atividade da enzima transglutaminase, a temperatura de reação ou incubação é um fator determinante no grau de reticulação. Por outro lado, para a gelatina, tipicamente a rede estrutural polimérica é estabilizada por forças secundárias, sendo que a formação da matriz polimérica envolve um delicado balanço entre interações polímero-polímero e polímero-solvente, e este balanço é fortemente dependente do histórico térmico da solução. Desta forma, o objetivo deste trabalho foi avaliar o efeito da temperatura na reação de modificação enzimática em relação às propriedades funcionais dos filmes modificados à base de gelatina (propriedades mecânicas, de barreira ao vapor de água, solubilidade em água e parâmetros de cor dos filmes. Viscosidade aparente das soluções filmogênicas foram também avaliadas. Foram produzidos filmes denominados nativo (FN, modificado enzimaticamente (FME e termicamente tratado (FC. De acordo com os resultados obtidos, observou-se que a temperatura de reação não afetou as propriedades mecânicas e a solubilidade dos diferentes filmes estudados. Por outro lado, filmes modificados enzimaticamente (FME na temperatura de 50 °C apresentaram permeabilidade ao vapor de água significantemente inferior aos produzidos nas demais temperaturas e tratamentos (FN e FC. O tratamento térmico também provocou redução da permeabilidade ao vapor de água.The activity of transglutaminase (one crosslinking enzyme can be affected by the temperature of reaction. Gelatin matrix gel formation depends on the balance between polymer-polymer interactions and a polymer-solvent solution. This balance also depends on the amount and type of thermal treatment to the gelatin solution. The aim of this work is to evaluate the effect of the temperature on the crosslinking reaction using transglutaminase. Mechanical properties, water vapor permeability, water solubility and color

  12. Investigation of the liquid film flow rate in an annular two phase flow

    International Nuclear Information System (INIS)

    Chandraker, D.K.; Dasgupta, A.; Vijayan, P.K.; Aritomi, M.

    2011-01-01

    An accurate knowledge of the liquid film flow is essential in most thermal-hydraulic predictions, including the onset of dryout in boiling channels and post-dryout heat transfer during transient and accident scenarios. The determination of the film flow is an important aspect of the dryout analysis in the boiling channel. Dryout is caused due to the disappearance of the liquid film on the heated surface. Mechanistic prediction of dryout involves the modeling of the physical phenomenon of the processes like entrainment and deposition rate of droplets. In the nuclear reactor systems analytical prediction of the thermal hydraulic parameters is always desirable to avoid generation of exhaustive and expensive experimental data for optimizing the design parameters. Good constitutive models for entrainment and deposition are vital for an accurate prediction of the film flow rate and hence dryout in a fuel bundle. This paper attempts a comprehensive review of the dryout analysis involving application of the constitutive models for the film flow rate. Validation of these models against various experimental data has also been presented in this paper. (author)

  13. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jie; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Carlsson, Mats, E-mail: dmd@nju.edu.cn [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-08-20

    Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.

  14. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Science.gov (United States)

    Hong, Jie; Carlsson, Mats; Ding, M. D.

    2017-08-01

    Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.

  15. Enhancement of YBCO thin film thermal stability under 1 ATM oxygen pressure by Intermediate Cu.sub.2./sub. O nanolayer

    Czech Academy of Sciences Publication Activity Database

    Cheng, L.; Wang, X.; Yao, X.; Wan, W.; Li, F.H.; Xiong, J.; Tao, B.W.; Jirsa, Miloš

    2010-01-01

    Roč. 114, č. 22 (2010), s. 7543-7547 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) ME10069 Institutional research plan: CEZ:AV0Z10100520 Keywords : YBCO thin films * thermal stability * thin film growth orientation * temperature optical microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.603, year: 2010

  16. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    Science.gov (United States)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  17. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    Science.gov (United States)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  18. Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges

    Science.gov (United States)

    Zhang, Xiaoqing; Sessler, Gerhard M.; Ma, Xingchen; Xue, Yuan; Wu, Liming

    2018-06-01

    Wavy fluorinated ethylene propylene (FEP) electret films with negative charges were prepared by a patterning method followed by a corona charging process. The thermal stability of these films was characterized by the surface potential decay with annealing time at elevated temperatures. The results show that thermally stable electret films can be made by corona charging followed by pre-aging treatment. Vibration energy harvesters having a very simple sandwich structure, consisting of a central wavy FEP electret film and two outside metal plates, were designed and their performance, including the resonance frequency, output power, half power bandwidth, and device stability, was investigated. These harvesters show a broad bandwidth as well as high output power. Their performance can be further improved by using a wavy-shaped counter electrode. For an energy harvester with an area of 4 cm2 and a seismic mass of 80 g, the output power referred to 1 g (g is the gravity of the earth), the resonance frequency, and the 3 dB bandwidth are 1.85 mW, 90 Hz, and 24 Hz, respectively. The output power is sufficient to power some electronic devices. Such devices may be embedded in shoe soles, carpets or seat cushions where the flexibility is required and large force is available.

  19. In{sub 6}Se{sub 7} thin films by heating thermally evaporated indium and chemical bath deposited selenium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ornelas, R.E.; Avellaneda, D. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Shaji, S. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico); Castillo, G.A.; Roy, T.K. Das [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Krishnan, B., E-mail: kbindu_k@yahoo.com [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon-66450 (Mexico); Universidad Autonoma de Nuevo Leon-CIIDIT, Apodaca, N.L (Mexico)

    2012-05-15

    Indium selenide (In{sub 6}Se{sub 7}) thin films were prepared via selenization of thermally evaporated indium thin films by dipping in sodium selenosulphate solution followed by annealing in nitrogen atmosphere. First, indium was thermally evaporated on glass substrate. Then, the indium coated glass substrates were dipped in a solution containing 80 ml 0.125 M sodium selenosulphate and 1.5 ml dilute acetic acid (25%) for 5 min. Glass/In-Se layers were annealed at 200-400 Degree-Sign C in nitrogen atmosphere (0.1 Torr) for 30 min. X-ray diffraction studies showed the formation of monoclinic In{sub 6}Se{sub 7}. Morphology of the thin films formed at different conditions was analyzed using Scanning electron microscopy. The elemental analysis was done using Energy dispersive X-ray detection. Electrical conductivity under dark and illumination conditions was evaluated. Optical band gap was computed using transmittance and reflectance spectra. The band gap value was in the range 1.8-2.6 eV corresponding to a direct allowed transition. We studied the effect of indium layer thickness and selenium deposition time on the structure, electrical and optical properties of In{sub 6}Se{sub 7} thin films.

  20. Electrical properties of thermally evaporated nickel-dimethylglyoxime thin films

    Science.gov (United States)

    Dakhel, A. A.; Ali-Mohamed Ahmed, Y.

    2005-06-01

    Thin Bis-(dimethylglyoximato)nickel(II) [Ni(DMG)2] films of amorphous and crystalline structures were prepared by vacuum deposition on Si (P) substrates. The films were characterised by X-ray fluorescence and X-ray diffraction. The constructed Al/Ni(DMG)2/Si(P) metal-insulator-semiconductor devices were characterised by the measurement of the gate-voltage dependence of their capacitance and ac conductance, from which the surface states density Dit of insulator/semiconductor interface and the density of the fixed charges in the oxide were determined. The ac electrical conduction and dielectric properties of the Ni(DMG)2-Silicon structure were studied at room temperature. The data of the ac measurements of the annealed films follow the correlated barrier-hopping CBH mode, from which the fundamental absorption bandgap, the minimum hopping distance, and other parameters of the model were determined.

  1. Thermal properties Forsmark. Modelling stage 2.3 Complementary analysis and verification of the thermal bedrock model, stage 2.

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Wrafter, John; Laendell, Maerta (Geo Innova AB (Sweden)); Back, Paer-Erik; Rosen, Lars (Sweco AB (Sweden))

    2008-11-15

    This report present the results of thermal modelling work for the Forsmark area carried out during modelling stage 2.3. The work complements the main modelling efforts carried out during modelling stage 2.2. A revised spatial statistical description of the rock mass thermal conductivity for rock domain RFM045 is the main result of this work. Thermal modelling of domain RFM045 in Forsmark model stage 2.2 gave lower tail percentiles of thermal conductivity that were considered to be conservatively low due to the way amphibolite, the rock type with the lowest thermal conductivity, was modelled. New and previously available borehole data are used as the basis for revised stochastic geological simulations of domain RFM045. By defining two distinct thermal subdomains, these simulations have succeeded in capturing more of the lithological heterogeneity present. The resulting thermal model for rock domain RFM045 is, therefore, considered to be more realistic and reliable than that presented in model stage 2.2. The main conclusions of modelling efforts in model stage 2.3 are: - Thermal modelling indicates a mean thermal conductivity for domain RFM045 at the 5 m scale of 3.56 W/(mK). This is slightly higher than the value of 3.49 W/(mK) derived in model stage 2.2. - The variance decreases and the lower tail percentiles increase as the scale of observation increases from 1 to 5 m. Best estimates of the 0.1 percentile of thermal conductivity for domain RFM045 are 2.24 W/(mK) for the 1 m scale and 2.36 W/(mK) for the 5 m scale. This can be compared with corresponding values for domain RFM029 of 2.30 W/(mK) for the 1 m scale and 2.87 W/(mK)for the 5 m scale. - The reason for the pronounced lower tail in the thermal conductivity distribution for domain RFM045 is the presence of large bodies of the low-conductive amphibolite. - The modelling results for domain RFM029 presented in model stage 2.2 are still applicable. - As temperature increases, the thermal conductivity decreases

  2. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    International Nuclear Information System (INIS)

    Liu Wen-Feng; Zhang Min-Gang; Zhang Ke-Wei; Zhang Hai-Jie; Chai Yue-Sheng; Xu Xiao-Hong

    2016-01-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. (paper)

  3. Improved behavior of cooper-amine complexes during thermal annealing for conductive thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ayag, Kevin Ray; Panama, Gustavo; Paul, Shrabani; Kim, Hong Doo [Dept. of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin (Korea, Republic of)

    2017-02-15

    Previous studies successfully produced conductive thin films from organo-metallic-compounds-based inks. Some inks like those made from copper salt and amines, however, tend to move during thermal annealing and, thus, affect the conductive pattern on the substrate. In this study, conductive inks were synthesized by forming complexes of copper with amines and/or blended amines. To build-up an organo-metallic framework and preserve the pattern throughout the annealing period, diamine was added to the complex in different proportions. The prepared inks were coated on glass substrate and were annealed on a hot plate at 170°C under the gaseous mixture of formic acid and alcohol for 5 min. The metallic film was observed to retain the original pattern of the ink during and after annealing. Adhesion on the substrate was also improved. Inks with blended amines produced films with lower resistivities. The lowest electrical resistivity recorded was 4.99 μΩ cm, three times that of bulk copper.

  4. Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: pks_phy@yahoo.co.i [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India); Katyal, S.C. [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India)

    2009-05-01

    Thin films of Ge{sub 10}Se{sub 90-x}Te{sub x} (x = 0, 10, 20, 30, 40, 50) glassy alloys were deposited at three substrate temperatures (303 K, 363 K and 423 K) using conventional thermal evaporation technique at base pressure of {approx} 10{sup -4} Pa. X-ray diffraction results show that films deposited at 303 K are of amorphous nature while films deposited at 363 K and 423 K are of polycrystalline nature. The optical parameters, refractive index and optical gap have been derived from the transmission spectra (using UV-Vis-NIR spectrophotometer) of the thin films in the spectral region 400-1500 nm. This has been observed that refractive index values remain almost constant while the optical gap is found to decrease considerably with the increase of substrate temperature. The decrease in optical gap is explained on the basis of change in nature of films, from amorphous to polycrystalline state, with the increase of substrate temperature. The optical gap has also been observed to decrease with the increase of Te content.

  5. Film grain noise modeling in advanced video coding

    Science.gov (United States)

    Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin

    2007-01-01

    A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.

  6. Coupling of near-field thermal radiative heating and phonon Monte Carlo simulation: Assessment of temperature gradient in n-doped silicon thin film

    International Nuclear Information System (INIS)

    Wong, Basil T.; Francoeur, Mathieu; Bong, Victor N.-S.; Mengüç, M. Pinar

    2014-01-01

    Near-field thermal radiative exchange between two objects is typically more effective than the far-field thermal radiative exchange as the heat flux can increase up to several orders higher in magnitudes due to tunneling of evanescent waves. Such an interesting phenomenon has started to gain its popularity in nanotechnology, especially in nano-gap thermophotovoltaic systems and near-field radiative cooling of micro-/nano-devices. Here, we explored the existence of thermal gradient within an n-doped silicon thin film when it is subjected to intensive near-field thermal radiative heating. The near-field radiative power density deposited within the film is calculated using the Maxwell equations combined with fluctuational electrodynamics. A phonon Monte Carlo simulation is then used to assess the temperature gradient by treating the near-field radiative power density as the heat source. Results indicated that it is improbable to have temperature gradient with the near-field radiative heating as a continuous source unless the source comprises of ultra-short radiative pulses with a strong power density. - Highlights: • This study investigates temperature distribution in an n-doped silicon thin film. • Near-field radiative heating is treated as a volumetric phenomenon. • The temperature gradient is computed using phonon MC simulation. • Temperature of thin film can be approximated as uniform for radiation calculations. • If heat source is a pulsed radiation, a temperature gradient can be established

  7. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments

    Science.gov (United States)

    Tak, Young Jun; Du Ahn, Byung; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    Indium–gallium–zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M–O) bonds through the decomposition-rearrangement of M–O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm2/Vs, 3.96 × 107 to 1.03 × 108, and 11.2 to 7.2 V, respectively. PMID:26902863

  8. Chemically-induced solid-state dewetting of thin Au films

    International Nuclear Information System (INIS)

    Gazit, Nimrod; Klinger, Leonid; Rabkin, Eugen

    2017-01-01

    We employed the solid state dewetting technique to produce nanoparticles of silver-gold alloy on a sapphire substrate. We deposited a thin gold layer on the substrate with alloy nanoparticles, and studied its thermal stability at low homological temperatures. We demonstrated that a large number of densely spaced holes form at the initial stages of dewetting of the gold layer with nanoparticles. A similar homogeneous gold film deposited on a bare sapphire substrate remained stable under identical annealing conditions, exhibiting the onset of dewetting at higher temperatures, and with a lower number of holes. We attributed the decreased thermal stability of the gold film deposited on the substrate with the silver-gold nanoparticles to accelerated grooving at the grain boundaries and triple junctions in the film. The grooving process is accelerated by the diffusion fluxes of Au atoms driven from the film towards the nanoparticles by the gradient of chemical potential. We developed a quantitative model of this chemically-induced dewetting process, and discussed its applicability for the design of better catalytic systems. Our work demonstrates that the chemical driving forces have to be reckoned with in the analysis of thermal stability of multicomponent thin films.

  9. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-08-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  10. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Ali, H.

    2016-08-15

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  11. Ballistic phonon and thermal radiation transport across a minute vacuum gap in between aluminum and silicon thin films: Effect of laser repetitive pulses on transport characteristics

    International Nuclear Information System (INIS)

    Yilbas, B.S.; Ali, H.

    2016-01-01

    Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.

  12. Effects of deposition and post-annealing conditions on electrical properties and thermal stability of TiAlN films by ion beam sputter deposition

    International Nuclear Information System (INIS)

    Lee, S.-Y.; Wang, S.-C.; Chen, J.-S.; Huang, J.-L.

    2006-01-01

    TiAlN films were deposited by ion beam sputter deposition (IBSD) using a Ti-Al (90/10) alloy target in a nitrogen atmosphere on thermal oxidized Si wafers. Effects of ion beam voltage, substrate temperature (T s ) and post-annealing conditions on electrical properties and oxidation resistance of TiAlN films were studied. According to the experimental results, the proper kinetic energy provided good crystallinity and a dense structure of the films. Because of their better crystallinity and predomination of (200) planes, TiAlN films deposited with 900 V at low T s (50 deg. C) have shown lower resistivity than those at high T s (250 deg. C). They also showed better oxidation resistance. If the beam voltage was too high, it caused some damage to the film surfaces, which caused poor oxidation resistance of films. When sufficient kinetic energy was provided by the beam voltage, the mobility of adatoms was too high due to their extra thermal energy, thus reducing the crystallinity and structure density of the films. A beam voltage of 900 V and a substrate temperature of 50 deg. C were the optimum deposition conditions used in this research. They provided good oxidation resistance and low electrical resistivity for IBSD TiAlN films

  13. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye

    Science.gov (United States)

    Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin

    2018-04-01

    Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.

  14. Improvement of a wall thinning rate model for liquid droplet impingement erosion. Implementation of liquid film thickness model with consideration of film behavior

    International Nuclear Information System (INIS)

    Morita, Ryo

    2014-01-01

    Liquid droplet impingement erosion (LDI) is defined as an erosion phenomenon caused by high-speed droplet attack in a steam flow. Pipe wall thinning by LDI is sometimes observed in a steam piping system of a power plant. As LDI usually occurs very locally and is difficult to detect, predicting LDI location is required for safe operation of power plant systems. Therefore, we have involved in the research program to develop prediction tools that will be used easily in actual power plants. Our previous researches developed a thinning rate evaluation model due to LDI (LDI model) and the evaluation system of the thinning rate and the thinning shape within a practically acceptable time (LDI evaluation system). Though the LDI model can include a cushioning effect of liquid film which is generated on the material surface by droplet impingement as an empirical equation with fluid parameter, the liquid film thickness is not clarified due to complex flow condition. In this study, to improve the LDI model and the LDI evaluation system, an analytical model of the liquid film thickness was proposed with consideration of the liquid film flow behavior on the material surface. The mass balance of the liquid film was considered, and the results of CFD calculations and existing researches were applied to obtain the liquid film thickness in this model. As a result of the LDI evaluation of the new LDI model with liquid film model, improvement of the LDI model was achieved. (author)

  15. Thermally evaporated Ag nanoparticle films for plasmonic enhancement in organic solar cells: effects of particle geometry

    NARCIS (Netherlands)

    Haidari, G.; Hajimahmoodzadeh, M.; Fallah, H.R.; Peukert, A.; Chanaewa, A.; von Hauff, E.L.

    2015-01-01

    We report on the simple fabrication of Ag NP films via thermal evaporation and subsequent annealing. The NPs are formed on indium tin oxide electrodes, coated with PEDOT:PSS and implemented into PCPDTBT:PC70BM solar cells. Scanning electron microscopy and atomic force microscopy are used to

  16. An improved liquid film model to predict the CHF based on the influence of churn flow

    International Nuclear Information System (INIS)

    Wang, Ke; Bai, Bofeng; Ma, Weimin

    2014-01-01

    The critical heat flux (CHF) for boiling crisis is one of the most important parameters in thermal management and safe operation of many engineering systems. Traditionally, the liquid film flow model for “dryout” mechanism shows a good prediction in heated annular two-phase flow. However, a general assumption that the initial entrained fraction at the onset of annular flow shows a lack of reasonable physical interpretation. Since the droplets have great momentum and the length of churn flow is short, the droplets in churn flow show an inevitable effect on the downstream annular flow. To address this, we considered the effect of churn flow and developed the original liquid film flow model in vertical upward flow by suggesting that calculation starts from the onset of churn flow rather than annular flow. The results indicated satisfactory predictions with the experimental data and the developed model provided a better understanding about the effect of flow pattern on the CHF prediction. - Highlights: •The general assumption of initial entrained fraction is unreasonable. •The droplets in churn flow show an inevitable effect on downstream annular flow. •The original liquid film flow model for prediction of CHF was developed. •The integration process was modified to start from the onset of churn flow

  17. X-Ray diffraction analysis of thermally evaporated copper tin selenide thin films at different annealing temperature

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Zainal Abidin Talib; Wan Mahmood Mat Yunus; Josephine Liew Ying Chyi; Wilfred Sylvester Paulus

    2010-01-01

    Semiconductor thin films Copper Tin Selenide, Cu 2 SnSe 3 , a potential compound for semiconductor radiation detector or solar cell applications were prepared by thermal evaporation method onto well-cleaned glass substrates. The as-deposited films were annealed in flowing purified nitrogen, N 2 , for 2 hours in the temperature range from 100 to 500 degree Celsius. The structure of as-deposited and annealed films has been studied by X-ray diffraction technique. The semi-quantitative analysis indicated from the Reitveld refinement show that the samples composed of Cu 2 SnSe 3 and SnSe. These studies revealed that the films were structured in mixed phase between cubic space group F-43 m (no. 216) and orthorhombic space group P n m a (no. 62). The crystallite size and lattice strain were determined from Scherrer calculation method. The results show that increasing in annealing temperature resulted in direct increase in crystallite size and decrease in lattice strain. (author)

  18. Optical investigations of the effect of solvent and thermal annealing on the optoelectronic properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    Energy Technology Data Exchange (ETDEWEB)

    Laskarakis, A., E-mail: alask@physics.auth.gr; Karagiannidis, P.G.; Georgiou, D.; Nikolaidou, D.M.; Logothetidis, S.

    2013-08-31

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible–far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. - Highlights: • Optical study of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • The Drude model provides information for PEDOT:PSS conductivity. • The addition of dimethylsulfoxide increases the electrical conductivity of PEDOT:PSS. • The increase in conductivity is correlated to increase of PEDOT grain size. • The thermal treatment has a smaller effect on PEDOT:PSS properties.

  19. Optical investigations of the effect of solvent and thermal annealing on the optoelectronic properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    International Nuclear Information System (INIS)

    Laskarakis, A.; Karagiannidis, P.G.; Georgiou, D.; Nikolaidou, D.M.; Logothetidis, S.

    2013-01-01

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible–far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. - Highlights: • Optical study of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • The Drude model provides information for PEDOT:PSS conductivity. • The addition of dimethylsulfoxide increases the electrical conductivity of PEDOT:PSS. • The increase in conductivity is correlated to increase of PEDOT grain size. • The thermal treatment has a smaller effect on PEDOT:PSS properties

  20. Analytical developments in the Wong-Fung-Tam-Gao radiation model of thermal diffusivity

    International Nuclear Information System (INIS)

    Lucia, U.; Maino, G.

    2004-01-01

    When the thermal diffusivity, χ, of a thin film on a substrate is measured by means of the mirage method, the photothermal deflection of the probe beam is determined by the heat radiation field contributed by the film and the substrate, heated by the pump beam. A two-dimensional algorithm is here presented in order to deduce the measure of the diffusivities of the film and the substrate in one set of mirage detection from the experimental data

  1. Gas Control and Thermal Modeling Methods for Pressed Pellet and Fast Rise Thin-Film Thermal Batteries

    Science.gov (United States)

    2015-09-01

    high operating battery case temperatures. Acceptable hermetic seals for thermal batteries ordinarily use laser welding , tungsten inert gas ( TIG ...20 Fig. 16 Sierra TABS Internal Plotter – Final pre- processing step for Low Cost Competent Munition (LCCM) thermal battery (battery shown drawn to...of experimental and DOE statistical methods. Such studies could be used to identify 2 electrochemical and thermodynamic processes that occur

  2. Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors

    International Nuclear Information System (INIS)

    Su, Bo-Yuan; Chu, Sheng-Yuan; Juang, Yung-Der; Liu, Ssu-Yin

    2013-01-01

    Graphical abstract: Mg-doped IGZO TFTs showed improved TFT performance and thermal stability due to fewer oxygen deficiencies and less interface electron trapping. Highlights: •We fabricated Mg-doped IGZO TFTs with improved performance using solution-process. •Mg doping reduced the oxygen deficiencies and less interface electron trapping of a-IGZO films. •Mg dope-TFT showed high mobility of 2.35 cm 2 /V s and an on–off current ratio over 10 6 . •For better device stability (gate-bias and thermal stability) was proved. -- Abstract: The effects of magnesium (Mg) doping (molar ratio Mg/Zn = (0–10 at.%)) on solution-processed amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) grown using the sol–gel method are investigated. TFT devices fabricated with Mg-doped films showed an improved field-effect mobility of 2.35 cm 2 /V s and a subthreshold slope (S) of 0.42 V/dec compared to those of an undoped a-IGZO TFT (0.73 cm 2 /V s and 0.74 V/dec, respectively), and an on–off current ratio of over 10 6 . Moreover, the 5 at.% Mg-doped TFT device showed improved gate bias and thermal stability due to fewer oxygen deficiencies, smaller carrier concentration, and less interface electron trapping in the a-IGZO films

  3. Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Bo-Yuan [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Juang, Yung-Der [Department of Materials Science, National University of Tainan, Tainan 700, Taiwan (China); Liu, Ssu-Yin [Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2013-12-15

    Graphical abstract: Mg-doped IGZO TFTs showed improved TFT performance and thermal stability due to fewer oxygen deficiencies and less interface electron trapping. Highlights: •We fabricated Mg-doped IGZO TFTs with improved performance using solution-process. •Mg doping reduced the oxygen deficiencies and less interface electron trapping of a-IGZO films. •Mg dope-TFT showed high mobility of 2.35 cm{sup 2}/V s and an on–off current ratio over 10{sup 6}. •For better device stability (gate-bias and thermal stability) was proved. -- Abstract: The effects of magnesium (Mg) doping (molar ratio Mg/Zn = (0–10 at.%)) on solution-processed amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) grown using the sol–gel method are investigated. TFT devices fabricated with Mg-doped films showed an improved field-effect mobility of 2.35 cm{sup 2}/V s and a subthreshold slope (S) of 0.42 V/dec compared to those of an undoped a-IGZO TFT (0.73 cm{sup 2}/V s and 0.74 V/dec, respectively), and an on–off current ratio of over 10{sup 6}. Moreover, the 5 at.% Mg-doped TFT device showed improved gate bias and thermal stability due to fewer oxygen deficiencies, smaller carrier concentration, and less interface electron trapping in the a-IGZO films.

  4. A new computer-aided simulation model for polycrystalline silicon film resistors

    Science.gov (United States)

    Ching-Yuan Wu; Weng-Dah Ken

    1983-07-01

    A general transport theory for the I-V characteristics of a polycrystalline film resistor has been derived by including the effects of carrier degeneracy, majority-carrier thermionic-diffusion across the space charge regions produced by carrier trapping in the grain boundaries, and quantum mechanical tunneling through the grain boundaries. Based on the derived transport theory, a new conduction model for the electrical resistivity of polycrystalline film resitors has been developed by incorporating the effects of carrier trapping and dopant segregation in the grain boundaries. Moreover, an empirical formula for the coefficient of the dopant-segregation effects has been proposed, which enables us to predict the dependence of the electrical resistivity of phosphorus-and arsenic-doped polycrystalline silicon films on thermal annealing temperature. Phosphorus-doped polycrystalline silicon resistors have been fabricated by using ion-implantation with doses ranged from 1.6 × 10 11 to 5 × 10 15/cm 2. The dependence of the electrical resistivity on doping concentration and temperature have been measured and shown to be in good agreement with the results of computer simulations. In addition, computer simulations for boron-and arsenic-doped polycrystalline silicon resistors have also been performed and shown to be consistent with the experimental results published by previous authors.

  5. X-ray diffraction analysis of thermally-induced stress relaxation in ZnO films deposited by magnetron sputtering on (100) Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Conchon, F., E-mail: florineconchon@gmail.co [Laboratoire de Physique des Materiaux (PHYMAT) UMR 6630, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Renault, P.O.; Goudeau, P.; Le Bourhis, E. [Laboratoire de Physique des Materiaux (PHYMAT) UMR 6630, Universite de Poitiers, 86962 Futuroscope-Chasseneuil (France); Sondergard, E.; Barthel, E.; Grachev, S. [Laboratoire de Surface du Verre et Interfaces (SVI), UMR 125, 93303 Aubervilliers (France); Gouardes, E.; Rondeau, V.; Gy, R. [Laboratoire de Recherche de Saint-Gobain (SGR), 93303 Aubervilliers (France); Lazzari, R.; Jupille, J. [Institut des Nanosciences de Paris (INSP), UMR 7588, 75015 Paris (France); Brun, N. [Laboratoire de Physique des Solides (LPS), UMR 8502, 91405 Orsay (France)

    2010-07-01

    Residual stresses in sputtered ZnO films on Si are determined and discussed. By means of X-ray diffraction, we show that as-deposited ZnO films are highly compressively stressed. Moreover, a transition of stress is observed as a function of the post-deposition annealing temperature. After an 800 {sup o}C annealing, ZnO films are tensily stressed while ZnO films encapsulated by Si{sub 3}N{sub 4} are stress-free. With the aid of in-situ X-ray diffraction under ambient and argon atmosphere, we argue that this thermally activated stress relaxation may be attributed to a variation of the stoichiometry of the ZnO films.

  6. Thermal coupling effect on the vortex dynamics of superconducting thin films: time-dependent Ginzburg–Landau simulations

    Science.gov (United States)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2018-05-01

    In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.

  7. Experimental study on surface wrinkling of silicon monoxide film on compliant substrate under thermally induced loads

    Science.gov (United States)

    Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin

    2017-06-01

    The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.

  8. Thermally induced self-assembly of cylindrical nanodomains in low molecular weight PS-b-PMMA thin films

    International Nuclear Information System (INIS)

    Seguini, Gabriele; Giammaria, Tommaso J; Lupi, Federico Ferrarese; Perego, Michele; Sparnacci, Katia; Antonioli, Diego; Gianotti, Valentina; Laus, Michele; Vita, Francesco; Placentino, Immacolata F; Francescangeli, Oriano; Hilhorst, Jan; Ferrero, Claudio

    2014-01-01

    The phase behaviour in thin films of an asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymer with a molecular weight of 39 kg mol −1 was assessed at a wide range of temperatures and times. Cylindrical PMMA structures featuring a diameter close to 10 nm and perpendicularly oriented with respect to the substrate were obtained at 180 ° C in relatively short annealing times (t ≤ 30 min) by means of a simple thermal treatment performed in a standard rapid thermal processing machine. (paper)

  9. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  10. Numerical Investigation of AdBlue Droplet Evaporation and Thermal Decomposition in the Context of NOx-SCR Using a Multi-Component Evaporation Model

    Directory of Open Access Journals (Sweden)

    Kaushal Nishad

    2018-01-01

    Full Text Available To cope with the progressive tightening of the emission regulations, gasoline and diesel engines will continuously require highly improved exhaust after-treatment systems. In the case of diesel engines, the selective catalytic reduction (SCR appears as one of the widely adopted technologies to reduce NOx (nitrogen oxides emissions. Thereby, with the help of available heat from exhaust gas, the injected urea–water solution (UWS turns inside the exhaust port immediately into gaseous ammonia (NH3 by evaporation of mixture and thermal decomposition of urea. The reaction and conversion efficiency mostly depend upon the evaporation and subsequent mixing of the NH3 into the exhaust gas, which in turn depends upon the engine loading conditions. Up to now, the aggregation of urea after evaporation of water and during the thermal decomposition of urea is not clearly understood. Hence, various scenarios for the urea depletion in the gaseous phase that can be envisaged have to be appraised under SCR operating conditions relying on an appropriate evaporation description. The objective of the present paper is therefore fourfold. First, a reliable multi-component evaporation model that includes a proper binary diffusion coefficient is developed for the first time in the Euler–Lagrangian CFD (computational fluid dynamics framework to account properly for the distinct evaporation regimes of adBlue droplets under various operating conditions. Second, this model is extended for thermal decomposition of urea in the gaseous phase, where, depending on how the heat of thermal decomposition of urea is provided, different scenarios are considered. Third, since the evaporation model at and around the droplet surface is based on a gas film approach, how the material properties are evaluated in the film influences the process results is reported, also for the first time. Finally, the impact of various ambient temperatures on the adBlue droplet depletion characteristics

  11. Synthesis of nanocrystalline ceria thin films by low-temperature thermal decomposition of Ce-propionate

    International Nuclear Information System (INIS)

    Roura, P.; Farjas, J.; Ricart, S.; Aklalouch, M.; Guzman, R.; Arbiol, J.; Puig, T.; Calleja, A.; Peña-Rodríguez, O.; Garriga, M.; Obradors, X.

    2012-01-01

    Thin films of Ce-propionate (thickness below 20 nm) have been deposited by spin coating and pyrolysed into ceria at temperatures below 200 °C. After 1 h of thermal treatment, no signature of the vibrational modes of Ce-propionate is detected by infrared spectroscopy, indicating that decomposition has been completed. The resulting ceria films are nanocrystalline as revealed by X-ray diffraction (average grain size of 2–2.5 nm) and confirmed by microscopy. They are transparent in the visible region and show the characteristic band gap absorption below 400 nm. A direct band gap energy of 3.50 ± 0.05 eV has been deduced irrespective of the pyrolysis temperature (160, 180 and 200 °C).

  12. Fabrication of 3D Microfluidic Devices by Thermal Bonding of Thin Poly(methyl methacrylate) Films

    KAUST Repository

    Perez, Paul

    2012-07-01

    The use of thin-film techniques for the fabrication of microfluidic devices has gained attention over the last decade, particularly for three-dimensional channel structures. The reasons for this include effective use of chip volume, mechanical flexibility, dead volume reduction, enhanced design capabilities, integration of passive elements, and scalability. Several fabrication techniques have been adapted for use on thin films: laser ablation and hot embossing are popular for channel fabrication, and lamination is widely used for channel enclosure. However, none of the previous studies have been able to achieve a strong bond that is reliable under moderate positive pressures. The present work aims to develop a thin-film process that provides design versatility, speed, channel profile homogeneity, and the reliability that others fail to achieve. The three building blocks of the proposed baseline were fifty-micron poly(methyl methacrylate) thin films as substrates, channel patterning by laser ablation, and device assembly by thermal-fusion bonding. Channel fabrication was characterized and tuned to produce the desired dimensions and surface roughness. Thermal bonding was performed using an adapted mechanical testing device and optimized to produce the maximum bonding strength without significant channel deformation. Bonding multilayered devices, incorporating conduction lines, and integrating various types of membranes as passive elements demonstrated the versatility of the process. Finally, this baseline was used to fabricate a droplet generator and a DNA detection chip based on micro-bead agglomeration. It was found that a combination of low laser power and scanning speed produced channel surfaces with better uniformity than those obtained with higher values. In addition, the implemented bonding technique provided the process with the most reliable bond strength reported, so far, for thin-film microfluidics. Overall, the present work proved to be versatile

  13. Global thermal models of the lithosphere

    Science.gov (United States)

    Cammarano, F.; Guerri, M.

    2017-12-01

    Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations

  14. Physical and biological properties of a novel anti-adhesion material made of thermally cross-linked gelatin film: Investigation of the usefulness as anti-adhesion material.

    Science.gov (United States)

    Horii, Tsunehito; Tsujimoto, Hiroyuki; Miyamoto, Hiroe; Yamanaka, Koki; Tanaka, Shota; Torii, Hiroko; Ozamoto, Yuki; Takamori, Hideki; Nakamachi, Eiji; Ikada, Yoshito; Hagiwara, Akeo

    2018-02-01

    To create more useful, effective and safer anti-adhesion materials, we developed a thermally cross-linked gelatin film. In this study, we examined the physical properties of the film such as the physical strength and the adhesiveness to reveal the handling properties and biological properties, such as the anti-adhesion effect, the influence on cell proliferation, and the cytotoxicity to reveal the anti-adhesion mechanism, especially in comparison with the conventional hyaluronic acid and carboxymethylcellulose film (the conventional film). A tensile test under dry and wet conditions and shearing stress test showed that the gelatin film has significant higher maximum tensile stress and fracture strain than the conventional film. In the study using a rat model of cecum adhesion, the anti-adhesion effect of the gelatin film was significantly superior to that of the conventional film. In the cell proliferation test, the number of fibroblast cells on the gelatin film increased at each time point, while no cell proliferation was observed on the conventional film. Furthermore, in the cytotoxicity test using a colony assay and Live/Dead assay, the extract of the gelatin film had no cytotoxicity, while the extract of the conventional film had cytotoxicity considerably. These results suggest that the gelatin film provides better handling than the conventional film, due to better physical strength and ductility of the film. In addition, the gelatin film has a significantly greater anti-adhesion effect than the conventional film without any cytotoxicity. Therefore, the gelatin film is quite favorable as an anti-adhesion material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 689-696, 2018. © 2017 Wiley Periodicals, Inc.

  15. Thin film removal mechanisms in ns-laser processing of photovoltaic materials

    International Nuclear Information System (INIS)

    Bovatsek, J.; Tamhankar, A.; Patel, R.S.; Bulgakova, N.M.; Bonse, J.

    2010-01-01

    The removal of thin films widely used in photovoltaics (amorphous silicon, tin oxide, zinc oxide, aluminum, and molybdenum) is studied experimentally using multi-kHz Q-switched solid-state lasers at 532 nm and 1064 nm wavelengths. The processing ('scribing') is performed through the film-supporting glass plate at scribing speeds of the order of m/s. The dependence of the film removal threshold on the laser pulse duration (8 ns to 40 ns) is investigated and the results are complemented by a multi-layer thermal model used for numerical simulations of the laser-induced spatio-temporal temperature field within the samples. Possible film removal mechanisms are discussed upon consideration of optical, geometrical, thermal and mechanical properties of the layers.

  16. Thermal desorption spectroscopy of boron/carbon films after keV deuterium irradiation

    International Nuclear Information System (INIS)

    Yamaki, T.; Gotoh, Y.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.

    1994-01-01

    Thermal desorption spectroscopy (TDS) of D 2 and CD 4 was done on boron/carbon films (B/(B+C)=0-74%), after 3 keV D 3 + irradiation to 4.5x10 17 D/cm 2 at 473 K. The D 2 desorption peaks were observed at 1050, 850 and 650 K. For a sputter B/C film (0%), only the 1050 K peak was observed. With increasing boron concentration to 3%, a sharp peak appeared at 850 K, the intensity of which was found to increase with increasing boron concentration to 23%, and then to decrease at 74%. The 650 K shoulder, which was observed for high boron concentration specimens, was speculated to be deuterium trapped by boron atoms in the boron clusters. The relative amount of CD 4 desorption was found to decrease with increasing boron concentration, which was attributed to the decrease in the trapped deuterium concentration in the implantation layer at temperatures at which CD 4 desorption proceeds. ((orig.))

  17. Effect of thermal strain on the ferroelectric phase transition in polycrystalline Ba0.5Sr0.5TiO3 thin films studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Tenne, D.A.; Soukiassian, A.; Xi, X.X.; Taylor, T.R.; Hansen, P.J.; Speck, J.S.; York, R.A.

    2004-01-01

    We have applied Raman spectroscopy to study the influence of thermal strain on the vibrational properties of polycrystalline Ba 0.5 Sr 0.5 TiO 3 films. The films were grown by rf magnetron sputtering on Pt/SiO 2 surface using different host substrates: strontium titanate, sapphire, silicon, and vycor glass. These substrates provide a systematic change in the thermal strain while maintaining the same film microstructure. From the temperature dependence of the ferroelectric A 1 soft phonon intensity, the ferroelectric phase transition temperature, T C , was determined. We found that T C decreases with increasing tensile stress in the films. This dependence is different from the theoretical predictions for epitaxial ferroelectric films. The reduction of the ferroelectric transition temperature with increasing biaxial tensile strain is attributed to the suppression of in-plane polarization due to the small lateral grain size in the films

  18. Flame retardancy and thermal properties of epoxy acrylate resin/alpha-zirconium phosphate nanocomposites used for UV-curing flame retardant films

    International Nuclear Information System (INIS)

    Xing Weiyi; Jie Ganxin; Song Lei; Wang Xin; Lv Xiaoqi; Hu Yuan

    2011-01-01

    This paper reported the UV-curing flame retardant film, which consisted of epoxy acrylate resin (EA) used as an oligomer, tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA) used as flame retardant (FR). The flame retardancy and thermal properties of films were reinforced by using alpha-zirconium phosphate (α-Zr (HPO 4 ) 2 H 2 O, α-ZrP). The morphology of nanocomposite film was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the organophilic α-ZrP (OZrP) layers were dispersed well in epoxy acrylate resin. Microscale Combustion Calorimeter (MCC), thermogravimetric analysis (TGA) and thermogravimetric analysis/infrared spectrometry (TGA-IR) were used to characterize the flame retardant property and thermal stability. It was found that the incorporation of TAEP and TGICA can reduce the flammability of EA. Moreover, further reductions were observed due to the addition of OZrP. The char residue for systems with or without OZrP was also explored by scanning electron microscopy (SEM).

  19. Shift in room-temperature photoluminescence of low-fluence Si+-implanted SiO2 films subjected to rapid thermal annealing

    International Nuclear Information System (INIS)

    Fu Mingyue; Tsai, J.-H.; Yang, C.-F.; Liao, C.-H.

    2008-01-01

    We experimentally demonstrate the effect of the rapid thermal annealing (RTA) in nitrogen flow on photoluminescence (PL) of SiO 2 films implanted by different doses of Si + ions. Room-temperature PL from 400-nm-thick SiO 2 films implanted to a dose of 3x10 16 cm -2 shifted from 2.1 to 1.7 eV upon increasing RTA temperature (950-1150 deg. C) and duration (5-20 s). The reported approach of implanting silicon into SiO 2 films followed by RTA may be effective for tuning Si-based photonic devices.

  20. Films of double oxides of zirconium and iron

    International Nuclear Information System (INIS)

    Kozik, V.V.; Borilo, L.P.; Shul'pekov, A.M.

    2000-01-01

    Films of double oxides of zirconium and iron were prepared by the method of precipitation from film-forming alcohol solutions of zirconium oxychloride and iron chloride with subsequent thermal treatment. Using the methods of X-ray phase and differential thermal analyses, conductometry and optical spectroscopy, basic chemical processes occurring in the film-forming solutions and during thermal treatment are studied alongside with phase composition and optical characteristics of the films prepared. The composition-property diagrams of the given system in a thin-film state are plotted [ru