WorldWideScience

Sample records for films solar elements

  1. Operating method of amorphous thin film semiconductor element

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koshiro; Ono, Masaharu; Hanabusa, Akira; Osawa, Michio; Arita, Takashi

    1988-05-31

    The existing technologies concerning amorphous thin film semiconductor elements are the technologies concerning the formation of either a thin film transistor or an amorphous Si solar cell on a substrate. In order to drive a thin film transistor for electronic equipment control by the output power of an amorphous Si solar cell, it has been obliged to drive the transistor weth an amorphous solar cell which was formed on a substrate different from that for the transistor. Accordingly, the space for the amorphous solar cell, which was formed on the different substrate, was additionally needed on the substrate for the thin film transistor. In order to solve the above problem, this invention proposes an operating method of an amorphous thin film semiconductor element that after forming an amorphous Si solar cell through lamination on the insulation coating film which covers the thin film transistor formed on the substrate, the thin film transistor is driven by the output power of this solar cell. The invention eliminates the above superfluous space and reduces the size of the amorphous thin film semiconductor element including the electric source. (3 figs)

  2. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  3. Solar cell element, solar cell system, and illuminating system; Taiyo denchi soshi, taiyo denchi sochi oyobi shomei system

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Y. [Toshiba Laytech Co. Ltd., Tokyo (Japan)

    1997-12-12

    This invention relates to provision of a photocatalytic film on the light intercepting surface for the solar cell substrate of the solar cell element, which transmits the lights in the wavelength region longer than ultraviolet, i.e. 410nm and longer wavelength lights, and intercepts the lights in ultraviolet wavelength region. This photocatalytic film retards the decrease in the light interception by the solar cell element, and simplifies the maintenance because it oxidizes and decomposes organic matters by the less than 410nm ultraviolet ray contained in the sunlight to prevent adhesion of organic substance on the light intercepting surface of the solar cell element. In addition, decomposed dirt composition is washed away to accelerate dirt removing performance by rain waterdrop adhesion on the intercepting surface when it is used outdoors. As to this photocatalytic film, the thickness from 0.01 to 0.5{mu}m is desirable, effective phtocatalytic activity can not be expected if the thickness is less than 0.01{mu}m, and transmission factor becomes smaller if the thickness exceeds 0.5{mu}m, producing no electromotive force. TiO2, ZnO, and FeTiO3 are used as such photocatalyst. 6 figs.

  4. High efficiency thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Hans-Werner [Helmholtz Zentrum Berlin (Germany). Solar Energy

    2012-11-01

    Production of photovoltaics is growing worldwide on a gigawatt scale. Among the thin film technologies, Cu(In,Ga)S,Se{sub 2} (CIS or CIGS) based solar cells have been the focus of more and more attention. This paper aims to analyze the success of CIGS based solar cells and the potential of this technology for future photovoltaics large-scale production. Specific material properties make CIS unique and allow the preparation of the material with a wide range of processing options. The huge potential lies in the possibility to take advantage of modern thin film processing equipment and combine it with very high efficiencies beyond 20% already achieved on the laboratory scale. A sustainable development of this technology could be realized by modifying the materials and replacing indium by abundant elements. (orig.)

  5. Thin-film solar cells

    International Nuclear Information System (INIS)

    Aberle, Armin G.

    2009-01-01

    The rapid progress that is being made with inorganic thin-film photovoltaic (PV) technologies, both in the laboratory and in industry, is reviewed. While amorphous silicon based PV modules have been around for more than 20 years, recent industrial developments include the first polycrystalline silicon thin-film solar cells on glass and the first tandem solar cells based on stacks of amorphous and microcrystalline silicon films ('micromorph cells'). Significant thin-film PV production levels are also being set up for cadmium telluride and copper indium diselenide.

  6. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  7. Development of A Thin Film Crystalline Silicon Solar Cell

    International Nuclear Information System (INIS)

    Sopori, B.; Chen, W.; Zhang, Y.

    1998-01-01

    A new design for a single junction, thin film Si solar cell is presented. The cell design is compatible with low-temperature processing required for the use of a low-cost glass substrate, and includes effective light trapping and impurity gettering. Elements of essential process steps are discussed

  8. Ion beam analysis of Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Karydas, A.G. [International Atomic Energy Agency (IAEA), IAEA Laboratories, Nuclear Science and Instrumentation Laboratory, A-2444 Seibersdorf (Austria); Institute of Nuclear and Particle Physics, NCSR “Demokritos”, 153 10 Aghia Paraskevi, Athens Greece (Greece); Streeck, C. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Radovic, I. Bogdanovic [Ruđer Bošković Institute (RBI), Zagreb (Croatia); Kaufmann, C.; Rissom, T. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Beckhoff, B. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Jaksic, M. [Ruđer Bošković Institute (RBI), Zagreb (Croatia); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E. N. 10, Apartado 21, 2686-953 Sacavém (Portugal)

    2015-11-30

    Graphical abstract: - Highlights: • Elemental depth profiles for various CIGS thin films were quantitatively determined. • Pure absorbers, complete cell and bilayer solar cells were prepared and analyzed. • Synergistic PIXE and RBS analysis of thin solar cells using alpha beam particles. • High energy alpha beam resolved completely the Indium depth profile. • Synchrotron based Reference Free GIXRF quantitative analysis validated IBA results. - Abstract: The present work investigates the potential of ion beam analysis (IBA) techniques such as the Rutherford backscattering spectrometry (RBS) and particle induced X-ray emission (PIXE) using helium ions to provide quantitative in-depth elemental analysis of various types of Cu(In,Ga)Se{sub 2} thin films. These films with a thickness of about 2 μm are used as absorber layers in photovoltaic devices with continuously increasing the performance of this technology. The preparation process generally aims to obtain an in-depth gradient of In and Ga concentrations that optimizes the optoelectronic and electrical properties of the solar cell. The measurements were performed at directly accessible single or double layered CIGS absorbers and at buried absorbers in completed thin film solar cells. The IBA data were analyzed simultaneously in order to derive best fitted profiles that match all experimental RBS and PIXE spectra. For some samples elemental profiles deduced form synchrotron based, reference free grazing incidence X-ray fluorescence analysis were compared with the IBA results and an overall good agreement was observed within quoted uncertainties.

  9. The solar element

    DEFF Research Database (Denmark)

    Kragh, Helge

    2009-01-01

    of the nineteenth century. In the modest form of a yellow spectral line known as D3, 'helium' was sometimes supposed to exist in the Sun's atmosphere, an idea which is traditionally ascribed to J. Norman Lockyer. Did Lockyer discover helium as a solar element? How was the suggestion received by chemists, physicists...... and astronomers in the period until the spring of 1895, when William Ramsay serendipitously found the gas in uranium minerals? The hypothetical element helium was fairly well known, yet Ramsay's discovery owed little or nothing to Lockyer's solar element. Indeed, for a brief while it was thought that the two...... elements might be different. The complex story of how helium became established as both a solar and terrestrial element involves precise observations as well as airy speculations. It is a story that is unique among the discovery histories of the chemical elements....

  10. CIGS thin film solar cell prepared by reactive co-sputtering

    Science.gov (United States)

    Kim, Jeha; Lee, Ho-Sub; Park, Nae-Man

    2013-09-01

    The reactive co-sputtering was developed as a new way of preparing high quality CuInGaSe2(CIGS) films from two sets of targets; Cu0.6Ga 0.4 and Cu0.4In0.6 alloy and Cu and (In0.7Ga0.3)2Se3 compound targets. During sputtering, Cu, In, Ga metallic elements as well as the compound materials were reacted to form CIGS simultaneously in highly reactive elemental Se atmosphere generated by a thermal cracker. CIGS layer had been grown on Mo/soda-lime glass(SLG) at 500°C. For both sets of targets, we controlled the composition of CIGS thin film by changing the RF power for target components. All the films showed a preferential (112) orientation as observed from X-ray diffraction analysis. The composition ratios of CIGS were easily set to 0.71-0.95, 0.10-0.30 for [Cu]/[III] and [Ga]/[III], respectively. The grain size and the surface roughness of a CIGS film increased as the [Cu]/[III] ratios increased. The solar cells were fabricated using a standard base line process in the device structure of grid/ITO/i-ZnO/CdS/CIGS/Mo/ SLG. The best performance was obtained the performance of Voc = 0.45 V, Jsc =35.6, FF = 0.535, η = 8.6% with a 0.9 μm-CIGS solar cell from alloy targets while Voc = 0.54 V, Jsc =30.8, FF = 0.509, η = 8.5% with a 0.8 μm-CIGS solar cell from Cu and (In0.7Ga0.3)2Se3.

  11. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    Science.gov (United States)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  12. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications.

    Science.gov (United States)

    Cho, Jin Woo; Ismail, Agus; Park, Se Jin; Kim, Woong; Yoon, Sungho; Min, Byoung Koun

    2013-05-22

    Cu2ZnSnS4 (CZTS) is a very promising semiconductor material when used for the absorber layer of thin film solar cells because it consists of only abundant and inexpensive elements. In addition, a low-cost solution process is applicable to the preparation of CZTS absorber films, which reduces the cost when this film is used for the production of thin film solar cells. To fabricate solution-processed CZTS thin film using an easily scalable and relatively safe method, we suggest a precursor solution paste coating method with a two-step heating process (oxidation and sulfurization). The synthesized CZTS film was observed to be composed of grains of a size of ~300 nm, showing an overall densely packed morphology with some pores and voids. A solar cell device with this film as an absorber layer showed the highest efficiency of 3.02% with an open circuit voltage of 556 mV, a short current density of 13.5 mA/cm(2), and a fill factor of 40.3%. We also noted the existence of Cd moieties and an inhomogeneous Zn distribution in the CZTS film, which may have been triggered by the presence of pores and voids in the CZTS film.

  13. Nanostructured refractory thin films for solar applications

    Science.gov (United States)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  14. Synthesis and characterization of copper antimony tin sulphide thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Ali, N., E-mail: nisar.ali@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Department of Physics, Govt. Post Graduate Jehanzeb College Saidu Sharif, Swat, 19200 (Pakistan); Hussain, A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Ahmed, R., E-mail: rashidahmed@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Wan Shamsuri, W.N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [Department of Physics and Electrical Engineering, Faculty of Engineering & Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-12-30

    Highlights: • A new and novel material for solar cell applications is demonstrated as a replacement for toxic and expansive compounds. • The materials used in this compound are abundant and low cost. • Compound exhibit unusual optical and electrical properties. • The band gap was found to be comparable with that of GaAs. - Abstract: Low price thin film modules based on Copper antimony tin sulphide (CATS) are introduced for solar harvesting to compete for the already developed compound semiconductors. Here, CATS thin films were deposited on soda lime glass by thermal evaporation technique followed by a rapid thermal annealing in an argon atmosphere. From Our XRD analysis, it was revealed that the annealed samples were poly-crystalline and their crystallinity was improved with increasing annealing temperature. The constituent elements and their corresponding chemical states were identified using X-ray photoelectron spectroscopy. The obtained optical band gap of 1.4 eV for CATS thin film is found nearly equal to GaAs – one of the highly efficient thin film material for solar cell technology. Furthermore, our observed good optical absorbance and low transmittance for the annealed CATS thin films in the visible region of light spectrum assured the aptness of the CATS thin films for solar cell applications.

  15. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  16. Solar control window film: report and manual

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    A method has been developed by which the energy and energy cost savings associated with application of solar control film to windows of commercial and institutional buildings can be calculated. This method has been prepared as a separate, self-contained user's manual. It is simple and essentially non-technical, based on Toronto conditions, and is sufficiently accurate to provide a basis for economic feasibility analysis. The report explains the method in depth and compares it to alternate methods developed by the solar film industry. Variables which affect film performance, the savings that result, and limitations on the use of solar film as an energy conserving method are discussed. 8 refs., 2 figs., 1 tab.

  17. Review on Alkali Element Doping in Cu(In,GaSe2 Thin Films and Solar Cells

    Directory of Open Access Journals (Sweden)

    Yun Sun

    2017-08-01

    Full Text Available This paper reviews the development history of alkali element doping on Cu(In,GaSe2 (CIGS solar cells and summarizes important achievements that have been made in this field. The influences of incorporation strategies on CIGS absorbers and device performances are also reviewed. By analyzing CIGS surface structure and electronic property variation induced by alkali fluoride (NaF and KF post-deposition treatment (PDT, we discuss and interpret the following issues: ① The delamination of CIGS thin films induced by Na incorporation facilitates CuInSe2 formation and inhibits Ga during low-temperature co-evaporation processes. ② The mechanisms of carrier density increase due to defect passivation by Na at grain boundaries and the surface. ③ A thinner buffer layer improves the short-circuit current without open-circuit voltage loss. This is attributed not only to better buffer layer coverage in the early stage of the chemical bath deposition process, but also to higher donor defect (CdCu+ density, which is transferred from the acceptor defect (VCu− and strengthens the buried homojunction. ④ The KF-PDT-induced lower valence band maximum at the absorber surface reduces the recombination at the absorber/buffer interface, which improves the open-circuit voltage and the fill factor of solar cells.

  18. Solar advanced internal film receiver

    International Nuclear Information System (INIS)

    Torre Cabezas, M. de la

    1990-01-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs

  19. Recent progress in Si thin film technology for solar cells

    Science.gov (United States)

    Kuwano, Yukinori; Nakano, Shoichi; Tsuda, Shinya

    1991-11-01

    Progress in Si thin film technology 'specifically amorphous Si (a-Si) and polycrystalline Si (poly-Si) thin film' for solar cells is summarized here from fabrication method, material, and structural viewpoints. In addition to a-Si, primary results on poly-Si thin film research are discussed. Various applications for a-Si solar cells are mentioned, and consumer applications and a-Si solar cell photovoltaic systems are introduced. New product developments include see-through solar cells, solar cell roofing tiles, and ultra-light flexible solar cells. As for new systems, air conditioning equipment powered by solar cells is described. Looking to the future, the proposed GENESIS project is discussed.

  20. Thin film solar cells from earth abundant materials growth and characterization of Cu2(ZnSn)(SSe)4 thin films and their solar cells

    CERN Document Server

    Kodigala, Subba Ramaiah

    2013-01-01

    The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further developm

  1. Influence of different sulfur to selenium ratios on the structural and electronic properties of Cu(In,Ga)(S,Se){sub 2} thin films and solar cells formed by the stacked elemental layer process

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B. J., E-mail: bjm.mueller@web.de [Robert Bosch GmbH, Corporate Research and Advance Engineering, Advanced Functional Materials and Microsystems, D-70839 Gerlingen (Germany); Institute of Micro- and Nanomaterials, University of Ulm, D-89081 Ulm (Germany); Zimmermann, C.; Haug, V., E-mail: veronika.haug@de.bosch.com; Koehler, T.; Zweigart, S. [Robert Bosch GmbH, Corporate Research and Advance Engineering, Advanced Functional Materials and Microsystems, D-70839 Gerlingen (Germany); Hergert, F. [Bosch Solar CISTech GmbH, D-14772 Brandenburg (Germany); Herr, U., E-mail: ulrich.herr@uni-ulm.de [Institute of Micro- and Nanomaterials, University of Ulm, D-89081 Ulm (Germany)

    2014-11-07

    In this study, we investigate the effect of different elemental selenium to elemental sulfur ratios on the chalcopyrite phase formation in Cu(In,Ga)(S,Se){sub 2} thin films. The films are formed by the stacked elemental layer process. The structural and electronic properties of the thin films and solar cells are analyzed by means of scanning electron microscopy, glow discharge optical emission spectrometry, X-ray diffraction, X-ray fluorescence, Raman spectroscopy, spectral photoluminescence as well as current-voltage, and quantum efficiency measurements. The influence of different S/(S+Se) ratios on the anion incorporation and on the Ga/In distribution is investigated. We find a homogenous sulfur concentration profile inside the film from the top surface to the bottom. External quantum efficiency measurements show that the band edge of the solar cell device is shifted to shorter wavelength, which enhances the open-circuit voltages. The relative increase of the open-circuit voltage with S/(S+Se) ratio is lower than expected from the band gap energy trend, which is attributed to the presence of S-induced defects. We also observe a linear decrease of the short-circuit current density with increasing S/(S+Se) ratio which can be explained by a reduced absorption. Above a critical S/(S+Se) ratio of around 0.61, the fill factor drops drastically, which is accompanied by a strong series resistance increase which may be attributed to changes in the back contact or p-n junction properties.

  2. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid

  3. Thin film solar cell technology in Germany

    International Nuclear Information System (INIS)

    Diehl, W.; Sittinger, V.; Szyszka, B.

    2005-01-01

    Within the scope of limited nonrenewable energy resources and the limited capacity of the ecosystem for greenhouse gases and nuclear waste, sustainability is one important target in the future. Different energy scenarios showed the huge potential for photovoltaics (PV) to solve this energy problem. Nevertheless, in the last decade, PV had an average growth rate of over 20% per year. In 2002, the solar industry delivered more than 500 MWp/year of photovoltaic generators [A. Jaeger-Waldau, A European Roadmap for PV R and D, E-MRS Spring Meeting, (2003)]. More than 85% of the current production involves crystalline silicon technologies. These technologies still have a high cost reduction potential, but this will be limited by the silicon feedstock. On the other hand the so-called second generation thin film solar cells based on a-Si, Cu(In,Ga)(Se,S 2 (CIGS) or CdTe have material thicknesses of a few microns as a result of their direct band gap. Also, the possibility of circuit integration offers an additional cost reduction potential. Especially in Germany, there are a few companies who focus on thin film solar cells. Today, there are two manufacturers with production lines: the Phototronics (PST) division of RWE-Schott Solar with a-Si thin film technology and the former Antec Solar GmbH (now Antec Solar Energy GmbH) featuring the CdTe technology. A pilot line based on CIGS technology is run by Wuerth Solar GmbH. There is also a variety of research activity at other companies, namely, at Shell Solar, Sulfurcell Solartechnik GmbH, Solarion GmbH and the CIS-Solartechnik GmbH. We will give an overview on research activity on various thin film technologies, as well as different manufacturing and production processes in the companies mentioned above. (Author)

  4. Solar control on irradiated Ta2O2 thin films

    International Nuclear Information System (INIS)

    Baydogan, N. D.; Zayim, E. Oe.

    2007-01-01

    Thin films consisting of Ta 2 O 5 have been used in industry in applications related to thin-film capacitors, optical waveguides, and antireflection coatings on solar cells. Ta 2 O 5 films are used for several special applications as highly refractive material and show different optical properties depending on the deposition methods. Sol-gel technique has been used for the preparation of Ta 2 O 5 thin films. Ta 2 O 5 thin films were prepared by sol-gel proses on glass substrates to obtain good quality films. These films were exposed to gamma radiation from Co-60 radioisotope. Ta 2 O 5 coated thin films were placed against the source and irradiated for 8 different gamma doses; between 0.35 and 21.00 kGy at room temperature. Energetic gamma ray can affect the samples and change its colour. On the other hand some of the Ta 2 O 5 coated thin films were irradiated with beta radiation from Sr-90 radioisotope. The effect of gamma irradiation on the solar properties of Ta 2 O 5 films is compared with that of beta irradiation. The solar properties of the irradiated thin films differ significantly from those of the unirradiated ones. After the irradiation of the samples transmittance and reflectance are measured for solar light between 300 and 2100 nm, by using Perkin Elmer Lambda 9 UV/VIS/NIR Spectrophotometer. Change in the direct solar transmittance, reflectance and absorptance with absorbed dose are determined. Using the optical properties, the redistribution of the absorbed component of the solar radiation and the shading coefficient (SC) are calculated as a function of the convective heat-transfer coefficient. Solar parameters are important for the determination of the shading coefficient. When the secondary internal heat transfer factor (qi), direct solar transmittance (□ e ), and solar factor (g) are known, it is possible to determine shading coefficient via the dose rates. The shading coefficient changes as the dose rate is increased. In this study, the shading

  5. Peeled film GaAs solar cell development

    International Nuclear Information System (INIS)

    Wilt, D.M.; Thomas, R.D.; Bailey, S.G.; Brinker, D.J.; DeAngelo, F.L.

    1990-01-01

    Thin film, single crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/Kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity (>10 6 ) of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofloric acid (HF). The intent of this work is to demonstrate the feasibility of using the peeled film technique to fabricate high efficiency, low mass GaAs solar cells. We have successfully produced a peeled film GaAs solar cell. The device, although fractured and missing the aluminum gallium arsenide (Al x Ga 1 - x As) window and antireflective (AR) coating, had a Voc of 874 mV and a fill factor of 68% under AMO illumination

  6. Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells.

    Science.gov (United States)

    Liu, Xiaojun; Da, Yun; Xuan, Yimin

    2017-08-07

    In this paper, the role of pseudo-disordered moth-eye structures on the optical features for application to thin-film solar cells is investigated to realize the superior light management for the full-spectrum solar energy utilization, compared with some ordered structures. Without loss of generality, the c-Si thin film solar cell is taken as the example. The results demonstrate that the fluctuations introduced into the geometry parameters of moth-eye elements can lead to the remarkable absorption enhancement in the wavelength region of 0.3-1.1 μm and high transmission in the wavelength range of 1.1-2.5 μm. Two mechanisms including the increasing spectral density of modes and the intensive forescattering intensity are identified to be responsible for the absorption enhancement. In addition, the optical characteristics of the moth-eye surface with both disordered height and disordered diameter are insensitive to the incident angle.

  7. Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film

    International Nuclear Information System (INIS)

    Butson, Ethan T; Yu, Peter K N; Butson, Martin J

    2013-01-01

    Measurement of solar ultraviolet (UV) radiation is an important aspect of dosimetry for the improved knowledge of UV exposure and its associated health related issues. EBT2 Gafchromic film has been designed by its manufacturers as an improved tool for ionizing radiation dosimetry. The film is stated as exhibiting a significant reduction in UV response. However, results have shown that when exposed to UV from the ‘bottom side’ i.e. from the thick laminate side, the film exhibits a sensitivity to solar UV radiation which is both measurable and accurate for UV dosimetry. Films were irradiated in this position to known solar UV exposures and results are quantified showing a reproducibility of measurement to within ±7% (1 SD) when compared to calibrated UV meters. With an exposure of 20 J cm −2 broad spectrum solar UV, the films net OD change was found to be 0.248 OD ± 0.021 OD when analysing the results using the red channel region of an Epson V700 desktop scanner. This was compared to 0.0294 OD ± 0.0053 OD change with exposure to the same UV exposure from the top side. This means that solar UV dosimetry can be performed using EBT2 Gafchromic film utilizing the underside of the film for dosimetry. The main advantages of this film type for measurement of UV exposure is the visible colour change and thus easy analysis using a desktop scanner as well as its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  8. Transparent sculptured titania films for enhanced light absorption in thin-film Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kai-Hsiang, E-mail: khhung@itri.org.tw [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Chiou, Guan-Di; Wong, Ming-Show [Department of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan (China); Wang, Yu-Chih [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Chung, I-Shan [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China)

    2011-12-30

    This study presents a description of the enhancement of light absorption in thin-film silicon (Si) solar cells by using sculptured titania (TiO{sub 2}) films. We used an electron-beam evaporation system with a glancing angle deposition (GLAD) method to deposit porous TiO{sub 2} films on fluorine-doped SnO{sub 2} (FTO) substrates. The GLAD TiO{sub 2}/FTO films were used as conductive electrodes in hydrogenated microcrystalline silicon ({mu}c-Si:H) solar cells. Transmission electron microscopy revealed that the GLAD TiO{sub 2} films are composed of sculptured nano-pillars on an FTO surface, and this nanostructure provides a synergistic route for light scattering enhancement. The GLAD TiO{sub 2}/FTO exhibited a 68% improvement of optical haze (at {lambda} = 600 nm). The {mu}c-Si:H solar cells consisting of the GLAD-nanostructured TiO{sub 2} resulted in a 5% improvement of short-circuit current (J{sub sc}) and yielded a cell efficiency of 6.6%.

  9. In and Ga Codoped ZnO Film as a Front Electrode for Thin Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Duy Phong Pham

    2014-01-01

    Full Text Available Doped ZnO thin films have attracted much attention in the research community as front-contact transparent conducting electrodes in thin film silicon solar cells. The prerequisite in both low resistivity and high transmittance in visible and near-infrared region for hydrogenated microcrystalline or amorphous/microcrystalline tandem thin film silicon solar cells has promoted further improvements of this material. In this work, we propose the combination of major Ga and minor In impurities codoped in ZnO film (IGZO to improve the film optoelectronic properties. A wide range of Ga and In contents in sputtering targets was explored to find optimum optical and electrical properties of deposited films. The results show that an appropriate combination of In and Ga atoms in ZnO material, followed by in-air thermal annealing process, can enhance the crystallization, conductivity, and transmittance of IGZO thin films, which can be well used as front-contact electrodes in thin film silicon solar cells.

  10. Quadruple-Junction Thin-Film Silicon-Based Solar Cells

    NARCIS (Netherlands)

    Si, F.T.

    2017-01-01

    The direct utilization of sunlight is a critical energy source in a sustainable future. One of the options is to convert the solar energy into electricity using thin-film silicon-based solar cells (TFSSCs). Solar cells in a triple-junction configuration have exhibited the highest energy conversion

  11. Electrodeposition of Metal Matrix Composites and Materials Characterization for Thin-Film Solar Cells

    Science.gov (United States)

    2017-12-04

    Air Mass CNT Carbon Nanotubes DIV Dark Current -Voltage DMA Dynamic Mechanical Analysis EL Electroluminescence FEM Finite Element Method IMM...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0174 TR-2017-0174 ELECTRODEPOSITION OF METAL MATRIX COMPOSITES AND MATERIALS CHARACTERIZATION FOR THIN-FILM SOLAR...research which is exempt from public affairs security and policy review in accordance with AFI 61-201, paragraph 2.3.5.1. This report is available to

  12. Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Fan, Zhiyong

    2018-03-01

    Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I 2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb-Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thin film solar cells: research in an industrial perspective.

    Science.gov (United States)

    Edoff, Marika

    2012-01-01

    Electricity generation by photovoltaic conversion of sunlight is a technology in strong growth. The thin film technology is taking market share from the dominant silicon wafer technology. In this article, the market for photovoltaics is reviewed, the concept of photovoltaic solar energy conversion is discussed and more details are given about the present technological limitations of thin film solar cell technology. Special emphasis is given for solar cells which employ Cu(In,Ga)Se(2) and Cu(2)ZnSn(S,Se)(4) as the sunlight-absorbing layer.

  14. Advances in copper-chalcopyrite thin films for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshiro, Jess; Gaillard, Nicolas; Rocheleau, Richard; Miller, Eric [Hawaii Natural Energy Institute, University of Hawaii at Manoa, 1680 East-West Road, Post 109, Honolulu, HI 96822 (United States)

    2010-01-15

    Promising alternatives to crystalline silicon as the basic building block of solar cells include copper-chalcopyrite thin films such as copper indium gallium diselenide, a class of thin films exhibiting bandgap-tunable semiconductor behavior, direct bandgaps and high absorption coefficients. These properties allow for the development of novel solar-energy conversion configurations like ultra-high efficiency multi-junction solar cells utilizing combinations of photovoltaic and photoelectrochemical junctions for hydrogen production. This paper discusses the current worldwide status as well as the development and optimization of copper-chalcopyrite thin films deposited onto various substrate types for different photovoltaic and photoelectrochemical applications at the Hawaii Natural Energy Institute. (author)

  15. High efficiency thin-film solar cells for space applications: challenges and opportunities

    NARCIS (Netherlands)

    Leest, R.H. van

    2017-01-01

    In theory high efficiency thin-film III-V solar cells obtained by the epitaxial lift-off (ELO) technique offer excellent characteristics for application in space solar panels. The thesis describes several studies that investigate the space compatibility of the thin-film solar cell design developed

  16. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  17. Characterization of thin-film silicon materials and solar cells through numerical modeling

    NARCIS (Netherlands)

    Pieters, B.E.

    2008-01-01

    At present most commercially available solar cells are made of crystalline silicon (c-Si). The disadvantages of crystalline silicon solar cells are the high material cost and energy consumption during production. A cheaper alternative can be found in thin-film silicon solar cells. The thin-film

  18. Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2018-03-01

    The optimization of microstructural and optoelectrical properties of a thin layer is an important step prior device fabrication process, so an enhancement in these properties of thermally evaporated CdTe thin films is reported in this communication. The films having thickness 450 nm and 850 nm were deposited on thoroughly cleaned glass and indium tin oxide (ITO) substrates followed by annealing at 450 °C in air atmosphere. These films were characterized for microstructural and optoelectrical properties employing X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, UV-Vis spectrophotometer and source meter. The films found to be have zinc-blende cubic structure with preferred reflection (111) while the crystallographic parameters and direct energy band gap are strongly influenced by the film thickness. The surface morphology studies show that the films are uniform, smooth, homogeneous and nearly dense-packed as well as free from voids and pitfalls as where elemental analysis revealed the presence of Cd and Te element in the deposited films. The electrical analysis showed linear behavior of current with voltage while conductivity is decreased for higher thickness. The results show that the microstructural and optoelectrical properties of CdTe thin layer could be enhanced by varying thickness and films having higher thickness might be processed as promising absorber thin layer to the CdTe-based solar cells.

  19. Perovskite solar cell with an efficient TiO₂ compact film.

    Science.gov (United States)

    Ke, Weijun; Fang, Guojia; Wang, Jing; Qin, Pingli; Tao, Hong; Lei, Hongwei; Liu, Qin; Dai, Xin; Zhao, Xingzhong

    2014-09-24

    A perovskite solar cell with a thin TiO2 compact film prepared by thermal oxidation of sputtered Ti film achieved a high efficiency of 15.07%. The thin TiO2 film prepared by thermal oxidation is very dense and inhibits the recombination process at the interface. The optimum thickness of the TiO2 compact film prepared by thermal oxidation is thinner than that prepared by spin-coating method. Also, the TiO2 compact film and the TiO2 porous film can be sintered at the same time. This one-step sintering process leads to a lower dark current density, a lower series resistance, and a higher recombination resistance than those of two-step sintering. Therefore, the perovskite solar cell with the TiO2 compact film prepared by thermal oxidation has a higher short-circuit current density and a higher fill factor.

  20. Disorder improves nanophotonic light trapping in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

    2014-03-31

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  1. Laser Welding of Silicon Foils for Thin-Film Solar Cell Manufacturing

    OpenAIRE

    Heßmann, Maik

    2014-01-01

    Thin-film solar module manufacturing is one of the most promising recent developments in photovoltaic research and has the potential to reduce production costs. As the necessity for competitive prices on the world market increases and manufacturers endeavor to bring down the cost of solar modules, thin-film technology is becoming more and more attractive. In this work a special technique was investigated which makes solar cell manufacturing more compatible with an industrial roll-to-roll proc...

  2. Elemental composition of solar energetic particles

    International Nuclear Information System (INIS)

    Cook, W.R. III.

    1981-01-01

    The Low Energy Telescopes on the Voyager spacecraft are used to measure the elemental composition (2 less than or equal to Z less than or equal to 28) and energy spectra (5 to 15 MeV/nucleon) of solar energetic particles (SEPs) in seven large flare events. Four flare events are selected which have SEP abundance ratios approximately independent of energy/nucleon. The abundances for these events are compared from flare to flare and are compared to solar abundances from other sources - spectroscopy of the photosphere and corona, and solar wind measurements. The selected SEP composition results may be described by an average composition plus a systematic flare-to-flare deviation about the average. For each of the four events, the ratios of the SEP abundances to the four-flare average SEP abundances are approximately monotonic functions of nuclear charge Z in the range 6 less than or equal to Z less than or equal to 28. An exception to this Z-dependent trend occurs for He, whose abundance relative to Si is nearly the same in all four events. The four-flare average SEP composition is significantly different from the solar composition determined by photospheric spectroscopy: the elements C, N and O are depleted in SEPs by a factor of about five relative to the elements Na, Mg, Al, Si, Ca, Cr, Fe, and Ni. For some elemental abundance ratios (e.g. Mg/O), the difference between SEP and photospheric results is persistent from flare to flare and is apparently not due to a systematic difference in SEP energy/nucleon spectra between the elements, nor to propagation effects which would result in a time-dependent abundance ratio in individual flare events

  3. Fabrication of thin-film thermoelectric generators with ball lenses for conversion of near-infrared solar light

    Science.gov (United States)

    Ito, Yoshitaka; Mizoshiri, Mizue; Mikami, Masashi; Kondo, Tasuku; Sakurai, Junpei; Hata, Seiichi

    2017-06-01

    We designed and fabricated thin-film thermoelectric generators (TEGs) with ball lenses, which separated visible light and near-infrared (NIR) solar light using a chromatic aberration. The transmitted visible light was used as daylight and the NIR light was used for thermoelectric generation. Solar light was estimated to be separated into the visible light and NIR light by a ray tracing method. 92.7% of the visible light was used as daylight and 9.9% of the NIR light was used for thermoelectric generation. Then, the temperature difference of the pn junctions of the TEG surface was 0.71 K, determined by heat conduction analysis using a finite element method. The thin-film TEGs were fabricated using lithography and deposition processes. When the solar light (A.M. 1.5) was irradiated to the TEGs, the open-circuit voltage and maximum power were 4.5 V/m2 and 51 µW/m2, respectively. These TEGs are expected to be used as an energy supply for Internet of Things sensors.

  4. Barrier effect of AlN film in flexible Cu(In,Ga)Se{sub 2} solar cells on stainless steel foil and solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Boyan; Li, Jianjun [Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Wu, Li [The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071 (China); Liu, Wei; Sun, Yun [Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Zhang, Yi, E-mail: yizhang@nankai.edu.cn [Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China)

    2015-04-05

    Highlights: • The adhension between AlN film and Mo are verygood. • AlN film can be effectively used as the barrier of flexible CIGS solar cell on SS substrate. • AlN film is suitable as the insulation barrier of flexible CIGS solar cell on SS substrate. - Abstract: The AlN film deposited by DC magnetron sputtering on stainless steel (SS) foils was used as the barrier in flexible Cu(In,Ga)Se{sub 2} (CIGS) solar cells on stainless steel foil and characterized comprehensively by X-ray diffraction (XRD), scanning electron microscopy (SEM), I–V, and QE measurements study. The study of AlN as insulation barrier in the flexible CIGS solar cell showed that the adhesion strength between the SS foil and the deposited AlN film was very strong even after annealing at high temperature at 530 °C. More importantly, a high resistance of over 10 MΩ was remained with the film with thickness of around 200 nm after annealing. This indicates that the AlN film is suitable as an effective insulation barrier in flexible CIGS solar cells based on SS foil. In addition, the XRD and SEM results showed that the AlN film did not influence the crystal structure of the Mo film which was deposited upon the AlN layer and used as the electrical contact in CIGS solar cells. It was found that the AlN film contributed to an improved crystallinity of the Mo contact layer compared to the bare SS foil. The combined results of secondary ion mass spectrometry, I–V and EQE measurements of the corresponding flexible CIGS solar cells confirmed that 1 μm-thick AlN film could be used as an efficient barrier layer in CIGS solar cells on SS foil.

  5. Elemental composition and ionization state of the solar atmosphere and solar wind

    International Nuclear Information System (INIS)

    Joselyn, J.A.C.

    1978-01-01

    Abundance measurements have always proved useful in generating and refining astrophysical theories. Some of the classical problems of astrophysics involve determining the relative abundances of elements in the atmosphere of a star from observations of its line spectrum, and then synthesizing the physical processes which would produce such abundances. Theories of the formation of the solar system are critically tested by their ability to explain observed abundances, and, elemental abundances can serve as tracers, helping to determine the origin and transport of ions. Since the solar wind originates at the sun, it can act as a diagnostic probe of solar conditions. In particular, measurements of the composition of the solar wind should be related to the solar composition. And, assuming ionization equilibrium, measurements of the relative abundances of the ionization states in the solar wind should infer coronal temperatures and temperature gradients. However, most spherically symmetric models of the solar wind are unable to explain the relationship between the composition estimated from solar observations and as measured at 1 AU; and, recent observations of significant flow speeds in the transition region raise doubts about the validity of the assumption of ionization equilibrium

  6. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    Licai Wang

    1999-07-01

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  7. Modification of UV absorption profile of polymer film reflectors to increase solar-weighted reflectance

    Science.gov (United States)

    Jorgensen, Gary; Gee, Randall C.; White, David

    2017-05-02

    Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.

  8. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza

    2016-11-01

    Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.

  9. Solar radiation inside greenhouses covered with semitransparent photovoltaic film: first experimental results

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2013-09-01

    Full Text Available The southern Italian regions are characterized by climatic conditions with high values of solar radiation and air temperature. This has allowed the spread of protected structures both as a defense against critical winter conditions both for growing off-season. The major energy source for these greenhouses is given by solar energy and artificial energy is used rarely. So the problem in the use of greenhouses in these areas, if anything, is opposite to that of the northern areas. In these places you must try to mitigate often the solar radiation inside the greenhouses with suitable measures or abandon for a few months the cultivation inside these structures. The solar radiation intercepted by passive means can be used for other purposes through the uptake and transformation by the photovoltaic panels whose use however is problematic due to complete opacity of the cells. New photosensitive materials partially transparent to solar radiation onto flexible media, allow to glimpse the possibility of using them to greenhouses cover, getting the dual effect of partially screen the greenhouse and use the surplus to generate electricity. The research was carried out to evaluate the possibility of using a flexible photovoltaic film realized by the University of Rome Tor Vergata (research group of ECOFLECS project coordinated by prof. Andrea Reale for covering greenhouses. Two greenhouses in small scale were built: one covered with photovoltaic film and one covered with EVA film for test. In both greenhouses during the first research period it was grown a variety of dwarf tomato. The research was carried out comparing the solar radiation that enters into greenhouse in the summer (August 2012 and in winter conditions (December 2012 in both greenhouses. The result show that the average ratio between the daily global solar radiation under the photovoltaic film and outside radiation is about 37%, while between the radiation under EVA film and outside radiation

  10. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    Science.gov (United States)

    Rajanikant, Ray Jayminkumar

    The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a

  11. Sputtered molybdenum thin films and the application in CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.; Zhu, H., E-mail: hongbing1982@hotmail.com; Liang, X.; Zhang, C.; Li, Z.; Xu, Y.; Chen, J.; Zhang, L.; Mai, Y., E-mail: yaohuamai@hbu.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • Mo thin films are prepared by magnetron sputtering. • The dynamic deposition rate increases with the increasing discharge power. • The surface structure of Mo films varies with discharge power and working pressure. • High efficiency CIGS thin film solar cell of 15.2% has been obtained. - Abstract: Molybdenum (Mo) thin films are prepared by magnetron sputtering with different discharge powers and working pressures for the application in Cu(In, Ga)Se{sub 2} (CIGS) thin film solar cells as back electrodes. Properties of these Mo thin films are systematically investigated. It is found that the dynamic deposition rate increases with the increasing discharge power while decreases with the increasing working pressure. The highest dynamic deposition rate of 15.1 nm m/min is achieved for the Mo thin film deposited at the discharge power of 1200 W and at the working pressure of 0.15 Pa. The achieved lowest resistivity of 3.7 × 10{sup −5} Ω cm is attributed to the large grains in the compact thin film. The discharge power and working pressure have great influence on the sputtered Mo thin films. High efficiency of 12.5% was achieved for the Cu(In, Ga)Se{sub 2} (CIGS) thin film solar cells with Mo electrodes prepared at 1200 W and low working pressures. By further optimizing material and device properties, the conversion efficiency has reached to 15.2%.

  12. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali; Levi, Kemal; McGehee, Michae D.; Dauskardt, Reinhold H.

    2012-01-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial

  13. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.

    Science.gov (United States)

    van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert

    2015-08-12

    We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.

  14. Optimized flexible cover films for improved conversion efficiency in thin film flexible solar cells

    Science.gov (United States)

    Guterman, Sidney; Wen, Xin; Gudavalli, Ganesh; Rhajbhandari, Pravakar; Dhakal, Tara P.; Wilt, David; Klotzkin, David

    2018-05-01

    Thin film solar cell technologies are being developed for lower cost and flexible applications. For such technologies, it is desirable to have inexpensive, flexible cover strips. In this paper, we demonstrate that transparent silicone cover glass adhesive can be doped with TiO2 nanoparticles to achieve an optimal refractive index and maximize the performance of the cell. Cells covered with the film doped with nanoparticles at the optimal concentration demonstrated a ∼1% increase in photocurrent over the plain (undoped) film. In addition, fused silica beads can be incorporated into the flexible cover slip to realize a built-in pseudomorphic glass diffuser layer as well. This additional degree of freedom in engineering flexible solar cell covers allows maximal performance from a given cell for minimal increased cost.

  15. Elemental abundances of solar sibling candidates

    International Nuclear Information System (INIS)

    Ramírez, I.; Lambert, D. L.; Endl, M.; Cochran, W. D.; MacQueen, P. J.; Bajkova, A. T.; Bobylev, V. V.; Roederer, I. U.; Wittenmyer, R. A.

    2014-01-01

    Dynamical information along with survey data on metallicity and in some cases age have been used recently by some authors to search for candidates of stars that were born in the cluster where the Sun formed. We have acquired high-resolution, high signal-to-noise ratio spectra for 30 of these objects to determine, using detailed elemental abundance analysis, if they could be true solar siblings. Only two of the candidates are found to have solar chemical composition. Updated modeling of the stars' past orbits in a realistic Galactic potential reveals that one of them, HD 162826, satisfies both chemical and dynamical conditions for being a sibling of the Sun. Measurements of rare-element abundances for this star further confirm its solar composition, with the only possible exception of Sm. Analysis of long-term high-precision radial velocity data rules out the presence of hot Jupiters and confirms that this star is not in a binary system. We find that chemical tagging does not necessarily benefit from studying as many elements as possible but instead from identifying and carefully measuring the abundances of those elements that show large star-to-star scatter at a given metallicity. Future searches employing data products from ongoing massive astrometric and spectroscopic surveys can be optimized by acknowledging this fact.

  16. Development of CIGS2 thin film solar cells

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.

    2005-01-01

    Research and development of CuIn 1-x Ga x Se 2-y S y (CIGSS) thin-film solar cells on ultralightweight flexible metallic foil substrates is being carried out at FSEC PV Materials Lab for space applications. Earlier, the substrate size was limited to 3 cm x 2.5 cm. Large-area sputtering systems and scrubber for hydrogen selenide and sulfide have been designed and constructed for preparation of CIGSS thin-films on large (15 cm x 10 cm) substrates. A selenization/sulfurization furnace donated by Shell (formerly Siemens) Solar has also been refurbished and upgraded. The sputtering target assembly design was modified for proper clamping of targets and effective cooling. A new design of the magnetic assembly for large-area magnetron sputtering sources was implemented so as to achieve uniform deposition on large area. Lightweight stainless steel foil and ultralightweight titanium foil substrates were utilized to increase the specific power of solar cells. Sol-gel derived SiO 2 layers were coated on titanium foil by dip coating method. Deposition parameters for the preparation of molybdenum back contact layers were optimized so as to minimize the residual stress as well as reaction with H 2 S. Presently large (15 cm x 10 cm) CuIn 1-x Ga x S 2 (CIGS2) thin film solar cells are being prepared on Mo-coated titanium and stainless steel foil by sulfurization of CuGa/In metallic precursors in diluted Ar:H 2 S(4%). Heterojunction partner CdS layers are deposited by chemical bath deposition. The regeneration sequence of ZnO/ZnO:Al targets was optimized for obtaining consistently good-quality, transparent and conducting ZnO/ZnO:Al bilayer by RF magnetron-sputter deposition. Excellent facilities at FSEC PV Materials Lab are one of its kinds and could serve as a nucleus of a small pilot plant for CIGSS thin film solar cell fabrication

  17. Procedures and practices for evaluating thin-film solar cell stability

    NARCIS (Netherlands)

    Roesch, R; Faber, T; von Hauff, E.L.; Brown, T. M.; Lira-Cantu, M.; Hoppe, H.

    2015-01-01

    During the last few decades, and in some cases only the last few years, novel thin-film photovoltaic (PV) technologies such as dye-sensitized solar cells (DSSC), organic solar cells (OPV), and, more recently, perovskite-based solar cells (PSC) have been growing in maturity with respect to device

  18. Epitaxial growth of chalcopyrite CuInS2 films on GaAs (001) substrates by evaporation method with elemental sources

    International Nuclear Information System (INIS)

    Nozomu, Tsuboi; Satoshi, Kobayash; Nozomu, Tsuboi; Takashi, Tamogami

    2010-01-01

    Full text : Ternary chalcopyrite semiconductor CuInS 2 is one of the potential candidates for absorber layers in high-efficiency thin film solar cells due to its direct bandgap Eg of 1.5 eV, which matches with solar spectrum. However, CuInS 2 solar cells face the problem of lower solar conversion efficiency compared with Cu(InGa)Se 2 solar cells. Investigation of fundamental properties of CuInS 2 films is necessary to understand key issues for solar cell performance. Although in bulk CuInS 2 is known to crystallize into chalcopyrite (CH) structure, in thin film other structures such as Cu-Au (CA) and sphalerite (SP) structures may coexist. It was reported epitaxial growth of slightly Cu-rich CuInS 2 films with c-axis orientated CA only and/or with a mixture of a- and c-axes orientated CH structures on GaP (001) at substrate temperature of 500 degrees using the conventional evaporation method with three elemental sources. Successful growth of epitaxial CH structured CuInS 2 were observed for films grown on GaP at 570 degrees with slightly Cu-rich composition. In this paper, CuInS 2 films with various [Cu]/[In] ratios are grown on GaAs(001) substrates, and the composition range in terms of the [Cu]/[In] ratio where epitaxial films with CH structure grow and the structural qualities of the films are discussed in comparison with those on GaP substrates. Films with various ratios of [Cu]/[In]=0.8 ≤1.9 are grown at 500 degrees and 570 degrees using the evaporation system described in our previous reports. Regardless of the substrate temperature, noticeable X-ray diffraction (XRD) peaks of CH structured CuInS 2 phase are observed in slightly Cu-rich films. However, reflection high energy electron diffraction (RHEED) patterns of the slightly Cu-rich films grown at 570 degrees exhibit noticeable spots not only due to the CH structure but also due to the CA structure. The amount of the CA structure is considered to be small because of the absence of the XRD peaks of the CA

  19. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  20. Measuring solar UV radiation with EBT radiochromic film

    International Nuclear Information System (INIS)

    Butson, Ethan T; Cheung Tsang; Yu, Peter K N; Butson, Martin J

    2010-01-01

    Ultraviolet radiation dosimetry has been performed with the use of a radiochromic film dosimeter called Gafchromic EBT for solar radiation exposure. The film changes from a clear colour to blue colour when exposed to ultraviolet radiation and results have shown that the colour change is reproducible within ±10% at 5 kJ m -2 UV exposure under various conditions of solar radiation. Parameters tested included changes in season (summer versus winter exposure), time of day, as well as sky conditions such as cloudy skies versus clear skies. As the radiochromic films' permanent colour change occurs in the visible wavelengths the film can be analysed with a desktop scanner with the most sensitive channel for analysis being the red component of the signal. Results showed that an exposure of 5 kJ m -2 (approximately 1 h exposure in full sun during summer) produced an approximate 0.28 change in the net OD when analysed in reflection mode on the desktop scanner which is significant darkening. The main advantages of this film type, and thus the new EBT2 film which has replaced EBT for measurement of UV exposure, is the visible colour change and thus easy analysis using a desktop scanner, its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  1. Thin-film silicon solar cells and sensors deposited on flexible substrates

    OpenAIRE

    Pinto, Emílio Sérgio Marins Vieira

    2014-01-01

    Tese de doutoramento do Programa Doutoral em Física (MAP-fis) Células solares flexíveis de filmes finos de silício são geralmente fabricadas a baixa temperatura sobre substratos de plástico ou a mais elevadas temperaturas sobre folhas de aço. Esta tese reporta o estudo da deposição de filmes finos sobre diferentes substratos de plástico, transparentes e coloridos, para células solares do tipo sobrestrato e substrato, respectivamente. Como objetivo co-lateral, os filmes dopados depositados ...

  2. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  3. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  4. Spectral conversion for thin film solar cells and luminescent solar concentrators

    NARCIS (Netherlands)

    Sark, van W.G.J.H.M.; Wild, de J.; Krumer, Z.; Mello Donegá, de C.; Schropp, R.E.I.; Nozik, A.J.; Beard, M.C.; Conibeer, G.

    2014-01-01

    Full spectrum absorption combined with effective generation and collection of charge carriers is a prerequisite for attaining high efficiency solar cells. Two examples of spectral conversion are treated in this chapter, i.e., up-conversion and down-shifting. Up-conversion is applied to thin film

  5. Soil solarization in open air with experimental and biodegradable plastic films [Apulia

    International Nuclear Information System (INIS)

    Russo, G.; Scarascia Mugnozza, G.; Frisullo, S.

    2004-01-01

    The use of biodegradable materials is a sustainable solution to the problem of high amounts of plastic films that must be disposed for soil solarization, since biodegradable films can be degraded directly in soil. The comparison of Mater-B biodegradable film with EVA and Polydac film for soil solarization and phythopatological tests in field is the aim of the present research. Experimental field tests were carried out in Borgo Cervaro (FG) in June and July 2002. A data logger connected with sensors was used to measure and collect climatic parameters. During field tests, climatic parameters and soil temperatures at different depth for soil under the different materials were evaluated. The performances of plastic materials were investigated measuring laceration and tensile strength and radiometric properties every 15 days. Soil samples were analysed in order to verify the reduction of infesting load of soilborne pathogens during soil solarization. The tests, although affected by adverse climatic conditions, show the capacity of the biodegradable film to obtain similar performances compared to traditional films. The traditional films produced higher temperatures in soil, longer duration and a higher number of hours with temperature higher than 40 deg C. Phytopathological results showed a higher sterilising effect for EVA and Polydac films in comparison to the Mater-B one [it

  6. Progress in Polycrystalline Thin-Film Cu(In,GaSe2 Solar Cells

    Directory of Open Access Journals (Sweden)

    Udai P. Singh

    2010-01-01

    Full Text Available For some time, the chalcopyrite semiconductor CuInSe2 and its alloy with Ga and/or S [Cu(InGaSe2 or Cu(InGa(Se,S2], commonly referred as CIGS, have been leading thin-film material candidates for incorporation in high-efficiency photovoltaic devices. CuInSe2-based solar cells have shown long-term stability and the highest conversion efficiencies among all thin-film solar cells, reaching 20%. A variety of methods have been reported to prepare CIGS thin film. Efficiency of solar cells depends upon the various deposition methods as they control optoelectronic properties of the layers and interfaces. CIGS thin film grown on glass or flexible (metal foil, polyimide substrates require p-type absorber layers of optimum optoelectronic properties and n-type wideband gap partner layers to form the p-n junction. Transparent conducting oxide and specific metal layers are used for front and back contacts. Progress made in the field of CIGS solar cell in recent years has been reviewed.

  7. Large Area Thin Film Silicon: Synergy between Displays and Solar Cells

    NARCIS (Netherlands)

    Schropp, R.E.I.

    2012-01-01

    Thin-film silicon technology has changed our society, owing to the rapid advance of its two major application fields in communication (thin-film displays) and sustainable energy (thin-film solar cells). Throughout its development, advances in these application fields have always benefitted each

  8. Development of a hybrid sputtering/evaporation process for Cu(In,Ga)Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, M.; Binetti, S.; Le Donne, A.; Lorenzi, B.; Caccamo, L.; Miglio, L. [Dipartimento di Scienza dei Materiali e Solar Energy Research Center MIB-SOLAR, Universita di Milano Bicocca, Milan (Italy); Moneta, R.; Marchionna, S.; Meschia, M. [Voltasolar s.r.l, Turate (Italy)

    2011-08-15

    In this paper we report a new method for Cu(In,Ga)Se{sub 2} deposition for solar cell application. Differently from the common co-evaporation process, an alterative approach for thin film Cu(In,Ga)Se{sub 2} has been tested: the sputtering deposition of metal elements combined with the selenium evaporation. We have studied the relationships between the growth parameters of our hybrid sputtering/evaporation method and the chemical-physical properties of the CIGS films. The cells are completed with a CdS buffer layer deposited by chemical bath deposition and ZnO + ITO deposited by RF sputtering. Test solar cells of 0.5 cm{sup 2} have shown an efficiency of 10% and 2.5% on glass and stainless steel substrate respectively. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Solar advanced internal film receiver; Receptor avanzado de pelicular interna

    Energy Technology Data Exchange (ETDEWEB)

    Torre Cabezas, M. de la

    1990-07-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs.

  10. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of thin-film solar cell manufacturing technology (Development of next-generation thin-film solar cell module manufacturing technology - Development of CIS solar cell module manufacturing technology - Development of high-quality film enlargement technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / jisedai usumaku taiyo denchi module no seizo gijutsu kaihatsu / CIS taiyo denchi module no seizo gijutsu kaihatsu / kohinshitsumaku no daimensekika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The project aims to establish a manufacturing process that enables both high-quality CuInSe{sub 2} (CIS) film solar cell enlargement and cost reduction and to develop a device structure which uses less heavy metal for the purposes of increasing the CIS thin-film solar cell size and efficiency and decreasing environmental impact. Several element technologies have been established for increasing the area of high-efficiency Cu(In, Ga)Se{sub 2} (CIGS) solar cells. Concerning the enlargement of the photoabsorption layer which is to assume the most important role, it is found that a high-quality CIGS film, which is near homogeneous though within a 10cm times 10cm area, is fabricated by an in-line vapor deposition method. As for dead area reduction and high-speed patterning, it is found that laser scribing works effectively in the patterning of the window layer and photoabsorption layer. As for reduction in the use of heavy metal, a high efficiency of 16.2% is attained in a cell not using a CdS film as expected in the case of a cell using a CdS film, this thanks to a CIGS film surface reforming technique. The technique of junction formation for CIGS solar cells is improved, and then a true efficiency of 18.5% is achieved. (NEDO)

  11. On-Orbit Demonstration of a Lithium-Ion Capacitor and Thin-Film Multijunction Solar Cells

    Science.gov (United States)

    Kukita, Akio; Takahashi, Masato; Shimazaki, Kazunori; Kobayashi, Yuki; Sakai, Tomohiko; Toyota, Hiroyuki; Takahashi, Yu; Murashima, Mio; Uno, Masatoshi; Imaizumi, Mitsuru

    2014-08-01

    This paper describes an on-orbit demonstration of the Next-generation Small Satellite Instrument for Electric power systems (NESSIE) on which an aluminum- laminated lithium-ion capacitor (LIC) and a lightweight solar panel called KKM-PNL, which has space solar sheets using thin-film multijunction solar cells, were installed. The flight data examined in this paper covers a period of 143 days from launch. We verified the integrity of an LIC constructed using a simple and lightweight mounting method: no significant capacitance reduction was observed. We also confirmed that inverted metamorphic multijunction triple-junction thin-film solar cells used for evaluation were healthy at 143 days after launch, because their degradation almost matched the degradation predictions for dual-junction thin-film solar cells.

  12. Development of thin-film Si HYBRID solar module

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Akihiko; Gotoh, Masahiro; Sawada, Toru; Fukuda, Susumu; Yoshimi, Masashi; Yamamoto, Kenji; Nomura, Takuji [Kaneka Corporation, 2-1-1, Hieitsuji, Otsu, Shiga 520-0104 (Japan)

    2009-06-15

    The device current-voltage (I-V) characteristics of thin-film silicon stacked tandem solar modules (HYBRID modules), consisting of a hydrogenated amorphous silicon (a-Si:H) cell and a thin-film crystalline silicon solar cell ({mu}c-Si), have been investigated under various spectral irradiance distributions. The performance of the HYBRID module varied periodically in natural sunlight due to the current-limiting property of the HYBRID module and the environmental effects. The behavior based on the current-limiting property was demonstrated by the modelling of the I-V curves using the linear interpolation method for each component cell. The improvement of the performance for the HYBRID module in natural sunlight will also be discussed from the viewpoint of the device design of the component cells. (author)

  13. Cuinse2 Thin Film For Solar Cell By Flash Evaporation

    Directory of Open Access Journals (Sweden)

    A.H. Soepardjo

    2009-11-01

    Full Text Available Deposition of thin films for material solar cell CuInSe2 are relatively simple. In this research mainly focused on the use of flash evaporation method, and the material created can then be characterized by optical and electrical properties. The optical characterization is done by X-ray Diffraction (XRD, Energy Dispersive Spectroscopy (EDS, and transmission and reflection by UV-VIS spectrophotometry. Electrical characterization is done by utilizing the Hall effect equipment. From these characterization, the atomic structure, absorption coefficient, energy gap, material type, composition of each elements and the mobility of CuInSe2 can be measured and determined. During process evaporation were carried out at substrate temperatures the range between 20ºC-415ºC.

  14. Building-Integrated Solar Energy Devices based on Wavelength Selective Films

    Science.gov (United States)

    Ulavi, Tejas

    A potentially attractive option for building integrated solar is to employ hybrid solar collectors which serve dual purposes, combining solar thermal technology with either thin film photovoltaics or daylighting. In this study, two hybrid concepts, a hybrid photovoltaic/thermal (PV/T) collector and a hybrid 'solar window', are presented and analyzed to evaluate technical performance. In both concepts, a wavelength selective film is coupled with a compound parabolic concentrator (CPC) to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber. The visible portion of the spectrum is transmitted through the concentrator to either a thin film Cadmium Telluride (CdTe) solar panel for electricity generation or into the interior space for daylighting. Special attention is given to the design of the hybrid devices for aesthetic building integration. An adaptive concentrator design based on asymmetrical truncation of CPCs is presented for the hybrid solar window concept. The energetic and spectral split between the solar thermal module and the PV or daylighting module are functions of the optical properties of the wavelength selective film and the concentrator geometry, and are determined using a Monte Carlo Ray-Tracing (MCRT) model. Results obtained from the MCRT can be used in conjugation with meteorological data for specific applications to study the impact of CPC design parameters including the half-acceptance angle thetac, absorber diameter D and truncation on the annual thermal and PV/daylighting efficiencies. The hybrid PV/T system is analyzed for a rooftop application in Phoenix, AZ. Compared to a system of the same area with independent solar thermal and PV modules, the hybrid PV/T provides 20% more energy, annually. However, the increase in total delivered energy is due solely to the addition of the thermal module and is achieved at an expense of a decrease in the annual electrical efficiency from 8.8% to 5.8% due to shading by

  15. Magnetron sputtering fabrication and photoelectric properties of WSe2 film solar cell device

    Science.gov (United States)

    Mao, Xu; Zou, Jianpeng; Li, Hongchao; Song, Zhengqi; He, Siru

    2018-06-01

    Tungsten diselenide (WSe2) films with different growing orientations exhibit diverse photoelectric properties. The WSe2 film with C-axis⊥substrate texture has been prepared and applied to thin-film solar cells. W nanofilms with a thickness of 270 nm were deposited onto the Mo bottom electrode and then heat-treated in selenium vapor to synthesize WSe2 films with a thickness of 1 μm. ZnO films were deposited onto WSe2 films to form a P-N junction and ITO films were deposited subsequently as the conductive layer. X-ray diffractometry, scanning electron microscopy and UV-vis-NIR spectro-analysis instrument were employed to analyze the phase composition, optical absorptivity and micromorphology of WSe2 films and the WSe2 solar cell device. WSe2 films exhibit excellent photoelectric performance with an optical absorption coefficient greater than 105 cm-1 across the visible spectrum. The calculated direct and indirect band gap of the WSe2 films is 1.48 eV and 1.25 eV, respectively. With the application of standard glass/Mo/WSe2/ZnO/ITO/Ag device structure, the open-circuit voltage of the battery device is 82 mV. The short-circuit current density is 2.98 mA/cm2 and the filling factor is 0.32. The photoelectric conversion efficiency of the WSe2 film solar cell device is 0.79%.

  16. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  17. THE SUN'S SMALL-SCALE MAGNETIC ELEMENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Jin, C. L.; Wang, J. X.; Song, Q.; Zhao, H.

    2011-01-01

    With the unique database from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory in an interval embodying solar cycle 23, the cyclic behavior of solar small-scale magnetic elements is studied. More than 13 million small-scale magnetic elements are selected, and the following results are found. (1) The quiet regions dominated the Sun's magnetic flux for about 8 years in the 12.25 year duration of cycle 23. They contributed (0.94-1.44) x10 23 Mx flux to the Sun from the solar minimum to maximum. The monthly average magnetic flux of the quiet regions is 1.12 times that of the active regions in the cycle. (2) The ratio of quiet region flux to that of the total Sun equally characterizes the course of a solar cycle. The 6 month running average flux ratio of the quiet regions was larger than 90.0% for 28 continuous months from July 2007 to October 2009, which very well characterizes the grand solar minima of cycles 23-24. (3) From the small to the large end of the flux spectrum, the variations of numbers and total flux of the network elements show no correlation, anti-correlation, and correlation with sunspots, respectively. The anti-correlated elements, covering the flux of (2.9-32.0)x10 18 Mx, occupy 77.2% of the total element number and 37.4% of the quiet-Sun flux. These results provide insight into the reason for anti-correlations of small-scale magnetic activity during the solar cycle.

  18. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali

    2012-08-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.

  19. Effect of oxygen to argon flow ratio on the properties of Al-doped ZnO films for amorphous silicon thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yang-Shih [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Lien, Shui-Yang, E-mail: syl@mdu.edu.tw [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Huang, Yung-Chuan [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Wang, Chao-Chun [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Liu, Chueh-Yang [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Nautiyal, Asheesh [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chungli, 320 Taoyuan, Taiwan, ROC (China); Wuu, Dong-Sing [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Lee, Shuo-Jun [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chungli, 320 Taoyuan, Taiwan, ROC (China)

    2013-02-01

    Transparent conductive oxide thin films in solar cell fabrication have attracted much attention due to their high conductivity and transmittance. In this paper, we have investigated the aluminum-doped zinc oxide (AZO) thin films prepared by radiofrequency magnetron sputtering on Asahi U-type SnO{sub 2} glass with different O{sub 2}/Ar flow ratios in vacuum chamber. Furthermore, the micro-structural, electrical, and optical properties of AZO/SnO{sub 2} films were studied. The change in O{sub 2}/Ar flow ratios is found to significantly affect the haze value, and slightly affect electrical resistivity and transmittance of the films. Afterward, the fabricated AZO thin films with different O{sub 2}/Ar flow ratios were used for building the solar cell devices. The current–voltage and external quantum efficiency characteristics were investigated for the solar cell devices. The optimized O{sub 2}/Ar flow ratio of 3 for solar device shows the best efficiency of 10.41%, and a 20% increase in short-circuit current density compared to typical Asahi solar cells. - Highlights: ► A thin Al-doped zinc oxide (AZO) film has been deposited on SnO{sub 2} substrates. ► The AZO film deposited at an O{sub 2}/Ar ratio of 3 shows low resistivity and high haze. ► The AZO film contains tiny grains that enhance light scattering. ► The amorphous silicon solar cell with the AZO layer shows a 20% increase in Jsc.

  20. Annealing enhancement effect by light illumination on proton irradiated Cu(In, Ga)Se2 thin-film solar cells

    International Nuclear Information System (INIS)

    Kawakita, Shirou; Imaizumi, Mitsuru; Matsuda, Sumio; Yamaguchi, Masafumi; Kushiya, Katsumi; Ohshima, Takeshi; Itoh, Hisayoshi

    2002-01-01

    In this paper, we investigated the high radiation tolerance of copper indium gallium di-selenide (CIGS) thin-film solar cells by conducting in situ measurements of short circuit current and open circuit voltage of CIGS thin-film solar cells during and after proton irradiation under short circuit condition. We found that the annealing rate of proton-induced defects in CIGS thin-film solar cells under light illumination with an AM0 solar simulator is higher than that under dark conditions. The activation energy of proton-induced defects in the CIGS thin-film solar cells with (without) light illumination is 0.80 eV (0.92 eV), which implies on enhanced defect annealing rate in CIGS thin-film solar cells due to minority-carrier injection. (author)

  1. Tailoring polymer films for solar-collection use, phase 1

    Science.gov (United States)

    Fouser, J. P.

    1983-09-01

    Several types of Polyacrylonitrile (PAN) polymers in film form that could meet the performance criteria with respect to thermal, ultraviolet, and tensile strength stability for use as exterior glazing in a low cost solar collector or for the internal heat exchange component were evaluated. Seven film specimens were tested. It is concluded that acrylonitrile homopolymer films when properly cast and processed have good mechanical properties, have long uv stability, and are usable for prolonged periods at 300 F.

  2. Investigation of stacked elemental layers for Cu(In,Ga)Se{sub 2} thin film preparation by rapid thermal selenization

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, Christiane; Ohland, Joerg; Mikolajczak, Ulf; Madena, Thomas; Keller, Jan; Parisi, Juergen; Hammer, Maria; Riedel, Ingo [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg, 26111 Oldenburg (Germany)

    2013-07-01

    Rapid thermal selenization of pure metallic (Cu-In-Ga) or selenium-containing (Cu-In-Ga-Se) precursors is a favorable method to fabricate Cu(In,Ga)Se{sub 2} absorber films for application in thin film solar cells. Because of its upscaling potential and the short process time it is a promising approach for the fabrication of CIGSe photovoltaic modules on industrial scale. As a preliminary work for prospective plasma-enhanced selenization of stacked elemental layers (SEL) the elements copper, indium and gallium were sequentially deposited on molybdenum coated soda-lime glass by thermal evaporation. The stacking order was varied and the precursors were annealed with different heating rates. Morphology, elemental depth distribution and phases of the layers were investigated before and after annealing using scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Furthermore the influence of different heating rates on phase transitions during annealing was studied by in-situ X-ray diffraction.

  3. Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Haenel, T.; Lee, K.Y.; Rau, B.; Ruske, F.; Weber, T.; Gall, S.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (formerly Hahn-Meitner-Institut Berlin), Kekulestr. 5, D-12489 Berlin (Germany); Berginski, M.; Huepkes, J. [Institute of Photovoltaics, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2009-06-15

    The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 {omega} after 22 h annealing at 600 C and only slightly increases for a 200 s heat treatment at 900 C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 C. (author)

  4. Photo-switching element

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Yuichi

    1987-10-31

    Photo-input MOS transistor (Photo-switching element) cannot give enough ON/OFF ratio but requires an auxiliary condenser for a certain type of application. In addition, PN junction of amorphous silicon is not practical because it gives high leak current resulting in low electromotive force. In this invention, a solar cell was constructed with a lower electrode consisting of a transparent electro-conducting film, a photosensitive part consisting of an amorphous Si layer of p-i-n layer construction, and an upper metal electrode consisting of Cr or Nichrome, and a thin film transistor was placed on the solar cell, and further the upper metal electrode was co-used as a gate electrode of the thin film transistor; this set-up of this invention enabled to attain an efficient photo-electric conversion of the incident light, high electromotive force of the solar cell, and the transistor with high ON/OFF ratio. (3 figs)

  5. Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Chou Chau, Yuan-Fong, E-mail: a0920146302@gmail.com, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming [Universiti Brunei Darussalam, Centre for Advanced Material and Energy Sciences (Brunei) (Brunei Darussalam); Chiang, Chien-Ying [National Taipei University of Technology, Department of Electro-Optical Engineering (China); Voo, Nyuk Yoong; Muhammad Idris, Nur Syafi’ie; Chai, Siew Ung [Universiti Brunei Darussalam, Centre for Advanced Material and Energy Sciences (Brunei) (Brunei Darussalam)

    2016-04-15

    The absorbance spectra of thin-film solar cells (TFSCs) can be enhanced by constructing the tunable periodic Ag-shell nano-bead (PASNB) arrays in the active material. In this paper, we investigated a plasmonic thin-film solar cell (TFSC) which composed of the arrays of PASNB deposited onto a crystalline silicon layer. By performing three-dimensional finite element method, we demonstrate that near field coupling among the PASNB arrays results in SPR modes with enhanced absorbance and field intensity. The proposed structure can significantly enhance the plasmonic activity in a wide range of incident light and enlarge working wavelength of absorbance in the range of near-UV, visible and near-infrared. We show that the sensitivity of the PASNB arrays reveals a linear relationship with the thickness of Ag-shell nano-bead (ASNB) for both the anti-bonding and bonding modes in the absorbance spectra. The broadband of absorbance spectra could be expanded as a wide range by varying the thickness of ASNB while the particle size is kept constant. Simulation results suggest this alternative scheme to the design and improvements on plasmonic enhanced TFSCs can be extended to other nanophotonic applications.

  6. Confinement of solar thermal energy by Nesa film; Nesa maku ni yoru taiyo netsu energy no fujikome

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A; Yano, K; Kasuga, M; Daigo, Y [Yamanashi University, Yamanashi (Japan). Faculty of Engineering

    1997-11-25

    This paper reports a Nesa (SnO2) film as selective transmissive film for effective confinement of solar thermal energy. Solar light spectrum ranges from 0.3 to 2.0{mu}m, while thermal radiation from bodies at 100-200degC is infrared ray more than 2{mu}m. Consequently, a solar water heater using the film which can pass rays below 2.0{mu}m while reflect rays over 2.0{mu}m for windows is very efficient. The Nesa film reflects rays with wavelengths more than plasma wavelengths (controllable from 1 to several {mu}m) by plasma action of free electrons. The Nesa films with different carrier densities were fabricated by spraying deposition method at dopant rates (Sb/Sn) from 0 to 2mol%. The solar water heaters were prepared using normal glass and specific glass coated with the Nesa film as selective transmissive film. The heater using the glass coated with the Nesa film of 2{mu}m plasma wavelength for windows could efficiently confine solar heat. The Nesa film of 700nm plasma wavelength which can pass visible light while reflect infrared ray was effective to reduce cooling/heating losses. 3 refs., 6 figs.

  7. Single-step colloidal quantum dot films for infrared solar harvesting

    KAUST Repository

    Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.

    2016-01-01

    . To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal

  8. Low cost thin film poly-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a project to design and develop a high density plasma based thin-film poly-silicon (TFPS) deposition system based on PQL proprietary advanced plasma technology to produce semiconductor quality TFPS for fabricating a TFPS solar cell. Details are given of the TFPS deposition system, the material development programme, solar cell structure, and cell efficiencies. The reproducibility of the deposition process and prospects for commercial exploitation are discussed.

  9. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko; Schroeder, Bob; Nielsen, Christian; Bronstein, Hugo; Fei, Zhuping; McCulloch, Iain; Heeney, Martin; Durrant, James

    2016-01-01

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact

  10. Cellulose Acetate/N-TiO2 Biocomposite Flexible Films with Enhanced Solar Photochromic Properties

    Science.gov (United States)

    Radhika, T.; Anju, K. R.; Silpa, M. S.; Ramalingam, R. Jothi; Al-Lohedan, Hamad A.

    2017-07-01

    Flexible cellulose acetate/N-TiO2 nanocomposite films containing various concentrations of nanosized N-TiO2 and an intelligent methylene blue ink have been prepared by solution casting. The hydrothermally prepared nitrogen-doped titania (N-TiO2) and the films were characterized in detail. The photochromic properties of the prepared films were investigated under ultraviolet (UV), visible light, and simulated solar irradiation by UV-Vis spectrophotometry. Upon irradiation, the films exhibited rapid photochromic response that was reversible at room temperature. Films with higher content of nano N-TiO2 showed enhanced decoloration/recoloration under all irradiation conditions, with fast decoloration/recoloration under simulated solar irradiation. These results suggest that the amount of nano N-TiO2 in the composite, the concentration of methylene blue, and the solvent greatly influence the photochromic properties of the films. Such flexible and transparent cellulose acetate/N-TiO2 films with enhanced decoloration/recoloration properties under solar irradiation are promising smart materials for use in photoreversible printed electronics applications.

  11. Machine Vision based Micro-crack Inspection in Thin-film Solar Cell Panel

    Directory of Open Access Journals (Sweden)

    Zhang Yinong

    2014-09-01

    Full Text Available Thin film solar cell consists of various layers so the surface of solar cell shows heterogeneous textures. Because of this property the visual inspection of micro-crack is very difficult. In this paper, we propose the machine vision-based micro-crack detection scheme for thin film solar cell panel. In the proposed method, the crack edge detection is based on the application of diagonal-kernel and cross-kernel in parallel. Experimental results show that the proposed method has better performance of micro-crack detection than conventional anisotropic model based methods on a cross- kernel.

  12. Paths to light trapping in thin film GaAs solar cells.

    Science.gov (United States)

    Xiao, Jianling; Fang, Hanlin; Su, Rongbin; Li, Kezheng; Song, Jindong; Krauss, Thomas F; Li, Juntao; Martins, Emiliano R

    2018-03-19

    It is now well established that light trapping is an essential element of thin film solar cell design. Numerous light trapping geometries have already been applied to thin film cells, especially to silicon-based devices. Less attention has been paid to light trapping in GaAs thin film cells, mainly because light trapping is considered less attractive due to the material's direct bandgap and the fact that GaAs suffers from strong surface recombination, which particularly affects etched nanostructures. Here, we study light trapping structures that are implemented in a high-bandgap material on the back of the GaAs active layer, thereby not perturbing the integrity of the GaAs active layer. We study photonic crystal and quasi-random nanostructures both by simulation and by experiment and find that the photonic crystal structures are superior because they exhibit fewer but stronger resonances that are better matched to the narrow wavelength range where GaAs benefits from light trapping. In fact, we show that a 1500 nm thick cell with photonic crystals achieves the same short circuit current as an unpatterned 4000 nm thick cell. These findings are significant because they afford a sizeable reduction in active layer thickness, and therefore a reduction in expensive epitaxial growth time and cost, yet without compromising performance.

  13. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Film adhesion in amorphous silicon solar cells. A R M YUSOFF*, M N SYAHRUL and K HENKEL. Malaysia Energy Centre, 8th Floor, North Wing, Sapura @ Mines, 7, Jalan Tasik, The Mines Resort City,. 43300 Seri Kembangan, Selangor Darul Ehsan. MS received 11 April 2007. Abstract. A major issue encountered ...

  14. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    International Nuclear Information System (INIS)

    Mohd Ali, N I; Misran, N; Mansor, M F; Jamlos, M F

    2017-01-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified. (paper)

  15. Transparent solar antenna of 28 GHz using transparent conductive oxides (TCO) thin film

    Science.gov (United States)

    Ali, N. I. Mohd; Misran, N.; Mansor, M. F.; Jamlos, M. F.

    2017-05-01

    This paper presents the analysis of 28GHz solar patch antenna using the variations of transparent conductive oxides (TCO) thin film as the radiating patch. Solar antenna is basically combining the function of antenna and solar cell into one device and helps to maximize the usage of surface area. The main problem of the existing solar antenna is the radiating patch which made of nontransparent material, such as copper, shadowing the solar cell and degrades the total solar efficiency. Hence, by using the transparent conductive oxides (TCO) thin film as the radiating patch, this problem can be tackled. The TCO thin film used is varied to ITO, FTO, AgHT-4, and AgHT-8 along with glass as substrate. The simulation of the antenna executed by using Computer Simulation Technology (CST) Microwave Studio software demonstrated at 28 GHz operating frequency for 5G band applications. The performance of the transparent antennas is compared with each other and also with the nontransparent patch antenna that using Rogers RT5880 as substrate, operating at the same resonance frequency and then, the material that gives the best performance is identified.

  16. Performance comparison of solar parabolic trough system with glass and film reflector

    International Nuclear Information System (INIS)

    Xu, Qian; Li, Longlong; Li, Huairui; Huang, Weidong; Li, Yongping

    2014-01-01

    Highlights: • Solar trough model should consider refractive surface error with glass reflector. • Solar trough system with glass mirror has less efficiency than that with film mirror. • Solar trough system has very low efficiency in a winter day at high latitude. - Abstract: This paper considers the refractive surface error transfer process to present an optical performance model of solar trough system as well as the reflective surface error. We validate the optical model through comparing the calculation results with the experimental data. The optimized design parameters are presented based on the maximization of the annual average net heat efficiency. The results show that maximum relative error of 20% for the optical efficiency may produce if the refractive surface error transfer process is ignored. It indicates that the refractive surface error should be considered in predicting the performance of the solar trough system especially for the glass reflector as well as the reflective surface error. We apply the model to compare the performance of solar parabolic trough system with vacuum tube receiver under two kinds of reflectors, which are glass mirror and film mirror. The results indicate that both parabolic trough systems with a vacuum tube receiver and a north–south axis tracking system are relatively inefficient in winter days, and the net energy output in the winter solstice is less than one sixth of the summer. The net heat efficiency of solar trough system with film mirror is 50% less than that of the system with the glass mirror at noon of the winter solstice and latitude 40 if the design and parameter of the two systems are the same. The results indicate that film reflector is more preferable than glass reflector especially in high latitude if they have the same optical property

  17. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  18. Effect of Perovskite Film Preparation on Performance of Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxian Pei

    2016-01-01

    Full Text Available For the perovskite solar cells (PSCs, the performance of the PSCs has become the focus of the research by improving the crystallization and morphology of the perovskite absorption layer. In this thesis, based on the structure of mesoporous perovskite solar cells (MPSCs, we designed the experiments to improve the photovoltaic performance of the PSCs by improved processing technique, which mainly includes the following two aspects. Before spin-coating PbI2 solution, we control the substrate temperature to modify the crystal quality and morphology of perovskite films. On the other hand, before annealing, we keep PbI2 films for the different drying time at room temperature to optimize films morphology. In our trials, it was found that the substrate temperature is more important in determining the photovoltaic performance than drying time. These results indicate that the crystallization and morphology of perovskite films affect the absorption intensity and obviously influence the short circuit current density of MPSCs. Utilizing films prepared by mentioning two methods, MPSCs with maximum power conversion efficiency of over 4% were fabricated for the active area of 0.5 × 0.5 cm2.

  19. Simulation study of a capillary film solar still coupled with a conventional solar still in south Algeria

    International Nuclear Information System (INIS)

    Zerrouki, Moussa; Settou, Noureddine; Marif, Yacine; Belhadj, Mohmed Mustapha

    2014-01-01

    Highlights: • Coupling in series a capillary film solar still and a conventional solar still. • Combined heat and mass transfer analyses in solar distillation systems. • Design parameters of the system are optimized by simulation program. - Abstract: This work presents a numerical simulation of capillary film solar still (distiller) coupled in series with another conventional solar still. Different transfer phenomena of heat and mass are considered to evaluate the daily distillate production. The study takes into account the quality of brackish water with moderate salinity in Adrar city (south of Algeria). The performance of the system is evaluated and compared with that of conventional solar still under the same meteorological conditions. A numerical simulation is carried out to appreciate the developed model and to optimize the relationship between both distillers collecting surfaces. The obtained results show that the system daily production is at 54–83% higher than that of the conventional one. In addition, some parameters influences are studied to define the optimal operating conditions for the present system. For the first solar still, the inclination angle and surfaces ratio have a significant effect on distillate production. Brine flow rate and wind speed have slight effect on still production

  20. Ablation of film stacks in solar cell fabrication processes

    Science.gov (United States)

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  1. Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2015-01-01

    Full Text Available Transparent conductive oxides (TCOs play a major role as the front electrodes of thin-film silicon (Si solar cells, as they can provide optical scattering and hence improved photon absorption inside the devices. In this paper we report on the surface texturing of aluminium-doped zinc oxide (ZnO:Al or AZO films for improved light trapping in thin-film Si solar cells. The AZO films are deposited onto soda-lime glass sheets via pulsed DC magnetron sputtering. Several promising AZO texturing methods are investigated using diluted hydrochloric (HCl and hydrofluoric acid (HF, through a two-step etching process. The developed texturing procedure combines the advantages of the HCl-induced craters and the smaller and jagged—but laterally more uniform—features created by HF etching. In the two-step process, the second etching step further enhances the optical haze, while simultaneously improving the uniformity of the texture features created by the HCl etch. The resulting AZO films show large haze values of above 40%, good scattering into large angles, and a surface angle distribution that is centred at around 30°, which is known from the literature to provide efficient light trapping for thin-film Si solar cells.

  2. Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer

    Directory of Open Access Journals (Sweden)

    Chao-Chun Wang

    2012-01-01

    Full Text Available The nanocrystalline silicon-germanium (nc-SiGe thin films were deposited by high-frequency (27.12 MHz plasma-enhanced chemical vapor deposition (HF-PECVD. The films were used in a silicon-based thin film solar cell with graded-dead absorption layer. The characterization of the nc-SiGe films are analyzed by scanning electron microscopy, UV-visible spectroscopy, and Fourier transform infrared absorption spectroscopy. The band gap of SiGe alloy can be adjusted between 0.8 and 1.7 eV by varying the gas ratio. For thin film solar cell application, using double graded-dead i-SiGe layers mainly leads to an increase in short-circuit current and therefore cell conversion efficiency. An initial conversion efficiency of 5.06% and the stabilized efficiency of 4.63% for an nc-SiGe solar cell were achieved.

  3. Fabrication of amplitude-phase type diffractive optical elements in aluminium films

    Science.gov (United States)

    Fomchenkov, S. A.; Butt, M. A.

    2017-11-01

    In the course of studies have been conducted a method of forming the phase diffractive optical elements (DOEs) by direct laser writing in thin films of aluminum. The quality of the aluminum films were investigated depending on the parameters of magnetron sputtering process. Moreover, the parameters of the laser writing process in thin films of aluminum were optimized. The structure of phase diffractive optical elements was obtained by the proposed method.

  4. CIGS thin films, solar cells, and submodules fabricated using a rf-plasma cracked Se-radical beam source

    International Nuclear Information System (INIS)

    Ishizuka, Shogo; Yamada, Akimasa; Shibata, Hajime; Fons, Paul; Niki, Shigeru

    2011-01-01

    Coevaporated Cu(In,Ga)Se 2 (CIGS) film growth using a rf-plasma cracked Se-radical beam (R-Se) source leads to a significant reduction in the amount of raw Se source material wasted during growth and exhibits unique film properties such as highly dense, smooth surfaces and large grain size. R-Se grown CIGS solar cells also show concomitant unique properties different from conventional evaporative Se (E-Se) source grown CIGS cells. In the present work, the impact of modified surfaces, interfaces, and bulk crystal properties of R-Se grown CIGS films on the solar cell performance was studied. When a R-Se source was used, Na diffusion into CIGS layers was enhanced while a remarkable diffusion of elemental Ga and Se into Mo back contact layers was observed. Improvements in the bulk crystal quality as manifested by large grain size and increased Na concentration with the use of a R-Se source is expected to be effective to improve photovoltaic performance. Using a R-Se source for the growth of CIGS absorber layers at a relatively low growth temperature, we have successfully demonstrated a monolithically integrated submodule efficiency of 15.0% (17 cells, aperture area of 76.5 cm 2 ) on 0.25-mm thick soda-lime glass substrates.

  5. High mobility transparent conducting oxides for thin film solar cells

    International Nuclear Information System (INIS)

    Calnan, S.; Tiwari, A.N.

    2010-01-01

    A special class of transparent conducting oxides (TCO) with high mobility of > 65 cm 2 V -1 s -1 allows film resistivity in the low 10 -4 Ω cm range and a high transparency of > 80% over a wide spectrum, from 300 nm to beyond 1500 nm. This exceptional coincidence of desirable optical and electrical properties provides opportunities to improve the performance of opto-electronic devices and opens possibilities for new applications. Strategies to attain high mobility (HM) TCO materials as well as the current status of such materials based on indium and cadmium containing oxides are presented. Various concepts used to understand the underlying mechanisms for high mobility in HMTCO films are discussed. Examples of HMTCO layers used as transparent electrodes in thin film solar cells are used to illustrate possible improvements in solar cell performance. Finally, challenges and prospects for further development of HMTCO materials are discussed.

  6. Celulas solares e sensores de filme fino de silicio depositados sobre substratos flexiveis =

    Science.gov (United States)

    Pinto, Emilio Sergio Marins Vieira

    Celulas solares flexiveis de filmes finos de silicio sao geralmente fabricadas a baixa temperatura sobre substratos de plastico ou a mais elevadas temperaturas sobre folhas de aco. Esta tese reporta o estudo da deposicao de filmes finos sobre diferentes substratos de plastico, transparentes e coloridos, para celulas solares do tipo sobrestrato e substrato, respectivamente. Como objetivo co-lateral, os filmes dopados depositados sobre plastico foram usados como sensores de deformacao, utilizando as suas propriedades piezo-resistivas. Elevadas taxas de deposicao dos filmes de silicio depositados sobre plastico foram obtidas a baixa temperatura do substrato (150ºC) por rf-PECVD. A influencia de diferentes parametros de deposicao sobre as propriedades e taxa de deposicao dos filmes resultantes foram estudados e correlacionados. Celulas solares de filmes finos de silicio amorfo e microcristalino foram desenvolvidas a baixas temperaturas sobre plasticos. Eficiencias de 5 - 6.5% foram alcancadas para as celulas amorfas e 7.5% para as celulas microcristalinas. Efeitos de aprisionamento da luz foram estudados atraves da texturizacao por ablacao laser de substratos de plastico e corrosao umida de TCO sobre plastico. Filmes finos de silicio microcristalino, depositados por HW-CVD, com fator piezoresistivo de -32.2, foram usados para fabricar sensores de deformacao em uma membrana plastica muito fina (15 μm). Estruturas de teste em textil e a miniaturizacao dos sensores piezoresistivos depositados sobre substratos flexiveis de poliimida foram abordados.

  7. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  8. The film thickness dependent thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiudi; Xu Gang, E-mail: xiudixiao@163.com; Xiong Bin; Chen Deming; Miao Lei [Chinese Academy of Sciences, Key Laboratory of Renewable Energy and Gas Hydrates, Guangzhou Institute of Energy Conversion (China)

    2012-03-15

    The monolayer Al{sub 2}O{sub 3}:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 Degree-Sign C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al{sub 2}O{sub 3}:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 Degree-Sign C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers.

  9. Light-Induced Degradation of Thin Film Silicon Solar Cells

    International Nuclear Information System (INIS)

    Hamelmann, F U; Weicht, J A; Behrens, G

    2016-01-01

    Silicon-wafer based solar cells are still domination the market for photovoltaic energy conversion. However, most of the silicon is used only for mechanical stability, while only a small percentage of the material is needed for the light absorption. Thin film silicon technology reduces the material demand to just some hundred nanometer thickness. But even in a tandem stack (amorphous and microcrystalline silicon) the efficiencies are lower, and light-induced degradation is an important issue. The established standard tests for characterisation are not precise enough to predict the performance of thin film silicon solar cells under real conditions, since many factors do have an influence on the degradation. We will show some results of laboratory and outdoor measurements that we are going to use as a base for advanced modelling and simulation methods. (paper)

  10. Optical Simulation of Light Management in CIGS Thin-Film Solar Cells Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Nikola Bednar

    2015-12-01

    Full Text Available In this paper we present an optical simulation of light management in Cu(In,GaSe2 thin-film solar cells with reduced absorber layer thickness, with the goal of absorption enhancement in the absorber layer. The light management was achieved by texturing of the substrate layer, and the conformal growth of all the following layers was assumed. Two texturing shapes have been explored: triangular and convex, with different periods and height aspect ratios. The simulations have shown that significant enhancement of absorption within the absorber layer can be achieved using the proposed geometry. The results showed that the triangular textures with small periods (100–200 nm and high aspect ratios have the most prominent effect on the enhancement of absorption within the absorber layer, although they are difficult to achieve experimentally.

  11. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal; Jabbour, Ghassan E.

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  12. XPS and SIMS characterisation of TiOxNy solar absorber films

    International Nuclear Information System (INIS)

    Metson, J.B.; Prince, K.E.; Bittar, A.; Tornquist, J.

    1999-01-01

    Full text: TiO x N y thin films have useful properties as selective solar absorbers when used in tandem with a collector substrate. Such films are transparent across a reasonable window of the solar spectrum, but have low thermal emissivity. They are however limited by their thermal stability under the typical operating conditions they experience. In this study, TiO x N y films have been deposited on Si and Cu substrates using ion beam assisted deposition. The films are amorphous and x and y were controlled by altering the O 2 /N 2 ratio in the gas source. After annealing at temperatures of 200 - 400 deg C, films have been depth profiled using Secondary Ion Mass Spectrometry. Profiles reveal the degradation of the film by migration of the substrate atoms through the films, to the sample surface. In general, films with x 1 show improved stability, ultimately at the expense of a reduced transmission window. Thermal stability is also improved by the use of diffusion barriers either at the substrate film interface or at the surface of the film. However contrary to previous suggestions, the degradation mechanism involves the formation not of an oxide at the film surface but a phase which is nitrogen rich. The nature of this phase, formed by diffusion of the substrate atoms, has been investigated by X-ray photoelectron spectroscopy (XPS). These investigations reveal very complex behaviour in the early stages of film failure, with an almost intact TiO x N y layer surviving, but being progressively buried by the growth of the reaction layer at the film surface. Copyright (1999) Australian X-ray Analytical Association Inc

  13. Preparation and characterization of porous carbon–titania nanocomposite films as solar selective absorbers

    International Nuclear Information System (INIS)

    Cheng, B.; Wang, K.K.; Wang, K.P.; Li, M.; Jiang, W.; Cong, B.J.; Song, C.L.; Jia, S.H.; Han, G.R.; Liu, Y.

    2015-01-01

    Highlights: • The nanocomposites porous C/TiO 2 film were fabricated via PIPS method. • The HRTEM reveals the size of carbon nanoparticles is about 1.1 nm. • The PVP advantages residual carbon content but suppresses its crystallization. • The film exhibits high α (0.928–0.959) with low ε (0.074–0.105) for single layer. - Abstract: Newly proposed selective solar absorbers of porous carbon–titania nanocomposite films with a well-defined interconnected macropores structure were prepared via a polymer-assisted photopolymerization-induced phase-separation method. The microstructure and optical properties of as-deposited nanocomposite films were characterized and discussed in detail. The results show that non-ionic water-soluble polymer polyvinylpyrrolidone works as a sol modifier advantaging the mean size of the interconnected macropores, residual carbon content, and films thickness, but suppresses the order degree of the carbon remained in the films. The high-resolution transmission electron microscopy demonstrated that a small amount of graphite particles with size of around 1.1 nm embedded in the cavity of the porous while the wall of the porous consists of amorphous carbon and titania composites. The single layer of as-prepared porous C/TiO 2 nanocomposite films exhibits high solar absorptance (α = 0.928–0.959) with low thermal emittance (ε = 0.074–0.105), yielding an optimized photothermal conversion efficiency η = α − ε of 0.864 corresponding to a film thickness of around 338 nm, indication of such film is fair enough to serve as an excellent solar absorber

  14. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    Science.gov (United States)

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  15. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    Science.gov (United States)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  16. Lighting and cooling energy consumption in an open-plan office using solar film coating

    International Nuclear Information System (INIS)

    Li, Danny H.W.; Lam, Tony N.T.; Wong, S.L.; Tsang, Ernest K.W.

    2008-01-01

    In subtropical Hong Kong, solar heat gain via glazing contributes to a significant proportion of the building envelope cooling load. The principal fenestration design includes eliminating direct sunlight and reducing cooling requirements. Daylighting is an effective approach to allow a flexible building facade design strategy, and to enhance an energy-efficient and green building development. This paper studies the lighting and cooling energy performances for a fully air-conditioned open-plan office when solar control films together with daylight-linked lighting controls are being used. Measurements were undertaken at two stages including the electricity expenditures for the office using photoelectric dimming controls only (first stage) and together with the solar control film coatings on the windows (second stage). Electric lighting and cooling energy consumption, transmitted daylight illuminance and solar radiation were systematically recorded and analysed. The measured data were also used for conducting and validating the building energy simulations. The findings showed that the solar film coatings coupled with lighting dimming controls cut down 21.2% electric lighting and 6.9% cooling energy consumption for the open-plan office

  17. Aluminum–Titanium Alloy Back Contact Reducing Production Cost of Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2016-11-01

    Full Text Available In this study, metal films are fabricated by using an in-line reactive direct current magnetron sputtering system. The aluminum–titanium (AlTi back contacts are prepared by changing the pressure from 10 mTorr to 25 mTorr. The optical, electrical and structural properties of the metal back contacts are investigated. The solar cells with the AlTi had lower contact resistance than those with the silver (Ag back contact, resulting in a higher fill factor. The AlTi contact can achieve a solar cell conversion efficiency as high as that obtained from the Ag contact. These findings encourage the potential adoption of AlTi films as an alternative back contact to silver for silicon thin-film solar cells.

  18. Effect of Grain Boundaries on the Performance of Thin-Film-Based Polycrystalline Silicon Solar Cells: A Numerical Modeling

    Science.gov (United States)

    Chhetri, Nikita; Chatterjee, Somenath

    2018-01-01

    Solar cells/photovoltaic, a renewable energy source, is appraised to be the most effective alternative to the conventional electrical energy generator. A cost-effective alternative of crystalline wafer-based solar cell is thin-film polycrystalline-based solar cell. This paper reports the numerical analysis of dependency of the solar cell parameters (i.e., efficiency, fill factor, open-circuit voltage and short-circuit current density) on grain size for thin-film-based polycrystalline silicon (Si) solar cells. A minority carrier lifetime model is proposed to do a correlation between the grains, grain boundaries and lifetime for thin-film-based polycrystalline Si solar cells in MATLAB environment. As observed, the increment in the grain size diameter results in increase in minority carrier lifetime in polycrystalline Si thin film. A non-equivalent series resistance double-diode model is used to find the dark as well as light (AM1.5) current-voltage (I-V) characteristics for thin-film-based polycrystalline Si solar cells. To optimize the effectiveness of the proposed model, a successive approximation method is used and the corresponding fitting parameters are obtained. The model is validated with the experimentally obtained results reported elsewhere. The experimentally reported solar cell parameters can be found using the proposed model described here.

  19. Study of optoelectronic properties of thin film solar cell materials Cu2ZnSn(S,Se)4 using multiple correlative spatially-resolved spectroscopy techniques

    Science.gov (United States)

    Chen, Qiong

    Containing only earth abundant and environmental friendly elements, quaternary compounds Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe 4 (CZTSe) are considered as promising absorber materials for thin film solar cells. The best record efficiency for this type of thin film solar cell is now 12.6%. As a promising photovoltaic (PV) material, the electrical and optical properties of CZTS(Se) have not been well studied. In this work, an effort has been made to understand the optoelectronic and structural properties, in particular the spatial variations, of CZTS(Se) materials and devices by correlating multiple spatially resolved characterization techniques with sub-micron resolution. Micro-Raman (micro-Raman) spectroscopy was used to analyze the chemistry compositions in CZTS(Se) film; Micro-Photoluminescence (micro-PL) was used to determine the band gap and possible defects. Micro-Laser-Beam-Induced-Current (micro-LBIC) was used to examine the photo-response of CZTS(Se) solar cell in different illumination conditions. Micro-reflectance was used to estimate the reflectance loss. And Micro-I-V measurement was used to compare important electrical parameters from CZTS(Se) solar cells with different device structure or absorber compositions. Scanning electron microscopy and atomic force microscopy were used to characterize the surface morphology. Successfully integrating and correlating these techniques was first demonstrated during the course of this work in our laboratory, and this level of integration and correlation has been rare in the field of PV research. This effort is significant not only for this particular project and also for a wide range of research topics. Applying this approach, in conjunction with high-temperature and high-excitation-power optical spectroscopy, we have been able to reveal the microscopic scale variations among samples and devices that appeared to be very similar from macroscopic material and device characterizations, and thus serve as a very powerful tool

  20. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  1. Effects of excitation intensity on the photocurrent response of thin film silicon solar modules

    Science.gov (United States)

    Kim, Q.; Shumka, A.; Trask, J.

    1986-01-01

    Photocurrent responses of amorphous thin film silicon solar modules at room temperature were studied at different excitation intensities using various monochromatic light sources. Photocurrent imaging techniques have been effectively used to locate rapidly, and non-destructively, failure and defect sites in the multilayer thin film device. Differences observed in the photocurrent response characteristics for two different cells in the same amorphous thin film silicon solar module suggest the possibility of the formation of dissimilarly active devices, even though the module is processed in the same fabrication process. Possible mechanisms are discussed.

  2. Lunar Production and Application of Solar Cells, and Synthesis of Diamond Film

    Science.gov (United States)

    Fang, P. H.

    1991-01-01

    Two projects which are carried out under the Summer Faculty Fellowship Program-1991 are discussed. A conceptual design of a solar cell manufacturing plant on a lunar base is discussed. This is a large program that requires a continuous and expanded effort, the present status of which is reflected here. An experiment on the synthesis of diamond film is discussed. Encouraging, but not yet conclusive evidence has been obtained on a new method to synthesize diamond film. The procedures and observations are presented. A third project is an analysis of the solar cell performance over five years on the moon based on Apollo missions. A paper has been completed and will be submitted to the journal Solar Cells for publication.

  3. Investigations on electron beam evaporated Cu(In{sub 0.85}Ga{sub 0.15})Se{sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, M.; Kannan, M.D.; Prasanna, S.; Jayakumar, S.; Balasundaraprabhu, R. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore (India); Muthukumarasamy, N. [Department of Physics, Coimbatore Institute of Technology, Coimbatore (India); Saroja, M. [Department of Electronics, Erode Arts College, Erode (India)

    2009-09-15

    CIGS bulk with composition of CuIn{sub 0.85}Ga{sub 0.15}Se{sub 2} was synthesized by direct reaction of elemental copper, indium, gallium and selenium. CIGS thin films were then deposited onto well-cleaned glass substrates using the prepared bulk alloy by electron beam deposition method. The structural properties of the deposited films were studied using X-ray diffraction technique. The as-deposited CIGS films were found to be amorphous. On annealing, the films crystallized with a tetragonal chalcopyrite structure. An intermediate Cu-rich phase precipitated at 200 C and dissociated at higher annealing temperatures. Average grain size calculated from the XRD spectra indicated that the films had a nano-crystalline structure and was further corroborated by AFM analysis of the sample surface. The chemical constituents present in the deposited CIGS films were identified using energy dispersive X-ray analysis. CIGS based solar cells were then fabricated on molybdenum and ITO coated glass substrates and the efficiencies have been evaluated. (author)

  4. High efficiency thin film solar cells grown by molecular beam epitaxy (HEFTY)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Barnham, K.W.J.; Ballard, I.M.; Zhang, J. [Imperial College, London (United Kingdom)

    2006-05-04

    The project sought to show the UK as a world leader in the field of thin film crystalline solar cells. A premise was that the cell design be suitable for large-scale manufacturing and provide a basis for industrial exploitation. The study demonstrated (1) that silicon films grown at temperatures suitable for deposition on glass by Gas Phase Molecular Beam Epitaxy gives better PV cells than does Ultra Low Pressure Chemical Vapor Deposition; (2) a conversion energy of 15 per cent was achieved - the project target was 18 per cent and (3) one of the highest reported conversion efficiencies for a 15 micrometre silicon film was achieved. The study was carried out by BP Solar Limited under contract to the DTI.

  5. Interfacial Properties of CZTS Thin Film Solar Cell

    Directory of Open Access Journals (Sweden)

    N. Muhunthan

    2014-01-01

    Full Text Available Cu-deficient CZTS (copper zinc tin sulfide thin films were grown on soda lime as well as molybdenum coated soda lime glass by reactive cosputtering. Polycrystalline CZTS film with kesterite structure was produced by annealing it at 500°C in Ar atmosphere. These films were characterized for compositional, structural, surface morphological, optical, and transport properties using energy dispersive X-ray analysis, glancing incidence X-ray diffraction, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, UV-Vis spectroscopy, and Hall effect measurement. A CZTS solar cell device having conversion efficiency of ~0.11% has been made by depositing CdS, ZnO, ITO, and Al layers over the CZTS thin film deposited on Mo coated soda lime glass. The series resistance of the device was very high. The interfacial properties of device were characterized by cross-sectional SEM and cross-sectional HRTEM.

  6. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    Science.gov (United States)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  7. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2017-03-02

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  8. High-rate deposition of epitaxial layers for efficient low-temperature thin film epitaxial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, L.; Schmidt, J.; Wagner, T.A.; Bergmann, R.B. [Stuttgart Univ. (Germany). Inst. of Physical Electronics

    2001-07-01

    Low-temperature deposition of Si for thin-film solar cells has previously been hampered by low deposition rates and low material quality, usually reflected by a low open-circuit voltage of these solar cells. In contrast, ion-assisted deposition produces Si films with a minority-carrier diffusion length of 40 {mu}m, obtained at a record deposition rate of 0.8 {mu}m/min and a deposition temperature of 650{sup o}C with a prebake at 810{sup o}C. A thin-film Si solar cell with a 20-{mu}m-thick epitaxial layer achieves an open-circuit voltage of 622 mV and a conversion efficiency of 12.7% without any light trapping structures and without high-temperature solar cell process steps. (author)

  9. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.

    Science.gov (United States)

    Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu

    2014-12-28

    The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.

  10. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    NARCIS (Netherlands)

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of

  11. Optical and structural characterization od titanium dioxide films used for construction of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ivanovska, Tanja

    2012-01-01

    The dye-sensitized solar cells are the most serious concept that could replace the silicon solar cells. These are low-cost photovoltaic, and represent a technology which could seriously decrease the cost of the electrical energy they produce. The dye-sensitized solar cells are composed of several layers of materials that belong to the group of inorganic semiconductors. For the efficiency improvement of these cells, there are two basic concepts of research regarding the construction materials. On one side, investigation of new materials that will, as a result of their physical and electrochemical characteristics, increase the cell efficiency, and on the other side, use of materials that will contribute to the long term stability of the cell in atmospheric conditions. As a part of this Master thesis, compact and meso porous Ti(>2 films for dye- sensitized solar cells have been prepared. The compact Ti0 2 films were deposited with the technique of spray pyrolysis, and the preparation of the meso porous films was made with a blade casting technique. The optical and structural analysis and characterization of the films was done with optical spectroscopy in the visible and ultraviolet spectral region (UV- Vis), Raman spectroscopy and atomic force microscopy (AFM). The crystal structure of the films, surface uniformity, thickness and grain size dependence on the deposition parameters was investigated, this led to calculation of the optical constants for the compact films, as well as the determination of the electron transitions and the determination of the bang gap energy. Also regarding the structure and porosity of the meso porous films, characterization of the quality of the film depending on the chemical composition of the paste used for deposition was made. As a result of the preformed investigations, through defining the structural and optical parameters of quality compact and meso porous TiC>2 films for dye-sensitized solar cells, the optimal parameters for film

  12. Research progress on large-area perovskite thin films and solar modules

    Directory of Open Access Journals (Sweden)

    Zhichun Yang

    2017-12-01

    Full Text Available Organometal halide perovskites have exhibited a bright future as photovoltaic semiconductor in next generation solar cells due to their unique and promising physicochemical properties. Over the past few years, we have witnessed a tremendous progress of efficiency record evolution of perovskite solar cells (PSCs. Up to now, the highest efficiency record of PSCs has reached 22.1%; however, it was achieved at a very small device area of <0.1 cm2. With the device area increasing to mini-module scale, the efficiency record dropped dramatically. The inherent causes are mainly ascribed to inadequate quality control of large-area perovskite thin films and insufficient optimization of solar module design. In current stage of PSCs research and development, to overcome these two obstacles is in urgent need before this new technology could realize scale-up industrialization. Herein, we present an overview of recently developed strategies for preparing large-area perovskite thin films and perovskite solar modules (PSMs. At last, cost analysis and future application directions of PSMs have also been discussed.

  13. LEO resistant PI-B-PDMS block copolymer films for solar array applications

    NARCIS (Netherlands)

    Lonkhuyzen, H. van; Bongers, E.; Fischer, H.R.; Dingemans, T.J.; Semprimoschnig, C.

    2013-01-01

    Due to their low atomic oxygen erosion yields PI-b-PDMS block copolymer films have considerable potential for application onto space exposed surfaces of satellites in low earth orbit. On solar arrays these materials might be used as electrical electrical insulation film, flexprint outer layer,

  14. Polycrystalline silicon thin-film solar cells on glass

    Energy Technology Data Exchange (ETDEWEB)

    Gall, S.; Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Lee, K.Y.; Rau, B.; Ruske, F.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH (formerly Hahn-Meitner-Institut Berlin GmbH), Department Silicon Photovoltaics (SE1), Kekulestr. 5, D-12489 Berlin (Germany)

    2009-06-15

    Poly-Si thin-film solar cells on glass feature the potential to reach single-junction efficiencies of 15% or even higher at low costs. In this paper innovative approaches are discussed, which could lead to substantial efficiency improvements and significant cost reductions: (i) preparation of large-grained poly-Si films using the 'seed layer concept' targeting at high material quality, (ii) utilization of ZnO:Al-coated glass enabling simple contacting and light-trapping schemes, (iii) utilization of high-rate electron-beam evaporation for the absorber deposition offering a high potential for cost reduction. (author)

  15. Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure

    International Nuclear Information System (INIS)

    Jiang, Jiajia; Tao, Hai jun; Chen, Shanlong; Tan, Bin; Zhou, Ning; Zhu, Lumin; Zhao, Yuan; Wang, Yuqiao; Tao, Jie

    2016-01-01

    Graphical abstract: Schematic illustration of modified two-step spin-coating procedure for MAPbI 3 perovskite thin films. - Highlights: • An as-prepared CH 3 NH 3 PbI 3 and PbI 2 film was introduced before the traditional two-step process. • Smooth morphology and trace amount of remaining PbI 2 benefit the performance of solar cell. • The optimal as-prepared film introduced improves the efficiency of CH 3 NH 3 PbI 3 solar cells from 9.11% to 11.16%. - Abstract: Sequential spin-coating procedure is a widely adopted strategy to prepare CH 3 NH 3 PbI 3 on mesostructured TiO 2 electrode for organolead halide perovskite-based solar cells. However, this method suffers from the rough surface and excessively residual PbI 2 in the resulting perovskite film, deteriorating the device performance seriously. Herein, a facial modified sequential solution deposition method, by introducing an as-prepared CH 3 NH 3 PbI 3 and PbI 2 film before the traditional two-step process, was proposed to fabricate the perovskite-based solar cell with smooth morphology and trace amount of remaining PbI 2 . The optimal as-prepared film introduced improves the efficiency of CH 3 NH 3 PbI 3 solar cells from 9.11% to 11.16%. The enhancement of device performance can be attributed to the increased light absorption ability and decreased recombination rate of carriers in CH 3 NH 3 PbI 3 absorber.

  16. Turning the Moon into a Solar Photovoltaic Paradise

    Science.gov (United States)

    Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter

    2006-01-01

    Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.

  17. Improved performance of silicon-nanoparticle film-coated dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravindra Kumar; Bedja, Idriss M. [CRC, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433 (Saudi Arabia); Aldwayyan, Abdullah Saleh [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-11-15

    Silicon (Si) nanoparticles with average size of 13 nm and orange-red luminescence under UV absorption were synthesized using electrochemical etching of silicon wafers. A film of Si nanoparticles with thickness of 0.75 {mu}m to 2.6 {mu}m was coated on the glass (TiO{sub 2} side) of a dye-sensitized solar cell (DSSC). The cell exhibited nearly 9% enhancement in power conversion efficiency ({eta}) at film thickness of {proportional_to}2.4 {mu}m under solar irradiation of 100 mW/cm{sup 2} (AM 1.5) with improved fill factor and short-circuit current density. This study revealed for the first time that the Si-nanoparticle film converting UV into visible light and helping in homogeneous irradiation, can be utilized for improving the efficiency of the DSSCs. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Development of a thin film solar cell interconnect for the PowerSphere concept

    International Nuclear Information System (INIS)

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen E.; Curtis, Henry B.; Kerslake, Thomas W.; Peterson, Todd T.

    2005-01-01

    Progressive development of microsatellite technologies has resulted in increased demand for lightweight electrical power subsystems including solar arrays. The use of thin film photovoltaics has been recognized as a key solution to meet the power needs. The lightweight cells can generate sufficient power and still meet critical mass requirements. Commercially available solar cells produced on lightweight substrates are being studied as an option to fulfill the power needs. The commercially available solar cells are relatively inexpensive and have a high payoff potential. Commercially available thin film solar cells are primarily being produced for terrestrial applications. The need to convert the solar cell from a terrestrial to a space compatible application is the primary challenge. Solar cell contacts, grids and interconnects need to be designed to be atomic oxygen resistant and withstand rapid thermal cycling environments. A mechanically robust solar cell interconnect is also required in order to withstand handling during fabrication and survive during launch. The need to produce the solar cell interconnects has been identified as a primary goal of the PowerSphere program and is the topic of this paper. Details of the trade study leading to the final design involving the solar cell wrap around contact, flex blanket, welding process, and frame will be presented at the conference

  19. Scalable Production of Mechanically Robust Antireflection Film for Omnidirectional Enhanced Flexible Thin Film Solar Cells.

    Science.gov (United States)

    Wang, Min; Ma, Pengsha; Yin, Min; Lu, Linfeng; Lin, Yinyue; Chen, Xiaoyuan; Jia, Wei; Cao, Xinmin; Chang, Paichun; Li, Dongdong

    2017-09-01

    Antireflection (AR) at the interface between the air and incident window material is paramount to boost the performance of photovoltaic devices. 3D nanostructures have attracted tremendous interest to reduce reflection, while the structure is vulnerable to the harsh outdoor environment. Thus the AR film with improved mechanical property is desirable in an industrial application. Herein, a scalable production of flexible AR films is proposed with microsized structures by roll-to-roll imprinting process, which possesses hydrophobic property and much improved robustness. The AR films can be potentially used for a wide range of photovoltaic devices whether based on rigid or flexible substrates. As a demonstration, the AR films are integrated with commercial Si-based triple-junction thin film solar cells. The AR film works as an effective tool to control the light travel path and utilize the light inward more efficiently by exciting hybrid optical modes, which results in a broadband and omnidirectional enhanced performance.

  20. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS2 thin film solar cells

    International Nuclear Information System (INIS)

    Kaufmann, C.A.

    2002-01-01

    A CulnS 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering the energy band line-up at the heterojunction interface. Motivated through environmental concern and EU legislation it is felt necessary to substitute this potentially toxic layer by an alternative, Cd-free component. This thesis investigates the suitability of various Zn- and In-compounds, in particular In(OH,O) x S y , as alternative buffer layer materials using CBD. Initial experiments were carried out depositing Zn-based compounds from aqueous solutions. Characterization of the layers, the solution and the processed solar cells was performed. This thesis focuses on the investigation of the CBD process chemistry for the deposition of In-compound thin films. A careful study of the morphology and composition of the deposited thin films was conducted using electron microscopy (SEM, HREM), elastic recoil detection analysis, X-ray photoelectron spectroscopy and optical transmission spectroscopy. This allowed conclusions concerning the nucleation and film growth mechanism from the chemical bath. Connections between bath chemistry, different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) x S y or In(OH,O) x S y . In the case of In(OH,O) x S y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell

  1. Significant efficiency enhancement in thin film solar cells using laser beam-induced graphene transparent conductive electrodes

    OpenAIRE

    Thekkekara, L. V.; Cai, Bouyan

    2018-01-01

    Thin film solar cells have been attractive for decades in advanced green technology platforms due to its possibilities to be integrated with buildings and on-chip applications. However, the bottleneck issues involved to consider the current solar cells as a major electricity source includes the lower efficiencies and cost-effectiveness. We numerically demonstrate the concept of the absorption enhancement in thin-film amorphous silicon solar cells using the laser beam-induced graphene material...

  2. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    Science.gov (United States)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  3. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells

    International Nuclear Information System (INIS)

    Song, Xin; Sun, Po; Chen, Zhi-Kuan; Wang, Weiwei; Ma, Wanli

    2015-01-01

    We reported a planar heterojunction perovskite solar cell fabricated from MAPbI 3−x Cl x perovskite precursor solution containing 1-chloronaphthalene (CN) additive. The MAPbI 3−x Cl x perovskite films have been characterized by UV-vis, SEM, XRD, and steady-state photoluminescence (PL). UV-vis absorption spectra measurement shows that the absorbance of the film with CN additive is significantly higher than the pristine film and the absorption peak is red shift by 30 nm, indicating the perovskite film with additive possessing better crystal structures. In-situ XRD study of the perovskite films with additive demonstrated intense diffraction peaks from MAPbI 3−x Cl x perovskite crystal planes of (110), (220), and (330). SEM images of the films with additive indicated the films were more smooth and homogenous with fewer pin-holes and voids and better surface coverage than the pristine films. These results implied that the additive CN is beneficial to regulate the crystallization transformation kinetics of perovskite to form high quality crystal films. The steady-state PL measurement suggested that the films with additive contained less charge traps and defects. The planar heterojunction perovskite solar cells fabricated from perovskite precursor solution containing CN additive demonstrated 30% enhancement in performance compared to the devices with pristine films. The improvement in device efficiency is mainly attributed to the good crystal structures, more homogenous film morphology, and also fewer trap centers and defects in the films with the additive

  4. Multi-Material Front Contact for 19% Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Joop van Deelen

    2016-02-01

    Full Text Available The trade-off between transmittance and conductivity of the front contact material poses a bottleneck for thin film solar panels. Normally, the front contact material is a metal oxide and the optimal cell configuration and panel efficiency were determined for various band gap materials, representing Cu(In,GaSe2 (CIGS, CdTe and high band gap perovskites. Supplementing the metal oxide with a metallic copper grid improves the performance of the front contact and aims to increase the efficiency. Various front contact designs with and without a metallic finger grid were calculated with a variation of the transparent conductive oxide (TCO sheet resistance, scribing area, cell length, and finger dimensions. In addition, the contact resistance and illumination power were also assessed and the optimal thin film solar panel design was determined. Adding a metallic finger grid on a TCO gives a higher solar cell efficiency and this also enables longer cell lengths. However, contact resistance between the metal and the TCO material can reduce the efficiency benefit somewhat.

  5. Three-dimensional photonic crystals as intermediate filter for thin-film tandem solar cells

    Science.gov (United States)

    Bielawny, Andreas; Miclea, Paul T.; Wehrspohn, Ralf B.; Lee, Seung-Mo; Knez, Mato; Rockstuhl, Carsten; Lisca, Marian; Lederer, Falk L.; Carius, Reinhard

    2008-04-01

    The concept of a 3D photonic crystal structure as diffractive and spectrally selective intermediate filter within 'micromorphous' (a-Si/μc-Si) tandem solar cells has been investigated numerically and experimentally. Our device aims for the enhancement of the optical pathway of incident light within the amorphous silicon top cell in its spectral region of low absorption. From our previous simulations, we expect a significant improvement of the tandem cell efficiency of about absolutely 1.3%. This increases the efficiency for a typical a-Si / μc-Si tandem cell from 11.1% to 12.4%, as a result of the optical current-matching of the two junctions. We suggest as wavelength-selective optical element a 3D-structured optical thin-film, prepared by self-organized artificial opal templates and replicated with atomic layer deposition. The resulting samples are highly periodic thin-film inverted opals made of conducting and transparent zinc-oxide. We describe the fabrication processes and compare experimental data on the optical properties in reflection and transmission with our simulations and photonic band structure calculations.

  6. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells.

    Science.gov (United States)

    Hengst, Claudia; Menzel, Siegfried B; Rane, Gayatri K; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole

    2017-03-01

    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young's modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain-subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service.

  7. Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Claudia Hengst

    2017-03-01

    Full Text Available The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells during fabrication in a roll-to-roll process or under service.

  8. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

    International Nuclear Information System (INIS)

    Hilali, Mohamed M; Banerjee, Sanjay; Sreenivasan, S V; Yang Shuqiang; Miller, Mike; Xu, Frank

    2012-01-01

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent. (paper)

  9. Thermally evaporated thin films of SnS for application in solar cell devices

    International Nuclear Information System (INIS)

    Miles, Robert W.; Ogah, Ogah E.; Zoppi, Guillaume; Forbes, Ian

    2009-01-01

    SnS (tin sulphide) is of interest for use as an absorber layer and the wider energy bandgap phases e.g. SnS 2 , Sn 2 S 3 and Sn/S/O alloys of interest as Cd-free buffer layers for use in thin film solar cells. In this work thin films of tin sulphide have been thermally evaporated onto glass and SnO 2 :coated glass substrates with the aim of optimising the properties of the material for use in photovoltaic solar cell device structures. In particular the effects of source temperature, substrate temperature, deposition rate and film thickness on the chemical and physical properties of the layers were investigated. Energy dispersive X-ray analysis was used to determine the film composition, X-ray diffraction to determine the phases present and structure of each phase, transmittance and reflectance versus wavelength measurements to determine the energy bandgap and scanning electron microscopy to observe the surface topology and topography and the properties correlated to the deposition parameters. Using the optimised conditions it is possible to produce thin films of tin sulphide that are pinhole free, conformal to the substrate and that consist of densely packed columnar grains. The composition, phases present and the optical properties of the layers deposited were found to be highly sensitive to the deposition conditions. Energy bandgaps in the range 1.55 eV-1.7 eV were obtained for a film thickness of 0.8 μm, and increasing the film thickness to > 1 μm resulted in a reduction of the energy bandgap to less than 1.55 eV. The applicability of using these films in photovoltaic solar cell device structures is also discussed.

  10. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Peng, Wei; Wang, Lingfei

    2017-01-01

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making

  11. Photon management in thin-film solar cells; Photon-Management in Duennschicht-Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Fahr, Stephan

    2011-11-22

    In this thesis procedures were presented, which modify the propagation of the incident light in such a way that by this the efficiency of thin-film solar cells is increased. The strength of the presented numerical studies lies thereby in the rigorous solution of Maxwell's equations. Fundamental statements concerning the lay-out of an ideal texture could be made, which for present thin-film solar cells over the whole relevant spectral range both suppresses reflection losses and leads to an elongation of the effective path. Object of the thesis was also the design of a spectral- and angular-selective filter, which confines the acceptance angle of a solar cell with the aim of an improved absorption in the long-wave spectral region. Furthermore also tandem cells on the base of amorphous and microcrystalline silicon were studied.

  12. Polymorphous silicon thin films produced in dusty plasmas: application to solar cells

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, Pere; Chaabane, N; Kharchenko, A V; Tchakarov, S

    2004-01-01

    We summarize our current understanding of the optimization of PIN solar cells produced by plasma enhanced chemical vapour deposition from silane-hydrogen mixtures. To increase the deposition rate, the discharge is operated under plasma conditions close to powder formation, where silicon nanocrystals contribute to the deposition of so-called polymorphous silicon thin films. We show that the increase in deposition rate can be achieved via an accurate control of the plasma parameters. However, this also results in a highly defective interface in the solar cells due to the bombardment of the P-layer by positively charged nanocrystals during the deposition of the I-layer. We show that decreasing the ion energy by increasing the total pressure or by using silane-helium mixtures allows us to increase both the deposition rate and the solar cells efficiency, as required for cost effective thin film photovoltaics

  13. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  14. Improving Performance of CIGS Solar Cells by Annealing ITO Thin Films Electrodes

    Directory of Open Access Journals (Sweden)

    Chuan Lung Chuang

    2015-01-01

    Full Text Available Indium tin oxide (ITO thin films were grown on glass substrates by direct current (DC reactive magnetron sputtering at room temperature. Annealing at the optimal temperature can considerably improve the composition, structure, optical properties, and electrical properties of the ITO film. An ITO sample with a favorable crystalline structure was obtained by annealing in fixed oxygen/argon ratio of 0.03 at 400°C for 30 min. The carrier concentration, mobility, resistivity, band gap, transmission in the visible-light region, and transmission in the near-IR regions of the ITO sample were -1.6E+20 cm−3, 2.7E+01 cm2/Vs, 1.4E-03 Ohm-cm, 3.2 eV, 89.1%, and 94.7%, respectively. Thus, annealing improved the average transmissions (400–1200 nm of the ITO film by 16.36%. Moreover, annealing a copper-indium-gallium-diselenide (CIGS solar cell at 400°C for 30 min in air improved its efficiency by 18.75%. The characteristics of annealing ITO films importantly affect the structural, morphological, electrical, and optical properties of ITO films that are used in solar cells.

  15. Application of rapid thermal processing on SiNx thin film to solar cells

    Institute of Scientific and Technical Information of China (English)

    Youjie LI; Peiqing LUO; Zhibin ZHOU; Rongqiang CUI; Jianhua HUANG; Jingxiao WANG

    2008-01-01

    Rapid thermal processing (RTP) of SiNx thin films from PECVD with low temperature was investigated. A special processing condition of this technique which could greatly increase the minority lifetime was found in the experiments. The processing mechanism and the application of the technique to silicon solar cells fabrication were dis-cussed. A main achievement is an increase of the minority lifetime in silicon wafer with SiNx thin film by about 200% after the RTP was reached. PC-1D simulation results exhibit an enhancement of the efficiency of the solar cell by 0.42% coming from the minority lifetime improvement. The same experiment was also conducted with P-diffusion silicon wafers, but the increment of minority lifetime is just about 55%. It could be expected to improve the solar cell efficiency if it would be used in silicon solar cells fabrication with the combination of laser firing contact technique.

  16. Numerical Optimization of a Bifacial Bi-Glass Thin-Film a-Si:H Solar Cell for Higher Conversion Efficiency

    Science.gov (United States)

    Berrian, Djaber; Fathi, Mohamed; Kechouane, Mohamed

    2018-02-01

    Bifacial solar cells that maximize the energy output per a square meter have become a new fashion in the field of photovoltaic cells. However, the application of thin-film material on bifacial solar cells, viz., thin-film amorphous hydrogenated silicon ( a- Si:H), is extremely rare. Therefore, this paper presents the optimization and influence of the band gap, thickness and doping on the performance of a glass/glass thin-film a- Si:H ( n- i- p) bifacial solar cell, using a computer-aided simulation tool, Automat for simulation of hetero-structures (AFORS-HET). It is worth mentioning that the thickness and the band gap of the i-layer are the key parameters in achieving higher efficiency and hence it has to be handled carefully during the fabrication process. Furthermore, an efficient thin-film a- Si:H bifacial solar cell requires thinner and heavily doped n and p emitter layers. On the other hand, the band gap of the p-layer showed a dramatic reduction of the efficiency at 2.3 eV. Moreover, a high bifaciality factor of more than 92% is attained, and top efficiency of 10.9% is revealed under p side illumination. These optimizations demonstrate significant enhancements of the recent experimental work on thin-film a- Si:H bifacial solar cells and would also be useful for future experimental investigations on an efficient a- Si:H thin-film bifacial solar cell.

  17. CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materialsfor low-cost high performance solar concentrators

    Science.gov (United States)

    Martin, P. M.; Affinito, J. D.; Gross, M. E.; Bennett, W. D.

    1995-03-01

    The objectives of this project were to develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  18. Transparent Electrode Based on Silver Nanowires and Polyimide for Film Heater and Flexible Solar Cell.

    Science.gov (United States)

    He, Xin; Duan, Feng; Liu, Junyan; Lan, Qiuming; Wu, Jianhao; Yang, Chengyan; Yang, Weijia; Zeng, Qingguang; Wang, Huafang

    2017-11-29

    Transparent, conductive, and flexible Ag nanowire (NW)-polyimide (PI) composite films were fabricated by a facile solution method. Well-dispersed Ag NWs result in percolation networks on the PI supporting layer. A series of films with transmittance values of 53-80% and sheet resistances of 2.8-16.5 Ω/sq were investigated. To further verify the practicability of the Ag NWs-PI film in optoelectronic devices, we utilized it in a film heater and a flexible solar cell. The film heater was able to generate a temperature of 58 °C at a driving voltage of 3.5 V within 20 s, indicating its potential application in heating devices that require low power consumption and fast response. The flexible solar cell based on the composite film with a transmittance value of 71% presented a power conversion efficiency of 3.53%. These successful applications proved that the fabricated Ag NWs-PI composite film is a good candidate for application in flexible optoelectronic devices.

  19. Solar cells based on electrodeposited thin films of ZnS, CdS, CdSSe and CdTe

    Science.gov (United States)

    Weerasinghe, Ajith R.

    The motivations of this research were to produce increased efficiency and low-cost solar cells. The production efficiency of Si solar cells has almost reached their theoretical limit, and reducing the manufacturing cost of Si solar cells is difficult to achieve due to the high-energy usage in material purifying and processing stages. Due to the low usage of materials and input energy, thin film solar cells have the potential to reduce the costs. CdS/CdTe thin film solar cells are already the cheapest on $/W basis. The cost of CdTe solar cells can be further reduced if all the semiconducting layers are fabricated using the electrodeposition (ED) method. ED method is scalable, low in the usage of energy and raw materials. These benefits lead to the cost effective production of semiconductors. The conventional method of fabricating CdS layers produces Cd containing waste solutions routinely, which adds to the cost of solar cells.ZnS, CdS and CdS(i-X)Sex buffer and window layers and CdTe absorber layers have been successfully electrodeposited and explored under this research investigation. These layers were fully characterised using complementary techniques to evaluate the material properties. Photoelectrochemical (PEC) studies, optical absorption, X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM) and Raman spectroscopy were utilised to evaluate the material properties of these solid thin film layers. ZnS and CdS thin film layers were electrodeposited from Na-free chemical precursors to avoid the group I element (Na) to reduce deterioration of CdTe devices. Deposition parameters such as, growth substrates, temperature, pH, growth cathodic voltage, stirring rate, time and chemical concentrations were identified to fabricate the above semiconductors. To further optimise these layers, a heat treatment process specific to the material was developed. In addition

  20. High-temperature fabrication of Ag(In,Ga)Se{sub 2} thin films for applications in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianfeng [International Center for Science and Engineering Programs, Waseda University, Tokyo (Japan); Yamada, Akira [Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kagami Memorial Research Institute for Materials Science, Waseda University, Tokyo (Japan)

    2017-10-15

    Molecular beam epitaxy was used to fabricate Ag(In,Ga)Se{sub 2} (AIGS) thin films. To improve the diffusion of Ag, high-temperature deposition and high-temperature annealing methods were applied to fabricate AIGS films. The as-grown AIGS thin films were then used to make AIGS solar cells. We found that grain size and crystallinity of AIGS films were considerably improved by increasing the deposition and annealing temperature. For high-temperature deposition, temperatures over 600 C led to decomposition of the AIGS film, desorption of In, and deterioration of its crystallinity. The most appropriate deposition temperature was 590 C and a solar cell with a power conversion efficiency of 4.1% was obtained. High-temperature annealing of the AIGS thin films showed improved crystallinity as annealing temperature was increased and film decomposition and In desorption were prevented. A solar cell based on this film showed the highest conversion efficiency of 6.4% when annealed at 600 C. When the annealing temperature was further increased to 610 C, the performance of the cell deteriorated due to loss of the out-of-plane Ga gradient. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Transparent conductive zinc oxide basics and applications in thin film solar cells

    CERN Document Server

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  2. Dielectric films for solar and laser-pushed lightsails

    International Nuclear Information System (INIS)

    Landis, Geoffrey A.

    2000-01-01

    This project analyzed the potential use of dielectric thin films for solar and laser sails. Such light-pushed sails allow the possibility of fuel-free propulsion in space. This makes possible missions of extremely high delta-V, potentially as high as 30,000 km/sec (0.1c), which is required for a fly-by mission to a nearby star

  3. Silicon-Film(TM) Solar Cells by a Flexible Manufacturing System: Final Report, 16 April 1998 -- 31 March 2001

    Energy Technology Data Exchange (ETDEWEB)

    Rand, J.

    2002-02-01

    This report describes the overall goal to engineer and develop flexible manufacturing methods and equipment to process Silicon-Film solar cells and modules. Three major thrusts of this three-year effort were to: develop a new larger-area (208 mm x 208 mm) Silicon-Film solar cell, the APx-8; construct and operate a new high-throughput wafer-making system; and develop a 15-MW single-thread manufacturing process. Specific technical accomplishments from this period are: Increase solar cell area by 80%, increase the generation capacity of a Silicon-Film wafer-making system by 350%, use a new in-line HF etch system in solar cell production, design and develop an in-line NaOH etch system, eliminate cassettes in solar cell processing, and design a new family of module products.

  4. Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    El-Bashir, S.M., E-mail: elbashireg@yahoo.com [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia); Department of Physics Faculty of Science, Benha University (Egypt); Barakat, F.M.; AlSalhi, M.S. [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia)

    2013-11-15

    Poly(methyl methacrylate) (PMMA) nanocomposite films doped with mixed coumarin dyestuffs and noble metal nanoparticles (60 nm silver and 100 nm gold) were prepared by spin coating technique. The effect of silver and gold nanoparticles on the film properties was studied by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–vis absorption and fluorescence spectroscopy measurements. DSC measurements indicated the increase of the glass transition temperature of the films by increasing nanogold concentration, recommending their promising thermal stability towards hot climates. It was found that the fluorescence signals of the mixed coumarin dyes were amplified by 5.4 and 7.15 folds as a result of metal enhanced fluorescence (MEF). The research outcomes offered a potential application of these films in solar energy conversion by plasmonic thin film luminescent solar concentrator (PTLSC). -- Graphical abstract: Plasmonic thin film luminescent solar concentrators. Highlights: • Metal enhanced fluorescence was achieved for mixed coumarin dyes doped in PMMA nanocomposite films. • The amplification of the fluorescence signals is dependent on the concentration of silver and gold nanoparticles. • These films is considered as potential candidates for plasmonic thin film luminescent solar concentrators (PTLSCs)

  5. Glow discharge-deposited amorphous silicon films for low-cost solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grabmaier, J G; Plaettner, R D; Stetter, W [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorien

    1980-01-01

    Due to their high absorption constant, glow discharge-deposited amorphous silicon (a-Si) films are of great interest for low-cost solar cells. Using SiH/sub 4/ and SiX/sub 4//H/sub 2/ (X = Cl or F) gas mixtures in an inductively or capacitively excited reactor, a-Si films with thicknesses up to several micrometers were deposited on substrates of glass, silica and silicon. The optical and electrical properties of the films were determined by measuring the IR absorption spectra, dark conductivity, photoconductivity, and photoluminescence. Hydrogen, chlorine, or fluorine were incorporated in the films in order to passivate dangling bonds in the amorphous network.

  6. Light trapping with plasmonic back contacts in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, Ulrich Wilhelm

    2013-02-08

    Trapping light in silicon solar cells is essential as it allows an increase in the absorption of incident sunlight in optically thin silicon absorber layers. This way, the costs of the solar cells can be reduced by lowering the material consumption and decreasing the physical constraints on the material quality. In this work, plasmonic light trapping with Ag back contacts in thin-film silicon solar cells is studied. Solar cell prototypes with plasmonic back contacts are presented along with optical simulations of these devices and general design considerations of plasmonic back contacts. Based on three-dimensional electromagnetic simulations, the conceptual design of plasmonic nanostructures on Ag back contacts in thin-film silicon solar cells is studied in this work. Optimizations of the nanostructures regarding their ability to scatter incident light at low optical losses into large angles in the silicon absorber layers of the thin-film silicon solar cells are presented. Geometrical parameters as well as the embedding dielectric layer stack of the nanostructures on Ag layers are varied. Periodic as well as isolated hemispherical Ag nanostructures of dimensions above 200 nm are found to scatter incident light at high efficiencies and low optical losses. Hence, these nanostructures are of interest for light trapping in solar cells. In contrast, small Ag nanostructures of dimension below 100 nm are found to induce optical losses. At the surface of randomly textured Ag back contacts small Ag nanostructures exist which induce optical losses. In this work, the relevance of these localized plasmon induced optical losses as well as optical losses caused by propagating plasmons are investigated with regard to the reflectance of the textured back contacts. In state-of-the-art solar cells, the plasmon-induced optical losses are shifted out of the relevant wavelength range by incorporating a ZnO:Al interlayer of low refractive index at the back contact. The additional but

  7. Simulated Space Environmental Effects on Thin Film Solar Array Components

    Science.gov (United States)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  8. Efficiency enhancement of perovskite solar cells by fabricating as-prepared film before sequential spin-coating procedure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiajia [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Tao, Hai jun, E-mail: taohaijun@nuaa.edu.cn [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Chen, Shanlong; Tan, Bin [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Zhou, Ning [Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhu, Lumin; Zhao, Yuan [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Wang, Yuqiao [Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Tao, Jie [Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of material science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China)

    2016-05-15

    Graphical abstract: Schematic illustration of modified two-step spin-coating procedure for MAPbI{sub 3} perovskite thin films. - Highlights: • An as-prepared CH{sub 3}NH{sub 3}PbI{sub 3} and PbI{sub 2} film was introduced before the traditional two-step process. • Smooth morphology and trace amount of remaining PbI{sub 2} benefit the performance of solar cell. • The optimal as-prepared film introduced improves the efficiency of CH{sub 3}NH{sub 3}PbI{sub 3} solar cells from 9.11% to 11.16%. - Abstract: Sequential spin-coating procedure is a widely adopted strategy to prepare CH{sub 3}NH{sub 3}PbI{sub 3} on mesostructured TiO{sub 2} electrode for organolead halide perovskite-based solar cells. However, this method suffers from the rough surface and excessively residual PbI{sub 2} in the resulting perovskite film, deteriorating the device performance seriously. Herein, a facial modified sequential solution deposition method, by introducing an as-prepared CH{sub 3}NH{sub 3}PbI{sub 3} and PbI{sub 2} film before the traditional two-step process, was proposed to fabricate the perovskite-based solar cell with smooth morphology and trace amount of remaining PbI{sub 2}. The optimal as-prepared film introduced improves the efficiency of CH{sub 3}NH{sub 3}PbI{sub 3} solar cells from 9.11% to 11.16%. The enhancement of device performance can be attributed to the increased light absorption ability and decreased recombination rate of carriers in CH{sub 3}NH{sub 3}PbI{sub 3} absorber.

  9. Low-Temperature Soft-Cover Deposition of Uniform Large-Scale Perovskite Films for High-Performance Solar Cells.

    Science.gov (United States)

    Ye, Fei; Tang, Wentao; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Chen, Han; Qiang, Yinghuai; Yang, Xudong; Han, Liyuan

    2017-09-01

    Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm 2 , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm 2 . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Review of thin film solar cell technology and applications for ultra-light spacecraft solar arrays

    Science.gov (United States)

    Landis, Geoffrey A.

    1991-01-01

    Developments in thin-film amorphous and polycrystalline photovoltaic cells are reviewed and discussed with a view to potential applications in space. Two important figures of merit are discussed: efficiency (i.e., what fraction of the incident solar energy is converted to electricity), and specific power (power to weight ratio).

  11. Crystalline Silicon Solar Cells with Thin Silicon Passivation Film Deposited prior to Phosphorous Diffusion

    Directory of Open Access Journals (Sweden)

    Ching-Tao Li

    2014-01-01

    Full Text Available We demonstrate the performance improvement of p-type single-crystalline silicon (sc-Si solar cells resulting from front surface passivation by a thin amorphous silicon (a-Si film deposited prior to phosphorus diffusion. The conversion efficiency was improved for the sample with an a-Si film of ~5 nm thickness deposited on the front surface prior to high-temperature phosphorus diffusion, with respect to the samples with an a-Si film deposited on the front surface after phosphorus diffusion. The improvement in conversion efficiency is 0.4% absolute with respect to a-Si film passivated cells, that is, the cells with an a-Si film deposited on the front surface after phosphorus diffusion. The new technique provided a 0.5% improvement in conversion efficiency compared to the cells without a-Si passivation. Such performance improvements result from reduced surface recombination as well as lowered contact resistance, the latter of which induces a high fill factor of the solar cell.

  12. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    Science.gov (United States)

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  13. A computational study on the energy bandgap engineering in performance enhancement of CdTe thin film solar cells

    Directory of Open Access Journals (Sweden)

    Ameen M. Ali

    Full Text Available In this study, photovoltaic properties of CdTe thin film in the configuration of n-SnO2/n-CdS/p-CdTe/p-CdTe:Te/metal have been studied by numerical simulation software named “Analysis of Microelectronic and Photonic Structure” (AMPS-1D. A modified structure for CdTe thin film solar cell has been proposed by numerical analysis with the insertion of a back contact buffer layer (CdTe:Te. This layer can serve as a barrier that will decelerate the copper diffusion in CdTe solar cell. Four estimated energy bandgap relations versus the Tellurium (Te concentrations and the (CdTe:Te layer thickness have been examined thoroughly during simulation. Correlation between energy bandgap with the CdTe thin film solar cell performance has also been established. Keywords: Numerical modelling, CdTe thin film, Solar cell, AMPS-1D, Bandgap

  14. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    Science.gov (United States)

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.

  15. Commercial Development Of Ovonic Thin Film Solar Cells

    Science.gov (United States)

    Ovshinsky, Stanford R.

    1983-09-01

    subsequent paper) which has clearly demonstrated that the basic barrier to low-cost production has been broken through and that one can now speak realistically of delivering power directly from the sun for under a dollar per peak watt merely by making larger versions of this basic continuous web, large-area thin-film machine. We have made one square foot amorphous silicon alloy PIN devices with conversion efficiencies in the range of 7%, and in the laboratory, we have reported smaller area PIN de-vices in the 10% conversion efficiency range. In addition, much higher energy conversion efficiencies can be obtained within the same process by using multi-cell layered or tandem thin-film solar cell structures (see Figure 1). These devices exhibit enhanced efficiency by utilizing a wider range of the solar spectrum. Since the theoretical maximum efficiency for multi-cell structures is over 60%, one can certainly realistically anticipate the pro-duction of thin-film amorphous photovoltaic devices with efficiencies as high as 30%. Our production device is already a two-cell tandem, as we have solved not only the problems of interfacing the individual cell components but also the difficulties associated with a one foot square format deposited on a continuous web. Figure 2 shows a continuous roll of Ovonic solar cells. Realistic calculations for a three-cell tandem thin-film device using amorphous semiconductor alloys with 1.8eV, 1.5eV, and 1.0eV optical band gaps indicate that solar energy conversion efficiencies of 20-30% can be achieved.

  16. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    Science.gov (United States)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of

  17. An Automatic Detection Method of Nanocomposite Film Element Based on GLCM and Adaboost M1

    Directory of Open Access Journals (Sweden)

    Hai Guo

    2015-01-01

    Full Text Available An automatic detection model adopting pattern recognition technology is proposed in this paper; it can realize the measurement to the element of nanocomposite film. The features of gray level cooccurrence matrix (GLCM can be extracted from different types of surface morphology images of film; after that, the dimension reduction of film can be handled by principal component analysis (PCA. So it is possible to identify the element of film according to the Adaboost M1 algorithm of a strong classifier with ten decision tree classifiers. The experimental result shows that this model is superior to the ones of SVM (support vector machine, NN and BayesNet. The method proposed can be widely applied to the automatic detection of not only nanocomposite film element but also other nanocomposite material elements.

  18. Sputter Deposited TiOx Thin-Films as Electron Transport Layers in Organic Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Bomholt Jensen, Pia; Lakhotiya, Harish

    transparency and favorable energy-level alignment with many commonly used electron-acceptor materials. There are several methods available for fabricating compact TiOx thin-films for use in organic solar cells, including sol-gel solution processing, spray pyrolysis and atomic-layer deposition; however...... of around 7%, by incorporating sputter deposited TiOx thin-films as electron-transport and exciton-blocking layers. In the work, we report on the effect of different TiOx deposition temperatures and thicknesses on the organic-solar-cell device performance. Besides optical characterization, AFM and XRD...... analyses are performed to characterize the morphology and crystal structure of the films, and external quantum efficiency measurements are employed to shed further light on the device performance. Our study presents a novel method for implementation of TiOx thin-films as electron-transport layer in organic...

  19. Solar-tropospheric connections and the cold film of the world ocean

    International Nuclear Information System (INIS)

    Chertoprud, V.E.

    1982-01-01

    A possible mechanism for the increase in tropospheric instability following the arrival at the earth of solar corpuscular streams is discussed in which the cold film of the oceans plays an important role

  20. Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Chien-Hung; Wu, Chun-Guey

    2016-09-22

    The power conversion efficiency (PCE) of the perovskite solar cell is high enough to be commercially viable. The next important issue is the stability of the device. This article discusses the effect of the perovskite grain-size on the long-term stability of inverted perovskite solar cells. Perovskite films composed of various sizes of grains were prepared by controlling the solvent annealing time. The grain-size related stability of the inverted cells was investigated both in ambient atmosphere at relative humidity of approximately 30-40 % and in a nitrogen filled glove box (H 2 Operovskite film having the grain size larger than 1 μm (D-10) decreases less than 10 % with storage in a glove box and less than 15 % when it was stored under an ambient atmosphere for 30 days. However, the cell using the perovskite film composed of small (∼100 nm) perovskite grains (D-0) exhibits complete loss of PCE after storage under the ambient atmosphere for only 15 days and a PCE loss of up to 70 % with storage in the glove box for 30 days. These results suggest that, even under H 2 O-free conditions, the chemical- and thermal-induced production of pin holes at the grain boundaries of the perovskite film could be the reason for long-term instability of inverted perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hybrid Solar Cell with TiO2 Film: BBOT Polymer and Copper Phthalocyanine as Sensitizer

    Directory of Open Access Journals (Sweden)

    Saptadip Saha

    2016-01-01

    Full Text Available An organic-inorganic hybrid solar cell was fabricated using Titanium dioxide (TiO2: 2,5-bis(5-tert-butyl-2-benzoxazolyl thiophene (BBOT film and Copper Phthalocyanine (CuPc as a sensitizer. BBOT was used in photodetector in other reported research works, but as per best of our knowledge, it was not implemented in solar cells till date. The blend of TiO2: BBOT blend was used to fabricate the film on ITO-coated glass and further a thin layer of CuPc was coated on the film. This was acted as photoanode and another ITO coated glass with a platinum coating was used as a counter electrode (cathode. An optimal blend of acetonitrile (solvent (50-100%, 1,3-dimethylimidazolium iodide (10-25%, iodine (2.5-10% and lithium iodide, pyridine derivative and thiocyanate was used as electrolytes in the hybrid solar cell. The different structural, optical and electrical characteristics were measured. The Hybrid solar cell showed a maximum conversion efficiency of 6.51%.

  2. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites.

    Science.gov (United States)

    Sarafian, Adam R; Hauri, Erik H; McCubbin, Francis M; Lapen, Thomas J; Berger, Eve L; Nielsen, Sune G; Marschall, Horst R; Gaetani, Glenn A; Righter, Kevin; Sarafian, Emily

    2017-05-28

    Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb- 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  3. Controllable Growth of Ga Film Electrodeposited from Aqueous Solution and Cu(In,Ga)Se2 Solar Cells.

    Science.gov (United States)

    Bi, Jinlian; Ao, Jianping; Gao, Qing; Zhang, Zhaojing; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Zhang, Yi

    2017-06-07

    Electrodepositon of Ga film is very challenging due to the high standard reduction potential (-0.53 V vs SHE for Ga 3+ ). In this study, Ga film with compact structure was successfully deposited on the Mo/Cu/In substrate by the pulse current electrodeposition (PCE) method using GaCl 3 aqueous solution. A high deposition rate of Ga 3+ and H + can be achieved by applying a large overpotential induced by high pulse current. In the meanwhile, the concentration polarization induced by cation depletion can be minimized by changing the pulse frequency and duty cycle. Uniform and smooth Ga film was fabricated at high deposition rate with pulse current density 125 mA/cm 2 , pulse frequency 5 Hz, and duty cycle 0.25. Ga film was then selenized together with electrodeposited Cu and In films to make a CIGSe absorber film for solar cells. The solar cell based on the Ga film presents conversion efficiency of 11.04%, fill factor of 63.40%, and V oc of 505 mV, which is much better than those based on the inhomogeneous and rough Ga film prepared by the DCE method, indicating the pulse current electrodeposition process is promising for the fabrication of CIGSe solar cell.

  4. Multi-Material Front Contact for 19% Thin Film Solar Cells

    NARCIS (Netherlands)

    Deelen, J. van; Tezsevin, Y.; Barink, M.

    2016-01-01

    The trade-off between transmittance and conductivity of the front contact material poses abottleneck for thin film solar panels. Normally, the front contact material is a metal oxide and the optimal cell configuration and panel efficiency were determined for various band gap materials, representing

  5. Progress in thin-film silicon solar cells based on photonic-crystal structures

    Science.gov (United States)

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu

    2018-06-01

    We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.

  6. Instantaneous preparation of CuInSe2 films from elemental In, Cu, Se particles precursor films in a non-vacuum process

    International Nuclear Information System (INIS)

    Kaigawa, R.; Uesugi, T.; Yoshida, T.; Merdes, S.; Klenk, R.

    2009-01-01

    CuInSe 2 (CIS) films are successfully prepared by means of non-vacuum, instantaneous, direct synthesis from elemental In, Cu, Se particles precursor films without prior synthesis of CIS nanoparticle precursors and without selenization with H 2 Se or Se vapor. Our precursor films were prepared on metal substrates by spraying the solvent with added elemental In, Cu, and Se particles. Precursor films were instantaneously sintered using a spot welding machine. When the electric power was fixed to 0.6 kVA, elemental In, Cu, or Se peaks were not observed and only peaks of CIS are observed by X-ray diffraction (XRD) on the film sintered for 7/8 s. We can observe XRD peaks indicative of the chalcopyrite-type structure, such as (101), (103) and (211) diffraction peaks. We conclude that the synthesized CIS crystals have chalcopyrite-type structure with high crystallinity

  7. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  8. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    International Nuclear Information System (INIS)

    Neumüller, A.; Sergeev, O.; Vehse, M.; Agert, C.; Bereznev, S.; Volobujeva, O.; Ewert, M.; Falta, J.

    2016-01-01

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  9. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Neumüller, A., E-mail: alex.neumueller@next-energy.de; Sergeev, O.; Vehse, M.; Agert, C. [NEXT ENERGY EWE Research Centre for Energy Technology at the University of Oldenburg, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg (Germany); Bereznev, S.; Volobujeva, O. [Department of Materials Science, Tallinn University of Technology, Ehitajate Tee 5, Tallinn 19086 (Estonia); Ewert, M.; Falta, J. [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen (Germany)

    2016-07-25

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  10. On the Scalar Scattering Theory for Thin-Film Solar Cells

    NARCIS (Netherlands)

    Jäger, K.

    2012-01-01

    Nano-textured interfaces between two media of different refractive indices scatter light. The angular distribution and the intensity of the scattered light are deter- mined by the geometry of the nano-textures and the difference of the refractive indices of the two media. Thin-film silicon solar

  11. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Ebadzadeh T.

    2012-10-01

    Full Text Available Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3 through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  12. Numerical study of a double-slope solar still coupled with capillary film condenser in south Algeria

    International Nuclear Information System (INIS)

    Belhadj, Mohamed Mustapha; Bouguettaia, Hamza; Marif, Yacine; Zerrouki, Moussa

    2015-01-01

    Highlights: • This is a numerical work on solar stills in the desert of Algeria using solar energy. • Solar stills can secure fresh water to low density remote desert agglomerations. • The yield was improved by coupling a solar still with a capillary film condenser. • The distilled water production increases with the reduction in flow feed saline water. • The yield varies conversely with the distance between the two condensing plates. - Abstract: The effect of joining a condensation cell to a single-basin double slope solar still was investigated numerically. Direct solar radiation heated the saline water then evaporated. A fraction of the resulting vapor is condensed on the inner glass cover plate and the rest on the outer metal plate. Solar radiation, ambient temperature and the temperatures at different system components were monitored. The performance of the system was evaluated and compared to that of a conventional solar still under the same meteorological conditions. The proposed prototype functioned perfectly and its daily yield reached 7.15 kg m −2 d −1 . Results show that the productivity of the present system was about 60% higher than that of the conventional and capillary film types. The contributions of the glass cover, metal plate and condenser plate are 43%, 18% and 39% of the total distillate yield respectively. It was noticed that the productivity of the capillary film solar still was sensitive to the mass flow of the feeding water. It was also found that the absorptivity coefficient and the diffusion gap have significant effect on distillate production of the system

  13. Using high haze (> 90%) light-trapping film to enhance the efficiency of a-Si:H solar cells

    Science.gov (United States)

    Chu, Wei-Ping; Lin, Jian-Shian; Lin, Tien-Chai; Tsai, Yu-Sheng; Kuo, Chen-Wei; Chung, Ming-Hua; Hsieh, Tsung-Eong; Liu, Lung-Chang; Juang, Fuh-Shyang; Chen, Nien-Po

    2012-07-01

    The high haze light-trapping (LT) film offers enhanced scattering of light and is applied to a-Si:H solar cells. UV glue was spin coated on glass, and then the LT pattern was imprinted. Finally, a UV lamp was used to cure the UV glue on the glass. The LT film effectively increased the Haze ratio of glass and decreased the reflectance of a-Si:H solar cells. Therefore, the photon path length was increased to obtain maximum absorption by the absorber layer. High Haze LT film is able to enhance short circuit current density and efficiency of the device, as partial composite film generates broader scattering light, thereby causing shorter wave length light to be absorbed by the P layer so that the short circuit current density decreases. In case of lab-made a-Si:H thin film solar cells with v-shaped LT films, superior optoelectronic performances have been found (Voc = 0.74 V, Jsc = 15.62 mA/cm2, F.F. = 70%, and η = 8.09%). We observed ~ 35% enhancement of the short-circuit current density and ~ 31% enhancement of the conversion efficiency.

  14. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells.

    Science.gov (United States)

    Becker, Matthew A; Radich, James G; Bunker, Bruce A; Kamat, Prashant V

    2014-05-01

    Successive ionic layer adsorption and reaction (SILAR) is a popular method of depositing the metal chalcogenide semiconductor layer on the mesoscopic metal oxide films for designing quantum-dot-sensitized solar cells (QDSSCs) or extremely thin absorber (ETA) solar cells. While this deposition method exhibits higher loading of the light-absorbing semiconductor layer than direct adsorption of presynthesized colloidal quantum dots, the chemical identity of these nanostructures and the evolution of interfacial structure are poorly understood. We have now analyzed step-by-step SILAR deposition of CdSe films on mesoscopic TiO2 nanoparticle films using X-ray absorption near-edge structure analysis and probed the interfacial structure of these films. The film characteristics interestingly show dependence on the order in which the Cd and Se are deposited, and the CdSe-TiO2 interface is affected only during the first few cycles of deposition. Development of a SeO2 passivation layer in the SILAR-prepared films to form a TiO2/SeO2/CdSe junction facilitates an increase in photocurrents and power conversion efficiencies of quantum dot solar cells when these films are integrated as photoanodes in a photoelectrochemical solar cell.

  15. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    Science.gov (United States)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  16. Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells

    KAUST Repository

    Eid, Jessica; Liang, Haifan; Gereige, Issam; Lee, Sang; Van Duren, Jeroen K J

    2013-01-01

    We report on a sodium fluoride (NaF) thickness variation study for the H2Se batch furnace selenization of sputtered Cu(In,Ga) films in a wide range of Cu(In,Ga) film compositions to form Cu(In,Ga)Se2 (CIGSe) films and solar cells. Literature review indicates lack of consensus on the mechanisms involved in Na altering CIGSe film properties. In this work, for sputtered and batch-selenized CIGSe, NaF addition results in reduced gallium content and an increase in grain size for the top portion of the CIGSe film, as observed by scanning electron microscopy and secondary ion mass spectrometry. The addition of up to 20nm of NaF resulted in an improvement in all relevant device parameters: open-circuit voltage, short-circuit current, and fill factor. The best results were found for 15nm NaF addition, resulting in solar cells with 16.0% active-area efficiency (without anti-reflective coating) at open-circuit voltage (VOC) of 674mV. © 2013 John Wiley & Sons, Ltd.

  17. Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells

    KAUST Repository

    Eid, Jessica

    2013-12-04

    We report on a sodium fluoride (NaF) thickness variation study for the H2Se batch furnace selenization of sputtered Cu(In,Ga) films in a wide range of Cu(In,Ga) film compositions to form Cu(In,Ga)Se2 (CIGSe) films and solar cells. Literature review indicates lack of consensus on the mechanisms involved in Na altering CIGSe film properties. In this work, for sputtered and batch-selenized CIGSe, NaF addition results in reduced gallium content and an increase in grain size for the top portion of the CIGSe film, as observed by scanning electron microscopy and secondary ion mass spectrometry. The addition of up to 20nm of NaF resulted in an improvement in all relevant device parameters: open-circuit voltage, short-circuit current, and fill factor. The best results were found for 15nm NaF addition, resulting in solar cells with 16.0% active-area efficiency (without anti-reflective coating) at open-circuit voltage (VOC) of 674mV. © 2013 John Wiley & Sons, Ltd.

  18. Thin film solar cells grown by organic vapor phase deposition

    Science.gov (United States)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  19. Remote plasma deposition of textured zinc oxide with focus on thin film solar cell applications : material properties, plasma processes and film growth

    NARCIS (Netherlands)

    Groenen, R.

    2005-01-01

    Simultaneously possessing transparency in the visible region, close to that of insulators, and electrical conductivity, close to that of metals, transparent conducting oxide (TCO) thin films form a highly attractive class of materials for a wide variety of applications like thin film solar cells,

  20. Preparation of p-type NiO films by reactive sputtering and their application to CdTe solar cells

    Science.gov (United States)

    Ishikawa, Ryousuke; Furuya, Yasuaki; Araki, Ryouichi; Nomoto, Takahiro; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Tsuboi, Nozomu

    2016-02-01

    Transparent p-type NiO films were prepared by reactive sputtering using the facing-target system under Ar-diluted O2 gas at Tsub of 30 and 200 °C. The increasing intensity of dominant X-ray diffraction (XRD) peaks indicates improvements in the crystallinity of NiO films upon Cu doping. In spite of the crystallographic and optical changes after Cu-doping, the electrical properties of Cu-doped NiO films were slightly improved. Upon Ag-doping at 30 °C under low O2 concentration, on the other hand, the intensity of the dominant (111) XRD peaks was suppressed and p-type conductivity increased from ˜10-3 to ˜10-1 S cm-1. Finally, our Ag-doped NiO films were applied as the back contact of CdTe solar cells. CdTe solar cells with a glass/ITO/CdS/CdTe/NiO structure exhibited an efficiency of 6.4%, suggesting the high potential of using p-type NiO for the back-contact film in thin-film solar cells.

  1. Intrinsic ZnO films fabricated by DC sputtering from oxygen-deficient targets for Cu(In,Ga)Se2 solar cell application

    Institute of Scientific and Technical Information of China (English)

    Chongyin Yang; DongyunWan; Zhou Wang; Fuqiang Huang

    2011-01-01

    Intrinsic zinc oxide films, normally deposited by radio frequency (RF) sputtering, are fabricated by direct current (DC) sputtering. The oxygen-deficient targets are prepared via a newly developed double crucible method. The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film. This is achieved by the widely used RF sputtering, which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells. The optimal ZnO film is used in a Cu (In, Ga) Se2 (CIGS) solar cell with a high efficiency of 11.57%. This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.%Intrinsic zinc oxide films,normally deposited by radio frequency (RF) sputtering,are fabricated by direct current (DC) sputtering.The oxygen-deficient targets are prepared via a newly developed double crucible method.The 800-nm-thick film obtaines significantly higher carrier mobility compareing with that of the 800-nm-thick ZnO film.This is achieved by the widely used RF sputtering,which favors the prevention of carrier recombination at the interfaces and reduction of the series resistance of solar cells.The optimal ZnO film is used in a Cu (In,Ga) Se2 (C1GS) solar cell with a high efficiency of 11.57%.This letter demonstrates that the insulating ZnO films can be deposited by DC sputtering from oxygen-deficient ZnO targets to lower the cost of thin film solar cells.High resistance transparent intrinsic zinc oxide (i-ZnO)thin film has been widely nsed as the front electrode in transparent electronics and photovoltaic devices because of its low cost and nontoxicity.Owing to its unique characteristics of high transparency and adjustable resistivity in a certain range,the use of i-ZnO thin films as diffusion barrier layers of a-Si/μc-Si,CdTe,and CIGS thin-film solar cells has been advantageous

  2. TECHNICAL CHARACTERIZATION OF ECO-COMPATIBLE PLASTIC FILMS FOR SOIL SOLARIZATION: FOUR YEARS OF EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Salvatore Margiotta

    2007-12-01

    Full Text Available Soil solarization relies on solar radiation being converted to heat for the killing of soilborne pathogens. On one hand, this technique can be considered as an environmentally-friendly way to manage soilborne pests, as an alternative of methyl bromide phased-out in 2005, than using chemicals. On the other hand, high employment of traditional plastic sheets in agriculture causes the production of enormous quantities of waste, whose inappropriate management might have negative effects on the environment. In order to determine a reduction of the charge of plastic waste and to facilitate the waste disposal, one of the most interesting approaches, from an environmental point of view, lies in the location of innovatory plastic films such as co-extruded ultrathin films, which are able to reduce the plastic quantity to be managed, and biodegradable laminates, which after a first usage, will spontaneously start up a degradation process that avoids their collection and their consequent disposal. Beside the ecological proprieties of these innovative films, it is necessary to study their technical and agronomical behavior in order to determine their efficiency and the possibility to be used in place of the traditional plastic films. This paper represents a review of the researches carrier out by the Technical Economics Department of the University of Basilicata (Italy in the last years (1999, 2000, 2002 and 2003 on the technical performances of some innovative plastic films used for soil solarization.

  3. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication

    Science.gov (United States)

    Gułkowski, Sławomir; Krawczak, Ewelina

    2017-10-01

    Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS) with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.

  4. Using chemical wet-etching methods of textured AZO films on a-Si:H solar cells for efficient light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo-Sheng; Li, Chien-Yu; Huang, Kuo-Chan; Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw

    2015-06-15

    In this paper, Al-doped ZnO (AZO) films are deposited on glasses substrate by RF magnetron sputtering. The optical, electrical and morphological properties of AZO films textured by wet-etching with different etchants, H{sub 3}PO{sub 4}, HCl, and HNO{sub 3} are studied. It is found that the textured structure could enhance the light scattering and light trapping ability of amorphous silicon solar cells. The textured AZO film etched with HNO{sub 3} exhibits optimized optical properties (T% ≧ 80% over entire wavelength, haze ratio > 40% at 550 nm wavelength) and excellent electrical properties (ρ = 5.86 × 10{sup −4} Ωcm). Scanning electron microscopy and Atomic force microscopy are used to observe surface morphology and average roughness of each textured AZO films. Finally, the textured AZO films etched by H{sub 3}PO{sub 4}, HCl and HNO{sub 3} were applied to front electrode layer for p–i–n amorphous silicon solar cells. The highest conversion efficiency of amorphous silicon solar cell fabricated on HNO{sub 3}-etched AZO film was 7.08% with open-circuit voltage, short-circuit current density and fill factor of 895 mV, 14.92 mA/cm{sup 2} and 0.56, respectively. It shows a significantly enhancement in the short-circuit current density and conversion efficiency by 16.2% and 20.2%, respectively, compared with the solar cell fabricated on as-grown AZO film. - Highlights: • The textured surface enhances light scattering and light trapping ability. • The HNO{sub 3}-etched AZO film exhibits excellent optical and electrical properties. • The efficiency of a-Si:H solar cell fabricated on HNO{sub 3}-etched AZO film was 7.08%. • The short-circuit current density enhances to 16.2%. • The conversion efficiency enhances to 20.2%.

  5. Using chemical wet-etching methods of textured AZO films on a-Si:H solar cells for efficient light trapping

    International Nuclear Information System (INIS)

    Lin, Guo-Sheng; Li, Chien-Yu; Huang, Kuo-Chan; Houng, Mau-Phon

    2015-01-01

    In this paper, Al-doped ZnO (AZO) films are deposited on glasses substrate by RF magnetron sputtering. The optical, electrical and morphological properties of AZO films textured by wet-etching with different etchants, H 3 PO 4 , HCl, and HNO 3 are studied. It is found that the textured structure could enhance the light scattering and light trapping ability of amorphous silicon solar cells. The textured AZO film etched with HNO 3 exhibits optimized optical properties (T% ≧ 80% over entire wavelength, haze ratio > 40% at 550 nm wavelength) and excellent electrical properties (ρ = 5.86 × 10 −4 Ωcm). Scanning electron microscopy and Atomic force microscopy are used to observe surface morphology and average roughness of each textured AZO films. Finally, the textured AZO films etched by H 3 PO 4 , HCl and HNO 3 were applied to front electrode layer for p–i–n amorphous silicon solar cells. The highest conversion efficiency of amorphous silicon solar cell fabricated on HNO 3 -etched AZO film was 7.08% with open-circuit voltage, short-circuit current density and fill factor of 895 mV, 14.92 mA/cm 2 and 0.56, respectively. It shows a significantly enhancement in the short-circuit current density and conversion efficiency by 16.2% and 20.2%, respectively, compared with the solar cell fabricated on as-grown AZO film. - Highlights: • The textured surface enhances light scattering and light trapping ability. • The HNO 3 -etched AZO film exhibits excellent optical and electrical properties. • The efficiency of a-Si:H solar cell fabricated on HNO 3 -etched AZO film was 7.08%. • The short-circuit current density enhances to 16.2%. • The conversion efficiency enhances to 20.2%

  6. Solar cell. Taiyo denchi

    Energy Technology Data Exchange (ETDEWEB)

    Kamihara, T; Kondo, S; Mori, K [Matsushita Electric Industrial Co. Ltd., Osaka (Japan)

    1990-10-23

    This invention provides a solar cell having high resistance to strong incident light and high temperature preservability. Reason of performance degradation of the solar cell in high temperature atmosphere thermally diffuses at the boundary surface of the silicon with metal particles. The method of blocking this thermal diffusion is that the film thickness is of the level that the electrons can pass through the film by a quantum dynamical tunnel effect. In this invention, the construction is that a transparent substrate, a transparent electrode, a P-type amorphous silicon, an I-type amorphous silicon, silica and a collector electrode are sequentially laminated and receives the incident light, thus generating a voltage between the two electrodes. Thickness of silica film is 10-100 microns. Materials of the collector electrode are either single element or alloys of Cs, K, Na, Li, Ba, Mg, Cd, Ta, Al, Mo, Zr, Co, Fe, Cu, Ag, W, Cr, Au and Ni. 13 figs., 1 tab.

  7. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination

    Science.gov (United States)

    Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao

    2018-02-01

    Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.

  8. Quantum dot sensitized solar cells: Light harvesting versus charge recombination, a film thickness consideration

    Science.gov (United States)

    Wang, Xiu Wei; Wang, Ye Feng; Zeng, Jing Hui; Shi, Feng; Chen, Yu; Jiang, Jiaxing

    2017-08-01

    Sensitizer loading level is one of the key factors determined the performance of sensitized solar cells. In this work, we systemically studied the influence of photo-anode thicknesses on the performance of the quantum-dot sensitized solar cells. It is found that the photo-to-current conversion efficiency enhances with increased film thickness and peaks at around 20 μm. The optimal value is about twice as large as the dye counterparts. Here, we also uncover the underlying mechanism about the influence of film thickness over the photovoltaic performance of QDSSCs from the light harvesting and charge recombination viewpoint.

  9. Light trapping in thin film solar cells using photonic engineering device concepts

    Science.gov (United States)

    Mutitu, James Gichuhi

    In this era of uncertainty concerning future energy solutions, strong reservations have arisen over the continued use and pursuit of fossil fuels and other conventional sources of energy. Moreover, there is currently a strong and global push for the implementation of stringent measures, in order to reduce the amount of green house gases emitted by every nation. As a consequence, there has emerged a sudden and frantic rush for new renewable energy solutions. In this world of renewable energy technologies is where we find photovoltaic (PV) technology today. However, as is, there are still many issues that need to be addressed before solar energy technologies become economically viable and available to all people, in every part of the world. This renewed interest in the development of solar electricity, has led to the advancement of new avenues that address the issues of cost and efficiency associated with PV. To this end, one of the prominent approaches being explored is thin film solar cell (TFSC) technology, which offers prospects of lower material costs and enables larger units of manufacture than conventional wafer based technology. However, TFSC technologies suffer from one major problem; they have lower efficiencies than conventional wafer based solar cell technologies. This lesser efficiency is based on a number of reasons, one of which is that with less material, there is less volume for the absorption of incident photons. This shortcoming leads to the need for optical light trapping; which is concerned with admitting the maximum amount of light into the solar cell and keeping the light within the structure for as long as possible. In this thesis, I present the fundamental scientific ideas, practice and methodology behind the application of photonic engineering device concepts to increase the light trapping capacity of thin film solar cells. In the introductory chapters, I develop the basic ideas behind light trapping in a sequential manner, where the effects

  10. Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applications

    International Nuclear Information System (INIS)

    Adamska, A.M.; Bright, E. Lawrence; Sutcliffe, J.; Liu, W.; Payton, O.D.; Picco, L.; Scott, T.B.

    2015-01-01

    Polycrystalline uranium dioxide thin films were grown on nickel substrates via aqueous electrodeposition of a precursor uranyl salt. The arising semiconducting uranium dioxide thin films exhibited a tower-like morphology, which may be suitable for future application in 3D solar cell applications. The thickness of the homogenous, tower-like films reached 350 nm. Longer deposition times led to the formation of thicker (up to 1.5 μm) and highly porous films. - Highlights: • Electrodeposition of polycrystalline UO_2 thin films • Tower-like morphology for 3D solar cell applications • Novel technique for separation of heavy elements from radioactive waste streams

  11. Light management in large area thin-film silicon solar modules

    Czech Academy of Sciences Publication Activity Database

    Losio, P.A.; Caglar, O.; Cashmore, J.S.; Hötzel, J.E.; Ristau, S.; Holovský, Jakub; Remeš, Zdeněk; Sinicco, I.

    2015-01-01

    Roč. 143, Dec (2015), s. 375-385 ISSN 0927-0248 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : micromorph * thin-film silicon solar cells * light management * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.732, year: 2015

  12. GREENHOUSE PLASTIC FILMS CAPABLE OF MODIFYING THE SPECTRAL DISTRIBUTION OF SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Evelia Schettini

    2010-03-01

    Full Text Available The aim of this paper was to investigate the radiometric properties of innovative covering films for protected cultivation capable of modifying the spectral distribution of the transmitted radiation and thus the vegetative activity. Two photoselective films, three photoluminescent films and one low-density polyethylene film were used as greenhouse coverings for cherry trees and peach trees, grown in pots. The photoselective films were characterised by a reduction of the R/FR ratio in comparison to the natural solar radiation. Tree growth parameters, such as the apical shoot of cherry trees and the shoot of peach trees, were monitored. Different responses to vegetative activities were observed under the films, depending on the species, with a higher shoots growth rate in the peach with respect to the cherry. The photoselective film characterised by the lowest R/FR ratio significantly enhanced the growth of cherry and peach trees in comparison to the trees cultivated under the other greenhouse films

  13. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  14. Advances in thin-film solar cells for lightweight space photovoltaic power

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  15. Advantages of using amorphous indium zinc oxide films for window layer in Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Warasawa, Moe [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Kaijo, Akira [Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, 229-0293 (Japan); Sugiyama, Mutsumi, E-mail: mutsumi@rs.noda.tus.ac.jp [Department of Electrical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan)

    2012-01-01

    The advantages of using indium zinc oxide (IZO) films instead of conventional Ga-doped zinc oxide (ZnO:Ga) films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells are described. The electrical properties of IZO are independent of film thickness. IZO films have higher mobility (30-40 cm{sup 2}/Vs) and lower resistivity (4-5 Multiplication-Sign 10{sup -4} {Omega} cm) compared to ZnO:Ga films deposited without intentional heating, because the number of grain boundaries in amorphous IZO films is small. The properties of a CIGS solar cell using IZO at the window layer were better than those obtained using a conventional ZnO:Ga at the window layer; moreover, the properties tended to be independent of thickness. These results indicate that use of IZO as a transparent conducting oxide layer is expected to increase the efficiency of CIGS solar cells.

  16. Solar selective performance of metal nitride/oxynitride based magnetron sputtered thin film coatings: a comprehensive review

    Science.gov (United States)

    Ibrahim, Khalil; Taha, Hatem; Mahbubur Rahman, M.; Kabir, Humayun; Jiang, Zhong-Tao

    2018-03-01

    Since solar-thermal collectors are considered to be the most direct way of converting solar energy into usable forms, in the last few years growing attention has been paid to the development of transition metal nitride and metal oxynitride based thin film selective surfaces for solar-thermal collectors, in order to harvest more solar energy. A solar-thermal energy system, generally, shows very high solar absorption of incident solar radiation from the solar-thermal collectors in the visible range (0.3 to 2.5 μm) and extremely low thermal losses through emission (or high reflection) in the infrared region (≥2.5 μm). The efficiency of a solar-thermal energy conversion system can be improved by the use of solar selective surfaces consisting of novel metallic nanoparticles embedded in metal nitride/oxynitride systems. In order to enhance the effectiveness of solar-thermal devices, solar selective surfaces with high thermal stability are a prerequisite. Over the years, substantial efforts have been made in the field of solar selective surfaces to attain higher solar absorptance and lower thermal emittance in high temperature (above 400 °C) applications. In this article, we review the present state-of-the-art transition metal nitride and/or oxynitride based vacuum sputtered nanostructured thin film coatings, with respect to their optical and solar selective surface applications. We have also summarized the solar selectivity data from recently published investigations, including discussion on some potential applications for these materials.

  17. Cu2ZnSnS4 thin films by simple replacement reaction route for solar photovoltaic application

    International Nuclear Information System (INIS)

    Tiwari, Devendra; Chaudhuri, Tapas K.; Ray, Arabinda; Tiwari, Krishan Dutt

    2014-01-01

    A process for deposition of Cu 2 ZnSnS 4 (CZTS) films using replacement of Zn 2+ in ZnS is demonstrated. X-ray diffraction pattern and Raman spectroscopy confirm the formation of pure CZTS. Atomic force microscopy shows the films to be homogeneous and compact with root mean squared roughness of 6 nm. The direct band gap of CZTS films as elucidated by UV–Vis-NIR spectroscopy is 1.45 eV. The CZTS films exhibit p-type conduction with electrical conductivity of 4.6 S/cm. The hole concentration and hole mobility is determined to be 3.6 × 10 17 cm −3 and 1.4 cm 2 V −1 s −1 respectively. Solar cells with structure: graphite/CZTS/CdS/ZnO/SnO 2 :In/Soda lime glass are also fabricated, gave photo-conversion efficiency of 6.17% with open circuit voltage and short circuit current density of 521 mV and 19.13 mA/cm 2 , respectively and a high fill factor of 0.62. The external quantum efficiency of the solar cell lies above 60% in the visible region. - Highlights: • Pure kesterite Cu 2 ZnSnS 4 thin films deposited by replacement reaction route • Energy band gap of films is 1.45 eV. • p-type films with conductivity of 4.6 S/cm and mobility of 1.4 cm 2 S −1 V −1 • Fabrication of Graphite/Cu 2 ZnSnS 4 /CdS/ZnO/SnO 2 :In/Glass solar cell • Solar cell delivered efficiency of 6.17% with high fill factor of 0.62

  18. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  19. Thin nanostructured crystalline TiO{sub 2} films and their applications in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yajun

    2007-06-15

    Research on thin nanostructured crystalline TiO{sub 2} films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO{sub 2} film plays an important role in the TiO{sub 2} based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO{sub 2} nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO{sub 2} morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO{sub 2} within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400 C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the

  20. Generation of electrical defects in ion beam assisted deposition of Cu(In,Ga)Se2 thin film solar cells

    International Nuclear Information System (INIS)

    Zachmann, H.; Puttnins, S.; Daume, F.; Rahm, A.; Otte, K.

    2011-01-01

    Thin films of Cu(In,Ga)Se 2 (CIGS) absorber layers for thin film solar cells have been manufactured on polyimide foil in a low temperature, ion beam assisted co-evaporation process. In the present work a set of CIGS thin films was produced with varying selenium ion energy. Solar cell devices have been manufactured from the films and characterized via admittance spectroscopy and capacitance-voltage profiling to determine the influence of the selenium ion energy on the electric parameters of the solar cells. It is shown that the impact of energetic selenium ions in the CIGS deposition process leads to a change in the activation energy and defect density and also in the spatial distribution of electrically active defects. For the interpretation of the results two defect models are taken into account.

  1. Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells

    International Nuclear Information System (INIS)

    Fay, Sylvie; Steinhauser, Jerome; Nicolay, Sylvain; Ballif, Christophe

    2010-01-01

    Conductive zinc oxide (ZnO) grown by low pressure chemical vapor deposition (LPCVD) technique possesses a rough surface that induces an efficient light scattering in thin film silicon (TF Si) solar cells, which makes this TCO an ideal candidate for contacting such devices. IMT-EPFL has developed an in-house LPCVD process for the deposition of nanotextured boron doped ZnO films used as rough TCO for TF Si solar cells. This paper is a general review and synthesis of the study of the electrical, optical and structural properties of the ZnO:B that has been performed at IMT-EPFL. The influence of the free carrier absorption and the grain size on the electrical and optical properties of LPCVD ZnO:B is discussed. Transport mechanisms at grain boundaries are studied. It is seen that high doping of the ZnO grains facilitates the tunnelling of the electrons through potential barriers that are located at the grain boundaries. Therefore, even if these potential barriers increase after an exposition of the film to a humid atmosphere, the heavily doped LPCVD ZnO:B layers show a remarkable stable conductivity. However, the introduction of diborane in the CVD reaction induces also a degradation of the intra-grain mobility and increases over-proportionally the optical absorption of the ZnO:B films. Hence, the necessity to finely tune the doping level of LPCVD ZnO:B films is highlighted. Finally, the next challenges to push further the optimization of LPCVD ZnO:B films for thin film silicon solar cells are discussed, as well as some remarkable record cell results achieved with LPCVD ZnO:B as front electrode.

  2. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  3. 13.7%-efficient Zn(Se,OH){sub x}/Cu(In,Ga)(S,Se){sub 2} thin-film solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. [Hahn-Meitner-Institut, Bereich Physikalische Chemie, Berlin (Germany); Blieske, U.; Lux-Steiner, M.Ch. [Hahn-Meitner-Institut, Bereich Festkoerperphysik, Berlin (Germany)

    1998-12-01

    Cu(In,Ga)Se{sub 2} (CIGS) and related semiconducting compounds have demonstrated their high potential for high-efficiency thin-film solar cells. The highest efficiency for CIGS based thin-film solar cells has been achieved with CdS buffer layers prepared by a solution growth method known as chemical based deposition (CBD). With the aim of developing Cd-free chalcopyrite-based thin-film solar cells, Zn(Se,OH){sub x} buffer layers were deposited by CBD on polycrystalline Cu(In,Ga)(S,Se){sub 2} (CIGSS). A total-area conversion efficiency of 13.7% was certified by the Fraunhofer Institute for Solar Energy Systems. The CIGSS absorber was fabricated by Siemens Solar Industries (California). For device optimisation, the thickness and good surface coverage were controlled by XPS-UPS photoemission spectroscopy. A Zn(Se,OH){sub x} thickness below 7 nm has been found to be optimum for achieving a homogeneous and compact buffer film on CIGSS, with open-circuit photovoltage V{sub oc} = 535 mV, fill factor FF = 70.76% and a high short-circuit photocurrent density J{sub sc} 36.1 mA cm{sup -2}. (Author)

  4. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    International Nuclear Information System (INIS)

    Zhou, H.P.; Xu, S.; Zhao, Z.; Xiang, Y.

    2014-01-01

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H 2 , aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  5. Characteristics of Bilayer Molybdenum Films Deposited Using RF Sputtering for Back Contact of Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Sea-Fue Wang

    2014-01-01

    Full Text Available Mo films prepared under a single deposition condition seldom simultaneously obtain a low resistivity and a good adhesion necessary for use in solar cells. In order to surmount the obstacle, bilayer Mo films using DC sputtering at a higher working pressure and a lower working pressure have been attempted as reported in the literature. In this study, RF sputtering with different powers in conjunction with different working pressures was explored to prepare bilayer Mo film. The first bottom layer was grown at a RF sputtering power of 30 W and a working pressure of 12 mTorr, and the second top layer was deposited at 100 W and 4.5 mTorr. The films revealed a columnar growth with a preferred orientation along the (110 plane. The bilayer Mo films reported an electrical resistivity of 6.35 × 10−5 Ω-cm and passed the Scotch tape test for adhesion to the soda-lime glass substrate, thereby qualifying the bilayer Mo films for use as back metal contacts for CIGS substrates.

  6. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    U. Gangopadhyay

    2007-01-01

    Full Text Available The low-cost chemical bath deposition (CBD technique is used to prepare CBD-ZnS films as antireflective (AR coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min., good film uniformity (standard deviation <1, and refractive index (2.35 along with a low percentage of average reflection (6-7% on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.

  7. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    OpenAIRE

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of photovoltaic (PV) devices which deploy the chemical-vapor-deposited hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) and their alloys as the absorber layers and doped ...

  8. Dye sensitized solar cell applications of CdTiO{sub 3}–TiO{sub 2} composite thin films deposited from single molecular complex

    Energy Technology Data Exchange (ETDEWEB)

    Ehsan, Muhammad Ali [Nanotechnology and Catalysis Centre (NANOCAT), University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Khaledi, Hamid [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Pandikumar, Alagarsamy; Huang, Nay Ming [Department of Physics, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Arifin, Zainudin [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2015-10-15

    A heterobimetallic complex [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO{sub 3}–TiO{sub 2} composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO{sub 3}–TiO{sub 2} composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application. - Graphical abstarct: Microspherical designed CdTiO{sub 3}–TiO{sub 2} composite oxides photoanode film has been fabricated from single source precursor [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF via aerosol assisted chemical vapor deposition technique for dye sensitized solar cell application. - Highlights: • Synthesis and characterization of a heterobimetallic Cd–Ti complex. • Fabrication of CdTiO{sub 3}–TiO{sub 2} thin film photoelectrode. • Application as dye sensitized photoanode for solar application.

  9. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Minden 11800 Penang (Malaysia)

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  10. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    Science.gov (United States)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-01

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×1016 atoms/cm3) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  11. Experimental studies of thin films deposition by magnetron sputtering method for CIGS solar cell fabrication

    Directory of Open Access Journals (Sweden)

    Gułkowski Sławomir

    2017-01-01

    Full Text Available Among a variety of the thin film solar cell technologies of second generation, copper-indium-gallium-diselenide device (CIGS with the latest highest lab cell efficiency record of 22.4 % seems to be the most promising for the power generation. This is partly due to the advantages of using low cost films of few microns thick not only as a metallic contacts but also as a main structure of the solar cell consisted of high quality semiconductor layers. This paper reports the experimental studies of the CIGS absorber formation on Soda Lime Glass substrate covered by thin molybdenum film as a back contact layer. All structures were deposited with the use of magnetron sputtering method only. Technological parameters of the deposition process such as deposition power, pressure and deposition time were optimized for each layer of the structure. Mo back contact was examined in terms of resistivity. EDS measurements were carried out to verify stoichiometric composition of CIGS absorber. Thin film of Al was used as a top contact in order to examine the quality of p-n junction. The I-V electrical characteristic of the p-n junction was analysed in terms of solar cell application.

  12. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Science.gov (United States)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  13. Modulated surface textures for enhanced scattering in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.; Battaglia, C.; Ballif, C.; Zeman, M.

    2012-01-01

    Nano-scale randomly textured front transparent oxides are superposed on micro-scale etched glass substrates to form modulated surface textures. The resulting enhanced light scattering is implemented in single and double junction thin-film silicon solar cells.

  14. Development of Deposition and Characterization Systems for Thin Film Solar Cells

    Science.gov (United States)

    Cimaroli, Alexander J.

    Photovoltaic (PV) devices are becoming more important due to a number of economic and environmental factors. PV research relies on the ability to quickly fabricate and characterize these devices. While there are a number of deposition methods that are available in a laboratory setting, they are not necessarily able to be scaled to provide high throughput in a commercial setting. A close-space sublimation (CSS) system was developed to provide a means of depositing thin films in a very controlled and scalable manner. Its viability was explored by using it to deposit the absorber layer in Zn3P2 and CdTe solar cell devices. Excellent control over morphology and growth conditions and a high level of repeatability was demonstrated in the study of textured Zn3P2 thin films. However, some limitations imposed by the structure of Zn3P 2-based PV devices showed that CSS may not be the best approach for depositing Zn3P2 thin films. Despite the inability to make Zn3P2 solar cell devices, high efficiency CdTe solar cells were fabricated using CSS. With the introduction of Perovskite-based solar cell devices, the viability of data collected from conventional J-V measurements was questioned due to the J-V hysteresis that Perovskite devices exhibited. New methods of solar cell characterization were developed in order to accurately and quickly assess the performance of hysteretic PV devices. Both J-V measurements and steady-state efficiency measurements are prone to errors due to hysteresis and maximum power point drift. To resolve both of these issues, a maximum power point tracking (MPPT) system was developed with two algorithms: a simple algorithm and a predictive algorithm. The predictive algorithm showed increased resistance to the effects of hysteresis because of its ability to predict the steady-state current after a bias step with a double exponential decay model fit. Some publications have attempted to quantify the degree of J-V hysteresis present in fabricated Perovskite

  15. Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency

    International Nuclear Information System (INIS)

    Cocoyer, C.; Rocha, L.; Fiorini-Debuisschert, C.; Sicot, L.; Vaufrey, D.; Sentein, C.; Geffroy, B.; Raimond, P.

    2006-01-01

    The weak absorption of the photoactive layer appears as a one of the main factors limiting organic photovoltaic solar cells performances. In order to increase the interaction of the incident light with the photoactive materials, we investigate the effect of a periodic patterning of the solar cells surface with microstructures in the optical wavelength scale. In this aim, we present an original all optical patterning technique of polymer films. The method is based on a laser controlled mass transport in azopolymer films leading to efficient deformation of the film surface in conjunction with the incoming light interference pattern. The technique is used to pattern one-dimensional gratings on the surface of solar cells. In the work presented here, the cell photoactive material is based on the interpenetrated network of a conjugated donor polymer and a fullerene derivative. The cells investigated are illuminated in a reverse configuration through a semi-transparent top cathode. The effect of the periodic structures onto the incident light propagation has been investigated through optical characterizations. We demonstrate that a part of the incident light can be trapped inside the solar cell layers due to diffraction onto the periodic structures

  16. Progress in Thin Film Solar Cells Based on Cu2ZnSnS4

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    2011-01-01

    Full Text Available The research in thin film solar cells has been dominated by light absorber materials based on CdTe and Cu(In,GaSe2 (CIGS in the last several decades. The concerns of environment impact of cadmium and the limited availability of indium in those materials have driven the research towards developing new substitute light absorbers made from earth abundant, environment benign materials. Cu2ZnSnS4 (CZTS semiconductor material has emerged as one of the most promising candidates for this aim and has attracted considerable interest recently. Significant progress in this relatively new research area has been achieved in the last three years. Over 130 papers on CZTS have been published since 2007, and the majority of them are on the preparation of CZTS thin films by different methods. This paper, will review the wide range of techniques that have been used to deposit CZTS semiconductor thin films. The performance of the thin film solar cells using the CZTS material will also be discussed.

  17. Surface Modification of Aerosol-Assisted CVD Produced TiO2 Thin Film for Dye Sensitised Solar Cell

    Directory of Open Access Journals (Sweden)

    SuPei Lim

    2014-01-01

    Full Text Available We report a simple and convenient method for the preparation of Ag/TiO2 thin films supported on indium tin oxide, which was achieved by sonochemical deposition of Ag+ on aerosol-assisted chemical vapour deposited TiO2 thin films. Posttreatment was performed on the film by immersion in HCl. The as-prepared composite film was characterised by X-ray diffraction, ultraviolet-visible absorption spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy. The photoelectrochemical measurements and J-V characterisation showed approximately fivefold increase in photocurrent density generation and approximately sevenfold enhancement in dye sensitiser solar cell (DSSC conversion efficiency, which was achieved after modification of the TiO2 film with HCl posttreatment and Ag particle deposition. The improved photocurrent density of 933.30 μA/cm2, as well as DSSC power conversion efficiency of 3.63% with high stability, is an indication that the as-synthesised thin film is a potential candidate for solar energy conversion applications.

  18. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells

    KAUST Repository

    Peng, Wei

    2016-03-02

    High-quality perovskite monocrystalline films are successfully grown through cavitation-triggered asymmetric crystallization. These films enable a simple cell structure, ITO/CH3NH3PbBr3/Au, with near 100% internal quantum efficiency, promising power conversion efficiencies (PCEs) >5%, and superior stability for prototype cells. Furthermore, the monocrystalline devices using a hole-transporter-free structure yield PCEs ≈6.5%, the highest among other similar-structured CH3NH3PbBr3 solar cells to date.

  19. Toward maximum transmittance into absorption layers in solar cells: investigation of lossy-film-induced mismatches between reflectance and transmittance extrema.

    Science.gov (United States)

    Chang, Yin-Jung; Lai, Chi-Sheng

    2013-09-01

    The mismatch in film thickness and incident angle between reflectance and transmittance extrema due to the presence of lossy film(s) is investigated toward the maximum transmittance design in the active region of solar cells. Using a planar air/lossy film/silicon double-interface geometry illustrates important and quite opposite mismatch behaviors associated with TE and TM waves. In a typical thin-film CIGS solar cell, mismatches contributed by TM waves in general dominate. The angular mismatch is at least 10° in about 37%-53% of the spectrum, depending on the thickness combination of all lossy interlayers. The largest thickness mismatch of a specific interlayer generally increases with the thickness of the layer itself. Antireflection coating designs for solar cells should therefore be optimized in terms of the maximum transmittance into the active region, even if the corresponding reflectance is not at its minimum.

  20. Elemental GCR Observations during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Israel, M. H.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2013-01-01

    Using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer (ACE), we present new measurements of the galactic cosmic ray (GCR) elemental composition and energy spectra for the species B through Ni in the energy range approx. 50-550 MeV/nucleon during the record setting 2009-2010 solar minimum period. These data are compared with our observations from the 1997-1998 solar minimum period, when solar modulation in the heliosphere was somewhat higher. For these species, we find that the intensities during the 2009-2010 solar minimum were approx. 20% higher than those in the previous solar minimum, and in fact were the highest GCR intensities recorded during the space age. Relative abundances for these species during the two solar minimum periods differed by small but statistically significant amounts, which are attributed to the combination of spectral shape differences between primary and secondary GCRs in the interstellar medium and differences between the levels of solar modulation in the two solar minima. We also present the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe for both solar minimum periods, and demonstrate that these ratios are reasonably well fit by a simple "leaky-box" galactic transport model that is combined with a spherically symmetric solar modulation model.

  1. Influence of Hybrid Perovskite Fabrication Methods on Film Formation, Electronic Structure, and Solar Cell Performance

    Science.gov (United States)

    Schnier, Tobias; Emara, Jennifer; Olthof, Selina; Meerholz, Klaus

    2017-01-01

    Hybrid organic/inorganic halide perovskites have lately been a topic of great interest in the field of solar cell applications, with the potential to achieve device efficiencies exceeding other thin film device technologies. Yet, large variations in device efficiency and basic physical properties are reported. This is due to unintentional variations during film processing, which have not been sufficiently investigated so far. We therefore conducted an extensive study of the morphology and electronic structure of a large number of CH3NH3PbI3 perovskite where we show how the preparation method as well as the mixing ratio of educts methylammonium iodide and lead(II) iodide impact properties like film formation, crystal structure, density of states, energy levels, and ultimately the solar cell performance. PMID:28287555

  2. Thin-film intermediate band chalcopyrite solar cells

    International Nuclear Information System (INIS)

    Fuertes Marron, D.; Marti, A.; Luque, A.

    2009-01-01

    Chalcopyrite-based solar cells currently lead the efficiency tables of thin-film photovoltaic technologies. Further improvements are foreseen upon implementation of an intermediate band in the absorber layers. We present a theoretical analysis of the efficiency limit for this type of device as a function of factors such as the gap of the host, the relative position of the intermediate band with respect to the band edge and the level of light concentration used as illumination. We have also considered the impact of non-idealities on the performance of the device, particularly the effect of electronic losses related to non-radiative recombination

  3. Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications

    International Nuclear Information System (INIS)

    Shin, Beom-Ki; Lee, Tae-Il; Park, Ji-Hyeon; Park, Kang-Il; Ahn, Kyung-Jun; Park, Sung-Kee; Lee, Woong; Myoung, Jae-Min

    2011-01-01

    Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs.

  4. Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications

    Science.gov (United States)

    Shin, Beom-Ki; Lee, Tae-Il; Park, Ji-Hyeon; Park, Kang-Il; Ahn, Kyung-Jun; Park, Sung-Kee; Lee, Woong; Myoung, Jae-Min

    2011-11-01

    Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs.

  5. Using Spin-Coated Silver Nanoparticles/Zinc Oxide Thin Films to Improve the Efficiency of GaInP/(InGaAs/Ge Solar Cells

    Directory of Open Access Journals (Sweden)

    Po-Hsun Lei

    2018-06-01

    Full Text Available We synthesized a silver nanoparticle/zinc oxide (Ag NP/ZnO thin film by using spin-coating technology. The treatment solution for Ag NP/ZnO thin film deposition contained zinc acetate (Zn(CH3COO2, sodium hydroxide (NaOH, and silver nitrate (AgNO3 aqueous solutions. The crystalline characteristics, surface morphology, content of elements, and reflectivity of the Ag NPs/ZnO thin film at various concentrations of the AgNO3 aqueous solution were investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and ultraviolet–visible–near infrared spectrophotometry. The results indicated that the crystalline structure, Ag content, and reflectance of Ag NP/ZnO thin films depended on the AgNO3 concentration. Hybrid antireflection coatings (ARCs composed of SiNx and Ag NPs/ZnO thin films with various AgNO3 concentrations were deposited on GaInP/(InGaAs/Ge solar cells. We propose that the optimal ARC consists of SiNx and Ag NP/ZnO thin films prepared using a treatment solution of 0.0008 M AgNO3, 0.007 M Zn(CH3COO2, and 1 M NaOH, followed by post-annealing at 200 °C. GaInP/(AlGaAs/Ge solar cells with the optimal hybrid ARC and SiNx ARC exhibit a conversion efficiency of 34.1% and 30.2% with Voc = 2.39 and 2.4 V, Jsc = 16.63 and 15.37 mA/cm2, and fill factor = 86.1% and 78.8%.

  6. Development of Dye-Sensitized Solar Cells with Sputtered N-Doped TiO2 Thin Films: From Modeling the Growth Mechanism of the Films to Fabrication of the Solar Cells

    OpenAIRE

    Duarte, D. A.; Massi, M.; da Silva Sobrinho, A. S.

    2014-01-01

    In this paper, nitrogen-doped TiO2 thin films were deposited by DC reactive sputtering at different doping levels for the development of dye-sensitized solar cells. The mechanism of film growth during the sputtering process and the effect of the nitrogen doping on the structural, optical, morphological, chemical, and electronic properties of the TiO2 were investigated by numerical modeling and experimental methods. The influence of the nitrogen doping on the working principle of the prototype...

  7. Back surface studies of Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Simchi, Hamed

    Cu(In,Ga)Se2 thin film solar cells have attracted a lot of interest because they have shown the highest achieved efficiency (21%) among thin film photovoltaic materials, long-term stability, and straightforward optical bandgap engineering by changing relative amounts of present elements in the alloy. Still, there are several opportunities to further improve the performance of the Cu(In,Ga)Se2 devices. The interfaces between layers significantly affect the device performance, and knowledge of their chemical and electronic structures is essential in identifying performance limiting factors. The main goal of this research is to understand the characteristics of the Cu(In,Ga)Se2-back contact interface in order to design ohmic back contacts for Cu(In,Ga)Se2-based solar cells with a range of band gaps and device configurations. The focus is on developing either an opaque or transparent ohmic back contact via surface modification or introduction of buffer layers in the back surface. In this project, candidate back contact materials have been identified based on modeling of band alignments and surface chemical properties of the absorber layer and back contact. For the first time, MoO3 and WO 3 transparent back contacts were successfully developed for Cu(In,Ga)Se 2 solar cells. The structural, optical, and surface properties of MoO 3 and WO3 were optimized by controlling the oxygen partial pressure during reactive sputtering and post-deposition annealing. Valence band edge energies were also obtained by analysis of the XPS spectra and used to characterize the interface band offsets. As a result, it became possible to illuminate of the device from the back, resulting in a recently developed "backwall superstrate" device structure that outperforms conventional substrate Cu(In,Ga)Se2 devices in the absorber thickness range 0.1-0.5 microm. Further enhancements were achieved by introducing moderate amounts of Ag into the Cu(In,Ga)Se2 lattice during the co-evaporation method

  8. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    Science.gov (United States)

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  9. Rapid quantitative analysis of elemental composition and depth profile of Cu(In,Ga)Se{sub 2} thin solar cell film using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    In, Jung-Hwan; Kim, Chan-Kyu; Lee, Seok-Hee; Choi, Jang-Hee; Jeong, Sungho, E-mail: shjeong@gist.ac.kr

    2015-03-31

    Laser-induced breakdown spectroscopy (LIBS) is reported as a method for rapid quantitative analysis of elemental composition and depth profile of Cu(In,Ga)Se{sub 2} (CIGS) thin film. A calibration model considering compositional grading over depth was developed and verified with test samples. The results from eight test samples showed that the average concentration of Cu, In, Ga and Se could be predicted with a root mean square error of below 1% and a relative standard deviation of also below 1%. The depth profile of each constituent element of CIGS predicted by LIBS was close to those by Auger electron spectroscopy and secondary ion mass spectrometry. The average ablation depth per pulse during depth profiling was about 100 nm. - Highlights: • LIBS was adopted for quantitative analysis of CIGS thin film. • A calibration model considering compositional grading over depth was developed. • Concentration prediction of CIGS thin film was accurate and precise. • Quantitative depth profiling by LIBS was compared with those by AES and SIMS.

  10. Improvements in CdTe- and CIGS-based thin-film solar cells and investigation on new materials for photovoltaic applications.

    OpenAIRE

    Rosa, Greta

    2018-01-01

    Currently, thin-film solar cells are one of the most promising technologies for low-cost renewable energy production. CdTe- and CuInGaSe2-based cells, which achieved record efficiencies of 22.1% and 22.6% respectively, are the most attractive among thin-film solar cells. These high efficiencies have had a huge influence in making them highly competitive in the photovoltaic market, with an estimated final cost per module lower than US $ 0.50 per peak-watt. At the Thin Film Laboratory of the...

  11. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Science.gov (United States)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  12. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Directory of Open Access Journals (Sweden)

    Wang Lan

    2016-01-01

    Full Text Available We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  13. Enhanced Charge Extraction of Li-Doped TiO₂ for Efficient Thermal-Evaporated Sb₂S₃ Thin Film Solar Cells.

    Science.gov (United States)

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-02-28

    We provided a new method to improve the efficiency of Sb₂S₃ thin film solar cells. The TiO₂ electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb₂S₃ solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO₂ films. Compared with the undoped TiO₂, Li-doped mesoporous TiO₂ dramatically improved the photo-voltaic performance of the thermal-evaporated Sb₂S₃ thin film solar cells, with the average power conversion efficiency ( PCE ) increasing from 1.79% to 4.03%, as well as the improved open-voltage ( V oc ), short-circuit current ( J sc ) and fill factors. The best device based on Li-doped TiO₂ achieved a power conversion efficiency up to 4.42% as well as a V oc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb₂S₃ solar cells. This study showed that Li-doping on TiO₂ can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb₂S₃-based solar cells.

  14. Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD

    Science.gov (United States)

    Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  15. Layer-by-Layer Nanoassembly of Copper Indium Gallium Selenium Nanoparticle Films for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    A. Hemati

    2012-01-01

    Full Text Available Thin films of CIGS nanoparticles interdigited with polymers have been fabricated through a cost-effective nonvacuum film deposition process called layer-by-layer (LbL nanoassembly. CIGS nanoparticles synthesized by heating copper chloride, indium chloride, gallium chloride, and selenium in oleylamine were dispersed in water, and desired surface charges were obtained through pH regulation and by coating the particles with polystyrene sulfonate (PSS. Raising the pH of the nanoparticle dispersion reduced the zeta-potential from +61 mV at pH 7 to −51 mV at pH 10.5. Coating the CIGS nanoparticles with PSS (CIGS-PSS produced a stable dispersion in water with −56.9 mV zeta-potential. Thin films of oppositely charged CIGS nanoparticles (CIGS/CIGS, CIGS nanoparticles and PSS (CIGS/PSS, and PSS-coated CIGS nanoparticles and polyethylenimine (CIGS-PSS/PEI were constructed through the LbL nanoassembly. Film thickness and resistivity of each bilayer of the films were measured, and photoelectric properties of the films were studied for solar cell applications. Solar cell devices fabricated with a 219 nm CIGS film, when illuminated by 50 W light-source, produced 0.7 V open circuit voltage and 0.3 mA/cm2 short circuit current density.

  16. Ultrathin film, high specific power InP solar cells on flexible plastic substrates

    International Nuclear Information System (INIS)

    Shiu, K.-T.; Zimmerman, Jeramy; Wang Hongyu; Forrest, Stephen R.

    2009-01-01

    We demonstrate ultrathin-film, single-crystal InP Schottky-type solar cells mounted on flexible plastic substrates. The lightly p-doped InP cell is grown epitaxially on an InP substrate via gas source molecular beam epitaxy. The InP substrate is removed via selective chemical wet-etching after the epitaxial layers are cold-welded to a 25 μm thick Kapton sheet, followed by the deposition of an indium tin oxide top contact that forms the Schottky barrier with InP. The power conversion efficiency under 1 sun is 10.2±1.0%, and its specific power is 2.0±0.2 kW/kg. The ultrathin-film solar cells can tolerate both tensile and compressive stress by bending over a <1 cm radius without damage.

  17. Optical characterization of hydrogen-free CeO2 doped DLC films deposited by unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Zhang Zhenyu; Zhou Hongxiu; Guo Dongming; Gao Hang; Kang Renke

    2008-01-01

    A novel kind of hydrogen-free CeO 2 doped diamond-like carbon (DLC) films with thickness of 180-200 nm were deposited on silicon by unbalanced magnetron sputtering. Reduced reflectance and increased lifetime are expected with respect to pure DLC films, making these coatings good candidates as optical protective coatings for IR windows and solar cells. X-ray photoelectron spectroscopy confirms that CeO 2 is formed within the DLC films. Auger electron spectroscopy exhibits that the C, O, and Ce elements distribute uniformly across the film thickness, and C element diffuses into the Si substrate at the interface between the substrate and film. AFM shows that nanoparticles with diameter of around 50 nm are formed on the surface of deposited films, whose surface roughness is in the range of 1.3-2.3 nm. Raman spectra show the CeO 2 doped DLC films are amorphous DLC films, and both the G frequency and relative intensity ratio I D /I G are higher than those of pure DLC films. The photoluminescence of CeO 2 doped DLC films is obviously more intense than that of a pure DLC film, which indicates a promising potential as optical protective films for solar cells and IR window

  18. Trade-off between Photon Management Efficacy and Material Quality in Thin-Film Solar Cells on Nanostructured Substrates of High Aspect Ratio Structures

    Directory of Open Access Journals (Sweden)

    Alan H. Chin

    2018-04-01

    Full Text Available Although texturing of the transparent electrode of thin-film solar cells has long been used to enhance light absorption via light trapping, such texturing has involved low aspect ratio features. With the recent development of nanotechnology, nanostructured substrates enable improved light trapping and enhanced optical absorption via resonances, a process known as photon management, in thin-film solar cells. Despite the progress made in the development of photon management in thin-film solar cells using nanostructures substrates, the structural integrity of the thin-film solar cells deposited onto such nanostructured substrates is rarely considered. Here, we report the observation of the reduction in the open circuit voltage of amorphous silicon solar cells deposited onto a nanostructured substrate with increasing areal number density of high aspect ratio structures. For a nanostructured substrate with the areal number density of such nanostructures increasing in correlation with the distance from one edge of the substrate, a correlation between the open circuit voltage reduction and the increase of the areal number density of high aspect ratio nanostructures of the front electrode of the small-size amorphous silicon solar cells deposited onto different regions of the substrate with graded nanostructure density indicates the effect of the surface morphology on the material quality, i.e., a trade-off between photon management efficacy and material quality. This observed trade-off highlights the importance of optimizing the morphology of the nanostructured substrate to ensure conformal deposition of the thin-film solar cell.

  19. Characterization and Analysis of Ultrathin CIGS Films and Solar Cells Deposited by 3-Stage Process

    Directory of Open Access Journals (Sweden)

    Grace Rajan

    2018-01-01

    Full Text Available In view of the large-scale utilization of Cu(In,GaSe2 (CIGS solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which can be corroborated with ex situ measurements. The fabricated devices were characterized using current voltage and quantum efficiency measurements and modeled using a 1-dimensional solar cell device simulator. An analysis of the diode parameters indicates that the efficiency of the thinnest cells was restricted not only by limited light absorption, as expected, but also by a low fill factor and open-circuit voltage, explained by an increased series resistance, reverse saturation current, and diode quality factor, associated with an increased trap density.

  20. Surface treatments and properties of CuGaSe{sub 2} thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, S.; Ennaoui, A.; Schuler, S.; Siebentritt, S.; Lux-Steiner, M.Ch

    2003-05-01

    Polycrystalline CuGaSe{sub 2} (CGS) films with slightly Ga-rich composition were prepared on Mo/soda-lime substrates by the 'bi-layer' process. The film surfaces were modified by chemical bath treatment with In{sub 2}(SO{sub 4}){sub 3}, thioacetamid, and triethanolamin to improve the performance in solar cell applications. The film compositions were characterized by X-ray fluorescence and the surface of treated films was investigated by X-ray photoelectron spectroscopy (XPS). Solar cells with ZnO/CdS/CGS/Mo/soda-lime glass structure were fabricated, and the current-voltage properties and the quantum efficiency were analyzed. Improvement of the spectral response, especially in the long wavelength region, was observed for the samples treated with the chemical bath, which results in increase in a short circuit current density. An increase in the parallel and series resistance of the cells was also observed with the treatment. The surface compositions of the CGS thin films modified by the chemical bath are discussed on the base of the results of XPS.

  1. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  2. Effect of hydrogen doping on the properties of Al and F co-doped ZnO films for thin film silicon solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Yang, Tung-Hsin

    2016-04-30

    Aluminum and fluorine co-doped zinc oxide (AFZO) thin films were prepared in Ar + H{sub 2} atmospheres by rf magnetron sputtering at room temperature. The structural, electrical, and optical properties of the prepared films were investigated using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Hall-effect measurement, X-ray photoelectron spectroscopy, and ultraviolet–visible spectrometry, and their dependence on deposition atmosphere (i.e. H{sub 2} / (H{sub 2} + Ar) ratio) was studied. The resulting films showed a (0 0 2) diffraction peak, indicating a typical wurtzite structure, and the optimal film crystallinity was obtained with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%. The electrical resistivity of AFZO films decreased to 9.16 × 10{sup −4} Ω-cm, which was lower than ZnO:Al and ZnO:F films due to double doping effect of Al and F. The resistivity further decreased to below 5 × 10{sup −4} Ω-cm for the AFZO film with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%–5%. All the films regardless of hydrogen content displayed high transmittances (> 92%) in the visible wavelength range. Applying the developed AFZO films as front transparent electrodes, amorphous Si thin film solar cells were fabricated and the open-circuit voltage, fill factor, and efficiency of the cell with the hydrogenated AFZO film were improved in contrast to those without the hydrogenated film. - Highlights: • H{sub 2} doping improves optoelectronic properties of Al, F co-doped ZnO (AFZO) films. • Resistivity of AFZO films decreases to 4.4 × 10{sup −4} Ω-cm with the 3% H{sub 2}/(Ar + H{sub 2}) ratio. • AFZO films show high average visible transmittances of above 92%. • Efficiency of a-Si thin film solar cells is improved by AFZO:H as front electrode.

  3. Introduction to solar cell production

    International Nuclear Information System (INIS)

    Kim, Gyeong Hae; Lee, Jun Sin

    2009-08-01

    This book introduces solar cell production. It is made up eight chapters, which are summary of solar cell with structure and prospect of the business, special variable of solar cell on light of the sun and factor causing variable of solar cell, production of solar cell with surface texturing, diffusion, metal printing dry and firing and edge isolation, process of solar cell on silicone wafer for solar cell, forming of electrodes, introduction of thin film solar cell on operating of solar cell, process of production and high efficiency of thin film solar cell, sorting of solar cell and production with background of silicone solar cell and thin film solar cell, structure and production of thin film solar cell and compound solar cell, introduction of solar cell module and the Industrial condition and prospect of solar cell.

  4. Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.

    Science.gov (United States)

    Deng, Jianping; Wang, Minqiang; Song, Xiaohui; Yang, Zhi; Yuan, Zhaolin

    2018-04-17

    In this paper, a novel Ti porous film-supported NiCo₂S₄ nanotube was fabricated by the acid etching and two-step hydrothermal method and then used as a counter electrode in a CdS/CdSe quantum-dot-sensitized solar cell. Measurements of the cyclic voltammetry, Tafel polarization curves, and electrochemical impedance spectroscopy of the symmetric cells revealed that compared with the conventional FTO (fluorine doped tin oxide)/Pt counter electrode, Ti porous film-supported NiCo₂S₄ nanotubes counter electrode exhibited greater electrocatalytic activity toward polysulfide electrolyte and lower charge-transfer resistance at the interface between electrolyte and counter electrode, which remarkably improved the fill factor, short-circuit current density, and power conversion efficiency of the quantum-dot-sensitized solar cell. Under illumination of one sun (100 mW/cm²), the quantum-dot-sensitized solar cell based on Ti porous film-supported NiCo₂S₄ nanotubes counter electrode achieved a power conversion efficiency of 3.14%, which is superior to the cell based on FTO/Pt counter electrode (1.3%).

  5. Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency.

    Science.gov (United States)

    Reinhard, Patrick; Bissig, Benjamin; Pianezzi, Fabian; Hagendorfer, Harald; Sozzi, Giovanna; Menozzi, Roberto; Gretener, Christina; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-05-13

    Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.

  6. A novel hierarchical ZnO disordered/ordered bilayer nanostructured film for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yamin, E-mail: yaminfengccnuphy@outlook.com; Wu, Fei; Jiang, Jian; Zhu, Jianhui; Fodjouong, Ghislain Joel; Meng, Gaoxiang; Xing, Yanmin; Wang, Wenwu; Huang, Xintang, E-mail: xthuang@phy.ccnu.edu.cn

    2013-12-25

    Graphical abstract: A novel hierarchical disordered/ordered bilayer ZnO nanostructured film in the length of 18 μm have been successfully synthesized on the FTO substrate; the hierarchical ZnO nanostructured film electrodes applied in DSSCs exhibit photoelectric conversion efficiency as high as 5.16%. Highlights: •A novel hierarchical ZnO structure film was fabricated on a FTO substrate. •Hierarchical ZnO film is applied as the electrodes for dye sensitized solar cells. •The film possess high specific surface area and fast electron transport effect. •The light-scattering effect of the hierarchical film is pronounced. •The energy conversion efficiency of hierarchical ZnO electrode reaches to 5.16%. -- Abstract: A novel hierarchical ZnO nanostructured film is synthesized via a chemical bath deposition (CBD) method followed by a treatment of thermal decomposition onto a fluorine-doped tin oxide (FTO) substrate. This hierarchical film is composed of disordered ZnO nanorods (NRs) (top layer) and ordered ZnO nanowires (NWs) (bottom layer). The products possess the following features such as high specific surface area, fast electron transport, and pronounced light-scattering effect, which are quite suitable for dye sensitized solar cells (DSSCs) applications. A light-to-electricity conversion efficiency of 5.16% is achieved when the hierarchical ZnO nanostructured film is used as the photoanode under 100 mW cm{sup −2} illumination. This efficiency is found to be much higher than that of the DSSCs with pure ordered ZnO NWs (1.45%) and disordered ZnO NRs (3.31%) photoanodes.

  7. A novel hierarchical ZnO disordered/ordered bilayer nanostructured film for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Feng, Yamin; Wu, Fei; Jiang, Jian; Zhu, Jianhui; Fodjouong, Ghislain Joel; Meng, Gaoxiang; Xing, Yanmin; Wang, Wenwu; Huang, Xintang

    2013-01-01

    Graphical abstract: A novel hierarchical disordered/ordered bilayer ZnO nanostructured film in the length of 18 μm have been successfully synthesized on the FTO substrate; the hierarchical ZnO nanostructured film electrodes applied in DSSCs exhibit photoelectric conversion efficiency as high as 5.16%. Highlights: •A novel hierarchical ZnO structure film was fabricated on a FTO substrate. •Hierarchical ZnO film is applied as the electrodes for dye sensitized solar cells. •The film possess high specific surface area and fast electron transport effect. •The light-scattering effect of the hierarchical film is pronounced. •The energy conversion efficiency of hierarchical ZnO electrode reaches to 5.16%. -- Abstract: A novel hierarchical ZnO nanostructured film is synthesized via a chemical bath deposition (CBD) method followed by a treatment of thermal decomposition onto a fluorine-doped tin oxide (FTO) substrate. This hierarchical film is composed of disordered ZnO nanorods (NRs) (top layer) and ordered ZnO nanowires (NWs) (bottom layer). The products possess the following features such as high specific surface area, fast electron transport, and pronounced light-scattering effect, which are quite suitable for dye sensitized solar cells (DSSCs) applications. A light-to-electricity conversion efficiency of 5.16% is achieved when the hierarchical ZnO nanostructured film is used as the photoanode under 100 mW cm −2 illumination. This efficiency is found to be much higher than that of the DSSCs with pure ordered ZnO NWs (1.45%) and disordered ZnO NRs (3.31%) photoanodes

  8. Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective

    International Nuclear Information System (INIS)

    Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Abou-Ras, D.; Koetschau, I.; Schock, H.-W.; Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.

    2009-01-01

    Thin-film solar cells based on Cu 2 ZnSnS 4 (CZTS) absorbers were fabricated successfully by solid-state reaction in H 2 S atmosphere of electrodeposited Cu-Zn-Sn precursors. These ternary alloys were deposited in one step from a cyanide-free alkaline electrolyte containing Cu(II), Zn (II) and Sn (IV) metal salts on Mo-coated glass substrates. The solar cell was completed by a chemical bath-deposited CdS buffer layer and a sputtered i-ZnO/ZnO:Al bilayer. The best solar cell performance was obtained with Cu-poor samples. A total area (0.5 cm 2 ) efficiency of 3.4% is achieved (V oc = 563 mV, j sc = 14.8 mA/cm 2 , FF = 41%) with a maximum external quantum efficiency (EQE) of 80%. The estimated band-gap energy from the external quantum efficiency (EQE) measurements is about 1.54 eV. Electron backscatter-diffraction maps of cross-section samples revealed CZTS grain sizes of up to 10 μm. Elemental distribution maps of the CZTS absorber show Zn-rich precipitates, probably ZnS, and a Zn-poor region, presumably Cu 2 SnS 3 , close to the interface Mo/CZTS

  9. Design principle for absorption enhancement with nanoparticles in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin

    2015-01-01

    The use of nanoparticles in solar cells has created many controversies. In this paper, different mechanisms of nanoparticles with different materials with diameters varying from 50 to 200 nm, surface coverage at 5, 20, and 60 %, and different locations are analyzed systematically for efficient light trapping in a thin-film c-Si solar cell. Mie theory and the finite difference time domain method are used for analysis to give a design principle with nanoparticles for the solar cell application. Metals exhibit plasmonic resonances and angular scattering, while dielectrics show anti-reflection and scattering in the incident direction. A table is given to summarize the advantages and disadvantages in different conditions. The silicon absorption enhancement with nanoparticles on top is mainly in the shorter wavelengths below 700 nm, and both Al and SiO 2 nanoparticles with diameter around 100 nm show the most significant enhancement. The silicon absorption enhancement with embedded nanoparticles takes place in the longer wavelengths over 700 nm, and Ag and SiO 2 nanoparticles with larger diameter around 200 nm perform better. However, the light absorbed by Ag nanoparticles will be converted to heat and will lead to decrease in cell efficiency; hence, the choice of metallic nanoparticles in applications to solar cells should be carefully considered. The design principle proposed in this work gives a guideline by choosing reasonable parameters for the different requirements in the application of thin-film solar cells

  10. Using solar oscillations to probe the effects of element diffusion in the solar interior

    International Nuclear Information System (INIS)

    Guzik, J.A.; Cox, A.N.

    1993-01-01

    There is growing evidence from solar oscillation and evolution studies that the Sun's convection zone helium mass fraction has decreased by about 0.03 due to element diffusion. Evolution calculations show that diffusion also produces a steep Y and Z composition gradient below the convection zone. Comparisons between calculated and observed solar p-mode frequencies of angular degrees 5 thru 60 that are sensitive to solar structure near the convection zone bottom support this steep composition gradient, rather than one smoothed significantly by turbulent mixing. Turbulent mixing induced by convective overshoot or rotation has been the favored explanation for much of the solar surface lithium depletion by a factor of 200 from its presumed primordial value. These limits on the extent of turbulent mixing imply that either most of the solar lithium destruction occurred pre-main sequence, which is not supported by observation of young star, or that some other mechanism, for example a small amount of early main-sequence mass loss, is responsible for the low observed lithium abundance. Solar models including such mass loss as well as diffusion have a slightly steeper central density gradient. Comparisons between observed and calculated low-degree p-mode frequencies that are sensitive to the Sun's central structure can be used to probe this density gradient and constrain the possible amount of mass loss

  11. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  12. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    Science.gov (United States)

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  13. Active barrier films of PET for solar cell application: Processing and characterization

    International Nuclear Information System (INIS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2014-01-01

    A preliminary investigation was carried out on the possibility to improve the protective action offered by the standard multilayer structures used to encapsulate photovoltaic devices. With this aim, a commercial active barrier PET-based material, able to absorb oxygen when activated by liquid water, was used to produce flexible and transparent active barrier films, by means of a lab-scale film production plant. The obtained film, tested in terms of thermal, optical and oxygen absorption properties, shows a slow oxygen absorption kinetics, an acceptable transparency and an easy roll-to-roll processability, so proving itself as a good candidate for the development of protective coating for solar cells against the atmospheric degradation agents like the rain

  14. Correlation of trace element content in air particulates with solar meteorological data in the atmosphere of Athens

    International Nuclear Information System (INIS)

    Kanias, G.D.; Grimanis, A.P.; Viras, L.G.

    2003-01-01

    Relation between the trace element content in air particulates and solar meteorological data in the atmospheric environment of Athens, Greece, was studied. For this purpose, Sm, Br, As, Na, K, La, Ce, Cr, Ag, Sc, Fe, Zn, Co, Sb, Th were determined by INAA in respirable aerosols collected during winter 1993-1994. The results showed that the average cloudiness, sunshine, and the total solar radiation (sun and sky) on a horizontal surface, (3 variables) have no relation with trace element variation. However, diffuse solar radiation (sun and sky) on a horizontal surface seems to have statistically significant relationship with some of the trace element variation. It forms a single component with some trace elements after the application of the factor analysis. The increase of the same solar variable in the Athens City center, is one of the factors which cannot permit the emission of trace elements in the atmospheric environment from dust soil and car tires. (author)

  15. The effect of aeration and solar intensity power on photocatalytic degradation of textile industrial wastewater using TiO2 thin film

    International Nuclear Information System (INIS)

    Abu Kassim, N.F.; Ku Hamid, K.H.; Azizan, A.

    2006-01-01

    Solar photo catalytic degradation of the textile industry wastewater using TiO 2 thin films was studied. This experiment was performed to investigate the effect of aeration and solar intensity power on decreasing of Chemical Oxygen Demand (COD). A serpentine flow photo catalytic reactor was developed for this purpose. TiO 2 thin films photo catalyst supported on the stainless steel 304 substrates were prepared using sol-gel dip coating method. The results of thin films were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffractometer (XRD). XRD result showed that the prepared thin films gave the anatase crystallite formation whilst SEM demonstrated the macro pores were formed. Finally, the aeration and solar intensity power factors are considered to be responsible for the photo catalytic degradation. (Author)

  16. The optimization of molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells by the cathodic arc ion plating method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki, E-mail: choyk@kitech.re.kr [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Gang Sam; Song, Young Sik; Lim, Tae Hong [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Jung, Donggeun [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-12-02

    Molybdenum back contact films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been deposited using DC magnetron sputtering methods. The electronic pathway properties of the molybdenum film have been highly dependent on the working gas pressure in magnetron sputtering, which should be carefully controlled to obtain high conductivity and adhesion. A coating method, cathodic arc ion plating, was used for molybdenum back contact electrode fabrication. The aim of this work was to find a metallization method for CIGS solar cells, which has less sensitivity on the working pressure. The resistivity, grain size, growth structures, stress, and efficiency of the films in CIGS solar cells were investigated. The results reveal that the growth structures of the molybdenum films mainly affect the conductivity. The lowest electrical resistivity of the ion-plated molybdenum films was 6.9 μΩ-cm at a pressure of 0.7 Pa. The electrical resistivity variation showed a gently increasing slope with linearity under a working gas pressure of 13.3 Pa. However, a high value of the residual stress of over 1.3 GPa was measured. In order to reduce stress, titanium film was selected as the buffer layer material, and the back contact films were optimized by double-layer coating of two kinds of hetero-materials with arc ion plating. CIGS solar cells prepared molybdenum films to measure the efficiency and to examine the effects of the back contact electrode. The resistivity, grain size, and surface morphology of molybdenum films were measured by four-point probe, X-ray diffraction, and a scanning electron microscope. The residual stress of the films was calculated from differences in bending curvatures measured using a laser beam. - Highlights: • Molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells were prepared by the cathodic arc ion plating. • The lowest electrical resistivity of molybdenum film was 6.9 μΩ-cm. • Titanium buffer layer reduced the compressive residual stress

  17. Comparison of Light Trapping in Silicon Nanowire and Surface Textured Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Rion Parsons

    2017-04-01

    Full Text Available The optics of axial silicon nanowire solar cells is investigated and compared to silicon thin-film solar cells with textured contact layers. The quantum efficiency and short circuit current density are calculated taking a device geometry into account, which can be fabricated by using standard semiconductor processing. The solar cells with textured absorber and textured contact layers provide a gain of short circuit current density of 4.4 mA/cm2 and 6.1 mA/cm2 compared to a solar cell on a flat substrate, respectively. The influence of the device dimensions on the quantum efficiency and short circuit current density will be discussed.

  18. Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Leem, Jung Woo; Yu, Jae Su

    2011-01-01

    The transparent conducting oxide (TCO) films with low-refractive-index (low-n) are fabricated by the oblique-angle sputtering method. By using the experimentally measured physical data of the fabricated low-n TCO films as the simulation parameters, the effect of low-n TCOs on the performance of a-Si:H/μc-Si:H tandem thin film solar cells is investigated using Silvaco ATLAS. The Al-doped zinc oxide, indium tin oxide (ITO), and Sb-doped tin oxide films are deposited at the flux incidence angles of θ i = 0 (normal sputtering) and θ i = 80 from the sputtering target during the sputtering process. The oblique-angle sputtered films at θ i = 80 show the inclined columnar nanostructures compared to those at θ i = 0 , modifying the optical properties of the films. This is caused mainly by the increase of porosity within the film which leads to its low-n characteristics. The a-Si:H/μc-Si:H tandem thin film solar cell incorporated with the low-n ITO film exhibits an improvement in the conversion efficiency of ∝1% under AM1.5g illumination because of its higher transmittance and lower absorption compared to that with the ITO film at θ i = 0 , indicating a conversion efficiency of 13.75%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology - Research and survey of peripheral element technologies (Research and survey for development of solar cell of new power generation device structure); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu / shuhen yoso gijutsu ni kansuru chosa kenkyu (shinhatsuden soshi kozo taiyo denchi kaitaku no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Attention is paid to behavior at the molecular level with reference taken to the photosynthetic mechanism, and a behavioral mechanism is proposed, which incorporates, in place of the conventional band model, a concept of a molecular structure based on electron transfer, excitation energy transfer, and reactions of oxidation and reduction. Discussion is then made on elements of technology development for the embodiment of high-efficiency organic ferroelectric thin-film solar cells. The elements taken up include the feasibility of organic ferroelectric thin-film cells, photoelctric conversion systems of plants and photosynthetic bacteria, solar cells using donor-acceptor type dyes, organic thin-film solar cells using conductive polymers, and efficient photoexcitation of organic dyes. Fullerene compounds are semiconductive and their band gaps may be controlled to stay within the range of 0.75-1.9eV, and this justifies a hope that they will serve as solar cells. As for TPV (thermophotovoltaic) conversion, it is under development mainly at NASA (National Aeronautics and Space Administration) as a transportable power source based on heat of combustion. Efforts are also being exerted since 1990 in five European countries to develop TPV systems for small-scale cogeneration. (NEDO)

  20. Application of hydrogen-doped In2O3 transparent conductive oxide to thin-film microcrystalline Si solar cells

    International Nuclear Information System (INIS)

    Koida, Takashi; Sai, Hitoshi; Kondo, Michio

    2010-01-01

    Hydrogen-doped In 2 O 3 (IO:H) films with high electron mobility and improved near-infrared (NIR) transparency have been applied as a transparent conducting oxide (TCO) electrode in substrate-type hydrogenated microcrystalline silicon (μc-Si:H) solar cells. The incorporation of IO:H, instead of conventional Sn-doped In 2 O 3 , improved the short-circuit current density (J sc ) and the resulting conversion efficiency. Optical analysis of the solar cells and TCO films revealed that the improvement in J sc is due to the improved spectral sensitivity in the visible and NIR wavelengths by reduction of absorption loss caused by free carriers in the TCO films.

  1. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. XRD total scattering of the CZTS nanoparticle absorber layer for the thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ø.; Engberg, Sara Lena Josefin

    Cu2ZnSnS4 (CZTS) thin film solar cells are cheap, non-toxic and present an efficiency up to 9,2% [1]. They can be easily manufactured by the deposition of the nanoparticle ink as a thin film followed by a thermal treatment to obtain large grains [2]. Therefore, CZTS has the potential...... to revolutionize the solar energy market. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. In order to do so, it is vital to understand in detail their nanoscale atomic structure. CZTS crystallize in the kesterite structure, where Cu and Zn is distributed between......-ray Diffraction data with X-ray total scattering with Pair Distribution Function analysis. Powder neutron diffraction will furthermore allow characterization of the cation disorder on the metal sites in the kesterite structure. The nanoparticle ink is also characterized by XRD, EDS, and Raman spectroscopy...

  3. Preparation of TiO{sub 2} films by layer-by-layer assembly and their application in solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Anhui Key Laboratory of Spin Electron and Nanomaterials (Cultivating Base), Suzhou University, Suzhou 234000 (China); Xie, A.J. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Shen, Y.H., E-mail: s_yuhua@163.co [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Li, S.K. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)

    2010-09-03

    Polyacrylate sodium (PAAS)/titania (TiO{sub 2}) multilayers have been fabricated through the electrostatic layer-by-layer assembly technique. The composite films display an excellent photovoltaic performance after sintering and sensitization by cyanine dye (CD), which can be applied in dye-sensitized solar cells. The properties of PAAS/TiO{sub 2} multilayers are investigated by ultraviolet-visible spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), X-ray diffraction analysis (XRD), Thermogravimetric analysis (TGA), and photovoltaic measurements. The results indicate that the thermal stability of the PAAS has a direct influence on the performance of dye-sensitized solar cells. The energy conversion efficiency of approximately 1.29% was obtained for dye-sensitized solar cell with TiO{sub 2}/PAAS (40 bilayers) as precursor film. In addition, the composite films also show a good self-cleaning property for photocatalytic degradation of methylene blue.

  4. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Liwen, E-mail: SANG.Liwen@nims.go.jp [International Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-PRESTO, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Liao, Meiyong; Koide, Yasuo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sumiya, Masatomo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-ALCA, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan)

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  5. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  6. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    Science.gov (United States)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju; Son, Myoungwoo; Ham, Moon-Ho; Lee, Woong; Myoung, Jae-Min

    2012-10-01

    A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 °C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 × 10-4 Ω cm with the carrier concentration of 1.65 × 1021 cm-3 and Hall mobility of 11.3 cm2/V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  7. Preparation and properties of radio-frequency-sputtered half-Heusler films for use in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kieven, D., E-mail: david.kieven@helmholtz-berlin.d [Helmholtz-Zentrum fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Grimm, A. [Helmholtz-Zentrum fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Beleanu, A.; Blum, C.G.F. [Johannes Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie, Staudingerweg 9, 55128 Mainz (Germany); Schmidt, J. [Fraunhofer Institut Fertigungstechnik Materialforschung IFAM, Winterbergstrasse 28, 01277 Dresden (Germany); Rissom, T.; Lauermann, I. [Helmholtz-Zentrum fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Gruhn, T.; Felser, C. [Johannes Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie, Staudingerweg 9, 55128 Mainz (Germany); Klenk, R. [Helmholtz-Zentrum fuer Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2011-01-03

    The class of half-Heusler compounds opens possibilities to find alternatives for II-VI or III-V compound semiconductors. We aim to find suitable substitutes for the cadmium sulphide buffer layer in chalcopyrite-based thin film solar cells, where the buffer layer is located between the p-type chalcopyrite absorber and an n-type transparent window layer. We report here the preparation of radio-frequency-sputtered lithium copper sulphide 'LiCuS' and lithium zinc phosphide 'LiZnP' films. The optical analysis of these films revealed band gaps between 1.8 and 2.5 eV, respectively. Chemical properties of the film surface and both interfaces between the film and a Cu(In,Ga)Se{sub 2} layer and between the film and an (Zn,Mg)O layer were investigated by in-situ photoelectron spectroscopy. The valence band offsets to the Cu(In,Ga)Se{sub 2} layer were estimated to be (0.4 {+-} 0.1) eV for 'LiCuS'/Cu(In,Ga)Se{sub 2} and (0.5 {+-} 0.8) eV for 'LiZnP'/Cu(In,Ga)Se{sub 2}. This leads to positive conduction band offsets of > 1 eV. These rather large offsets are not compatible with efficient solar cell devices. Under atmospheric conditions 'LiCuS' and 'LiZnP' films show rapid decomposition.

  8. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    Science.gov (United States)

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  9. Bifunctional Au@TiO_2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation

    International Nuclear Information System (INIS)

    Huang, Jian; He, Yurong; Wang, Li; Huang, Yimin; Jiang, Baocheng

    2017-01-01

    Highlights: • Au@TiO_2 core-shell nanoparticles were prepared in this study. • Bifunctional films for photocatalysis and solar evaporation were designed. • The evaporation and photodegradation with core-shell structures were investigated. - Abstract: With water scarcity becoming an increasingly critical issue for modern society, solar seawater desalination represents a promising approach to mitigating water shortage. In addition, solar seawater desalination shows great potential for mitigating the energy crisis due to its high photo-thermal conversion efficiency. However, the increasing contamination of seawater makes it difficult to generate clean water through simple desalination processes. In this work, clean water is generated by a newly designed bifunctional Au@TiO_2 core-shell nanoparticle film with a high photo-thermal conversion efficiency that is capable of photocatalysis and solar evaporation for seawater desalination. Bifunctional films of Au@TiO_2 core-shell nanoparticles with good stability were prepared. It was found that the formation of the core-shell structures played a key role in promoting the photo-thermal conversion efficiency and the evaporation of seawater, while the photocatalytic function demonstrated herein could contribute to the purification of polluted seawater. Furthermore, the film structure can serve to concentrate the NPs for the photo-reaction, as well as heat for water evaporation, improving both the photo-reaction efficiency and photo-thermal conversion efficiency. This efficient approach to solar seawater desalination, which combines evaporation with the photodegradation of pollutants, could help to address the dual issues of water scarcity and water pollution.

  10. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube-silicon solar cells.

    Science.gov (United States)

    Stolz, Benedikt W; Tune, Daniel D; Flavel, Benjamin S

    2016-01-01

    Recent results in the field of carbon nanotube-silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning - in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube-silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.

  11. Thin film CIGS solar cells with a novel low cost process - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.; Romanyuk, Y.

    2010-01-15

    Novel manufacturing routes for efficient and low-cost Cu(In,Ga)Se{sub 2} (called CIGS) thin film solar cells are explored and patented. CIGS has proven its suitability for highly efficient and extremely stable solar cells. The low-cost methods allow impurity free material synthesis, fast large-area deposition, high material utilization and a very short energy payback time with drastically lower manufacturing costs. Two non-vacuum, solution-based approaches are investigated to deposit thin layers of CIGS. The first approach considers incorporation of copper into indium gallium selenide precursor layers by ion-exchange from aqueous or organic solutions. Organic solutions provide faster copper incorporation and do not corrode the metal back contact. Solar cells processed from selenized precursor films exhibit efficiencies of up to 4.1%. The second approach with paste coating of inorganic salt solution results in a solar cell efficiency of 4% (record 6.7%), where further improvements are hindered by the presence of the residual carbon layer. Using alternative organic binders, pre-deposited selenium layers, non-binder recipes helps to avoid the carbon layer although the obtained layers are inhomogeneous and contain impurity phases. A patent for the ion-exchange approach is pending, and the obtained research results on the paste coating approach will be scrutinized during new European FP7 project 'NOVA-CIGS'. (authors)

  12. Highly transparent and conducting boron doped zinc oxide films for window of Dye Sensitized Solar Cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod, E-mail: vinod.phy@gmail.com [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Department of Physics, Gurukula Kangri University, Haridwar 249404 (India); Singh, R.G. [Department of Electronic Science, Maharaja Agrasen College University of Delhi, New Delhi 110096 (India); Singh, Fouran [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Purohit, L.P. [Department of Physics, Gurukula Kangri University, Haridwar 249404 (India)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Synthesis of Boron doped ZnO (ZnO:B) films. Black-Right-Pointing-Pointer Minimum of resistivity is observed to be 7.9 Multiplication-Sign 10{sup -4} {Omega} cm. Black-Right-Pointing-Pointer Maximum transmittance {approx}91% for 450 Degree-Sign C annealed films. Black-Right-Pointing-Pointer Applicable for window materials in Dye Sensitized Solar Cell. - Abstract: Highly transparent and conducting boron doped zinc oxide (ZnO:B) films grown by sol-gel method are reported. The annealing temperature is varied from 350 to 550 Degree-Sign C and doping concentration of boron is kept fixed for 0.6 at.% for all the films. At low temperature the stress in the films is compressive, which becomes tensile for the films annealed at higher temperature. A minimum resistivity of 7.9 Multiplication-Sign 10{sup -4} {Omega} cm and maximum transmittance of {approx}91% are observed for the film annealed at 450 Degree-Sign C. This could be attributed to minimum stress of films, which is further evident by the evolution of A{sub 1} and defect related Raman modes without any shifting in its position. Such kind of highly transparent and conducting ZnO:B thin film could be used as window material in Dye Sensitized Solar Cell (DSSC).

  13. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  14. Plasmonic versus dielectric enhancement in thin-film solar cells

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Mortensen, N. Asger; Sigmund, Ole

    2012-01-01

    to its metallic counterpart. We show that the enhanced normalized short-circuit current for a cell with silicon strips can be increased 4 times compared to the best performance for strips of silver, gold, or aluminium. For this particular case, the simple dielectric grating may outperform its plasmonic......Several studies have indicated that broadband absorption of thin-film solar cells can be enhanced by use of surface-plasmon induced resonances of metallic parts like strips or particles. The metallic parts may create localized modes or scatter incoming light to increase absorption in thin......-film semiconducting material. For a particular case, we show that coupling to the same type of localized slab-waveguide modes can be obtained by a surface modulation consisting of purely dielectric strips. The purely dielectric device turns out to have a significantly higher broadband enhancement factor compared...

  15. Cu{sub 2}ZnSnS{sub 4} thin films by simple replacement reaction route for solar photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Devendra, E-mail: devendratiwari.rnd@ecchanga.ac.in [Dr. K. C. Patel Research and Development Centre, Charotar University of Science and Technology, Changa, Anand District, Gujarat 388421 (India); Chaudhuri, Tapas K. [Dr. K. C. Patel Research and Development Centre, Charotar University of Science and Technology, Changa, Anand District, Gujarat 388421 (India); Ray, Arabinda [P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand District, Gujarat 388421 (India); Tiwari, Krishan Dutt [Powerdeal Energy Systems - India, Private Limited, Nashik 422010, Maharashtra (India)

    2014-01-31

    A process for deposition of Cu{sub 2}ZnSnS{sub 4} (CZTS) films using replacement of Zn{sup 2+} in ZnS is demonstrated. X-ray diffraction pattern and Raman spectroscopy confirm the formation of pure CZTS. Atomic force microscopy shows the films to be homogeneous and compact with root mean squared roughness of 6 nm. The direct band gap of CZTS films as elucidated by UV–Vis-NIR spectroscopy is 1.45 eV. The CZTS films exhibit p-type conduction with electrical conductivity of 4.6 S/cm. The hole concentration and hole mobility is determined to be 3.6 × 10{sup 17} cm{sup −3} and 1.4 cm{sup 2}V{sup −1} s{sup −1} respectively. Solar cells with structure: graphite/CZTS/CdS/ZnO/SnO{sub 2}:In/Soda lime glass are also fabricated, gave photo-conversion efficiency of 6.17% with open circuit voltage and short circuit current density of 521 mV and 19.13 mA/cm{sup 2}, respectively and a high fill factor of 0.62. The external quantum efficiency of the solar cell lies above 60% in the visible region. - Highlights: • Pure kesterite Cu{sub 2}ZnSnS{sub 4} thin films deposited by replacement reaction route • Energy band gap of films is 1.45 eV. • p-type films with conductivity of 4.6 S/cm and mobility of 1.4 cm{sup 2} S{sup −1} V{sup −1} • Fabrication of Graphite/Cu{sub 2}ZnSnS{sub 4}/CdS/ZnO/SnO{sub 2}:In/Glass solar cell • Solar cell delivered efficiency of 6.17% with high fill factor of 0.62.

  16. Refractive index extraction and thickness optimization of Cu2ZnSnSe4 thin film solar cells

    NARCIS (Netherlands)

    ElAnzeery, H.; El Daif, O.; Buffière, M.; Oueslati, S.; Ben Messaoud, K.; Agten, D.; Brammertz, G.; Guindi, R.; Kniknie, B.; Meuris, M.; Poortmans, J.

    2015-01-01

    Cu2nSnSe4 (CZTSe) thin film solar cells are promising emergent photovoltaic technologies based on low-bandgap absorber layer with high absorption coefficient. To reduce optical losses in such devices and thus improve their efficiency, numerical simulations of CZTSe solar cells optical

  17. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  18. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  19. Fabrication of heterojunction solar cells by using microcrystalline hydrogenated silicon oxide film as an emitter

    International Nuclear Information System (INIS)

    Banerjee, Chandan; Sritharathikhun, Jaran; Konagai, Makoto; Yamada, Akira

    2008-01-01

    Wide gap, highly conducting n-type hydrogenated microcrystalline silicon oxide (μc-SiO : H) films were prepared by very high frequency plasma enhanced chemical vapour deposition at a very low substrate temperature (170 deg. C) as an alternative to amorphous silicon (a-Si : H) for use as an emitter layer of heterojunction solar cells. The optoelectronic properties of n-μc-SiO : H films prepared for the emitter layer are dark conductivity = 0.51 S cm -1 at 20 nm thin film, activation energy = 23 meV and E 04 = 2.3 eV. Czochralski-grown 380 μm thick p-type (1 0 0) oriented polished silicon wafers with a resistivity of 1-10 Ω cm were used for the fabrication of heterojunction solar cells. Photovoltaic parameters of the device were found to be V oc = 620 mV, J sc = 32.1 mA cm -2 , FF = 0.77, η = 15.32% (active area efficiency)

  20. Influence of oblique-angle sputtered transparent conducting oxides on performance of Si-based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Jung Woo; Yu, Jae Su [Department of Electronics and Radio Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2011-09-15

    The transparent conducting oxide (TCO) films with low-refractive-index (low-n) are fabricated by the oblique-angle sputtering method. By using the experimentally measured physical data of the fabricated low-n TCO films as the simulation parameters, the effect of low-n TCOs on the performance of a-Si:H/{mu}c-Si:H tandem thin film solar cells is investigated using Silvaco ATLAS. The Al-doped zinc oxide, indium tin oxide (ITO), and Sb-doped tin oxide films are deposited at the flux incidence angles of {theta}{sub i} = 0 (normal sputtering) and {theta}{sub i} = 80 from the sputtering target during the sputtering process. The oblique-angle sputtered films at {theta}{sub i} = 80 show the inclined columnar nanostructures compared to those at {theta}{sub i} = 0 , modifying the optical properties of the films. This is caused mainly by the increase of porosity within the film which leads to its low-n characteristics. The a-Si:H/{mu}c-Si:H tandem thin film solar cell incorporated with the low-n ITO film exhibits an improvement in the conversion efficiency of {proportional_to}1% under AM1.5g illumination because of its higher transmittance and lower absorption compared to that with the ITO film at {theta}{sub i} = 0 , indicating a conversion efficiency of 13.75%. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Zhengqi Shi

    2017-12-01

    Full Text Available Commercial solar cells have a power conversion efficiency (PCE in the range of 10–22% with different light absorbers. Graphene, with demonstrated unique structural, physical, and electrical properties, is expected to bring the positive effects on the development of thin film solar cells. Investigations have been carried out to understand whether graphene can be used as a front and back contacts and active interfacial layer in solar cell fabrication. In this review, the current progress of this research is analyzed, starting from the graphene and graphene-based Schottky diode. Also, the discussion was focused on the progress of graphene-incorporated thin film solar cells that were fabricated with different light absorbers, in particular, the synthesis, fabrication, and characterization of devices. The effect of doping and layer thickness of graphene on PCE was also included. Currently, the PCE of graphene-incorporated bulk-heterojunction devices have enhanced in the range of 0.5–3%. However, device durability and cost-effectiveness are also the challenging factors for commercial production of graphene-incorporated solar cells. In addition to the application of graphene, graphene oxides have been also used in perovskite solar cells. The current needs and likely future investigations for graphene-incorporated solar cells are also discussed.

  2. Single source precursors for fabrication of I-III-VI{sub 2} thin-film solar cells via spray CVD

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J.A.; Banger, K.K.; Jin, M.H.-C.; Harris, J.D.; Cowen, J.E.; Bohannan, E.W.; Switzer, J.A.; Buhro, W.E.; Hepp, A.F

    2003-05-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors can be used in either a hot, or cold-wall spray chemical vapour deposition reactor, for depositing CuInS{sub 2}, CuGaS{sub 2} and CuGaInS{sub 2} at reduced temperatures (400-450 sign C), which display good electrical and optical properties suitable for photovoltaic devices. X-ray diffraction studies, energy dispersive spectroscopy and scanning electron microscopy confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  3. Preparation of thin films, with base to precursor materials of type Cu-In-Se elaborated by electrodeposition for the solar cells elaboration

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    1999-01-01

    Thin films of chalcogenide compounds are promising because they have excellent optoelectronic characteristics to be applied in solar cells. In particular, CuInSe 2 and Cd Te thin films have shown high solar to electrical conversion efficiency. However, this efficiency is limited by the method of preparation, in this case, physical vapor deposition techniques are used. In order to increase the area of deposition t is necessary to use chemical methods, for example, electrodeposition technique. In this paper, the preparation of Cu-In-Se precursors thin films by electrochemical method is reported. These precursors were used to build solar cells with 7.9 % of efficiency. (Author)

  4. Ion beam modification of TiO2 films prepared by Cat-CVD for solar cell

    International Nuclear Information System (INIS)

    Narita, Tomoki; Iida, Tamio; Ogawa, Shunsuke; Mizuno, Kouichi; So, Jisung; Kondo, Akihiro; Yoshida, Norimitsu; Itoh, Takashi; Nonomura, Shuichi; Tanaka, Yasuhito

    2008-01-01

    The effects of nitrogen ion bombardment on TiO 2 films prepared by the Cat-CVD method have been studied to improve the optical and electrical properties of the material for use in Si thin film solar cells. The refractive index n and the dark conductivity of the TiO 2 film increased with irradiation time. The refractive index n of the TiO 2 film was changed from 2.1 to 2.4 and the electrical conductivity was improved from 3.4 x 10 -2 to 1.2 x 10 -1 S/cm by the irradiation. These results are due to the formation of Ti-N bonds and oxygen vacancies in the film

  5. Synergistic Impact of Solvent and Polymer Additives on the Film Formation of Small Molecule Blend Films for Bulk Heterojunction Solar Cells

    KAUST Repository

    McDowell, Caitlin; Abdelsamie, Maged; Zhao, Kui; Smilgies, Detlef M.; Bazan, Guillermo C.; Amassian, Aram

    2015-01-01

    The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution-deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p-DTS(FBTTh2)2/PC

  6. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system/development of technology to manufacture thin film solar cells/development of technology to manufacture low-cost large-area modules/development of technology to manufacture next generation thin film solar cells (development of technology to manufacture applied type thin film solar cells with new construction); 1997 nendo tiayoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, tei cost daimenseki module esizo gijutsu kaihatsu (jisedai usumaku taiyo denchi no seizo gijutsu kaihatsu, oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A thin film single crystal silicon solar cell module is developed, in which a porous silicon layer is formed on the surface of a long-sized single crystal silicon substrate, a single crystal silicon film is integrated on the layer by epitaxially growing the film thereon to form a solar cell, and the solar cell is peeled off from the silicon substrate and transferred to a plastic film substrate. The achievements during this fiscal year may be summarized as follows: simultaneous formation of a porous silicon layer on a silicon substrate, reduction of anode formation current density from 200 mA/cm{sup 2} to 10 mA/cm{sup 2}, development of a silicon epitaxial device using a carbon heater, and attainment of aperture conversion efficiency of 11.8% in a thin film single crystal silicon solar cell. Three kinds of methods were developed to peel off the solar cell. A method was developed to grind silicon substrate surface from which the solar cell has been peeled off. A technology was developed to obtain a long-sized silicon substrate of about 30 cm times 10 cm times 0.1 cm from a 4-inch silicon ingot by using a wire saw. (NEDO)

  7. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region

    International Nuclear Information System (INIS)

    Kacha, K.; Djeffal, F.; Ferhati, H.; Arar, D.; Meguellati, M.

    2015-01-01

    We present a new approach based on the multi-trench technique to improve the electrical performances, which are the fill factor and the electrical efficiency. The key idea behind this approach is to introduce a new multi-trench region in the intrinsic layer, in order to modulate the total resistance of the solar cell. Based on 2-D numerical investigation and optimization of amorphous SiGe double-junction (a-Si:H/a-SiGe:H) thin film solar cells, in the present paper numerical models of electrical and optical parameters are developed to explain the impact of the multi-trench technique on the improvement of the double-junction solar cell electrical behavior for high performance photovoltaic applications. In this context, electrical characteristics of the proposed design are analyzed and compared with conventional amorphous silicon double-junction thin-film solar cells. (paper)

  8. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  9. Low-temperature fabrication of TiO2 nanocrystalline film electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shan, G.; Lee, K.E.; Charboneau, C.; Demopoulos, G.P.; Gauvin, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Materials Engineering; Savadogo, O. [Ecole Polytechnique de Montreal, PQ (Canada). Dept. de Genie Chimique

    2008-07-01

    Dye-sensitized solar cells (DSSCs) have the potential to render solar energy widely accessible. The deposition of titania nano-crystalline powders on a substrate is an important step in the manufacture of the DSSC. The deposition forms a mesoporous thin film that is followed by thermal treatment and sensitization. Usually titania films are deposited on glass by screen printing and then annealed at temperatures as high as 530 degrees C to provide a good electrical contact between the semiconductor particles and crystallization of the anatase phase. Several research and development efforts have focused on the deposition of titania film on flexible plastic substrates that will simplify the whole manufacturing process in terms of flexibility, weight, application and cost. Lower temperature processing is needed for the preparation of plastic-based titania film electrodes, but this has proven to be counterproductive when it comes to the cell's conversion efficiency. This paper presented a comprehensive evaluation of the different coating and annealing techniques at low temperature as well as important processing factors for improvement. To date, these techniques include pressing, hydrothermal process, electrodeposition, electrophoretic deposition, microwave or UV irradiation, and lift-off technique.

  10. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    OpenAIRE

    Wang Lan; Lin Xianzhong; Ennaoui Ahmed; Wolf Christian; Lux-Steiner Martha Ch.; Klenk Reiner

    2016-01-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating ...

  11. Application of resettable elements for electrical protection of solar batteries

    Directory of Open Access Journals (Sweden)

    Tonkoshkur A. S.

    2018-06-01

    Full Text Available The manifestation and formation of various defects in the process of exploitation in real photovoltaic cells and their compounds as well as their work in the regime of changing non-uniform illumination lead to the so-called series and parallel inconsistencies (differences of electrical characteristics between separate cells and their groups. This results in local overheating and intensifying of degradation processes. In some cases temporary disconnection (isolation of the corresponding elements of the solar batteries is more appropriate in order to increase their service life. In this work additional devices for insulation of overheating cells (and/or components of solar batteries such as «PolySwith» resettable fuses are proposed to be used as a perspective solution of such problems. These structures are polymer composites with nanosized carbon fillers. Electrical resistance of such a fuse increases abruptly by several orders of magnitude when certain threshold temperature is reached, and when the temperature decreases the fuse returns to its initial high-conductivity state. This study investigates the possibilities of using the specified type of fuses for electrical insulation of «overheated» photovoltaic cells. Particular attention is paid to the research of the effect of fuses on the working of the solar batteries in the operating temperature range and their functional applicability in emergency situations associated with overheating. The studies were carried out using a model structure of several series of parallel connected photovoltaic cells and specified fuses. Attention is paid to the influence of such factors as the ambient temperature and the drift of the fuses resistance in the conducting state in the process their multiple switching. It has been established that such protection elements do not influence the work of solar batteries in operating temperature range and are functionally applicable for the electrical isolation of local

  12. Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells.

    Science.gov (United States)

    Zhang, Jicheng; Xie, SuFei; Lu, Zhen; Wu, Yang; Xiao, Hongmei; Zhang, Xuejuan; Li, Guangwu; Li, Cuihong; Chen, Xuebo; Ma, Wei; Bo, Zhishan

    2017-10-01

    This data contains additional data related to the article "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" (Jicheng Zhang et al., In press) [1]. Data include measurement and characterization instruments and condition, detail condition to fabricate norfullerene solar cell devices, hole-only and electron-only devices. Detail condition about how to control the film morphology of devices via tuning the temperature of substrates was also displayed. More information and more convincing data about the change of film morphology for active layers fabricated from different temperature, which is attached to the research article of "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" was given.

  13. Cuinse2 Thin Film For Solar Cell By Flash Evaporation

    OpenAIRE

    A.H. Soepardjo

    2009-01-01

    Deposition of thin films for material solar cell CuInSe2 are relatively simple. In this research mainly focused on the use of flash evaporation method, and the material created can then be characterized by optical and electrical properties. The optical characterization is done by X-ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS), and transmission and reflection by UV-VIS spectrophotometry. Electrical characterization is done by utilizing the Hall effect equipment. From these chara...

  14. Electrochemical etching of molybdenum for shunt removal in thin film solar cells

    NARCIS (Netherlands)

    Hovestad, A.; Bressers, P.M.M.C.; Meertens, R.M.; Frijters, C.H.; Voorthuijzen, W.P.

    2015-01-01

    High yield and reproducible production is a major challenge in up-scaling thin film Cu(In,Ga)Se2(CIGS) solar cells to large area roll-to-roll industrial manufacturing. Pinholes enabling Ohmic contact between the ZnO:Al front-contact and Mo back contact of the CIGS cell create electrical shunts that

  15. Impedance spectroscopy of CdTe thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Charlotte; Heisler, Christoph; Reisloehner, Udo; Ronning, Carsten; Wesch, Werner [Institute of Solid State Physics, University of Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2012-07-01

    Impedance Spectroscopy (IS) is a widely used method to analyze dielectric properties of specimen as a function of frequency. Typically this characterization method delivers an equivalent circuit diagram of the device under examination to describe its electrical properties. Traditionally IS is used in coating evaluation, corrosion monitoring and in electrochemistry. During the last years the method became more important also in the field of electrical characterization of solar cells. In our work we use IS for the electrical characterization of thin film CdTe solar cells. The measurement is done at room temperature without illumination in a frequency domain from 20 Hz to 2 MHz. The samples are measured under variable forward bias. The results match insufficiently with the model of two resistor-capacitor circuits in series which is commonly used to describe the p-n junction and the blocking back contact. For better consistency, other models from the literature are used and discussed. From the results a conclusion is drawn about the properties of the solar cell such as the nature of the p-n junction or the performance of the back contact.

  16. Cobalt oxide films for solar selective surfaces, obtained by spray pyrolisis

    Energy Technology Data Exchange (ETDEWEB)

    Avila G, A. [Departmento de Ingenieria Electrica, Seccion de Electronica del Estado Solido, CINVESTAV del I.P.N., Av. I.P.N. no. 2508, Ap. Postal 14-740, Mexico D. F., 07360 (Mexico); Barrera C, E. [Departamento de IPH, Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Ap. Postal 55-5340, Mexico, D. F. (Mexico); Huerta A, L.; Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F. 04510 (Mexico)

    2004-05-01

    Cobalt oxide films upon stainless steel substrates were deposited by using the pneumatic spray pyrolisis technique, starting from an inorganic salt (CoNO{sub 3}{center_dot}3H{sub 2}O) dissolved in a water-alcohol mixture. Stainless steel and nickeled stainless steel substrates were used. Absorptance and emittance, for selective surface applications, were evaluated from reflectance measurements in the UV-Vis and infrared ranges. X-ray diffraction, XPS and AFM measurements were done. The predominant cobalt phase is Co{sub 3}O{sub 4}, but also CoO and Co{sub 2}O{sub 3} phases, besides metallic cobalt, were detected. Films upon nickeled steel substrates at 400C exhibit high absorptances (0.86), but also the emittance is high (0.43), yielding a selectivity of 2.0. A similar film on steel substrate reaches only a figure of 0.77 absorptance, but the thermal emittance remains low (0.20), giving a selectivity of 3.85. These films are good prospects for selective solar absorption coatings.

  17. High-quality LaVO3 films as solar energy conversion material

    International Nuclear Information System (INIS)

    Zhang, Hai-Tian; Brahlek, Matthew; Ji, Xiaoyu; Lei, Shiming; Lapano, Jason

    2017-01-01

    Mott insulating oxides and their heterostructures have recently been identified as potential photovoltaic materials with favorable absorption properties and an intrinsic built-in electric field that can efficiently separate excited electron hole pairs. At the same time, they are predicted to overcome the Shockley-Queisser limit due to strong electron electron interaction present. Despite these premises a high concentration of defects commonly observed in Mott insulating films acting as recombination centers can derogate the photovoltaic conversion efficiency. With use of the self-regulated growth kinetics in hybrid molecular beam epitaxy, this obstacle can be overcome. High-quality, stoichiometric LaVO 3 films were grown with defect densities of in-gap states up to 2 orders of magnitude lower compared to the films in the literature, and a factor of 3 lower than LaVO 3 bulk single crystals. Photoconductivity measurements revealed a significant photoresponsivity increase as high as tenfold of stoichiometric LaVO 3 films compared to their nonstoichiometric counterparts. Furthermore, this work marks a critical step toward the realization of high-performance Mott insulator solar cells beyond conventional semiconductors.

  18. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Badgujar, Amol C.; Dhage, Sanjay R., E-mail: dhage@arci.res.in; Joshi, Shrikant V.

    2015-08-31

    Copper indium gallium selenide (CIGS) has emerged as a promising candidate for thin film solar cells, with efficiencies approaching those of silicon-based solar cells. To achieve optimum performance in CIGS solar cells, uniform, conductive, stress-free, well-adherent, reflective, crystalline molybdenum (Mo) thin films with preferred orientation (110) are desirable as a back contact on large area glass substrates. The present study focuses on cylindrical rotating DC magnetron sputtered bilayer Mo thin films on 300 mm × 300 mm soda lime glass (SLG) substrates. Key sputtering variables, namely power and Ar gas flow rates, were optimized to achieve best structural, electrical and optical properties. The Mo films were comprehensively characterized and found to possess high degree of thickness uniformity over large area. Best crystallinity, reflectance and sheet resistance was obtained at high sputtering powers and low argon gas flow rates, while mechanical properties like adhesion and residual stress were found to be best at low sputtering power and high argon gas flow rate, thereby indicating a need to arrive at a suitable trade-off during processing. - Highlights: • Sputtering of bilayer molybdenum thin films on soda lime glass • Large area deposition using rotating cylindrical direct current magnetron • Trade of sputter process parameters power and pressure • High uniformity of thickness and best electrical properties obtained • Suitable mechanical and optical properties of molybdenum are achieved for CIGS application.

  19. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Finger, F.; Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A.; Houben, L.; Huang, Y.; Klein, S.; Luysberg, M.; Wang, H.; Xiao, L.

    2009-01-01

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  20. Vapor and healing treatment for CH3NH3PbI3-xClx films toward large-area perovskite solar cells

    Science.gov (United States)

    Gouda, Laxman; Gottesman, Ronen; Tirosh, Shay; Haltzi, Eynav; Hu, Jiangang; Ginsburg, Adam; Keller, David A.; Bouhadana, Yaniv; Zaban, Arie

    2016-03-01

    Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm2). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (Voc, Jsc, Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ~100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a ``healing effect'' to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method.Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non

  1. Indium tin oxide with titanium doping for transparent conductive film application on CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Sheng; Cheng, Huai-Ming; Hu, Hung-Chun; Li, Ying-Tse; Huang, Shi-Da; Yu, Hau-Wei [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Pu, Nen-Wen, E-mail: nwpuccit@gmail.com [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan (China); Liang, Shih-Chang [Materials & Electro-Optics Research Division, National Chung-Shan Institute of Science and Technology, Lung Tan 32599, Taiwan (China)

    2015-11-01

    Highlights: • Ti-doped indium tin oxide (ITO) films were deposited by DC magnetron sputtering. • Optimal optoelectronic properties were achieved at a sputtering power of 100 W. • Resistivity = 3.2 × 10{sup −4} Ω-cm without substrate heating or post growth annealing. • Mean visible and NIR transmittances of 83 and 80%, respectively, were achieved. • Efficient batteries (11.3%) were fabricated by applying ITO:Ti to CIGS solar cells. - Abstract: In this study, Ti-doped indium tin oxide (ITO:Ti) thin films were fabricated using a DC-magnetron sputtering deposition method. The thin films were grown without introducing oxygen or heating the substrate, and no post-growth annealing was performed after fabrication. The thickness of the ITO:Ti thin films (350 nm) was controlled while increasing the sputtering power from 50 to 150 W. According to the results, the optimal optoelectronic properties were observed in ITO:Ti thin films grown at a sputtering power of 100 W, yielding a reduced resistivity of 3.2 × 10{sup −4} Ω-cm and a mean high transmittance of 83% at wavelengths ranging from 400 to 800 nm. The optimal ITO:Ti thin films were used to fabricate a Cu(In,Ga)Se{sub 2} solar cell that exhibited a photoelectric conversion efficiency of 11.3%, a short-circuit current density of 33.1 mA/cm{sup 2}, an open-circuit voltage of 0.54 V, and a fill factor of 0.64.

  2. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    Science.gov (United States)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  3. Effects of thermal treatment on the MgxZn1−xO films and fabrication of visible-blind and solar-blind ultraviolet photodetectors

    International Nuclear Information System (INIS)

    Tian, Chunguang; Jiang, Dayong; Tan, Zhendong; Duan, Qian; Liu, Rusheng; Sun, Long; Qin, Jieming; Hou, Jianhua; Gao, Shang; Liang, Qingcheng; Zhao, Jianxun

    2014-01-01

    Highlights: • Single-phase wurtzite/cubic Mg x Zn 1−x O films were grown by RF magnetron sputtering technique. • We focus on the red-shift caused by annealing the Mg x Zn 1−x O films. • MSM-structured visible-blind and solar-blind UV photodetectors were fabricated. - Abstract: A series of single-phase Mg x Zn 1−x O films with different Mg contents were prepared on quartz substrates by RF magnetron sputtering technique using different MgZnO targets, and annealed under the atmospheric environment. The absorption edges of Mg x Zn 1−x O films can cover the whole near ultraviolet and even the whole solar-blind spectra range, and the solar-blind wurtzite/cubic Mg x Zn 1−x O films have been realized successfully by the same method. In addition, the absorption edges of annealed films shift to a long wavelength, which is caused by the diffusion of Zn atoms gathering at the surface during the thermal treatment process. Finally, the truly solar-blind metal-semiconductor-metal structured photodetectors based on wurtzite Mg 0.445 Zn 0.555 O and cubic Mg 0.728 Zn 0.272 O films were fabricated. The corresponding peak responsivities are 17 mA/W at 275 nm and 0.53 mA/W at 250 nm under a 120 V bias, respectively

  4. Physical vapor deposition and analysis of copper indium aluminum diselenide thin films for high band gap solar cells

    Science.gov (United States)

    Haimbodi, Moses Warotua

    CuInSe2 films and related alloys have been used to fabricate the highest efficiency thin film solar cells. Alloying CuInSe2 with CuAlSe2 provides a way to engineer the band gap of the resulting films from 1 to 2.7 eV, thereby providing a pathway for improving device performance. In this work, thin films of CuIn1-xAlxSe 2 obtained by multi-source PVD were characterized and investigated for their potential use as high band gap solar cells. The band gap of the films was varied by controlling the [Al]/[Al + In] ratio. Deposition of these films with varying [Cu]/[Al + In] ratios and thickness (1--4 mum) was carried out at substrate temperatures from 350--530°C. CuIn1-xAlxSe2 based solar cells have been fabricated using the structure glass/Mo/CuIn1-xAl xSe2/CdS/ZnO/grid. The effect of varying the band gap on device performance will be discussed. The highest efficiency obtained in this work is 11% using a film with Eg ≈ 1.3 eV. For high Al content, x > 0.3, device-performance decreases mainly due to poor FF similar to that observed in CuIn1-xGaxSe2 devices and is attributed to poor minority carrier collection. For CuIn1-xAlxSe2 films with x = 1, data is analyzed and presented with respect to [Cu]/[Al] and Se to total metal flux ratio, RSe/RM. Phase analysis shows that the resulting films contain different phases that depend on these parameters. Several of these films also contain concentrations of oxygen varying from 12 to 60 at. % as the [Cu]/[Al] ratio decreases. For RSe/R M > 10, a new structure we label as CuxAlySe z was observed. The oxygen content in all of the films obtained under RSe/RM > 10 vary between 1--3 at. %. Based on the Cu-Se, Al-Se, Cu-Al binary and the Cu2Se-Al2Se 3 pseudo-binary phase diagrams, a phenomenological film growth model is presented showing that the film growth kinetics are controlled by the delivery of Se.

  5. Influence of thin film thickness of working electrodes on photovoltaic characteristics of dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Lai Yeong-Lin

    2017-01-01

    Full Text Available This paper presents the study of the influence of thin film thickness of working electrodes on the photovoltaic characteristics of dye-sensitized solar cells. Titanium dioxide (TiO2 thin films, with the thickness from 7.67 to 24.3 μm, were used to fabricate the working electrodes of dye-sensitized solar cells (DSSCs. A TiO2 film was coated on a fluorine-doped tin oxide (FTO conductive glass substrate and then sintered in a high-temperature furnace. On the other hand, platinum (Pt solution was coated onto an FTO substrate for the fabrication of the counter electrode of a DSSC. The working electrode immersed in a dye, the counter electrode, and the electrolyte were assembled to complete a sandwich-structure DSSC. The material analysis of the TiO2 films of DSSCs was carried out by scanning electron microscopy (SEM and ultraviolet-visible (UV-Vis spectroscopy, while the photovoltaic characteristics of DSSCs were measured by an AM-1.5 sunlight simulator. The light transmittance characteristics of the TiO2 working electrode depend on the TiO2 film thickness. The thin film thickness of the working electrode also affects the light absorption of a dye and results in the photovoltaic characteristics of the DSSC, including open-circuited voltage (VOC, short-circuited current density (JSC, fill factor, and photovoltaic conversion efficiency.

  6. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells

    Science.gov (United States)

    Franken, R. H.-J.

    2006-09-01

    With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes

  7. Growth, etching, and stability of sputtered ZnO:Al for thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jorj Ian

    2011-07-01

    Aluminum-doped zinc oxide (ZnO:Al) can fulfill many requirements in thin-film solar cells, acting as (1) a transparent contact through which the incident light is transmitted, (2) part of the back reflector, and (3) a source of light scattering. Magnetron sputtered ZnO:Al thin-films are highly transparent, conductive, and are typically texturized by post-deposition etching in a dilute hydrochloric acid (HCl) solution to achieve light scattering. The ZnO:Al thin-film electronic and optical properties, as well as the surface texture after etching, depend on the deposition conditions and the post-deposition treatments. Despite having been used in thin-film solar cells for more than a decade, many aspects regarding the growth, effects of heat treatments, environmental stability, and etching of sputtered ZnO:Al are not fully understood. This work endeavors to further the understanding of ZnO:Al for the purpose improving silicon thin-film solar cell efficiency and reducing ZnO:Al production costs. With regard to the growth of ZnO:Al, the influence of various deposition conditions on the resultant electrical and structural properties and their evolution with film thickness were studied. The surface electrical properties extracted from a multilayer model show that while carrier concentration of the surface layer saturates already at film thickness of 100 nm, the surface mobility continues to increases with film thickness, and it is concluded that electronic transport across grain boundaries limits mobility in ZnO:Al thin films. ZnO:Al deposited onto a previously etched ZnO:Al surface grows epitaxially, preserving both the original orientation and grain structure. Further, it is determined that a typical ZnO:Al used in thin-film silicon solar cells grows Zn-terminated on glass substrates. Concerning the affects of heat treatments and stability, it is demonstrated that a layer of amorphous silicon can protect ZnO:Al from degradation during annealing, and the mobility of Zn

  8. Growth of KOH etched AZO nanorods and investigation of its back scattering effect in thin film a-Si solar cell

    Science.gov (United States)

    Sharma, Jayasree Roy; Mitra, Suchismita; Ghosh, Hemanta; Das, Gourab; Bose, Sukanta; Mandal, Sourav; Mukhopadhyay, Sumita; Saha, Hiranmay; Barua, A. K.

    2018-02-01

    In order to increase the stabilized efficiencies of thin film silicon (TFS) solar cells it is necessary to use better light management techniques. Texturization by etching of sputtered aluminum doped zinc oxide (Al:ZnO or AZO) films has opened up a variety of promises to optimize light trapping schemes. RF sputtered AZO film has been etched by potassium hydroxide (KOH). A systematic study of etching conditions such as etchant concentration, etching time, temperature management etc. have been performed in search of improved electrical and optical performances of the films. The change in etching conditions has exhibited a noticeable effect on the structure of AZO films for which the light trapping effect differs. After optimizing the etching conditions, nanorods have been found on the substrate. Hence, nanorods have been developed only by chemical etching, rather than the conventional development method (hydrothermal method, sol-gel method, electrolysis method etc.). The optimized etched substrate has 82% transmittance, moderate haze in the visible range and sheet resistance ∼13 (Ω/□). The developed nanorods (optimized etched substrate) provide better light trapping within the cell as the optical path length has been increased by using the nanorods. This provides an effect on carrier collection as well as the efficiency in a-Si solar cells. Finite difference time domain (FDTD) simulations have been performed to observe the light trapping by AZO nanorods formed on sputtered AZO films. For a p-i-n solar cell developed on AZO nanorods coated with sputtered AZO films, it has been found through simulations that, the incident light is back scattered into the absorbing layer, leading to an increase in photogenerated current and hence higher efficiency. It has been found that, the light that passes through the nanorods is not getting absorbed and maximum amount of light is back scattered towards the solar cell.

  9. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    Science.gov (United States)

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  10. Dual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  11. Qualitative and quantitative analysis of an additive element in metal oxide nanometer film using laser induced breakdown spectroscopy.

    Science.gov (United States)

    Xiu, Junshan; Liu, Shiming; Sun, Meiling; Dong, Lili

    2018-01-20

    The photoelectric performance of metal ion-doped TiO 2 film will be improved with the changing of the compositions and concentrations of additive elements. In this work, the TiO 2 films doped with different Sn concentrations were obtained with the hydrothermal method. Qualitative and quantitative analysis of the Sn element in TiO 2 film was achieved with laser induced breakdown spectroscopy (LIBS) with the calibration curves plotted accordingly. The photoelectric characteristics of TiO 2 films doped with different Sn content were observed with UV visible absorption spectra and J-V curves. All results showed that Sn doping could improve the optical absorption to be red-shifted and advance the photoelectric properties of the TiO 2 films. We had obtained that when the concentration of Sn doping in TiO 2 films was 11.89  mmol/L, which was calculated by the LIBS calibration curves, the current density of the film was the largest, which indicated the best photoelectric performance. It indicated that LIBS was a potential and feasible measured method, which was applied to qualitative and quantitative analysis of the additive element in metal oxide nanometer film.

  12. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    International Nuclear Information System (INIS)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju; Son, Myoungwoo; Ham, Moon-Ho; Lee, Woong; Myoung, Jae-Min

    2012-01-01

    Highlights: ► Surface-textured AZO films were achieved by combining PDMS method with wet etching. ► The AZO film deposited at 230 °C by PDMS exhibited the best performance. ► It is due to the higher plasma density supplied from PDMS system. ► Wet etching of the films produces a crater-like rough surface morphology. - Abstract: A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 °C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 × 10 −4 Ω cm with the carrier concentration of 1.65 × 10 21 cm −3 and Hall mobility of 11.3 cm 2 /V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  13. Non-toxic and environmentally friendly route for preparation of copper indium sulfide based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankir, Nurdan Demirci, E-mail: nsankir@etu.edu.tr; Aydin, Erkan; Ugur, Esma; Sankir, Mehmet

    2015-08-15

    Highlights: • Substrate structure of spray pyrolyzed CuInS{sub 2}/In{sub 2}S{sub 3} heterojunction solar cells. • Low cost and environmentally friendly fabrication of CuInS{sub 2} based solar cells. • Low RF power deposition of TCO layer. • AZO–Ag–AZO sandwich structure. • Effect of the thickness of buffer layer on the photovoltaic performance. - Abstract: In this study, copper based thin film solar cells with substrate structure have been built via spray pyrolysis method. Toxic material usage was avoided during the material deposition and the post-treatment steps. Novel device configuration of Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO was studied as a function of the In{sub 2}S{sub 3} buffer layer thickness. In order to utilize the zinc oxide (ZnO) and aluminum doped zinc oxide (AZO) transparent conductive layers, deposited by physical vapor deposition (PVD), on top of the spray pyrolyzed thin films, the RF power was lowered to 30 W. Although this minimized the unwanted penetration of the highly energetic particles, created during PVD process, sheet resistivity of the AZO films increased enormously. Hence very thin silver layer has been deposited between two AZO films. This resulted the decrease in the sheet resistivity more than 10{sup 6} times. Electrical measurements under illumination revealed that short circuit current density (J{sub sc}), open circuit voltage (V{sub oc}), fill factor (FF) and efficiency (η) of the Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO type solar cells increased with increasing the thickness of the In{sub 2}S{sub 3} layer. The maximum J{sub sc} of 9.20 mA/cm{sup 2}, V{sub oc} of 0.43 V, FF of 0.44 have been observed for the 0.94 μm-thick In{sub 2}S{sub 3} layer. Extraordinarily thick buffer layer provided better diffusion barrier between the absorber and the TCO layers and also resulted better photosensitivity. These could be the key factors to produce substrate configuration of the spray pyrolyzed

  14. Cu{sub 2}ZnSnS{sub 4} thin film solar cells from electroplated precursors: Novel low-cost perspective

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienickerstrasse 100, D-14109 Berlin (Germany)], E-mail: ennaoui@helmholtz-berlin.de; Lux-Steiner, M.; Weber, A.; Abou-Ras, D.; Koetschau, I.; Schock, H.-W. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Solar Energy Division, Glienickerstrasse 100, D-14109 Berlin (Germany); Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R. [Crystallography and Structural Physics, University of Erlangen-Nuernberg, Staudtstrasse 3, D-91058 Erlangen (Germany); Voss, T.; Schulze, J.; Kirbs, A. [Atotech Deutschland GmbH, Erasmusstr. 20, D-10553 Berlin (Germany)

    2009-02-02

    Thin-film solar cells based on Cu{sub 2}ZnSnS{sub 4} (CZTS) absorbers were fabricated successfully by solid-state reaction in H{sub 2}S atmosphere of electrodeposited Cu-Zn-Sn precursors. These ternary alloys were deposited in one step from a cyanide-free alkaline electrolyte containing Cu(II), Zn (II) and Sn (IV) metal salts on Mo-coated glass substrates. The solar cell was completed by a chemical bath-deposited CdS buffer layer and a sputtered i-ZnO/ZnO:Al bilayer. The best solar cell performance was obtained with Cu-poor samples. A total area (0.5 cm{sup 2}) efficiency of 3.4% is achieved (V{sub oc} = 563 mV, j{sub sc} = 14.8 mA/cm{sup 2}, FF = 41%) with a maximum external quantum efficiency (EQE) of 80%. The estimated band-gap energy from the external quantum efficiency (EQE) measurements is about 1.54 eV. Electron backscatter-diffraction maps of cross-section samples revealed CZTS grain sizes of up to 10 {mu}m. Elemental distribution maps of the CZTS absorber show Zn-rich precipitates, probably ZnS, and a Zn-poor region, presumably Cu{sub 2}SnS{sub 3}, close to the interface Mo/CZTS.

  15. Characterization of β-FeSi II films as a novel solar cell semiconductor

    Science.gov (United States)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  16. Influence of the Porosity of the TiO2 Film on the Performance of the Perovskite Solar Cell

    Directory of Open Access Journals (Sweden)

    Xiaodan Sun

    2017-01-01

    Full Text Available The structure of mesoporous TiO2 (mp-TiO2 films is crucial to the performance of mesoporous perovskite solar cells (PSCs. In this study, we fabricated highly porous mp-TiO2 films by doping polystyrene (PS spheres in TiO2 paste. The composition of the perovskite films was effectively improved by modifying the mass fraction of the PS spheres in the TiO2 paste. Due to the high porosity of the mp-TiO2 film, PbI2 and CH3NH3I could sufficiently infiltrate into the network of the mp-TiO2 film, which ensured a more complete transformation to CH3NH3PbI3. The surface morphology of the mp-TiO2 film and the photoelectric performance of the perovskite solar cells were investigated. The results showed that an increase in the porosity of the mp-TiO2 film resulted in an improvement in the performance of the PSCs. The best device with the optimized mass fraction of 1.0 wt% PS in TiO2 paste exhibited an efficiency of 12.69%, which is 25% higher than the efficiency of the PSCs without PS spheres.

  17. Time variation of meteorological elements as controlled by the quasi-biennial periodicity in the solar phenomena

    International Nuclear Information System (INIS)

    Inoue, Michiharu; Sakurai, Kunitomo

    1981-01-01

    It is shown that the quasi-biennial oscillation observed on some meteorological elements as the ozone content at middle latitudes, both north and south, the zonal wind velocity at the equator and the ground-level temperature at middle latitudes, is produced by the variation of the ultraviolet flux emitted from the sun, which is varying with the solar activity with the period of about 26 months. The ozone content is varying in phase with the ultraviolet flux and the solar activity, whereas the other two elements mentioned above are changing out of phase with these phenomena. There is a possibility that both these meteorological elements and the solar activity are varying quasi-biennially while being modulated by the 26 month periodicity in the efficiency of thermonuclear fusions at the central core of the sun. (author)

  18. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chao-Kuang; Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw

    2015-06-01

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoS{sub x}) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoS{sub x} thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoS{sub x} thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoS{sub x} samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoS{sub x} thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoS{sub x} thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoS{sub x} thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSC with the MoS{sub x} flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm{sup −2}). Thus, we report that the MoS{sub x} thin films are active catalysts for triiodide reduction. The MoS{sub x} thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoS{sub x

  19. Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell

    Science.gov (United States)

    Zaki, A. A.; El-Amin, A. A.

    2017-12-01

    In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.

  20. Variation of sulfur content in Cu(In,Ga)(S,Se){sub 2} thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Knipper, Martin; Knecht, Robin; Riedel, Ingo; Parisi, Juergen [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg (Germany)

    2011-07-01

    Chalcopyrite thin film solar cells made of the compound semiconductor Cu(In,Ga)(S,Se){sub 2} (CIGSSe) have a strong potential for achieving high efficiencies at low production costs. Volume production of CIGSSe-modules has already started to exploit their favorable attributes such as low cost processing and reasonable module efficiency. In this study we studied industrially produced CIGSSe modules obtained from rapid thermal processing (RTP) for sulfurization. In detail, we investigated the effect of sulfur offer and RTP temperature (500 C to 580 C) on the photoelectric characteristics of small-area solar cells cut from the modules. Current-voltage profiling under standard test conditions revealed a strong influence of the particular process recipe on the open circuit voltage whereas significant variations of the maximum quantum efficiency can be observed. X-ray diffraction was employed to relate these effects to the crystallographic structure of the actual CIGSSe films. Lock-in thermographic imaging was employed to link apparent film inhomogeneities and disruptions to the specific process recipe.

  1. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  2. Analysis of the High Conversion Efficiencies β-FeSi2 and BaSi2 n-i-p Thin Film Solar Cells

    International Nuclear Information System (INIS)

    Huang, J.Sh.; Lee, K.W.; Tseng, Y.H.

    2014-01-01

    Both β-FeSi 2 and BaSi 2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi 2 /p-Si and n-Si/i-BaSi 2 /p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi 2 /p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi 2 /p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%). These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.

  3. Analysis of the High Conversion Efficiencies β-FeSi2 and BaSi2 n-i-p Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Huang

    2014-01-01

    Full Text Available Both β-FeSi2 and BaSi2 are silicides and have large absorption coefficients; thus they are very promising Si-based new materials for solar cell applications. In this paper, the dc I-V characteristics of n-Si/i-βFeSi2/p-Si and n-Si/i-BaSi2/p-Si thin film solar cells are investigated by solving the charge transport equations with optical generations. The diffusion current densities of free electron and hole are calculated first. Then the drift current density in the depletion regions is obtained. The total current density is the sum of diffusion and drift current densities. The conversion efficiencies are obtained from the calculated I-V curves. The optimum conversion efficiency of n-Si/i-βFeSi2/p-Si thin film solar cell is 27.8% and that of n-Si/i-BaSi2/p-Si thin film solar cell is 30.4%, both are larger than that of Si n-i-p solar cell (η is 20.6%. These results are consistent with their absorption spectrum. The calculated conversion efficiency of Si n-i-p solar cell is consistent with the reported researches. Therefore, these calculation results are valid in this work.

  4. Laser deposition rates of thin films of selected metals and alloys

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Canulescu, Stela; Schou, Jørgen

    Thin films of Cu, Zn and Sn as well as mixtures of these elements have been produced by Pulsed Laser Deposition (PLD). The deposition rate of single and multicomponent metallic targets was determined. The strength of PLD is that the stoichiometry of complex compounds, even of complicated alloys...... or metal oxides, can be preserved from target to film. We apply this technique to design films of a mixture of Cu, Zn and Sn, which are constituents of the chalcogenide CZTS, which has a composition close to Cu2ZnSnS4. This compound is expected to be an important candidate for absorbers in new solar cells...... for alloys of the different elements as well as compounds with S will be presented....

  5. Research on fabrication technology for thin film solar cells for practical use. Survey on the commercialization analysis; Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Jitsuyoka kaiseki ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on the technological trend, safety and latest technologies of thin film solar cells in fiscal 1994. As the fabrication technology for amorphous film solar cells, three-electrode plasma CVD was surveyed as fabrication method for high-mobility materials, and hydrogen radical CVD as fabrication method for high-photostable films. Current foreign and domestic reliability tests were surveyed for reliability evaluation of solar cells. In order to ascertain the performance, efficiency, physical properties and optimum structure of polycrystalline Si thin film solar cells, previously reported test results on physical properties such as carrier concentration, carrier lifetime and mobility of films were surveyed together with device simulation results. In addition, technologies for high-efficiency CuInSe2 system and CdTe system solar cells, technologies for cost reduction and mass production, and environmental influence were surveyed. Estimation of production costs for cell modules, and safety of thin film solar cells were also surveyed.

  6. 11.3% efficiency Cu(In,Ga)(S,Se)2 thin film solar cells via drop-on-demand inkjet printing

    OpenAIRE

    Lin, Xianzhong; Klenk, Reiner; Wang, Lan; Köhler, Tristan; Albert, Jürgen; Fiechter, Sebastian; Ennaoui, Ahmed; Lux-Steiner, Martha

    2017-01-01

    Although Cu(In,Ga)(S,Se)2 (CIGSe) based thin film solar cells have reached efficiencies exceeding 22% based on vacuum processed CIGSSe absorbers, the supply of indium and gallium might become an issue if CIGSSe thin-film solar cells are produced in very large volumes. It is therefore mandatory to reduce the wastage of indium and gallium during the fabrication process. In this work, we report on a highly efficient precursor utilization, and a vacuum-free, and scalable route to the deposition o...

  7. Broad-band anti-reflection coupler for a : Si thin-film solar cell

    International Nuclear Information System (INIS)

    Lo, S.-S.; Chen, C.-C.; Garwe, Frank; Pertch, Thomas

    2007-01-01

    This work numerically demonstrates a new anti-reflection coupler (ARC) with high coupling efficiency in a Si substrate solar cell. The ARC in which the grating is integrated on a glass encapsulation and a three-layer impedance match layer is proposed. A coupling efficiency of 90% is obtained at wavelengths between 350 and 1200 nm in the TE and TM modes when the incident angle is less than 30 0 . In comparison with a 1μm absorber layer, the integrated absorption of an a-Si thin-film solar cell without a new ARC is doubled, at long wavelengths (750 nm ≤ λ ≤ 1200 nm), as calculated by FDTD method

  8. Note: Calibration of EBT3 radiochromic film for measuring solar ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. L. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); Yu, P. K. N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon Tong (Hong Kong)

    2014-10-01

    Solar (UVA + UVB) exposure was assessed using the Gafchromic EBT3 film. The coloration change was represented by the net reflective optical density (Net ROD). Through calibrations against a UV-tube lamp, operational relationships were obtained between Net ROD and the (UVA + UVB) exposures (in J cm⁻²p or J m⁻²). The useful range was from ~0.2 to ~30 J cm⁻². The uniformity of UV irradiation was crucial for an accurate calibration. For solar exposures ranging from 2 to 11 J cm⁻², the predicted Net ROD agreed with the recorded values within 9%, while the predicted exposures agreed with the recorded values within 15%.

  9. Preparation of CuIn(S,Se){sub 2} films by PLD of precursor layers and post-annealing and their application to solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kawabe, Toshiyuki; Maeda, Tsuyoshi; Wada, Takahiro [Department of Materials Chemistry, Ryukoku University, Seta, Otsu (Japan)

    2017-06-15

    Cu-In-S precursor films were deposited at various substrate temperatures by pulsed laser deposition (PLD). CuIn(S,Se){sub 2} films were prepared by post-annealing the Cu-In-S precursor films in H{sub 2}S and Se atmosphere. CuIn(S,Se){sub 2} solar cells with a device structure of Au/ITO/i-ZnO/CdS/CuIn(S,Se){sub 2}/Mo/soda-lime (SLG) glass were fabricated and characterized. Higher conversion efficiency was obtained for the CuIn(S,Se){sub 2} solar cell with the precursor film deposited at room temperature. The phase and microstructure of the Cu-In-S precursor and the annealed CuIn(S,Se){sub 2} films were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). We found that the quality of the CuIn(S,Se){sub 2} films was strongly affected by the deposition temperature of Cu-In-S precursor films. We discuss the grain growth and sintering in CuIn(S,Se){sub 2} films on the basis of the results of XRD and SEM. The highest conversion efficiency of 6.38% (V{sub oc}= 521 mV, J{sub sc}= 22.6 mA cm{sup -2}, FF = 0.541) was obtained for the CuIn(S,Se){sub 2} solar cell with the precursor film deposited at room temperature and post-annealed at 620 C. The solar cell was analyzed by secondary ion mass spectroscopy (SIMS) and transmission electron microscopy (TEM). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Efficiency loss prevention in monolithically integrated thin film solar cells by improved front contact

    NARCIS (Netherlands)

    Deelen, J. van; Barink, M.; Klerk, L.; Voorthuijzen, P.; Hovestad, A.

    2015-01-01

    Modeling indicates a potential efficiency boost of 17% if thin-film solar panels are featured with a metallic grid. Variations of transparent conductive oxide sheet resistance, cell length, and grid dimensions are discussed. These parameters were optimized simultaneously to obtain the best result.

  11. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity.

    Science.gov (United States)

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-01-01

    Highly transparent, energy-saving, and superhydrophobic nanostructured SiO 2 /VO 2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO 2 layer and a top protective layer that consists of SiO 2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO 2 layer. The transmittance of the composite films in visible region ( T lum ) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO 2 films and tungsten-doped VO 2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO 2 /VO 2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW . cm -2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.

  12. Plasmonic Light Trapping in Thin-Film Solar Cells: Impact of Modeling on Performance Prediction

    Directory of Open Access Journals (Sweden)

    Alberto Micco

    2015-06-01

    Full Text Available We present a comparative study on numerical models used to predict the absorption enhancement in thin-film solar cells due to the presence of structured back-reflectors exciting, at specific wavelengths, hybrid plasmonic-photonic resonances. To evaluate the effectiveness of the analyzed models, they have been applied in a case study: starting from a U-shaped textured glass thin-film, µc-Si:H solar cells have been successfully fabricated. The fabricated cells, with different intrinsic layer thicknesses, have been morphologically, optically and electrically characterized. The experimental results have been successively compared with the numerical predictions. We have found that, in contrast to basic models based on the underlying schematics of the cell, numerical models taking into account the real morphology of the fabricated device, are able to effectively predict the cells performances in terms of both optical absorption and short-circuit current values.

  13. Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium

    Science.gov (United States)

    Albin, David S.; Noufi, Rommel

    2015-06-09

    Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium are provided. In one embodiment, a method for fabricating a thin film device comprises: providing a semiconductor film comprising indium (In) and selenium (Se) upon a substrate; heating the substrate and the semiconductor film to a desired temperature; and performing a mass transport through vapor transport of a copper chloride vapor and se vapor to the semiconductor film within a reaction chamber.

  14. Perovskite Thin Film Solar Cells Based on Inorganic Hole Conducting Materials

    Directory of Open Access Journals (Sweden)

    Pan-Pan Zhang

    2017-01-01

    Full Text Available Organic-inorganic metal halide perovskites have recently shown great potential for application, due to their advantages of low-cost, excellent photoelectric properties and high power conversion efficiency. Perovskite-based thin film solar cells have achieved a power conversion efficiency (PCE of up to 20%. Hole transport materials (HTMs are one of the most important components of perovskite solar cells (PSCs, having functions of optimizing interface, adjusting the energy match, and helping to obtain higher PCE. Inorganic p-type semiconductors are alternative HTMs due to their chemical stability, higher mobility, high transparency in the visible region, and applicable valence band (VB energy level. This review analyzed the advantages, disadvantages, and development prospects of several popular inorganic HTMs in PSCs.

  15. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    OpenAIRE

    U. Gangopadhyay; K. Kim; S. K. Dhungel; H. Saha; J. Yi

    2007-01-01

    The low-cost chemical bath deposition (CBD) technique is used to prepare CBD-ZnS films as antireflective (AR) coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize...

  16. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils...

  17. Effects of agrochemicals, ultra violet stabilisers and solar radiation on the radiometric properties of greenhouse films

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2013-10-01

    Full Text Available Agrochemicals, based on iron, sulphur and chlorine, generate by products that lead to a degradation of greenhouse films together with a decrease in their mechanical and physical properties. The degradation due to agrochemicals depends on their active principles, method and frequency of application, and greenhouse ventilation. The aim of the research was to evaluate how agrochemical contamination and solar radiation influence the radiometric properties of ethylene-vinyl acetate copolymer greenhouse films by means of laboratory and field tests. The films, manufactured on purpose with the addition of different light stabiliser systems, were exposed to natural outdoor weathering at the experimental farm of the University of Bari (Italy; 41° 05’ N in the period from 2006 to 2008. Each film was tested for two low tunnels: one low tunnel was sprayed from inside with the agrochemicals containing iron, chlorine and sulphur while the other one was not sprayed and served as control. Radiometric laboratory tests were carried out on the new films and on samples taken at the end of the trials. The experimental tests showed that both the natural weathering together with the agrochemicals did not modify significantly the radiometric properties of the films in the solar and in the photosynthetically active radiation wavelength range. Within six months of experimental field tests the variations in these radiometric characteristics were at most 10%. Significant variations, up to 70% of the initial value, were recorded for the stabilised films in the long-wave infrared radiation wavelength range.

  18. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.2–2.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  19. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    International Nuclear Information System (INIS)

    Zeng, Xiangbin; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-01-01

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B_2H_6 flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10"−"3 Ω cm, mobility of 16.5–25.5 cm"2/Vs, and carrier concentration of 2.2–2.7 × 10"2"0 cm"−"3 were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n"+-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm"2 and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm"2 and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  20. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi’an 710300 (China); Wang, Ye Feng [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Xue Qing [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2016-04-30

    Highlights: • PbSe thin film is deposited on FTO glass by a pulse voltage electrodeposition method. • The thin film is used as counter electrode (CE) in quantum dot-sensitized solar cell. • Superior electrocatalytic activity and stability in the polysulfide electrolyte is received. • The narrow band gap characteristics and p-type conductivity enhances the cell efficiency. • An efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells. - Abstract: Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  1. Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doo-Soo; Park, Ji-Hyeon; Shin, Beom-Ki; Moon, Kyeong-Ju [Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Son, Myoungwoo [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Ham, Moon-Ho [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Woong [School of Nano and Advanced Materials Engineering, Changwon National University, 9 Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface-textured AZO films were achieved by combining PDMS method with wet etching. Black-Right-Pointing-Pointer The AZO film deposited at 230 Degree-Sign C by PDMS exhibited the best performance. Black-Right-Pointing-Pointer It is due to the higher plasma density supplied from PDMS system. Black-Right-Pointing-Pointer Wet etching of the films produces a crater-like rough surface morphology. - Abstract: A simple but scalable approach to the production of surface-textured Al-doped ZnO(AZO) films for low-cost transparent electrode applications in thin-film solar cells is introduced in this study by combining pulsed dc magnetron sputtering (PDMS) with wet etching in sequence. First, structural, electrical, and optical properties of the AZO films prepared by a PDMS were investigated as functions of deposition temperature to obtain transparent electrode films that can be used as indium-free alternative to ITO electrodes. Increase in the deposition temperature to 230 Degree-Sign C accompanied the improvement in crystalline quality and doping efficiency, which enabled the lowest electrical resistivity of 4.16 Multiplication-Sign 10{sup -4} {Omega} cm with the carrier concentration of 1.65 Multiplication-Sign 10{sup 21} cm{sup -3} and Hall mobility of 11.3 cm{sup 2}/V s. The wet etching of the films in a diluted HCl solution resulted in surface roughening via the formation of crater-like structures without significant degradation in the electrical properties, which is responsible for the enhanced light scattering capability required for anti-reflective electrodes in thin film solar cells.

  2. Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells

    Science.gov (United States)

    Kim, Jekyung; Shin, Byungha

    2017-09-01

    Cu2ZnSn(S,Se)4 thin film solar cell has attracted significant attention in thin film solar cell technologies considering its low-cost, non-toxicity, and earth-abundance. However, the highest efficiency still remains at 12.6%, far below the theoretical efficiency of Shockley-Queisser (SQ) limit of around 30%. The limitation behind such shortcoming in the device performance was reported to stem primarily from a high V oc deficit compared to other thin film solar cell technologies such as CdTe or Cu(In,Ga)Se2 (CIGS), whose origins are attributed to the prevalence of band tailing from cation disordering as well as to the high recombination at the interfaces. In this report, systematic studies on the causes of a high V oc deficit and associated remarkable approaches to achieve high V oc have been reviewed, provided with a guidance on the future direction of CZTSSe research in resolving the high V oc deficit issue. [Figure not available: see fulltext.

  3. Amorphous silicon thin-film solar cells on glass fiber textiles

    Energy Technology Data Exchange (ETDEWEB)

    Plentz, Jonathan, E-mail: jonathan.plentz@leibniz-ipht.de; Andrä, Gudrun; Pliewischkies, Torsten; Brückner, Uwe; Eisenhawer, Björn; Falk, Fritz

    2016-02-15

    Graphical abstract: - Highlights: • Amorphous silicon solar cells on textile glass fiber fabrics are demonstrated. • Open circuit voltages of 883 mV show shunt-free contacting on non-planar fabrics. • Short-circuit current densities of 3.7 mA/cm{sup 2} are limited by transmission losses. • Fill factors of 43.1% and pseudo fill factors of 70.2% show high series resistance. • Efficiencies of 1.4% and pseudo efficiencies of 2.1% realized on textile fabrics. - Abstract: In this contribution, amorphous silicon thin-film solar cells on textile glass fiber fabrics for smart textiles are prepared and the photovoltaic performance is characterized. These solar cells on fabrics delivered open circuit voltages up to 883 mV. This shows that shunt-free contacting of the solar cells was successful, even in case of non-planar fabrics. The short-circuit current densities up to 3.7 mA/cm{sup 2} are limited by transmission losses in a 10 nm thin titanium layer, which was used as a semi-transparent contact. The low conductivity of this layer limits the fill factor to 43.1%. Pseudo fill factors, neglecting the series resistance, up to 70.2% were measured. Efficiencies up to 1.4% and pseudo efficiencies up to 2.1% were realized on textile fabrics. A transparent conductive oxide could further improve the efficiency to above 5%.

  4. Dyadic Green’s functions of thin films: Applications within plasmonic solar cells

    DEFF Research Database (Denmark)

    Jung, Jesper; Søndergaard, Thomas; Pedersen, Thomas Garm

    2011-01-01

    Optimization and design of silicon solar cells by exploiting light scattering frommetal nanoparticles to increase the efficiency is addressed in the small particle limit from a fundamental point of view via the dyadic Green’s function formulation. Based on the dyadic Green’s function (Green......’s tensor) of a three-layer geometry, light scattering from electric point dipoles (representing small metal scatterers) located within a thin layer sandwiched between a substrate and a superstrate is analyzed. Starting from the full dyadic Green’s function we derive analytical near- and far....... The theoretical approach is used to analyze realistic configurations for plasmon-assisted silicon solar cells. We show that by embedding metal nanoscatterers in a thin film with a high refractive index (rutile TiO2 with n ≈ 2.5) on top of the silicon, the fraction of scattered light that couples into the solar...

  5. Superior light trapping in thin film silicon solar cells through nano imprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Schropp, R.E.I.; Pex, P.P.A.C.

    2013-10-15

    ECN and partners have developed a fabrication process based on nanoimprint lithography (NIL) of textures for light trapping in thin film solar cells such as thin-film silicon, OPV, CIGS and CdTe. The process can be applied in roll-to-roll mode when using a foil substrate or in roll-to-plate mode when using a glass substrate. The lacquer also serves as an electrically insulating layer for cells if steel foil is used as substrate, to enable monolithic series interconnection. In this paper we will show the superior light trapping in thin film silicon solar cells made on steel foil with nanotextured back contacts. We have made single junction a-Si and {mu}c-Si and a-Si/{mu}c-Si tandem cells, where we applied several types of nano-imprints with random and periodic structures. We will show that the nano-imprinted back contact enables more than 30% increase of current in comparison with non-textured back contacts and that optimized periodic textures outperform state-of-the-art random textures. For a-Si cells we obtained Jsc of 18 mA/cm{sup 2} and for {mu}c-Si cells more than 24 mA/cm{sup 2}. Tandem cells with a total Si absorber layer thickness of only 1350 nm have an initial efficiency of 11%.

  6. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    Science.gov (United States)

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  7. Surface modification of porous nanocrystalline TiO2 films for dye-sensitized solar cell application by various gas plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Yoon, Chang-Ho; Kim, Kang-Jin; Lee, Yeonhee

    2007-01-01

    Titanium dioxide (TiO 2 ) film for dye-sensitized solar cells (DSSCs) has surface defects such as oxygen vacancies created during the annealing process. The authors used a plasma treatment technique to reduce defects on TiO 2 surfaces. They investigated the influence of different gas plasma treatments of TiO 2 film on the photoelectric performance of DSSC. Short-circuit photocurrent density (J sc ), open-circuit photovoltage (V oc ), and the amount of adsorbed dye for DSSCs were measured. As a result, the solar-to-electricity conversion efficiencies of the O 2 - and N 2 -treated cells increased by 15%-20% compared to untreated cells. On the other hand, solar energy conversion efficiency of CF 4 -plasma treated cells decreased drastically. The increased amount of adsorbed dye on the TiO 2 film was measured by time-of-flight secondary ion mass spectrometry. TiO 2 surfaces modified by plasma treatment were characterized using analytical instruments such as x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure

  8. Finite Element Analysis of Film Stack Architecture for Complementary Metal-Oxide-Semiconductor Image Sensors.

    Science.gov (United States)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-05-02

    Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.

  9. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  10. Design and optimization of the plasmonic graphene/InP thin-film solar-cell structure

    Science.gov (United States)

    Nematpour, Abedin; Nikoufard, Mahmoud; Mehragha, Rouholla

    2018-06-01

    In this paper, a graphene/InP thin-film Schottky-junction solar cell with a periodic array of plasmonic back-reflector is proposed. In this structure, a single-layer graphene sheet is deposited on the surface of the InP to form a Schottky junction. Then, the layer stack of the proposed solar-cell is optimized to have a maximum optical absorption of 〈A W〉  =  0.985 (98.5%) and short-circuit current density of J sc  =  33.01 mA cm‑2.

  11. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules

    Science.gov (United States)

    Chen, Han; Ye, Fei; Tang, Wentao; He, Jinjin; Yin, Maoshu; Wang, Yanbo; Xie, Fengxian; Bi, Enbing; Yang, Xudong; Grätzel, Michael; Han, Liyuan

    2017-10-01

    Recent advances in the use of organic-inorganic hybrid perovskites for optoelectronics have been rapid, with reported power conversion efficiencies of up to 22 per cent for perovskite solar cells. Improvements in stability have also enabled testing over a timescale of thousands of hours. However, large-scale deployment of such cells will also require the ability to produce large-area, uniformly high-quality perovskite films. A key challenge is to overcome the substantial reduction in power conversion efficiency when a small device is scaled up: a reduction from over 20 per cent to about 10 per cent is found when a common aperture area of about 0.1 square centimetres is increased to more than 25 square centimetres. Here we report a new deposition route for methyl ammonium lead halide perovskite films that does not rely on use of a common solvent or vacuum: rather, it relies on the rapid conversion of amine complex precursors to perovskite films, followed by a pressure application step. The deposited perovskite films were free of pin-holes and highly uniform. Importantly, the new deposition approach can be performed in air at low temperatures, facilitating fabrication of large-area perovskite devices. We reached a certified power conversion efficiency of 12.1 per cent with an aperture area of 36.1 square centimetres for a mesoporous TiO2-based perovskite solar module architecture.

  12. Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells

    International Nuclear Information System (INIS)

    Paetzold, Ulrich W.; Meier, Matthias; Moulin, Etienne; Smirnov, Vladimir; Pieters, Bart E.; Rau, Uwe; Carius, Reinhard

    2013-01-01

    In this work, we investigate the light trapping of thin-film silicon solar cells which apply plasmonic Ag back contacts with non-ordered Ag nanostructures. The preparation, characterization and three-dimensional electromagnetic simulations of these back contacts with various distributions of non-ordered Ag nanostructures are presented. The measured reflectance spectra of the Ag back contacts with non-ordered nanostructures in air are well reproduced in reflectance spectra derived from the three-dimensional electromagnetic simulations of isolated nanostructures on Ag back contacts. The light–matter interaction of these nanostructures is given by localized surface plasmons and, thus, the measured diffuse reflectance of the back contacts is attributed to plasmon-induced light scattering. A significant plasmonic light-trapping effect in n-i-p substrate-type μc-Si:H thin-film solar cell prototypes which apply a Ag back contact with non-ordered nanostructures is identified when compared with flat reference solar cells

  13. Plasmonic back contacts with non-ordered Ag nanostructures for light trapping in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, Ulrich W., E-mail: u.paetzold@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Meier, Matthias, E-mail: ma.meier@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Moulin, Etienne, E-mail: e.moulin@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Smirnov, Vladimir, E-mail: v.smirnov@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Pieters, Bart E., E-mail: b.pieters@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Rau, Uwe, E-mail: u.rau@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany); Carius, Reinhard, E-mail: r.carius@fz-juelich.de [IEK5-Photovoltaik, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2013-05-15

    In this work, we investigate the light trapping of thin-film silicon solar cells which apply plasmonic Ag back contacts with non-ordered Ag nanostructures. The preparation, characterization and three-dimensional electromagnetic simulations of these back contacts with various distributions of non-ordered Ag nanostructures are presented. The measured reflectance spectra of the Ag back contacts with non-ordered nanostructures in air are well reproduced in reflectance spectra derived from the three-dimensional electromagnetic simulations of isolated nanostructures on Ag back contacts. The light–matter interaction of these nanostructures is given by localized surface plasmons and, thus, the measured diffuse reflectance of the back contacts is attributed to plasmon-induced light scattering. A significant plasmonic light-trapping effect in n-i-p substrate-type μc-Si:H thin-film solar cell prototypes which apply a Ag back contact with non-ordered nanostructures is identified when compared with flat reference solar cells.

  14. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    Science.gov (United States)

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-01-01

    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612

  15. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Chunfeng Lan

    2018-02-01

    Full Text Available We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc, short-circuit current (Jsc and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells.

  16. The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells

    Institute of Scientific and Technical Information of China (English)

    Wang Guang-Hong; Zhao Lei; Yan Bao-Jun; Chen Jing-Wei; Wang Ge; Diao Hong-Wei; Wang Wen-Jing

    2013-01-01

    Different aluminum-doped ZnO (AZO)/metal composite thin films,including AZO/Ag/Al,AZO/Ag/nickelchromium alloy (NiCr),and AZO/Ag/NiCr/Al,are utilized as the back reflectors of p-i-n amorphous silicon germanium thin film solar cells.NiCr is used as diffusion barrier layer between Ag and Al to prevent mutual diffusion,which increases the short circuit current density of solar cell.NiCr and NiCr/Al layers are used as protective layers of Ag layer against oxidation and sulfurization,the higher efficiency of solar cell is achieved.The experimental results show that the performance of a-SiGe solar cell with AZO/Ag/NiCr/Al back reflector is best.The initial conversion efficiency is achieved to be 8.05%.

  17. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    Science.gov (United States)

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  18. A comparative study of solution-processed low- and high-band-gap chalcopyrite thin-film solar cells

    International Nuclear Information System (INIS)

    Park, Se Jin; Moon, Sung Hwan; Min, Byoung Koun; Cho, Yunae; Kim, Ji Eun; Kim, Dong-Wook; Lee, Doh-Kwon; Gwak, Jihye; Kim, Jihyun

    2014-01-01

    Low-cost and printable chalcopyrite thin-film solar cells were fabricated by a precursor solution-based coating method with a multi-step heat-treatment process (oxidation, sulfurization, and selenization). The high-band-gap (1.57 eV) Cu(In x Ga 1−x )S 2 (CIGS) solar cell showed a high open-circuit voltage of 787 mV, whereas the low-band-gap (1.12 eV) Cu(In x Ga 1−x )(S 1−y Se y ) 2 (CIGSSe) cell exhibited a high short-circuit current density of 32.6 mA cm −2 . The energy conversion efficiencies were 8.28% for CIGS and 8.81% for CIGSSe under standard irradiation conditions. Despite similar efficiencies, the two samples showed notable differences in grain size, surface morphology, and interfacial properties. Low-temperature transport and admittance characteristics of the samples clearly revealed how their structural differences influenced their photovoltaic and electrical properties. Such analyses provide insight into the enhanced solar cell performance of the solution-processed chalcopyrite thin films. (paper)

  19. Spectroscopic imaging of photopotentials and photoinduced potential fluctuations in a bulk heterojunction solar cell film.

    Science.gov (United States)

    Luria, Justin L; Hoepker, Nikolas; Bruce, Robert; Jacobs, Andrew R; Groves, Chris; Marohn, John A

    2012-11-27

    We present spatially resolved photovoltage spectra of a bulk heterojunction solar cell film composed of phase-separated poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB) polymers prepared on ITO/PEDOT:PSS and aluminum substrates. Over both PFB- and F8BT-rich domains, the photopotential spectra were found to be proportional to a linear combination of the polymers' absorption spectra. Charge trapping in the film was studied using photopotential fluctuation spectroscopy, in which low-frequency photoinduced electrostatic potential fluctuations were measured by observing noise in the oscillation frequency of a nearby charged atomic force microscope cantilever. Over both F8BT- and PFB-rich regions, the magnitude, distance dependence, frequency dependence, and illumination wavelength dependence of the observed cantilever frequency noise are consistent with photopotential fluctuations arising from stochastic light-driven trapping and detrapping of charges in F8BT. Taken together, our findings suggest a microscopic mechanism by which intermixing of phases leads to charge trapping and thereby to suppressed open-circuit voltage and decreased efficiency in this prototypical bulk heterojunction solar cell film.

  20. Prepared thin laminae of CuInS{sub 2} by means of evaporation in flow modulated for its application like absorbents in solar cells; Laminas delgadas de CuInS{sub 2} preparadas mediante evaporacion en flujo modulado para su aplicacion como absorbentes en celulas solares

    Energy Technology Data Exchange (ETDEWEB)

    Bollero, A.; Trigo, J. F.; Herrero, J.; Gutierrez, M. T.

    2008-07-01

    The Department of energy of CIEMAT focuses one of its research lines on the preparation of CuInS{sub 2} films to be used as absorber in solar cells. this work shows the influence of the different process parameters (deposition sequence, modulation of the evaporation flux of the constituent elements,...) on the morphology and the optical properties of the final films. A simplified evaporation procedure has allowed the preparation of CuInS{sub 2} films with a low Cu content. this avoids the necessity of applying subsequent toxic treatment for removal of the CuS phase prior to implementation of the film as absorber in the solar cell device. (Author)

  1. Carrier transport in polycrystalline silicon thin films solar cells grown on a highly textured structure

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Takakura, H.; Hamakawa, Y.; Muhida, R.; Kawamura, T.; Harano, T.; Toyama, T.; Okamoto, H.

    2004-01-01

    Roč. 43, 9A (2004), s. 5955-5959 ISSN 0021-4922 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon thin film * solar cells * substrate texture Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.142, year: 2004

  2. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously.

    Science.gov (United States)

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lim, Joo Ho; Yu, Jae Su

    2016-11-09

    We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

  3. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro, E-mail: takeuchi@umd.edu [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20740 (United States); Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  4. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Yangang Liang

    2016-01-01

    Full Text Available We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH3NH3PbI3 thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  5. Composition controlled preparation of Cu–Zn–Sn precursor films for Cu{sub 2}ZnSnS{sub 4} solar cells using pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Wenping; Ren, Xiaodong; Zi, Wei; Jia, Lujian [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023 (China)

    2015-11-25

    A pulsed electrodeposition technique is developed to prepare Cu–Zn–Sn (CZT) precursor films for the Cu{sub 2}ZnSnS{sub 4} (CZTS) solar cells. The CZT precursor films are co-deposited on Mo-coated substrate using a cyanide-free electrolyte containing Zn (II) and Sn (II) salts. During the deposition, CuSO{sub 4} solution is supplied at controlled rate using a peristaltic pump to effectively regulate Cu{sup 2+} concentration. In addition, C{sub 6}H{sub 5}Na{sub 3}O{sub 7} is used as a coordination ligand to further balance activities of the Cu{sup 2+}, Sn{sup 2+} and Zn{sup 2+}. The CZTS films are then prepared using a sulfurization process to convert the electrodeposited CZT precursors at 580 °C in a sulphur atmosphere. The annealed thin films are characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), EDAX and X-ray photoelectron spectroscopy (XPS) techniques for their structural, morphological, compositional and chemical properties. It is found that the addition rate of Cu (II) has significant effects on the properties of the CZTS thin films. The CZTS film prepared using the optimized copper addition rate (0.15 ml/min) shows pure kesterite phase, Cu-poor and Zn-rich composition, compact morphology and good band gap ∼1.45 eV. Solar cells using the structure glass/Mo/CZTS/CdS/i-ZnO/ZnO:Al achieves a respectable external quantum efficiency and solar cell efficiency. - Highlights: • Developed a composition controlled pulsed electrodeposition for CZTS solar cells. • Electrochemistry and CZT composition regulated by measured Cu supply rate. • Complex chemistry used to regulate ion activities and electrodeposition. • Achieved a respectable CZTS solar cell quantum efficiency.

  6. Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells.

    Science.gov (United States)

    Ho Yeon, Deuk; Chandra Mohanty, Bhaskar; Lee, Seung Min; Soo Cho, Yong

    2015-09-23

    Here we report the highest energy conversion efficiency and good stability of PbS thin film-based depleted heterojunction solar cells, not involving PbS quantum dots. The PbS thin films were grown by the low cost chemical bath deposition (CBD) process at relatively low temperatures. Compared to the quantum dot solar cells which require critical and multistep complex procedures for surface passivation, the present approach, leveraging the facile modulation of the optoelectronic properties of the PbS films by the CBD process, offers a simpler route for optimization of PbS-based solar cells. Through an architectural modification, wherein two band-aligned junctions are stacked without any intervening layers, an enhancement of conversion efficiency by as much as 30% from 3.10 to 4.03% facilitated by absorption of a wider range of solar spectrum has been obtained. As an added advantage of the low band gap PbS stacked over a wide gap PbS, the devices show stability over a period of 10 days.

  7. A facile inexpensive route for SnS thin film solar cells with SnS{sub 2} buffer

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Minna Reddy, Vasudeva Reddy, E-mail: drmvasudr9@gmail.com [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Pejjai, Babu [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India); Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Park, Chinho, E-mail: chpark@ynu.ac.kr [School of Chemical Engineering, Yeungnam University, 280Daehak-ro, Gyeongsan 712-749, Republic of Korea (Korea, Republic of); Ramakrishna Reddy, K.T., E-mail: ktrkreddy@gmail.com [Solar Photovoltaic Laboratory, Department of Physics, Sri Venkateswasra University, Tirupati 517 502 (India)

    2016-05-30

    Graphical abstract: PYS spectra of SnS/SnS{sub 2} interface and the related band diagram. - Highlights: • A low cost SnS solar cell is developed using chemical bath deposition. • We found E{sub I} & χ of SnS (5.3 eV & 4.0 eV) and SnS{sub 2} (6.9 eV & 4.1 eV) films from PYS. • Band offsets of 0.1 eV (E{sub c}) and 1.6 eV (E{sub v}) are estimated for SnS/SnS{sub 2} junction. • SnS based solar cell showed a conversion efficiency of 0.51%. - Abstract: Environment-friendly SnS based thin film solar cells with SnS{sub 2} as buffer layer were successfully fabricated from a facile inexpensive route, chemical bath deposition (CBD). Layer studies revealed that as-grown SnS and SnS{sub 2} films were polycrystalline; (1 1 1)/(0 0 1) peaks as the preferred orientation; 1.3 eV/2.8 eV as optical band gaps; and showed homogeneous microstructure with densely packed grains respectively. Ionization energy and electron affinity values were found by applying photoemission yield spectroscopy (PYS) to the CBD deposited SnS and SnS{sub 2} films for the first time. These values obtained as 5.3 eV and 4.0 eV for SnS films; 6.9 eV and 4.1 eV for SnS{sub 2} films. The band alignment of SnS/SnS{sub 2} junction showed TYPE-II heterostructure. The estimated conduction and valance band offsets were 0.1 eV and 1.6 eV respectively. The current density–voltage (J–V) measurements of the cell showed open circuit voltage (V{sub oc}) of 0.12 V, short circuit current density (J{sub sc}) of 10.87 mA cm{sup −2}, fill factor (FF) of 39% and conversion efficiency of 0.51%.

  8. Soft Magnetic Properties of Nanocrystalline Fe-M-(B and/or O)(M=Group IV A, V A Elements) Alloy Films

    OpenAIRE

    Hayakawa, Y.; Makino, A.; Inoue, A.; Masumoto, T.

    1996-01-01

    In Fe-M-(B and/or O)(M=group IV A, V A elements) alloy films, nanocrystalline bcc phase are formed by annealing the amorphous single phase for Fe-M-B films, whereas the bcc nanocrystals are already formed in an as-deposited state for Fe-M-O or Fe-M-B-O) films. Among Fe-M-B films with various M elements, Fe-(Zr, Hf, Nb, Ta)-B alloy films exhibit high saturation magnetization (Is) above 1.4 T and high relative permeability (|μ|) above 1000 at 1MHz. The highest |μ| of 3460 at 1MHz is obtained fo...

  9. Site selective doping of Zn for the p-type Cu(In,Ga)Se{sub 2} thin film for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Sho [Faculty of Engineering, Ehime University, Matsuyama 790-8577 (Japan); Tokyo University of Science, Research Institute for Science and Technology, Noda, Chiba 278-8510 (Japan)

    2017-06-15

    Selective doping of a Zn impurity at the group III site in a Cu(In, Ga)Se{sub 2} (CIGS) film was performed by the doping of Zn at the first stage of the three-stage method. The p-type CIGS:Zn film was obtained, which is in contrast to the n-type CIGS:Zn film obtained by the Zn impurity doping at the second and third-stages. Based on excitation intensity dependence of photoluminescence (PL) at low-temperature, the change in the acceptor level was observed. The enhancement of carrier concentration as a result of Zn-doping in the p-type CIGS:Zn film was observed. The CIGS:Zn solar cells exhibited η of 14.5% and V{sub oc} of 0.658 V, which are higher than that of the corresponding solar cells using the undoped CIGS films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.

    Science.gov (United States)

    Guo, Ankang; Ming, Xin; Fu, Yang; Wang, Gang; Wang, Xianbao

    2017-09-06

    Solar vapor generation is a promising and whole new branch of photothermal conversion for harvesting solar energy. Various materials and devices for solar thermal conversion were successively produced and reported for higher solar energy utilization in the past few years. Herein, a compact device of reduced graphene oxides (rGO) and paper fibers was designed and assembled for efficient solar steam generation under light illumination, and it consists of water supply pipelines (WSP), a thermal insulator (TI) and a double-sided absorbing film (DSF). Heat localization is enabled by the black DSF due to its broad absorption of sunlight. More importantly, the heat transfer, from the hot DSF to the cold base fluid (water), was suppressed by TI with a low thermal conductivity. Meanwhile, bulk water was continuously transported to the DSF by WSP through TI, which was driven by the surface energy and surface tension based on the capillary effect. The effects of reduction degrees of rGO on the photothermal conversion were explored, and the evaporation efficiency reached 89.2% under one sun with 60 mg rGO. This new microdevice provided a basic technical support for distillation, desalination, sewage treatment, and related technologies.

  11. Preparation of nanostructured PbS thin films as sensing element for NO{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaci, S., E-mail: k_samira05@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Keffous, A.; Hakoum, S. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Trari, M. [Université des Sciences et Technologies Houari Boumediene (USTHB), Laboratoire de Stockage et de Valorisation des Eneriges Renouvelables, Faculté de Chimie, BP 32, EL Alia, 16111 Bab Ezzouar, Algiers (Algeria); Mansri, O.; Menari, H. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria)

    2014-06-01

    In this work, we demonstrate that semiconducting films of A{sub IV}B{sub VI} compounds, in particular, of nanostructured lead sulfide (PbS) which prepared by chemical bath deposition (CBD), can be used as a sensing element for nitrogen dioxide (NO{sub 2}) gas. The CBD method is versatile, simple in implementation and gives homogeneous semiconductor structures. We have prepared PbS nanocrystalline thin film at different reaction baths and temperatures. In the course of deposition, variable amounts of additives, such as organic substances among them, were introduced into the baths. The energy dispersive analysis (EDX) confirms the chemical composition of PbS films. A current–voltage (I–V) characterization of Pd/nc-PbS/a-SiC:H pSi(100)/Al Schottky diode structures were studied in the presence of NO{sub 2} gas. The gas sensing behavior showed that the synthesized PbS nanocrystalline thin films were influenced by NO{sub 2} gas at room temperature. The results can be used for developing an experimental sensing element based on chemically deposited nanostructured PbS films which can be applicable in gas sensors.

  12. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications

    NARCIS (Netherlands)

    Fang, Hong-Hua; Wang, Feng; Adjokatse, Sampson; Zhao, Ni; Even, Jacky; Loi, Maria Antonietta

    Formamidinium lead iodide (FAPbI(3)) is a newly developed hybrid perovskite that potentially can be used in high-efficiency solution-processed solar cells. Here, the temperature-dependent dynamic optical properties of three types of FAPbI(3) perovskite films (fabricated using three different

  13. Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Tan Weiwei; Yin Xiong; Zhou Xiaowen; Zhang Jingbo; Xiao Xurui; Lin Yuan

    2009-01-01

    Nanocrystalline TiO 2 films were prepared on flexible Ti-metal sheets by electrophoretic deposition followed by chemical treatment with tetra-n-butyl titanate (TBT) and sintering at 450 deg. C. X-ray diffraction (XRD) analysis indicates that TBT treatment led to the formation of additional anatase TiO 2 , which plays an important role in improving the interconnection between TiO 2 particles, as well as the adherence of the film to the substrate, and in modifying the surface properties of the nanocrystalline particles. The effect of TBT treatment on the electron transport in the nanocrystalline films was studied by intensity-modulated photocurrent spectroscopy (IMPS). An increase in the conversion efficiency was obtained for the dye-sensitized solar cells with TBT-treated nanocrystalline TiO 2 films. The cell performance was further optimized by designing nanocrystalline TiO 2 films with a double-layer structure composed of a light-scattering layer and a transparent layer. The light-scattering effect of the double-layer nanocrystalline films was evaluated by diffuse reflectance spectra. Employing the double-layer nanocrystalline films as the photoelectrodes resulted in a significant improvement in the incident photo-to-current conversion efficiency of the corresponding cells due to enhanced solar absorption by light scattering. A high conversion efficiency of 6.33% was measured under illumination with 100 mW cm -2 (AM 1.5) simulated sunlight.

  14. Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off

    International Nuclear Information System (INIS)

    Schermer, J.J.; Bauhuis, G.J.; Mulder, P.; Haverkamp, E.J.; Deelen, J. van; Niftrik, A.T.J. van; Larsen, P.K.

    2006-01-01

    Using the epitaxial lift-off (ELO) technique, a III-V device structure can be separated from its GaAs substrate by selective wet etching of a thin release layer. The thin-film structures obtained by the ELO process can be cemented or van der Waals bonded on arbitrary smooth surface carriers for further processing. It is shown that the ELO method, initially able to separate millimetre-sized GaAs layers with a lateral etch rate of about 1 mm/h, has been developed to a process capable to free the entire 2-in. epitaxial structures from their substrates with etch rates up to 30 mm/h. With these characteristics the method has a large potential for the production of high efficiency thin-film solar cells. By choosing the right deposition and ELO strategy, the thin-film III-V cells can be adequately processed on both sides allowing for an entire range of new cell structures. In the present work, the performance of semi-transparent bifacial solar cells, produced by the deposition of metal grid contacts on both sides, was evaluated. Reflection of light at the rear side of the bifacial GaAs solar cells was found to result in an enhanced collection probability of the photon-induced carriers compared to that of regular III-V cells on a GaAs substrate. To enhance this effect, thin-film GaAs cells with gold mirror back contacts were prepared. Even in their present premature stage of development, these single-junction thin-film cells reached a record efficiency of 24.5% which is already very close to the 24.9% efficiency that was obtained with a regular GaAs cell on a GaAs substrate. From this it could be concluded that, as a result of the photon confinement, ELO cells require a significantly thinner base layer than regular GaAs cells while at the same time they have the potential to reach a higher efficiency

  15. On the origin of the changes in the opto-electrical properties of boron-doped zinc oxide films after plasma surface treatment for thin-film silicon solar cell applications

    Science.gov (United States)

    Le, Anh Huy Tuan; Kim, Youngkuk; Lee, Youn-Jung; Hussain, Shahzada Qamar; Nguyen, Cam Phu Thi; Lee, Jaehyung; Yi, Junsin

    2018-03-01

    The modification of the steep and sharp valleys on the surface of the boron-doped zinc oxide (BZO) front electrodes by plasma surface treatment is a critical process for avoiding a significant reduction in the electrical performance of thin-film silicon solar cells. In this work, we report the origin of the changes in the electrical and optical properties of the BZO films that occur after this process. On the basis of an analysis of the chemical states, we found an improvement of the carrier concentration along with the treatment time that was mainly due to an increase of the oxygen vacancy. This indicated a deficiency of the oxygen in the BZO films under argon-ion bombardment. The red-shift of the A1 longitudinal optical mode frequency in the Raman spectra that was attributed to the existence of vacancy point defects within the films also strengthened this argument. The significant reduction of the haze ratio as well as the appearance of interference peaks on the transmittance spectra as the treatment time was increased were mainly due to the smoothing of the film surface, which indicated a degradation of the light-scattering capability of the BZO films. We also observed a gain of the visible-region transmittance that was attributed to the decrease of the thickness of the BZO films after the plasma surface treatment, instead of the crystallinity improvement. On the basis of our findings, we have proposed a further design rule of the BZO front electrodes for thin-film silicon solar cell applications.

  16. Multiscale Computational Fluid Dynamics: Methodology and Application to PECVD of Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Marquis Crose

    2017-02-01

    Full Text Available This work focuses on the development of a multiscale computational fluid dynamics (CFD simulation framework with application to plasma-enhanced chemical vapor deposition of thin film solar cells. A macroscopic, CFD model is proposed which is capable of accurately reproducing plasma chemistry and transport phenomena within a 2D axisymmetric reactor geometry. Additionally, the complex interactions that take place on the surface of a-Si:H thin films are coupled with the CFD simulation using a novel kinetic Monte Carlo scheme which describes the thin film growth, leading to a multiscale CFD model. Due to the significant computational challenges imposed by this multiscale CFD model, a parallel computation strategy is presented which allows for reduced processing time via the discretization of both the gas-phase mesh and microscopic thin film growth processes. Finally, the multiscale CFD model has been applied to the PECVD process at industrially relevant operating conditions revealing non-uniformities greater than 20% in the growth rate of amorphous silicon films across the radius of the wafer.

  17. Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing.

    Science.gov (United States)

    Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng

    2016-12-01

    A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.

  18. Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel

    2013-01-01

    The polymer and organic solar cell technology is critically presented in the context of other thin film technologies with a specific focus on what it will take to make them a commercial success. The academic success of polymer and organic solar cells far outweigh any other solar cell technology w...

  19. Application of lightweight materials in structure concept design of large-scale solar energy unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Wei; Lv, Shengli; Guan, XiQi

    2017-09-01

    Carbon fiber composites and film materials can be effectively used in light aircraft structures, especially for solar unmanned aerial vehicles. The use of light materials can reduce the weight of the aircraft, but also can effectively improve the aircraft's strength and stiffness. The structure of the large aspect ratio solar energy UAV was analyzed in detail, taking Solar-impulse solar aircraft as an example. The solar energy UAV has a wing aspect ratio greater than 20, and the detailed digital model of the wing structure including beam, ribs and skin was built, also the Finite Element Method was applied to analyze the static and dynamic performance of the structure. The upper skin of the wing is covered with silicon solar cells, while the lower skin is light and transparent film. The single beam truss form of carbon fiber lightweight material is used in the wing structure. The wing beam is a box beam with rectangular cross sections. The box beam connected the front parts and after parts of the ribs together. The fuselage of the aircraft was built by space truss structure. According to the static and dynamic analysis with Finite Element method, it was found that the aircraft has a small wingtip deflection relative to the wingspan in the level flight state. The first natural frequency of the wing structure is pretty low, which is closed to the gust load.

  20. Development of Dye-Sensitized Solar Cells with Sputtered N-Doped TiO2 Thin Films: From Modeling the Growth Mechanism of the Films to Fabrication of the Solar Cells

    Directory of Open Access Journals (Sweden)

    D. A. Duarte

    2014-01-01

    Full Text Available In this paper, nitrogen-doped TiO2 thin films were deposited by DC reactive sputtering at different doping levels for the development of dye-sensitized solar cells. The mechanism of film growth during the sputtering process and the effect of the nitrogen doping on the structural, optical, morphological, chemical, and electronic properties of the TiO2 were investigated by numerical modeling and experimental methods. The influence of the nitrogen doping on the working principle of the prototypes was investigated by current-voltage relations measured under illuminated and dark conditions. The results indicate that, during the film deposition, the control of the oxidation processes of the nitride layers plays a fundamental role for an effective incorporation of substitutional nitrogen in the film structure and cells built with nitrogen-doped TiO2 have higher short-circuit photocurrent in relation to that obtained with conventional DSSCs. On the other hand, DSSCs built with nondoped TiO2 have higher open-circuit voltage. These experimental observations indicate that the incorporation of nitrogen in the TiO2 lattice increases simultaneously the processes of generation and destruction of electric current.

  1. Seismological comparisons of solar models with element diffusion using the MHD, OPAL, and SIREFF equations of state

    International Nuclear Information System (INIS)

    Guzik, J.A.; Swenson, F.J.

    1997-01-01

    We compare the thermodynamic and helioseismic properties of solar models evolved using three different equation of state (EOS) treatments: the Mihalas, Daeppen ampersand Hummer EOS tables (MHD); the latest Rogers, Swenson, ampersand Iglesias EOS tables (OPAL), and a new analytical EOS (SIREFF) developed by Swenson et al. All of the models include diffusive settling of helium and heavier elements. The models use updated OPAL opacity tables based on the 1993 Grevesse ampersand Noels solar element mixture, incorporating 21 elements instead of the 14 elements used for earlier tables. The properties of solar models that are evolved with the SIREFF EOS agree closely with those of models evolved using the OPAL or MHD tables. However, unlike the MHD or OPAL EOS tables, the SIREFF in-line EOS can readily account for variations in overall Z abundance and the element mixture resulting from nuclear processing and diffusive element settling. Accounting for Z abundance variations in the EOS has a small, but non-negligible, effect on model properties (e.g., pressure or squared sound speed), as much as 0.2% at the solar center and in the convection zone. The OPAL and SIREFF equations of state include electron exchange, which produces models requiring a slightly higher initial helium abundance, and increases the convection zone depth compared to models using the MHD EOS. However, the updated OPAL opacities are as much as 5% lower near the convection zone base, resulting in a small decrease in convection zone depth. The calculated low-degree nonadiabatic frequencies for all of the models agree with the observed frequencies to within a few microhertz (0.1%). The SIREFF analytical calibrations are intended to work over a wide range of interior conditions found in stellar models of mass greater than 0.25M circle-dot and evolutionary states from pre-main-sequence through the asymptotic giant branch (AGB). It is significant that the SIREFF EOS produces solar models that both measure up

  2. Achievement report for fiscal 1981 on Sunshine Program research and development. Research and development of amorphous solar cells (Research and development of amorphous solar cells on flexible film substrates); 1981 nendo amorphous taiyo denchi no kenkyu kaihatsu seika hokokusho. Kadosei film wo kiban to suru amorphous taiyo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-31

    Efforts will be made to reduce the cost, increase efficiency, and enlarge cell areas and, at the same time, to establish the foundation of a roll-up type solar cell manufacturing process which is required for the implementation of mass production. In an inverted pin/ITO (indium-tin oxide) hetero-face structure cell installed on a polymer film substrate, a conversion efficiency of 5.33% is achieved in the case of a solar cell whose n-layer is of the amorphous phase, and 6.36% in the case of a cell of the microcrystallized phase. A roll-up type glow discharge CVD (chemical vapor deposition) unit is designed and experimentally built, which is for the realization of large area cells. It is now duly expected that an undoped (i-type) a-Si:H film will be deposited to a thickness of approximately 5000A. As the result of a first-step screening conducted in search of amorphous solar cell sealing materials, some applicable plastic materials are selected. The future is bright of amorphous solar cells on polymer film substrates. (NEDO)

  3. High-Performance and Omnidirectional Thin-Film Amorphous Silicon Solar Cell Modules Achieved by 3D Geometry Design.

    Science.gov (United States)

    Yu, Dongliang; Yin, Min; Lu, Linfeng; Zhang, Hanzhong; Chen, Xiaoyuan; Zhu, Xufei; Che, Jianfei; Li, Dongdong

    2015-11-01

    High-performance thin-film hydrogenated amorphous silicon solar cells are achieved by combining macroscale 3D tubular substrates and nanoscaled 3D cone-like antireflective films. The tubular geometry delivers a series of advantages for large-scale deployment of photovoltaics, such as omnidirectional performance, easier encapsulation, decreased wind resistance, and easy integration with a second device inside the glass tube. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Indium tin oxide thin-films prepared by vapor phase pyrolysis for efficient silicon based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Simashkevich, Alexei, E-mail: alexeisimashkevich@hotmail.com [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Serban, Dormidont; Bruc, Leonid; Curmei, Nicolai [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Hinrichs, Volker [Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Rusu, Marin [Institute of Applied Physics, 5 Academiei str., Chisinau, MD-2028, Republic of Moldova (Moldova, Republic of); Institut für Heterogene Materialsysteme, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2016-07-01

    The vapor phase pyrolysis deposition method was developed for the preparation of indium tin oxide (ITO) thin films with thicknesses ranging between 300 and 400 nm with the sheet resistance of 10–15 Ω/sq. and the transparency in the visible region of the spectrum over 80%. The layers were deposited on the (100) surface of the n-type silicon wafers with the charge carriers concentration of ~ 10{sup 15} cm{sup −3}. The morphology of the ITO layers deposited on Si wafers with different surface morphologies, e.g., smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) was investigated. The as-deposited ITO thin films consist of crystalline columns with the height of 300–400 nm and the width of 50–100 nm. Photovoltaic parameters of mono- and bifacial solar cells of Cu/ITO/SiO{sub 2}/n–n{sup +} Si/Cu prepared on Si (100) wafers with different surface structures were studied and compared. A maximum efficiency of 15.8% was achieved on monofacial solar cell devices with the textured Si surface. Bifacial photovoltaic devices from 100 μm thick Si wafers with the smooth surface have demonstrated efficiencies of 13.0% at frontal illumination and 10% at rear illumination. - Highlights: • ITO thin films prepared by vapor phase pyrolysis on Si (100) wafers with a smooth (polished), rough (irregularly structured) and textured (by inversed pyramids) surface. • Monofacial ITO/SiO2/n-n+Si solar cells with an efficiency of 15.8% prepared and bifacial PV devices with front- and rear-side efficiencies up to 13% demonstrated. • Comparative studies of photovoltaic properties of solar cells with different morphologies of the Si wafer surface presented.

  5. Nano imprint lithography of textures for light trapping in thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Notta, J.B.; Pex, P.P.A.C. [ECN-Solliance, High Tech Campus 5, 5656 AE Eindhoven (Netherlands); Schipper, W.; Wilde, R. [Nanoptics GmbH, Innungsstrasse 5, 21244 Buchholz (Germany)

    2012-09-15

    Nano Imprint Lithography (NIL) is a versatile and commercially viable technology for fabrication of structures for light trapping in solar cells. We demonstrate the applicability of NIL in thin film silicon solar cells in substrate configuration, where NIL is used to fabricate a textured rear contact of the solar cells. We applied random structures, based on the natural texture of SnO:F grown by APCVD, and designed 2D periodic structures and show that for single junction {mu}c-Si cells these textured rear contacts lead to an increase of Jsc of more than 40 % in comparison to cells with flat rear contacts. Cells on optimized periodic textures showed higher fill factors which can be attributed to reduced microcrack formation, leading to less shunting in comparison to cells on random textures.

  6. Optoelectronic properties of R-F magnetron sputtered Cadmium Tin Oxide (Cd2SnO4) thin films for CdS/CdTe thin film solar cell applications

    International Nuclear Information System (INIS)

    Jeyadheepan, K.; Thamilselvan, M.; Kim, Kyunghae; Yi, Junsin; Sanjeeviraja, C.

    2015-01-01

    Highlights: • Characterization of “as-prepared” Cd 2 SnO 4 thin films ideal for thin film solar cells. • Lowest value of resistivity with high mobility attained for the as-prepared Cd 2 SnO 4 films. • Maximum transmittance of 93% in the visible range for the as-prepared films. • Effect of substrate temperature on the scattering mechanism of TCO. - Abstract: The influence of substrate temperature on the microstructural behavior, optical, electrical properties and on the scattering mechanism of charge carriers were studied for the as-prepared radio-frequency (R-F) magnetron sputtered Cadmium Tin Oxide (Cd 2 SnO 4 ) thin films. Films prepared at the substrate temperature of 300 °C were found to be polycrystalline in nature with preferential orientation along (3 1 1) plane. Well pronounced Moss–Burstein shift, in the transmittance spectra with dispersions in the optical band gap from 3.07 to 3.30 eV, was observed at substrate temperatures between 25 and 300 °C. Optical property of high visible transmittance was retained by the films. Analysis of the electrical properties on the prepared crystalline Cd 2 SnO 4 films showed a calculated resistivity of 10 −3 –10 −4 Ω cm, with n-type carrier density in the range of 10 19 –10 20 cm −3 and the charge carrier mobility in the range of 63–30 cm 2 /V s. The effects of structural, compositional and optical properties on the scattering mechanism of charge carrier are elaborated and reported to be an experimental evidence for the theoretical predictions. The results revealed the essential DC electrical conduction behavior, which is ideal for the fabrication of Cd 2 SnO 4 -based CdS/CdTe thin film solar cells

  7. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD results, the microcrystalline i-Si films with (111, (220, and (311 diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.

  8. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements

    International Nuclear Information System (INIS)

    Abukassem, I.; Bero, M.A.

    2015-01-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC R film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A 633 ) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11 % for spectral absorbance measurements and 15 % for OD measurements. (authors)

  9. Poly(3-hexylthiophene) films by electrospray deposition for crystalline silicon/organic hybrid junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hiate, Taiga; Miyauchi, Naoto; Tang, Zeguo; Ishikawa, Ryo; Ueno, Keiji; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 858-3676 (Japan)

    2012-10-15

    The electrospray deposition (ESD) of poly(3-hexylthiophene) (P3HT) and conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on P3HT for use in crystalline silicon/organic hybrid heterojunction solar cells on CZ crystalline silicon (c-Si) (100) wafer was investigated using real-time characterization by spectroscopic ellipsometry (SE). In contrast to the nonuniform deposition of products frequently obtained by conventional spin-coating, a uniform deposition of P3HT and PEDOT:PSS films were achieved on flat and textured hydrophobic c-Si(100) wafers by adjusting the deposition conditions. The c-Si/P3HT/PEDOT:PSS heterojunction solar cells exhibited efficiencies of 4.1 and 6.3% on flat and textured c-Si(100) wafers, respectively. These findings suggest that ESD is a promising method for the uniform deposition of P3HT and PEDOT:PSS films on flat and textured hydrophobic substrates. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure

    Directory of Open Access Journals (Sweden)

    Yanpeng Shi

    2016-01-01

    Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.

  11. Passivation effect of water vapour on thin film polycrystalline Si solar cells

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Müller, Martin; Becker, C.; Fejfar, Antonín

    2016-01-01

    Roč. 213, č. 7 (2016), s. 1969-1975 ISSN 1862-6300 R&D Projects: GA MŠk LM2015087; GA ČR GA13-12386S Grant - others:AV ČR(CZ) DAAD-16-27 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : passivation, * plasma hydrogenation * silicon * solar cells * thin films * water vapour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  12. Adhesive market develops new technologies. The thin-film solar cells gain ground; El mercado de adhesivos desarrolla nuevas tecnologias. Las celulas solares de capa fina ganan terreno

    Energy Technology Data Exchange (ETDEWEB)

    Kluke, M.

    2010-07-01

    The solar industry is booming. thin-film technology is experiencing a high demand as promised cost advantages and currently is providing excellent results, while a range of efficiency reaches acceptable. (Author)

  13. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (production technology for amorphous silicon solar cell modules); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (amorphous taiyo denchi module seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of amorphous Si solar cell modules in fiscal 1994. (1) On process technology for prototype film substrate solar cells, an advanced preprocessing equipment for film substrates, stepping roll type film forming technology, and prototype submodules were studied. A conversion efficiency of 7.2% was achieved by use of the submodule formed in an effective region of 40 {times} 40cm{sup 2}. (2) On efficiency improvement technology for film substrate solar cells, p/i and n/i interfaces, forming condition for Ag film electrodes, film thickness of transparent electrode ITO, and optimum transmissivity were studied. (3) On technology for advanced solar cells, high-quality a-SiGe: H film, ion control in plasma CVD, and a-Si film formation by plasma CVD using SiH2Cl2 were studied as production technology of narrow gap materials. (4) On advanced two-layer tandem solar cells, the defect density in optical degradation of a-Si cells by reverse bias dark current was evaluated, and outdoor exposure data were analyzed. 4 figs., 1 tab.

  14. Photoanode of Dye-Sensitized Solar Cells Based on a ZnO/TiO2 Composite Film

    Directory of Open Access Journals (Sweden)

    Lu-Ting Yan

    2012-01-01

    Full Text Available A photoanode of dye-sensitized solar cells based on a ZnO/TiO2 composite film was fabricated on a transparent conductive glass substrate using different techniques including electrophoretic deposition, screen printing, and colloidal spray coating. The ZnOs used in the composite film were ZnO tetrapods prepared via thermal evaporation and ZnO nanorods obtained via hydrothermal growth. The structural and morphological characterizations of the thin composite films were carried out using scanning electron microscope (SEM. The best power conversion was 1.87%, which corresponds to the laminated TiO2/ZnO/TiO2 structure prepared via screen printing.

  15. Theoretical investigation on heterojunction solar cell

    International Nuclear Information System (INIS)

    Prema, K.; Geetha, K.

    1986-11-01

    The study of thin film solar cells has proved that the surface is rough. A two-dimensional method based on the integral equation technique to analyse thin film solar cells has been developed by DeMey et al. In this paper we present our analysis of a thin film solar cell using the above techniques. Variation of the minority carrier concentration, the saturation current and the junction current of the solar cell with surface roughness is presented. (author). 8 refs, 4 figs

  16. Electrical characterization of MIS devices using PECVD SiN{sub x}:H films for application of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jin-Su; Cho, Jun-Sik; Park, Joo-Hyung; Ahn, Seung-Kyu; Shin, Kee-Shik; Yoon, Kyung-Hoon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yi, Jun-Sin [Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-07-15

    The surface passivation of crystalline silicon solar cells using plasma enhanced chemical vapor deposition (PECVD), hydrogenated, silicon-nitride (SiN{sub x}:H) thin films has become significant due to a low-temperature, low-cost and very effective defect passivation process. Also, a good quality antireflection coating can be formed. In this work, SiN{sub x}:H thin films were deposited by varying the gas ratio R (=NH{sub 3}/SiH{sub 4}+NH{sub 3}) and were annealed by rapid thermal processing (RTP). Metal-insulator- semiconductor (MIS) devices were fabricated using SiN{sub x}:H thin films as insulator layers and they were analyzed in the temperature range of 100 - 400 K by using capacitance-voltage (C-V) and current-voltage (I-V) measurements. The annealed SiN{sub x}:H thin films were evaluated by using the electrical properties at different temperature to determine the effect of surface passivation. We achieved an energy conversion efficiency of 18.1% under one-sun standard testing conditions for large-area (156 mm x 156 mm) crystalline-silicon solar cells.

  17. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    Science.gov (United States)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  18. Development of a Vsible-Light-Active Film for Direct Solar Energy Storage

    Science.gov (United States)

    Salazar, Audrey

    We conceived of a two-compartment photocatalytic assembly for direct storage of solar energy as chemical potential. Our approach was to maintain reductant and oxidant in separate compartments and develop a visible light (wavelength >400nm) photo-active film to effect an uphill photoreaction between compartments. A proton exchange membrane was included in the assembly to complete the electrical circuit. Towards obtaining a working prototype of the assembly, we developed a freeze-drying method to adhere visible-light photoactive nanoparticles to a self- standing, non-porous and conductive indium tin oxide-polyvinylidene difluoride (ITO-PVDF) support film, developed in-house. We explored the possibility of employing an iron-rich metal oxide as the photocatalytic component of the film and several were explored utilizing the sodium tartrate-assisted photoreduction of Cr(VI) to Cr(III). Although the Fe2O3-coated TiO2 nanoparticles were active for photoreduction, the initial reaction rate was modest and was slowed by substantial deactivation, making it unsuitable as a photo-active material for the composite film. A complete, two-compartment assembly was prepared using cadmium sulfide (CdS) and preliminarily examined for the Cr(VI) probe reaction, however, no catalytic activity was observed. To identify the reason(s) for this observation, further testing of the apparatus and the composite film is required.

  19. Photoluminescence, structural and electrical properties of passivated a-Si:H based thin films and corresponding solar cells

    International Nuclear Information System (INIS)

    Pincik, E.; Kobayashi, H.; Takahashi, M.; Fujiwara, N.; Brunner, R.; Gleskova, H.; Jergel, M.; Muellerova, J.; Kucera, M.; Falcony, C.; Ortega, L.; Rusnak, J.; Mikula, M.; Zahoran, M.; Jurani, R.; Kral, M.

    2004-01-01

    This paper deals with the photoluminescence, structural and electrical properties of chemically passivated a-Si:H based thin films and corresponding thin film solar cells. The structures were chemically passivated in three types of KCN and HCN solutions containing MeOH and/or with water. The photoluminescence measurements were performed at 6 K using Ar laser and lock-in signal recording device containing Ge and Si photodetectors. Optically determined band gap related photoluminescence signals were observed between 1.1 and 1.7 eV. The electrical properties were measured by a high-sensitive charge version of deep level transient spectroscopy (Q-DLTS). The evolution of three basic groups of defects was observed. The structural studies were realized by the standard X-ray diffraction analysis. The cyanide treatment improved significantly the electrical characteristics of both corresponding MOS structures and solar cells due to the passivation of some parts of the dangling bonds by CN group. Particularly, the passivation of the defects at interfaces in MOS or solar cell multilayer structures was achieved which is of primary practical importance

  20. A novel method to achieve selective emitter for silicon solar cell using low cost pattern-able a-Si thin films as the semi-transparent phosphorus diffusion barrier

    International Nuclear Information System (INIS)

    Chen, Da Ming; Liang, Zong Cun; Zhuang, Lin; Lin, Yang Huan; Shen, Hui

    2012-01-01

    Highlights: ► a-Si thin films as semitransparent phosphorus diffusion barriers for solar cell. ► a-Si thin films on silicon wafers were patterned by the alkaline solution. ► Selective emitter was formed with patterned a-Si as diffusion barrier for solar cell. -- Abstract: Selective emitter for silicon solar cell was realized by employing a-Si thin films as the semi-transparent diffusion barrier. The a-Si thin films with various thicknesses (∼10–40 nm) were deposited by the electron-beam evaporation technique. Emitters with sheet resistances from 37 to 145 Ω/□ were obtained via POCl 3 diffusion process. The thickness of the a-Si diffusion barrier was optimized to be 15 nm for selective emitter in our work. Homemade mask which can dissolve in ethanol was screen-printed on a-Si film to make pattern. The a-Si film was then patterned in KOH solution to form finger-like design. Selective emitter was obtainable with one-step diffusion with patterned a-Si film on. Combinations of sheet resistances for the high-/low-level doped regions of 39.8/112.1, 36.2/88.8, 35.4/73.9 were obtained. These combinations are suitable for screen-printed solar cells. This preparation method of selective emitter based on a-Si diffusion barrier is a promising approach for low cost industrial manufacturing.

  1. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space Science, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2134A Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T. [Associate Professor, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H., E-mail: mjweberg@umich.edu, E-mail: slepri@umich.edu, E-mail: thomasz@umich.edu [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship Senior Counselor of Entrepreneurship Education, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2431 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2015-03-10

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space.

  2. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Lepri, Susan T.; Zurbuchen, Thomas H.

    2015-01-01

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space

  3. Electrical properties of graphene film for counter electrode in dye sensitized solar cells

    Science.gov (United States)

    Khalifa, Ali; Shafie, S.; Hasan, W. Z. W.; Lim, H. N.; Rusop, M.; Samaila, Buda

    2018-05-01

    A graphene counter electrode for dye-sensitized solar cell was prepared simply by drop casting method on a conducting FTO glass at room temperature. Raman spectroscopy was used to study the defection in the graphene films. The sheet resistance was also measured and recoded minimum value of 7.04 Ω/□ at 22.19µm thickness. The casted films show good adhesion to substrates with low defects. A DSSC based on graphene counter electrode demonstrates reasonable conversion efficiency of 2.78% with short circuit current of 7.60mA, open circuit voltage of 0.69V and fill factor of 0.52. The high conductivity and low defects render the prepared graphene dispersion for DSSCs' CE application.

  4. Deposition and characterization of CuInSe2 films for solar cells using an optimized chemical route

    International Nuclear Information System (INIS)

    Berruet, M.; Schreiner, W.H.; Cere, S.; Vazquez, M.

    2011-01-01

    Research highlights: → CuInSe 2 has been deposited on glass by optimizing some parameters in the SILAR method. → Renewing the precursors after 40 cycles improves the composition of the deposit. → Photoelectrochemical tests and Mott-Schottky analysis confirm p-type conduction. → The quality of the material shows potential for application in solar cell devices. - Abstract: CuInSe 2 (CISe) thin films have been deposited on glass using successive ionic layer adsorption and reaction (SILAR). The as-deposited films are treated at 400 deg. C in argon atmosphere and etched in KCN solution to remove detrimental secondary phases. The preparation and temperature of the precursor solutions, the duration of the reaction cycles and the duration of the annealing stage have been optimized. The films have been characterized employing grazing incident X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive scanning spectroscopy. Relevant semiconductor parameters have been calculated. Photoelectrochemical tests confirm p-type conduction. The films are crystalline and the stoichiometry can be improved by renewing the precursor solution after completing half of the cycles, annealing for 90 min and later etching in KCN. The quality of the material seems to be promising for application in solar cell devices.

  5. Preparation of CulnS2 Thin Films on the Glass Substrate by DC Sputtering for Solar Cell Component

    International Nuclear Information System (INIS)

    Bambang Siswanto; Wirjoadi; Darsono

    2007-01-01

    The CuInS 2 alloys were deposited on glass substrate using plasma DC sputtering technique. A CuInS 2 alloy target was made from Cu, In, Se powder with impurity of 99.998%. The deposition process was done with the following process parameter variations: deposition time and substrate temperature were the range of 15 to 45 min and 150 to 300 ℃, the gas pressure was kept at 1.4x10 -1 Torr. The purpose of the research is to obtain the solar cell component of CuInS 2 thin films. The electrical and optical properties measurement has been done by four-point probe and UV-Vis. Crystal structure was analyzed using X-ray diffraction (XRD). The result shows that minimum resistance of CuInS 2 thin films is 35.7 kΩ and optical transmittance is 14.7 %. The crystal structure of CuInS 2 is oriented at (112) plane and by Touc-plot method was obtained that the band gap energy of thin films is 1.45 eV. It could be concluded that the CuInS 2 thin film can be used as a solar cell component. (author)

  6. Effects of thermal treatment on the Mg{sub x}Zn{sub 1−x}O films and fabrication of visible-blind and solar-blind ultraviolet photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Chunguang [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Jiang, Dayong, E-mail: dayongjiangcust@126.com [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Tan, Zhendong [The Metrology Technology Institute of Jilin, Changchun 132013 (China); Duan, Qian; Liu, Rusheng; Sun, Long; Qin, Jieming; Hou, Jianhua; Gao, Shang; Liang, Qingcheng; Zhao, Jianxun [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China)

    2014-12-15

    Highlights: • Single-phase wurtzite/cubic Mg{sub x}Zn{sub 1−x}O films were grown by RF magnetron sputtering technique. • We focus on the red-shift caused by annealing the Mg{sub x}Zn{sub 1−x}O films. • MSM-structured visible-blind and solar-blind UV photodetectors were fabricated. - Abstract: A series of single-phase Mg{sub x}Zn{sub 1−x}O films with different Mg contents were prepared on quartz substrates by RF magnetron sputtering technique using different MgZnO targets, and annealed under the atmospheric environment. The absorption edges of Mg{sub x}Zn{sub 1−x}O films can cover the whole near ultraviolet and even the whole solar-blind spectra range, and the solar-blind wurtzite/cubic Mg{sub x}Zn{sub 1−x}O films have been realized successfully by the same method. In addition, the absorption edges of annealed films shift to a long wavelength, which is caused by the diffusion of Zn atoms gathering at the surface during the thermal treatment process. Finally, the truly solar-blind metal-semiconductor-metal structured photodetectors based on wurtzite Mg{sub 0.445}Zn{sub 0.555}O and cubic Mg{sub 0.728}Zn{sub 0.272}O films were fabricated. The corresponding peak responsivities are 17 mA/W at 275 nm and 0.53 mA/W at 250 nm under a 120 V bias, respectively.

  7. Development of a rapid thermal annealing process for polycrystalline silicon thin-film solar cells on glass

    Energy Technology Data Exchange (ETDEWEB)

    Rau, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)], E-mail: bjoern.rau@helmholtz-berlin.de; Weber, T.; Gorka, B.; Dogan, P.; Fenske, F.; Lee, K.Y.; Gall, S.; Rech, B. [Helmholtz Centre Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin (Germany)

    2009-03-15

    In this report, we discuss the influence of rapid thermal annealing (RTA) on the performance of polycrystalline Si (poly-Si) thin-film solar cells on glass where the poly-Si layers are differently prepared. The first part presents a comprehensive study of RTA treatments on poly-Si thin-films made by solid phase crystallization (SPC) (standard material of CSG Solar AG, Thalheim). By varying both plateau temperature (up to 1050 deg. C) and duration (up to 1000 s) of the annealing profile, we determined the parameters for a maximum open-circuit voltage (V{sub OC}). In addition, we applied our standard plasma hydrogenation treatment in order to passivate the remaining intra-grain defects and grain boundaries by atomic hydrogen resulting in a further increase of V{sub OC}. We found, that the preceding RTA treatment increases the effect of hydrogenation already at comparable low RTA temperatures. The effect on hydrogenation increases significantly with RTA temperature. In a second step we investigated the effect of the RTA and hydrogenation on large-grained poly-Si films based on the epitaxial thickening of poly-Si seed layers.

  8. Application of femtosecond laser ablation inductively coupled plasma mass spectrometry for quantitative analysis of thin Cu(In,Ga)Se{sub 2} solar cell films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seokhee [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Gonzalez, Jhanis J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Yoo, Jong H. [Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Chirinos, Jose R. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041A (Venezuela, Bolivarian Republic of); Russo, Richard E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Applied Spectra Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho, E-mail: shjeong@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2015-02-27

    This work reports that the composition of Cu(In,Ga)Se{sub 2} (CIGS) thin solar cell films can be quantitatively predicted with high accuracy and precision by femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS). It is demonstrated that the results are strongly influenced by sampling conditions during fs-laser beam (λ = 1030 nm, τ = 450 fs) scanning on the CIGS surface. The fs-LA-ICP-MS signals measured at optimal sampling conditions generally provide a straight line calibration with respect to the reference concentrations measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). The concentration ratios predicted by fs-LA-ICP-MS showed high accuracy, to 95–97% of the values measured with ICP-OES, for Cu, In, Ga, and Se elements. - Highlights: • Laser ablation inductively coupled plasma mass spectrometry of thin film is reported. • Concentration ratio prediction with a confidence level of 95–97% is achieved. • Quantitative determination of composition is demonstrated.

  9. Fabrication of thin-film thermoelectric generators with ball lenses for conversion of near-infrared solar light

    OpenAIRE

    Ito, Yoshitaka; Mizoshiri, Mizue; Mikami, Masashi; Kondo, Tasuku; Sakurai, Junpei; Hata, Seiichi

    2017-01-01

    We designed and fabricated thin-film thermoelectric generators (TEGs) with ball lenses, which separated visible light and near-infrared (NIR) solar light using a chromatic aberration. The transmitted visible light was used as daylight and the NIR light was used for thermoelectric generation. Solar light was estimated to be separated into the visible light and NIR light by a ray tracing method. 92.7% of the visible light was used as daylight and 9.9% of the NIR light was used for thermoelectri...

  10. Morphological, elemental, and optical characterization of plasma polymerized n-butyl methacrylate thin films

    Science.gov (United States)

    Nasrin, Rahima; Hossain, Khandker S.; Bhuiyan, A. H.

    2018-05-01

    Plasma polymerized n-butyl methacrylate (PPnBMA) thin films of varying thicknesses were prepared at room temperature by AC plasma polymerization system using a capacitively coupled parallel plate reactor. Field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), energy-dispersive X-ray (EDX) analysis, and ultraviolet-visible (UV-Vis) spectroscopic investigation have been performed to study the morphological, elemental, and optical properties of the PPnBMA thin films, respectively. The flat and defect-free nature of thin films were confirmed by FESEM and AFM images. With declining plasma power, average roughness and root mean square roughness increase. Allowed direct transition ( E gd) and indirect transition ( E gi) energy gaps were found to be 3.64-3.80 and 3.38-3.45 eV, respectively, for PPnBMA thin films of different thicknesses. Values of E gd as well as E gi increase with the increase of thickness. The extinction coefficient, Urbach energy, and steepness parameter were also determined for these thin films.

  11. Influence of growth temperature of transparent conducting oxide layer on Cu(In,Ga)Se2 thin-film solar cells

    International Nuclear Information System (INIS)

    Cho, Dae-Hyung; Chung, Yong-Duck; Lee, Kyu-Seok; Park, Nae-Man; Kim, Kyung-Hyun; Choi, Hae-Won; Kim, Jeha

    2012-01-01

    We have studied the influence of growth temperature (T G ) in the deposition of an indium tin oxide (ITO) transparent conducting oxide layer on Cu(In,Ga)Se 2 (CIGS) thin-film solar cells. The ITO films were deposited on i-ZnO/glass and i-ZnO/CdS/CIGS/Mo/glass substrates using radio-frequency magnetron sputtering at various T G up to 350 °C. Both the resistivity of ITO and the interface quality of CdS/CIGS strongly depend on T G . For a T G ≤ 200 °C, a reduction in the series resistance enhanced the solar cell performance, while the p–n interface of the device was found to become deteriorated severely at T G > 200 °C. CIGS solar cells with ITO deposited at T G = 200 °C showed the best performance in terms of efficiency.

  12. Dynamic kirigami structures for integrated solar tracking

    Science.gov (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  13. Circuit analysis method for thin-film solar cell modules

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    The design of a thin-film solar cell module is dependent on the probability of occurrence of pinhole shunt defects. Using known or assumed defect density data, dichotomous population statistics can be used to calculate the number of defects expected in a module. Probability theory is then used to assign the defective cells to individual strings in a selected series-parallel circuit design. Iterative numerical calculation is used to calcuate I-V curves using cell test values or assumed defective cell values as inputs. Good and shunted cell I-V curves are added to determine the module output power and I-V curve. Different levels of shunt resistance can be selected to model different defect levels.

  14. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  15. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  16. Hydrogenated TiO{sub 2} film for enhancing photovoltaic properties of solar cells and self-sensitized effect

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongcai; Yang, Kui; Wang, Ning, E-mail: ning-wang@uestc.edu.cn; Luo, Feifei; Chen, Haijun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2013-12-07

    Hydrogenated TiO{sub 2} film was obtained by annealing TiO{sub 2} film at 350 °C for 2 h with hydrogen, and TiO{sub 2} films were prepared by screen printing on fluorine-doped tin oxide glass. Structural characterization by X-ray diffraction and electron microscopy did not show obvious difference between hydrogenated TiO{sub 2} film and pristine TiO{sub 2} film. Through optical and electrochemical characterization, the hydrogenated TiO{sub 2} film showed enhanced absorption and narrowed band gap, as well as reduced TiO{sub 2} surface impedance and dark current. As a result, an obviously enhanced photovoltaic effect was observed in the solar cell with hydrogenated TiO{sub 2} as photoanode without adding any dye due to the self-sensitized effect of hydrogenated TiO{sub 2} film, which excited electrons injecting internal conduction band of TiO{sub 2} to generate more photocurrent.

  17. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  18. ZnO transparent conductive oxide for thin film silicon solar cells

    Science.gov (United States)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  19. Suppressing the Coffee-Ring Effect in Semitransparent MnO2 Film for a High-Performance Solar-Powered Energy Storage Window.

    Science.gov (United States)

    Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa

    2016-04-13

    We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.

  20. Economic viability of thin-film tandem solar modules in the United States

    Science.gov (United States)

    Sofia, Sarah E.; Mailoa, Jonathan P.; Weiss, Dirk N.; Stanbery, Billy J.; Buonassisi, Tonio; Peters, I. Marius

    2018-05-01

    Tandem solar cells are more efficient but more expensive per unit area than established single-junction (SJ) solar cells. To understand when specific tandem architectures should be utilized, we evaluate the cost-effectiveness of different II-VI-based thin-film tandem solar cells and compare them to the SJ subcells. Levelized cost of electricity (LCOE) and energy yield are calculated for four technologies: industrial cadmium telluride and copper indium gallium selenide, and their hypothetical two-terminal (series-connected subcells) and four-terminal (electrically independent subcells) tandems, assuming record SJ quality subcells. Different climatic conditions and scales (residential and utility scale) are considered. We show that, for US residential systems with current balance-of-system costs, the four-terminal tandem has the lowest LCOE because of its superior energy yield, even though it has the highest US per watt (US W-1) module cost. For utility-scale systems, the lowest LCOE architecture is the cadmium telluride single junction, the lowest US W-1 module. The two-terminal tandem requires decreased subcell absorber costs to reach competitiveness over the four-terminal one.

  1. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    Science.gov (United States)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  2. Light scattering effect of ITO:Zr/AZO films deposited on periodic textured glass surface morphologies for silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahzada Qamar [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Kwon, Gi Duk; Kim, Sunbo; Balaji, Nagarajan; Shin, Chonghoon; Kim, Sangho; Khan, Shahbaz; Pribat, Didier [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Raja, Jayapal; Lee, Youn-Jung [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Razaq, Aamir [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Velumani, S. [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Department of Electrical Engineering (SEES), Mexico City (Mexico); Yi, Junsin [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of)

    2015-09-15

    Various SF{sub 6}/Ar plasma-textured periodic glass surface morphologies for high transmittance, haze ratio and low sheet resistance of ITO:Zr films are reported. The SF{sub 6}/Ar plasma-textured glass surface morphologies were changed from low aspect ratio to high aspect ratio with the increase in RF power from 500 to 600 W. The micro- and nano-size features of textured glass surface morphologies enhanced the haze ratio in visible as well as NIR wavelength region. Micro-size textured features also influenced the sheet resistance and electrical characteristics of ITO:Zr films due to step coverage. The ITO:Zr/AZO bilayer was used as front TCO electrode for p-i-n amorphous silicon thin film solar cells with current density-voltage characteristics as: V{sub oc} = 875 mV, FF = 70.90 %, J{sub sc} = 11.31 mA/cm{sup 2}, η = 7.02 %. (orig.)

  3. Preparation and characterization of TiO[sub 2]/Sb thin films for solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Badawy, W.A. (Dept. of Chemistry, Cairo Univ., Giza (Egypt))

    1993-01-01

    Pure and antimony-incorporated TiO[sub 2] thin films were prepared using a spray-CVD method. The method allows for convenient incorporation of foreign atoms into the oxide matrix during film growth. The foreign atoms in the oxide film affects both the photovoltaic and photoelectrochemical properties of the n-Si/oxide heterojunction. The characteristics of the prepared oxide films were affected significantly by the presence of antimony on the oxide matrix. The increased conductivity of the Sb-containing oxide layers is reflected in the improved photovoltaic properties of the prepared n-Si/TiO[sub 2]-Sb heterojunctions, e.g. fill factor and solar conversion efficiency. The photoelectrochemical properties of the prepared devices revealed that the charge transfer step at the oxide/electrolyte interface leads to a deterioration of the cell quality. However, this drawback has been offset by the improved properties of the heterojunction. (orig.)

  4. Effect of TiO{sub 2} nanopatterns on the performance of hydrogenated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joon-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Yang, Ji-Hwan; Lim, Koeng Su [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Han, Kang-Soo; Kim, Yang-Doo; Lee, Heon; Song, Jun-Hyuk [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Kyoung-Kook [Department of Nano-Optical Engineering, Korea Polytechnic University, Gyeonggi 429-793 (Korea, Republic of); Seong, Tae-Yeon, E-mail: tyseong@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2012-07-31

    We investigate how TiO{sub 2} nanopatterns formed onto ZnO:Al (AZO) films affect the performance of hydrogenated amorphous silicon (a-Si:H) solar cells. Scanning electron microscopy results show that the dome-shaped TiO{sub 2} nanopatterns (300 nm in diameter) having a period of 500 nm are formed onto AZO films and vary from 60 to 180 nm in height. Haze factor increases with an increase in the height of the nanopatterns in the wavelength region below 530 nm. Short circuit current density also increases with an increase in the height of the nanopatterns. As the nanopatterns increases in height, the fill factor of the cells slightly increases, reaches maximum (0.64) at 100 nm, and then decreases. Measurements show that a-Si:H solar cells fabricated with 100 nm-high TiO{sub 2} nanopatterns exhibit the highest conversion efficiency (6.34%) among the solar cells with the nanopatterns and flat AZO sample. - Highlights: Black-Right-Pointing-Pointer We investigated the height effect of TiO{sub 2} nanopatterns on the a-Si:H solar cells. Black-Right-Pointing-Pointer Light scattering and anti-reflection were introduced by TiO{sub 2} nanopatterns. Black-Right-Pointing-Pointer a-Si:H Solar cells with the 100 nm-high TiO{sub 2} nanopatterns showed highest efficiency.

  5. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Chen Xinliang; Lin Quan; Ni Jian; Zhang Dekun; Sun Jian; Zhao Ying; Geng Xinhua

    2011-01-01

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density J SC = 10.62 mA/cm 2 , open-circuit voltage V OC = 0.93 V and fill factor = 64%).

  6. CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M.I., E-mail: mdibrahim.khalil@polimi.it [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (Italy); Atici, O. [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (Italy); Lucotti, A. [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Binetti, S.; Le Donne, A. [Department of Materials Science and Solar Energy Research Centre (MIB-SOLAR), University of Milano- Bicocca, Via Cozzi 53, 20125 Milano (Italy); Magagnin, L., E-mail: luca.magagnin@polimi.it [Dipartimento di Chimica, Materiali e Ing. Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano (Italy)

    2016-08-30

    Highlights: • CZTS absorber layer was fabricated by electrodeposition—annealing route from stacked bilayer precursor (Zn/Cu-Sn). • Different characterization techniques have ensured the well formed Kesterite CZTS along the film thickness also. • Two different excitation wavelengths of laser lines (514.5 and 785 nm) have been used for the Raman characterization of the films. • No significant Sn loss is observed in CZTS films after the sulfurization of the stacked bilayer precursors. • Photoluminescence spectroscopy reveals the PL peak of CZTS at 1.15 eV at low temperature (15 K). - Abstract: In the present work, Kesterite-Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films were successfully synthesized from stacked bilayer precursor (Zn/Cu-Sn) through electrodeposition-annealing route. Adherent and homogeneous Cu-poor, Zn-rich stacked metal Cu-Zn-Sn precursors with different compositions were sequentially electrodeposited, in the order of Zn/Cu-Sn onto Mo foil substrates. Subsequently, stacked layers were soft annealed at 350 °C for 20 min in flowing N{sub 2} atmosphere in order to improve intermixing of the elements. Then, sulfurization was completed at 585 °C for 15 min in elemental sulfur environment in a quartz tube furnace with N{sub 2} atmosphere. Morphological, compositional and structural properties of the films were investigated using SEM, EDS and XRD methods. Raman spectroscopy with two different excitation lines (514.5 and 785 nm), has been carried out on the sulfurized films in order to fully characterize the CZTS phase. Higher excitation wavelength showed more secondary phases, but with low intensities. Glow discharge optical emission spectroscopy (GDOES) has also been performed on films showing well formed Kesterite CZTS along the film thickness as compositions of the elements do not change along the thickness. In order to investigate the electronic structure of the CZTS, Photoluminescence (PL) spectroscopy has been carried out on the films, whose

  7. Reflectance improvement by thermal annealing of sputtered Ag/ZnO back reflectors in a-Si:H thin film silicon solar cells

    DEFF Research Database (Denmark)

    Haug, Franz-Josef; Söderström, Karin; Pahud, Céline

    2011-01-01

    Silver can be used as the back contact and reflector in thin film silicon solar cells. When deposited on textured substrates, silver films often exhibit reduced reflectance due to absorption losses by the excitation of surface plasmon resonances. We show that thermal annealing of the silver back...

  8. PbSe Nanocrystal Excitonic Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2009-11-11

    We report the design, fabrication, and characterization of colloidal PbSe nanocrystal (NC)-based photovoltaic test structures that exhibit an excitonic solar cell mechanism. Charge extraction from the NC active layer is driven by a photoinduced chemical potential energy gradient at the nanostructured heterojunction. By minimizing perturbation to PbSe NC energy levels and thereby gaining insight into the "intrinsic" photovoltaic properties and charge transfer mechanism of PbSe NC, we show a direct correlation between interfacial energy level offsets and photovoltaic device performance. Size dependent PbSe NC energy levels were determined by cyclic voltammetry and optical spectroscopy and correlated to photovoltaic measurements. Photovoltaic test structures were fabricated from PbSe NC films sandwiched between layers of ZnO nanoparticles and PEDOT:PSS as electron and hole transporting elements, respectively. The device current-voltage characteristics suggest a charge separation mechanism that Is distinct from previously reported Schottky devices and consistent with signatures of excitonic solar cells. Remarkably, despite the limitation of planar junction structure, and without film thickness optimization, the best performing device shows a 1-sun power conversion efficiency of 3.4%, ranking among the highest performing NC-based solar cells reported to date. © 2009 American Chemical Society.

  9. Influence of different TiO{sub 2} blocking films on the photovoltaic performance of perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong, E-mail: xhchen@phy.ecnu.edu.cn; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei, E-mail: smhuang@phy.ecnu.edu.cn

    2016-12-01

    Highlights: • TiO{sub 2} blocking layer (BL) was synthesized using various methods. • Effect of BL characteristics on performance of perovskite solar cell was studied. • Charge transfer kinetics of perovskite solar cells with different BLs was explored. • We demonstrated efficient solar cells employing chemical bath deposition based BLs. - Abstract: Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO{sub 2} or Al{sub 2}O{sub 3}) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO{sub 2} compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO{sub 2} compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol’s bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl{sub 4}, respectively. The morphological and micro-structural properties of the formed compact TiO{sub 2} layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO{sub 2} compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO{sub 2} film deposited via the CBD route acts as the most efficient

  10. Hydrothermal growth of double-layer TiO{sub 2} nanostructure film for quantum dot sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng Shuanglong; Yang Junyou, E-mail: jyyang@mail.hust.edu.cn; Liu Ming; Zhu Hu; Zhang Jiansheng; Li Gen; Peng Jiangying; Liu Qiongzhen

    2012-01-31

    A double-layer (DL) film with a TiO{sub 2} nanosheet-layer on a layer of TiO{sub 2} nanorod-array, was synthesized on a transparent conductive fluorine-doped tin oxide substrate by a two-step hydrothermal method. Starting from the precursors of NaSeSO{sub 3}, CdSO{sub 4} and the complex of N(CH{sub 2}COOK){sub 3}, CdSe quantum dots (QDs) were grown on the DL-TiO{sub 2} substrate by chemical bath deposition method. The samples were characterized by X-ray diffraction, Scanning electron microscopy, Energy dispersion spectroscopy, and their optical scattering property was measured by light reflection spectrometry. Some CdSe QDs sensitized DL-TiO{sub 2} films serve as the photoanodes, were assembled into solar cell devices and their photovoltaic performance were also characterized. The short circuit current and open-circuit voltage of the solar cells range from 0.75 to 4.05 mA/cm{sup 2} and 0.20 - 0.42 V under the illumination of one sun (AM1.5, 100 mW/cm{sup 2}), respectively. The photocurrent density of the DL-TiO{sub 2} film is five times higher than that of a bare TiO{sub 2} nanorod array photoelectrode cell. - Highlights: Black-Right-Pointing-Pointer A two-step hydrothermal deposition method was used to deposit TiO{sub 2} films. Black-Right-Pointing-Pointer Double-layer TiO{sub 2} films were synthesized on transparent FTO substrate. Black-Right-Pointing-Pointer The bi-functional character of the electrode were confirmed. Black-Right-Pointing-Pointer Photocurrent density of DL-film electrode was enhanced 5 times than a single film.

  11. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    Science.gov (United States)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  12. High-temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  13. Synergistic Impact of Solvent and Polymer Additives on the Film Formation of Small Molecule Blend Films for Bulk Heterojunction Solar Cells

    KAUST Repository

    McDowell, Caitlin

    2015-07-14

    The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution-deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p-DTS(FBTTh2)2/PC71BM. The performance is further improved by small quantities of diiodooctane (DIO), an established solvent additive. In this study, how the addition of PS and DIO affects the film formation of this bulk heterojunction blend film are probed via in situ monitoring of absorbance, thickness, and crystallinity. PS and DIO additives are shown to promote donor crystallite formation on different time scales and through different mechanisms. PS-containing films retain chlorobenzene solvent, extending evaporation time and promoting phase separation earlier in the casting process. This extended time is insufficient to attain the morphology for optimal PCE results before the film sets. Here is where the presence of DIO comes into play: its low vapor pressure further extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase long after casting, ultimately leading to the best BHJ organization. In situ measurement shows that polystyrene (PS) and diiodooctane (DIO) additives promote donor crystallite formation synergistically, on different time scales, and through different mechanisms. PS-rich films retain solvent, promoting phase separation early in the casting process. Meanwhile, the low vapor pressure of DIO extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase after casting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemical Bath Deposition and Characterization of CdS layer for CZTS Thin Film Solar Cell

    OpenAIRE

    Kamal, Tasnim; Parvez, Sheikh; Matin, Rummana; Bashar, Mohammad Shahriar; Hossain, Tasnia; Sarwar, Hasan; Rashid, Mohammad Junaebur

    2016-01-01

    CZTS is a new type of an absorber and abundant materials for thin film solar cells (TFSC). Cadmium sulfide (CdS) is the n-type buffer layer of it with band gap of 2.42 eV. Cadmium sulfide (CdS) buffer layer of CZTS solar cell was deposited on soda-lime glass substrates by the Chemical Bath Deposition(CBD) method, using anhydrous Cadmium chloride(CdCl_2) and Thiourea (CS(NH_2)_2). Deposition of CdS using CBD is based on the slow release of Cd^ ions and S^ ions in an alkaline bath which is achi...

  15. Production of CdTe Semiconductor Thin Films by Electrodeposition Technique for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Ahmet PEKSÖZ

    2016-08-01

    Full Text Available Electro-deposited cadmium tellurite (CuTe thin film was grown onto ITO-coated glass substrate for 120 seconds at the room temperature and a constant cathodic potential of -0.85 V. Deposition solution was prepared from cadmium chloride (CdCl2, sodium tellurite (Na2TeO3 and pure water. The pH value of the deposition solution was adjusted to 2.0 by adding HCl. The EDX analysis shows that the film has 52% Cd and 48% Te elemental compositions. Film thickness was found to be 140 nm. The CdTe thin film exhibits p-type semiconductor character, and has an energy bandgap of 1.47 eV. 

  16. Indium tin oxide thin films by bias magnetron rf sputtering for heterojunction solar cells application

    International Nuclear Information System (INIS)

    Zhao Liang; Zhou Zhibin; Peng Hua; Cui Rongqiang

    2005-01-01

    In this investigation ITO thin films were prepared by bias magnetron rf sputtering technique at substrate temperature of 180 deg. C and low substrate-target distance for future a-Si:H/c-Si heterojunction (HJ) solar cells application. Microstructure, surface morphology, electrical and optical properties of these films were characterized and analyzed. The effects of ion bombardments on growing ITO films are well discussed. XRD analysis revealed a change in preferential orientation of polycrystalline structure from (2 2 2) to (4 0 0) plane with the increase of negative bias voltage. Textured surface were observed on AFM graphs of samples prepared at high negative bias. Hall measurements showed that the carrier density and Hall mobility of these ITO films are sensitive to the bias voltage applied. We attributed these effects to the sensitivity of energy of Ar + ions bombarding on growing films to the applied bias voltage in our experiments. At last the figure of merit was calculated to evaluate the quality of ITO thin films, the results of which show that sample prepared at bias voltage of -75 V is good to be used in HJ cells application

  17. Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell

    Science.gov (United States)

    Moyez, Sk Abdul; Roy, Subhasis

    2018-01-01

    Perovskite solar cell is a kind of revolutionary investigation in the field of renewable energy which is capable of mitigates the deficiencies of silicon solar cell and its uprising efficiency can bring blessing to society. The presence of lead (Pb) in perovskite solar cell can make worst and negative impact on environment and is not desirable for our society. In this paper, general plans are anticipated by replacement of Pb with tin (Sn) in open atmosphere to fabricate the CH3NH3SnCl3 photovoltaic cells in chlorine (Cl)-rich environment. Excess uses of Cl has positive influences on morphological growth of the film and it also suppresses the oxidation tendency of tin (Sn) with existing oxygen in atmosphere and maintains same chemical atmosphere as bulk. Various characterization tools like X-ray diffraction, scanning electron microscope (SEM) have been used to study the effect of annealing temperature on crystal stricture, phase formation, impurities, and morphologies of the film. Finally, photovoltaic performance was reported using the solar simulator under 1.5 sun illumination.

  18. Research and development of CdTe based thin film PV solar cells

    Science.gov (United States)

    Diso, Dahiru Garba

    The motivation behind this research is to bring cheap, low-cost and clean energy technologies to the society. Colossal use of fossil fuel has created noticeable pollution problems contributing to climate change and health hazards. Silicon based solar cells have dominated the market but it is cost is high due to the manufacturing process. Therefore, the way forward is to develop thin films solar cells using low-cost attractive materials, grown by cheaper, scalable and manufacturable techniques.The aim and objectives of this work is to develop low-cost, high efficiency solar cell using electrodeposition (ED) technique. The material layers include CdS and ZnTe as the window materials, while the absorber material is CdTe. Fabricating a suitable devices for solar energy conversion (i.e. glass/conducting glass/window material/absorber material/metal) structure. Traditional way of fabricating this structure is to grow window material (CdS) using chemical bath deposition (CBD) and absorber material (CdTe) using electrodeposition. However, CBD is a batch process and therefore creates large volumes of Cd-containing waste solutions each time adding high cost in manufacturing process. This research programme is therefore on development of an "All ED-solar cells" structure.Material studies were carried out using photoelectrochemical (PEC) studies, UV-Vis spectrophotometry, X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Furthermore, the electrical characterisation of fully fabricated devices was performed using current-voltage (I-V) and capacitance-voltage (C-V) measurements.This research programme has demonstrated that CdS and ZnTe window materials can be electrodeposited and used in thin film solar cell devices. The CdS electrolytic bath can be used for a period of 7 months without discarding it like in the CBD process which usually has life

  19. Electronic structure of semiconductor thin films (chalcopyrites) as absorbermaterials for thin film solar cells

    International Nuclear Information System (INIS)

    Lehmann, Carsten

    2007-01-01

    The objective of this work was to determine for the first time the band structure of CuInS 2 . For this purpose a new GSMBE process with TBDS as sulphur precursor was established to prevent the use of elemental sulphur in an UHV system. Additionally to the deposited films a cleave surface was prepared. The samples were characterized in situ by XPS/UPS and LEED. XRD and SEM were used for further ex situ investigations. The band structure was determined by ARUPS using synchrotron light. CuInS(001) and CuInS 2 (112) were deposited on Si and GaAs. The deposition of CuInS 2 on GaAs showed a strong dependence on the existing surface reconstruction. A 2 x 1 reconstruction of GaAs(001) yielded CuInS 2 (001) films featuring terraces. A deposition on 2 x 2 reconstructed GaAs(111)A surfaces led to a facetted CuInS 2 surface. On sulphur-passivated non-reconstructed GaAs(111)B a deposition of chalcopyrite ordered CuInS 2 free of facets was possible. On the surface of Cu-rich CuInS 2 films CuS crystallites formed. This yields ARUPS spectra showing the electronic stucture of CuInS 2 superimposed by non-dispergative states of the polycrystalline CuS segregations. The effective hole masses were derived from the k vertical stroke vertical stroke measurements. Finally the results of this work showed that the use of a (111) substrate leads to domain formation of the deposited CuInS 2 (112) films. Thus ARUPS spectra of such films show a superposition of the band structures along different directions. (orig.)

  20. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huang, Q.Z.; Shi, J.F.; Wang, L.L.; Li, Y.J.; Zhong, L.W.; Xu, G.

    2016-01-01

    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO_2/Na_2O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO_2/Na_2O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  1. Study on sodium water glass-based anti-reflective film and its application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q.Z. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shi, J.F., E-mail: shijf@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Wang, L.L.; Li, Y.J.; Zhong, L.W. [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China); Xu, G., E-mail: xugang@ms.giec.ac.cn [Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510000 (China)

    2016-07-01

    In this paper, anti-reflective (AR) films are prepared from sodium water glass with a simple dip-coating method. The effects of SiO{sub 2}/Na{sub 2}O molar ratio, concentration of water glass, and withdrawal speed on the anti-reflection performance of the AR films are systematically studied. The optimized AR film is further applied in dye-sensitized solar cells (DSCs). The optical properties and surface morphology of AR films are analyzed by ultraviolet-visible spectrophotometer, scanning electron microscope, and atomic force microscope. Transmittance of the glass coated with sodium water glass-based AR film is increased by 3.2% when the SiO{sub 2}/Na{sub 2}O molar ratio, concentration, and withdrawal speed equal to 3.8, 5 wt%, and 80 mm/min, respectively. Under this condition, the thickness of the AR film is 127 nm and the AR film has obvious porous structure. In addition, the power conversion efficiency of DSC coated by AR film is increased from 7.92% to 8.24%, compared with the DSC without AR film. - Highlights: • Anti-reflective films are prepared from sodium water glass. • Transmittance of anti-reflective film is increased by 3.2%. • Efficiency of dye-sensitized cell is improved by anti-reflective film.

  2. Spin-coating deposition of PbS and CdS thin films for solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jayesh; Mighri, Frej [Laval University, CREPEC, Department of Chemical Engineering, Quebec, QC (Canada); Ajji, Abdellah [Ecole Polytechnique, CREPEC, Chemical Engineering Department, Montreal, QC (Canada); Tiwari, Devendra; Chaudhuri, Tapas K. [Charotar University of Science and Technology (CHARUSAT), Dr. K.C. Patel Research and Development Centre, Anand District, Gujarat (India)

    2014-12-15

    In this work, we describe a simple spin-coating deposition technique for lead sulphide (PbS) and cadmium sulphide (CdS) films from a methanolic metal-thiourea complex. The characterization of the films by X-ray diffraction and X-ray photoelectron spectroscopy techniques revealed that pure cubic phase PbS and CdS layers were formed via this method. As shown by atomic force microscopy and scanning electron microscopy results, both films were homogeneous and presented a smooth surface. Optical properties showed that the energy band gap of PbS and CdS films were around 1.65 and 2.5 eV, respectively. The PbS film is p-type in nature with an electrical conductivity of around 0.8 S/cm. The hole concentration and mobility were 2.35 x 10{sup 18} cm{sup -3} and 2.16 x 10{sup -3} cm{sup 2}/V/s, respectively, as determined from Hall measurement. Both films were used to develop a thin film solar cell device of graphite/PbS/CdS/ITO/glass. Device characterization showed the power conversion efficiency of around 0.24 %. The corresponding open circuit voltage, short circuit current and fill factor were 0.570 V, 1.32 mA/cm{sup 2} and 0.32, respectively. (orig.)

  3. Flexible Solar Cells

    Science.gov (United States)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  4. A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Hao Sancun [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China); Jiangsu Shuangdeng Group Co. Ltd, Thaizhou, Jiangsu, 225526 (China); Wu Jihuai, E-mail: jhwu@hqu.edu.cn [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sun Zhonglin [Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China)

    2012-01-01

    Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 {mu}m achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA{center_dot}cm{sup -2} and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW{center_dot}cm{sup -2}.

  5. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing-Rui Wu

    2014-01-01

    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  6. Effects of Solution-Based Fabrication Conditions on Morphology of Lead Halide Perovskite Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Jeremy L. Barnett

    2016-01-01

    Full Text Available We present a critical review of the effects of processing conditions on the morphology of methylammonium lead iodide (CH3NH3PbI3 perovskite solar cells. Though difficult to decouple from synthetic and film formation effects, a single morphological feature, specifically grain size, has been evidently linked to the photovoltaic performance of this class of solar cells. Herein, we discuss experimental aspects of optimizing the (a temperature and time of annealing, (b spin-coating parameters, and (c solution temperature of methylammonium iodide (MAI solution.

  7. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  8. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    Science.gov (United States)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  9. Deposition and characterization of CuInSe{sub 2} films for solar cells using an optimized chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Berruet, M. [Division Corrosion, INTEMA, CONICET, Facultad de Ingenieria, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Schreiner, W.H. [Laboratorio de Superficies e Interfases, Departamento de Fisica, Universidade Federal do Parana, 81531-990 Curitiba, PR (Brazil); Cere, S. [Division Corrosion, INTEMA, CONICET, Facultad de Ingenieria, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Vazquez, M., E-mail: mvazquez@fi.mdp.edu.ar [Division Corrosion, INTEMA, CONICET, Facultad de Ingenieria, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2011-02-10

    Research highlights: > CuInSe{sub 2} has been deposited on glass by optimizing some parameters in the SILAR method. > Renewing the precursors after 40 cycles improves the composition of the deposit. > Photoelectrochemical tests and Mott-Schottky analysis confirm p-type conduction. > The quality of the material shows potential for application in solar cell devices. - Abstract: CuInSe{sub 2} (CISe) thin films have been deposited on glass using successive ionic layer adsorption and reaction (SILAR). The as-deposited films are treated at 400 deg. C in argon atmosphere and etched in KCN solution to remove detrimental secondary phases. The preparation and temperature of the precursor solutions, the duration of the reaction cycles and the duration of the annealing stage have been optimized. The films have been characterized employing grazing incident X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and energy dispersive scanning spectroscopy. Relevant semiconductor parameters have been calculated. Photoelectrochemical tests confirm p-type conduction. The films are crystalline and the stoichiometry can be improved by renewing the precursor solution after completing half of the cycles, annealing for 90 min and later etching in KCN. The quality of the material seems to be promising for application in solar cell devices.

  10. Cu2ZnSnSe4 Thin Film Solar Cell with Depth Gradient Composition Prepared by Selenization of Sputtered Novel Precursors.

    Science.gov (United States)

    Lai, Fang-I; Yang, Jui-Fu; Chen, Wei-Chun; Kuo, Shou-Yi

    2017-11-22

    In this study, we proposed a new method for the synthesis of the target material used in a two stage process for preparation of a high quality CZTSe thin film. The target material consisting of a mixture of Cu x Se and Zn x Sn 1-x alloy was synthesized, providing a quality CZTSe precursor layer for highly efficient CZTSe thin film solar cells. The CZTSe thin film can be obtained by annealing the precursor layers through a 30 min selenization process under a selenium atmosphere at 550 °C. The CZTSe thin films prepared by using the new precursor thin film were investigated and characterized using X-ray diffraction, Raman scattering, and photoluminescence spectroscopy. It was found that diffusion of Sn occurred and formed the CTSe phase and Cu x Se phase in the resultant CZTSe thin film. By selective area electron diffraction transmission electron microscopy images, the crystallinity of the CZTSe thin film was verified to be single crystal. By secondary ion mass spectroscopy measurements, it was confirmed that a double-gradient band gap profile across the CZTSe absorber layer was successfully achieved. The CZTSe solar cell with the CZTSe absorber layer consisting of the precursor stack exhibited a high efficiency of 5.46%, high short circuit current (J SC ) of 37.47 mA/cm 2 , open circuit voltage (V OC ) of 0.31 V, and fill factor (F.F.) of 47%, at a device area of 0.28 cm 2 . No crossover of the light and dark current-voltage (I-V) curves of the CZTSe solar cell was observed, and also, no red kink was observed under red light illumination, indicating a low defect concentration in the CZTSe absorber layer. Shunt leakage current with a characteristic metal/CZTSe/metal leakage current model was observed by temperature-dependent I-V curves, which led to the discovery of metal incursion through the CdS buffer layer on the CZTSe absorber layer. This leakage current, also known as space charge-limited current, grew larger as the measurement temperature increased and

  11. Finite element modelling and simulation of free convection heat transfer in solar oven

    Energy Technology Data Exchange (ETDEWEB)

    Sobamowo, M.G.; Ogunmola, B.Y.; Ayerin A.M. [Department of Mechanical Engineering, University of Lagos, Akoka, Lagos (Nigeria)

    2013-07-01

    The use of solar energy for baking, heating or drying represents a sustainable way of solar energy applications with negligible negative effects. Solar oven is an alternative to conventional oven that rely heavily on coal and wood or Electric oven that uses the power from the National grid of which the end users have little or no control. Since the Solar oven uses no fuel and it costs nothing to run, it uses are widely promoted especially in situations where minimum fuel consumption or fire risks are considered highly important. As useful as the Solar Oven proved, it major setback in the area of applications has been its future sustainability. For the use of Solar Oven/Cookers to be sustained in the future, the design and development of solar oven must rely on sound analytical tools. Therefore, this work focused on the design and development of the solar oven. To test the performance of the Small Solar Oven a 5000cm3 beaker of water was put into the Oven and the temperature of the water was found to reach 810C after about 3hrs under an average ambient temperature of 300C. On no load test, the oven reached a maximum temperature of 112oC in 6hrs. In order to carry out the parametric studies and improve the performance of the Solar Oven, Mathematical models were developed and solved by using Characteristics-Based Split (CBS) Finite Element Method. The Model results were compared with the Experimental results and a good agreement was found between the two results.

  12. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye

    Science.gov (United States)

    Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin

    2018-04-01

    Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.

  13. Enhancing Performance of Large-Area Organic Solar Cells with Thick Film via Ternary Strategy.

    Science.gov (United States)

    Zhang, Jianqi; Zhao, Yifan; Fang, Jin; Yuan, Liu; Xia, Benzheng; Wang, Guodong; Wang, Zaiyu; Zhang, Yajie; Ma, Wei; Yan, Wei; Su, Wenming; Wei, Zhixiang

    2017-06-01

    Large-scale fabrication of organic solar cells requires an active layer with high thickness tolerability and the use of environment-friendly solvents. Thick films with high-performance can be achieved via a ternary strategy studied herein. The ternary system consists of one polymer donor, one small molecule donor, and one fullerene acceptor. The small molecule enhances the crystallinity and face-on orientation of the active layer, leading to improved thickness tolerability compared with that of a polymer-fullerene binary system. An active layer with 270 nm thickness exhibits an average power conversion efficiency (PCE) of 10.78%, while the PCE is less than 8% with such thick film for binary system. Furthermore, large-area devices are successfully fabricated using polyethylene terephthalate (PET)/Silver gride or indium tin oxide (ITO)-based transparent flexible substrates. The product shows a high PCE of 8.28% with an area of 1.25 cm 2 for a single cell and 5.18% for a 20 cm 2 module. This study demonstrates that ternary organic solar cells exhibit great potential for large-scale fabrication and future applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogenated TiO2 Thin Film for Accelerating Electron Transport in Highly Efficient Planar Perovskite Solar Cells.

    Science.gov (United States)

    Yao, Xin; Liang, Junhui; Li, Yuelong; Luo, Jingshan; Shi, Biao; Wei, Changchun; Zhang, Dekun; Li, Baozhang; Ding, Yi; Zhao, Ying; Zhang, Xiaodan

    2017-10-01

    Intensive studies on low-temperature deposited electron transport materials have been performed to improve the efficiency of n-i-p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO 2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on V OC and facilitates the growth of high-quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO 2 prepared without hydrogen doping, the HTO-based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room-temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.

  15. Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.

    Science.gov (United States)

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  16. A high temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.

  17. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.; Yang, Y.; Zhao, Y.L., E-mail: sdyulong@cumt.edu.cn; Che, M.; Zhu, L.; Gu, X.Q.; Qiang, Y.H., E-mail: yhqiang@cumt.edu.cn

    2017-03-15

    Highlights: • Perovskite films were post-treated by DMF/CBZ, DMSO/CBZ, or GBL/CBZ blend solvents. • This process could repair pinholes and enhance coverage in perovskite film. • This technique could modify charge transfer process at TiO{sub 2}/perovskite interface. - Abstract: A homogenous perovskite thin film with high coverage is a determining factor for high performance perovskite solar cells. Unlike previous pre-treatments aiming at perovskite precursor, we proposed a simple method to modify the morphology of perovskite films by post-treatment process using mixed solvents of N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or 1,4-butyrolactone (GBL) with chlorobenzene (CBZ) in this paper. As good solvent of perovskite, DMF, DMSO, and GBL could dissolve the formed perovskite film. Meanwhile, CBZ, anti-solvent of perovskite film, could decrease the dissolving capacity of these good solvents. Therefore, the perovskite film coverage might be improved by the partial dissolution and recrystallization after solvent post-treatment process. Electrochemical impedance spectrometry (EIS) and time-resolved photoluminescence (TRPL) indicated that this post-treatment process could enhance charge transfer at TiO{sub 2}/perovskite interface. Finally, the conversion efficiency increased from 10.10% to 11.82%, 11.68%, and 10.66% using perovskite films post-treated by DMF/CBZ, DMSO/CBZ, and GBL/CBZ blend solvents, respectively.

  18. A COMPARISON OF ELEMENTAL ABUNDANCE RATIOS IN SEP EVENTS IN FAST AND SLOW SOLAR WIND REGIONS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Tylka, A. J.; Reames, D. V.

    2009-01-01

    The solar energetic (E > 1 MeV nucleon -1 ) particles (SEPs) observed in gradual events at 1 AU are assumed to be accelerated by coronal/interplanetary shocks from ambient thermal or suprathermal seed particles. If so, then the elemental abundances of SEPs produced in different solar wind (SW) stream types (transient, fast, and slow) might be systematically distinguished from each other. We look for these differences in SEP energy spectra and in elemental abundance ratios (including Mg/Ne and Fe/C, which compare low/high first ionization potential elements), in a large number of SEP time intervals over the past solar cycle. The SW regions are characterized by the three-component stream classification of Richardson et al. Our survey shows no significant compositional or energy spectral differences in the 5-10 MeV nucleon -1 range for SEP events of different SW stream types. This result extends the earlier finding that SEP events are observed frequently in fast SW streams, although their higher Alfven and SW flow speeds should constrain SEP production by coronal mass ejection-driven shocks in those regions. We discuss the implications of our results for shock seed populations and cross-field propagation.

  19. Solar power satellite rectenna design study: Directional receiving elements and parallel-series combining analysis

    Science.gov (United States)

    Gutmann, R. J.; Borrego, J. M.

    1978-01-01

    Rectenna conversion efficiencies (RF to dc) approximating 85 percent were demonstrated on a small scale, clearly indicating the feasibility and potential of efficiency of microwave power to dc. The overall cost estimates of the solar power satellite indicate that the baseline rectenna subsystem will be between 25 to 40 percent of the system cost. The directional receiving elements and element extensions were studied, along with power combining evaluation and evaluation extensions.

  20. Facile method for synthesis of TiO{sub 2} film and its application in high efficiency dye sensitized-solar cell (DSSC)

    Energy Technology Data Exchange (ETDEWEB)

    Widiyandari, Hendri, E-mail: h.widiyandari@undip.ac.id; Gunawan, S. K.V.; Suseno, Jatmiko Endro [Department of Physics, Diponegoro University, Jl. Prof. H. Soedarto SH, Semarang, Central Java 50275 (Indonesia); Purwanto, Agus [Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia); Diharjo, Kuncoro [Department of Mechanical Engineering, Sebelas Maret University, Jl. Ir. Sutami No. 36 A, Surakarta (Indonesia)

    2014-02-24

    Dye-sensitized solar cells (DSSC) is a device which converts a solar energy to electrical energy. Different with semiconductor thin film based solar cell, DSSC utilize the sensitized-dye to absorb the photon and semiconductor such as titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) as a working electrode photoanode. In this report, the preparation of TiO{sub 2} film using a facile method of spray deposition and its application in DSSC have been presented. TiO{sub 2} photoanode was synthesized by growing the droplet of titanium tetraisopropoxide diluted in acid solution on the substrate of conductive glass flourine-doped tin oxide (FTO) with variation of precursor volume. DSSC was assemblied by sandwiching both of photoanode electrode and platinum counter electrode subsequently filling the area between these electrodes with triodine/iodine electrolite solution as redox pairs. The characterization of the as prepared DSSC using solar simulator (AM 1.5G, 100 mW/cm{sup 2}) and I-V source meter Keithley 2400 showed that the performance of DSSC was affected by the precursor volume.. The overall conversion efficiency of DSSC using the optimum TiO{sub 2} film was about 1.97% with the open circuit voltage (V{sub oc}) of 0.73 V, short circuit current density (J{sub sc}) of 4.61 mA and fill factor (FF) of 0.58.

  1. Band alignment measurements at heterojunction interfaces in layered thin film solar cells & thermoelectrics

    Science.gov (United States)

    Fang, Fang

    2011-12-01

    Public awareness of the increasing energy crisis and the related serious environmental concerns has led to a significantly growing demand for alternative clean and renewable energy resources. Thin film are widely applied in multiple renewable energy devices owing to the reduced amount of raw materials and increase flexibility of choosing from low-cost candidates, which translates directly into reduced capital cost. This is a key driving force to make renewable technology competitive in the energy market. This thesis is focused on the measurement of energy level alignments at interfaces of thin film structures for renewable energy applications. There are two primary foci: II -VI semiconductor ZnSe/ZnTe thin film solar cells and Bi2Te3/Sb2Te3 thin film structures for thermoelectric applications. In both cases, the electronic structure and energy band alignment at interfaces usually controls the carrier transport behavior and determines the quality of the device. High-resolution photoemission spectroscopy (lab-based XPS & synchrotron-based UPS) was used to investigate the chemical and electronic properties of epitaxial Bi2Te3 and Sb2Te3 thin films, in order to validate the anticipated band alignment at interfaces in Bi 2Te3/Sb2Te3 superlattices as one favoring electron-transmission. A simple, thorough two-step treatment of a chemical etching in dilute hydrochloric acid solution and a subsequent annealing at ˜150°C under ultra-high vacuum environment is established to remove the surface oxides completely. It is an essential step to ensure the measurements on electronic states are acquired on stoichimetric, oxide-free clean surface of Bi 2Te3 and Sb2Te3 films. The direct measurement of valence band offsets (VBO) at a real Sb 2Te3/Bi2Te3 interface is designed based on the Kraut model; a special stacking film structure is prepared intentionally: sufficiently thin Sb2Te3 film on top of Bi2Te 3 that photoelectrons from both of them are collected simultaneously. From a

  2. Thermally evaporated Ag nanoparticle films for plasmonic enhancement in organic solar cells: effects of particle geometry

    NARCIS (Netherlands)

    Haidari, G.; Hajimahmoodzadeh, M.; Fallah, H.R.; Peukert, A.; Chanaewa, A.; von Hauff, E.L.

    2015-01-01

    We report on the simple fabrication of Ag NP films via thermal evaporation and subsequent annealing. The NPs are formed on indium tin oxide electrodes, coated with PEDOT:PSS and implemented into PCPDTBT:PC70BM solar cells. Scanning electron microscopy and atomic force microscopy are used to

  3. The electrical, elemental, optical, and surface properties of Si-doped ZnO thin films prepared by thermionic vacuum arc

    Science.gov (United States)

    Mohammadigharehbagh, Reza; Özen, Soner; Yudar, Hafizittin Hakan; Pat, Suat; Korkmaz, Şadan

    2017-09-01

    The purpose of this work is to study the properties of Si-doped ZnO (SZO) thin films, which were prepared using the non-reactive thermionic vacuum arc technique. The analysis of the elemental, optical, and surface properties of ZnO:Si thin films was carried out using energy dispersive x-ray spectroscopy, UV-VIS spectrophotometry, atomic force microscopy, and scanning electron microscopy, respectively. The current-voltage measurement was employed in order to study the electrical properties of the films. The effect of Si doping on the physical properties of ZnO films was investigated. The film thicknesses were measured as 55 and 35 nm for glass and PET substrates, respectively. It was clearly observed from the x-ray diffraction results that the Si and ZnO peaks were present in the coated SZO films for all samples. The morphological studies showed that the deposited surfaces are homogenous, dense, and have a uniform surface, with the existence of some cracks only on the glass substrate. The elemental composition has confirmed the existence of Zn, Si, and O elements within the prepared films. Using a UV-VIS spectrophotometer, the optical parameters such as transmittance, absorbance, refractive index, and reflectance were calculated. It should be noted that the transparency and refractive indices obtained from the measurements decrease with increasing Si concentration. The obtained optical bandgap values using transmittance spectra were determined to be 3.74 and 3.84 eV for the glass and PET substrates, respectively. An increase in the bandgap results demonstrates that the Si doping concentration is comparable to the pure ZnO thin films. The current versus voltage curves revealed the ohmic nature of the films. Subsequently, the development and fabrication of excellent transparent conducting electrodes enabled the appropriate use of Si-doped ZnO thin films.

  4. Cu2SixSn1-xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells

    Science.gov (United States)

    Yan, Chang; Liu, Fang-Yang; Lai, Yan-Qing; Li, Jie; Liu, Ye-Xiang

    2011-10-01

    We report the preparation of Cu2SixSn1-xS3 thin films for thin film solar cell absorbers using the reactive magnetron co-sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1-xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1-xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200-300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm-1 and an optical bandgap of 1.17±0.01 eV.

  5. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  6. All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Films

    DEFF Research Database (Denmark)

    Angmo, Dechan; Dam, Henrik Friis; Andersen, Thomas Rieks

    2014-01-01

    A solution-processed silver film is employed in the processing of top-illuminated indium-tin-oxide (ITO)-free polymer solar cells in single- and double-junction (tandem) structures. The nontransparent silver film fully covers the substrate and serves as the bottom electrode whereas a PEDOT...... in terms of surface morphological and topographical properties and to ITO in terms of flexibility. The slot–die coated Ag film demonstrates extremely low roughness (a root-meansquare roughness of 3 nm was measured over 240_320 mm2 area), is highly conductive (

  7. Fabrication of dye sensitized solar cell using Cr doped Cu-Zn-Se type chalcopyrite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D. Paul; Venkateswaran, C. [Materials Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai-600 025 (India); Ganesan, S.; Suthanthiraraj, S. Austin; Maruthamuthu, P. [Department of Energy, University of Madras, Guindy Campus, Chennai 600 025 (India); Kovendhan, M. [Department of Physics, Presidency College, Chennai 600 005 (India)

    2011-09-15

    Chalcopyrites are a versatile class of semiconductors known for their potential in photovoltaic applications. Considering the well established CuInSe{sub 2} as a prototype system, a new compound of the chalcopyrite type, Cu{sub 1-x}Zn{sub 1-y}Se{sub 2-{delta}}, by replacing In with Zn, has been prepared (both undoped and 2% Cr doped) by the metallurgical method. Thin films have been deposited by the thermal evaporation technique using the stabilized polycrystalline compounds as charge. Structural, compositional, morphological, and optical properties of the films are analyzed and reported. Use of these films as electrodes in dye sensitized solar cell (DSSC) is demonstrated. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Experimental results of 2-propanol dehydrogenation with a falling-liquid film reactor for solar chemical heat pump; Solar chemical heat pump ni okeru ryuka ekimakushiki 2-propanol bunkai hanno jikken

    Energy Technology Data Exchange (ETDEWEB)

    Doi, T; Tanaka, T; Ando, Y; Takashima, T [Electrotechnical Laboratory, Tsukuba (Japan); Koike, M; Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan)

    1997-11-25

    A solar chemical heat pump is intended to attempt multi-purposed effective utilization of solar energy by raising low temperature solar heat of about 100 degC to 150 to 200 degC by utilizing chemical reactions. The chemical heat pump under the present study uses a 2-propanol (IPA)/acetone/hydrogen system which can utilize low-temperature solar heat and has large temperature rising degree. It was found from the result of experiments and analyses that IPA dehydrogenation reaction can improve more largely the heat utilization rate in using a falling-liquid film reactor than using a liquid phase suspended system. As an attempt to improve further the heat utilization rate, this paper reports the result of experimental discussions on inclination angles of a reaction vessel and feed liquid flow rate which would affect the fluid condition of the liquid film. As a result of the experiments, the initial deterioration in the catalyst has settled in about 15 hours, and its activity has decreased to about 60% of the initial activity. It was made clear that the influence of the inclination angle of the reaction vessel on the reaction is small. 5 refs., 7 figs.

  9. Solarização do solo com filmes plásticos com e sem aditivo estabilizador de luz ultravioleta Soil solarization with plastic films with and without UV light stabilizers

    Directory of Open Access Journals (Sweden)

    Benedito C. Barros

    2004-06-01

    menor nos tratamentos com plástico contendo aditivo. A viabilidade de P. aphanidermatum foi reduzida em todos os tratamentos solarizados, independente do plástico utilizado. Houve aumento no pH, na saturação por bases (V% e nos teores de NH4+ (190%, Mn (94,6% e Mg2+ (18%, dos solos solarizados. Também as plantas de alface colhidas nessas parcelas apresentaram maiores teores de Zn (43%, Mg2+ (12% e K+ (4%. Em Mogi das Cruzes foram observados aumentos nos teores de Mn (236% e Cu (18% nos solos solarizados e nas plantas colhidas nesses tratamentos (aumento de 99% para Mn e de 27% para Cu. A incidência da podridão de esclerotínia foi reduzida de 27,7% na testemunha para índices inferiores a 1% nas parcelas solarizadas com os diferentes filmes plásticos. O plástico sem aditivo estabilizador de luz ultravioleta partiu-se durante ambos os experimentos, após 60 e 90 dias de exposição ao ambiente, sendo considerado inadequado para a solarização, mas não houve diferença entre os plásticos para nenhum atributo avaliado.Three plastic films [low-density polyethylene (LDPE plastic films, 100 mm thick, produced by Nortène Plásticos Ltda] were evaluated in their adequacy for soil solarization:. a LDPE with UV light stabilizer additive, based on hindered amine; b LDPE with half load of the same additive, c without additive, and d a control treatment without plastic mulch. Two experiments were set up from January to February 2000, in Mogi das Cruzes and Piracicaba, São Paulo State, Brazil. After solarization, a lettuce crop was grown in both experiments. Chemical analyses were performed in soil samples and in the harvested lettuce heads of all plots. Weed infestation and the fresh weight of the harvested lettuce heads were assessed. In Piracicaba the soils were analyzed for microbiological properties and the viability of Pythium aphanidermatum was evaluated. In Mogi das Cruzes incidence of lettuce drop, caused by Sclerotinia minor, was assessed. The mean soil

  10. In situ analysis of elemental depth distributions in thin films by combined evaluation of synchrotron x-ray fluorescence and diffraction

    International Nuclear Information System (INIS)

    Mainz, R.; Klenk, R.

    2011-01-01

    In this work we present a method for the in situ analysis of elemental depth distributions in thin films using a combined evaluation of synchrotron x-ray fluorescence and energy-dispersive x-ray diffraction signals. We recorded diffraction and fluorescence signals simultaneously during the reactive annealing of thin films. By means of the observed diffraction signals, the time evolution of phases in the thin films during the annealing processes can be determined. We utilized this phase information to parameterize the depth distributions of the elements in the films. The time-dependent fluorescence signals were then taken to determine the parameters representing the parameterized depth distributions. For this latter step, we numerically calculated the fluorescence intensities for a given set of depth distributions. These calculations handle polychromatic excitation and arbitrary functions of depth distributions and take into account primary and secondary fluorescence. Influences of lateral non-uniformities of the films, as well as the accuracy limits of the method, are investigated. We apply the introduced method to analyze the evolution of elemental depth distributions and to quantify the kinetic parameters during a synthesis process of CuInS 2 thin films via the reactive annealing of Cu-In precursors in a sulfur atmosphere.

  11. Two step growth mechanism of Cu2ZnSnS4 thin films

    Science.gov (United States)

    Thota, Narayana; Venkata Subbaiah, Y. P.; Prathap, P.; Reddy, Y. B. K.; Hema Chandra, G.

    2014-09-01

    Cu2ZnSnS4 (CZTS) semiconductor is rapidly emerging as the best absorber layer for next generation solar photovoltaics. Its cost effectiveness, environment-friendly nature, wide presence of chemical constituents in nature and high absorption coefficient with suitable energy band gap for effective utilization of solar spectrum makes it a viable alternative. The present work summarizes the preparation of CZTS films through a two-step process consisting of co-sputtered metallic precursors on glass substrates kept at 230 °C followed by sulfurization for 2 h in the ambience of elemental sulfur vapor at different temperatures ranging from 300 to 550 °C. The X-ray diffraction (XRD) and Raman analysis make it explicit that the sulfurization temperature has significant impact on reaction mechanism resulting in various bi-metallic, mono and binary metal sulfides. The diffraction pattern noticed at 500 °C corresponding to (112), (220) and (312) planes confirms the single phase CZTS as evidenced by weak and strong Raman modes at 285, 337 and 352 cm-1. The transmittance and reflectance measurements of optimized CZTS films revealed that the films have an energy band gap of ~1.56 eV. The optimized films were characterized by scanning electron microscopy (SEM) attached with EDS to know the morphological features and elemental quantification. The single phase CZTS films have exhibited p-type conductivity with sheet resistance ~6.8×103 Ω/sq., carrier concentration ~9.1×1017 cm-3 and hole mobility ~16.6 cm2V-1 s-1.

  12. A statistical approach for the optimization of indium tin oxide films used as a front contact in amorphous/crystalline silicon heterojunction solar cells

    International Nuclear Information System (INIS)

    Le, Anh Huy Tuan; Ahn, Shihyun; Kim, Sangho; Han, Sangmyeong; Kim, Sunbo; Park, Hyeongsik; Nguyen, Cam Phu Thi; Dao, Vinh Ai; Yi, Junsin

    2014-01-01

    Highlights: • The number of experiments was reduced by approximately 90% using Taguchi design. • The optimal condition of ITO films was obtained by Grey relational analysis. • Substrate temperature is dominant effect on opto-electrical properties of ITO films. • Using the optimal ITO films, the solar cell efficiency was absolutely increased by 1.750%. - Abstract: In heterojunction silicon with intrinsic thin layer (HIT) solar cells, the excellent opto-electrical properties of indium tin oxide (ITO) front contact play a critical role in attaining high efficiency. Therefore, in this study, we present and demonstrate an effective statistic approach based on combining Taguchi method and Grey relational analysis for the optimization of ITO films. A reduction in the number of experiments by approximately 90% is obtained by the Taguchi method through an orthogonal array. The reproduction of the effect of process parameters on single performance characteristic, however, is still ensured. In addition, an excellent trade-off between electrical and optical properties of ITO films was attained within the selected range of parameters by Grey relational analysis at power density of 0.685 W/cm 2 , working pressure of 0.4 Pa, substrate temperature of 200 °C, and post-annealing temperature of 200 °C in 30 min. Under optimal condition, the ITO films showed lowest electrical resistivity of 1.978 × 10 −4 Ω cm, and highest transmittance of 90.322%. The HIT solar cells using these ITO films as a front contact show highest efficiency of 16.616%, yielding a 1.750% absolute increase in efficiency compared to using ITO films with the initial condition. Furthermore, the analysis of variance (ANOVA) is determined to define the process parameters which have a dominant effect on the electrical and optical properties of ITO films. Based on ANOVA, we found that the substrate temperature was a key parameter which critically affects the opto-electrical properties of ITO films

  13. Preparation of anatase TiO{sub 2} thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hongche [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Oh, Seong-Geun, E-mail: seongoh@hanyang.ac.kr [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Im, Seung Soon, E-mail: imss007@hanyang.ac.kr [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    Highlights: • Anatase thin film of TiO{sub 2} was prepared by low temperature annealing. • Anatase TiO{sub 2} colloidal solution was obtained from amorphous form through solvothermal process. • Anatase TiO{sub 2} colloidal solution was used to prepare thin film on ITO glass. • Polymer solar cell fabricated on anatase TiO{sub 2} thin film showed 2.6% of PCE. - Abstract: To prepare the anatase TiO{sub 2} thin films on ITO glass, amorphous TiO{sub 2} colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO{sub 2} colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO{sub 2} film (for device A). For other TiO{sub 2} films, amorphous TiO{sub 2} colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO{sub 2} colloidal solution. This anatase TiO{sub 2} colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO{sub 2} colloidal solution was about 1.0 nm and that of anatase TiO{sub 2} colloidal solution was 10 nm. The thickness of TiO{sub 2} films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO{sub 2} films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO{sub 2} films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO{sub 2} films as a buffer layer at low temperature on plastic substrate by roll-to roll process.

  14. The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu-Zn-Sn precursors

    International Nuclear Information System (INIS)

    Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; Voss, T.; Schulze, J.; Kirbs, A.; Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Koetschau, I.; Schock, H.-W.

    2009-01-01

    The best CZTS solar cell so far was produced by co-sputtering continued with vapour phase sulfurization method. Efficiencies of up to 5.74% were reached by Katagiri et al. The one step electrochemical deposition of copper, zinc, tin and subsequent sulfurization is an alternative fabrication technique for the production of Cu 2 ZnSnS 4 based thin film solar cells. A kesterite based solar cell (size 0.5 cm 2 ) with a conversion efficiency of 3.4% (AM1.5) was produced by vapour phase sulfurization of co-electroplated Cu-Zn-Sn films. We report on results of in-situ X-ray diffraction (XRD) experiments during crystallisation of kesterite thin films from electrochemically co-deposited metal films. The kesterite crystallisation is completed by the solid state reaction of Cu 2 SnS 3 and ZnS. The measurements show two different reaction paths depending on the metal ratios in the as deposited films. In copper-rich metal films Cu 3 Sn and CuZn were found after electrodeposition. In copper-poor or near stoichiometric precursors additional Cu 6 Sn 5 and Sn phases were detected. The formation mechanism of Cu 2 SnS 3 involves the binary sulphides Cu 2-x S and SnS 2 in the absence of the binary precursor phase Cu 6 Sn 5 . The presence of Cu 6 Sn 5 leads to a preferred formation of Cu 2 SnS 3 via the reaction educts Cu 2-x S and SnS 2 in the presence of a SnS 2 (Cu 4 SnS 6 ) melt. The melt phase may be advantageous in crystallising the kesterite, leading to enhanced grain growth in the presence of a liquid phase

  15. Outdoor solar UVA dose assessment with EBT2 radiochromic film using spectrophotometer and densitometer measurements.

    Science.gov (United States)

    Abukassem, I; Bero, M A

    2015-04-01

    Direct measurements of solar ultraviolet radiations (UVRs) have an important role in the protection of humans against UVR hazard. This work presents simple technique based on the application of EBT2 GAFCHROMIC(®) film for direct solar UVA dose assessment. It demonstrates the effects of different parts of the solar spectrum (UVB, visible and infrared) on performed UVA field measurements and presents the measurement uncertainty budget. The gradient of sunlight exposure level permitted the authors to establish the mathematical relationships between the measured solar UVA dose and two measured quantities: the first was the changes in spectral absorbance at the wavelength 633 nm (A633) and the second was the optical density (OD). The established standard relations were also applied to calculate the solar UVA dose variations during the whole day; 15 min of exposure each hour between 8:00 and 17:00 was recorded. Results show that both applied experimental methods, spectrophotometer absorbance and densitometer OD, deliver comparable figures for EBT2 solar UVA dose assessment with relative uncertainty of 11% for spectral absorbance measurements and 15% for OD measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Incorporation of Kojic Acid-Azo Dyes on TiO2 Thin Films for Dye Sensitized Solar Cells Applications

    Directory of Open Access Journals (Sweden)

    Carolynne Zie Wei Sie

    2017-01-01

    Full Text Available Sensitization of heavy metal free organic dyes onto TiO2 thin films has gained much attention in dye sensitized solar cells (DSSCs. A series of new kojic acid based organic dyes KA1–4 were synthesized via nucleophilic substitution of azobenzene bearing different vinyl chains A1–4 with kojyl chloride 4. Azo dyes KA1–4 were characterized for photophysical properties employing absorption spectrometry and photovoltaic characteristic in TiO2 thin film. The presence of vinyl chain in A1–4 improved the photovoltaic performance from 0.20 to 0.60%. The introduction of kojic acid obtained from sago waste further increases the efficiency to 0.82–1.54%. Based on photovoltaic performance, KA4 achieved the highest solar to electrical energy conversion efficiency (η = 1.54% in the series.

  17. Environmental influences on the performance of thin film solar cells

    International Nuclear Information System (INIS)

    Gottschalg, Ralph

    2001-01-01

    The response of thin film photovoltaic devices to changes in the environment is not well understood. There are a large number of conflicting reports, reflecting largely the superimposed nature of the environmental effects. A separation of the effects is not often attempted mainly because of the lack of appropriate spectral data. An experimental system has been designed and operated to facilitate the separation of the environmental effects, including spectral effects. This involves measurements in a controlled laboratory environment as well as outdoor monitoring. Furthermore, a number of analysis tools have been developed and tested for their suitability. In order to develop a system model, the applicability of parametric models for thin film devices is probed. The thermal variation of the underlying physical parameters is investigated and problems of describing thin film devices with parametric models are discussed. It is shown that the magnitude of the spectral effects for thin film devices is potentially much more significant than for conventional crystalline silicon devices. This analysis is centred on the primary spectral effect, i.e. it is conducted purely on the basis of available light and does not consider any absorption profiles or device structures. It is also shown that there is a strong daily and seasonal variation in the fraction of the useful light for devices employing a larger band gap. Environmental effects are observed directly from outdoor measurements. It is apparent that many of the reported idiosyncrasies occurring during the operation of thin film devices can be explained simply by including spectral effects. It is possible to show the secondary spectral effect for multi-junction devices, i.e. an effect that depends on the composition of the solar irradiance and not purely on the magnitude of spectrally useful irradiance. This effect impacts mainly on the short circuit current and to some extent on the fill factor. Finally, the findings of

  18. Thin film CdTe solar cells by close spaced sublimation: Recent results from pilot line

    International Nuclear Information System (INIS)

    Siepchen, B.; Drost, C.; Späth, B.; Krishnakumar, V.; Richter, H.; Harr, M.; Bossert, S.; Grimm, M.; Häfner, K.; Modes, T.; Zywitzki, O.; Morgner, H.

    2013-01-01

    CdTe is an attractive material to produce high efficient and low cost thin film solar cells. The semiconducting layers of this kind of solar cell can be deposited by the Close Spaced Sublimation (CSS) process. The advantages of this technique are high deposition rates and an excellent utilization of the raw material, leading to low production costs and competitive module prices. CTF Solar GmbH is offering equipment and process knowhow for the production of CdTe solar modules. For further improvement of the technology, research is done at a pilot line, which covers all relevant process steps for manufacture of CdTe solar cells. Herein, we present the latest results from the process development and our research activities on single functional layers as well as for complete solar cell devices. Efficiencies above 13% have already been obtained with Cu-free back contacts. An additional focus is set on different transparent conducting oxide materials for the front contact and a Sb 2 Te 3 based back contact. - Highlights: ► Laboratory established on industrial level for CdTe solar cell research ► 13.0% cell efficiency with our standard front contact and Cu-free back contact ► Research on ZnO-based transparent conducting oxide and Sb 2 Te 3 back contacts ► High resolution scanning electron microscopy analysis of ion polished cross section

  19. Fluid-film bearings: a finite element method of analysis

    International Nuclear Information System (INIS)

    Pururav, T.; Soni, R.S.; Kushwaha, H.S.; Mahajan, S.C.

    1995-01-01

    Finite element method (FEM) has become a very popular technique for the analysis of fluid-film bearings in the last few years. These bearings are extensively used in nuclear industry applications such as in moderator pumps and main coolant pumps. This report gives the methodology for the solution of Reynold's equation using FEM and its implementation in FE software LUBAN developed in house. It also deals with the mathematical basis and algorithm to account for the cavitation phenomena which makes these problems non-linear in nature. The dynamic coefficients of bearings are evaluated by one-step approach using variational principles. These coefficients are useful for the dynamic characterisation of fluid-film bearings. Several problems have been solved using this code including two real life problems, a circumferentially grooved journal bearing for which experimental results are available and the bearing of moderator pump of 500 MWe PHWR, have been solved. The results obtained for sample problems are in good agreement with the published literature. (author). 9 refs., 14 figs., 5 tabs., 2 ills

  20. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system (development of technology to manufacture thin film solar cells (surveys and researches on analyzing practical application )). Volume 1; 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (jitsuyoka kaiseki ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is intended to identify and analyze quickly and accurately the technological trends inside and outside the country on thin film solar cells, to reflect the results effectively on research and development of practical application of the thin film solar cells for power use, and to aid the research on practical application of the technology to manufacture the thin film solar cells. This fiscal year introduced the new project of researching and developing the poly-crystal silicon-based thin film solar cells. Discussions were given on designing the solar cells, including setting of thickness of an active layer required to improve efficiency of the silicon-based thin film solar cells, the light confining technology, and surface passivation. Comparisons and discussions were given on the new amorphous/poly-crystal silicon thin film manufacturing method and the conventional plasma CVD process. A research development program was introduced for a super laboratory to aid establishing the practical application technology for the silicon-based thin film solar cells. Chalcopyrite compounds including CuInSe2, and CdTe have not shown deterioration even in a long-term outdoor exposure test, hence they are noted as materials for high-efficiency solar cells and studied actively. Although still small in area, the net conversion efficiency was found in the order of 17%. Technological development has started to search mass production processes and commercialization possibility in the future. (NEDO)