WorldWideScience

Sample records for films conducting polymers

  1. Morphology in electrochemically grown conducting polymer films

    Science.gov (United States)

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  2. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  3. “Electro-Click” on Conducting Polymer Films

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    for their own functionalization with high spatial resolution. Interdigitated microelectrodes prepared from the azide-containing conducting polymer were selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials. “Electro-click” on conducting polymer films...

  4. A conducting polymer film stronger than aluminum.

    Science.gov (United States)

    Shi, G; Jin, S; Xue, G; Li, C

    1995-02-17

    Polythiophene (Pth) was electrochemically deposited onto stainless steel substrate from freshly distilled boron fluoride-ethyl ether containing 10 millimoles of thiophene per liter. The free-standing Pth film obtained at an applied potential of 1.3 volts (versus Ag/AgCl) had a conductivity of 48.7 siemens per centimeter. Its tensile strength (1200 to 1300 kilograms per square centimeter) was greater than that of aluminium (1000 to 1100 kilograms per square centimeter). This Pth film behaves like a metal sheet and can be easily cut into various structures with a knife or a pair of scissors.

  5. Versatile solution for growing thin films of conducting polymers.

    Science.gov (United States)

    D'Arcy, Julio M; Tran, Henry D; Tung, Vincent C; Tucker-Schwartz, Alexander K; Wong, Rain P; Yang, Yang; Kaner, Richard B

    2010-11-16

    The method employed for depositing nanostructures of conducting polymers dictates potential uses in a variety of applications such as organic solar cells, light-emitting diodes, electrochromics, and sensors. A simple and scalable film fabrication technique that allows reproducible control of thickness, and morphological homogeneity at the nanoscale, is an attractive option for industrial applications. Here we demonstrate that under the proper conditions of volume, doping, and polymer concentration, films consisting of monolayers of conducting polymer nanofibers such as polyaniline, polythiophene, and poly(3-hexylthiophene) can be produced in a matter of seconds. A thermodynamically driven solution-based process leads to the growth of transparent thin films of interfacially adsorbed nanofibers. High quality transparent thin films are deposited at ambient conditions on virtually any substrate. This inexpensive process uses solutions that are recyclable and affords a new technique in the field of conducting polymers for coating large substrate areas.

  6. Electrochemical Formation of Polypyrrole-carboxymethylcellulose Conducting Polymer Composite Films

    Institute of Scientific and Technical Information of China (English)

    H.N.M. Ekramul Mahmud; Anuar Kassim; Zulkarnain Zainal; Wan Mahmood Mat Yunus

    2005-01-01

    The electrochemical preparation of polypyrrole-carboxymethylcellulose (PPY-CMC) conducting polymer composite films on indium tin oxide (ITO) glass electrode from an aqueous solution containing pyrrole monomer, ptoluenesulfonate electrolyte and carboxymethylcellulose insulating polymer is reported. The characterization by Fourier transform infrared spectroscopy (FT-IR) shows that carboxymethylcellulose (CMC) has been successfully incorporated into polypyrrole structure forming PPY-CMC polymer composite films. The conductivity of the prepared composite films was found to increase with increaseing CMC concentration in pyrrole solution. The optical microscopic results show the influence of CMC concentration in the pyrrole solution over the morphological changes of the prepared films. The dynamic mechanical analysis (DMA) on the prepared PPY-CMC film reveals the higher plastic property of the PPY-CMC composite film.

  7. “Electro-Click” on Conducting Polymer Films

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    An azide substituted 3,4-ethylenedioxythiophene monomer is polymerised to yield a PEDOT like polymer with available azide groups (Figure 1). The azide groups enable post polymerization functionalization of the conducting polymer using a 1,3 dipolar cycloaddition reaction – also denoted “click...... chemistry”. This facilitates the addition of compounds that can otherwise not withstand the polymerization conditions. Several biological active molecules have been attached and tested on the films. Furthermore conducting polymer microelectrodes can electrochemically generate the catalyst required...... for their own functionalization with high spatial resolution. Interdigitated microelectrodes prepared from the azide-containing conducting polymer were selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials. “Electro-click” on conducting polymer films...

  8. Measurement of in-plane thermal conductivity in polymer films

    Science.gov (United States)

    Wei, Qingshuo; Uehara, Chinatsu; Mukaida, Masakazu; Kirihara, Kazuhiro; Ishida, Takao

    2016-04-01

    Measuring the in-plane thermal conductivity of organic thermoelectric materials is challenging but is critically important. Here, a method to study the in-plane thermal conductivity of free-standing films (via the use of commercial equipment) based on temperature wave analysis is explored in depth. This subject method required a free-standing thin film with a thickness larger than 10 μm and an area larger than 1 cm2, which are not difficult to obtain for most solution-processable organic thermoelectric materials. We evaluated thermal conductivities and anisotropic ratios for various types of samples including insulating polymers, undoped semiconducting polymers, doped conducting polymers, and one-dimensional carbon fiber bulky papers. This approach facilitated a rapid screening of in-plane thermal conductivities for various organic thermoelectric materials.

  9. Measurement of in-plane thermal conductivity in polymer films

    Directory of Open Access Journals (Sweden)

    Qingshuo Wei

    2016-04-01

    Full Text Available Measuring the in-plane thermal conductivity of organic thermoelectric materials is challenging but is critically important. Here, a method to study the in-plane thermal conductivity of free-standing films (via the use of commercial equipment based on temperature wave analysis is explored in depth. This subject method required a free-standing thin film with a thickness larger than 10 μm and an area larger than 1 cm2, which are not difficult to obtain for most solution-processable organic thermoelectric materials. We evaluated thermal conductivities and anisotropic ratios for various types of samples including insulating polymers, undoped semiconducting polymers, doped conducting polymers, and one-dimensional carbon fiber bulky papers. This approach facilitated a rapid screening of in-plane thermal conductivities for various organic thermoelectric materials.

  10. Microwave assisted click chemistry on a conductive polymer film

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hansen, Thomas S.; Larsen, Niels Bent

    2011-01-01

    Microwave (MW) irradiation has been used to accelerate the functionalization of an azide functional poly(3,4-ethylenedioxythiophene) film by click chemistry. The absorption of MW energy by the conductive polymer has been exploited for localized activation of the reaction on the polymer surface....... The method has been applied for anchoring of the chelating agent nitrilotriacetic acid (NTA) on the conductive polymer. The chelating linkage ability of NTA on the surface was investigated through a sandwich ELISA study confirming the selective bonding of a histidine tagged protein....

  11. Measurement of in-plane thermal conductivity in polymer films

    National Research Council Canada - National Science Library

    Wei, Qingshuo; Uehara, Chinatsu; Mukaida, Masakazu; Kirihara, Kazuhiro; Ishida, Takao

    2016-01-01

    .... We evaluated thermal conductivities and anisotropic ratios for various types of samples including insulating polymers, undoped semiconducting polymers, doped conducting polymers, and one-dimensional...

  12. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    Science.gov (United States)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  13. Thin film conductive polymer for microactuator and micromuscle applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.P.; Hong, K.; Trevino, J.; Northrup, M.A.

    1994-04-14

    Conductive polymer/polyimide bimorphic microcantilevers have been actuated vertically (out-of-plane) upon the volumetric changes induced by electrochemical doping of the polymer. The microcantilevers that are 200-500 {mu}m in length and 50-100 {mu}m in width can be fully extended from a circularly-curled geometry, and thus generate more than 100 {mu}m displacement. Dynamically the microcantilevers have been driven as fast as 1.2 Hz and the polymer was stable for over a week stored in air and light. Residual stresses in the polymer film is estimated to be as high as 254 MPa, and actuation stresses are as high as 50 MPa.

  14. Conductive Polymer Porous Film with Tunable Wettability and Adhesion

    Directory of Open Access Journals (Sweden)

    Yuqi Teng

    2015-04-01

    Full Text Available A conductive polymer porous film with tunable wettability and adhesion was fabricated by the chloroform solution of poly(3-hexylthiophene (P3HT and [6,6]-phenyl-C61-butyricacid-methyl-ester (PCBM via the freeze drying method. The porous film could be obtained from the solution of 0.8 wt%, whose pore diameters ranged from 50 nm to 500 nm. The hydrophobic porous surface with a water contact angle (CA of 144.7° could be transferred into a hydrophilic surface with CA of 25° by applying a voltage. The water adhesive force on the porous film increased with the increase of the external voltage. The electro-controllable wettability and adhesion of the porous film have potential application in manipulating liquid collection and transportation.

  15. Electric conductivity of polymer films filled with magnetic nanoparticles

    Science.gov (United States)

    Rumyantsev, B. M.; Bibikov, S. B.; Bychkova, A. V.; Leontiev, V. G.; Berendyaev, V. I.; Sorokina, O. N.; Kovarskii, A. L.

    2016-12-01

    The conductivity of polymer composites with magnetic nanoparticles (MNP) containing magnetite and other MNP (Ni, Cu-Ni) in the layers and planar cells with Al electrodes is studied. For soluble polymers (polyvinylpyrrolidone and polyvinyl alcohol) containing 1-10 wt % of magnetite MNP, a substantial effect of MNP on surface conductivity is detected over a wide range (from 10-10 to 10-3 Ω-1). It is shown that the addition of magnetite MNP not only results in a considerable change in cell conductivity, but also leads to its partially irreversible variation (by an order of magnitude or more) via minor modifications of the experimental conditions (temperature, electric field). For high-resistance samples with low probabilities of conducting chain formation, temperature current peaks are observed upon moderate heating (up to 350 K). These peaks are similar to the maxima observed upon polymer electret thermodischarges when the charges are captured by the deep centers associated with separate MNP or MNP aggregates. The type and position of the maxima are determined by the characteristics of the polymer matrix. For polyvinylpyrrolidone composites, the maxima are observed some time after heating (the echo effect). With composites based on solventborne polymers (polyalkanesterimides, soluble polyimide) and Ni, Cu-Ni MNP, no change in film conductivity measured electrophotographically is observed, due to the formation of a dielectric coating formed by polymer macromolecules adsorbed on the MNP surface. An explanation based on the possible formation of magnetic aggregates of magnetite MNP and conducting chains is proposed. Magnetic aggregation IPM is proposed as one way of controlling cell conductivity.

  16. Conductivity of oriented bis-azo polymer films

    DEFF Research Database (Denmark)

    Apitz, D.; Bertram, R.P.; Benter, N.;

    2006-01-01

    The conductivity properties of electro-optic photoaddressable, dense bis-ozo chromophore polymer films are investigated by using samples corona poled at various temperatures. A dielectric spectrometer is applied to measure the frequency dependence of the conductivity at different temperatures...... before and after heating the material to above the glass transition temperature. The results show that the orientation of the chromophores changes the charge-carrier mobility. Ionic conductivity dominates in a more disordered configuration of the material, while the competing process of hole hopping...... takes over as a transition to a liquid-crystalline phase occurs when the material is heated to much higher than the gloss transition temperature. Such micro-crystallization strongly enhances the conductivity....

  17. Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films

    KAUST Repository

    Dupont, Stephanie R.

    2013-10-17

    The highly conductive polymer PEDOT:PSS is a widely used hole transport layer and transparent electrode in organic electronic devices. To date, the mechanical and fracture properties of this conductive polymer layer are not well understood. Notably, the decohesion rate of the PEDOT:PSS layer and its sensitivity to moist environments has not been reported, which is central in determining the lifetimes of organic electronic devices. Here, it is demonstrated that the decohesion rate is highly sensitive to the ambient moisture content, temperature, and mechanical stress. The kinetic mechanisms are elucidated using atomistic bond rupture models and the decohesion process is shown to be facilitated by a chemical reaction between water molecules from the environment and strained hydrogen bonds. Hydrogen bonds are the predominant bonding mechanism between individual PEDOT:PSS grains within the layer and cause a significant loss in cohesion when they are broken. Understanding the decohesion kinetics and mechanisms in these films is essential for the mechanical integrity of devices containing PEDOT:PSS layers and yields general guidelines for the design of more reliable organic electronic devices. Decohesion rate in PEDOT:PSS conducting films is studied under varied environmental conditions. The moisture content in the environment is the most important factor accelerating the decohesion in the PEDOT:PSS layer, which is detrimental for device reliability. The findings on the decohesion rate and mechanisms, elucidated by atomic kinetic models, are essential for the design of more reliable organic electronic devices containting PEDOT:PSS layers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  19. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  20. Measurement of in-plane thermal conductivity in polymer films

    OpenAIRE

    Qingshuo Wei; Chinatsu Uehara; Masakazu Mukaida; Kazuhiro Kirihara; Takao Ishida

    2016-01-01

    Measuring the in-plane thermal conductivity of organic thermoelectric materials is challenging but is critically important. Here, a method to study the in-plane thermal conductivity of free-standing films (via the use of commercial equipment) based on temperature wave analysis is explored in depth. This subject method required a free-standing thin film with a thickness larger than 10 μm and an area larger than 1 cm2, which are not difficult to obtain for most solution-processable organic ther...

  1. Thermally stimulated discharge conductivity in polymer composite thin films

    Indian Academy of Sciences (India)

    V S Sangawar; P S Chikhalikar; R J Dhokne; A U Ubale; S D Meshram

    2006-08-01

    This paper describes the results of thermally stimulated discharge conductivity study of activated charcoal–polyvinyl chloride (PVC) thin film thermoelectrets. TSDC has been carried out in the temperature range 308–400°K and at four different polarizing fields. Results are discussed on the basis of mobility of activated charcoal and polyvinyl chloride chains.

  2. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    Science.gov (United States)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  3. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    Energy Technology Data Exchange (ETDEWEB)

    Jarad, Amer N., E-mail: amer78malay@yahoo.com.my; Ibrahim, Kamarulazizi, E-mail: kamarul@usm.my; Ahmed, Nasser M., E-mail: nas-tiji@yahoo.com [Nano-optoelectronic Research and Technology Laboratory School of physics, University of Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-07-06

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10{sup −5} (Ω.cm){sup −1}, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  4. Characteristics and Mechanisms in Ion-Conducting Polymer Films as Chemical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES,ROBERT C.; YELTON,WILLIAM G.; PFEIFER,KENT B.; PATEL,SANJAY V.

    2000-07-12

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little published work on SPE films used as chemical sensors. The authors have found that thin films of polymers like polyethylene oxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCs) such as common solvents. Evidence of a new sensing mechanism involving the percolation of ions through narrow channels of amorphous polymer is presented. They present impedance spectroscopy of PEO films in the frequency range 0.0001 Hz to 1 MHz for different concentrations of VOCs and relative humidity. They find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and the parasitic capacitance.

  5. Ion-beam modifications of the surface morphology and conductivity in some polymer thin films

    Indian Academy of Sciences (India)

    M Ramakrishna Murthy; E Venkateshwar Rao

    2002-10-01

    Studies on the surface micromorphology and surface conductivity in thin polymer films of poly vinyl alcohol (PVA) and poly ethylene oxide (PEO) in both as-grown and ion-implanted polymer films have been carried out to reveal certain specific features of the ordered state in these materials. Optical microscopic investigations revealed the existence and enhanced formation in number of spherulites and dendrites in ionimplanted films relative to the as-grown films. The number and rate of formation of spherulites indicated an increase in the degree of crystallinity in these films. Measurements of surface conductivity of as-grown and ion-implanted polymer films, employing four-point probe method, indicated a decrease in electrical conductivity on ion-implantation. Photomicrographic analysis of the PVA and PEO thin film surfaces, has enabled to propose a temperature–stress induced mechanism of crystallization in conjunction with the surface conductivity measurements. The decrease in surface conductivity on ion-implantation in both PVA and PEO thin films, is attributed to a decrease in mobility of macromolecular charged species due to an increase in degree of crystallinity as has been observed by optical microscopy.

  6. Effect of interface on surface morphology and proton conduction of polymer electrolyte thin films.

    Science.gov (United States)

    Ohira, Akihiro; Kuroda, Seiichi; Mohamed, Hamdy F M; Tavernier, Bruno

    2013-07-21

    To understand the relationship between surface morphology and proton conduction of polymer electrolyte thin films, perfluorinated ionomer Nafion® thin films were prepared on different substrates such as glassy carbon (GC), hydrophilic-GC (H-GC), and platinum (Pt) as models for the ionomer film within a catalyst layer. Atomic force microscopy coupled with an electrochemical (e-AFM) technique revealed that proton conduction decreased with film thickness; an abrupt decrease in proton conductance was observed when the film thickness was less than ca. 10 nm on GC substrates in addition to a significant change in surface morphology. Furthermore, thin films prepared on H-GC substrates with UV-ozone treatment exhibited higher proton conduction than those on untreated GC substrates. However, Pt substrates exhibited proton conduction comparable to that of GCs for films thicker than 20 nm; a decrease in proton conduction was observed at ∼5 nm thick film but was still much higher than for carbon substrates. These results indicate that the number of active proton-conductive pathways and/or the connectivity of the proton path network changed with film thickness. The surface morphology of thinner films was significantly affected by the film/substrate interface and was fundamentally different from that of the bulk thick membrane.

  7. Elucidation of charge storage characteristics of conducting polymer film using redox reaction

    CERN Document Server

    Contractor, Asfiya Q

    2013-01-01

    A general technique to investigate charge storage characteristics of conducting polymer films has been developed. A redox reaction is conducted on a polymer film on a rotating disk electrode under potentiostatic condition so that the rate of charging of the film equals the rate of removal of the charge by the reaction. In an experiment on polyaniline film deposited on platinum substrate, using Fe2+/Fe3+ in HCl as the redox system, the voltammogram shows five distinct linear segments (bands) with discontinuity in the slope at specific transition potentials. These bands are the same as those indicated by ESR/Raman spectroscopy with comparable transition potentials. From the dependence of the slopes of the bands on concentration of ferrous and ferric ions, it was possible to estimate the energies of the charge carrier in different bands. It is shown that the charge storage in the film is capacitive.

  8. High Seebeck effects from conducting polymer: Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) based thin-film device with hybrid metal/polymer/metal architecture

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Michael G [ORNL; Wang, Hsin [ORNL; Ivanov, Ilia N [ORNL; Hu, Bin [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Conductive polymers are of particular interest for thermoelectric applications due to their low thermal conductivity and relatively high electrical conductivity. In this study, commercially available conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) was used in a hybrid metal/polymer/metal thin film design in order to achieve a high Seebeck coefficient with the value of 252lV/k on a relatively low temperature scale. Polymer film thickness was varied in order to investigate its influence on the Seebeck effect. The high Seebeck coefficient indicates that the metal/polymer/metal design can develop a large entropy difference in internal energy of charge carriers between high and low-temperature metal electrodes to develop electrical potential due to charge transport in conducting polymer film through metal/polymer interface. Therefore, the metal/polymer/metal structure presents a new design to combine inorganic metals and organic polymers in thin-film form to develop Seebeck devices

  9. Field Emission Characteristics of Conducting Polymer Films Conditioned by Electric Discharge

    Institute of Scientific and Technical Information of China (English)

    Guohong LAI; Zhenglin LI; Lan CHENG; Junbiao PENG

    2006-01-01

    A pure conducting polymer(PANI-CSA)film conditioned by an electric discharge was tentatively utilized as an cathode for emitting electrons under electric fields. The emission of electrons was observed using a phosphor(ZnO:Zn)screen excited by electrons from the conditioned film. The film morphology was investigated using a scanning electron microscope and it was found that undulate whisker-like sites formed on the surface. The emission was presumably due to the undulate whisker-like sites. The field enhancement factor was estimated to be as high as 1150. The electron emitting process of the PANI-CSA film conditioned by electric discharge was also discussed.

  10. Making Glasses Conduct: Electrochemical Doping of Redox-Active Polymer Thin Films

    Science.gov (United States)

    Boudouris, Bryan

    Optoelectronically-active macromolecules have been established as promising materials in myriad organic electronic applications (e.g., organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices). To date, however, the majority of the work surrounding these materials has focused on materials with a great deal of conjugation along their macromolecular backbones and with varying degrees of crystalline structure. Here, we describe an emerging class of macromolecular charge conductors, radical polymers, that: (1) do not contain conjugation and (2) are completely amorphous glasses. Radical polymers contain non-conjugated macromolecular backbones and stable radical sites along the side chains of the electronically-active materials. In contrast to conjugated polymer systems, these materials conduct charge in the solid state through oxidation-reduction (redox) reactions along these pendant groups. Specifically, we demonstrate that controlling the chemical functionality of the pendant groups and the molecular mobility of the macromolecular backbones significantly impacts the charge transport ability of the pristine (i.e., not doped) radical polymers species. Through proper control of these crucial parameters, we show that radical polymers can have electrical conductivity and charge mobility values on par with commonly-used conjugated polymers. Importantly, we also highlight the ability to dope radical polymers with redox-active small molecule species. This doping, in turn, increases the electrical conductivity of the glassy radical polymer thin films in a manner akin to what is observed in traditional conjugated polymer systems. In this way, we establish a means by which to fabricate optically-transparent and colorless thin film glasses capable of conducting charge in a rather rapid manner. We anticipate that these fundamental insights will prove crucial in developing new transparent conducting layers for future electronic applications.

  11. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.

    Science.gov (United States)

    Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2015-05-12

    High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

  12. Electrochemical co-deposition of conductive polymer-silica hybrid thin films.

    Science.gov (United States)

    Raveh, Moran; Liu, Liang; Mandler, Daniel

    2013-07-14

    Conductive polymers, such as polypyrrole (ppy), have been the subject of numerous studies due to their promising applications in organic solar cells, flexible electronics, electrochromic devices, super capacitors, etc. Yet, their application is still limited as a result of poor processability. Silica has been reported to improve the mechanical strength and adhesion of conductive polymer films. In this work, we propose a controllable electrochemical approach for preparing ppy-silica hybrid thin films from a solution containing both pyrrole and silane monomers. It is known that pyrrole can be electropolymerised using anodic potentials, while silica can be electrodeposited under cathodic potentials. Thus, we studied the formation of ppy-silica hybrid thin films on a stainless steel surface by applying alternating potentials, i.e. cathodic followed by anodic pulses (denoted C + A) or anodic followed by cathodic pulses (denoted A + C). We show that by controlling the deposition potential and time for the cathodic and anodic pulses, the film thickness and composition can be manipulated well as analysed using profilometry and EDX. The element depth profile of the films was characterized using secondary ion mass spectroscopy (SIMS). In essence, for the C + A process, pyrrole diffuses through the cathodically electrodeposited wet silica gel layer and undergoes anodic polymerisation on the substrate, while for the A + C process, silane can be electrodeposited both on top of the anodically electrodeposited conductive ppy films as well as on the stainless steel through the pinholes in the ppy film. This offers a simple approach for tuning the structure of conductive polymer-sol-gel composite films.

  13. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  14. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    Science.gov (United States)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  15. Self-Supported Crack-Free Conducting Polymer Films with Stabilized Wrinkling Patterns and Their Applications

    Science.gov (United States)

    Xie, Jixun; Han, Xue; Ji, Haipeng; Wang, Juanjuan; Zhao, Jingxin; Lu, Conghua

    2016-11-01

    Self-supported conducting polymer films with controlled microarchitectures are highly attractive from fundamental and applied points of view. Here a versatile strategy is demonstrated to fabricate thin free-standing crack-free polyaniline (PANI)-based films with stable wrinkling patterns. It is based on oxidization polymerization of pyrrole inside a pre-wrinkled PANI film, in which the wrinkled PANI film is used both as a template and oxidizing agent for the first time. The subsequently grown polypyrrole (PPy) and the formation of interpenetrated PANI/PPy networks play a decisive role in enhancing the film integrity and the stability of wrinkles. This enhancing effect is attributed to the modification of internal stresses by the interpenetrated PANI/PPy microstructures. Consequently, a crack-free film with stable controlled wrinkles such as the wavelength, orientation and spatial location has been achieved. Moreover, the wrinkling PANI/PPy film can be removed from the initially deposited substrate to become free-standing. It can be further transferred onto target substrates to fabricate hierarchical patterns and functional devices such as flexible electrodes, gas sensors, and surface-enhanced Raman scattering substrates. This simple universal enhancing strategy has been extended to fabrication of other PANI-based composite systems with crack-free film integrity and stabilized surface patterns, irrespective of pattern types and film geometries.

  16. Structural characterization and thermally stimulated discharge conductivity (TSDC) study in polymer thin films

    Indian Academy of Sciences (India)

    V S Sangawar; R J Dhokne; A U Ubale; P S Chikhalikar; S D Meshram

    2007-04-01

    The electrical conductivity of naphthalene doped polystyrene (PS) films (≈ 61.58 m thick) was studied as a function of dopant concentration and temperature. The formation of charge transfer (CT) complexes and strong concentration dependence of carrier mobility point out that the current carriers are transported through doped polymer system via hopping among sites associated with the dopant molecules. The activation energy, a, was calculated from the graph of logvs 103/ plot within low and high temperature regions.

  17. Characteristics of Electro-Optic Device Using Conducting Polymers, Polythiophene and Polypyrrole Films

    Science.gov (United States)

    Kaneto, Keiichi; Yoshino, Katsumi; Inuishi, Yoshio

    1983-07-01

    Detailed characteristics of electro-optic elements (color switching and memory) utilizing the spectral change of conducting polymers by electrochemical doping and undoping are studied. The response time of color switching, for example, red≤ftrightarrowblue in polythiophene film in the electrolyte of LiBF4/acetonitrile is 30˜100 msec under the applied voltages of -2.0{≤ftrightarrow}+4.0 V vs. Li plate. More than 103 cycles of color switch are observed quite reproducibly. Three color states of yellow green, dark brown and blue are demonstrated for polypyrrole film.

  18. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  19. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  20. Polymer assisted solution processing of Ti-doped indium oxide transparent conducting thin films for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, Sujaya Kumar [Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungchungnam-do 331-717 (Korea, Republic of); Jin, Won-Yong [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kang, Jae-Wook, E-mail: jwkang@jbnu.ac.kr [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jihoon, E-mail: jihoon.kim@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungchungnam-do 331-717 (Korea, Republic of)

    2015-05-15

    Highlights: • Polymer assisted solution process. • Ti-doped indium oxide (TIO) transparent conducting films. • Replacement of sputtered ITO with polymer-assisted-solution-coated TIO films. • High mobility transparent conducting films. • Application of polymer-assisted-solution-coated TIO films to organic solar cells. - Abstract: We report the preparation and evaluation of Ti-doped indium oxide (TIO) transparent conducting films by a polymer-assisted solution (PAS) process, as well as the evaluation of this type of film as a transparent cathode in an inverted organic solar cell (IOCS). Both Ti- and In-PASs have been synthesized by coordinating Ti- and In-anionic complexes with polyethyleneimine. The final TIO–PAS was formed by mixing Ti-PAS into In-PAS with a Ti concentration between 1 at.% and 7 at.%. The TIO–PAS was spin-coated onto glass substrates to form uniform thin films of Ti-doped indium oxide, which were then annealed at high temperature. The optimum Ti concentration to achieve the best electrical and optical properties of PAS–TIO films was found to be 3 at.%. With the film thickness of 650 nm, PAS–TIO films had a sheet resistance of 65 Ω/sq and an optical transmittance greater than 85%. The feasibility of PAS-coated TIO thin film as a transparent electrode was evaluated by applying it to the fabrication of IOSCs, which showed the energy conversion efficiency of 4.60%.

  1. Edge isolation of transparent conductive polymer (TCP) thin films on flexible substrates using UV laser ablation.

    Science.gov (United States)

    Hsiao, Wen-Tse; Tseng, Shih-Feng; Huang, Kuo-Cheng; Chiang, Donyau; Chen, Ming-Fei

    2012-06-01

    The purpose of this study was to directly use the writing techniques for the complex electrode edge isolation of transparent conductive polymer (TCP) thin films by a nanosecond pulsed UV laser processing system. The processing parameters including the laser pulse energy, the pulse repetition frequency, and the scan speed of galvanometers were examined to ablate the TCP films deposited on polyethylene terephtalate substrates of 188 microm thick. The thickness of TCP films was approximately 20 nm. The laser pulse repetition frequency and the scan speed of galvanometers were applied to calculate the overlapping rate of laser spots and to discuss the patterning region quality. Surface morphology, edge quality, and width and depth of edge isolated patterning structures after laser ablation process were measured by a three-dimensional confocal laser scanning microscope. In addition, the electrical conductivity of ablated TCP films was measured by a four-point probes instrument. After isolated line patterning was formed, the ablated TCP films with a better edge quality were obtained directly when the overlapping rate of laser spots, the scan speed, and the pulse repetition rate were 83.3%, 200 mm/s, and 40 kHz, respectively. The better surface morphology of electrode pattern structures was also obtained when the scan speed and the pulse repetition rate were 500 mm/s and 40 kHz, respectively.

  2. Structural and ionic conductivity behavior in hydroxypropylmethylcellulose (HPMC) polymer films complexed with sodium iodide (NaI)

    Science.gov (United States)

    Rani, N. Sandhya; Sannappa, J.; Demappa, T.; Mahadevaiah

    2013-02-01

    Solid polymer electrolyte films based on Hydroxypropylmethylcellulose (HPMC) complexed with Sodium Iodide (NaI) were prepared using solution cast method. The dissolution of the salt into the polymer host and the micro structural properties of pure and NaI complexed HPMC polymer electrolyte films were confirmed by X - Ray diffraction (XRD) studies. The XRD results revealed that the amorphous domains of HPMC polymer matrix was increased with increase in the NaI salt concentration. The degree of crystallanity and crystallite size is high for pure HPMC samples. Direct current (dc) conductivity was measured in the temperature range of 313-383k. Temperature dependence of dc electrical conductivity and activation energy regions data indicated the dominance of ion type charge transport in these polymer electrolyte films.

  3. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    Science.gov (United States)

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  4. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres......Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  5. Electrically Conducting Polymer-Copper Sulphide Composite Films, Preparation by Treatment of Polymer-Copper (2) Acetate Composites with Hydrogen Sulfide

    Science.gov (United States)

    Yamamoto, Takakazu; Kamigaki, Takahira; Kubota, Etsuo

    1988-01-01

    Polymer copper sulfide composite films were prepared by treatment of polymer poly(vinyl chloride), poly(acrylonitrile), copolymer of vinyl chloride and vinyl acetate (90:10), and ABS resin copper (2) acetate composites with hydrogen sulfide. The films showed electrical conductivity higher than 0.015 S/cm when they contained more than 20 wt percent of copper sulfide. A poly(acrylonitrile)-copper sulfide composite film containing 40 to 50 wt percent of copper sulfide showed electrical conductivity of 10 to 150.0 S/cm and had relatively high mechanical strength to be used in practical purposes.

  6. Electropolymerizable 2,2'-Carboranyldithiophenes. Structure-Property Investigations of the Corresponding Conducting Polymer Films by Electrochemistry, UV-Visible Spectroscopy and Conducting Probe Atomic Force Microscopy.

    Science.gov (United States)

    Barrière, Frédéric; Fabre, Bruno; Hao, Erhong; Lejeune, Zorabel M; Hwang, Euiyong; Garno, Jayne C; Nesterov, Evgueni E; Vicente, M Graça H

    2009-04-28

    Carborane-functionalized conducting polymer films have been electrogenerated in dichloromethane from the anodic oxidation of ortho- (1), meta- (3) and para-carborane (4) isomers linked to two 2-thienyl units. The corresponding electrochemical response was characterized by a broad reversible redox system corresponding to the p-doping/undoping of the polythiophene backbone, the formal potential of which increased in the order poly(1) conductive domains of the electropolymerized films were evaluated by conducting probe AFM. The three polymers exhibit fairly similar morphological characteristics and a surface roughness of ~2 nm. Current-voltage (I-V) characteristics of conducting AFM tip-carborane polymer-ITO junctions showed that poly(1) had the highest conductivity.

  7. Conducting polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2003-01-01

    Full Text Available Conducting polymers represent a very interesting group of polymer materials Investigation of the synthesis, structure and properties of these materials has been the subject of considerable research efforts in the last twenty years. A short presentating of newer results obtained by investigating of the synthesis, structure and properties of two basic groups of conducting polymers: a conducting polymers the conductivity of which is the result of their molecular structure, and b conducting polymer composites (EPC, is given in this paper. The applications and future development of this group of polymer materials is also discussed.

  8. Conductive polymer-based material

    Science.gov (United States)

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  9. Transparent Conductive Films Fabricated from Polythiophene Nanofibers Composited with Conventional Polymers

    Directory of Open Access Journals (Sweden)

    Borjigin Aronggaowa

    2013-11-01

    Full Text Available Transparent, conductive films were prepared by compositing poly(3-hexylthiophene (P3HT nanofibers with poly(methyl methacrylate (PMMA. The transparency, conductivity, atmospheric stability, and mechanical strength of the resulting nanofiber composite films when doped with AuCl3 were evaluated and compared with those of P3HT nanofiber mats. The conductivity of the nanofiber composite films was 4.1 S∙cm−1, which is about seven times less than that which was previously reported for a nanofiber mat with the same optical transmittance (~80% reported by Aronggaowa et al. The time dependence of the transmittance, however, showed that the doping state of the nanofiber composite films in air was more stable than that of the nanofiber mats. The fracture stress of the nanofiber composite film was determined to be 12.3 MPa at 3.8% strain.

  10. Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by γ-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    Siyuan Xie

    2013-01-01

    Full Text Available In this paper, reduced graphene oxide (RGO was prepared by means of γ-ray irradiation of graphene oxide (GO in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance.

  11. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements

    Science.gov (United States)

    Cunico, F. J.; Marquez, J. C.; Hilke, H.; Skrifvars, M.; Seoane, F.

    2013-04-01

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  12. Structural and electrochemical characterisation of [Pd(salen)]-type conducting polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, J. [REQUIMTE, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Tedim, J. [Department of Chemistry, University of Leicester, Leicester LE1 7 RH (United Kingdom); Biernacki, K.; Magalhaes, A.L. [REQUIMTE, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Gurman, S.J. [Department of Physics, University of Leicester, Leicester LE1 7 RH (United Kingdom); Freire, C., E-mail: acfreire@fc.up.p [REQUIMTE, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Hillman, A.R., E-mail: arh7@le.ac.u [Department of Chemistry, University of Leicester, Leicester LE1 7 RH (United Kingdom)

    2010-11-01

    The oxidative polymerisation of four structurally-related [Pd(salen)] complexes and characterisation of the resulting polymeric films by cyclic voltammetry (CV), UV-visible transmission spectroscopy, X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) is reported. The voltammetric technique gives insight into the electrochemical properties of the polymeric films whereas UV-visible spectroscopy is used to characterise the electronic structure of Pd electroactive films, of particular relevance to the type of charge carriers. X-ray techniques (supported by density functional theory, DFT) provide information related to composition and structural features of [Pd(salen)] precursors and the resulting polymers. Characterisation of poly[Pd(salen)] films shows that the electrochemical response of these supramolecular systems is ligand-based and dependent upon substituents in the diimine bridge and aldehyde moieties. XAS measurements near the Pd K-edge demonstrate that polymerisation of the Pd complexes does not change the coordination sphere of the Pd centre; this is consistent with the coupling of monomers units via phenyl rings. As further evidence of ligand-based electrochemical responses, polymer doping does not impart any changes at the Pd centre or its coordination sphere. Compositional analysis by XPS confirms that C: Pd, N: Pd and O: Pd surface atomic ratios do not change significantly from monomer to undoped or doped polymer, except for small variations associated with incorporation of electrolyte and solvent upon polymerisation and polymer oxidation. Overall, the data provide a picture of a polyaromatic delocalised electroactive system, in which the metal atom plays a templating (rather than electroactive) role.

  13. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  14. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  15. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  16. Nanoscale electrical and mechanical characteristics of conductive polyaniline network in polymer composite films.

    Science.gov (United States)

    Jafarzadeh, Shadi; Claesson, Per M; Sundell, Per-Erik; Pan, Jinshan; Thormann, Esben

    2014-11-12

    The presence and characteristics of a connected network of polyaniline (PANI) within a composite coating based on polyester acrylate (PEA) has been investigated. The bulk electrical conductivity of the composite was measured by impedance spectroscopy. It was found that the composite films containing PANI have an electrical conductivity level in the range of semiconductors (order of 10(-3) S cm(-1)), which suggests the presence of a connected network of the conductive phase. The nanoscopic distribution of such a network within the cured film was characterized by PeakForce tunneling atomic force microscopy (AFM). This method simultaneously provides local information about surface topography and nanomechanical properties, together with electrical conductivity arising from conductive paths connecting the metallic substrate to the surface of the coating. The data demonstrates that a PEA-rich layer exists at the composite-air interface, which hinders the conductive phase to be fully detected at the surface layer. However, by exposing the internal structure of the composites using a microtome, a much higher population of a conductive network of PANI, with higher elastic modulus than the PEA matrix, was observed and characterized. Local current-voltage (I-V) spectroscopy was utilized to investigate the conduction mechanism within the nanocomposite films, and revealed non-Ohmic characteristics of the conductive network.

  17. Transparent and flexible conducting hybrid film combined with 3-Aminopropyltriethoxysilane-coated polymer and graphene

    Science.gov (United States)

    Jung, Daesung; Ko, Yong-Hun; Cho, Jumi; Adhikari, Prashanta Dhoj; Lee, Su Il; Kim, Yooseok; Song, Wooseok; Jung, Min Wook; Jang, Sung Won; Lee, Seung Youb; An, Ki-Seok; Park, Chong-Yun

    2015-12-01

    A simple approach to fabricate graphene hybrid film consisted of Graphene/3-aminopropyltriethoxysilane (APTES)/polyethylene terephthalate (PET) is presented, using self-assembled monolayers (SAMs) for enhancement of conductivity. The SAMs of APTES was prepared on ultraviolet-ozone (UVO)-irradiated PET films via wet chemical technique. The density of APTES was saturated after UV treatment time of 1 h for PET films; the carrier density and the optical transmittance were 9.3 × 10 12/cm2 and 82% for pristine graphene and 1.16 × 1013/cm2 and 86% for graphene hybrid films, respectively, and experienced at inflection point at 30 min in UV treatment time. This behavior can be explained by surface morphology transition due to coalescence or clustering of mobile and low-molecular-weight oxidized components of PET.

  18. Thermoelectric Properties of Conducting Polymers

    Science.gov (United States)

    1994-07-01

    conductivity of highly ordered pyrolytic graphite and benzene-derived graphite fiber. For a heat treament temperature (HTT) of 2900 °C, the unstretched film has... heat transmission is 5 important. The electrons responsible for electrical conductivity in metals also allow heat transmission by electrons, K. in Fig. 1... Heat transmission in polymers is by means of lattice vibrations, K, which do not contribute to electrical conductvity. Previous work with conducting

  19. Voltammetry of conducting polymers

    OpenAIRE

    Gulaboski, Rubin

    2014-01-01

    The search for new materials for enhancing electrical conductivity of various materials is one of the most active research areas today. Conducting polymers represent a unique class of organic materials that have been used in many applications such as bioelectronics, sensors, corrosion protection, electrocatalysis, and energy storage devices. Application of the conductive polymers in electrochemistry is almost inevitable in order to get better features of the voltammetric systems ...

  20. Thermally conductive polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  1. Noninvasive photodetachment of stem cells on tunable conductive polymer nano thin films: selective harvesting and preserved differentiation capacity.

    Science.gov (United States)

    You, Jungmok; Heo, June Seok; Kim, Jeonghun; Park, Teahoon; Kim, Byeonggwan; Kim, Han-Soo; Choi, Youjeong; Kim, Hyun Ok; Kim, Eunkyoung

    2013-05-28

    Viable mesenchymal stem cells (MSCs) were efficiently and selectively harvested by near-infrared (NIR) light using the photothermal effect of a conductive polymer nano thin film. The poly(3,4-ethylenedioxy thiophene) (PEDOT)-coated cell culture surfaces were prepared via a simple and fast solution-casting polymerization (SCP) technique. The absorption of PEDOT thin films in the NIR region was effectively triggered cell harvesting upon exposure to an NIR source. By controlling the NIR absorption of the PEDOT film through electrochemical doping or growing PEDOT with different thin film thickness from 70 to 300 nm, the proliferation and harvesting of MSCs on the PEDOT surface were controlled quantitatively. This light-induced cell detachment method based on PEDOT films provides the temporal and spatial control of cell harvesting, as well as cell patterning. The harvested stem cells were found to be alive and well proliferated despite the use of temperature increase by NIR. More importantly, the harvested MSCs by this method preserved their intrinsic characteristics as well as multilineage differentiation capacities. This PEDOT surfaces could be used for repetitive culture and detachment of MSCs or for efficient selection or depletion of a specific subset from heterogeneous population during culture of various tissue-derived cells because there were no photodegradation and photobreakage in the PEDOT films by NIR exposure.

  2. Electrochemical Study of Conductive Gel Polymer

    Institute of Scientific and Technical Information of China (English)

    Zhaohui Li; Jing Jiang; Gangtie Lei

    2005-01-01

    @@ 1Introduction Conventional ion-conducting polymer consists of electrolyte salt and polymer matrix, so-called salt-inpolymer. It possesses lower conductivity because the migration of ions depends on the motion of polymer segmental. To increase the ionic conductivity, a kind of gel polymer film (GPF) was prepared by in situ polymerization of methyl methacrylate (MMA) monomer in room-temperature ionic liquid(RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6). Due to immeasurably low vapor pressure, high ionic conductivity, and greater thermal and electrochemical stability, BMIPF6 is suitable electrolyte salts for ion-conducting polymer.

  3. Optical and transport properties of polyaniline films Conducting polymers; Magnetotransport; Reflectivity

    CERN Document Server

    Tzamalis, G

    2002-01-01

    This thesis presents the results of a comprehensive study on the transport and optical properties of polyaniline (PANI) films. The films are derived by protonation (doping) of the emeraldine base form of polyaniline, as synthesized in Durham, with either 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or 10-camphorsulfonic acid. Thus, two distinct PANI systems are obtained: PANI-CSA and PANI-AMPSA. The variation of the doping level can affect the metallic properties of the final system, so that samples close to the boundary as well as samples at either side of a disorder induced metal-insulator can be obtained. The relation between the doping level and the degree of disorder, along with the existence of an inherently metallic behaviour in PANI, are investigated through a series of experiments. Temperature dependent dc conductivity measurements ranging from 10-295 K are performed using a closed loop helium cryostat under dynamic vacuum (approx 10 sup - sup 5 mbar). From the conductivity data curves, typic...

  4. Electrically Conducting Polymers.

    Science.gov (United States)

    1983-04-07

    polypyrrole, the oxidized polythiophene is also unstable in air. A rather different class of conducting polymers lies outside the scope of this review but...AD-A129 488 ELECTRICALLY CONDUCTING POLYNERS(U) IBM RESEARCH LAB / SAN JOSE CA W D GILL ET RL. 97 APR 83 TR-B UNCLASSIFIED F/G 7/3 N I Ihhhhhhhhhhhhl...00 Contract N00014-80-C-0779 Technical Report No. 8 *Electrically Conducting Polymers by W. D. Gill, T. C. Clarke, and G. B. Street Prepared for

  5. Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin

    2016-05-11

    Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures.

  6. Conductive polymer/fullerene blend thin films with honeycomb framework for transparent photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Cotlet, Mircea; Wang, Hsing-Lin; Tsai, Hsinhan; Xu, Zhihua

    2015-04-21

    Optoelectronic devices and thin-film semiconductor compositions and methods for making same are disclosed. The methods provide for the synthesis of the disclosed composition. The thin-film semiconductor compositions disclosed herein have a unique configuration that exhibits efficient photo-induced charge transfer and high transparency to visible light.

  7. Impact of Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE) on Morphology and Charge Conduction in Conjugated Polymer and Bulk Heterojunction Thin Films

    Science.gov (United States)

    Stiff-Roberts, Adrienne; McCormick, Ryan; Atewologun, Ayomide

    2014-03-01

    An approach to improve organic photovoltaic efficiency is to increase vertical charge conduction by promoting out-of-plane π- π stacking in conjugated polymers. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) features multiple growth parameters that can be varied to achieve a desired organic thin film property. In addition, RIR-MAPLE enables nanoscale domains in blended polymeric films and multi-layer polymeric films regardless of constituent solubility. Thus, RIR-MAPLE deposition is compared to solution-cast films as a possible approach to increase out-of-plane charge transport in polymers and bulk heterojunctions. Two common, solar cell polymers are investigated: P3HT and PCPDTBT. Materials characterization includes grazing-incidence, wide angle x-ray scattering (GIWAXS) for structural information and two techniques to determine hole mobility: organic field effect transistors to measure in-plane mobility and charge extraction by linearly increasing voltage to measure out-of-plane mobility. Initial indications are that the RIR-MAPLE films have a fundamentally different morphology compared to solution-cast films. In the case of P3HT, an enhancement in out-of-plane π- π stacking was observed by GIWAXS in RIR-MAPLE films compared to solution-cast films. A portion of this research was conducted at CNMS at ORNL.

  8. Conducting Thermoset Polymers.

    Science.gov (United States)

    2007-11-02

    polymers conducting. The acetylene-terminated Schiff base and acetylene-terminated polythiophene monomers were first cured, then doped with iodine... Schiff base thermoset was implanted with high energy argon ions using a commercial ion implanter. Electron spin resonance, photoluminescence, and...photoabsorption data suggest that polarons can form in the doped and undoped forms of the acetylene-terminated Schiff base and polythiophene thermoset

  9. An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding

    Directory of Open Access Journals (Sweden)

    Pradip Kumar

    2017-01-01

    Full Text Available Here, we study the self-aligned asymmetric electrically conductive composite thin film prepared via casting of graphene oxide (GO/poly (vinylidene-hexafluoropropylene (PVDF-HFP dispersion, followed by low temperature hydriodic acid reduction. The results showed that composite thin film revealed the high orientation of graphene sheets along the direction of film surface. However, graphene sheets are asymmetrically distributed along the film thickness direction in the composite film. Both sides of as prepared composite film showed different surface characteristics. The asymmetric surface properties of composite film induced distinction of surface resistivity response; top surface resistivity (21 Ohm is ∼ 4 times higher than bottom surface resistivity (5 Ohm. This asymmetric highly electrically conducting composite film revealed efficient electromagnetic interference (EMI shielding effectiveness of ∼ 30 dB. This study could be crucial for achieving aligned asymmetric composite thin film for high-performance EMI shielding radiation.

  10. Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance

    Science.gov (United States)

    Yang, Wenyao; Zhao, Yuetao; He, Xin; Chen, Yan; Xu, Jianhua; Li, Shibin; Yang, Yajie; Jiang, Yadong

    2015-05-01

    In this paper, we demonstrate the preparation of a flexible poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)/reduced graphene oxide (PEDOT-PSS/RGO) film with a layered structure via a simple vacuum filtered method as a high performance electrochemical electrode. The PEDOT-PSS/RGO films are characterized by scanning electron microscopy (SEM), X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectrometry. The results indicate that a layer-ordered structure is constructed in this nanocomposite during the vacuum filtering process. The electrochemical performances of the flexible films are characterized by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. The results reveal that a 193.7 F/g highly specific capacitance of nanocomposite film is achieved at a current density of 500 mA/g. This flexible and self-supporting nanocomposite film exhibits excellent cycling stability, and the capacity retention is 90.6 % after 1000 cycles, which shows promising application as high-performance electrode materials for flexible energy-storage devices.

  11. Chiral conducting polymers.

    Science.gov (United States)

    Kane-Maguire, Leon A P; Wallace, Gordon G

    2010-07-01

    This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).

  12. Significant enhancement of dielectric and conducting properties of electroactive polymer polyvinylidene fluoride films: An innovative use of Ferrum metallicum at different concentrations

    Directory of Open Access Journals (Sweden)

    B K Paul

    2016-01-01

    Result and Conclusion: Our result shows that the electrical properties such as dielectric constant, tangent loss, and electrical conductivity of these polymer films get significantly modified due to incorporation of this homoeopathic nanomedicine and the effect increases with the increase in concentration of the probe up to a critical value. These FeM-incorporated PVDF-HFP films will have potential applications as high-energy storage devices such as multilayered high-charge storage device.

  13. Electrochemomechanical Behaviour of Bilayer and Trilayer Films with PEDOT and PPY Conducting Polymers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    2008-01-01

    a constant load of 1.5 g. The cyclic voltammograms as well as the UV-visible spectra of PEDOT and PPy are very different, pointing towards the possibility of being able to separate the two layers experimentally – even when combined in a single film. Bilayer results show combined characteristics of each...

  14. Electrochemomechanical Behaviour of Bilayer and Trilayer Films with PEDOT and PPY Conducting Polymers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    2008-01-01

    a constant load of 1.5 g. The cyclic voltammograms as well as the UV-visible spectra of PEDOT and PPy are very different, pointing towards the possibility of being able to separate the two layers experimentally – even when combined in a single film. Bilayer results show combined characteristics of each...

  15. Gyroid nanoporous scaffold for conductive polymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking...

  16. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park

    2016-06-01

    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  17. Temperature-responsive polymer/carbon nanotube hybrids: smart conductive nanocomposite films for modulating the bioelectrocatalysis of NADH.

    Science.gov (United States)

    Zhao, Xin; Liu, Yang; Lu, Jin; Zhou, Jianhua; Li, Jinghong

    2012-03-19

    A temperature-sensitive polymer/carbon nanotube interface with switchable bioelectrocatalytic capability was fabricated by self-assembly of poly(N-isopropylacrylamide)-grafted multiwalled carbon nanotubes (MWNT-g-PNIPAm) onto the PNIPAm-modified substrate. Electron microscopy and electrochemical measurements revealed that these fairly thick (>6 μm) and highly porous nanocomposite films exhibited high conductivity and electrocatalytic activity. The morphological transitions in both the tethered PNIPAm chains on a substrate and those polymers wrapping around the MWNT surface resulted in the opening, closing, or tuning of its permeability, and simultaneously an electron-transfer process took place through the channels formed in the nanostructure in response to temperature change. By combining the good electron-transfer and electrochemical catalysis capabilities, the large surface area, and good biocompatibility of MWNTs with the responsive features of PNIPAm, reversible temperature-controlled bioelectrocatalysis of 1,4-dihydro-β-nicotinamide adenine dinucleotide with improved sensitivity has been demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The mechanism behind this approach was studied by Raman spectroscopy, in situ attenuated total reflection FTIR spectroscopy, and contact angle measurements. The results also suggested that the synergetic or cooperative interactions of PNIPAm with MWNTs gave rise not only to an increase in surface wettability, but also to the enhancement of the interfacial thermoresponsive behavior. This bioelectrocatalytic "smart" system has potential applications in the design of biosensors and biofuel cells with externally controlled activity. Furthermore, this concept might be proposed for biomimetics, interfacial engineering, bioelectronic devices, and so forth.

  18. Electrical Characterization of Zn and ZnO Nanowires Grown on PEDOT:PSS Conductive Polymer Thin Films by Physical Vapor Deposition

    Science.gov (United States)

    Chamberlin, Matthew; Constantin, Costel

    2011-10-01

    Physical vapor deposition (PVD) techniques offer tremendous possibilities for easy fabrication of nanostructure arrays for use in thin film electronics. In this study we examine inorganic/organic heterojunctions produced by growing conductive Zn and semiconductive ZnO nanowire arrays on organic conductive PEDOT:PSS polymer thin films using simple and cost-effective PVD methods. Understanding the electrical properties of these hybrid films are of particular interest for applications in organic electronics. However, traditional systems for measuring conductivity and resistivity of thin films by the Van Der Pauw method prove problematic when dealing with soft polymeric surfaces. We present here electrical studies of ZnO- and Zn-nanowire/PEDOT:PSS heterojunctions using a modified 2-point probe method constructed from inexpensive and easily available materials.

  19. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  20. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  1. Detection of Brominated By-Products Using a Sensor Array Based on Nanostructured Thin Films of Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Ladislau Martin-Neto

    2007-12-01

    Full Text Available The detection of the carcinogenic trihalomethanes (THM in public water supplysystems using low-cost equipment has become an essential feature, since these compoundsmay be generated as by-products of water-treatment processes. Here we report on a sensorarray that extends the concept of an “electronic tongue” to detect small amounts ofbromoform, bromodichloromethane and dibromochloromethane, with detection limits aslow as 0.02 mg L-1. The sensor array was made up of 10 sensing units, in whichnanostructured films of conducting and natural polymers were deposited onto goldinterdigitated electrodes. The principle of detection was impedance spectroscopy, withmeasurements carried out in the range between 1 Hz to 1 MHz. Using data at 1 kHz, atwhich the electrical response varied considerably by changing the analyte, we demonstratedwith principal component analysis (PCA that samples with the 3 brominatedtrihalomethanes can be distinguished from each other and for various concentrations.

  2. Electronically conducting polymers with silver grains

    Science.gov (United States)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dolibor (Inventor)

    1999-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  3. Conductivity of carbon nanotube polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Wescott, J T; Kung, P; Maiti, A

    2006-11-20

    Dissipative Particle Dynamics (DPD) simulations were used to investigate methods of controlling the assembly of percolating networks of carbon nanotubes (CNTs) in thin films of block copolymer melts. For suitably chosen polymers the CNTs were found to spontaneously self-assemble into topologically interesting patterns. The mesoscale morphology was projected onto a finite-element grid and the electrical conductivity of the films computed. The conductivity displayed non-monotonic behavior as a function of relative polymer fractions in the melt. Results are compared and contrasted with CNT dispersion in small-molecule fluids and mixtures.

  4. A Platform for Functional Conductive Polymers

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Lind, Johan Ulrik

    conductive polymer can be postpolymerization functionalized to introduce a large number of functionalities through click chemistry(3). Through selection of reaction conditions it is possible control the depth of the reaction into the polymer film to the upper surface or the entire film(4). Thus a conductive...... enables preparation of e.g. interdigitated electrodes or other surface structures. The electrodes have been applied in controlled localized click reactions through ”electroclick” reactions(5). This enables preparation of both highly functional electrodes as well as gradient surfaces(6). The system is very...

  5. Conductive Polymer Functionalization by Click Chemistry

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Søren; Hansen, Thomas Steen

    2008-01-01

    Click chemistry is used to obtain new conductive polymer films based on poly(3,4-ethylenedioxythiophene) (PEDOT) from a new azide functional monomer. Postpolymerization, 1,3-dipolar cycloadditions in DMF, using a catalyst system of CUS04 and sodium ascorbate, and different alkynes are performed...... to functionalize films of PEDOT-N3 and copolymers prepared from EDOT-N3 and 3,4-ethylenedioxythiophene (EDOT). This approach enables new functionalities on PEDOT that could otherwise not withstand the polymerization conditions. Reactions on the thin polymer films have been optimized using an alkynated fluorophore......, with reaction times of '"'-'20 h. The applicability of the method is illustrated by coupling of two other alkynes: a short chain fluorocarbon and a MPEG 5000 to the conductive polymer; this alters the advancing water contact angle of the surface by +20° and -20°/-25°, respectively. The targeted chemical surface...

  6. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells.

    Science.gov (United States)

    Yu, Zhimeng; Xia, Yijie; Du, Donghe; Ouyang, Jianyong

    2016-05-11

    A transparent electrode is an indispensable component of optoelectronic devices, and there as been a search for substitutes of indium tin oxide (ITO) as the transparent electrode. Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) ( PSS) is a conducting polymer that is very promising as the next generation of materials for the transparent electrode if it can obtain conductivity as high as that of ITO. Here, we report the treatment of PSS with organic solutions to significantly enhance its conductivity. Common organic solvents like dimethylformamide and γ-butyrolactone and common organic salts like methylammonium iodide and methylammonium bromide are used for the organic solutions. The conductivity of pristine PSS films is only ∼0.2 S/cm, and it can be increased to higher than 2100 S/cm. The conductivity enhancement is much more significant than control treatments of PSS films with neat organic solvents or aqueous solutions of the organic salts. The mechanism for the conductivity enhancement is the synergetic effects of both the organic salts and organic solvents on the microstructure and composition of PSS. They induce the segregation of some PSSH chains from PSS. Highly conductive PSS films were studied as the transparent electrode of polymer solar cells. The photovoltaic efficiency is comparable to that with an ITO transparent electrode.

  7. Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications

    Science.gov (United States)

    Brooke, Robert; Fabretto, Manrico; Vucaj, Nastasja; Zuber, Kamil; Switalska, Eliza; Reeks, Lachlan; Murphy, Peter; Evans, Drew

    2015-03-01

    Conductive polymers synthesized by vacuum vapour phase polymerization (VPP) were investigated and optimized by changing the oxidant solution and VPP chamber parameters for their incorporation into ‘smart window’ electrochromic devices. Additionally, the interaction of two oxidant solutions with typical electrode materials (aluminium and indium tin oxide) were examined with respect to material etching, device cosmetics and long term device degradation (over 10 000 switch cycles). Devices made with conducting polymers synthesized with the oxidant Fe(Tos)3 rather than FeCl3 produced superior device performance with respect to optical switching range (%T), switch speed and optical relaxation.

  8. Investigation of the interfacial adhesion of the transparent conductive oxide films to large-area flexible polymer substrates using laser-induced thermo-mechanical stresses

    Science.gov (United States)

    Park, Jin-Woo; Lee, Seung-Ho; Yang, Chan-Woo

    2013-08-01

    In this study, we investigated the interfacial adhesion strength (σint) of transparent conductive oxide (TCO) coatings on polymer substrates using a nanosecond Nd:YAG pulsed laser. We compared our results with those achieved using conventional testing methods such as bending and fragmentation tests as well as theoretical calculations. In the fragmentation and bending tests, mechanical compressive stress is induced in the film due to mismatches in Poisson's ratio and Young's modulus between the substrate and film. But, the incident laser makes the film under compression due to the mismatch in thermal expansion between the TCO and the polymer substrate. With a pulse incident to the substrate, the TCO rapidly expands by laser-induced instant heating while the transparent polymer does little, which causes the TCO to buckle and delaminate over the critical pulse energy. The critical compressive stress that scales with σint was calculated using simple equations, which agreed well with the results from previous theoretical calculations. Because the films preferentially delaminate at the defects and grain boundaries, this technique also provided useful information regarding the interface microstructures. Moreover, because the laser can scan over large areas, this method is suitable for flexible substrates that are produced by a roll-to-roll process. Nevertheless, the mechanical stress introduced by the bending and fragmentation tests causes the TCO to buckle without interfacial delamination. Hence, the stresses at the buckling disagreed with the results obtained from the laser test and the theoretical calculations.

  9. Characterization of Nanostructured Polymer Films

    Science.gov (United States)

    2014-12-23

    AFRL-OSR-VA-TR-2015-0059 Characterization of Nanostructured Polymer Films RODNEY PRIESTLEY TRUSTEES OF PRINCETON UNIVERSITY Final Report 12/23/2014...Report 3. DATES COVERED (From - To) 06/01/2012-08/31/2014 4. TITLE AND SUBTITLE Characterization of Nanostructured Polymer Films 5a. CONTRACT...properties is due to the film morphology, i.e., the films are nanostructured . The aim of this proposal was to understand the mechanism of film formation and

  10. Preparation and Characterization of Thin Conductive Polymer Films on the base of PEDOT:PSS by Ink-Jet Printing

    Science.gov (United States)

    Perinka, Nikola; Kim, Chang Hyun; Kaplanova, Marie; Bonnassieux, Yvan

    Owing to its high application potential, the printed functional layers and devices on flexible substrates attract attention of many scientists, in the last few years. Very promising area is represented by so called printed conductive polymers (polyaniline, polythiophene or polypyrroles, etc.). Currently, the most widespread conductive polymer is so called PEDOT:PSS [poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)]. A widely used technique for the deposition of this conductive polymer is spin-coating. Since the spin-coating technique is not capable of the fine structure pattering (e.g. electrode systems for organic devices), in some cases, different techniques are strongly required (e.g. ink-jet printing). This work shows the development of the testing structure system to assess and to characterize the fine patterns of PEDOT:PSS. The testing structures were deposited on various substrates; the transparent flexible polymer foils (polyethylenterephtalate and polyethylenenaphtalene) and also on the glass substrate. The influence of the change of printing parameters, substrate and its treatment and are discussed.

  11. Electrochemically triggered release of acetylcholine from scCO2 impregnated conductive polymer films evokes intracellular Ca(2+) signaling in neurotypic SH-SY5Y cells.

    Science.gov (United States)

    Löffler, Susanne; Seyock, Silke; Nybom, Rolf; Jacobson, Gunilla B; Richter-Dahlfors, Agneta

    2016-12-10

    Implantable devices for electronically triggered drug release are attractive to achieve spatial and temporal control over drug concentrations in patients. Realization of such devices is, however, associated with technical and biological challenges. Among these are containment of drug reservoirs, lack of precise control cues, as well as the charge and size of the drug. Here, we present a method for electronically triggered release of the quaternary ammonium cation acetylcholine (ACh) from an impregnated conductive polymer film. Using supercritical carbon dioxide (scCO2), a film of PEDOT/PSS (poly(3,4)-ethylenedioxythiophene doped with poly(styrenesulfonate)) is impregnated with the neurotransmitter acetylcholine. The gentle scCO2 process generated a dry, drug-impregnated surface, well suited for interaction with biological material, while maintaining normal electrochemical properties of the polymer. Electrochemical switching of impregnated PEDOT/PSS films stimulated release of ACh from the polymer matrix, likely due to swelling mediated by the influx and efflux of charged and solvated ions. Triggered release of ACh did not affect the biological activity of the drug. This was shown by real-time monitoring of intracellular Ca(2+) signaling in neurotypic cells growing on the impregnated polymer surface. Collectively, scCO2 impregnation of conducting polymers offers the first one-step, dopant-independent drug impregnation process, potentially facilitating loading of both anionic and cationic drugs that can be dissolved in scCO2 on its own or by using a co-solvent. We foresee that scCO2-loaded devices for electronically triggered drug release will create novel opportunities when generating active bio-coatings, tunable for specific needs, in a variety of medical settings.

  12. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: susanamaria.fernandez@ciemat.es; Martinez-Steele, A.; Gandia, J.J. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala. Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2009-03-31

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 {sup o}C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 {sup o}C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10{sup -3} {omega} cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 {omega}{sup -1} cm{sup -1} vs 14,900 {omega}{sup -1} cm{sup -1}, respectively.

  13. Conductive Polymers via Reactive Aligomer.

    Science.gov (United States)

    1987-01-30

    properties are presumably due to the formation of dibenzothiophene units 7 .! 9 NADC-87038-60 and intermolecular crosslinking(1 6). Frommer and...2), 280, (1984). 17. J.E. Frommer and R.R. Chance, "Electrically Conductive Polymers", Encycoedia of Polymer Science and Engineering. V. 5, Second

  14. Conducting Polymers: Emerging Commercial Materials

    Directory of Open Access Journals (Sweden)

    N. Kumar

    1996-04-01

    Full Text Available Conducting polymers are materials of recent origin. They are obtained by polymerisation of simple organic monomers and doping with electron acceptor or donor species and show conductivity ranging from that of a semiconductor to that of metal. These materials are now available with unique electronic and optical properties of metals and semiconductors in combination with the attractive mechanical and processable advantages of polymers. The field has progressed to a level of maturity consistent with a new set of opportunities to develop Wide range of applications based upon conducting polymers as materials for industrial products.Examples include: static charge dissipation, EMI shielding, flexible light emitting diodes, transparent electrodes, batteries, gas sensors, gas separators, etc. Many of the conducting polymers and devices based on them are now available commercially.

  15. Simultaneous determination of nitrophenol isomers at the single-wall carbon nanotube compound conducting polymer film modified electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; WANG Zhenhui; ZHOU Shuping

    2005-01-01

    Based on the molecular recognition ability of conductive polymer and the peculiar properties of carbon nanotubes, a novel single wall nanotubes (SWNTs) compound poly(4- aminopyridine) modified electrode (SWNTs/POAPE) is prepared at glass carbon electrode (GCE). The electrochemistry response of nitrophenol isomers is studied at the SWNTs/POAPE. The result indicates that o-, m- and p-nitrophenol are separated entirely at the SWNTs/POAPE interface. The electrode present here can be easily used to determine nitrophenol isomers simultaneously with higher sensitivity.

  16. Electrochemical relaxation at electrically conducting polymers

    Science.gov (United States)

    Nateghi, M. R.; zarandi, M. B.

    2008-08-01

    In this study, slow relaxation (SR) associated with the electroreduction of polyaniline (PAn) films during polarization to high cathodic potentials was investigated by cyclic voltammetry technique. Anodic voltammetric currents were used as experimental variable to indicate the relaxation occurring in PAn films deposited electrochemically on the Pt electrode surface. The dependence of SR on polymer film thickness, waiting potential, and mobility of the doped anion was investigated. Percolation threshold potential for heteropolyanion doped PAn was estimated to be between 150 and 200 mV depending on polymer thickness on the electrode surface. A new model of the conducting to insulating conversion is described by the percolation theory and mobility gap changes during the process.

  17. Electrochemical relaxation at electrically conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Nateghi, M R [Department of Chemistry, Islamic Azad University, Yazd-Branch, Yazd (Iran, Islamic Republic of); Zarandi, M B [Department of physics, Yazd University, Yazd (Iran, Islamic Republic of)

    2008-08-15

    In this study, slow relaxation (SR) associated with the electroreduction of polyaniline (PAn) films during polarization to high cathodic potentials was investigated by cyclic voltammetry technique. Anodic voltammetric currents were used as experimental variable to indicate the relaxation occurring in PAn films deposited electrochemically on the Pt electrode surface. The dependence of SR on polymer film thickness, waiting potential, and mobility of the doped anion was investigated. Percolation threshold potential for heteropolyanion doped PAn was estimated to be between 150 and 200 mV depending on polymer thickness on the electrode surface. A new model of the conducting to insulating conversion is described by the percolation theory and mobility gap changes during the process.

  18. Enhanced thermal conductance of polymer composites through embeddingaligned carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Dale K. Hensley

    2016-07-01

    Full Text Available The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers.

  19. INFRARED EMISSIVITY OF CONDUCTING POLYMERS

    Institute of Scientific and Technical Information of China (English)

    WAN Meixiang; LI Suzhen; LI Junchao; DONG Haiou

    1991-01-01

    The infrared emissivity of conducting polymers in 8-20μm and at 50-150℃ in the direction of normal line has been measured as a function of wavelength, conductivity at room temperature,counterion, doping levels, measuring temperature and thickness of sample.

  20. Potential profile in a conducting polymer strip

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Vlachopoulos, Nikolaos

    2002-01-01

    and complicate measurements on free-standing films. A model of the potential profile in a free-standing strip is derived. It is found that the active length (the length with a given potential change) of the polymer will scale as square root (d sigma /i/sub d/). (d is the thickness, sigma the conductivity...... of the film, and i/sub d/ the diffusion limited current density for oxygen reduction). The active length is typically of the order of millimeters. The model is compared with measurements on a strip of polypyrrole doped with dodecylbenzene sulfonate...

  1. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    DEFF Research Database (Denmark)

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen

    2008-01-01

    Actuators based on conducting polymers are attracting increasing interest due to their desirable features such as large mechanical stress generated, sufficient maximum strain values, high reversibility, good safety properties and the possibility of precise control using small voltages. Many...... attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers. Both types of conducting polymer are pre...

  2. Preparation of Conductive Polymer Graphite (PG) Composites

    Science.gov (United States)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  3. Ion-Conducting Organic/Inorganic Polymers

    Science.gov (United States)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  4. Thermal conductivity and multiferroics of electroactive polymers and polymer composites

    Science.gov (United States)

    Jin, Jiezhu

    Electronically conducting polymers and electromechanical polymers are the two important branches of the cutting-edge electroactive polymers. They have shown significant impact on many modern technologies such as flat panel display, energy transport, energy conversion, sensors and actuators. To utilize conducting polymers in microelectronics, optoelectronics and thermoelectrics, it is necessary to have a comprehensive study of their thermal conductivity since thermal conductivity is a fundamental materials property that is particularly important and sometimes a determining factor of the device performance. For electromechanical polymers, larger piezoelectric effect will contribute to the improvement of magnetoelectric (ME) coupling efficiency in their multiferroic composites. This dissertation is devoted to characterizing electronically conducting polymers for their electrical and thermal conductivity, and developing new classes of electromechanical polymers and strain-mediated electromechanical polymer-based multiferroic ME composites. Conducting polymers opened up new possibilities for devices combining novel electrical and thermal properties, but there has been limited understanding of the length-scale effect of the electrical and thermal conductivity, and the mechanism underlying the electricity and heat transport behavior. In this dissertation, the analytical model and experimental technique are presented to measure the in-plane thermal conductivity of polyaniline thin films. For camphorsulfonic acid doped polyaniline patterned on silicon oxide/silicon substrate using photolithography and reactive ion etching, the thermal conductivity of the film with thickness of 20 nm is measured to be 0.0406 W/m˙K, which significantly deviates from their bulk (> 0.26 W/m˙K). The size effect on thermal conductivity at this scale is attributed to the significant phonon boundary scattering. When the film goes up to 130 nm thick, the thermal conductivity increases to 0.166 W

  5. Dipole Engineering for Conducting Polymers

    Science.gov (United States)

    McClain, William Edward

    A method for the growth of a TiO2 adhesion layer on PEDOT:PSS (poly[3,4- ethylenedioxythiophene]: poly[styrenesulfonate]) and for further functionalization with self-assembled monolayers of phosphonates (SAMPs) was developed. The TiO2 adhesion layer was grown via chemical vapor deposition using a titanium(IV) t-butoxide precursor, and was characterized by goniometry and X-ray photoelectron spectroscopy. TiO 2 grown on a model system, H-terminated silicon, indicated that the surface was t-butoxide terminated. Phenylphosphonic acids were synthesized with a variety of molecular dipoles and were used to change the work function of PEDOT:PSS through the formation of an aggregate surface dipole. Good correlation was found between the z-component of the molecular dipole and the change in work function, indicating that the film was well-ordered and dense. The magnitude of the changes in work function and goniometry measurements were similar to measurements on ITO, a substrate on which phosphonates form well-ordered monolayers. As-grown PEDOT:PSS/TiO 2 electrodes showed a lower work function compared to PEDOT:PSS, which is attributed to residual t-butoxide groups on the TiO 2 surface. UPS measurements revealed that reductions in work function in the modified electrodes lowered the difference in energy between the Fermi energy (EF) of the conducting polymer and the LUMO of PCBM ([6,6]-phenyl-C 61-butyric acid methyl ester). A reduction of this energy difference should translate into increased electron injection in electron-only diodes; however, devices with modified electrodes showed decreased current densities. UPS/IPES measurements show that TiO2 grown using this method has a much larger band gap than bulk or nanocrystalline TiO2, which is likely responsible for this decrease in device currents. At high bias, device currents increase dramatically, and the effects of the phosphonates or t-butoxide terminated TiO2 vanish. This is attributed to a reduction of the TiO2 to

  6. Unified Hamiltonian for conducting polymers

    Science.gov (United States)

    Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi

    2011-11-01

    Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.

  7. Conductive performances of solid polymer electrolyte films based on PVB/LiClO 4 plasticized by PEG 200, PEG 400 and PEG 600

    Science.gov (United States)

    Li, Yawen; Wang, Jinwei; Tang, Jinwei; Liu, Yupeng; He, Yedong

    Solid polymer electrolyte (SPE) films consisting of polyvinyl butyral (PVB) as host polymer, LiClO 4 as alkali salt at mole ratio of [O]:[Li] = 8, and different molecular weight polyethylene glycol (PEG) including PEG 200, PEG 400, and PEG 600 as plasticizers are prepared by physical blending method. The dielectric relaxation and electrochemical impedance measurements reveal that the conductive performances are improved by adding PEG as plasticizers through the enhancement in the moving space for ions, and PEG 400 performs plasticizing effect superior to PEG 200 and PEG 600. Their conductivity is measured by using a sandwiched Pt/SPE/Pt cell model. SPE with 30% PEG 400 (wt%) of PVB exhibits the maximum conductivity at room temperature, and its conductivity increases linearly with temperatures from 303 to 333 K at two to three orders of magnitude higher than that of the other two SPEs containing 30% PEG 200 and 30% PEG 600, respectively. However, their conductivity does not increase linearly with the increase in heating temperatures until the temperature reaches around 333 K; the decrease in conductivity with heating from their maxima is attributed to the restriction of ion moving space because of the crosslinking reaction between hydroxyl and aldehyde groups. As observed from the XRD and the microscopy results, PEG 400 is more effective than others in enhancing the conductive performances of these SPEs through changing LiClO 4 from crystalline to amorphous state, increasing the flexibility of PVB, disturbing the short distance sequential order of PVB chains, and promoting the formation of 'pathway' for ions' movement.

  8. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes

    Science.gov (United States)

    Jiang, Shangfeng; Yi, Baolian; Cao, Longsheng; Song, Wei; Zhao, Qing; Yu, Hongmei; Shao, Zhigang

    2016-10-01

    The degradation of carbon supports significantly influences the performance of proton exchange membrane fuel cells (PEMFCs), particularly in the cathode, which must be overcome for the wide application of fuel cells. In this study, advanced catalytic layer with electronic conductive polymer-polypyrrole (PPy) nanowire as ordered catalyst supports for PEMFCs is prepared. A platinum-palladium (PtPd) catalyst thin layer with whiskerette shapes forms along the long axis of the PPy nanowires. The resulting arrays are hot-pressed on both sides of a Nafion® membrane to construct a membrane electrode assembly (without additional ionomer). The ordered thin catalyst layer (approximately 1.1 μm) is applied in a single cell as the anode and the cathode without additional Nafion® ionomer. The single cell yields a maximum performance of 762.1 mW cm-2 with a low Pt loading (0.241 mg Pt cm-2, anode + cathode). The advanced catalyst layer indicates better mass transfer in high current density than that of commercial Pt/C-based electrode. The mass activity is 1.08-fold greater than that of DOE 2017 target. Thus, the as-prepared electrodes have the potential for application in fuel cells.

  9. The Workshop on Conductive Polymers: Final Report

    Science.gov (United States)

    1985-10-01

    Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

  10. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films

    OpenAIRE

    Semin Kim; Jang, Lindy K.; Park, Hyun S.; Jae Young Lee

    2016-01-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive mol...

  11. Ion conducting organic/inorganic hybrid polymers

    Science.gov (United States)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  12. A highly stretchable, transparent, and conductive polymer.

    Science.gov (United States)

    Wang, Yue; Zhu, Chenxin; Pfattner, Raphael; Yan, Hongping; Jin, Lihua; Chen, Shucheng; Molina-Lopez, Francisco; Lissel, Franziska; Liu, Jia; Rabiah, Noelle I; Chen, Zheng; Chung, Jong Won; Linder, Christian; Toney, Michael F; Murmann, Boris; Bao, Zhenan

    2017-03-01

    Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.

  13. Nanorheology of confined polymer films

    Science.gov (United States)

    Fowler, Paul; Ilton, Mark; McGraw, Joshua D.; Dalnoki-Veress, Kari

    Liquid films with a non-uniform thickness flatten in order minimize surface energy, a process driven by surface tension and mediated by viscosity. For a viscous thin film, the time evolution of the film height profile is accurately described with lubrication theory by the capillary-driven thin film equation. Previous experiments have successfully applied the thin film equation to measure the rheological properties of polymeric liquids. Here we probe confinement effects in thin polymer films. We measure the viscosity by tracking the levelling of surface perturbations with AFM. For films with thicknesses thinner than the end-to-end distance of the molecule we observe deviations from a thin film model with bulk viscosity.

  14. Composites incorporated a conductive polymer nanofiber network

    Energy Technology Data Exchange (ETDEWEB)

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  15. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    S S Sekhon

    2003-04-01

    Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet its effect on the conductivity behaviour of gel electrolytes as well as the interaction of polymer with salt and solvent has not been conclusively established. The conductivity of lithium ion conducting polymer gel electrolytes decreases with the addition of polymer whereas in the case of proton conducting polymer gel electrolytes an increase in conductivity has been observed with polymer addition. This has been explained to be due to the role of polymer in increasing viscosity and carrier concentration in these gel electrolytes.

  16. Transparent Conductive Al-Doped ZnO/Cu Bilayer Films Grown on Polymer Substrates at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    黄继杰; 王钰萍; 吕建国; 龚丽; 叶志镇

    2011-01-01

    Al-doped ZnO (AZO)/Cu bi-layer films are deposited by dc magnetron sputtering on polycarbonate substrates at room temperature. The structural, electrical and optical properties of the films are investigated at various sputtering powers of the Cu layer. The AZO/Cu bi-layer film deposited at a moderate sputtering power of 180 W for the Cu layer displayed the highest figure of merit of 3.47 x 10~3 Ω-1, with a low sheet resistance of12.38Ω/sq, an acceptable visible transmittance of 73%, and a high near-infrared reflectance of about 50%.%Al-doped ZnO(AZO)/Cu bi-layer films are deposited by dc magnetron sputtering on polycarbonate substrates at room temperature.The structural,electrical and optical properties of the films are investigated at various sputtering powers of the Cu layer.The AZO/Cu bi-layer film deposited at a moderate sputtering power of 180 W for the Cu layer displayed the highest figure of merit of 3.47 × 10-3 Ω-1,with a low sheet resistance of 12.38Ω/sq,an acceptable visible transmittance of 73%,and a high near-infrared reflectance of about 50%.

  17. Comparing proton conductivity of polymer electrolytes by percent conducting volume

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of sulfonated polymers plays a key role in polymer electrolyte membrane fuel cells. Mass based water uptake and ion exchange capacity of sulfonated polymers have been failed to correlating their proton conductivity. In this paper, we report a length scale parameter, percent conductivity volume, which is rather simply obtained from the chemical structure of polymer to compare proton conductivity of wholly aromatic sulfonated polymer perflurosulfonic acid. Morphology effect on proton conductivity at lower RH conditions is discussed using the percent conductivity volume parameter.

  18. Significant enhancement of dielectric and conducting properties of electroactive polymer polyvinylidene fluoride films: An innovative use of Ferrum metallicum at different concentrations

    OpenAIRE

    B K Paul; Kar, S.; Bandyopadhyay, P.; R. Basu; Das, S.; D S Bhar; Raj K Manchanda; Anil Khurana; Nayak, D.; Papiya Nandy

    2016-01-01

    Background: There are experimental evidences of nanoparticle aspect of homoeopathic medicine. It has also been established that the size of these nanoparticles (NPs) decrease with increase in potency. Aim: We have used this aspect of homoeopathic medicines in some technical applications. Here, to improve the electrical properties of an electroactive polymer, poly (vinylidene fluoride-hexa-fluoropropylene) (PVDF-HFP), we have incorporated in the polymer film, a very novel and unique probe F...

  19. Photogeneration of polaron pairs in conducting polymers

    Science.gov (United States)

    Conwell, E. M.; Mizes, H. A.

    1995-03-01

    It is usually assumed that when photogeneration in a conducting polymer results in an electron and hole on separate chains they form negative and positive polarons that can move independently of each other. We show, on the basis of the small carrier yield per photon seen in picosecond photoconductivity, the different behavior of photoinduced absorption (PA) in dilute solution and thin films, and the spectral distribution of the PA in thin films, that photogenerated positive and negative polarons in poly(p-phenylene vinylene), polythiophene, and polyacetylene are, for the most part, bound in pairs by their Coulomb attraction. We also show that PA data give evidence for a gap of 2.8 eV, and thus an exciton binding energy of 0.4 eV, in poly(p-phenylene vinylene).

  20. Smart Surface Chemistries of Conducting Polymers

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik

    In this thesis we investigate post-polymerization covalent modifications of poly(3,4-dioxythiophene (PEDOT)-type conducting polymers. The aim of the modifications is to gain specific control of the interaction between the material and living mammalian cells. The use of “click-chemistry” to modify...... film substrates. Complementing these findings, we introduce a novel technique for fabricating surface chemical gradients on PEDOT-N3 substrates. The technique is based on applying “electro-click chemistry” to locally induce covalent modifications. Further supplementing these results, we develop......)-chemistries. In the course of our studies, we find that PEDOT-N3 thin films undergo a significant yet reversible swelling when exposed to dimethyl-sulfoxide (DMSO). This swelling is found to be of practical use for controlling the reaction density and depth. This, for example, enables the fabrication of dense poly...

  1. Electrically conducting polymers for aerospace applications

    Science.gov (United States)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  2. Applications of conducting polymers: robotic fins and other devices

    Science.gov (United States)

    Tangorra, James L.; Anquetil, Patrick A.; Weideman, Nathan S.; Fofonoff, Timothy; Hunter, Ian W.

    2007-04-01

    Conducting polymers are becoming viable engineering materials and are gradually being integrated into a wide range of devices. Parallel efforts conducted to characterize their electromechanical behavior, understand the factors that affect actuation performance, mechanically process films, and address the engineering obstacles that must be overcome to generate the forces and displacements required in real-world applications have made it possible to begin using conducting polymers in devices that cannot be made optimal using traditional actuators and materials. The use of conducting polymers has allowed us to take better advantage of biological architectures for robotic applications and has enabled us to pursue the development of novel sensors, motors, and medical diagnostic technologies. This paper uses the application of conducting polymer actuators to a biorobotic fin for unmanned undersea vehicles (UUVs) as a vehicle for discussing the efforts in our laboratory to develop conducting polymers into a suite of useful actuators and engineering components.

  3. STUDIES ON ENHANCED CONDUCTIVITY OF STRETCHED CONDUCTING POLYMERS

    Institute of Scientific and Technical Information of China (English)

    WAN Meixiang

    1995-01-01

    A physical model of series of the conductivity on chain and the interchain conductivity between chains is proposed to explain enhanced conductivity of stretched conducting polymers.This model suggests that the enhanced conductivity for stretched conducting polymers might be due to increasing of the interchain conductivity between chains along the elongation direction after drawing processes if the conductivity on chain is assumed much larger than that of the interchain conductivity between chains. According to this model, it is expected that the temperature dependence of conductivity measured by four-probe method for stretched conducting polymers is controlled by a variation of the interchain conductivity between chains with temperature, which can be used to explain that a metallic temperature dependence of conductivity for stretched conducting polymers is not observed although the conductivity along the elongation direction is enhanced by two or three orders of magnitude.

  4. Polymer film composite transducer

    Science.gov (United States)

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  5. Applications of scanning probe microscopy in intrinsically conducting polymer research

    Institute of Scientific and Technical Information of China (English)

    YANG Tao; NIU Li; LI Zhuang; DONG Shaojun

    2007-01-01

    The applications of scanning probe microscopy(SPM)in intrinsically conducting polymer research is briefly reviewed,including morphology observation,nanofabrication,microcosmic electrical property measurements,electrochemistry researches,in-situ measurements of film thickness change,and so on.At the same time,some important variations of SPM and the related techniques are briefly introduced.Finally,the future development of SPM in the study of intrinsically conducting polymers is prospected.

  6. New secondary batteries utilizing electronically conductive polymer cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  7. Corrosion Protection of Steels by Conducting Polymer Coating

    Directory of Open Access Journals (Sweden)

    Toshiaki Ohtsuka

    2012-01-01

    Full Text Available The corrosion protection of steels by conducting polymer coating is reviewed. The conducting polymer such as polyaniline, polypyrrole, and polythiophen works as a strong oxidant to the steel, inducing the potential shift to the noble direction. The strongly oxidative conducting polymer facilitates the steel to be passivated. A bilayered PPy film was designed for the effective corrosion protection. It consisted of the inner layer in which phosphomolybdate ion, PMo12O3−40 (PMo, was doped and the outer layer in which dodecylsulfate ion (DoS was doped. The inner layer stabilized the passive oxide and the outer possessed anionic perm-selectivity to inhibit the aggressive anions such as chloride from penetrating through the PPy film to the substrate steel. By the bilayered PPy film, the steel was kept passive for about 200 h in 3.5% sodium chloride solution without formation of corrosion products.

  8. Thin film calorimetry of polymer films

    Science.gov (United States)

    Zhang, Wenhua; Rafailovich, Miriam; Sokolov, Jonathan; Salamon, William

    2000-03-01

    Polystryene and polymethylmethacrylate films for thicknesses ranging from 50nm to 500nm using a direct calorimetric technique (Lai et al, App. Phys. Lett. 67, p9(1995)). Samples were deposited on Ni foils(2-2.5um) and placed in a high vacuum oven. Calibrated heat pulses were input to the polymer films by current pulses to the Ni substrate and temperature changes were determined from the change in Ni resistance. Pulses producing temperature jumps of 3-8K were used and signal averaging over pulses reduced noise levels enough to identify glass transitions down to 50nm. Molecular weight dependence of thick films Tg was used as a temperature calibration.

  9. Effects of preparation temperature on the conductivity of polypyrrole conducting polymer

    Indian Academy of Sciences (India)

    Anuar Kassim; Zarina Bte Basar; H N M Ekramul Mahmud

    2002-04-01

    An attempt has been made to investigate the effect of temperature on the conductivity of polypyrrole conducting polymer films prepared by an electrochemical method in an aqueous medium using camphor sulfonate as the dopant. The polymer was grown from aqueous solutions employing a range of temperatures (1-60°C). It was found that with increase in temperature the conductivity decreased and the optimum temperature was found to be between 10 and 30°C. The results show that the polymer formed at low temperature has higher conductivity and is stronger than that formed at higher temperatures. Characterization by X-ray scattering shows that interlayer distance, Bragg (Å), increases with increasing temperature. The morphology of the films formed was studied by using a scanning electron microscope (SEM). The changes in conductivity and physical appearance were interpreted as being due to compactness in the molecular packing and formation of linkages in the film.

  10. Orienting semi-conducting π-conjugated polymers.

    Science.gov (United States)

    Brinkmann, Martin; Hartmann, Lucia; Biniek, Laure; Tremel, Kim; Kayunkid, Navaphun

    2014-01-01

    The present review focuses on the recent progress made in thin film orientation of semi-conducting polymers with particular emphasis on methods using epitaxy and shear forces. The main results reported in this review deal with regioregular poly(3-alkylthiophene)s and poly(dialkylfluorenes). Correlations existing between processing conditions, macromolecular parameters and the resulting structures formed in thin films are underlined. It is shown that epitaxial orientation of semi-conducting polymers can generate a large palette of semi-crystalline and nanostructured morphologies by a subtle choice of the orienting substrates and growth conditions.

  11. In situ measurement of conductivity during nanocomposite film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Blattmann, Christoph O.; Pratsinis, Sotiris E., E-mail: sotiris.pratsinis@ptl.mavt.ethz.ch

    2016-05-15

    Highlights: • Flame-made nanosilver dynamics are elucidated in the gas-phase & on substrates. • The resistance of freshly depositing nanosilver layers is monitored. • Low T{sub g} polymers facilitate rapid synthesis of conductive films. • Conductive nanosilver films form on top of or within the polymer depending on MW. - Abstract: Flexible and electrically conductive nanocomposite films are essential for small, portable and even implantable electronic devices. Typically, such film synthesis and conductivity measurement are carried out sequentially. As a result, optimization of filler loading and size/morphology characteristics with respect to film conductivity is rather tedious and costly. Here, freshly-made Ag nanoparticles (nanosilver) are made by scalable flame aerosol technology and directly deposited onto polymeric (polystyrene and poly(methyl methacrylate)) films during which the resistance of the resulting nanocomposite is measured in situ. The formation and gas-phase growth of such flame-made nanosilver, just before incorporation onto the polymer film, is measured by thermophoretic sampling and microscopy. Monitoring the nanocomposite resistance in situ reveals the onset of conductive network formation by the deposited nanosilver growth and sinternecking. The in situ measurement is much faster and more accurate than conventional ex situ four-point resistance measurements since an electrically percolating network is detected upon its formation by the in situ technique. Nevertheless, general resistance trends with respect to filler loading and host polymer composition are consistent for both in situ and ex situ measurements. The time lag for the onset of a conductive network (i.e., percolation) depends linearly on the glass transition temperature (T{sub g}) of the host polymer. This is attributed to the increased nanoparticle-polymer interaction with decreasing T{sub g}. Proper selection of the host polymer in combination with in situ resistance

  12. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays

    OpenAIRE

    Spurgeon, Joshua M.; Walter, Michael G.; Zhou, Junfeng; Kohl, Paul A.; Lewis, Nathan S.

    2011-01-01

    The optical absorption, ionic conductivity, electronic conductivity, and gas separation properties have been evaluated for flexible composite films of ionically conductive polymers that contain partially embedded arrays of ordered, crystalline, p-type Si microwires. The cation exchange ionomer Nafion, and a recently developed anion exchange ionomer, poly(arylene ether sulfone) that contains quaternary ammonium groups (QAPSF), produced composite microwire array/ionomer membrane films that were...

  13. Porous Polyolefin Films via Polymer Blends

    Science.gov (United States)

    Macosko, Chris

    Porous polymer films have broad application including battery separators, membrane supports and filters. Polyolefins are attractive for these applications because of their solvent resistance, low electrical and thermal conductivity, easy fabrication and cost. We will describe fabrication of porous films using cocontinuous blends of a polyolefin with another polymer which can be readily removed with a solvent. Methods to image and control the cocontinuous morphology will be presented.Bell, J. R., K. Chang, C. R. Lopez-Barron, C. W. Macosko, and D. C. Morse, ''Annealing of cocontinuous polymer blends: effect of block copolymer molecular weight and architecture,'' Macromolecules 43, 5024-5032 (2010).Lopez-Barron, C. R., and C. W. Macosko, ''Direct measurement of interface anisotropy of bicontinuous structures via 3D image analysis,'' Langmuir 26, 14284-14293 (2010).Trifkovic, M., A. T. Hedegaard, K. Huston, M. Sheikhzadeh, and C. W. Macosko, ''Porous films via PE/PEO cocontinuous blends,'' Macromolecules 45, 6036-6044 (2012).Hedegaard, A.T., L.L. Gu and C. W. Macosko, ``Effect of Extensional Viscosity on Cocontinuity of Immiscible Polymer Blends'' J. Rheol. 59, 1397-1417 (2015).

  14. Nanostructured polymer membranes for proton conduction

    Science.gov (United States)

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  15. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  16. Conducting polymers in electronic chemical sensors.

    Science.gov (United States)

    Janata, Jiri; Josowicz, Mira

    2003-01-01

    Conducting organic polymers have found two main kinds of application in electronics so far: as materials for construction of various devices and as selective layers in chemical sensors. In either case, interaction with ambient gases is critical. It may compromise the performance of a device based on conducting polymers, whereas it is beneficial in a sensor. Conductivity has been the primary property of interest. Work function--related to conductivity, but in principle a different property--has received only scant attention. Our aim here is to discuss the usability of conducting polymers in both types of electronic applications in light of these two parameters.

  17. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography

    OpenAIRE

    Rickard, Jonathan James Stanley; Farrer, Ian; Goldberg Oppenheimer, Pola

    2016-01-01

    An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ra...

  18. Nanostructured conductive polymers for advanced energy storage.

    Science.gov (United States)

    Shi, Ye; Peng, Lele; Ding, Yu; Zhao, Yu; Yu, Guihua

    2015-10-07

    Conductive polymers combine the attractive properties associated with conventional polymers and unique electronic properties of metals or semiconductors. Recently, nanostructured conductive polymers have aroused considerable research interest owing to their unique properties over their bulk counterparts, such as large surface areas and shortened pathways for charge/mass transport, which make them promising candidates for broad applications in energy conversion and storage, sensors, actuators, and biomedical devices. Numerous synthetic strategies have been developed to obtain various conductive polymer nanostructures, and high-performance devices based on these nanostructured conductive polymers have been realized. This Tutorial review describes the synthesis and characteristics of different conductive polymer nanostructures; presents the representative applications of nanostructured conductive polymers as active electrode materials for electrochemical capacitors and lithium-ion batteries and new perspectives of functional materials for next-generation high-energy batteries, meanwhile discusses the general design rules, advantages, and limitations of nanostructured conductive polymers in the energy storage field; and provides new insights into future directions.

  19. Charge-transport model for conducting polymers

    Science.gov (United States)

    Dongmin Kang, Stephen; Jeffrey Snyder, G.

    2016-11-01

    The growing technological importance of conducting polymers makes the fundamental understanding of their charge transport extremely important for materials and process design. Various hopping and mobility edge transport mechanisms have been proposed, but their experimental verification is limited to poor conductors. Now that advanced organic and polymer semiconductors have shown high conductivity approaching that of metals, the transport mechanism should be discernible by modelling the transport like a semiconductor with a transport edge and a transport parameter s. Here we analyse the electrical conductivity and Seebeck coefficient together and determine that most polymers (except possibly PEDOT:tosylate) have s = 3 and thermally activated conductivity, whereas s = 1 and itinerant conductivity is typically found in crystalline semiconductors and metals. The different transport in polymers may result from the percolation of charge carriers from conducting ordered regions through poorly conducting disordered regions, consistent with what has been expected from structural studies.

  20. Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure

    DEFF Research Database (Denmark)

    Edberg, Jesper; Iandolo, Donata; Brooke, Robert;

    2016-01-01

    A novel patterning technique of conductive polymers produced by vapor phase polymerization is demonstrated. The method involves exposing an oxidant film to UV light which changes the local chemical environment of the oxidant and subsequently the polymerization kinetics. This procedure is used...... to control the conductivity in the conjugated polymer poly(3,4-ethylenedioxythiophene):tosylate by more than six orders of magnitude in addition to producing high-resolution patterns and optical gradients. The mechanism behind the modulation in the polymerization kinetics by UV light irradiation as well...... as the properties of the resulting polymer are investigated....

  1. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    Science.gov (United States)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  2. Integration of conducting polymer network in non-conductive polymer substrates

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2006-01-01

    Anew method for integration ofconjugated, inherently conducting polymers into non-conductive polymer substrates has been developed. Alayer of the conducting polymer is polymerised by chemical oxidation, e.g. using Fe(ID) p-toluene sulfonate (ferri tosylate) followed by washing with a solvent which...... simultaneously removes residual and spent oxidant and at the same time dissolves the top layer of the polymer substrate. This results in an integration of the conducting polymer into the surface layers of the polymer substrate. Several combinations of conducting polymers and substrates have been tested...... absorption during sequential reactive ion etching has allowed for analysis of the PEDOT distribution within the surface layer of thePMMA substrate. The surface resistance ofthe conducting polymer layer remains low while the surface layer at the same time adapts some of the mechanical properties...

  3. Enhancement of Raman Light Scattering in Dye-Labeled Rat Glioma Cells by Langmuir-Blodgett CNT-Bundles Arranged on Metal-Containing Conducting Polymer Film

    CERN Document Server

    Egorov, A S; Grushevskaya, H V; Krot, V I; Krylova, N G; Lipnevich, I V; Orekhovskaya, T I; Shulitsky, B G

    2015-01-01

    We have fabricated layered nanocomposite consisting of a nanoporous anodic alumina sublayer (AOA), an ultrathin metal-containing polymer Langmuir-Blodgett (LB) film coating AOA, and multi-walled carbon nanotube (MCNT) - bundles which are arranged on the LB-film. MCNTs were preliminarily chemically modified by carboxyl groups and functionalized by stearic acid. We have experimentally observed an enhancement of Raman light scattering on surface plasmons in the LB-monolayers. This enhancement is due to charge and energy transfer. We demonstrate that propidium iodide (PI) fluorescence is quenched by the MCNT-bundles. A method of two-dimensional system imaging based on the MCNT-enhanced Raman spectroscopy has been proposed. This method has been applied to visualize focal adhesion sites on membranes of living PI-labeled rat glioma cells.

  4. Interpenetrating networks of two conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; West, Keld

    2005-01-01

    Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings, and beca......Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings......, and because its reaction products can be removed efficiently after the formation of the composite. Several combinations of polymers are demonstrated, and the versatility of the proposed method allows extensions to a wide range of conjugated polymers. The IPNs show optical and electrochemical characteristics......, which are sums of the characteristics from the participating conducting polymers....

  5. Functional Films from Silica/Polymer Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2014-05-01

    Full Text Available High performance functional coatings, based on hybrid organic/inorganic materials, are being developed to combine the polymer flexibility and ease of processing with the mechanical properties and versatility of inorganic materials. By incorporating silica nanoparticles (SiNPs in the polymeric matrices, it is possible to obtain hybrid polymer films with increased tensile strength and impact resistance, without decreasing the flexural properties of the polymer matrix. The SiNPs can further be used as carriers to impart other functionalities (optical, etc. to the hybrid films. By using polymer-coated SiNPs, it is possible to reduce particle aggregation in the films and, thus, achieve more homogeneous distributions of the inorganic components and, therefore, better properties. On the other hand, by coating polymer particles with silica, one can create hierarchically structured materials, for example to obtain superhydrophobic coatings. In this review, we will cover the latest developments in films prepared from hybrid polymer/silica functional systems.

  6. X-ray photoelectron spectroscopic investigation of conducting polymer blends.

    Science.gov (United States)

    Süzer, S; Toppare, L; Hallam, K R; Allen, G C

    1996-06-01

    Electrochemically prepared films of conducting polymers of polypyrrole and polythiophene and their blends with polyamide have been investigated by X-ray photoelectron spectroscopy. In the N1s region of the spectra of films containing polypyrrole the peak corresponding to N(+) at 402.0 eV is separated from that of neutral N. The intensity of the N(+) peak can be correlated with the electrical conductivity of the films and the spectroscopically derived ratio of F/N(+) is close to 4 indicating that one BF(-)(4) dopant ion is incorporated for every oxidized nitrogen center. In the spectra of films of polythiophene and its blends peaks corresponding to S and S(+) can not be resolved but again the F/C ratio correlates with the electrical conductivity.

  7. Mechanism of actuation in conducting polymers: Osmotic expansion

    DEFF Research Database (Denmark)

    Bay, Lasse; Jacobsen, Torben; West, Keld;

    2001-01-01

    Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansi...... and designing actuator experiments and when comparing experimental results from different sources.......Conducting polymers expand or contract when their redox state is changed. This expansion/contraction effect can be separated in an intrinsic part because of changes of the polymer backbone on reduction/oxidation and a part depending on the surrounding electrolyte phase, because of osmotic expansion...... is compared with measurements on PPy(DBS) films. The experiments show that the expansion decreases as the electrolyte concentration is increased. This means that a considerable part of the total expansion is due to the osmotic effect. The osmotic effect should be taken into account when interpreting...

  8. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films

    Science.gov (United States)

    Kim, Semin; Jang, Lindy K.; Park, Hyun S.; Lee, Jae Young

    2016-07-01

    Electrode surfaces have been widely modified with electrically conductive polymers, including polypyrrole (PPY), to improve the performance of electrodes. To utilize conductive polymers for electrode modification, strong adhesion between the polymer films and electrode substrates should be ensured with high electrical/electrochemical activities. In this study, PPY films were electrochemically polymerized on electrodes (e.g., indium tin oxide (ITO)) with dopamine as a bio-inspired adhesive molecule. Efficient and fast PPY electrodeposition with dopamine (PDA/PPY) was found; the resultant PDA/PPY films exhibited greatly increased adhesion strengths of up to 3.7 ± 0.8 MPa and the modified electrodes had electrochemical impedances two to three orders of magnitude lower than that of an unmodified electrode. This electrochemical deposition of adhesive and conductive PDA/PPY offers a facile and versatile electrode modification for various applications, such as biosensors and batteries.

  9. Electrochemical Switching of Conductance with Diarylethene-Based Redox-Active Polymers

    DEFF Research Database (Denmark)

    Logtenberg, Hella; van der Velde, Jasper H. M.; de Mendoza, Paula

    2012-01-01

    Reversible switching of conductance using redox triggered switching of a polymer-modified electrode is demonstrated. A bifunctional monomer comprising a central electroswitchable core and two bithiophene units enables formation of a film through anodic electropolymerization. The conductivity of t...

  10. Conducting polymers for electrochemical DNA sensing.

    Science.gov (United States)

    Peng, Hui; Zhang, Lijuan; Soeller, Christian; Travas-Sejdic, Jadranka

    2009-04-01

    Conducting polymers (CPs) are a class of polymeric materials that have attracted considerable interest because of their unique electronic, chemical and biochemical properties, making them suitable for numerous applications such as energy storage, memory devices, chemical sensors, and in electrocatalysis. Conducting polymer-based electrochemical DNA sensors have shown applicability in a number of areas related to human health such as diagnosis of infectious diseases, genetic mutations, drug discovery, forensics and food technology due to their simplicity and high sensitivity. This review paper summarizes the advances in electrochemical DNA sensing based on conducting polymers as active substrates. The various conducting polymers used for DNA detection, along with different DNA immobilization and detection methodologies are presented. Current trends in this field and newly developed applications due to advances in nanotechnology are also discussed.

  11. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  12. Transport studies of conducting, semiconducting and photoconducting star polymers

    Science.gov (United States)

    Ferguson, John Baker

    Star polymers are studied for their transport properties in the highly conducting state doped with NOPF6 and iodine, the undoped semiconducting state and the photoconducting state. Doped star polymers exhibit variable range hopping of charge carriers. Transport dimensionality and conductivity depend intricately on the processing conditions for doping and casting films. The highest conducting diffusion doped film (room temperature conductivity 50 S/cm) exhibits 2-dimensional variable range for all doping levels. Polymers doped in solution, then cast to form films have 1.4 dimensional variable range hopping for the highest conducting samples with 10 S/cm at room temperature. The hopping dimensionality varies as the conductivity decreases. The doped star polymers remain on the insulator side of the insulator metal transition with localized carriers as revealed with Kramer-Kronig analysis. Optical and near infrared absorbance and photoluminescence reveal the core of the star polymers exist in a solid state solution of the arms with similar absorbance and luminescence for both solution and films. The arms retain the optical properties of their linear analogs indicating the core and arms do not interact quantum mechanically to produce a new state. Excitons created by absorption in the wider band gap cores rapidly migrate to the arms. Photoconductive time of flight mobility measurements reveal an almost field independent mobility at room temperature. This is due to a unique cancellation of on diagonal and off diagonal disorder in the Bassler disorder formalism. The cores introduce heterogeneous regions with a net lower mobility predicted by correlated disorder models. Space charge limited current reveals trap densities several orders of magnitude higher than the carrier density. Photovoltaic performance of star polymer and fullerene blend devices with both 20 nm and 100 nm thick layers are investigated. The thin devices have low open circuit voltages due to space charge

  13. Tunable Nanopatterning of Conductive Polymers via Electrohydrodynamic Lithography.

    Science.gov (United States)

    Rickard, Jonathan James Stanley; Farrer, Ian; Oppenheimer, Pola Goldberg

    2016-03-22

    An increasing number of technologies require the fabrication of conductive structures on a broad range of scales and over large areas. Here, we introduce advanced yet simple electrohydrodynamic lithography (EHL) for patterning conductive polymers directly on a substrate with high fidelity. We illustrate the generality of this robust, low-cost method by structuring thin polypyrrole films via electric-field-induced instabilities, yielding well-defined conductive structures with feature sizes ranging from tens of micrometers to hundreds of nanometers. Exploitation of a conductive polymer induces free charge suppression of the field in the polymer film, paving the way for accessing scale sizes in the low submicron range. We show the feasibility of the polypyrrole-based structures for field-effect transistor devices. Controlled EHL pattering of conductive polymer structures at the micro and nano scale demonstrated in this study combined with the possibility of effectively tuning the dimensions of the tailor-made architectures might herald a route toward various submicron device applications in supercapacitors, photovoltaics, sensors, and electronic displays.

  14. Engineering thermal conductivity in polymer blends

    Science.gov (United States)

    Rashidi, Vahid; Coyle, Eleanor; Kieffer, John; Pipe, Kevin

    Weak inter-chain bonding in polymers is believed to be a bottleneck for both thermal conductivity and mechanical strength. Most polymers have low thermal conductivity (~0.1 W/mK), hindering their performance in applications for which thermal management is critical (e.g., electronics packaging). In this work, we use computational methods to study how hydrogen bonding between polymer chains as well as water content can be used to engineer thermal transport in bulk polymers. We examine how changes in the number of hydrogen bonds, chain elongation, density, and vibrational density of states correlate with changes in thermal conductivity for polymer blends composed of different relative constituent fractions. We also consider the effects of bond strength, tacticity, and polymer chain mass. For certain blend fractions, we observe large increases in thermal conductivity, and we analyze these increases in terms of modifications to chain chemistry (e.g., inter-chain bonding) and chain morphology (e.g., chain alignment and radius of gyration). We observe that increasing the number of hydrogen bonds in the system results in better packing as well as better chain alignment and elongation that contribute to enhanced thermal conductivity. The Air Force Office of Scientific Research, Grant No. FA9550-14-1-0010.

  15. Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers

    Indian Academy of Sciences (India)

    Natarajan Rajeswari; Subramanian Selvasekarapandian; Moni Prabu; Shunmugavel Karthikeyan; C Sanjeeviraja

    2013-04-01

    Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance analyses. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR study confirms the complex formation between the polymer and salt. The shifts in g values of 70 PVA–30 PVP blend and 70 PVA–30 PVP with different Mwt% of LiNO3 electrolytes shown by DSC thermograms indicate an interaction between the polymer and the salt. The dependence of g and conductivity upon salt concentration has been discussed. The ion conductivity of the prepared polymer electrolyte has been found by a.c. impedance spectroscopic analysis. The PVA–PVP blend system with a composition of 70 wt% PVA: 30 wt% PVP exhibits the highest conductivity of 1.58 × 10-6 Scm-1 at room temperature. Polymer samples of 70 wt% PVA–30 wt% PVP blend with different molecular weight percentage of lithium nitrate with DMSO as solvent have been prepared and studied. High conductivity of 6.828 × 10-4 Scm-1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activation energy 0.2673 eV. The conductivity is found to increase with increase in temperature. The temperature dependent conductivity of the polymer electrolyte follows the Arrhenius relationship which shows hopping of ions in the polymer matrix. The relaxation parameters () and () of the complexes have been calculated by using loss tangent spectra. The mechanical properties of polymer blend electrolyte such as tensile strength, elongation and degree of swelling have been measured and the results are presented.

  16. Preparation and Characterization of Lithium Ion Conducting Solid Polymer Electrolytes from Biodegradable Polymers Starch And PVA

    Directory of Open Access Journals (Sweden)

    B. Chatterjee,

    2015-06-01

    Full Text Available Solid Polymer electrolyte films have been prepared from Starch-Poly vinyl alcohol (PVA blend a well acknowledged biodegradable material. Solution cast technique was employed for the preparation of solid polymer electrolyte films added with Lithium Bromide (LiBr salt. X-ray diffraction (XRD studies of the prepared films portrayed the evolution of an amorphous structure with increasing content of salt which is an important factor that leads to the augmentation of conductivity. Electrochemical impedance spectroscopic analysis revealed noticeable ionic conductivity ~ 5x 10-3 S/cm for 20 wt% of salt at ambient conditions. Ionic conductivity showed an increasing trend with salt content at ambient conditions. Transference number measurements confirmed the ionic nature of the prepared solid polymer electrolyte films. Dielectric studies revealed a sharp increase in the number of charge carriers which contributed to enhancement in conductivity. Low values of activation energy extracted from temperature dependent conductivity measurements could be favorable for device applications. For the composition with highest conductivity a temperature independent relaxation mechanism was confirmed by electric modulus scaling.

  17. Thermally conducting electron transfer polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L.

    1969-01-01

    New polymeric material exhibits excellent physical shock protection, high electrical resistance, and thermal conductivity. It is especially useful for electronic circuitry, such as subminiaturization of components and modular construction of circuits.

  18. Effect of complexing salt on conductivity of PVC/PEO polymer blend electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; Ravi Shanker Babu; M Usha Rani

    2011-12-01

    Solid polymer electrolyte membrane comprising poly(vinyl chloride) (PVC), poly(ehylene oxide) (PEO) and different lithium salts (LiClO4, LiBF4 and LiCF3SO3) were prepared by the solution casting technique. The effect of complexing salt on the ionic conductivity of the PVC/PEO host polymer is discussed. Solid polymer electrolyte films were characterized by X-ray diffraction, FTIR spectroscopy, TG/DTA and ac impedance spectroscopic studies. The conductivity studies of these solid polymer electrolyte (SPE) films are carried out as a function of frequency at various temperatures ranging from 302 K to 353 K. The maximum room temperature ionic conductivity is found to be 0.079 × 10-4 S cm-1 for the film containing LiBF4 as the complexing salt. The temperature dependence of the conductivity of polymer electrolyte films seems to obey the Vogel–Tamman–Fulcher (VTF) relation.

  19. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  20. Proton Conducting Polymer Electrolytes and Its Applications

    Institute of Scientific and Technical Information of China (English)

    S. Selvasekarapandian; G. Hirankumar; R. Baskaran; M.S. Bhuvaneswari

    2005-01-01

    @@ 1Introduction Proton conducting solid polymer electrolytes have been extensively studied due to their potential applications in electrochemical devices such as batteries, super capacitors, electrochromic windows, sensors etc[1,2]Many researchers have studied the behaviour of inorganic based polymer electrolytes as proton conductors and their applications in solid state devices at room temperature[3]. But, inorganic acid doped electrolytes have some serious disadvantages like corrosion towards the electrode and hazardous. Hence, there is need for searching new electrolyte which is stable towards the electrode. It has been reported that the ammonium salts which behaves like alkali metal salt are good dopant to the polymer matrix[4, 5] for the development of proton conducting polymer electrolyte. The proton conductors based on poly (ethylene oxide)[6], poly (ethylene succinate)[7], poly (ethylene glycol)[8], as host matrix doped with ammonium salt have already been reported.

  1. Morphology tailoring of nano/micro-structured conductive polymers, composites and their applications in chemical sensors.

    Science.gov (United States)

    Ma, Xingfa; Gao, Mingjun; He, Xiaochun; Li, Guang

    2010-11-01

    Conductive polymer is one of the important multi-functional materials. It has many applications in light-emitting diodes, chemical sensors, biosensors, et al. This paper provides a relatively comprehensive review on the progress of conductive polymer and composite as sensitive film for sensors to chemical vapors including patents, papers and our preliminary research results. Especially, the feature of conjugated polymers, the processing technology, doping characteristics and some factors affecting gas responses are discussed. Otherwise, the developments of nanostructured conductive polymer and organic-inorganic hybrid film sensor with high sensitivity and rapid response to vapors are also described, and some suggestions are proposed.

  2. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti;

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...... solutions were obtained for the problem. Moreover, the numerical solution is sufficiently general that it can be used to simulate oxygen concentration profiles in films consisting of more than two layers. Data obtained from the bilayer films yield a diffusion coefficient for oxygen in poly...

  3. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Science.gov (United States)

    Schaubroeck, David; De Smet, Jelle; Willems, Wouter; Cools, Pieter; De Geyter, Nathalie; Morent, Rino; De Smet, Herbert; Van Steenbeerge, Geert

    2016-07-01

    Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  4. Conducting polymers: Synthesis and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The Conducting Polymer project funded by the AIM Materials Program is developing new methods for the synthesis of electronically conducting polymers and is evaluating new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1994 are electrochemical capacitors and membranes for gas separation. As an active material in electrochemical capacitors, conducting polymers have the potential of storing large amounts of electrical energy in low cost materials. Such devices are needed in electronics for power failure back-up and peak power, in power supplies for filtering, and in electric vehicles for peak power and load leveling. As a gas electrically adapt the membrane for specific gas combinations. Potential energy savings in the US. for this application are estimated at 1 to 3 quads/yr.

  5. Highly conductive self-assembled nanoribbons of coordination polymers.

    Science.gov (United States)

    Welte, Lorena; Calzolari, Arrigo; Di Felice, Rosa; Zamora, Felix; Gómez-Herrero, Julio

    2010-02-01

    Organic molecules can self-assemble into well-ordered structures, but the conductance of these structures is limited, which is a disadvantage for applications in molecular electronics. Conductivity can be improved by using coordination polymers-in which metal centres are incorporated into a molecular backbone-and such structures have been used as molecular wires by self-assembling them into ordered films on metal surfaces. Here, we report electrically conductive nanoribbons of the coordination polymer [Pt(2)I(S(2)CCH(3))(4)](n) self-assembled on an insulating substrate by direct sublimation of polymer crystals. Conductance atomic force microscopy is used to probe the electrical characteristics of a few polymer chains ( approximately 10) within the nanoribbons. The observed currents exceed those previously sustained in organic and metal-organic molecules assembled on surfaces by several orders of magnitude and over much longer distances. These results, and the results of theoretical calculations based on density functional theory, confirm coordination polymers as candidate materials for applications in molecular electronics.

  6. Conducting polymers: Synthesis and industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in the US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.

  7. Photoinduced micropattern in an azobenzene polymer film

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The micropattern observed in the amorphous azobenzene polymer film by degenerated four-wave mixing has been reported. Patterns with well-defined structures are examined with the scanning electron microscopy and the polarizing optical microscopy. It is demonstrated that the control of photoinduced micropattern in the azobenzene polymer film is possible by using appropriate polarized writing beams with total incident power exceeding a certain threshold.

  8. Assessment of applications of conducting polymers in power equipment

    Energy Technology Data Exchange (ETDEWEB)

    Schock, K.F.; Bennett, A.I.; Burghardt, R.R.; Cookson, A.H.; Saunders, H.E.; Smith, J.D.B (Westinghouse Electric Corp., Pittsburgh, PA (United States)); Kennedy, W.N. (ABB Power Transmission and Distribution Co., Muncie, IN (United States)); Oommen, T.V. (ABB Power Transmission and Distribution Co., Raleigh, NC (United States)); Voshall, R.E. (Gannon Coll., Erie, PA (United States)); Fort, E.M. (Westinghouse Electric Corp., Orlando, FL (United States))

    1992-10-01

    A feasibility study has been completed to assess potential applications of conducting polymers in the manufacture of power equipment. Ten areas were studied: solid and liquid dielectric cables, capacitors, rotating machinery, transformers, bushings, surge suppressors, vacuum interrupters, gas-insulated equipment, and other miscellaneous applications. Each application was rated according to technical impact, probability of success, economic impact and time frame for implementation. of the 32 potential applications proposed, the top ranking areas were: coating of dielectric films for capacitors, conducting compounds to cover conductors in rotating machines, surface coatings to dissipate charges in bushing, coatings for controlled surface conductivity in gas insulated equipment and thermal history monitors. Finally, the issues that have to be resolved before conducting polymers can find use in the identified applications are discussed in this paper.

  9. Structural and Electrical Study of Conducting Polymers

    Science.gov (United States)

    Shaktawat, Vinodini; Dixit, Manasvi; Saxena, N. S.; Sharma, Kananbala

    2010-06-01

    Pure and oxalic acid doped conducting polymers (polyaniline and polypyrrole) were chemically synthesized using ammonium persulfate (APS) as an oxidant. These samples were characterized through Scanning Electron Microscopy (SEM), which provides information about the surface topography of polymers. I-V characteristics have been recorded at room temperature as well as in the temperature range from 313 K to 463 K. So obtained characteristic curves were found to be linear. Temperature dependence of conductivity suggests a semiconducting nature in polyaniline samples with increase in temperature, whereas oxalic acid doped polypyrrole sample suggests a transition from semiconducting to metallic nature with the increase of temperature.

  10. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    Energy Technology Data Exchange (ETDEWEB)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  11. Studies on conducting polymer and conducting polymerinorganic composite electrodes prepared via a new cathodic polymerization method

    Science.gov (United States)

    Singh, Nikhilendra

    A novel approach for the electrodeposition of conducting polymers and conducting polymer-inorganic composite materials is presented. The approach shows that conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be electrodeposited by the application of a cathodic bias that generates an oxidizing agent, NO+, via the in-situ reduction of nitrate anions. This new cathodic polymerization method allows for the deposition of PPy and PEDOT as three dimensional, porous films composed of spherical polymer particles. The method is also suitable for the co-deposition of inorganic species producing conducting polymer-inorganic composite electrodes. Such composites are used as high surface area electrodes in Li-ion batteries, electrochemical hydrogen evolution and in the development of various other conducting polymer-inorganic composite electrodes. New Sn-PPy and Sb-PPy composite electrodes where Sn and Sb nanoparticles are well dispersed among the PPy framework are reported. These structures allow for decreased stress during expansion and contraction of the active material (Sn, Sb) during the alloying and de-alloying processes of a Li-ion battery anode, significantly alleviating the loss of active material due to pulverization processes. The new electrochemical synthesis mechanism allows for the fabrication of Sn-PPy and Sb-PPy composite electrodes directly from a conducting substrate and eliminates the use of binding materials and conducting carbon used in modern battery anodes, which significantly simplifies their fabrication procedures. Platinum (Pt) has long been identified as the most efficient catalyst for electrochemical water splitting, while nickel (Ni) is a cheaper, though less efficient alternative to Pt. A new morphology of PPy attained via the aforementioned cathodic deposition method allows for the use of minimal quantities of Pt and Ni dispersed over a very high surface area PPy substrate. These composite electrodes

  12. Fabrication of multilayered conductive polymer structures via selective visible light photopolymerization

    Science.gov (United States)

    Cullen, Andrew T.; Price, Aaron D.

    2017-04-01

    Electropolymerization of pyrrole is commonly employed to fabricate intrinsically conductive polymer films that exhibit desirable electromechanical properties. Due to their monolithic nature, electroactive polypyrrole films produced via this process are typically limited to simple linear or bending actuation modes, which has hindered their application in complex actuation tasks. This initiative aims to develop the specialized fabrication methods and polymer formulations required to realize three-dimensional conductive polymer structures capable of more elaborate actuation modes. Our group has previously reported the application of the digital light processing additive manufacturing process for the fabrication of three-dimensional conductive polymer structures using ultraviolet radiation. In this investigation, we further expand upon this initial work and present an improved polymer formulation designed for digital light processing additive manufacturing using visible light. This technology enables the design of novel electroactive polymer sensors and actuators with enhanced capabilities and brings us one step closer to realizing more advanced electroactive polymer enabled devices.

  13. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  14. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Science.gov (United States)

    Kumar, Binod (Inventor)

    2003-01-01

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  15. Impregnation of porous silicon with conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Harraz, Farid A. [Advanced Materials Technology Department, Central Metallurgical Research and Development Institute (CMRDI), PO Box: 87, Hewan, 11421 Cairo (Egypt)

    2011-06-15

    Fabrication of porous silicon layers using the electrochemical technique followed by filling the nanopores with a group of conducting polymers is investigated. Our findings revealed that the deposition of polymer proceeds homogeneously inside the nanopores strating from the pore bottom and propagates into the outer surface. The polymerization process was conducted and controlled by the potentiostatic and galvanostatic modes with characteristic, defined polymerization stages. As-formed hybrid nanocomposites were characterized using different analytical techniques. Polypyrrole, polyaniline and polythiophene were tested in this study. By selective dissolution of porous silicon template, polymeric nanowires were obtained. The fabrication process, the electrochemical measurements and the porous silicon filling mechanism with polymer are thoroughly addressed and discussed (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Heat Transfer Organic Materials: Robust Polymer Films with the Outstanding Thermal Conductivity Fabricated by the Photopolymerization of Uniaxially Oriented Reactive Discogens.

    Science.gov (United States)

    Kang, Dong-Gue; Park, Minwook; Kim, Dae-Yoon; Goh, Munju; Kim, Namil; Jeong, Kwang-Un

    2016-11-09

    For the development of advanced heat transfer organic materials (HTOMs) with excellent thermal conductivities, triphenylene-based reactive discogens, 2,3,6,7,10,11-hexakis(but-3-enyloxy)triphenylene (HABET) and 4,4',4″,4‴,4'''',4'''''-(triphenylene-2,3,6,7,10,11-hexaylhexakis(oxy))hexakis(butane-1-thiol) (THBT), were synthesized as discotic liquid crystal (DLC) monomers and cross-linkers, respectively. A temperature-composition phase diagram of HABET-THBT mixtures was first established based on their thermal and microscopic analyses. From the experimental results, it was realized that the thermal conductivity of DLC HTOM was strongly affected by the molecular organizations on a macroscopic length scale. Macroscopic orientation of self-assembled columns in DLC HTOMs was effectively achieved under the rotating magnetic fields and successfully stabilized by the photopolymerization. The DLC HTOM polymer-stabilized at the LC phase exhibited the remarkable thermal conductivity above 1 W/mK. When the DLC HTOM was macroscopically oriented, the thermal conductivity was estimated to be 3 W/mK along the in-plane direction of DLC molecule. The outstanding thermal conductivity of DLC HTOM should be originated not only from the high content of two-dimensional aromatic discogens but also from the macroscopically oriented and self-assembled DLC. The newly developed DLC HTOM with an outstanding thermal conductivity as well as with an excellent mechanical sustainability can be applied as directional heat dissipating materials in electronic and display devices.

  17. Unconventional High Density Vertically Aligned Conducting Polymer

    Science.gov (United States)

    2014-08-21

    CNTs also provide a porous scaffold to deposit PEDOT via CVD. To fabricate PEDOT/ A-CNT electrodes, the conducting polymer was conformally deposited on...250μm long A-CNTs using oCVD, varying thickness from few to ten nm by controlling deoposition and polymerization times. Electron microscopy

  18. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  19. Optical properties of thin polymer films

    Science.gov (United States)

    Kasarova, Stefka N.; Sultanova, Nina G.; Petrova, Tzveta; Dragostinova, Violeta; Nikolov, Ivan

    2009-10-01

    In this report three types of optical polymer thin films deposited on glass substrates are investigated. Transmission spectra of the polymer samples are obtained in the range from 400 nm to 1500 nm. A laser microrefractometer has been used to measure the refractive indices of the examined materials at 406, 656, 910 and 1320 nm. Dispersion properties of the polymer films are analyzed on the base of the Cauchy-Schott's and Sellmeier`s approximations. Dispersion coefficients are calculated and dispersion charts in the visible and near infrared spectral regions are presented and compared. Abbe numbers of mean and partial dispersion of the polymer films are obtained. Calculation of refractive indices at many laser emission wavelengths in the considered spectral range is accomplished.

  20. Fabrication and characterization of dry conducting polymer actuator by vapor phase polymerization of polypyrrole.

    Science.gov (United States)

    Ramasamy, Madeshwaran Sekkarapatti; Mahapatra, Sibdas Singha; Cho, Jae Whan

    2014-10-01

    A trilayered dry conducting polymer actuator was fabricated via application of a polypyrrole (PPy) coating on both sides of a solid polymer electrolyte film using vapor phase polymerization (VPP). The solid polymer electrolyte film was prepared by incorporation of different weight ratios of dodecylbenzene sulfonic acid sodium salt in poly(vinyl alcohol) (PVA) by solvent casting. The successful polymerization of PPy was confirmed by Fourier transform infrared spectroscopy; a uniform PPy coating on the solid polymer electrolyte film surface was also observed by scanning electron microscopy. The dry PVA/PPy actuator demonstrated good actuation behavior at a low applied voltage of 1-3 V. The actuator bending displacement was found to increase with an increase in the applied voltage. The VPP approach in this study provides a very effective method for achieving a uniform polymer coating in the fabrication of a dry conducting polymer actuator.

  1. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  2. Electrochemical formation of a composite polymer-aluminum oxide film

    Science.gov (United States)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  3. Electrically conductive, optically transparent polymer/carbon nanotube composites

    Science.gov (United States)

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  4. Conductivity Studies of the Plasticized-Poly(methylmethacrylate) Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    A.Ahmad; Z.Osman

    2007-01-01

    1 Results In this work,five systems of polymethylmethacrylate (PMMA)-based polymer electrolytes films have been prepared by the solution casting technique.The five systems are the (PMMA-EC) system,the (PMMA + PC) system,the (PMMA+LiCF3SO3) system,the ([PMMA+EC]+LiCF3SO3) system and the ([PMMA+PC]+LiCF3SO3) system.The conductivity for each system is characterized using impedance spectroscopy.The conductivity of the pure PMMA,the (PMMA+EC) system and the (PMMA+PC) system at room temperature is 2.37×10-9,3...

  5. Influence of substrate and film thickness on polymer LIPSS formation

    Science.gov (United States)

    Cui, Jing; Nogales, Aurora; Ezquerra, Tiberio A.; Rebollar, Esther

    2017-02-01

    Here we focus on the influence of both, substrate and film thickness on polymer Laser Induced Periodic Surface Structures (LIPSS) formation in polymer films. For this aim a morphological description of ripples structures generated on spin-coated polystyrene (PS) films by a linearly polarized laser beam with a wavelength of 266 nm is presented. The influence of different parameters on the quality and characteristics of the formed laser-induced periodic surface structures (LIPSS) was investigated. We found that well-ordered LIPSS are formed either on PS films thinner than 200 nm or thicker than 400 nm supported on silicon substrates as well as on thicker free standing films. However less-ordered ripples are formed on silicon supported films with intermediate thicknesses in the range of 200-380 nm. The effect of the thermal and optical properties of the substrate on the quality of LIPSS was analyzed. Differences observed in the fluence and number of pulses needed for the onset of surface morphological modifications is explained considering two main effects which are: (1) The temperature increase on polymer surface induced by the action of cumulative laser irradiation and (2) The differences in thermal conductivity between the polymer and the substrate which strongly affect the heat dissipation generated by irradiation.

  6. Interdiffusion and Spinodal Decomposition in Electrically Conducting Polymer Blends

    Directory of Open Access Journals (Sweden)

    Antti Takala

    2015-08-01

    Full Text Available The impact of phase morphology in electrically conducting polymer composites has become essential for the efficiency of the various functional applications, in which the continuity of the electroactive paths in multicomponent systems is essential. For instance in bulk heterojunction organic solar cells, where the light-induced electron transfer through photon absorption creating excitons (electron-hole pairs, the control of diffusion of the spatially localized excitons and their dissociation at the interface and the effective collection of holes and electrons, all depend on the surface area, domain sizes, and connectivity in these organic semiconductor blends. We have used a model semiconductor polymer blend with defined miscibility to investigate the phase separation kinetics and the formation of connected pathways. Temperature jump experiments were applied from a miscible region of semiconducting poly(alkylthiophene (PAT blends with ethylenevinylacetate-elastomers (EVA and the kinetics at the early stages of phase separation were evaluated in order to establish bicontinuous phase morphology via spinodal decomposition. The diffusion in the blend was followed by two methods: first during a miscible phase separating into two phases: from the measurement of the spinodal decomposition. Secondly the diffusion was measured by monitoring the interdiffusion of PAT film into the EVA film at elected temperatures and eventually compared the temperature dependent diffusion characteristics. With this first quantitative evaluation of the spinodal decomposition as well as the interdiffusion in conducting polymer blends, we show that a systematic control of the phase separation kinetics in a polymer blend with one of the components being electrically conducting polymer can be used to optimize the morphology.

  7. Structure and Conductivity of Semiconducting Polymer Hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Rachel C.; Ferreira, Amy S.; Aguirre, Jordan C.; Kilbride, Daniel; Toso, Daniel B.; Mayoral, Kenny; Zhou, Z. Hong; Kopidakis, Nikos; Rubin, Yves; Schwartz, Benjamin J.; Mason, Thomas G.; Tolbert, Sarah H.

    2016-07-07

    Poly(fluorene-alt-thiophene) (PFT) is a conjugated polyelectrolyte that self-assembles into rod-like micelles in water, with the conjugated polymer backbone running along the length of the micelle. At modest concentrations (-10 mg/mL in aqueous solutions), PFT forms hydrogels, and this work focuses on understanding the structure and intermolecular interactions in those gel networks. The network structure can be directly visualized using cryo electron microscopy. Oscillatory rheology studies further tell us about connectivity within the gel network, and the data are consistent with a picture where polymer chains bridge between micelles to hold the network together. Addition of tetrahydrofuran (THF) to the gels breaks those connections, but once the THF is removed, the gel becomes stronger than it was before, presumably due to the creation of a more interconnected nanoscale architecture. Small polymer oligomers can also passivate the bridging polymer chains, breaking connections between micelles and dramatically weakening the hydrogel network. Fits to solution-phase small-angle X-ray scattering data using a Dammin bead model support the hypothesis of a bridging connection between PFT micelles, even in dilute aqueous solutions. Finally, time-resolved microwave conductivity measurements on dried samples show an increase in carrier mobility after THF annealing of the PFT gel, likely due to increased connectivity within the polymer network.

  8. Directly patternable, highly conducting polymers for broad applications in organic electronics.

    Science.gov (United States)

    Yoo, Joung Eun; Lee, Kwang Seok; Garcia, Andres; Tarver, Jacob; Gomez, Enrique D; Baldwin, Kimberly; Sun, Yangming; Meng, Hong; Nguyen, Thuc-Quyen; Loo, Yueh-Lin

    2010-03-30

    Postdeposition solvent annealing of water-dispersible conducting polymers induces dramatic structural rearrangement and improves electrical conductivities by more than two orders of magnitude. We attain electrical conductivities in excess of 50 S/cm when polyaniline films are exposed to dichloroacetic acid. Subjecting commercially available poly(ethylene dioxythiophene) to the same treatment yields a conductivity as high as 250 S/cm. This process has enabled the wide incorporation of conducting polymers in organic electronics; conducting polymers that are not typically processable can now be deposited from solution and their conductivities subsequently enhanced to practical levels via a simple and straightforward solvent annealing process. The treated conducting polymers are thus promising alternatives for metals as source and drain electrodes in organic thin-film transistors as well as for transparent metal oxide conductors as anodes in organic solar cells and light-emitting diodes.

  9. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  10. Plasticized Polymer Interlayer for Low-Temperature Fabrication of a High-Quality Silver Nanowire-Based Flexible Transparent and Conductive Film

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wonhee; Kang, Hong Suk; Choi, Jaeho; Lee, Hongkyung; Kim, Hee-Tak

    2017-04-18

    Silver nanowires (AgNWs) are one of the most promising materials to replace commercially available indium tin oxide in flexible transparent conductive films (TCFs); however, there are still numerous problems originating from poor AgNW junction formation and improper AgNW embedment into transparent substrates. To mitigate these problems, high-temperature processes have been adopted; however, unwanted substrate deformation prevents the use of these processes for the formation of flexible TCFs. In this work, we present a novel poly(methyl methacrylate) interlayer plasticized by dibutyl phthalate for low-temperature fabrication of AgNW-based TCFs, which does not cause any substrate deformation. By exploiting the viscoelastic properties of the plasticized interlayer near the lowered glass-transition temperature, a monolithic junction of AgNWs on the interlayer and embedment of the interconnected AgNWs into the interlayer are achieved in a single-step pressing. The resulting AgNW-TCFs are highly transparent (~92% at a wavelength of 550 nm), highly conductive (<90 Ω/sq), and environmentally and mechanically robust. Therefore, the plasticized interlayer provides a simple and effective route to fabricate high-quality AgNW-based TCFs.

  11. Conductive performances of solid polymer electrolyte films based on PVB/LiClO{sub 4} plasticized by PEG{sub 200,} PEG{sub 400} and PEG{sub 600}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yawen; Wang, Jinwei; Tang, Jinwei; Liu, Yupeng; He, Yedong [Beijing Key Laboratory for Corrosion, Erosion and Surface Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2009-02-15

    Solid polymer electrolyte (SPE) films consisting of polyvinyl butyral (PVB) as host polymer, LiClO{sub 4} as alkali salt at mole ratio of [O]:[Li] = 8, and different molecular weight polyethylene glycol (PEG) including PEG{sub 200}, PEG{sub 400}, and PEG{sub 600} as plasticizers are prepared by physical blending method. The dielectric relaxation and electrochemical impedance measurements reveal that the conductive performances are improved by adding PEG as plasticizers through the enhancement in the moving space for ions, and PEG{sub 400} performs plasticizing effect superior to PEG{sub 200} and PEG{sub 600}. Their conductivity is measured by using a sandwiched Pt/SPE/Pt cell model. SPE with 30% PEG{sub 400} (wt%) of PVB exhibits the maximum conductivity at room temperature, and its conductivity increases linearly with temperatures from 303 to 333 K at two to three orders of magnitude higher than that of the other two SPEs containing 30% PEG{sub 200} and 30% PEG{sub 600}, respectively. However, their conductivity does not increase linearly with the increase in heating temperatures until the temperature reaches around 333 K; the decrease in conductivity with heating from their maxima is attributed to the restriction of ion moving space because of the crosslinking reaction between hydroxyl and aldehyde groups. As observed from the XRD and the microscopy results, PEG{sub 400} is more effective than others in enhancing the conductive performances of these SPEs through changing LiClO{sub 4} from crystalline to amorphous state, increasing the flexibility of PVB, disturbing the short distance sequential order of PVB chains, and promoting the formation of 'pathway' for ions' movement. (author)

  12. Magneto-Photoinduced Absorption in Organic Polymer Films

    Science.gov (United States)

    Gautam, Bhoj; Nguyen, Tho; Ehrenfreund, Eitan; Vardeny, Z. Valy

    2012-02-01

    In order to elucidate the underlying mechanism of magneto-conductivity (MC) in OLEDs we studied magneto-photoinduced absorption (MPA) response in polymer films. The films were based on the MEH-PPV polymer in three different forms, namely: pristine film; film exposed to prolonged UV illumination; and MEH-PPV/PCBM blend having weight ratio 1:1. In pristine film we show that the MPA at low excitation intensity is due to sublevel spin mixing of triplet excitons; whereas at high excitation intensity the MPA is dominated by the triplet-triplet annihilation process. In UV illuminated MEH-PPV films that support photogenerated polarons we show that the MPA is due to sublevel spin-mixing of polaron-pairs via the hyperfine interaction with the closest hydrogen atoms to the chain. This mechanism also explains the MC response of OLED based on MEH-PPV, since its response is similar to that of MPA. Finally we found that the MPA in MEH-PPV/PCBM blend films is dominated by spin mixing of polaron-pair on the polymer and fullerene molecules, via the δg mechanism. Supported by the NSF DMR-1104495, the NSF MRSEC at the UoU, and the BSF program.

  13. Insulator to semimetallic transition in conducting polymers

    Science.gov (United States)

    Muñoz, W. A.; Singh, Sandeep Kumar; Franco-Gonzalez, J. F.; Linares, M.; Crispin, X.; Zozoulenko, I. V.

    2016-11-01

    We report a multiscale modeling of electronic structure of a conducting polymer poly(3,4-ethylenedioxythiopehene) (PEDOT) based on a realistic model of its morphology. We show that when the charge carrier concentration increases, the character of the density of states (DOS) gradually evolves from the insulating to the semimetallic, exhibiting a collapse of the gap between the bipolaron and valence bands with the drastic increase of the DOS between the bands. The origin of the observed behavior is attributed to the effect of randomly located counterions giving rise to the states in the gap. These results are discussed in light of recent experiments. The method developed in this work is general and can be applied to study the electronic structure of other conducting polymers.

  14. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue

    2005-01-01

    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  15. Photoexcitation of Bipolarons in Conducting Polymers

    Institute of Scientific and Technical Information of China (English)

    李盛; 龙德顺; 孙鑫

    2002-01-01

    We theoretically study the photoexcitation process in a conducting polymer with a non-degenerate ground state,where the carrier without spin is a bipolaron. The dynamical simulation reveals a photoinduced phenomenon in which a positive bipolaron is split into two polarons by absorbing one photon. The relaxation time of this photoinduced bipolaron split is about 40 fs. It is predicted that this photoinduced phenomenon can be detected experimentally by observing the change of magnetic susceptibility.

  16. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICSOF JUNCTION DEVICES%有机聚合物受体-给体复合体薄膜光伏电池性能研究

    Institute of Scientific and Technical Information of China (English)

    封伟; 曹猛; 韦玮; 吴洪才; 万梅香; 吉野胜美

    2001-01-01

    提出了用一种新的有机物-聚合物复合体薄膜制备受体-给体聚合物光伏电池的思路,用于克服由于激子或极化子扩散范围短而熄灭造成的电荷分离与传输效率低的缺陷.在采用对称N,N′-二苯并咪唑-3,4,9,10-苝四羧酸二亚酰胺和聚(2,5-二十五烷氧基-对-苯撑乙烯)(ROPPV)为原材料制备成复合体薄膜,对其电学、光学及用其制作的光伏电池的性能进行了讨论.结果显示了导电聚合物-有机物复合体可代表一类新的有机半导体材料用于制造光伏电池.%To realize an efficient photovoltaic device,one of the methods of creating a large interfacial area at which the effective dissociation of excitons occurs is to mix an electron donor material with an electron acceptor material.The new soluble conducting polymer-dye ROPPV(poly(2,5-dialkoxy-p-phenylene vinylene)/N,N'-diphenyl glyoxaline -3,4,9,10- perylene tetracarboxylic acid diacidamide (PV) composite was prepared.Electrical and optical properties of soluble conducting polymer composite films,and current-voltage(I-V) characteristics and photocurrent spectra of photovoltaic cells are discussed.Our results show that the soluble conducting polymer-dye composite represents a new class of organic semiconducting materials that can be used to manufacture photovoltaic cells.

  17. The Organic Chemistry of Conducting Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Laren Malcolm [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  18. Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells.

    Science.gov (United States)

    Kwon, Jeong; Ganapathy, Veerappan; Kim, Young Hun; Song, Kyung-Deok; Park, Hong-Gyu; Jun, Yongseok; Yoo, Pil J; Park, Jong Hyeok

    2013-09-07

    A low-cost nanopatterned highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) thin film was fabricated on a flexible plastic substrate via a chemical polymerization method combined with a nanoimprinting technique and used as a platinum (Pt), TCO-free counter electrode for dye-sensitized solar cells (DSSCs). The catalytic properties of the nanopatterned PEDOT as the counter electrode in DSSCs were studied using cyclic voltammetry, J-V measurements, impedance spectroscopy, and finite-difference time-domain (FDTD) simulations. The nanopatterned PEDOT counter electrodes exhibit better functionality as a counter electrode for tri-iodide reduction when compared to non-patterned PEDOT-based counter electrodes. The Pt and TCO-free DSSCs with a nanopatterned PEDOT-based counter electrode exhibited a power conversion efficiency of 7.1% under one sunlight illumination (100 mW cm(-2)), which is comparable to that of conventional DSSCs with standard platinum Pt/FTO paired counter electrodes. The ability to modulate catalytic functionality with changes in nanoscale morphology represents a promising route for developing new counter electrodes of Pt and TCO-free DSSCs.

  19. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  20. Antimicrobial polymer films for food packaging

    Science.gov (United States)

    Concilio, S.; Piotto, S.; Sessa, L.; Iannelli, P.; Porta, A.; Calabrese, E. C.; Galdi, M. R.; Incarnato, L.

    2012-07-01

    New antimicrobial polymeric systems were realized introducing new antimicrobial azo compounds in PP and LDPE matrices. The polymeric materials containing different percentage of azo compounds were mold-casted and the obtained film were tested in vitro against Gram+ and Gram- bacteria and fungi. These results hold promise for the fabrication of bacteria-resistant polymer films by means of simple melt processing with antimicrobial azo-dyes.

  1. π-Donors microstructuring on surface of polymer film by their noncovalent interactions with iodine

    Energy Technology Data Exchange (ETDEWEB)

    Traven, Valerii F., E-mail: valerii.traven@gmail.com [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Ivanov, Ivan V.; Dolotov, Sergei M. [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Veciana, Jaume Miro; Lebedev, Victor S. [Institut de Ciencia de Materials de Barcelona–CSIC, Campus de la UAB, 08193, Bellaterra (Spain); Shulga, Yurii M.; Khasanov, Salavat S. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Acad. N.N. Semenov Prosp., 1, Chernogolovka, 142432 (Russian Federation); Medvedev, Michael G. [A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Vavilova str., 28 (Russian Federation); Laukhina, Elena E. [The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, ICMAB-CSIC, Bellaterra, 08193 (Spain)

    2015-06-15

    Noncovalent (charge transfer) interaction between perylene and iodine in polycarbonate film provides formation of microstructured perylene layer on the polymer surface upon exposure of polymer film which contains dissolved perylene to solvent + iodine vapors. The prepared bilayer film possesses a sensing effect to iodine vapors which can be observed by both fluorescence and electrical conductivity changes. Similar bilayer films have been prepared also with anthracene and phenothiazine as π-donors with use of different polymer matrixes. Interaction of iodine with polycyclic aromatic hydrocarbons (PAH) has also been studied by the M06-2x DFT calculations for better understanding of phenomenon of π-donors microstructuring on surface of polymer film. - Highlights: • Preparation of bilayer polymer films with π-donors on surface for the first time. • π-Donor phase purity is confirmed by XRD, IR spectroscopy, SEM. • Perylene bilayer polymer films possess fluorescence. • Perylene bilayer polymer films loss fluorescence under iodine vapors. • Perylene bilayer polymer films possess electrical conductivity when treated by iodine vapors.

  2. Spatially Selective Functionalization of Conducting Polymers by "Electroclick" Chemistry

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Daugaard, Anders Egede; Hvilsted, Søren

    2009-01-01

    Conducting polymer microelectrodes can electrochemically generate the catalyst required for their own functionalization by "click chemistry" with high spatial resolution. Interdigitated microelectrodes prepared from an azide-containing conducting polymer are selectively functionalized in sequence...

  3. Complex impedance and conductivity of agar-based ion-conducting polymer electrolytes

    Science.gov (United States)

    Nwanya, A. C.; Amaechi, C. I.; Udounwa, A. E.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-04-01

    Agar-based electrolyte standing films with different salts and weak acids as ion and proton conductors were prepared and characterized by X-ray diffraction, UV-visible spectrophotometry, photoluminescence emission spectroscopy and electrochemical impedance spectroscopy. The salts used are lithium perchlorate (LiClO4) and potassium perchlorate (KClO4), while the weak acids used are acetic acid (CH3COOH) and lactic acid (C3H6O3). The values of the ion conductivity obtained for the agar-based polymer films are 6.54 × 10-8, 9.12 × 10-8, 3.53 × 10-8, 2.24 × 10-8 S/cm for the agar/acetic acid, agar/lactic acid, agar/LiClO4 and agar/KClO4 polymer films, respectively. As a function of temperature, the ion conductivity exhibits an Arrhenius behavior and the estimated activation energy is ≈0.1 eV for all the samples. The samples depicted high values of dielectric permittivity toward low frequencies which is due mostly to electrode polarization effect. The samples showed very high transparency (85-98 %) in the visible region, and this high transparency is one of the major requirements for application in electrochromic devices (ECD). The values of conductivity and activation energy obtained indicate that the electrolytes are good materials for application in ECD.

  4. Electrochemical characterization of aminated acrylic conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Norma Mohammad [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Heng, Lee Yook [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ling, Tan Ling [Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  5. Highly stretchable electrospun conducting polymer nanofibers

    Science.gov (United States)

    Boubée de Gramont, Fanny; Zhang, Shiming; Tomasello, Gaia; Kumar, Prajwal; Sarkissian, Andranik; Cicoira, Fabio

    2017-08-01

    Biomedical electronics research targets both wearable and biocompatible electronic devices easily adaptable to specific functions. To achieve such goals, stretchable organic electronic materials are some of the most intriguing candidates. Herein, we develop highly stretchable poly-(3,4-ethylenedioxythiphene) (PEDOT) doped with tosylate (PEDOT:Tos) nanofibers. A two-step process involving electrospinning of a carrier polymer (with oxidant) and vapor phase polymerization was used to produce fibers on a polydimethylsiloxane substrate. The fibers can be stretched up to 140% of the initial length maintaining high conductivity.

  6. Thin films of photoactive polymer blends.

    Science.gov (United States)

    Ruderer, Matthias A; Metwalli, Ezzeldin; Wang, Weinan; Kaune, Gunar; Roth, Stephan V; Müller-Buschbaum, Peter

    2009-03-09

    The morphology inside photoactive blended films of two conjugated homopolymers poly [(1-methoxy)-4-(2-ethylhexyloxy)-p-phenylene-vinylene] (MEH-PPV) and poly(3-hexylthiophene-2,5-diyl) (P3HT) is investigated. For both homopolymers a linear dependence of the installed film thickness from the concentration of the polymer solution used in spin coating is probed. This dependence allows preparation of an efficient series of blended films with constant thickness and different blending ratios. Information about the lateral structure inside the films is gained from grazing incidence small angle X-ray scattering. At the calculated critical blending ratio the smallest lateral separation between adjacent domains is found representing the highest surface contact between both homopolymers in the films. The presence of wetting layers at both interfaces as detected with X-ray reflectivity and atomic force microscopy is promising for photovoltaic applications. UV/Vis spectroscopy complements the structural investigation.

  7. Fabrication and characterization of solid state conducting polymer actuators

    Science.gov (United States)

    Xie, Jian; Sansinena, Jose-Maria; Gao, Junbo; Wang, Hsing-Lin

    2004-07-01

    We report here the fabrication and characterization of solid-state conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhered to a lever arm of a force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torque generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, and current, on the bending angle and displacement is also studied using square wave potential.

  8. Conducting polymer-hydrogels for medical electrode applications

    Directory of Open Access Journals (Sweden)

    Rylie A Green, Sungchul Baek, Laura A Poole-Warren and Penny J Martens

    2010-01-01

    Full Text Available Conducting polymers hold significant promise as electrode coatings; however, they are characterized by inherently poor mechanical properties. Blending or producing layered conducting polymers with other polymer forms, such as hydrogels, has been proposed as an approach to improving these properties. There are many challenges to producing hybrid polymers incorporating conducting polymers and hydrogels, including the fabrication of structures based on two such dissimilar materials and evaluation of the properties of the resulting structures. Although both fabrication and evaluation of structure–property relationships remain challenges, materials comprised of conducting polymers and hydrogels are promising for the next generation of bioactive electrode coatings.

  9. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); De Smet, Jelle; Willems, Wouter [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); Cools, Pieter; De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); De Smet, Herbert; Van Steenbeerge, Geert [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium)

    2016-07-15

    Highlights: • Laser patterning of thin film PEDOT:PSS on polymer foils is characterized in great detail. • PEDOT:PSS does not need to be fully removed to create electrically insulating patterns. • The underlying polymer foil influences the ablation behavior. - Abstract: Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  10. Precursor polymer approach towards functional conjugated polymer networks and ultrathin film electro-optical applications

    Science.gov (United States)

    Taranekar, Prasad

    Conjugated polymers are organic semiconductors which are of interest to a wide variety of optical, electronic, opto-electronic, and sensory applications; including light emitting diodes, thin film transistors, photovoltaic cells, and chemical sensors. While conducting polymers have some similarities to conventional polymeric materials, it is clearly the extensive main chain pi-conjugated structure and its implicit electro-optical properties that make it distinct. The same structure, however, gives it "chain stiffness" that affects its physical behavior. As a direct consequence of this, virtually all unsubstituted conducting polymers are found to be intractable and insoluble. This dissertation details the issue of tailoring the electro-optical properties and processability of conjugated polymers via a novel "precursor polymer approach". In this approach, electroactive side group units of either similar or different kind are tethered to a polymeric backbone. This combination determines the eventual electro-optical and electrochemical properties of these polymers including their ability to form ultrathin films. Thus, the desired macroscopic property is transformed by designing new precursor polymer structures, manipulating polymer-based compositions and blends, and the exploration and exploitation of their electrochemical processing conditions. In Chapters 2, 3, and 4, we have used single or binary electroactive compositions of species such as pyrrole, thiophene, carbazole and terthiophene are tethered to a linear polymeric backbone. Besides, the linear approach, in Chapters 5 and 6, we have also explored the use of generational dendrimers as backbone with carbazole units attached as peripheral electroactive groups. These precursor polymers were then subjected to electrochemical cross-linking to generate high optical quality ultrathin films on a conducting substrate such as indium tin oxide (ITO) or Au surfaces. The reaction of such electroactive species inimically

  11. Carbon nanotube based transparent conductive thin films.

    Science.gov (United States)

    Yu, X; Rajamani, R; Stelson, K A; Cui, T

    2006-07-01

    Carbon nanotube (CNT) based optically transparent and electrically conductive thin films are fabricated on plastic substrates in this study. Single-walled carbon nanotubes (SWNTs) are chemically treated with a mixture of concentrated sulfuric acid and nitric acid before being dispersed in aqueous surfactant-contained solutions. SWNT thin films are prepared from the stable SWNT solutions using wet coating techniques. The 100 nm thick SWNT thin film exhibits a surface resistivity of 6 kohms/square nanometer with an average transmittance of 88% on the visible light range, which is three times better than the films prepared from the high purity as-received SWNTs.

  12. Anisotropic conductance of the multiwall carbon nanotube array/silicone elastomer composite film

    Energy Technology Data Exchange (ETDEWEB)

    Yao Yuan; Liu Changhong; Fan Shoushan [Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, Beijing 100084 (China)

    2006-09-14

    Multiwall carbon nanotube array/silicone elastomer composite films have been fabricated with an in situ injection modelling method. The transverse conductivity of the composite films is larger than the lateral conductivity because the aligned carbon nanotube array is embedded into the polymer matrix. The nonlinear I-V curve has been analysed and the temperature-dependent transport behaviour has been investigated.

  13. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  14. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Veerender, P.; Saxena, Vibha; Gusain, Abhay; Jha, P.; Koiry, S. P.; Chauhan, A. K.; Aswal, D. K.; Gupta, S. K.

    2014-04-01

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  15. Investigation on the effects of beta and gamma irradiation on conducting polymers for sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Marie C., E-mail: mkane@sandia.go [Savannah River National Laboratory, Aiken, SC 29808 (United States); Sandia National Laboratories, Livermore, CA 94550 (United States); Lascola, Robert J.; Clark, Elliot A. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2010-12-15

    Two conductive polymers were evaluated to be the active materials in a sensor device for the detection of beta radiation. This was accomplished by characterizing the changes in conductivity of electrically conducting polymer films caused by exposure to tritium gas for varying lengths of time. The behavior of these materials when exposed to gamma radiation was also studied to gain further insight into the mechanism of conductivity degradation by ionizing radiation. Two types of conductive polymer, polyaniline (PANi) and poly(3,4-ethylenedioxythiophene) (PEDOT), were chosen as candidate materials for their widespread commercial use. The change of surface resistance (conductivity) of PANi and PEDOT films when exposed to gamma radiation in both air and deuterium environments was evaluated as well as tritium exposures in 10{sup 4} and 10{sup 5} Pa gas. Raman and absorbance spectra of gamma irradiated samples were obtained to determine the mechanism of conductivity degradation in both polymers. Post-irradiation gas analysis of the samples contained in deuterium revealed very little (or no) hydrogen in the containment vessel, indicating that hydrogen-deuterium isotopic exchange was not responsible for the decrease in surface conductivity due to gamma exposure. The effects of irradiation-induced oxidation were also studied for both conductive polymers during gamma irradiation. It was concluded that chain scission via free radical formation and chain cross-linking are most likely the two dominant mechanisms for conductivity change and not de-protonation of the polymer.

  16. Conducting polymer actuators: From basic concepts to proprioceptive systems

    Science.gov (United States)

    Martinez Gil, Jose Gabriel

    Designers and engineers have been dreaming for decades of motors sensing, by themselves, working and surrounding conditions, as biological muscles do originating proprioception. Here bilayer full polymeric artificial muscles were checked up to very high cathodic potential limits (-2.5 V) in aqueous solution by cyclic voltammetry. The electrochemical driven exchange of ions from the conducting polymer film, and the concomitant Faradaic bending movement of the muscle, takes place in the full studied potential range. The presence of trapped counterion after deep reduction was corroborated by EDX determinations giving quite high electronic conductivity to the device. The large bending movement was used as a tool to quantify the amount of water exchanged per reaction unit (exchanged electron or ion). The potential evolutions of self-supported films of conducting polymers or conducting polymers (polypyrrole, polyaniline) coating different microfibers, during its oxidation/reduction senses working mechanical, thermal, chemical or electrical variables. The evolution of the muscle potential from electrochemical artificial muscles based on electroactive materials such as intrinsically conducting polymers and driven by constant currents senses, while working, any variation of the mechanical (trailed mass, obstacles, pressure, strain or stress), thermal or chemical conditions of work. One physically uniform artificial muscle includes one electrochemical motor and several sensors working simultaneously under the same driving reaction. Actuating (current and charge) and sensing (potential and energy) magnitudes are present, simultaneously, in the only two connecting wires and can be read by the computer at any time. From basic polymeric, mechanical and electrochemical principles a physicochemical equation describing artificial proprioception has been developed. It includes and describes, simultaneously, the evolution of the muscle potential during actuation as a function of the

  17. Morphology and conductivity of in-situ PEO-LiClO4-TiO2 composite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-yue; FENG Qing; WANG Li-jun; ZHANG Qian; CHAO Meng

    2007-01-01

    PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10-5 S/cm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.

  18. Catalytic synthesis of metal crystals using conductive polymers

    Science.gov (United States)

    Wang, Hsing-Lin; Li, Wenguang

    2008-01-15

    A method of forming metal nanoparticles using a polymer colloid that includes at least one conductive polymer and at least one polyelectrolyte. Metal ions are reduced in water by the conductive polymer to produce the nanoparticles, which may be then incorporated in the colloidal structure to form a colloid composite. The method can also be used to separate selected metal ions from aqueous solutions.

  19. Electrical Resistance Tomography of Conductive Thin Films

    CERN Document Server

    Cultrera, Alessandro

    2016-01-01

    The Electrical Resistance Tomography (ERT) technique is applied to the measurement of sheet conductance maps of both uniform and patterned conductive thin films. Images of the sheet conductance spatial distribution, and local conductivity values are obtained. Test samples are tin oxide films on glass substrates, with electrical contacts on the sample boundary, some samples are deliberately patterned in order to induce null conductivity zones of known geometry while others contain higher conductivity inclusions. Four-terminal resistance measurements among the contacts are performed with a scanning setup. The ERT reconstruction is performed by a numerical algorithm based on the total variation regularization and the L-curve method. ERT correctly images the sheet conductance spatial distribution of the samples. The reconstructed conductance values are in good quantitative agreement with independent measurements performed with the van der Pauw and the four-point probe methods.

  20. High-Temperature Capacitor Polymer Films

    Science.gov (United States)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  1. Improved thermally conducting electron transfer polymers

    Science.gov (United States)

    Jenkins, R. K.; Byrd, N. R.; Lister, J. L.

    1972-01-01

    Development of polymers with improved heat transfer coefficients for use in encapsulating electronic modules is discussed. Chemical reactions for synthesizing the polymers are described and thermodynamic and physical properties are analyzed.

  2. Studies on AC Electrical Conductivity of CdCl2 Doped PVA Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    M. B. Nanda Prakash

    2013-01-01

    Full Text Available PVA-based polymer electrolytes were prepared with various concentrations of CdCl2 using solvent casting method. Prepared polymer films were investigated using line profile analysis employing X-ray diffraction (XRD data. XRD results show that the crystallite size decreases and then increases with increase in CdCl2. AC conductivity in these polymer increases films first and then decreases. These observations are in agreement with XRD results. The highest ionic conductivity of 1.68E − 08 Scm−1 was observed in 4% of CdCl2 in PVA polymer blend. Crystallite ellipsoids for different concentrations of CdCl2 are computed here using whole pattern powder fitting (WPPF indicating that crystallite area decreases with increase in the ionic conductivity.

  3. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    Science.gov (United States)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  4. Terahertz Conductivity of Single Walled Nanotube Films

    Institute of Scientific and Technical Information of China (English)

    韩家广; 朱志远; 何峰; 廖怡; 王震遐; 张伟; 余礼平; 孙立涛; 王庭太

    2003-01-01

    The conductivity of single walled nanotube films is investigated with a combination of the Maxwel1-Garnett (MG)model and the Drude-Lorentzian (DL) model in the Terahertz region. A theoretical fit for Jeon's experiment is given and a decrease of the real conductivity with increasing frequency is predicted. Meanwhile, the MG and DL models are also discussed for different samples.

  5. Preparation of conducting polymer/insulating polymer composite films using molecular self-assembly process and its function; Bunshi self assembly ho ni yoru dodensei kobunshi/zetsuensei kobunshi fukugomaku no sakusei to sono kino

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, M.; Fujita, D.; Isaki, K.; Nakayama, H. [Himeji Institute of Technology, Hyogo (Japan)

    1997-11-20

    By exposing low-density polyethylene to an atmosphere of fuming sulfuric acid, sulfonated low-density polyethylenes (SPE) were prepared and the degree of surface sulfonation for treated film was determined as the weight-increase per unit area. Polypyrrole (PPy) films on the surface of SPE were grew using molecular self-assembly process and the properties of PPy/SPE composite films have been investigated. Then, the functional applications of PPy/SPE composite films have also been proposed and especially the movement properties of actuators using PPy/SPE composite film were mentioned. 10 refs., 12 figs.

  6. Integrated capacitors for conductive lithographic film circuits

    OpenAIRE

    Harrey, PM; Evans, PSA; Harrison, DJ

    2001-01-01

    This paper reports on fabrication of low-value embedded capacitors in conductive lithographic film (CLF) circuit boards. The CLF process is a low-cost and high speed manufacturing technique for flexible circuits and systems. We report on the construction and electrical characteristics of CLF capacitor structures printed onto flexible substrates. These components comprise a single polyester dielectric layer, which separates the printed electrode films. Multilayer circuit boards with printed co...

  7. Nanostructured conducting polymers for energy applications: towards a sustainable platform

    Science.gov (United States)

    Ghosh, Srabanti; Maiyalagan, Thandavarayan; Basu, Rajendra N.

    2016-03-01

    Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described.

  8. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

    Directory of Open Access Journals (Sweden)

    Lijia Pan

    2010-07-01

    Full Text Available Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  9. Conducting polymer nanostructures: template synthesis and applications in energy storage.

    Science.gov (United States)

    Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi

    2010-07-02

    Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.

  10. Making waves in a photoactive polymer film

    Science.gov (United States)

    Gelebart, Anne Helene; Jan Mulder, Dirk; Varga, Michael; Konya, Andrew; Vantomme, Ghislaine; Meijer, E. W.; Selinger, Robin L. B.; Broer, Dirk J.

    2017-06-01

    Oscillating materials that adapt their shapes in response to external stimuli are of interest for emerging applications in medicine and robotics. For example, liquid-crystal networks can be programmed to undergo stimulus-induced deformations in various geometries, including in response to light. Azobenzene molecules are often incorporated into liquid-crystal polymer films to make them photoresponsive; however, in most cases only the bending responses of these films have been studied, and relaxation after photo-isomerization is rather slow. Modifying the core or adding substituents to the azobenzene moiety can lead to marked changes in photophysical and photochemical properties, providing an opportunity to circumvent the use of a complex set-up that involves multiple light sources, lenses or mirrors. Here, by incorporating azobenzene derivatives with fast cis-to-trans thermal relaxation into liquid-crystal networks, we generate photoactive polymer films that exhibit continuous, directional, macroscopic mechanical waves under constant light illumination, with a feedback loop that is driven by self-shadowing. We explain the mechanism of wave generation using a theoretical model and numerical simulations, which show good qualitative agreement with our experiments. We also demonstrate the potential application of our photoactive films in light-driven locomotion and self-cleaning surfaces, and anticipate further applications in fields such as photomechanical energy harvesting and miniaturized transport.

  11. On near-free-surface dynamics of thin polymer films

    Science.gov (United States)

    Qi, Dongping

    In the present studies of four projects we developed several novel techniques to investigate near-free-surface dynamics of thin polymer films. In the first project, we studied the dynamical properties of the first 2-3 nm region of glassy isotactic poly (methyl methacrylate) (i-PMMA) films by means of the nano surface hole relaxation technique. We found that for the measured surface relaxation times there is a strong substrate property dependence, which can propagate into i-PMMA films for a distance of more than 100nm. An unexpected molecular weight (Mw) dependence of the near surface relaxation time is found for thick i-PMMA films, which, together with the finding that the free surface could be assigned a local surface glass transition temperature of ˜40K below bulk T g, indicates a viscous liquid regime while the rest of the underneath bulk part is in the glassy state. In the second project, the nano gold sphere embedding technique was used to study the nearfree-surface dynamics of polystyrene (PS) films within wide temperature and time windows. Three sections of measurements are conducted in this project. In the first section, we studied the Mw dependence of the near-free-surface dynamics of PS films and found that at temperatures above bulk Tg there exists a Mw dependence which can be explained using the Rouse dynamics for melt polymers. However, at a temperature of 16K below bulk T g no w M dependence is discernible, which is in contrast to that for i-PMMA films where even at a temperature of ˜36K below bulk Tg a Mw dependence of the near free surface dynamics is still observed. In the second section of this work, we studied the nano gold sphere embedding behavior within a wide temperature and time window, and for the first time the depth dependence of the near-free-surface dynamics with the nanometer scale resolution was observed. By an embedding-model-free data analysis the results show that when the measurement temperature is above a temperature of ˜378K

  12. Transparent Conductive Films of Copper Nanofiber Network Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Sungyeoul Kim

    2015-01-01

    Full Text Available Cu nanofiber networks can be a good alternative of the Ag nanowire of high electrical conductivity while having the advantage of low price. An electrospinning method was developed to fabricate copper nanofiber network for use as a transparent conductive film on glass substrate. The effects of liquid diluents for electrospinning processability were examined in relation to the subsequent Cu nanofiber formation processes. Electrospinning solutions of copper acetate/polyvinyl alcohol (PVA and copper nitrate trihydrate/polyvinyl butyral (PVB were investigated. The polymer mixing solutions influenced the subsequent annealing temperatures for removal of the polymers and reduction of the formed CuO nanofibers to Cu metal nanofibers. The morphology and structures of the formed nanofiber networks were examined by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and so forth. The mixture with PVB provided lower annealing temperatures suitable for application to flexible substrates.

  13. Ionic conductivity and battery characteristic studies of a new PAN-based Na+ ion conducting gel polymer electrolyte system

    Science.gov (United States)

    Krishna Jyothi, N.; Vijaya Kumar, K.; Sunita Sundari, G.; Narayana Murthy, P.

    2016-03-01

    Sodium ion conducting gel polymer electrolytes based on polyacrylonitrile (PAN) with ethylene carbonate and dimethyl formamide as plasticizing solvents are prepared by the solution cast technique. These electrolyte films are free standing, transparent and dimensionally stable. Na+ ions are derived from NaI. The structural properties of pure and complex formations have been examined by X-ray diffraction, Fourier transform infrared spectroscopic studies and differential scanning calorimetric studies. The variation of the conductivity with salt concentration ranging from 10 to 40 wt% is studied. The sample containing 30 wt% of NaI exhibits the highest conductivity of 2.35 × 10-4 S cm-1 at room temperature (303 K) and 1 × 10-3 S cm-1 at 373 K. The conductivity-temperature dependence of polymer electrolyte films obeys Arrhenius behavior with activation energy in the range of 0.25-0.46 eV. The transport numbers both electronic ( t e) and ionic ( t i) are evaluated using Wagner's polarization technique. It is revealed that the conducting species are predominantly due to ions. The ionic transport number of highest conducting film is found to be 0.991. Solid-state battery with configuration Na/(PAN + NaI)/(I2 + C + electrolyte) is developed using the highest conducting gel polymer electrolyte system and the discharge characteristics of the cell are evaluated over the load of 100 KΩ.

  14. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination

    Science.gov (United States)

    Yinhua Zhou; Talha M. Khan; Jen-Chieh Liu; Canek Fuentes-Hernandez; Jae Won Shim; Ehsan Najafabadi; Jeffrey P. Youngblood; Robert J. Moon; Bernard Kippelen

    2014-01-01

    We report on efficient solar cells on recyclable cellulose nanocrystal (CNC) substrates with a new device structure wherein polyethylenimine-modified Ag is used as the bottom electron-collecting electrode and high-conductivity poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS, PH1000) is used as the semitransparent top holecollecting electrode. The...

  15. Dynamic control of crystallinity in polymer film casting process

    OpenAIRE

    Thananchai Leephakpreeda

    2005-01-01

    This paper presents an approach for dynamic control of crystallinity in polymer film casting process. As known, the transients of crystallization dictate the microstructures of semi-crystalline polymer during solidification. In turn, the properties of finished products can be determined by adjustable variables in polymer film casting process such as temperature of chill roll. In this work, an experimental model of the solidification in film casting process is derived by a system identificatio...

  16. Rechargeable aluminum batteries with conducting polymers as positive electrodes.

    Energy Technology Data Exchange (ETDEWEB)

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

  17. Band Bending in Conjugated Polymer Films: Role of Morphology and Implications for Bulk Charge Transport Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wenderott, J. K. [University of Michigan; Dong, Ban Xuan [University of Michigan

    2017-08-14

    The performance of power conversion devices is impacted by the energy level alignment at the interface between the conjugated polymer and conductive substrate. While band bending has been known to vary between conjugated polymers, we show that the degree of band bending within the same polymer can be just as significant with morphology change. Specifically, a significant band bending effect, studied via Kelvin probe force microscopy (KPFM), was exhibited by poly(3-hexylthiophene) (P3HT) films fabricated using matrix assisted pulsed laser evaporation (MAPLE) in contrast to the conventional spin-cast P3HT films. This finding is associated with a broadening of the density of states (DOS) in the MAPLE-deposited P3HT films, originating from the more disordered structure of the film. These findings, to the best of our knowledge, illustrate for the first time a strong connection between morphology, energy level alignment, and bulk transport in conjugated polymer films.

  18. EFFECTS OF TRITIUM GAS EXPOSURE ON ELECTRICALLY CONDUCTING POLYMERS

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Clark, E.; Lascola, R.

    2009-12-16

    Effects of beta (tritium) and gamma irradiation on the surface electrical conductivity of two types of conducting polymer films are documented to determine their potential use as a sensing and surveillance device for the tritium facility. It was shown that surface conductivity was significantly reduced by irradiation with both gamma and tritium gas. In order to compare the results from the two radiation sources, an approximate dose equivalence was calculated. The materials were also sensitive to small radiation doses (<10{sup 5} rad), showing that there is a measurable response to relatively small total doses of tritium gas. Spectroscopy was also used to confirm the mechanism by which this sensing device would operate in order to calibrate this sensor for potential use. It was determined that one material (polyaniline) was very sensitive to oxidation while the other material (PEDOT-PSS) was not. However, polyaniline provided the best response as a sensing material, and it is suggested that an oxygen-impermeable, radiation-transparent coating be applied to this material for future device prototype fabrication. A great deal of interest has developed in recent years in the area of conducting polymers due to the high levels of conductivity that can be achieved, some comparable to that of metals [Gerard 2002]. Additionally, the desirable physical and chemical properties of a polymer are retained and can be exploited for various applications, including light emitting diodes (LED), anti-static packaging, electronic coatings, and sensors. The electron transfer mechanism is generally accepted as one of electron 'hopping' through delocalized electrons in the conjugated backbone, although other mechanisms have been proposed based on the type of polymer and dopant [Inzelt 2000, Gerard 2002]. The conducting polymer polyaniline (PANi) is of particular interest because there are extensive studies on the modulation of the conductivity by changing either the oxidation

  19. Structure-processing-property correlations in thin films of conjugated polymer nanocomposites and blends

    Science.gov (United States)

    Sreeram, Arvind

    (IL) could be obtained in a single step reaction. The incorporation of IL in the film, not only greatly improved its mechanical properties, by acting as a plasticizer, but also imparted a dual mechanism of charge transport. The segments of conjugated double bonds imparted electronic conductivity to the films, and the IL resulted in ionic conductivity. The presence of both electronic and ionic conduction pathways in the films was confirmed by electrochemical impedance spectroscopy (EIS). These IL-imbibed conjugated polymer films are promising as materials for electrochemical energy conversion and storage. In the third part of this work, conjugated polymer films containing multiwalled carbon nanotubes (MWNT) and graphene nanoplatelets (GNP) were synthesized and characterized. PPV--MWNT nanocomposite films and PA--GNP nanocomposite films were characterized using a variety of analytical techniques including transmission electron microscopy, quasistatic and dynamic nanoindentaiton, electrochemical impedance spectroscopy, and cyclic voltammetry. Potential application of these films is in electrochemical supercapacitors.

  20. Rational design and synthesis of semi-conducting polymers.

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bryan Matthew; Reeder, Craig; Cordaro, Joseph Gabriel

    2010-12-01

    A rational approach was used to design polymeric materials for thin-film electronics applications, whereby theoretical modeling was used to determine synthetic targets. Time-dependent density functional theory calculations were used as a tool to predict the electrical properties of conjugated polymer systems. From these results, polymers with desirable energy levels and band-gaps were designed and synthesized. Measurements of optoelectronic properties were performed on the synthesized polymers and the results were compared to those of the theoretical model. From this work, the efficacy of the model was evaluated and new target polymers were identified.

  1. Electrochemically polymerized conjugated polymer films: Stability improvement and surface functionalization

    Science.gov (United States)

    Wei, Bin

    Conjugated polymers have been widely used in various applications including organic solar cells, electrochromic devices, chemical sensors, and biomedical devices. Poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have received considerable interest because of their low oxidation potential, relatively high chemical stability, and high conductivity. Electrochemical deposition is a convenient method for precisely fabricating conjugated polymer thin films. Here, we report the stability improvement and surface functionalization of electrochemically polymerized PEDOT films. The long-term performance of PEDOT coatings is limited by their relatively poor stability on various inorganic substrates. Two different methods were used to improve the stability of PEDOT coatings, one involved using carboxylic acid functionalized EDOT (EDOT-acid) as adhesion promoter. EDOT-acid molecules were chemically bonded onto activated metal oxide substrates via chemisorption. PEDOT was then polymerized onto the EDOT-acid modified substrates, forming covalently bonded coatings. An aggressive ultrasonication test confirmed the significantly improved adhesion of the PEDOT films on electrodes with EDOT-acid treatment over those without treatment. The other method was to use an octa-ProDOT-functionalized POSS derivative (POSSProDOT) as cross-linker. PEDOT copolymer films were electrochemically deposited with various concentrations of POSS-ProDOT. The optical, morphological and electrochemical properties of the copolymer films could be systematically tuned with the incorporation of POSS-ProDOT. Significantly enhanced electrochemical and mechanical stability of the copolymers were observed at intermediate levels of POSS-ProDOT content (3.1 wt%) via chronic stimulation tests. Surface functionalization of conducting polymer films provides a potential means for systematically tailoring their chemical and physical properties. We have synthesized, polymerized and characterized a dialkene

  2. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  3. Efficiency Improvement of Heterojunction Polymer Photovoltaic Cells through Controlling the Morphology of the Polymer Film

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Polymer photovoltaic cells, which provide clean and renewable energy sources, have gained more and more attention. Polymer photovoltaic cells have the advantage of low fabrication cost and high mechanical flexibility. Polymers can be processed through a solution process, so that a homogeneous polymer film could be readily prepared in a large area. Recently, the light-to-electricity conversion efficiency of the polymer photovoltaic cells was improved significantly[1-2]. Polymer donor and organi...

  4. Designer coordination polymers: dimensional crossover architectures and proton conduction.

    Science.gov (United States)

    Yamada, Teppei; Otsubo, Kazuya; Makiura, Rie; Kitagawa, Hiroshi

    2013-08-21

    Coordination polymers (CPs) have large degrees of freedom in framework compositions and in the structures and environment of the inner pores. This review focuses on the recent significant progress achieved by controlling these degrees of freedom. Two breakthroughs are reviewed for constructing sophisticated structures of CP frameworks, especially in dimensional crossover regions. The first is the synthesis of quasi one-dimensional halogen-bridged coordinative tubes by applying state-of-the-art techniques of coordination chemistry. The electronic state of the coordinative tube was studied by structural, spectroscopic and theoretical methods and found to be distinct from conventional one-dimensional systems. The second breakthrough is the achievement of a quasi-two-dimensional architecture by combining Langmuir-Blodgett and layer-by-layer methods. Two-dimensional LB CP films were prepared on liquid; the films were stacked layer by layer, and a crystalline quasi-two-dimensional structure was constructed. This review also covers the design of the environment of the inner pore, where hydrogen bond networks with various acidic sites were modified. By appropriate design of the hydrogen bond network, proton-conductive CPs are invented, which are summarized in this review. Types of proton donor sites are discussed and classified, and superprotonic conductive CPs were achieved in these investigations. These results will provide new strategies for constructing functional materials for smart devices.

  5. A New Conducting Polymer Electrode for Organic Electroluminescence Devices

    Institute of Scientific and Technical Information of China (English)

    QU Shu; PENG Jing-Cui

    2008-01-01

    @@ Conducting polymer polydimethylsiloxane (PDMS) is studied for the high performance electrode of organic electroluminescence devices. A method to prepare the electrode consisting of a SiC thin film and PDMS is investigated. By using ultra thin SiC films with different thicknesses, the organic electroluminescenee devices are obtained in an ultra vacuum system with the model device PDMS/SiC/PPV/Alq3, where PPV is poly para-phenylene vinylene and Alq3 is tris(8-hydroxyquinoline) aluminium. The capacitance-voltage (C-V), capacitance-frequency (C-F), current-voltage (I- V), radiation intensity-voltage (R- V) and luminance efficiency-voltage (E-V) measurements are systematically studied to investigate the conductivity, Fermi align-ment and devices properties in organic semiconductors. Scanning Kelvin probe measurement shows that the work function of PDMS/SiC anode with a 2.5-nm SiC over layer can be increased by as much as 0.28eV, compared to the conventional ITO anode. The result is attributed to the charge transfer effect and ohmic contacts at the interface.

  6. Workshop on thin film thermal conductivity measurements

    Science.gov (United States)

    Feldman, Albert; Balzaretti, Naira M.; Guenther, Arthur H.

    1998-04-01

    On a subject of considerable import to the laser-induced damage community, a two day workshop on the topic, Thin Film Thermal Conductivity Measurement was held as part of the 13th Symposium on Thermophysical Properties at the University of Colorado in Boulder CO, June 25 and 26, 1997. The Workshop consisted of 4 sessions of 17 oral presentations and two discussion sessions. Two related subjects of interest were covered; 1) methods and problems associated with measuring thermal conductivity ((kappa) ) of thin films, and 2) measuring and (kappa) of chemical vapor deposited (CVD) diamond. On the subject of thin film (kappa) measurement, several recently developed imaginative techniques were reviewed. However, several authors disagreed on how much (kappa) in a film differs from (kappa) in a bulk material of the same nominal composition. A subject of controversy was the definition of an interface. In the first discussion session, several questions were addressed, a principal one being, how do we know that the values of (kappa) we obtain are correct and is there a role for standards in thin film (kappa) measurement. The second discussion session was devoted to a round-robin interlaboratory comparison of (kappa) measurements on a set of CVD diamond specimens and several other specimens of lower thermal conductivity. Large interlaboratory differences obtained in an earlier round robin had been attributed to specimen inhomogeneity. Unfortunately, large differences were also observed in the second round robin even though the specimens were more homogenous. There was good consistency among the DC measurements, however, the AC measurements showed much greater variability. There was positive feedback from most of the attenders regarding the Workshop with nearly all respondents recommending another Workshop in three or fewer years. There was general recognition that thin film thermal conductivity measurements are important for predicting the resistance of optical coating

  7. In situ studies of strain dependent transport properties of conducting polymers on elastomeric substrates

    Science.gov (United States)

    Vijay, Venugopalan; Rao, Arun D.; Narayan, K. S.

    2011-04-01

    We report the changes in the surface electrical resistance, R, of conducting polymer, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) films coated on appropriate flexible substrates in stretched conditions. These studies are important in the context of flexible organic electronic applications. In situ conductivity measurements on pristine PEDOT:PSS thin films on elastomeric substrates upon stretching reveal a minima in R as a function of strain, x, prior to the expected increase at higher strain levels. The studies emphasize (i) role of substrates, (ii) stress-induced anisotropic features, and temperature dependence of R (iii) in comparison of R(x) in polymer films to that of conventional metal films. The stress induced changes is modeled in terms of effective medium approximation.

  8. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  9. Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition.

    Science.gov (United States)

    Ruiyi, Li; Qianfang, Xia; Zaijun, Li; Xiulan, Sun; Junkang, Liu

    2013-06-15

    The study developed an electrochemical immunosensor for ultrasensitive detection of microcystin-LR in water. Graphene oxide and chloroauric acid were alternately electrodeposited on the surface of glassy carbon electrode for 20 cycles to fabricate graphene-gold nanocomposite. The composite was characterized and its apparent heterogeneous electron transfer rate constant (37.28±0.16 cm s (-1)) was estimated by Laviron's model. To immobilize microcystin-LR antibody and improve the electrical conductivity, 2,5-di-(2-thienyl)-1-pyrrole-1-(p-benzoic acid) and chloroauric acid were electrodeposited on the modified electrode in sequence. The ionic liquid was then dropped on the electrode surface and finally microcystin-LR antibody was covalently connected to the conducting polymer film. Experiment showed the electrochemical technique offers control over reaction parameters and excellent repeatability. The graphene-gold nanocomposite and gold nanoparticles enhance electron transfer of Fe(CN)6(3-/4-) to the electrode. The ionic liquid, 1-isobutyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide, improves stability of the antibody. The sensor displays good repeatability (RSD=1.2%), sensitive electrochemical response to microcystin-LR in the range of 1.0×10(-16)-8.0×10(-15)M and detection limit of 3.7×10(-17)M (S/N=3). The peak current change of the sensor after and before incubation with 2.0×10(-15)M of microcystin-LR can retain 95% over a 20-weeks storage period. Proposed method presents remarkable improvement of sensitivity, repeatability and stability when compared to present microcystin-LR sensors. It has been successfully applied to the microcystin-LR determination in water samples with a spiked recovery in the range of 96.3-105.8%.

  10. Zinc-Based Semiconductors/Polymer Thin Films Junction for Photovoltaic Application

    OpenAIRE

    Souad Al-bat’hi; K. A. Buhari; Latiff, M. I.

    2012-01-01

    Thin films of ZnO and ZnTe semiconductors were deposited on ITO conducting glass substrates by sputtering and electrodeposition techniques, respectively. On the other hand, thin films of ion conducting solid polymer electrolyte were prepared by solution cast technique. The polymer is a blend of 50 wt% polyethylene oxide and 50 wt% chitosan. To provide redox couple (I−/I3−), the polymer was complexed with ammonium iodide NH4I with addition of few crystals of iodine I2. Ammonium iodide NH4I was...

  11. Zinc-Based Semiconductors/Polymer Thin Films Junction for Photovoltaic Application

    OpenAIRE

    Souad Al-bat’hi; K. A. Buhari; M. I. Latiff

    2012-01-01

    Thin films of ZnO and ZnTe semiconductors were deposited on ITO conducting glass substrates by sputtering and electrodeposition techniques, respectively. On the other hand, thin films of ion conducting solid polymer electrolyte were prepared by solution cast technique. The polymer is a blend of 50 wt% polyethylene oxide and 50 wt% chitosan. To provide redox couple (I−/I3−), the polymer was complexed with ammonium iodide NH4I with addition of few crystals of iodine I2. Ammonium iodide NH4I was...

  12. Effect of swift heavy ion irradiation on dielectrics properties of polymer composite films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N.L. [Physics Department, M.S. University of Baroda, Vadodara 390002 (India)]. E-mail: singhnl_msu@yahoo.com; Qureshi, Anjum [Physics Department, M.S. University of Baroda, Vadodara 390002 (India)]. E-mail: anjumqur@gmail.com; Singh, F. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2007-02-25

    Ferric oxalate was used as organometallics fillers in polyvinyl chloride (PVC) to form polymer matrix composite films at different concentration of filler. These films were irradiated with 80 MeV O{sup 6+} ions at the fluences of 1 x 10{sup 11} and 1 x 10{sup 12} ions/cm{sup 2}. The radiation induced modifications in dielectric properties, microhardness, surface morphology and surface roughness of polymer composite films have been investigated at different concentration (i.e. 5%, 10% and 15%) of filler. It was observed that hardness and electrical conductivity of the films increase with the concentration of the dispersed ferric oxalate and also with the fluence. From the analysis of frequency, f, dependence of dielectric constant, {epsilon}, it has been found that the dielectric response in both pristine and irradiated samples obey the Universal law given by {epsilon} {proportional_to} f {sup n-1}. The dielectric constant/loss is observed to change significantly due to the irradiation. This suggests that ion beam irradiation promotes (i) the metal to polymer bonding and (ii) convert the polymeric structure into hydrogen depleted carbon network. Thus irradiation makes the polymer harder and more conductive. Atomic force microscopy (AFM) shows that average roughness (R {sub a}) of the irradiated films is lower than that of unirradiated films. Surface morphology of irradiated polymer composite films is observed to change. Scanning electron microscopy (SEM) results show that partial agglomeration of fillers in the polymer matrix.

  13. Electrically Conductive Metal Nanowire Polymer Nanocomposites

    Science.gov (United States)

    Luo, Xiaoxiong

    This thesis investigates electrically conductive polymer nanocomposites formulated with metal nanowires for electrostatic discharge and electromagnetic interference shielding. Copper nanowires (CuNWs) of an average length of 1.98 mum and diameter of 25 +/- 4 nm were synthesized. The oxidation reaction of the CuNWs in air can be divided into two stages at weight of 111.2% on TGA curves. The isoconversional activation energies determined by Starink method were used to fit the different master plots. Johnson-Mehl-Avrami (JMA) equation gave the best fit. The surface atoms of the CuNWs are the sites for the random nucleation and the crystallite strain in the CuNWs is the driving force for the growth of nuclei mechanism during the oxidation process. To improve the anti-oxidation properties of the CuNWs, silver was coated onto the surface of the CuNWs in Ag-amine solution. The prepared silver coated CuNWs (AgCuNWs) with silver content of 66.52 wt. %, diameter of 28--33 nm exhibited improved anti-oxidation behavior. The electrical resistivity of the AgCuNW/low density polyethylene (LDPE) nanocomposites is lower than that of the CuNW/LDPE nanocomposites with the same volume percentage of fillers. The nanocomposites formulated with CuNWs and polyethylenes (PEs) were compared to study the different interaction between the CuNWs and the different types of PE matrices. The electrical conductivity of the different PE matrices filled with the same concentrations of CuNWs correlated well with the level of the CuNW dispersion. The intermolecular force and entanglement resulting from the different macromolecular structures such as molecular weight and branching played an important role in the dispersion, electrical properties and rheological behaviour of the CuNW/PE nanocomposites. Ferromagnetic polycrystalline nickel nanowires (NiNWs) were synthesized with uniform diameter of ca. 38 nm and an average length of 2.68 mum. The NiNW linear low density polyethylene (LLDPE

  14. Anisotropic terahertz complex conductivities in oriented polythiophene films

    Science.gov (United States)

    Unuma, Takeya; Umemoto, Atsuhiro; Kishida, Hideo

    2013-11-01

    We investigate polarization-resolved terahertz (THz) transmission through a doped polythiophene film consisting of partially oriented polymer chains. The THz complex conductivities are found to be significantly larger for polarization parallel to the principal direction of orientation than for polarization perpendicular to it, but involve no change in spectral shape with polarization. This indicates that charge transport occurs mainly along polythiophene chains with their in-plane angle distribution, ruling out a possible interchain contribution, whose spectral shape should be sensitive to polarization.

  15. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    OpenAIRE

    Yubao Sun; Gai Li; Yuanchu Lai; Danli Zeng; Hansong Cheng

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp 3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batterie...

  16. Thermal Conductivity of Carbon Nanotube Composite Films

    Science.gov (United States)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  17. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  18. Reactive conducting polymers as actuating sensors and tactile muscles.

    Science.gov (United States)

    Otero, T F

    2008-09-01

    Films of conducting polymers when used as electrodes in an electrolytic solution oxidize and reduce under the flow of anodic and cathodic currents, respectively. The electrochemical reactions induce conformational movements of the chains, generation or destruction of free volume and interchange of ions and solvent with the electrolyte giving a gel that reacts, swells or shrinks. Electric pulses acting on reactive gels constituted by polymers, solvent and ions are the closest artificial materials to those that constitute actuating biological organs. The electrochemical reaction under the flow of a constant current promotes a progressive change of color, volume, porosity, stored charge and storage or release of ions. The reaction is kinetically controlled by the conformational movements or by the diffusion of counterions through the gel; it works under electrochemical equilibrium and defines, at any intermediate oxidation state, equilibrium potentials. Any variable (mechanical, chemical, optical, magnetic, etc) acting on the equilibrium will induce a change in the working potential of any device, driven by a constant current, based on this reaction; actuating-sensing devices based on the electrochemical properties are expected. Artificial muscles able to sense pushed weights, electrolyte concentration or ambient temperature during actuation are described. The activation energy of the reaction includes structural information and allows the obtention of the conformational energy, the heart of both actuating and sensing properties.

  19. Inkjet printed organic electrochemical transistors with highly conducting polymer electrolytes

    Science.gov (United States)

    Afonso, Mónica; Morgado, Jorge; Alcácer, Luís

    2016-10-01

    Organic Electrochemical Transistors (OECTs) were fabricated with two kinds of highly conducting polymer electrolytes, one with cations of small dimensions (Li+) and the other with cations of large dimensions (1-ethyl-3-methylimidazolium, EMI+). All OECTs exhibit transconductance values in the millisiemens range. Those with the larger EMI+ cations reach higher transconductance values and the saturated region of their I(V) characteristics extends to drain negative voltages of the order of -2 V without breakdown. These OECTs aim at potential applications for which it is relevant to use a solid polymer electrolyte instead of an aqueous electrolyte, namely, for integration in complex devices or in sensors and transducers where the electrolyte film may act as a membrane to prevent direct contact of the active material (PEDOT:PSS) with the biological media. The choice of electrolytes with cations of disparate sizes aims at assessing the nature (Faradaic or capacitive) of the processes occurring at the electrolyte/channel interface. The results obtained are consistent with a Faradaic-based operation mechanism.

  20. Pyrrole-Based Conductive Polymers For Capacitors

    Science.gov (United States)

    Nagasubramanian, Ganesan; Di Stefano, Salvador

    1994-01-01

    Polypyrrole films containing various dopant anions exhibit superior capacitance characteristics. Used with nonaqueous electrolytes. Candidate for use in advanced electrochemical double-layer capacitors capable of storing electrical energy at high densities. Capacitors made of these films used in automobiles and pulsed power supplies.

  1. Direct measurement of the microscale conductivity of conjugated polymer monolayers

    DEFF Research Database (Denmark)

    Bøggild, Peter; Grey, Francois; Hassenkam, T.;

    2000-01-01

    The in-plane conductivity of conjugated polymer monolayers is mapped here for the first time on the microscale using a novel scanning micro four-point probe (see Figure). The probe allows the source, drain, and voltage electrodes to be positioned within the same domain and the mapping results...... demonstrate how microscopic ordering in the polymer domains controls the conductivity....

  2. Conjugate polymers and electronic conductive polymers; Polymeres conjugues et polymeres conducteurs electroniques

    Energy Technology Data Exchange (ETDEWEB)

    Attias, A.J. [Universite Pierre et Marie Curie, Lab. de Chimie Macromoleculaire, UMR 7610 - CNRS, 75 - Paris (France)

    2002-05-01

    In some certain conditions a plastic material can become conductive (synthetic metal). To become conductive, a polymer must be conjugate (alternance of simple and multiple bonds) and doped (electron removal or addition). This article presents the recent advances and trends of the research on conductive polymers. The role of {pi} electrons in the conjugate systems is recalled in a first part. The description of energy states of conjugate polymers in terms of bands structure allow to consider them as organic semiconductors. Thus, it is possible to generate charged species by doping, charge injection or photo-excitation. These charge carriers, the conduction mechanisms and the related applications are presented. The chemistry and synthesis of these polymers are presented in a second part: 1 - evolution of research; 2 - physics of conductive polymers (role of {pi} electrons in conjugate polymers, {pi}-electrons conjugate compounds, influence of conjugation length and notion of bands structure, charges-doping generation, conductive polymers, chemical doping and electrical conduction, charge injection at the conjugate semiconductor metal-polymer interface: electro-luminescent polymers, charge creation by photo-excitation: polymers for photovoltaic cells); 3 - chemistry of conductive polymers (role of synthesis, monomers choice, other trends). (J.S.)

  3. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O-H str...

  4. Nanostructured conducting polymer hydrogels for energy storage applications.

    Science.gov (United States)

    Shi, Ye; Peng, Lele; Yu, Guihua

    2015-08-14

    Conducting polymer hydrogels are emerging as a promising class of polymeric materials for various technological applications, especially for energy storage devices due to their unique combination of advantageous features of conventional polymers and organic conductors. To overcome the drawbacks of conventional synthesis, new synthetic routes in which acid molecules are adopted as both crosslinkers and dopants have been developed for conducting polymer hydrogels with unique 3D hierarchical porous nanostructures, resulting in high electrical conductivity, large surface area, structural tunability and hierarchical porosity for rapid mass/charge transport. The newly developed conducting polymer hydrogels exhibit high performance when applied as active electrode materials for electrochemical capacitors or as functional binder materials for high-energy lithium-ion batteries. This feature article summarizes the synthesis of conducting polymer hydrogels, presents their applications in energy storage, and discusses further opportunities and challenges.

  5. Direct observation of localized conduction pathways in photocross-linkable polymer memory

    Science.gov (United States)

    Kwan, Wei Lek; Lei, Bao; Shao, Yue; Prikhodko, Sergey V.; Bodzin, Noah; Yang, Yang

    2009-06-01

    Resistive switching in photocross-linkable polymer memory devices was found to occur in localized areas of the device. In order to elucidate the reason behind the switching, we used focused ion-beam to prepare a cross-section of the device. It was found that after the device was switched to the high conductive state, in certain parts of the device, the electrodes were only about 5 nm apart. This was probably caused by a combination of high electric field and metal injection into the polymer film. Gold injection into the polymer film by locally enhanced electric field was confirmed by transmission electron microscope-energy dispersive x-ray analysis. This model was in agreement with both the temperature dependent and transient behavior of our device. We conclude that the non-uniformities at the nanoscale interface of the electrode dominated the device characteristics while the polymer played only a secondary role.

  6. Cyclic voltammetry of fast conducting electrocatalytic films.

    Science.gov (United States)

    Costentin, Cyrille; Savéant, Jean-Michel

    2015-07-15

    In the framework of contemporary energy challenges, cyclic voltammetry is a particularly useful tool for deciphering the kinetics of catalytic films. The case of fast conducting films is analyzed, whether conduction is of the ohmic type or proceeds through rapid electron hopping. The rate-limiting factors are then the diffusion of the substrate in solution and through the film as well as the catalytic reaction itself. The dimensionless combination of the characteristics of these factors allows reducing the number of actual parameters to a maximum of two. The kinetics of the system may then be fully analyzed with the help of a kinetic zone diagram. Observing the variations of the current-potential responses with operational parameters such as film thickness, the potential scan rate and substrate concentration allows a precise assessment of the interplay between these factors and of the values of the rate controlling factors. A series of thought experiments is described in order to render the kinetic analysis more palpable.

  7. Dynamic control of crystallinity in polymer film casting process

    Directory of Open Access Journals (Sweden)

    Thananchai Leephakpreeda

    2005-05-01

    Full Text Available This paper presents an approach for dynamic control of crystallinity in polymer film casting process. As known, the transients of crystallization dictate the microstructures of semi-crystalline polymer during solidification. In turn, the properties of finished products can be determined by adjustable variables in polymer film casting process such as temperature of chill roll. In this work, an experimental model of the solidification in film casting process is derived by a system identification technique. This model is used to design a digital feedback controller including a state estimator. The simulation results show the effectiveness of the proposed control technique on an extruded film.

  8. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    Science.gov (United States)

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  9. Measuring the gain dynamics in a conjugated polymer film

    CERN Document Server

    Van den Berg, S A; Hooft, G W; Eliel, E R

    2004-01-01

    We present a simple method for measuring the gain decay time in a conjugated polymer film by optically exciting the film with two mutually delayed ultrashort pump pulses. When the pump is set at such a power level that amplified spontaneous emission marginally develops along the polymer waveguide, the total output emitted from its edge decays exponentially as a function of the interpulse delay. The corresponding decay time represents the decay time of the gain of the polymer material.

  10. Conductive polymers: towards a smart biomaterial for tissue engineering.

    Science.gov (United States)

    Balint, Richard; Cassidy, Nigel J; Cartmell, Sarah H

    2014-06-01

    Developing stimulus-responsive biomaterials with easy-to-tailor properties is a highly desired goal of the tissue engineering community. A novel type of electroactive biomaterial, the conductive polymer, promises to become one such material. Conductive polymers are already used in fuel cells, computer displays and microsurgical tools, and are now finding applications in the field of biomaterials. These versatile polymers can be synthesised alone, as hydrogels, combined into composites or electrospun into microfibres. They can be created to be biocompatible and biodegradable. Their physical properties can easily be optimized for a specific application through binding biologically important molecules into the polymer using one of the many available methods for their functionalization. Their conductive nature allows cells or tissue cultured upon them to be stimulated, the polymers' own physical properties to be influenced post-synthesis and the drugs bound in them released, through the application of an electrical signal. It is thus little wonder that these polymers are becoming very important materials for biosensors, neural implants, drug delivery devices and tissue engineering scaffolds. Focusing mainly on polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene), we review conductive polymers from the perspective of tissue engineering. The basic properties of conductive polymers, their chemical and electrochemical synthesis, the phenomena underlying their conductivity and the ways to tailor their properties (functionalization, composites, etc.) are discussed.

  11. Conducting-polymer-based supercapacitor devices and electrodes

    Science.gov (United States)

    Snook, Graeme A.; Kao, Pon; Best, Adam S.

    Supercapacitor electrodes and devices that utilise conducting polymers are envisaged to bridge the gap between existing carbon-based supercapacitors and batteries to form units of intermediate specific energy. This review looks at the major conducting polymer materials, namely, polyaniline, polypyrrole, polythiophene and derivatives of polythiophene, as well as composites of these materials with carbon nanotubes and inorganic battery materials. Various treatments of the conducting polymer materials to improve their properties are considered and comparisons are made with other supercapacitor materials such as carbon and with inorganic battery materials. Conducting polymers are pseudo-capacitive materials, which means that the bulk of the material undergoes a fast redox reaction to provide the capacitive response and they exhibit superior specific energies to the carbon-based supercapacitors (double-layer capacitors). In general conducting polymers are more conductive than the inorganic battery materials and consequently have greater power capability. On the downside, conducting polymers swell and contract substantially on charge and discharge, respectively. Consequently, cycle-life is poor compared with carbon-based supercapacitors which generally only charge via adsorption and desorption of ions (giving typically a few thousand cycles for conducting polymers compared with >500 000 cycles for carbon-based devices).

  12. Electrically conducting polymer nanostructures confined in anodized aluminum oxide templates (AAO

    Directory of Open Access Journals (Sweden)

    I. Blaszczyk-Lezak

    2016-03-01

    Full Text Available Intrinsically or extrinsically conducting polymers are considered good candidates for replacement of metals in specific applications. In order to further expand their applications, it seems necessary to examine the influence of confinement effects on the electric properties of nanostructured conducting polymers in comparison to the bulk. The present study reports a novel way to fabricate and characterize high quality and controllable one-dimensional (1D polymer nanostructures with promising electrical properties, with the aid of two examples polyaniline (PANI and poly(vinylidene fluoride with multiwall carbon nanotubes (PVDF-MWCNT as representative of intrinsically and extrinsically conducting polymers, respectively. In this work, porous anodic aluminum oxide (AAO templates have been used both as a nanoreactor to synthesize 1D PANI nanostructures by polymerization of the ANI monomer and as a nanomold to prepare 1D PVDFMWCNT nanorods by melt infiltration of the precursor PVDF-MWCNT film. The obtained polymer nanostructures were morphologically and chemically characterized by SEM and Confocal Raman Spectroscopy, respectively, and the electrical properties determined by Broadband Dielectric Spectroscopy (BDS in a non-destructive way. SEM study allowed to establish the final nanostructure of PANI and PVDF-MWCNT and confirmed, in both cases, the well-aligned and uniform rodlike polymer nanostructures. Confocal Raman Microscopy has been performed to study the formation of the conducting emeraldine salt of PANI through all the length of AAO nanocavities. Finally, the electrical conductivity of both types of polymer nanostructures was easily evaluated by means of Dielectric Spectroscopy.

  13. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  14. Piezoelectric polymer and ceramic ultrafine fibers for piezocomposite films

    OpenAIRE

    Yördem, Sinan Onur; Yordem, Sinan Onur; Papila, Melih; Menceloğlu, Yusuf Z.; Menceloglu, Yusuf Z.; Öğüt, Erdem; Ogut, Erdem; Gülleroğlu, Mert; Gulleroglu, Mert

    2006-01-01

    This paper describes the process development and characterization of Poly(vinylidene fluoride) (PVDF) films and fiber mats and Zinc Oxide (ZnO) fibers as ingredients of a future piezo-composite film. The polymer system PVDF is electroactive and processed here by solution casting and annealing to form active films. Electrospinning of PVDF and Poly(vinyl alcohol)-Zincacetate precursor solutions were also under investigation to produce randomly oriented polymer and ceramic fiber mats, respective...

  15. Switching of the electrical conductivity of plasticized PVC films under uniaxial pressure

    Science.gov (United States)

    Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtob, V. I.

    2011-11-01

    The jumplike switching of the electrical conductivity in wide-band-gap polymer (antistatic plasticized polyvinylchloride) films under uniaxial pressure is studied. In various plasticized PVC materials, the uniaxial pressure inducing a conductivity jump by four orders of magnitude or higher changes from several to several hundreds of bars, and this effect is retained at a film thickness of several hundred microns, which is two orders of magnitude larger than the critical film thicknesses known for other wide-band-gap polymers. In addition to the earlier interpretation of the conductivity anomalies in plasticized PVC, we proposed a phenomenological electron-molecular dynamic nanotrap model, in which local charge transfer is provided by mobile molecule segments in a plasticized polymer.

  16. Structural morphology of amorphous conducting carbon film

    Indian Academy of Sciences (India)

    P N Vishwakarma; V Prasad; S V Subramanyam; V Ganesan

    2005-10-01

    Amorphous conducting carbon films deposited over quartz substrates were analysed using X-ray diffraction and AFM technique. X-ray diffraction data reveal disorder and roughness in the plane of graphene sheet as compared to that of graphite. This roughness increases with decrease in preparation temperature. The AFM data shows surface roughness of carbon films depending on preparation temperatures. The surface roughness increases with decrease in preparation temperature. Also some nucleating islands were seen on the samples prepared at 900°C, which are not present on the films prepared at 700°C. Detailed analysis of these islands reveals distorted graphitic lattice arrangement. So we believe these islands to be nucleating graphitic. Power spectrum density (PSD) analysis of the carbon surface indicates a transition from the nonlinear growth mode to linear surface-diffusion dominated growth mode resulting in a relatively smoother surface as one moves from low preparation temperature to high preparation temperature. The amorphous carbon films deposited over a rough quartz substrate reveal nucleating diamond like structures. The density of these nucleating diamond like structures was found to be independent of substrate temperature (700–900°C).

  17. UV Laser Ablation of Electronically Conductive Polymers

    Science.gov (United States)

    1992-06-16

    deionized water. The polymerization solution for polyaniline was prepared by mixing equal volumes of a solution that was 0.25 M in ammonium persulfate with a...rum2,0 vvcsL) TbeUV.layer ablation of thin polypyrrole and polyaniline films coated on an insulating substrate is described. UV laser ablation is used to...11liiii929. 6 1 2:- A ABSTRACT The UV laser ablation of thin polypyrrole and polyaniline films coated on an insulating substrate is described. UV laser

  18. Recent developments in polyurethane-based conducting polymer composites

    OpenAIRE

    Njuguna, James A. K.; Pielichowski, Krzysztof

    2004-01-01

    Polyurethane-based conducting composites with polyaniline, polythiophene or polypyrrole are in the class of modern macromolecular materials that combine the toughness and elasticity of polyurethane matrix with conductivity of intrinsically conducting polymers. Since the methods of preparation strongly influence the structure and properties of resulting composite/blend, this works aim at systematic description of polyurethane based conducting composites. This review has been ...

  19. Polyaniline Conducting Electroactive Polymers Thermal and Environmental Stability Studies

    Directory of Open Access Journals (Sweden)

    Reza Ansari

    2006-01-01

    Full Text Available In the current studies, polyaniline (PANi was prepared both chemical and electrochemically in the presence of different bronsted acids from aqueous solutions. The effect of thermal treatment on electrical conductivity, and thermal stability of the PANi conducting polymers were investigated using 4-point probe and TGA techniques respectively. It was found that polymer prepared by CV method is more thermally stable than those prepared by the other electrochemical techniques. In this paper we have also reviewed some fundamental information about synthesis, general properties, diverse applications, thermal and environmental stability of polyaniline conducting polymers.

  20. Conducting Polymer Actuators: Prospects and Limitations

    DEFF Research Database (Denmark)

    Skaarup, Steen

    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (1......-5 V), . Taking status after about 15 years of research efforts, most of these predictions have come true, the main exception being the much lower speeds actually realized in actuators....

  1. Conducting Polymer Actuators: Prospects and Limitations

    DEFF Research Database (Denmark)

    Skaarup, Steen

    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (......-5 V), . Taking status after about 15 years of research efforts, most of these predictions have come true, the main exception being the much lower speeds actually realized in actuators....

  2. Phase Equilibria in Thin Polymer Films

    Science.gov (United States)

    Müller, M.; Binder, K.; Albano, E. V.

    Within self-consistent field theory and Monte Carlo simulations the phase behavior of a symmetrical binary AB polymer blend confined into a thin film is studied. The film surfaces interact with the monomers via short ranged potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to interface localization/delocalization transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter case the phase diagram exhibits two critical points which correspond to the prewetting critical points of the semi-infinite system. Only below a triple point there is a single two-phase coexistence region. The crossover between these qualitatively different limiting behaviors occurs gradually, however, the critical temperature and the critical composition exhibit a non-monotonic dependence on the surface field. The dependence of the phase behavior for antisymmetric boundaries is studied as a function of the film thickness and the strength of the surface interactions. Upon reducing the film thickness or decreasing the strength of the surface interactions we can change the order of the interface localization/delocalization transition from first to second. The role of fluctuations is explored via Monte Carlo simulations of a coarse grained lattice model. Close to the (prewetting) critical points we observe 2D Ising critical behavior. Also, there is a rich crossover behavior between Ising critical, tricritical and mean field behavior. At lower temperatures capillary waves of the AB interface lead to a pronounced dependence of the effective interface potential on the lateral system size.

  3. Making Conductive Polymers By Arc Tracking

    Science.gov (United States)

    Daech, Alfred F.

    1992-01-01

    Experimental technique for fabrication of electrically conductive polymeric filaments based on arc tracking, in which electrical arc creates conductive carbon track in material that initially was insulator. Electrically conductive polymeric structures made by arc tracking aligned along wire on which formed. Alignment particularly suited to high conductivity and desirable in materials intended for testing as candidate superconductors.

  4. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers.

    Science.gov (United States)

    Tang, Changyu; Hackenberg, Ken; Fu, Qiang; Ajayan, Pulickel M; Ardebili, Haleh

    2012-03-14

    There is a growing shift from liquid electrolytes toward solid polymer electrolytes, in energy storage devices, due to the many advantages of the latter such as enhanced safety, flexibility, and manufacturability. The main issue with polymer electrolytes is their lower ionic conductivity compared to that of liquid electrolytes. Nanoscale fillers such as silica and alumina nanoparticles are known to enhance the ionic conductivity of polymer electrolytes. Although carbon nanotubes have been used as fillers for polymers in various applications, they have not yet been used in polymer electrolytes as they are conductive and can pose the risk of electrical shorting. In this study, we show that nanotubes can be packaged within insulating clay layers to form effective 3D nanofillers. We show that such hybrid nanofillers increase the lithium ion conductivity of PEO electrolyte by almost 2 orders of magnitude. Furthermore, significant improvement in mechanical properties were observed where only 5 wt % addition of the filler led to 160% increase in the tensile strength of the polymer. This new approach of embedding conducting-insulating hybrid nanofillers could lead to the development of a new generation of polymer nanocomposite electrolytes with high ion conductivity and improved mechanical properties.

  5. Heat transport in polymer thin films for micro/nano-manufacturing

    Science.gov (United States)

    Hung, Ming-Tsung

    The rapid growth in micro/nanotechnology has opened a great opportunity for polymer thin films and polymer nanocomposites. Thermal management or thermal effects in those applications need to be carefully examined. For example, the local heating in electron-beam lithography, emersion lithography, and scanning near field optical lithography may cause the degradation of photoresists and reduce the resolution. The development of many organic electronics, polymer micro-electro-mechanical-systems (MEMS) devices, and polymer nanocomposites may require the knowledge of heat transport in micro/nano-sized polymers. Thermolithography, a novel lithography, uses controlled localized heating to transfer patterns and requires the thermal conductivity data to control. It is of considerable scientific and technological interests for study heat transport in polymer thin films. Unlike bulk polymers that can be measured using commercially available instruments, polymer thin films are difficult to measure. In this manuscript, we develop the measurement techniques suitable for measuring thermal conductivity of polymer thin films and polymer nanocomposites. Using a microfabricated membrane-based device, we study the heat conduction in photoresists at difference process stages. This data is used in our thermolithography study, where we use microheater to study the kinetic of crosslinking reaction of photoresist. The feasibility of thermolithography and potential three dimensional micro/nano-fabrication is presented. The uniqueness of thermolithography is also demonstrated by patterning amorphous fluoropolymers. A modified hot-wire technique is used to measure the thermal conductivity of graphite nanoplatelet (GNP) reinforced nanocomposites, one of the promising candidates for multifunctional materials. Thermal interface resistance in GNP nanocomposites is investigated, which shows a strong effect on energy transport in the nanocomposites and can be diminished through surface treatment.

  6. Transparent and conductive polymer layers by gas plasma techniques

    NARCIS (Netherlands)

    Groenewoud, Lucas Marinus Hendrikus

    2000-01-01

    Polymers are widely used in a great number of applications because of their general properties such as low density, low cost, and processability. If these properties could be combined with electrical conductivity, this would open up the way to desirable applications such as flexible LCD’s and polyme

  7. Properties of conductive thick-film inks

    Science.gov (United States)

    Holtze, R. F.

    1972-01-01

    Ten different conductive inks used in the fabrication of thick-film circuits were evaluated for their physical and handling properties. Viscosity, solid contents, and spectrographic analysis of the unfired inks were determined. Inks were screened on ceramic substrates and fired for varying times at specified temperatures. Selected substrates were given additional firings to simulate the heat exposure received if thick-film resistors were to be added to the same substrate. Data are presented covering the (1) printing characteristics, (2) solderability using Sn-63 and also a 4 percent silver solder, (3) leach resistance, (4) solder adhesion, and (5) wire bonding properties. Results obtained using different firing schedules were compared. A comparison was made between the various inks showing general results obtained for each ink. The changes in firing time or the application of a simulated resistor firing had little effect on the properties of most inks.

  8. Thermochemical study of amino acid imprinted polymer films.

    Science.gov (United States)

    Chai, Ziyi; BelBruno, Joseph J

    2015-11-01

    Molecularly imprinted polymers provide an alternative to traditional methods of amino acid analysis. The imprinted polymers are more robust and significantly less expensive than, for example, ELISA analysis. Amino acid imprinted nylon-6 thin films were studied by differential scanning calorimetry and scanning electron microscopy. Endothermic peaks were observed for imprinted films at temperatures higher than that for pure nylon, indicating the formation of a more-ordered, hydrogen bonded polymer. Removal of the amino acid from the imprinted film resulted in reversion to the peak observed for pure nylon-6. Additives, β-cyclodextrin and multiwalled carbon nanotubes, were added to the imprinted polymer solutions as a means to increase the porosity of the films. These studies resulted in alternative morphologies and calorimetric results that provide additional functionalities and applications for imprinted polymers.

  9. IONIC CONDUCTIVITY AND ELECTRICAL PROPERTIES OF CARBOXYMETHYL CELLULOSE - NH4Cl SOLID POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    N. H. AHMAD

    2016-06-01

    Full Text Available In this present work, carboxymethyl cellulose (CMC – ammonium chloride (NH4Cl solid polymer electrolyte (SPE films were prepared by solution casting method. The ionic conductivity and electrical properties of SPE films were investigated using Electrical Impedance Spectroscopy. SPE film containing 16 wt. % NH4Cl exhibited the highest ionic conductivity of 1.43 x 10-3 S/cm at ambient temperature, 303K. The temperature dependence SPE films showed an Arrhenius-type relation where the regression values obtained from the log conductivity versus reciprocal temperature is close to unity (R2≈1. The electrical properties have been measured as a function of frequency of Ԑr,Ԑi, Mr, Mi shown a non-Debye type behavior

  10. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  11. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  12. Ionic motion in PEDOT and PPy conducting polymer bilayers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Skaarup, Steen

    2006-01-01

    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry...

  13. Ionic motion in PEDOT and PPy conducting polymer bilayers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Skaarup, Steen

    2006-01-01

    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry...

  14. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    Directory of Open Access Journals (Sweden)

    Hyeonseok Yoon

    2013-08-01

    Full Text Available Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement.

  15. Molecular dynamics simulation of the viscocapillary leveling of polymer films

    CERN Document Server

    Tanis, Ioannis; Salez, Thomas; Raphaël, Elie; Maggs, Anthony C; Baschnagel, Jörg

    2016-01-01

    Surface tension-driven flow techniques have recently emerged as an efficient means of shedding light into the rheology of thin polymer films. Motivated by experimental and theoretical approaches in films bearing a varying surface topography, we present results on the viscocapillary relaxation of a square pattern at the free surface of a polymer film, using molecular dynamics simulations of a coarse-grained polymer model. Height profiles are monitored as a function of time after heating the system above its glass-transition temperature. The associated relaxation rates are in agreement with the low-Reynolds-number hydrodynamic model, thus confirming the utility of the simulation method.

  16. Conducting Polymers Functionalized with Phthalocyanine as Nitrogen Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    S. D. Deshpande

    2002-05-01

    Full Text Available The conducting polymers such as polyaniline, polypyrrole and polythiophene were functionalized with copper phthalocyanine using chemical oxidation method. The obtained polymers viz. PANI-CuPc, PPy-CuPc and PT-CuPc were studied as chemical sensors by their response characteristics after exposure to various chemical vapors such as methanol, ammonia and nitrogen dioxide. The results obtained showed that these polymers have moderate sensitivity towards the methanol as well as ammonia vapors whereas they show tremendous sensitivity towards nitrogen dioxide vapors. The sensitivity factor of as high as 50,000 was obtained for PT-CuPc polymers in nitrogen dioxide. In comparison to this, the sensitivity factors of about 100 and 40 were obtained, when these polymers were exposed to ammonia and methanol vapors. The very high selectivity towards the nitrogen dioxide was explained on the basis of charge transfer complex formed between, the phthalocyanine donor and nitrogen dioxide acceptor molecules. On the other hand, ammonia becomes a competing electron donor in CuPc containing conducting polymers. The very low response towards the methanol may be explained on the basis very little charge transfer / interaction between CuPc containing polymers and methanol. Thus, CuPc incorporated conducting polymers have much higher selectivity than their original homopolymer.

  17. A review study of (bio)sensor systems based on conducting polymers.

    Science.gov (United States)

    Ates, Murat

    2013-05-01

    This review article concentrates on the electrochemical biosensor systems with conducting polymers. The area of electro-active polymers confined to different electrode surfaces has attracted great attention. Polymer modified carbon substrate electrodes can be designed through polymer screening to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the electrode response to detect a variety of analytes. The electro-active films have been used to entrap different enzymes and/or proteins at the electrode surface, but without obvious loss of their bioactivity for the development of biosensors. Electropolymerization is a well-known technique used to immobilize biomaterials to the modified electrode surface. Polymers might be covalently bonding to enzymes or proteins; therefore, thickness, permeation and charge transport characteristics of the polymeric films can be easily and precisely controlled by modulating the electrochemical parameters for various electrochemical techniques, such as chronoamperometry, chronopotentiometry, cyclic voltammetry, and differential pulse voltammetry. This review article is divided into three main parts as given in the table of contents related to the immobilization process of some important conducting polymers, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol, poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives. A total of 216 references are cited in this review article. The literature reviewed covers a 7 year period beginning from 2005.

  18. Photopatterning of heterostructured polymer Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Li Tiesheng [Department of Chemistry, Key Lab of Biological Chemistry and Organic Chemistry of Henan Province, Zhengzhou University, Daxue road 75, Zhengzhou 450052 (China); Key Lab of Advanced Information Nano-materials of Zhengzhou, Daxue road 75, Zhengzhou 450052 (China)], E-mail: lts34@zzu.edu.cn; Mitsuishi, Masaya [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aobaku, 2-1-1, Katahira, Sendai (Japan); Miyashita, Tokuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aobaku, 2-1-1, Katahira, Sendai (Japan)], E-mail: miya@tagen.tohoku.ac.jp

    2008-02-29

    Heterostructured polymer Langmuir-Blodgett (LB) film prepared by using poly(N-dodecylacrylamide-co-t-butyl 4-vinylphenyl carbonate) (p(DDA-tBVPC53)) and poly(N-neopentyl methacrylamide-co-9-anthrylmethyl methacrylate) (p(nPMA-AMMA10)) polymer LB films which can act as photogenerator layers were investigated. Patterns with a resolution of 0.75 {mu}m were obtained on heterostructured polymer LB films composed of 4 layers of p(nPMA-AMMA10) LB film (top layers) and 40 layers of p(DDA-tBVPC53) LB film (under layers) on a silicon wafer by deep UV irradiation followed by development with 1% tetramethylammonium hydroxide aqueous solution. The sensitivity of the heterostructured polymer LB films was improved without loss of the resolution compared with p(DDA-tBVPC53) LB film. The etch resistance of the heterostructured polymer LB films was sufficiently good to allow patterning of a copper film suitable for photomask fabrication.

  19. Synthesis and analysis of Fe3+, Co2+ and Ni2+ : PEO + PVP blended polymer composite films for multifunctional polymer applications

    Indian Academy of Sciences (India)

    K Naveen Kumar; M Vasudeva Reddy; L Vijayalakshmi; Y C Ratnakaram

    2015-08-01

    Blended polymer films of polyethylene oxide + polyvinyl pyrrolidone (PEO + PVP) containing transition metal (TM) ions like Fe3+, Co2+ and Ni2+ have been synthesized by a solution casting method. For these films, structural, thermal, magnetic and optical properties have been studied. X-ray diffraction results reveal the semi-crystalline nature of the polymer films. Thermal stability of the host (undoped) polymer film has been investigated from its thermogravimetric–differential thermal analysis profiles. Raman spectral profiles indicate a complex formation trend owing to the addition of TM ions into the host matrix. Co2+, Fe3+ and Ni2+ ions doped polymer films have revealed ferromagnetism based on their vibrating sample magnetometre profiles. However, the host polymer film has exhibited a paramagnetic nature. Further, ionic conductivities have been calculated using an impedance analyser at different temperatures for all the samples. Among these films, a maximum ionic conductivity ( = 7.5 × 10−6 S cm−1) has been noticed from PEO + PVP : Ni2+ polymer film at 373 K. Emission analysis of Co2+ : PEO + PVP polymer film has exhibited a strong red emission under an UV source and from both PEO + PVP : Fe3+; PEO + PVP: Ni2+, green emissions have commonly been noticed under an UV source. Thus, based on these results, it could be suggested that these TM ions doped PEO + PVP polymer films are found to be potential multifunctional materials for magneto-electric, magneto-optic fields with encouraging electrical, dielectric and optical properties as well as displaying with ferromagnetic nature from the doped films.

  20. Simulation of bipolar charge transport in nanocomposite polymer films

    Science.gov (United States)

    Lean, Meng H.; Chu, Wei-Ping L.

    2015-03-01

    This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.

  1. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing

    Science.gov (United States)

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M.

    2015-10-01

    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m-1 range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering

  2. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing.

    Science.gov (United States)

    Naeem, Fahim; Prestayko, Rachel; Saem, Sokunthearath; Nowicki, Lauren; Imit, Mokhtar; Adronov, Alex; Moran-Mirabal, Jose M

    2015-10-02

    Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m(-1) range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering

  3. Modification of Fluoropolymer Surfaces with Electronically Conductive Polymers

    Science.gov (United States)

    1993-06-01

    CI0 4)3. Polyaniline was synthesized by mixing equal volumes of a solution that was 0.25 M in ammonium persulfate and a solution that was 0.5 M in...31 Conductive polymers, polypyrrole , lithography 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION...surface. Fortunately, conductive polymers such as polypyrrole adhere quite well to many substrates, including nylon, polycarbonate, cellulosics

  4. Enhanced Photoresponse of Conductive Polymer Nanowires Embedded with Au Nanoparticles.

    Science.gov (United States)

    Zhang, Junchang; Zhong, Liubiao; Sun, Yinghui; Li, Anran; Huang, Jing; Meng, Fanben; Chandran, Bevita K; Li, Shuzhou; Jiang, Lin; Chen, Xiaodong

    2016-04-20

    A conductive polymer nanowire embedded with a 1D Au nanoparticle chain with defined size, shape, and interparticle distance is fabricated which demonstrates enhanced photoresponse behavior. The precise and controllable positioning of 1D Au nanoparticle chain in the conductive polymer nanowire plays a critical role in modulating the photoresponse behavior by excitation light wavelength or power due to the coupled-plasmon effect of 1D Au nanoparticle chain.

  5. Highly conductive PEDOT:PSS on flexible substrate as ITO-free anode for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Mauro, A. De Girolamo; Ricciardi, R.; Montanino, M.; Morvillo, P.; Minarini, C. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, p.le E. Fermi 1, 80055 Portici (Italy)

    2014-05-15

    In this work, highly conductive anode based on PEDOT:PSS is proposed as substitute of Indio-Tin Oxide (ITO) in flexible solar cells. The anodic conductive polymer was spin coated on a 125 μm thick polyethylene naphthalate (PEN) substrate. The obtained film was characterized in terms of structure and physical- chemical proprieties. The obtained results are very promising and the conductive film will be investigated in future as electrode in a complete polymeric solar cell.

  6. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

    Science.gov (United States)

    Ankireddy, Krishnamraju; Menon, Akanksha K.; Iezzi, Brian; Yee, Shannon K.; Losego, Mark D.; Jur, Jesse S.

    2016-11-01

    Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon-nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver-nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (Δ T) of 113°C] due to their low electrical resistance. The voltage generated from the silver-nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

  7. Novel synthetic methods to produce functionalized conducting polymers. 1. Polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, C.; Salavagione, H.J.; Acevedo, D.F.; Garay, F.; Planes, G.A.; Miras, M.C. [Universidad Nacional de Rio Cuarto (Argentina). Dpto. de Quimica; Grumelli, D.E. [INQUIMAE, Buenos Aires (Argentina). Dpto. de Quimica Inorganica; Morales, G.M. [University of Chicago (United States). Dept. of Chemistry

    2004-09-15

    Recent results, part of an ongoing research programme aimed to develop synthetic methods which could be used to functionalise conducting polymers, are described. Among those methods are the copolymerization of aniline with substituted anilines and post-modification reactions of polyaniline, such as: electrophilic substitution, nucleophilic addition and coupling with diazonium salts. Some of those methods could be chemically or electrochemically controlled allowing a quantitative tailoring of the modification. The effect of the added functionalities on the electrochemical properties of the polymers is investigated using spectroscopic and electrochemical techniques. The extension of the synthetic methods to combinatorial modification of conductive polymers is also discussed. (author)

  8. Characterization of polymer thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Palla-Papavlu, A.; Dinca, V.; Ion, V.; Moldovan, A.; Mitu, B.; Luculescu, C.; Dinescu, M.

    2011-04-01

    The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate). The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. It was found that for laser fluences up to 1.5 J/cm 2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm 2 the polyepichlorohydrin films present deviations from the bulk polymer. Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm 2). The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material. The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries.

  9. The electrical conductivity of polycrystalline metallic films

    Science.gov (United States)

    Moraga, Luis; Arenas, Claudio; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2016-10-01

    We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes (MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering properties of grain boundaries are taken into account by means of another specularity parameter and a probability of coherent passage. The difference between the sum of these and one is the probability of diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin films on the probability of coherent passage and grain diameters is examined. In accordance with MS we find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked grains. However, when compared with recent resitivity-thickness data, it is shown that all three formalisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data of gold films measured by

  10. FTIR AND IONIC CONDUCTIVITY STUDIES ON BLEND POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    J. Senthil

    2011-08-01

    Full Text Available Investigations on structural and conductivity properties of solid polymer complexes have attracted a high degree of attention. The main applications of solid polymer electrolytes (SPEs are found in varioussecondary batteries and energy conversion units. In view of the abundant resources, low costs and relatively low reactivity of magnesium, solid-state batteries using magnesium metal are worthy of investigations. The polymer electrolytes were prepared using poly methyl methacrylate (PMMA, poly vinyl chloride (PVC and magnesium chloride (MgCl2 by solvent casting technique. The complex formation and ionic conductivity were characterized by Fourier Transform Infra Red spectroscopy (FTIR and impedance spectroscopy respectively.The FTIR studies provide the evidence of interaction of cation Mg2+ with the polymers. The maximum conductivity found for PMMA-MgCl2 is 0.57 x 10-7 Scm-1 at room temperature.

  11. Conducting Polymers and Their Applications in Diabetes Management

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2016-10-01

    Full Text Available Advances in conducting polymers (CPs have promoted the development of diabetic monitoring and treatment, which is of great significance in human healthcare and modern medicine. CPs are special polymers with physical and electrochemical features resembling metals, inorganic semiconductors and non-conducting polymers. To improve and extend their properties, the fabrication of CPs and CP composites has attracted intensive attention in recent decades. Some CPs are biocompatible and suitable for biomedical use. Thus, the intriguing properties of CPs make wearable, noninvasive, continuous diabetes managing devices and other potential applications in diabetes possible in the near future. To highlight the recent advances of CPs and their derived materials (especially in conducting polymer hydrogels, here we discuss their fabrication and characterization, review the current state-of-the-art research in diabetes management based on these materials and describe current challenges as well as future potential research directions.

  12. Molecular ordering and 2D conductivity in ultrathin poly(3-hexylthiophene)/gold nanoparticle composite films.

    Science.gov (United States)

    Ruiz, Virginia; Nicholson, Patrick G; Jollands, Stuart; Thomas, Pamela A; Macpherson, Julie V; Unwin, Patrick R

    2005-10-20

    This paper reports the first comparison of the structure and electrical conductivity properties of spin cast (SC) and Langmuir-Schaeffer (LS) films of regioregular poly(3-hexylthiophene) (P3HT). In addition, the effect of incorporating highly monodisperse Au nanoparticles (NPs), with a core diameter of approximately 5 nm, into SC and LS P3HT films is described. A detailed picture of molecular organization in the films has been obtained using ultraviolet-visible absorption spectroscopy, atomic force microscopy, field-emission scanning electron microscopy, X-ray diffraction, and X-ray reflectivity. Film morphology was correlated with pseudo-two-dimensional conductivity measured using scanning electrochemical microscopy, with P3HT in the semiconducting regime. It was found that SC films, which were slightly thicker than those formed with the LS technique, exhibited greater organization. This resulted in an order of magnitude higher lateral conductivity for the SC films. Inclusion of Au NPs (50 wt %) into both SC and LS films resulted in the formation of uniform and relatively flat (rms roughness approximately 1 nm) composite films. Surprisingly, the addition of NPs did not disrupt the characteristic crystal structure found for the native P3HT films. The effect of Au NPs on film lateral conductivity was found to be determined by the distribution of Au NPs within the polymer, which varied significantly between SC and LS films. Whereas Au NPs aggregated into hexagonally packed clusters in SC films, NPs in LS films were predominantly uniformly distributed between the lamella bilayer. It was found that, while the inclusion of Au NPs caused the lateral conductivity to decrease in SC films, in LS films, the lateral conductivity increased by a factor of 2.

  13. STRUCTURAL, THERMAL AND CONDUCTIVITY STUDIES OF PAN-LIBF4 POLYMER ELECTROLYTES

    Directory of Open Access Journals (Sweden)

    S. K. NIPPANI

    2016-11-01

    Full Text Available The polymer electrolytes with various compositions of Polyacrylonitrile/N-N Dimethylformamide (DMF/Lithiumtetrafluoroborate (LiBF4 are synthesized by solution casting technique. The free standing, clear and transparent 60-80 micron thick films are formed. The promising structural and complexation changes in polymer electrolytes have been explored by X-ray diffraction (XRD and Fourier transform infra-red (FTIR techniques. The thermal properties of all solid polymer electrolytes (SPE were studied by Thermo gravimetric Analyzer (TGA and Differential Thermal Analyzer (DTA. The electrical properties, i.e., ionic conductivity of solid polymer electrolytes has been measured as a function of temperature and composition. A Polymer membrane for 3 wt. % of salt has a conductivity of 3.06x10-4 mScm-1 at room temperature and 1.53x10-3 mScm-1 at 358K. The conductivity values increased with increase in temperature and offered an ionic conductivity of the order of 10-3 mScm-1 at temperatures 358K. Activation energy, enthalpy and entropy values are determined for all polymer complexes.

  14. The Study of the Molecular Structure of Various Forms of Conducting Polymers using FTIR and Raman Spectroscopies

    OpenAIRE

    Morávková, Zuzana

    2013-01-01

    In this Thesis, the structure of thin films formed by a conducting polymer, polyaniline, was studied using mainly infrared and Raman spectroscopies. That led to the study of aniline oligomers. The oligomers play a key role in the formation of thin films and nanostructures of polyaniline. Furthermore, the Thesis deals with the carbonization of various forms of polyaniline (granular polyaniline base, thin films of polyaniline salt, multi-wall carbon nanotubes coated with polyaniline salt or bas...

  15. Estimation of termostability of metal containing polymer films

    Directory of Open Access Journals (Sweden)

    Sh. Аmerkhanova

    2012-03-01

    Full Text Available The Derivatographic Analysis of metal containing polymer films based on polyvinyl alcohol was carried out, on these results the kinetic parameters of thermal destruction of the material was been calculated.

  16. Investigation on CuO Dispersed PVA Polymer Films

    Directory of Open Access Journals (Sweden)

    R. Divya

    2015-05-01

    Full Text Available Addition of inorganic nanoparticles to polymers allows the modification of physical properties of polymers as well as the implementation of new features in polymer matrix. In the present work, we have made an attempt to disperse CuO nanoparticles in the polyvinyl alcohol (PVA and to understand the change in structural, optical and electrical properties of the polymer film. CuO nanoparticles were added in four different concentrations, viz. 2.5, 5.0, 7.5 and 10 wt%. A total of 5 films were prepared (including the pure PVA film, for comparison.The prepared films were subjected to XRD, FESEM, UV-Vis spectral, PL spectral and electrical analyses. The results obtained are reported.

  17. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    Science.gov (United States)

    Choi, Hwa-Jeong; Song, Young-Min; Chung, Ildoo; Ryu, Kwang-Sun; Jo, Nam-Ju

    2009-02-01

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air.

  18. Soap opera : polymer-surfactant interactions on thin film surfaces /

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, B. H. (Byram H.); Johal, M. S. (Malkiat S.); Wang, H. L. (Hsing-Lin); Robinson, J. M. (Jeanne M.)

    2001-01-01

    Surfactants are macromolecules with unique properties. They commonly contain a polar head group with a nonpolar hydrocarbon chain. These properties allow surfactants to solubilize greases and other nonpolar molecules. One particular way that this is accomplished is through the formation of micelles. Micelles are formed at the critical micelle concentration (cmc), which varies depending upon the nature of the surfactant and also the media in which the surfactant resides. These micelles can take a variety of shapes, but are generally characterized by surrounding the grease with the nonpolar hydrocarbon chains, exposing only the polarized head groups to the media, usually water. This property of easy solubilization has made surfactants a very attractive industrial agent, They are used most conventionally as industrial cleaning agents and detergents. However, they also have lesser-known applications in conjunction with polymers and other macromolecular mixtures, often creating a system with novel properties, such as increased solubilization and smoother mixture consistency. A recently developed field has investigated the self-assembly of polymers and polyelectrolytes onto thin film surfaces. There are many reasons for studying this process, such as for second harmonic generation purposes and bioassays. In this study, the interaction between the anionic polyelectrolyte poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and two surfactants of opposite charge, Sodium Dodecyl Sulfate (SDS) and Dodecyl Trimethyl Ammonium Bromide (DTAB), in their assembly onto thin film surfaces was investigated. The kinetics of adsorbance onto the thin films was examined, followed by construction of 10-bilayer films using an alternating layer of the cationic polyelectrolyte poly(ethylenimine) (PEI) to provide the electrostatic means for the PAZO/surfactant combination to assemble onto the thin film. The kinetics of adsorption is being

  19. Light harvesting by dye linked conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Troensegaard Nielsen, K.

    2006-06-15

    The fact that the fossil fuel is finite and that the detrimental long-term effects of letting CO2 into our atmosphere exist, have created an enormous interest in developing new, cheap, renewable and less polluting energy resources. One of the most obvious abundant sources of energy in the solar system is the sun. Unfortunately the well developed silicon solar cells are very costly to produce. In an attempt to produce cheap and flexible solar cells, plastic solar cells have received a lot of attention in the last decades. There are still a lot of parameters to optimize if the plastic solar cell shall be able to compete with the silicon solar cells. One of the parameters is to ensure a high degree of charge carrier separation. Charge carrier separation can only happen at heterojunctions, which cover for example the interfaces between the polymers and the electrodes or the interface between an n-conductor and a p-conductor. The facts that the charge carrier separation only happens at the heterojunctions limits the thickness of the active layer in solar cells and thereby the effectiveness of the solar cells. In this project the charge carrier separation is attempted optimized by making plastic solar cells with a molecular heterojunction. The molecular heterojunction has been obtained by synthesizing a three domain super molecular assembly termed NPN. NPN consists of two poly[1-(2,5-dioctyltolanyl)ethynylene] chains (N-domains) coupled to the [10,20-bis(3,5-bistert-butylphenyl]-5,15-dibromoporphinato]zinc(II) (P-domain). It is shown that the N domains in NPN work as effective light harvesting antennas for the P domain and effectively transfer electrically generated excitons in the N domain to the P domain. Unfortunately the P domain does not separate the charge carriers but instead works as a charge carrier trap. This results in a performance of solar cells made of NPN that is much lower than the performance of solar cells made of pure poly[1-(2,5-dioctyltolanyl

  20. Engineering curvature in graphene ribbons using ultrathin polymer films.

    Science.gov (United States)

    Li, Chunyu; Koslowski, Marisol; Strachan, Alejandro

    2014-12-10

    We propose a method to induce curvature in graphene nanoribbons in a controlled manner using an ultrathin thermoset polymer in a bimaterial strip setup and test it via molecular dynamics (MD) simulations. Continuum mechanics shows that curvature develops to release the residual stress caused by the chemical and thermal shrinkage of the polymer during processing and that this curvature increases with decreasing film thickness; however, significant deformation is only achieved for ultrathin polymer films. Quite surprisingly, explicit MD simulations of the curing and annealing processes show that the predicted trend not just continues down to film thicknesses of 1-2 nm but that the curvature development is enhanced significantly in such ultrathin films due to surface tension effects. This combination of effects leads to very large curvatures of over 0.14 nm(-1) that can be tuned via film thickness. This provides a new avenue to engineer curvature and, thus, electromagnetic properties of graphene.

  1. In situ polarization of polymer films in microsensors

    Science.gov (United States)

    Kranz, M.; Allen, M. G.; Hudson, T.

    2012-04-01

    Electret and polymer piezoelectric films have been previously integrated into Micro Electro Mechanical System (MEMS) acoustic sensors and energy harvesters. Common techniques employed in MEMS polymer integration include corona discharge [1] and backlighted thyratron [2], followed by macro-scale assembly of the polymer into the micro device. In contrast, this paper reports a method for post-fabrication in-situ polarization of polymer films embedded within the MEMS device itself. The method utilizes microplasma discharges with self-aligned charging grids integrated within the device to charge fluoropolymer films in a fashion similar to the common corona discharge technique. This in-situ approach enables the integration of uncharged polymer films into MEMS and subsequent post-fabrication and post-packaging polarization, simultaneously enabling the formation of buried or encapsulated electrets as well as eliminating the need to restrict fabrication and packaging processes that might otherwise discharge pre-charged materials. Using the in situ approach, a microscale charging grid structure is fabricated and suspended a short distance above the polymer film. After fabrication of the charging grid, standard microfabrication steps are performed to build MEMS sensors. After completing the entire fabrication and packaging flow, the polarization process is performed. When energized by a high voltage, the sharp metal edges of the charging grid lead to high dielectric fields that ionize the air in the gap and force electric charge onto the polymer surface. This paper presents modeling and results for this in situ polarization process.

  2. Relating Film Structure/Microstructure on Device Function/Microproperties in Conjugated Polymers and Polymer/Small Molecule Blends

    Science.gov (United States)

    Cochran, Justin Enir

    Over the last twenty years conjugated organic materials, polymers and small molecules, have attracted broad interest due to their potential applications in the field of solution processed low cost electronics. Due to their semi/polycrystalline nature the spatial arrangement of crystallites and disordered regions in the film have a significant influence over charge transport properties. Structure-Function relationships are universal; consequently, the focus of my research thesis is to relate the film structure/microstructure to device performance and micro-properties, specifically in thin film transistors and bulk conductivity measurements. My initial research focus was on how modification of a semiconducting polymers backbone alters the packing structure and in turn impacts device performance. We then focused on how modification of TFT interface microstructures by altering between dielectric surfaces changes the orientaional correlation length in the semiconductors crystalline domains which in turn directly impacts the field effect mobility. The final two projects focused on doping conjugated polymers with small molecular acceptors. The purpose was to understand how bulk packing dominates conductivity in order to better understand what appears to be a universal transport behavior in these blends. These insights into the structural changes provide a platform under which to analyze the electrical measurements where significant changes in conductivity were observed at high acceptor concentrations but results showed dependence upon pre and post processing conditions. As expected, increases in film conductivity scaled with acceptor concentration but of special interest is how the conductivity showed temperature stability upon annealing, even increasing under certain conditions, near the polymer liquid crystal transition temperature and then decreasing below the as cast baseline at higher annealing temperatures. The electrical study combined with the structural analysis

  3. Assessment of conducting polymer applications in power equipment technology

    Energy Technology Data Exchange (ETDEWEB)

    Schoch, K.F. Jr.; Bennett, A.I.; Burghardt, R.R.; Cookson, A.H.; Kennedy, W.N.; Oommen, T.V.; Saunders, H.E.; Smith, J.D.B.; Voshall, R.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA)); Fort, E.M. (Westinghouse Electric Corp., Orlando, FL (USA)); Robbins, B. (Reynolds Metals Co., Richmond, VA (USA))

    1991-05-01

    This report describes for the first time the state-of-the-art in conducting polymer technology specifically relating to electric power apparatus for transmission, distribution and generation. Thirty-two new applications in power equipment are proposed and assessed. The areas of the proposed applications include solid dielectric cable, oil-filled cable, capacitors, transformers, rotating machines, bushings, surge supressors, vacuum interrupters, gas-insulated equipment, and miscellaneous applications. The best applications will result in improved reliability and efficiency, design innovations, and simpler manufacturing procedures by taking advantage of the particular characteristics of conducting polymers. These characteristics include good control of conductivity over a range of 10{sup {minus}8} to 10{sup 3} S/cm, compatibility with organic compounds, simple preparation and development of anisotropic conductivity by polymer orientation. The proposed applications were evaluated according to technical impact, probability of success, economic impact, and time frame for implementation. The state-of-the-art of conducting polymers is also reviewed and areas requiring further research for these applications are discussed. Because of substantial recent progress is developing more practical conducting polymer materials, now is an excellent time to pursue the additional research needed. 37 refs., 16 figs., 15 tabs.

  4. Water-Induced Blister Formation in a Thin Film Polymer

    NARCIS (Netherlands)

    Berkelaar, R.P.; Bampoulis, Pantelis; Dietrich, E.; Jansen, H.P.; Zhang, Xuehua; Kooij, Ernst S.; Lohse, Detlef; Zandvliet, Henricus J.W.

    2015-01-01

    A failure mechanism of thin film polymers immersed in water is presented: the formation of blisters. The growth of blisters is counterintuitive as the substrates were noncorroding and the polymer does not swell in water. We identify osmosis as the driving force behind the blister formation. The

  5. Water induced blister formation in a thin film polymer

    NARCIS (Netherlands)

    Berkelaar, R.P.; Bampoulis, Pantelis; Dietrich, E.; Jansen, H.P.; Zhang, Xuehua; Kooij, Ernst S.; Lohse, Detlef; Zandvliet, Henricus J.W.

    2015-01-01

    A failure mechanism of thin film polymers immersed in water is presented: the formation of blisters. The growth of blisters is counterintuitive as the substrates were noncorroding and the polymer does not swell in water. We identify osmosis as the driving force behind the blister formation. The

  6. Water-Induced Blister Formation in a Thin Film Polymer

    NARCIS (Netherlands)

    Berkelaar, R.P.; Bampoulis, P.; Dietrich, E.; Jansen, H.P.; Zhang, X.; Kooij, E.S.; Lohse, D.; Zandvliet, Harold J.W.

    2015-01-01

    A failure mechanism of thin film polymers immersed in water is presented: the formation of blisters. The growth of blisters is counterintuitive as the substrates were noncorroding and the polymer does not swell in water. We identify osmosis as the driving force behind the blister formation. The dyna

  7. Water induced blister formation in a thin film polymer

    NARCIS (Netherlands)

    Berkelaar, R.P.; Bampoulis, P.; Dietrich, E.; Jansen, H.P.; Zhang, Xuehua; Kooij, E.S.; Lohse, D.; Zandvliet, H.J.W.

    2015-01-01

    A failure mechanism of thin film polymers immersed in water is presented: the formation of blisters. The growth of blisters is counterintuitive as the substrates were noncorroding and the polymer does not swell in water. We identify osmosis as the driving force behind the blister formation. The dyna

  8. Investigation of conductivity switching upon action of monoaxial pressure on plasticized PVC films

    CERN Document Server

    Vlasov, D V; Krystob, V I; Vlasova, T V

    2010-01-01

    The effect of conductivity switching of wideband polymers -plasticized PVC films under the influence of mono axial pressure is experimentally investigated. For various plasticizers the value of monoaxial pressure, causing jumps of conductivity on four and more orders, changes from units to hundreds bars, and the effect remains at a thickness of films of an order of hundreds micron, that is on two orders more than critical thickness for others wideband polymers. In addition to the reasons stated earlier on the interpretation of anomalies of plastic compounds conductivity, the phenomenological electron-molecular model of dynamic traps is considered, in which local transfer of charges is carried out by mobile segments of the plasticized polymer molecules.

  9. Thin metal film-polymer composite for efficient optoacoustic generation (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Guo, L. Jay

    2016-03-01

    Photoacoustic (PA) conversion of metal film absorbers is known to be inefficient because of their low thermal expansion and high light reflectance, as compared to polymeric materials containing light absorbing fillers. Specifically, the PA signal for metal films is typically an order of magnitude lower than those for PDMS-based composites consisting of carbon materials such as carbon blacks, carbon nanotubes, and carbon fibers. However, the carbon-PDMS composites have several disadvantages, e.g., difficulty in controlling film thickness, aggregation of the carbon fillers, and poor patternablility. To overcome these issues and achieve comparable PA amplitudes, a polymer-metal film composite was developed consisting of a thin metal absorber and adjacent transparent polymer layers. The proposed structure shows efficient PA conversion. The measured PA amplitude of the metal film composite is an order of magnitude higher than that of metal-only samples, and comparable to those of the carbon-PDMS composites. The enhanced PA conversion is accomplished by using metal film of a few tens of nanometers, which greatly facilitates heat transfer from the metal film to the surrounding polymers. Moreover, integrating the metal film composite with a photonic cavity can compensate light absorption loss of the thinner metal film. Theoretical and experimental analysis is conducted for understanding the mechanism behind such improvement. This strategy could be implemented for spatial PA signal patterns, especially for deep tissue PA imaging of implants or image-guiding tools. Furthermore, this approach also provides a guideline for designing photoacoustic transmitters and contrast agents.

  10. Nanostructured conducting polymer based reagentless capacitive immunosensor.

    Science.gov (United States)

    Bandodkar, Amay Jairaj; Dhand, Chetna; Arya, Sunil K; Pandey, M K; Malhotra, Bansi D

    2010-02-01

    Nanostructured polyaniline (PANI) film electrophoretically fabricated onto indium-tin-oxide (ITO) coated glass plate has been utilized for development of an immunosensor based on capacitance change of a parallel plate capacitor (PPC) by covalently immobilizing anti-human IgG (Anti-HIgG) using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide chemistry. These fabricated PANI/ITO and Anti-HIgG/PANI/ITO plates have been characterized using scanning electron microscopy, cyclic voltammetry, differential pulse voltammetry and Fourier transform infra-red studies. The capacitance measurements indicate that dielectric medium of this biologically modified PPC (Anti-HIgG/PANI/ITO) is sensitive to HIgG in 5 - 5 x 10(5) ng mL(-1) range and has lower detection limit of 1.87 ng mL(-1). The observed results reveal that this Anti-HIgG modified PPC can be used as a robust, easy-to-use, reagentless, sensitive and selective immunosensor for estimation of human IgG.

  11. Polymer Wall Formation Using Liquid-Crystal/Polymer Phase Separation Induced on Patterned Polyimide Films

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2004-12-01

    We could form lattice-shaped polymer walls in a liquid crystal (LC) layer through the thermal phase separation of an LC/polystyrene solution between substrates with polyimide films etched by short-wavelength ultraviolet irradiation using a photomask. The LC wetting difference between the polyimide and substrate surfaces caused the coalescence of growing LC droplets on patterned polyimide films with the progress of phase separation. Consequently, polymer walls were formed on substrate surface areas without polyimide films. The shape of the polymer wall formed became sharp with the use of rubbed polyimide films because the nucleation of growing LC droplets concentrated on the patterned polyimide films. It is thought that the increase in the alignment order of LC molecules in the solution near the rubbed polyimide films promotes the formation of LC molecular aggregation, which becomes the growth nuclei of LC droplets.

  12. Hot pressed K+ ion conducting solid polymer electrolytes: synthesis, ion conduction and polymeric battery fabrication

    Science.gov (United States)

    Chandra, Angesh

    2016-07-01

    Synthesis and ion transport studies of hot pressed K+ ion conducting solid polymer electrolytes (SPEs): (1 - x) PEO: x KBr, where 0 polymer-salt complexation in SPE composition: (70:30) with conductivity ( σ) 5.01 × 10-7 S cm-1 from the room temperature conductivity measurements. Materials characterization and polymer-salt complexations of present SPEs have been explained with the help of various techniques viz. X-ray diffraction, Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy technique. To explain the ion conduction in the present SPEs, temperature dependent ionic conductivity ( σ), ionic mobility ( μ), mobile ion concentration ( n), ionic transference number ( t ion ) and ionic drift velocity ( v d ) have been calculated with the help of various experimental techniques. A solid state polymer battery is also fabricated by using the present SPE as an electrolyte and have been calculated their important cell parameters at room temperature.

  13. Effect of ZrO2 on conductivity of PVC–PMMA–LiBF4–DBP polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; T Uma

    2000-02-01

    The preparation and characterization of composite polymer electrolytes of PVC–PMMA–LiBF4–DBP for different concentrations of ZrO2 have been investigated. FTIR studies indicate complex formation between the polymers, salt and plasticizer. The electrical conductivity values measured by a.c. impedance spectroscopy is found to depend upon the ZrO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and results discussed.

  14. Novel, Solvent-Free, Single Ion-Conducting Polymer Electrolytes

    Science.gov (United States)

    2007-10-31

    the selected polymer electrolyte membrane and a LiFePO4 -based composite cathode film. The latter was prepared by blending the LiFePO4 active...following: charge Li+ + FePO4 + e LiFePO4 [1] discharge to which is associate a maximum...as separator in a Li/ LiFePO4 battery. . 1.Experimental. Calixpyrrole (CP, provided by the University of Warsaw), LiBOB (Libby) and PEO

  15. Stress effects in prism coupling measurements of thin polymer films

    Science.gov (United States)

    Agan, S.; Ay, F.; Kocabas, A.; Aydinli, A.

    2005-02-01

    Due to the increasingly important role of some polymers in optical waveguide technologies, precise measurement of their optical properties has become important. Typically, prism coupling to slab waveguides made of materials of interest is used to measure the relevant optical parameters. However, such measurements are often complicated by the softness of the polymer films when stress is applied to the prism to couple light into the waveguides. In this work, we have investigated the optical properties of three different polymers, polystyrene (PS), polymethyl-methacrylate (PMMA), and benzocyclobutane (BCB). For the first time, the dependence of the refractive index, film thickness, and birefringence on applied stress in these thin polymer films was determined by means of the prism coupling technique. Both symmetric trapezoid shaped and right-angle prisms were used to couple the light into the waveguides. It was found that trapezoid shaped prism coupling gives better results in these thin polymer films. The refractive index of PMMA was found to be in the range of 1.4869 up to 1.4876 for both TE and TM polarizations under the applied force, which causes a small decrease in the film thickness of up to 0.06 μm. PMMA waveguide films were found not to be birefringent. In contrast, both BCB and PS films exhibit birefringence albeit of opposing signs.

  16. Ionic Conductivity and Dielectric Properties of the PAN-Ion Conducting Polymers

    Institute of Scientific and Technical Information of China (English)

    N.M.Ali; L.Othman; K.B.Md; Isa; A.Ahmad; Z.Osman

    2007-01-01

    1 Results In this work, the ion conducting films of polyacrylonitrile (PAN) containing lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) were prepared by the solution casting technique. The ionic conductivity measurements were carried out using impedance spectroscopy. The room temperature conductivity for pure polyacrylonitrile film is 1.51×10-11 S·cm-1. The room temperature conductivity for the highest conducting film in the PAN-LiCF3SO3 and PAN-NaCF3SO3 systems is 1.51×10-5 and 7.99×10-6 S·...

  17. Mediating conducting polymer growth within hydrogels by controlling nucleation

    Directory of Open Access Journals (Sweden)

    A. J. Patton

    2015-01-01

    Full Text Available This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1 particles and a secondary mechanism via introduction of “pre-polymerised” conducting polymer within the hydrogel (PEDOT:PSS. Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  18. Phase diagram of hopping conduction mechanisms in polymer nanofiber network

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jeng-Ting; Lu, Yu-Cheng; Jiang, Shiau-Bin; Zhong, Yuan-Liang, E-mail: ylzhong@cycu.edu.tw [Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yeh, Jui-Ming [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China)

    2015-12-07

    Network formation by nanofiber crosslinking is usually in polymer materials as application in organic semiconductor devices. Electron hopping transport mechanisms depend on polymer morphology in network. Conducting polymers morphology in a random network structure is modeled by a quasi-one-dimensional system coupled of chains or fibers. We observe the varying hopping conduction mechanisms in the polyaniline nanofibers of the random network structure. The average diameter d of the nanofibers is varied from approximately 10 to 100 nm. The different dominant hopping mechanisms including Efros-Shklovskii variable-range hopping (VRH), Mott VRH, and nearest-neighbor hopping are dependent on temperature range and d in crossover changes. The result of this study is first presented in a phase diagram of hopping conduction mechanisms based on the theories of the random network model. The hopping conduction mechanism is unlike in normal semiconductor materials.

  19. Charge transport in conducting polymers: insights from impedance spectroscopy.

    Science.gov (United States)

    Rubinson, Judith F; Kayinamura, Yohani P

    2009-12-01

    This tutorial review gives a brief introduction to impedance spectroscopy and discusses how it has been used to provide insight into charge transport through conducting polymers, particularly when the polymers are used as electrodes for solution studies or the design of electrodes for biomedical applications. As such it provides both an introduction to the topic and references to both classic and contemporary work for the more advanced reader.

  20. Fracture and fatigue of ultrathin nanoporous polymer films

    Science.gov (United States)

    Kearney, Andrew V.

    Nanoporous polymer layers are being considered for a range of emerging nanoscale applications, from low permittivity materials for interlayer dielectrics in microelectronics and anti-reflective coatings in optical technologies, to biosensors and size-selective membranes for biological applications. Polymer thin films have inherently low elastic modulus, strength and hardness, but exhibit fracture properties that are higher than those reported for glass, ceramic, and even some metal layers. However, constraint of a ductile polymer between two elastic layers is expected to affect the local plasticity ahead of a crack tip and its contribution to the film adhesion with films below a micron in thickness. Additionally, nanoporosity would be expected to have a deleterious effect on mechanical properties, producing materials and layers that are structurally weaker than fully dense versions they replace. Therefore, the integration of these nanoporous polymer layer at nanometer thicknesses would present significantly processing and mechanical reliability challenges. In this dissertation, surprising evidence is presented that nanoporous polymer films exhibit increasing fracture energy with increasing porosity. Such behavior is in stark contrast to a wide range of reported behavior for porous solids. A ductile nano-void growth and coalescence fracture mechanics-based model is presented to rationalize the increase in fracture toughness of the voided polymer film. The model is shown to explain the behavior in terms of a specific scaling of the size of the pores with pore volume fraction. It is demonstrated that the pore size must increase with close to a linear dependence on the volume fraction in order to increase rather than decrease the fracture energy. Independent characterization of the pore size as a function of volume fraction is shown to confirm predictions made by the model. The fracture behavior of these constrained polymer films are also examined with film thickness

  1. IONIC CONDUCTIVITY IN CROSSLINKED POLY (METHYLSILOXANE- g- ETHYLENE OXIDE ) NETWORK FILMS CONTAINING LITHIUM PERCHLORATE

    Institute of Scientific and Technical Information of China (English)

    FANG Shibi; LIU Li; LI Yongjun; JIANG Yingyan

    1989-01-01

    Polymer electrolytes based on poly (methylsiloxane -g - ethylene oxide) and LiClO4 have been prepared. The network films crosslinked by a crosslinking agent are found to exhibit a considerably high ionic conductivity of about 10-4 Scm-1 at room temperature and have good flexibility.

  2. Electronic structure calculations on helical conducting polymers.

    Science.gov (United States)

    Ripoll, Juan D; Serna, Andrei; Guerra, Doris; Restrepo, Albeiro

    2010-10-21

    We present a study of the electronic structure and derived properties of polyfurane (PFu), polypyrrol (PPy), and polythiophene (PTh). Two spatial arrangements are considered: trans chain (tc-PFu, tc-PPy, tc-PTh) and cis α-helical (α-PFu, α-PPy, α-PTh). Even at the small sizes considered here, helical conformations appear to be stable. Band gaps of pure, undoped oligomers fall into the semiconductor range. Density of states (DOS) analysis suggest dense valence and conduction bands. Bond length alternation analysis predicts almost complete delocalization of the π clouds in all spatial arrangements. Doping with electron donors or electron-withdrawing impurities reduces all band gaps close to the metallic regime in addition to increasing the DOS for the valence and conduction bands.

  3. Nanostructured intrinsically conducting polymers formed by electrochemical synthesis

    OpenAIRE

    Gvozdenović, Milica; Jugović, Branimir; id_orcid 0000-0002-5331-6354; Grgur, Branimir; id_orcid 0000-0003-4684-9053

    2016-01-01

    Due to unique properties of intrinsically conducting polymers (ICP) such as: electrical conductivity, reversible electrochemistry, optical activity, biocompatibility, environmental and corrosion stability, they still represent a base for both theoretical and practical studies. The mentioned properties open up possibilities for practical application in the field of electrochemical systems for energy storage and conversion, sensors, biosensors, antistatic coatings, magnetic shielding, active co...

  4. Conducting polymer nanostructures for biological applications

    Science.gov (United States)

    Berdichevsky, Yevgeny

    A novel polypyrrole nanowire actuator was fabricated and characterized, representing a completely new approach to the design of nanoscale mechanically active components (nanomachines). This design paradigm takes advantage of the fact that unique properties of polypyrrole allow development of mechanically active nanostructures capable of operating in aqueous salt solutions with many potential applications biology and medicine. Template synthesis technique was used to electropolymerize polypyrrole nanowires in the nanoporous alumina templates. Commercial alumina filters were used both "as is" and patterned with microbeads to reduce the open pore density, along with anodized alumina prepared as a thin film on a semiconductor substrate. The ability of the nanowires to expand and contract with applied voltage was then evaluated with scanning electron microscopy and high-resolution optical microscopy. It was confirmed that the nanowires can function as nanoactuators, which is a significant advance in developing nanomechanical structures. Polypyrrole nanoactuators are electrically controlled, rather than relying on changing the chemical composition of solution, can be easily synthesized in parallel and in high numbers without requiring e-beam lithography, and can operate in aqueous salt solutions at biologically-relevant pH. Furthermore, the speed of polypyrrole actuators depends on their size due to diffusion limitations, and nanoactuators are therefore able to operate at higher speeds that micro- or macro-sized devices. The development of these nanoactuators paves the way for mimicking the function of biological actuators such as cilia, creation of controllable membranes, small particle manipulation, cellular nanomechanical probes, and many other biomedical applications. Furthermore, the same technology and process flow used for fabrication of nanoactuators was also used to create nanosensors for detection of electrochemically oxidizable neurotransmitters such as

  5. Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler.

    Science.gov (United States)

    Kim, Jin-Young; Kim, TaeYoung; Suk, Ji Won; Chou, Harry; Jang, Ji-Hoon; Lee, Jong Ho; Kholmanov, Iskandar N; Akinwande, Deji; Ruoff, Rodney S

    2014-08-27

    The electrical conductivity and the specific surface area of conductive fillers in conductor-insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG-O/CNT). We report the effect of the rG-O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG-O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG-O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.

  6. Pattern Formation and Quasicrystal Structure in Azobenzene Polymer Film

    Institute of Scientific and Technical Information of China (English)

    XU Ze-Da; CAI Zhi-Gang; ZHANG Ling-Zhi; LIU Yan-Fa; YANG Jie; SHE Wei-Long; ZHOU Jian-Ying

    2000-01-01

    Pattern formation in azobenzene polymer film by degenerate four-wave mixing is reported. Island arrays with specific patterns are analyzed with scanning electron microscopy and polarizing optical microscopy. It is demonstrated that the control of photo-induced nanostructure sized micropattern in the nonlinear organic film is possible by using properly polarized writing beams with the total incident power exceeding a certain threshold.

  7. Measurement Method of the Thickness Uniformity for Polymer Films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.

  8. Phase equilibria in polymer blend thin films: a Hamiltonian approach.

    Science.gov (United States)

    Souche, M; Clarke, N

    2009-12-28

    We propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We then focus on the case of 50:50 polymer blends confined between antisymmetric walls. The different phases of the system and the transitions between them, including finite-size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films.

  9. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    Science.gov (United States)

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where…

  10. Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery

    Science.gov (United States)

    Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi

    2008-01-01

    The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level. These demonstrations promote student interest in the electrochemical preparation of conducting polymers, where…

  11. Fracture and Delamination of Chromium Thin Films on Polymer Substrates

    Science.gov (United States)

    Cordill, M. J.; Taylor, A.; Schalko, J.; Dehm, G.

    2010-04-01

    New emerging technologies in the field of flexible electronic devices require that metal films adhere well and flex with polymer substrates. Common thin film materials used for these applications include copper (Cu) with an adhesion interlayer of chromium (Cr). Copper can be quite ductile and easily move with the polymer substrate. However, Cr is more brittle and fractures at lower strains than Cu. This study aims to examine the fracture and subsequent buckling and delamination of strained Cr films on polyimide (PI). In-situ scanning electron microscope (SEM) straining is used to systematically study the influence of film thickness on fracture and buckling strains. Film fracture and delamination depend on film thickness, and increases in crack and buckle density with decreasing thickness are explored by a shear lag model.

  12. Zinc-Based Semiconductors/Polymer Thin Films Junction for Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    Souad Al-bat’hi

    2012-01-01

    Full Text Available Thin films of ZnO and ZnTe semiconductors were deposited on ITO conducting glass substrates by sputtering and electrodeposition techniques, respectively. On the other hand, thin films of ion conducting solid polymer electrolyte were prepared by solution cast technique. The polymer is a blend of 50 wt% polyethylene oxide and 50 wt% chitosan. To provide redox couple (I−/I3−, the polymer was complexed with ammonium iodide NH4I with addition of few crystals of iodine I2. Ammonium iodide NH4I was added to the solution in different amounts (wt% weight ratios to supply the charge carriers for the polymer electrolytes. The highest ionic conductivity of the polymer electrolyte was 1.18×10−5 S cm−1 at room temperature. Structural and optical properties of the semiconductor thin films were characterized by X-ray diffractometer and UV-Vis spectrophotometer. The XRD shows crystalline structures for both ZnO and ZnTe thin films. The UV-Vis shows direct energy gaps EZnO of 3.1 eV and EZnTe of 2.2 eV. The polymer film was sandwiched between the ZnO and ZnTe semiconductors to form ITO/ZnO/polymer/ZnTe/ITO double-junction photovoltaic cell, and the photovoltaic properties were studied. The highest open-circuit voltage oc, short-circuit current density sc, and fill factor FF of the fabricated cells are 0.5 V, 55 μA cm−2, and 27%, respectively.

  13. Property of individual conducting-polymer nanowires: conductance and FET devices

    Science.gov (United States)

    Hashizume, Tomihiro

    2006-03-01

    Electronic devices using organic molecules and nanowires have been intensively studied in dream of a smart life utilizing charming functions of organic materials, that are thin, light, flexible and yet inexpensive and safe for environment. A key step for measuring the property of organic nanowires and evaluating the performance of the nanowire devices is how to access them by appropriate nanoscopic methods. Scanning probe microscopy (SPM) based nanofabrication (SP nanofabrication) has been used to fabricate two- or four-probe fine electrodes and several kinds of nanowires made of conducting polymers have been evaluated by SPM and the fine electrodes made with Pt thin film fabricated on SiO2/doped Si or sapphire substrates [1,2]. We have tested conductivity of single poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonate) (PEDOT/PSS) nanowires. After cutting each nanowires placed on the fine electrodes, the current was checked and we were able to confirm that the conductivity was derived from the PEDOT nanowires themselves. The temperature dependence of the conductivity was explained by the quasi one-dimensional variable range hopping (VRH) model. We also will discuss on the field-effect-transistor (FET) made of a single nanowire. In collaboration with: S. Heike, M. Fujimori, Y. Suwa (ARL), H. Ichihara, S. Samitsu, A. Inomata, T. Shimomura, K. Ito (Univ. Tokyo), K. Miki, T. Ohno (NIMS), H. Mizuseki (IMR), Y. Terada, H. Shigekawa (Univ. Tsukuba). [1] J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, and T. Aida, Science 304, 1481 (2004). [2] S. Samitsu, T. Shimomura, K. Ito, S. Heike, M. Fujimori, S. Heike, and T. Hashizume, Appl. Phys. Lett., 86, 233103 (2005).

  14. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    Science.gov (United States)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  15. Surface and interface properties of industrially relevant polymers Thin polymer films

    CERN Document Server

    Maccarini, M

    2002-01-01

    This thesis is concerned with the study of some important properties of thin polymer films focusing on two main aspects: the morphologies induced on spin coated polymer films, and swelling and absorption phenomena. Chapter 2 provides an introduction on the theoretical aspects relevant in the field of Polymer Physics: the mixing properties of polymers and solvent, the glass transition temperature, diffusion, surface effects and surface tension, and spin coating. Chapter 3 focuses on the experimental techniques used in this work: Ellipsometry, Quartz Crystal Microbalance, Optical Microscopy and Differential Scanning Calorimetry. Moreover, a description of the material studied is provided. In Chapter 4 a first characterisation of the system investigated is carried out: water absorption and glass transition temperature are measured for bulk material in different moist condition. The refracting indices and the densities of the polymer films are experimentally determined. In Chapter 5 we describe a systematic inves...

  16. Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G.P.; Hashmi, S.A. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2009-02-15

    Studies on a novel magnesium ion conducting gel polymer electrolyte based on a room temperature ionic liquid (RTIL) is reported. It comprises a Mg-salt, Mg(CF{sub 3}SO{sub 3}){sub 2} [or magnesium triflate, Mg(Tf){sub 2}] solution in an ionic liquid, 1-ethyl-3-methylimidazolium trifluoro-methanesulfonate (EMITf), immobilized with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), which is a freestanding, semitransparent and flexible film with excellent mechanical strength. Physical and electrochemical analyses demonstrate promising characteristics of these films, suitable as electrolytes in rechargeable magnesium batteries. The material offers a maximum electrical conductivity of {proportional_to}4.8 x 10{sup -3} S cm{sup -1} at room temperature (20 C) with excellent thermal and electrochemical stabilities. Possible conformational changes in the polymer host PVdF-HFP due to ionic liquid solution entrapment and ion-polymer interaction are investigated by Fourier transform infra-red (FTIR), X-ray diffraction (XRD) and scanning electron microscopic (SEM) methods. The Mg{sup 2+} ion transport in the gel film is confirmed from cyclic voltammetry, impedance and transport number measurements. The Mg{sup 2+} ion transport number (t{sub +}) is {proportional_to}0.26, which indicates a substantial contribution of triflate anion transport along with ionic conduction due to the component ions of the ionic liquid. (author)

  17. Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide

    Science.gov (United States)

    Pandey, G. P.; Agrawal, R. C.; Hashmi, S. A.

    Experimental investigations are performed on novel magnesium ion-conducting gel polymer electrolyte nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), dispersed with nanosized magnesium oxide (MgO) particles. The nanocomposite materials are in the form of free-standing films. Various physical and electrochemical analyses demonstrate promising characteristics of these films, suitable as electrolytes in rechargeable magnesium batteries. The optimized material with 3 wt.% MgO offers a maximum electrical conductivity of ∼8 × 10 -3 S cm -1 at room temperature (∼25 °C) with good thermal and electrochemical stabilities. The ion/filler-polymer interactions and possible conformational changes in host polymer PVdF-HFP due to the liquid electrolyte entrapment and dispersion of nanosized MgO are examined by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscopic (SEM) methods. The Mg 2+ ion conduction in the gel film is confirmed from the cyclic voltammetry, impedance spectroscopy and transport number measurements. The Mg 2+ ion transport number (t +) is enhanced substantially and found to have a maximum of ∼0.44 for the addition of 10 wt.% MgO nanoparticles. The enhancement in t + is explained on the basis of the formation of space-charge regions due to the presence of MgO:Mg 2+-like species, that supports Mg 2+ ion motion.

  18. Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte

    Science.gov (United States)

    Pandey, G. P.; Hashmi, S. A.

    Studies on a novel magnesium ion conducting gel polymer electrolyte based on a room temperature ionic liquid (RTIL) is reported. It comprises a Mg-salt, Mg(CF 3SO 3) 2 [or magnesium triflate, Mg(Tf) 2] solution in an ionic liquid, 1-ethyl-3-methylimidazolium trifluoro-methanesulfonate (EMITf), immobilized with poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), which is a freestanding, semitransparent and flexible film with excellent mechanical strength. Physical and electrochemical analyses demonstrate promising characteristics of these films, suitable as electrolytes in rechargeable magnesium batteries. The material offers a maximum electrical conductivity of ∼4.8 × 10 -3 S cm -1 at room temperature (20 °C) with excellent thermal and electrochemical stabilities. Possible conformational changes in the polymer host PVdF-HFP due to ionic liquid solution entrapment and ion-polymer interaction are investigated by Fourier transform infra-red (FTIR), X-ray diffraction (XRD) and scanning electron microscopic (SEM) methods. The Mg 2+ ion transport in the gel film is confirmed from cyclic voltammetry, impedance and transport number measurements. The Mg 2+ ion transport number (t +) is ∼0.26, which indicates a substantial contribution of triflate anion transport along with ionic conduction due to the component ions of the ionic liquid.

  19. Polymer fullerene solution phase behaviour and film formation pathways.

    Science.gov (United States)

    Dattani, Rajeev; Cabral, João T

    2015-04-28

    We report the phase behaviour of polymer/fullerene/solvent ternary mixtures and its consequence for the morphology of the resulting composite thin films. We focus particularly on solutions of polystyrene (PS), C60 fullerene and toluene, which are examined by static and dynamic light scattering, and films obtained from various solution ages and thermal annealing conditions, using atomic force and light microscopy. Unexpectedly, the solution phase behaviour below the polymer overlap concentration, c*, is found to be described by a simple excluded volume argument (occupied by the polymer chains) and the neat C60/solvent miscibility. Scaling consistent with full exclusion is found when the miscibility of the fullerene in the solvent is much lower than that of the polymer, giving way to partial exclusion with more soluble fullerenes (phenyl-C61-butyric acid methyl ester, PCBM) and a less asymmetric solvent (chlorobenzene), employed in photovoltaic devices. Spun cast and drop cast films were prepared from PS/C60/toluene solutions across the phase diagram to yield an identical PS/C60 composition and film thickness, resulting in qualitatively different morphologies in agreement with our measured solution phase boundaries. Our findings are relevant to the solution processing of polymer/fullerene composites (including organic photovoltaic devices), which generally require effective solubilisation of fullerene derivatives and polymer pairs in this concentration range, and the design of well-defined thin film morphologies.

  20. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    Science.gov (United States)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  1. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    Science.gov (United States)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10-4 S cm-1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  2. Characterization and Analysis of Conductance: From Polymers to Single Electrons

    OpenAIRE

    Tallarida, Nicholas Ryan

    2016-01-01

    Experimental studies on the conductive properties of molecular systems led to the discovery and characterization of two essential elements of molecular electronics: a molecularwire and a single electron switch. The synthesis and cyclic current versus voltage (I/V) measurements of intrinsically conductive linear chain [-Ag-S-BP-S-]n polymers determined their relatively large conductivity and suggested that mobile Ag adatoms on the roughened Ag surface catalyzed the polymerization. On the other...

  3. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.

    Science.gov (United States)

    Liu, Wei; Liu, Nian; Sun, Jie; Hsu, Po-Chun; Li, Yuzhang; Lee, Hyun-Wook; Cui, Yi

    2015-04-08

    Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.

  4. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  5. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Science.gov (United States)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  6. Corrosion-protective coatings from electrically conducting polymers

    Science.gov (United States)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  7. EDITORIAL: On display with transparent conducting films On display with transparent conducting films

    Science.gov (United States)

    Demming, Anna

    2012-03-01

    Transparent conducting films were already featuring in scientific literature over one hundred years ago. In 1894 Aryton and Mather described a conducting varnish for coating the screens of electric apparatus so they would not charge when accidentally brushed by a coat sleeve or other material [1]. Their method began with a similar approach to that used to make savoury jellies; by dissolving gelatine in vinegar, after which less palatable ingredients were incorporated including sulphuric acid and an antisulphuric enamel. While the search for transparent conducting films continued to attract other researchers, the same problem remained: the transparency would be compromised if the film was too thick, and the conductivity would be compromised if the film was too thin. In the early 1950s Gillham and Preston reported that thin gold films sputtered on bismuth oxide and heated resulted in a material that successfully combined the previously mutually exclusive properties of transparency and conductivity [2]. Other oxide films were also found to favourably combine these properties, including tin oxide, as reported by Ishiguro and colleagues in Japan in 1958 [3]. Today tin oxide doped with indium (ITO) has become the industry standard for transparent conducting films in a range of applications including photovoltaic technology and displays. It is perhaps the mounting ubiquity of electronic displays as a result of the increasingly digitised and computerised environment of the modern day world that has begun to underline the main drawback of ITO: expense. In this issue, a collaboration of researchers in Korea present an overview of graphene as a transparent conducting material with the potential to replace ITO in a range of electronic and optoelectronic applications [4]. One of the first innovations in optical microscopy was the use of dyes. This principle first came into practice with the use of ultraviolet light to reveal previously indistinguishable features. As explained

  8. Controlled release of tocopherols from polymer blend films

    Science.gov (United States)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  9. Chemically robust platform for optical solid-state conducting polymer sensor

    Science.gov (United States)

    Holt, A. L.; Bearinger, J. P.; Carter, S. A.

    2006-10-01

    Conjugated polymers are unique materials for use in the development of chemical and biological sensors because of their widely tunable optical and electrical properties that allow them dual functionality as both the sensing element and the signal transducer. Furthermore, as optical photoluminescence based sensors, electroactive polymers are found to exhibit high sensitivity due to the ability of the analyte of interest to quench the photoluminescence of the entire polymer chain. In order to produce a more chemically robust thin film for use as a "solid-state" optical sensor, we succeeded in grafting various poly (3-alkyl-thiophene)s to optically transparent substrates such as glass, quartz, and ITO coated glass. This was accomplished by first grafting a thiophene monomer to the surface then chemically growing the films via oxidative polymerization. XPS studies indicated that each chemical step was accurately understood. The polythiophene growth, unaltered by sonication and tape peeling tests, was uniform across the substrate and could be directed by selective silanization of the substrate. Film thicknesses range from 20 to 200 nm and exhibit varying degrees of surface roughness, depending on the polymerization process. The reaction times and solvents were varied in order to optimize the desired film properties. The absorption and photoluminescence properties of the thin films compared well with literature on spun-cast polythiophene films, as did the electrical conductivities of the doped and undoped material. The photoluminescence intensities of the films are found to be unaffected by paraquat in water but are sensitive to trace amounts of ferric chloride in acetonitrile with measurable Stern Volmer constants.

  10. The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Katsunori [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Sakamoto, Kiyoshi [Nippon Chemi-Con Co., 185-1, Marunouchi, Yabuki-machi, Nishi-Shirakawa-gun, Fukushima 969-0235 (Japan); Hayakawa, Teruaki; Kakimoto, Masa-aki [Graduate School of Tokyo Institute Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2007-04-15

    An aluminum solid electrolytic capacitor, using poly-(3,4-ethylenedioxythiophene) (PEDOT) as a counter electrode, was prepared with hyperbranched poly(siloxysilane)s (HBPSi) that has a large number of vinyl groups to improve the interfacial properties between aluminum oxide and PEDOT. Capacitance and equivalent series resistance (Rs) were significantly improved compared to untreated oxide film and vinyl terminated polydimethylsiloxane coated interfaces. From electrochemical measurement of the withstand voltage, damage to the oxide film from chemical polymerization of PEDOT was less with the HBPSi treatment. Frequency characteristics and electrical conductivity measurements of the polymer indicated that the resistance inside the etched porous layer was greatly reduced. These results show that the HBPSi pre-coating layer inhibited degradation of the oxide film by chemical polymerization of PEDOT and the conductivity of PEDOT in the etched porous oxide layer, and also enlarges the contact area by improving interfacial adhesion. (author)

  11. Electronic conduction in polymers, carbon nanotubes and graphene.

    Science.gov (United States)

    Kaiser, Alan B; Skákalová, Viera

    2011-07-01

    In the years since the discovery of organic polymers that exhibited electrical conductivities comparable to some metals, other novel carbon-based conductors have been developed, including carbon nanotubes and graphene (monolayers of carbon atoms). In this critical review, we discuss the common features and the differences in the conduction mechanisms observed in these carbon-based materials, which range from near ballistic and conventional metallic conduction to fluctuation-assisted tunnelling, variable-range hopping and more exotic mechanisms. For each category of material, we discuss the dependence of conduction on the morphology of the sample. The presence of heterogeneous disorder is often particularly important in determining the overall behaviour, and can lead to surprisingly similar conduction behaviour in polymers, carbon nanotube networks and chemically-derived graphene (122 references).

  12. Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte membranes

    Science.gov (United States)

    Bala Sahu, Tripti; Sahu, Manju; Karan, Shrabani; Mahipal, Y. K.; Sahu, D. K.; Agrawal, R. C.

    2017-07-01

    Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte (NCPE) films: [90PEO: 10Cu(CF3SO3)2]  +  x CuO have been reported. NCPE films have been formed by hot-press casting technique using solid polymer electrolyte (SPE) film composition: [90PEO: 10Cu(CF3SO3)2] as 1st-phase host and nanoparticles of CuO in varying wt.(%) as 2nd-phase active filler. SPE: [90PEO: 10Cu(CF3SO3)2] was identified earlier as highest conducting film with room temperature conductivity (σ rt) ~ 3.0 x 10-6 S cm-1, which is three orders of magnitude higher than that of pure polymer host PEO with σ rt ~ 3.2  ×  10-9 S cm-1. Filler particle concentration dependent conductivity study revealed NCPE film: [90PEO: 10Cu(CF3SO3)2]  +  3%CuO as optimum conducting composition (OCC) exhibiting σ rt ~ 1.14  ×  10-5 S cm-1. Hence, by the fractional dispersal of 2nd-phase active filler into 1st-phase SPE host, σ-enhancement of approximately an order of magnitude has further been obtained. Ion transport behavior in NCPE OCC film has been characterized in terms of basic ionic parameters viz. ionic conductivity (σ), total ionic transference (t ion)/cationic (t +) numbers. Temperature dependent conductivity measurement has also been done to explain the mechanism of ion transport and to compute activation energy (E a). Materials characterization and hence, confirmation of complexation of salt in polymeric host and/or dispersal of filler particles in SPE host have been done by scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDS), x-ray diffraction (XRD), Fourier transform infra-red (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All-solid-state battery in the cell configuration: Cu (Anode) || SPE host/NCPE OCC film || C  +  I2  +  Electrolyte) (Cathode) has been fabricated and cell performance has been studied under two load resistances viz

  13. Fast ultrahigh-density writing of low-conductivity patterns on semiconducting polymers.

    Science.gov (United States)

    Farina, Marco; Ye, Tengling; Lanzani, Guglielmo; di Donato, Andrea; Venanzoni, Giuseppe; Mencarelli, Davide; Pietrangelo, Tiziana; Morini, Antonio; Keivanidis, Panagiotis E

    2013-01-01

    The exceptional interest in improving the limitations of data storage, molecular electronics and optoelectronics has promoted the development of an ever increasing number of techniques used to pattern polymers at micro and nanoscale. Most of them rely on atomic force microscopy to thermally or electrostatically induce mass transport, thereby creating topographic features. Here we show that the mechanical interaction between the tip of the atomic force microscope and the surface of π-conjugated polymeric films produces a local increase of molecular disorder, inducing a localized lowering of the semiconductor conductivity, not associated to detectable modifications in the surface topography. This phenomenon allows for the swift production of low-conductivity patterns on the film surface at a speed exceeding 20 μm s⁻¹; paths have a resolution in the order of the tip size (20 nm) and are detected by a conducting-atomic force microscopy tip in the conductivity maps.

  14. Ionic conductivity through thermoresponsive polymer gel: ordering matters.

    Science.gov (United States)

    Soni, Saurabh S; Fadadu, Kishan B; Gibaud, Alain

    2012-01-10

    Thermoreversible polymer gel has been prepared using PEO-PPO-PEO block copolymer (Pluronic F77) which self-assembles into different microcrystalline phases like cubic, 2D-hexagonal, and lamellar. Addition of electrolyte (LiI/I(2)) converts the gel into a polymer gel electrolyte (PGE) which exhibits microphase-dependent ionic conductivity. The crystalline phases have been identified by SAXS as a function of the polymer concentration. It is found that the optimum value for the ionic conductivity (≈1 × 10(-3) S x cm(-1)) is achieved in the Im3m phase due to faster diffusion of ions through the 3D-interconnected micellar nanochannels. This fact is further supported by FTIR study, ionic transference number, and diffusion coefficient measurements.

  15. Carbon nanotube and conducting polymer composites for supercapacitors

    Institute of Scientific and Technical Information of China (English)

    Chuang Peng; Shengwen Zhang; Daniel Jewell; George Z. Chen

    2008-01-01

    Composites of carbon nanotubes and conducting polymers can be prepared via chemical synthesis, electrochemical deposition on pre-formed carbon nanotube electrodes, or by electrochemical co-deposition. The composites combine the large pseudocapacitance of the conducting polymers with the fast charging/discharging double-layer capacitance and excellent mechanical properties of the carbon nanotubes. The electrochemically co-deposited composites are the most homogeneous and show an unusual interaction between thepolymer and nanotubes, giving rise to a strengthened electron delocalisation and conjugation along the polymer chains. As a result they exhibit excellent electrochemical charge storage properties and fast charge/discharge switching, making them promising electrode mate-rials for high power supercapacitors.

  16. Preparation of properties of SWNT/graphene oxide type flexible transparent conductive films.

    Science.gov (United States)

    Kim, Jin Ho; Jung, Jae Mok; Kwak, Jun Young; Jeong, Jung Hyun; Choi, Byung Chun; Lim, Kwon Taek

    2011-08-01

    Single walled carbon nanotube (SWNT)/graphene oxide (GO) hybrid films were prepared by a facile bar coating method on a polyethylene terephthalate substrate using a mixed solution of SWCNTs and GO. An acryl type polymer was employed as a dispersion agent to obtain SWCNT and GO suspension in ethyl alcohol. The SWCNT/GO hybrid films were highly transparent and electrically conductive, showing 80% transmittance and 1.8 x 10(3) ohm/sq surface resistance. The surface resistance of the SWCNT/GO film could be further improved to 750 ohm/sq by hydrazine vapor reduction.

  17. Process optimization of ultrasonic spray coating of polymer films

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect...... these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating...... to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model...

  18. Simulated Space Vacuum Ultraviolet (VUV) Exposure Testing for Polymer Films

    Science.gov (United States)

    Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.

    2002-01-01

    Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the sun in the space environment can cause degradation to polymer films producing changes in optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultra-lightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of sequential simulated space environmental exposures to determine combined damaging effects. This paper will describe the effects of VUV on polymer films and the necessity for ground testing. Testing practices used at Glenn Research Center for VUV exposure testing will be described including characterization of the VUV radiation source used, calibration procedures traceable to the National Institute of Standards and Technology (NIST), and testing techniques for VUV exposure of polymer surfaces.

  19. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    Science.gov (United States)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  20. Patterning Multicomponent Polymer Thin Films via Dynamic Thermal Processing

    Science.gov (United States)

    Singh, Gurpreet

    Bottom-up patterning is gaining increased importance owing to the physical limitations and rising costs of top-down patterning. One example of bottom-up patterning is self-assembling polymer thin films. Although there are several pathways to facilitate polymer thin film self-assembly, this presentation will focus on dynamic thermal field based processes for patterning multicomponent polymer thin films. Dynamic thermal field processing is an attractive roll­to­roll (R2R) amenable directed self­assembly (DSA) method for molecular level organization of multicomponent polymer systems such as block copolymer thin films over large areas without requiring guiding templates. The talk will first outline how parameters such as magnitude of the temperature gradient, velocity of annealing, thermal expansion, and molecular weight of the polymer can be optimized to finely tune the morphology of the block copolymer thin films and also elucidate their associated physical mechanisms. The second part of the talk will outline application of dynamic thermal field processes for fabricating functional nanomaterials and discuss the recent advancements achieved using these processes.

  1. Lattice cluster theory for dense, thin polymer films.

    Science.gov (United States)

    Freed, Karl F

    2015-04-07

    While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L - 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential "transport" constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.

  2. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Suriani, E-mail: sue_83@um.edu.my [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Roslina; Johan, Mohd Rafie [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2012-01-15

    Solid polymer electrolyte films based on Poly(ethylene oxide) (PEO) complexed with lithium hexafluorophosphate (LiPF{sub 6}), ethylene carbonate (EC) and amorphous carbon nanotube ({alpha}CNTs) were prepared by the solution cast technique. The conductivity increases from 10{sup -10} to 10{sup -5} Scm{sup -1} upon the addition of salt. The incorporation of EC and {alpha}CNTs to the salted polymer enhances the conductivity significantly to 10{sup -4} and 10{sup -3} Scm{sup -1}. The complexation of doping materials with polymer were confirmed by X-ray diffraction and infrared studies. Optical properties like direct band gap and indirect band gap were investigated for pure and doped polymer films in the wavelength range 200-400 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. - Highlights: > Optical band gap values show the decreasing trend with an increasing dopant concentration. > It is also observed that the absorption edge shifted to longer wavelength on doping. > Results of the optical measurements indicate the presence of a well-defined {pi}{yields}{pi}* transition associated with the formation of a conjugated C=O and/or C=O electronic structure.

  3. Wearable Keyboard Using Conducting Polymer Electrodes on Textiles.

    Science.gov (United States)

    Takamatsu, Seiichi; Lonjaret, Thomas; Ismailova, Esma; Masuda, Atsuji; Itoh, Toshihiro; Malliaras, George G

    2016-06-01

    A wearable keyboard is demonstrated in which conducting polymer electrodes on a knitted textile sense tactile input as changes in capacitance. The use of a knitted textile as a substrate endows stretchability and compatibility to large-area formats, paving the way for a new type of wearable human-machine interface.

  4. Transparent and conductive polymer layers by gas plasma techniques

    NARCIS (Netherlands)

    Groenewoud, L.M.H.

    2000-01-01

    Polymers are widely used in a great number of applications because of their general properties such as low density, low cost, and processability. If these properties could be combined with electrical conductivity, this would open up the way to desirable applications such as flexible LCD’s and

  5. Functionalised hybrid materials of conducting polymers with individual wool fibers.

    Science.gov (United States)

    Kelly, Fern M; Johnston, James H; Borrmann, Thomas; Richardson, Michael J

    2008-04-01

    Composites of natural protein materials, such as merino wool, with the conducting polymers polypyrrole (PPy) and polyaniline (PAn) have been successfully synthesised. In doing so, hybrid materials have been produced in which the mechanical strength and flexibility of the fibers is retained whilst also incorporating the desired chemical and electrical properties of the polymer. Scanning electron microscopy shows PPy coatings to comprise individual polymer spheres, approximately 100 to 150 nm in diameter. The average size of the polymer spheres of PAn was observed to be approximately 50 to 100 nm in diameter. These spheres fuse together in a continuous sheet to coat the fibers in their entirety. The reduction of silver ions to silver metal nanoparticles onto the redox active polymer surface has also been successful and thus imparts anti-microbial properties to the hybrid materials. This gives rise to further applications requiring the inhibition of microbial growth. The chemical and physical characterisation of such products has been undertaken through scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrical conductivity, cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and the testing of their anti-microbial activity.

  6. A New Ultra Fast Conduction Mechanism in Insulating Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Xu

    2011-01-01

    Full Text Available A brand new phenomenon, namely, electrical conduction via soliton-like ultra fast space charge pulses, recently identified in unfilled cross-linked polyethylene, is shown for the first time to occur in insulating polymer nanocomposites and its characteristics correlated with the electromechanical properties of nanostructured materials. These charge pulses are observed to cross the insulation under low electrical field in epoxy-based nanocomposites containing nanosilica particles with relative weights of 1%, 5%, 10%, and 20% at speeds orders of magnitude higher than those expected for carriers in insulating polymers. The characteristics of mobility, magnitude and repetition rate for both positive and negative charge pulses are studied in relation to nanofiller concentration. The results show that the ultra fast charge pulses (packets are affected significantly by the concentration of nanoparticles. An explanation is presented in terms of a new conduction mechanism where the mechanical properties of the polymer and movement of polymer chains play an important role in the injection and transport of charge in the form of pulses. Here, the charge transport is not controlled by traps. Instead, it is driven by the contribution of polarization and the resultant electromechanical compression, which is substantially affected by the introduction of nanoparticles into the base polymer.

  7. Convective polymer assembly for the deposition of nanostructures and polymer thin films on immobilized particles

    Science.gov (United States)

    Richardson, Joseph J.; Björnmalm, Mattias; Gunawan, Sylvia T.; Guo, Junling; LiangPresent Address: Csiro Process Science; Engineering, Clayton, Victoria 3168, Australia, Kang; Tardy, Blaise; SekiguchiPresent Address: Graduate School Of Chemical Sciences; Engineering, Hokkaido University, Sapporo, Japan, Shota; Noi, Ka Fung; Cui, Jiwei; EjimaPresent Address: Institute Of Industrial Science, The University Of Tokyo, Tokyo, Japan, Hirotaka; Caruso, Frank

    2014-10-01

    We report the preparation of polymer particles via convective polymer assembly (CPA). Convection is used to move polymer solutions and cargo through an agarose gel that contains immobilized template particles. This method both coats and washes the particles in a process that is amenable to automation, and does not depend on passive diffusion or electrical currents, thus facilitating incorporation of fragile and nanoscale objects, such as liposomes and gold nanoparticles, into the thin polymer films. Template dissolution leads to the formation of stable polymer particles and capsules.We report the preparation of polymer particles via convective polymer assembly (CPA). Convection is used to move polymer solutions and cargo through an agarose gel that contains immobilized template particles. This method both coats and washes the particles in a process that is amenable to automation, and does not depend on passive diffusion or electrical currents, thus facilitating incorporation of fragile and nanoscale objects, such as liposomes and gold nanoparticles, into the thin polymer films. Template dissolution leads to the formation of stable polymer particles and capsules. Electronic supplementary information (ESI) available: Detailed experimental/instrumental information and supporting figures. See DOI: 10.1039/c4nr04348k

  8. RUPTURING OF POLYMER FILMS WITH RUBBING-INDUCED SURFACE DEFECTS

    Institute of Scientific and Technical Information of China (English)

    B.Du; F.C.Xie; Y.J.Wang; O.K.C.Tsui

    2003-01-01

    It has been a long-standing question whether dewetting of polymer film from non-wettable substrate surfaces wherein the bicontinuous morphology never forms in the dewetting film is due to spinodal instability or heterogeneous nucleation. In this experiment, we use a simple method to make the distinction through introduction of topographical defects of the films by rubbing the sample surface with a rayon cloth. Spinodal dewetting is identified for those films that dewet by a characteristic wavevector, q*, independent of the density of rubbing-induced defects. Heterogeneous nucleation, on the other hand, is identified for those with q* increasing with increasing density of defects. Our result shows that PS films on oxide coated silicon with thickness less than ≈ 13 nm are dominated by spinodal dewetting, but the thicker films are dominated by nucleation dewetting. We also confirm that spinodal dewetting does not necessarily lead to a bicontinuous morphology in the dewetting film, contrary to the classic theory of Cahn.

  9. Polymerized rosin: novel film forming polymer for drug delivery.

    Science.gov (United States)

    Fulzele, S V; Satturwar, P M; Dorle, A K

    2002-12-05

    Polymerized rosin (PR) a novel film forming polymer is characterized and investigated in the present study for its application in drug delivery. Films were produced by a casting/solvent evaporation method from plasticizer free and plasticizer containing solutions. Films prepared from different formulations were studied for their mechanical (tensile strength, percent elongation and Young's modulus), water vapour transmission and moisture absorption characteristics. Neat PR films were slightly brittle and posed the problem of breaking during handling. Hydrophobic plasticizers, dibutyl sebacate and tributyl citrate, improved the mechanical properties of free films with both the plasticizers showing significant effects on film elongation. Release of diclofenac sodium (model drug) from coated pellets was sustained with high coating levels. Concentration of plasticizer was found to affect the release profile. PR films plasticized with hydrophobic plasticizers could therefore be used in coating processes for the design of oral sustained delivery dosage forms.

  10. IONIC CONDUCTIVITY OF POLY (β-ALKOXYCARBONYLETHYLMETHYLSILOXANE ) - LiCIO4 CROSSLINKED FILMS

    Institute of Scientific and Technical Information of China (English)

    LI Yongjun; WU Liuren; FANG Shibi; JIANG Yingyan

    1990-01-01

    Poly (β-carboxyethylmethylsiloxane)-LiClO4 and poly (β-alkoxylethylmethylsiloxane)-LiClO4 crosslinked fllms have been prepared. The ionic conductivity of the films depends on the polymer species,concentration of lithium perchlorate, temperature and content of crosslinking agent. The effect of high polar organic solvent 1, 4-butyrolactone on the ionic conductivity and mechanical properties of poly(β- carboxyethylmethylsiloxane ) - LiClO4 system was also investiga ted.

  11. Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites and Process for Preparation Thereof

    Science.gov (United States)

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  12. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    Science.gov (United States)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  13. Understanding hopping transport and thermoelectric properties of conducting polymers

    OpenAIRE

    Ihnatsenka, Siarhei; Crispin, Xavier; Zozoulenko, Igor

    2015-01-01

    We calculate the conductivity sigma and the Seebeck coefficient S for the phonon-assisted hopping transport in conducting polymers poly(3,4-ethylenedioxythiophene) or PEDOT, experimentally studied by Bubnova et al. [J. Am. Chem. Soc. 134, 16456 (2012)]. We use the Monte Carlo technique as well as the semianalytical approach based on the transport energy concept. We demonstrate that both approaches show a good qualitative agreement for the concentration dependence of sigma and S. At the same t...

  14. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    Science.gov (United States)

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R

    2016-09-14

    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance.

  15. Molecular Recognition-Mediated Transformation of Single-Chain Polymer Nanoparticles into Crosslinked Polymer Films.

    Science.gov (United States)

    Mahon, Clare S; McGurk, Christopher J; Watson, Scott M D; Fascione, Martin A; Sakonsinsiri, Chadamas; Turnbull, W Bruce; Fulton, David A

    2017-08-14

    We describe single-chain polymer nanoparticles (SCNPs) possessing intramolecular dynamic covalent crosslinks that can transform into polymer films through a molecular recognition-mediated crosslinking process. The SCNPs utilise molecular recognition with surface-immobilised proteins to concentrate upon a substrate, bringing the SCNPs into close spatial proximity with one another and allowing their dynamic covalent crosslinkers to undergo intra- to interpolymer chain crosslinking leading to the formation of polymeric film. SCNPs must possess both the capacity for specific molecular recognition and a dynamic nature to their intramolecular crosslinkers to form polymer films, and an investigation of the initial phase of film formation indicates it proceeds from features which form upon the surface then grow predominantly in the xy directions. This approach to polymer film formation presents a potential method to "wrap" surfaces displaying molecular recognition motifs-which could potentially include viral, cellular and bacterial surfaces or artificial surfaces displaying multivalent recognition motifs-within a layer of polymer film. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Current-induced surface roughness reduction in conducting thin films

    Science.gov (United States)

    Du, Lin; Maroudas, Dimitrios

    2017-03-01

    Thin film surface roughness is responsible for various materials reliability problems in microelectronics and nanofabrication technologies, which requires the development of surface roughness reduction strategies. Toward this end, we report modeling results that establish the electrical surface treatment of conducting thin films as a physical processing strategy for surface roughness reduction. We develop a continuum model of surface morphological evolution that accounts for the residual stress in the film, surface diffusional anisotropy and film texture, film's wetting of the layer that is deposited on, and surface electromigration. Supported by linear stability theory, self-consistent dynamical simulations based on the model demonstrate that the action over several hours of a sufficiently strong and properly directed electric field on a conducting thin film can reduce its surface roughness and lead to a smooth planar film surface. The modeling predictions are in agreement with experimental measurements on copper thin films deposited on silicon nitride layers.

  17. Anisotropic Thermal Conduction in Polymers and its Molecular Origins

    Science.gov (United States)

    Nieto Simavilla, David; Venerus, David; Schieber, Jay; uCoSm Team

    2014-03-01

    Anisotropy in thermal conductivity has a significant impact on both processing and final properties of materials. Simple molecular arguments suggest that Fourier?s law must be generalized to allow for anisotropic thermal conductivity. We present two complementary experimental methods to obtain quantitative measurements of the thermal diffusivity (conductivity) tensor. We report anisotropic thermal diffusivity and stress in molten, cross-linked and solid polymers under several types of flows. Our results support the validity of a linear relationship between stress and anisotropy in thermal conductivity. When the proportionality constant, the stress-thermal coefficient, is made dimensionless by the plateau modulus of the polymer melt, a universal value of approximately 0.03 is observed for all chemistries. Such a universality is surprising, since phonon transport mechanisms are sensitive to chemical structure. For instance, the analogous stress-optic coefficient depends strongly on chemistry, and can even change sign. Connecting these measurements with current theories for thermal transport in amorphous materials, such as Minimum Thermal Conductivity (MTC) model, is crucial to understand the molecular origins of anisotropic thermal conduction in polymers.

  18. Surface modification of neural prosthetic devices by conducting polymers and biopolymers

    Science.gov (United States)

    Cui, Xinyan

    Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the peripheral and central nervous systems. The microelectrode sites on the neural probes are the actual interface to communicate with neurons. The surfaces of the devices should provide intimate interfacial contact between electrodes and neurons, facilitate the charge transport from ionically conductive tissue to electronically conductive electrode and induce selected neurons or neuron processes to attach onto the microelectrode. Traditional metal electrode materials do not fulfill these functions. Biocompatible conducting polymers were therefore used to modify the surface of the microelectrodes. An electrochemical polymerization approach was developed to directly deposit conductive polymers, such as polypyrrole and poly (3,4-ethylenedioxythiophene) (PEDOT), together with biopolymers, such as protein polymers and bioactive peptides, onto the microelectrode sites. It was found that the deposition of conducting polymer significantly lowered the electrode impedance which is beneficial to neural signal transport. The electronic properties of the conductive polymers were found to be influenced by the film morphology, which could be tailored by controlling the polymerization conditions. The incorporation of biopolymers was confirmed by microfocused Fourier-Transformed infrared (FTIR) spectroscopy. Rat glia and human neuroblastoma cells were shown to preferentially attach and grow on the coated electrode site area of the neural probes. The chemical stability of conducting polymer/biomolecule coatings was studied using FTIR, impedance spectroscopy and cyclic voltammetry. The biomolecules were stable in the film after seven weeks of soaking in deionized water, while polypyrrole underwent some subtle changes in chemical structure. PEDOT was proven to be a more stable material under potential cycling and provided even lower impedance. The adhesion between the coating and

  19. MEASUREMENT METHOD AND PHYSICAL MODEL OF VSC CONDUCTIVITY AND ITS APPLICATIONS IN CONDUCTING POLYMERS

    Institute of Scientific and Technical Information of China (English)

    WAN Meixiang

    1989-01-01

    Method of VSC (Voltage Shorted Compaction ) can be used to determine the intrinsic temperature dependence of conductivity of polycrystalline compaction .The experimental conditions and technical key for preparation of VSC device and its physical model as well as its applications in conducting polymers are discussed in detail.

  20. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  1. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  2. Conductive polymer-based sensors for biomedical applications.

    Science.gov (United States)

    Nambiar, Shruti; Yeow, John T W

    2011-01-15

    A class of organic polymers, known as conducting polymers (CPs), has become increasingly popular due to its unique electrical and optical properties. Material characteristics of CPs are similar to those of some metals and inorganic semiconductors, while retaining polymer properties such as flexibility, and ease of processing and synthesis, generally associated with conventional polymers. Owing to these characteristics, research efforts in CPs have gained significant traction to produce several types of CPs since its discovery four decades ago. CPs are often categorised into different types based on the type of electric charges (e.g., delocalized pi electrons, ions, or conductive nanomaterials) responsible for conduction. Several CPs are known to interact with biological samples while maintaining good biocompatibility and hence, they qualify as interesting candidates for use in a numerous biological and medical applications. In this paper, we focus on CP-based sensor elements and the state-of-art of CP-based sensing devices that have potential applications as tools in clinical diagnosis and surgical interventions. Representative applications of CP-based sensors (electrochemical biosensor, tactile sensing 'skins', and thermal sensors) are briefly discussed. Finally, some of the key issues related to CP-based sensors are highlighted.

  3. Conductive polythiophene-like thin film synthesized using controlled plasma processes

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Long [Department of Advanced Materials Science and Engineering, Nu-SKKU Joint Institute for Plasma Nano Materials, Center for Advanced Plasma Surface Technology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jeong, Dong-Cheol [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Chemical and Biological Defense Research Center, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Javid, Amjed [Department of Advanced Materials Science and Engineering, Nu-SKKU Joint Institute for Plasma Nano Materials, Center for Advanced Plasma Surface Technology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Sanghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Nam, Jae-Do [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Song, Changsik [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Chemical and Biological Defense Research Center, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Jeon Geon, E-mail: hanjg@skku.edu [Department of Advanced Materials Science and Engineering, Nu-SKKU Joint Institute for Plasma Nano Materials, Center for Advanced Plasma Surface Technology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    Transparent conductive polythiophene-like thin films were synthesized by a plasma polymerization technique using a middle range frequency (40 kHz). The effects of the variation of power and pressure on the chemical structure of the deposited film were investigated along with the effect of doping with iodine vapors on the conductivity of the films. Plasma polymerization is a low temperature process, provides deposition of thin polymer films on a wide variety of substrates, and has advantages due to non-involvement of any solvents. The chemical structure of the films was characterized using Fourier Transform Infrared Spectroscopy. The wetting properties of the films were studied using water contact angle measurements. The fragmentation of the thiophene monomer structure increased with increasing discharge power, implying that at low discharge power, the plasma phase was energy-deficient. The lower fragmentation of the monomer led to high retention of the monomer structure in the deposited films. Under various pressure conditions, the retention of the monomer structure was found to be similar as that of the deposited films. After doping with iodine vapor, a large conductivity enhancement, from 3.52 × 10{sup −6} to 2.3 × 10{sup −3} s/cm was observed. The results showed the retention of a monomer structure having conjugated bonds in the films, responsible for the enhanced conductivities. - Highlights: • Fabrication of conductive polythiophene-like films by plasma process • Transmittance more than 80% • 3 order conductivity enhancement with iodine doping • Retention of monomer structure responsible for better conductivities.

  4. Rapid thermal conductivity measurements for combinatorial thin films.

    Science.gov (United States)

    McDowell, Matthew G; Hill, Ian G

    2013-05-01

    A simple and inexpensive automated method for determining the thermal conductivity of a combinatorial library of thin films is demonstrated by measuring the thermal conductivity of a sputtered silicon dioxide film of varying thickness deposited on single crystal silicon. Using 3ω measurements, two methods for calculating the substrate thermal conductivity and two methods for determining the film thermal conductivity are demonstrated and compared. The substrate thermal conductivity was found to be 139 ± 3 W/m·K. Using the measured variation in film thickness, the film thermal conductivity was found to be 1.11 ± 0.05 W/m·K, in excellent agreement with published values for sputtered SiO2, demonstrating the accuracy of the method.

  5. Thiophene in Conducting Polymers: Synthesis of Poly(thiophene)s and Other Conjugated Polymers Containing Thiophenes, for Application in Polymer Solar Cells

    DEFF Research Database (Denmark)

    Livi, Francesco; Carlé, Jon Eggert; Bundgaard, Eva

    2015-01-01

    Conducting polymers based on thiophene are described. The polymers include poly(thiophene) with and without side-chains and other conjugated polymers in general, based on thiophene. The synthesis and characteristics of the polymers are described along with the application of these as light......-absorbing materials in polymer solar cells....

  6. Hybrid proton-conducting membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Romero, Pedro [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain)]. E-mail: pedro.gomez@icmab.es; Asensio, Juan Antonio [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain); Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain); Borros, Salvador [Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain)

    2005-08-30

    The synthesis and characterization of a novel hybrid organic-inorganic material formed by phosphomolybdic acid H{sub 3}PMo{sub 12}O{sub 40} (PMo{sub 12}) and poly(2,5-benzimidazole) (ABPBI) is reported. This material, composed of two proton-conducting components, can be cast in the form of membranes from methanesulfonic acid (MSA) solutions. Upon impregnation with phosphoric acid, the hybrid membranes present higher conductivity than the best ABPBI polymer membranes impregnated in the same conditions. These electrolyte membranes are stable up to 200 deg. C, and have a proton conductivity of 3 x 10{sup -2} S cm{sup -1} at 185 deg. C without humidification. These properties make them very good candidates as membranes for polymer electrolyte membrane fuel cells (PEMFC) at temperatures of 100-200 deg. C.

  7. COMMUNICATION: Electrochemical polymerization of conducting polymers in living neural tissue

    Science.gov (United States)

    Richardson-Burns, Sarah M.; Hendricks, Jeffrey L.; Martin, David C.

    2007-06-01

    A number of biomedical devices require extended electrical communication with surrounding tissue. Significant improvements in device performance would be achieved if it were possible to maintain communication with target cells despite the reactive, insulating scar tissue that forms at the device-tissue interface. Here, we report that the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) can be polymerized directly within living neural tissue resulting in an electrically conductive network that is integrated within the tissue. Nano and microscale PEDOT filaments extend out from electrode sites, presumably forming within extracellular spaces. The cloud of PEDOT filaments penetrates out into the tissue far enough that it should be possible to bypass fibrous scar tissue and contact surrounding healthy neurons. These electrically functional, diffuse conducting polymer networks grown directly within tissue signify a new paradigm for creating soft, low impedance implantable electrodes.

  8. Synthesis of polymer nanostructures with conductance switching properties

    Energy Technology Data Exchange (ETDEWEB)

    Su, Kai; Nuraje, Nurxat; Zhang, Lingzhi; Matsui, Hiroshi; Yang, Nan Loh

    2015-03-03

    The present invention is directed to crystalline organic polymer nanoparticles comprising a conductive organic polymer; wherein the crystalline organic polymer nanoparticles have a size of from 10 nm to 200 nm and exhibits two current-voltage states: (1) a high resistance current-voltage state, and (2) a low resistance current-voltage state, wherein when a first positive threshold voltage (V.sub.th1) or higher positive voltage, or a second negative threshold voltage (V.sub.th2) or higher negative voltage is applied to the nanoparticle, the nanoparticle exhibits the low-resistance current-voltage state, and when a voltage less positive than the first positive threshold voltage or a voltage less negative than the second negative threshold voltage is applied to the nanoparticle, the nanoparticle exhibits the high-resistance current-voltage state. The present invention is also directed methods of manufacturing the nanoparticles using novel interfacial oxidative polymerization techniques.

  9. Nanostructure investigation of polymer solutions, polymer gels, and polymer thin films

    Science.gov (United States)

    Lee, Wonjoo

    This thesis discusses two systems. One is structured hydrogels which are hydrogel systems based on crosslinked poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) containing micelles which form nanoscale pores within the PDMAEMA hydrogel. The other is nanoporous block copolymer thin films where solvent selectivity is exploited to create nanopores in PS-b-P4VP thin films. Both of these are multicomponent polymer systems which have nanoscale porous structures. 1. Small angle neutron scattering of micellization of anionic surfactants in water, polymer solutions and hydrogels. Nanoporous materials have been broadly investigated due to the potential for a wide range of applications, including nano-reactors, low-K materials, and membranes. Among those, molecularly imprinted polymers (MIP) have attracted a large amount of interest because these materials resemble the "lock and key" paradigm of enzymes. MIPs are created by crosslinking either polymers or monomers in the presence of template molecules, usually in water. Initially, functional groups on the polymer or the monomer are bound either covalently or noncovalently to the template, and crosslinking results in a highly crosslinked hydrogel. The MIPs containing templates are immersed in a solvent (usually water), and the large difference in the osmotic pressure between the hydrogel and solvent removes the template molecules from the MIP, leaving pores in the polymer network containing functionalized groups. A broad range of different templates have been used ranging from molecules to nanoscale structures inclucing stereoisomers, virus, and micelles. When micelles are used as templates, the size and shape before and after crosslinking is an important variable as micelles are thermodynamic objects whose structure depends on the surfactant concentration of the solution, temperature, electrolyte concentration and polymer concentration. In our research, the first goal is to understand the micellization of anionic

  10. Reversible thermochromic polymer film embedded with fluorescent organogel nanofibers.

    Science.gov (United States)

    Kim, Hyungwoo; Chang, Ji Young

    2014-11-18

    We report a reversible thermochromic nanocomposite polymer film composed of fluorescent organogel fibers and a highly cross-linked polymer matrix. A series of cyano-substituted oligo(p-phenylenevinylene) (CN-OPV) derivatives were synthesized by the reaction of dialdehydes with phenyl or naphthyl acetonitrile under basic conditions. Among the CN-OPV derivatives, NA-DBA having naphtyl moieties and dodecyloxy chains formed a stable organogel in a cross-linkable monomeric solvent (ethylene glycol dimethacrylate). The organogel showed a thermoreversible sol-gel transition, accompanying the emission color change. A nanocomposite polymer film obtained by photopolymerization of the organogel between two quartz plates also exhibited reversible thermochromism. Under 365 nm irradiation, the orange color of the film at 25 °C became yellowish green at 120 °C. The fluorescence spectroscopy, DSC, and microscopy results determined that the thermally reversible self-assembly of NA-DBA occurred in the polymer matrix, resulting in reversible thermochromism. The melted gelator molecules at 120 °C did not diffuse into the polymer matrix probably because of poor interactions of the gelator molecules with the polymer matrix. The NA-DBA molecules dispersed in poly(methyl methacrylate), without forming a supramolecular structure, did not show thermochromism.

  11. The elastic mechanical response of supported thin polymer films.

    Science.gov (United States)

    Chung, Peter C; Glynos, Emmanouil; Green, Peter F

    2014-12-23

    Nanoindentation studies of the mechanical properties of sufficiently thin polymer films, supported by stiff substrates, indicate that the mechanical moduli are generally higher than those of the bulk. This enhancement of the effective modulus, in the thickness range of few hundred nanometers, is indicated to be associated with the propagation and impingement of the indentation tip induced stress field with the rigid underlying substrate; this is the so-called "substrate effect". This behavior has been rationalized completely in terms of the moduli and Poisson's ratios of the individual components, for the systems investigated thus far. Here we show that for thin supported polymer films, in general, information regarding the local chain stiffness and local vibrational constants of the polymers provides an appropriate rationalization of the overall mechanical response of polymers of differing chemical structures and polymer-substrate interactions. Our study should provide impetus for atomistic simulations that carefully account for the role of intermolecular interactions on the mechanical response of supported polymer thin films.

  12. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    Science.gov (United States)

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  13. Modification of Conductive Polymer for Polymeric Anodes of Flexible Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Wang Guang-Feng

    2009-01-01

    Full Text Available Abstract A conductive polymer, poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate (PEDOT:PSS, was modified with dimethyl sulfoxide (DMSO in solution state, together with sub-sequential thermal treatment of its spin-coated film. The electrical conductivity increased by more than three orders of magnitude improvement was achieved. The mechanism for the conductivity improvement was studied at nanoscale by particle size analysis, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS. Smaller particle size was observed, resulting in larger contact area and better electrical conductive connections. Connection of conductive PEDOT increased on the surface of the PEDOT:PSS particles, which promoted high conductivity. Flexible anodes based on the modified PEDOT:PSS were fabricated. Flexible organic light-emitting diodes (FOLED based the polymeric anodes have a comparable performance to those on indium–tin–oxide (ITO anodes.

  14. Characterization and dynamic charge dependent modeling of conducting polymer trilayer bending

    Science.gov (United States)

    Farajollahi, Meisam; Sassani, Farrokh; Naserifar, Naser; Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Vidal, Frédéric; Madden, John D. W.

    2016-11-01

    Trilayer bending actuators are charge driven devices that have the ability to function in air and provide large mechanical amplification. The electronic and mechanical properties of these actuators are known to be functions of their charge state making prediction of their responses more difficult when they operate over their full range of deformation. In this work, a combination of state space representation and a two-dimensional RC transmission line model are used to implement a nonlinear time variant model for conducting polymer-based trilayer actuators. Electrical conductivity and Young’s modulus of electromechanically active PEDOT conducting polymer containing films as a function of applied voltage were measured and incorporated into the model. A 16% drop in Young’s modulus and 24 times increase in conductivity are observed by oxidizing the PEDOT. A closed form formulation for radius of curvature of trilayer actuators considering asymmetric and location dependent Young’s modulus and conductivity in the conducting polymer layers is derived and implemented in the model. The nonlinear model shows the capability to predict the radius of curvature as a function of time and position with reasonable consistency (within 4%). The formulation is useful for general trilayer configurations to calculate the radius of curvature as a function of time. The proposed electrochemical modeling approach may also be useful for modeling energy storage devices.

  15. Evaluation of SOCl2 doping effect on electrical conductivity of thin films of SWNTs and SWNT/PEDOT-PSS composites.

    Science.gov (United States)

    Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Chang, Jingbo; Kim, Jae-Ho

    2011-07-01

    Transparent conductive thin films of single-walled carbon nanotubes (SWNTs) and their nanocomposites with an organic conductive polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) with different CNT loadings ranging from 20 to 90 wt% were prepared and doped by exposing them to thionyl chloride (SOCl2) vapors. After exposure to SOCl2 vapor for 1 h, the SWNT film showed about 15-18% increase of electrical conductivity, while on the other hand pristine polymer film showed a decrease of electrical conductivity. The SWNT-polymer composite films showed a drastic increase in conductivity by doping with SOCl2 vapor, most interestingly, the doping effect was much higher for composite films with less CNT weight fraction and it was linearly decreased with increasing CNT loading. For instance, composite film with 10% and 90% CNT loading demonstrated about 65% and 10% increase of electrical conductivity, respectively. The interaction of SOCl2 vapors on SWNTs and composite films is investigated by UV-visible absorption and Raman spectroscopy.

  16. Femtosecond laser induced index and relief gratings in polymer films

    Institute of Scientific and Technical Information of China (English)

    Yi Dong; Xiaoqiang Yu; Yuming Sun; Yufei Li; Xueyuan Hou; Xian Zhang

    2007-01-01

    A true single-step process suitable for fabrication of micro-periodic structure in polymer films by two photon initiated photopolymerization and laser ablation is presented. By the right choice of the irradiation energy, the irradiated zone is modified or ablated in the 1.44-μm-thick film. The mechanism of grating generation and the potential application of the gratings in integrated optics are discussed.

  17. Semi-metallic, strong conductive polymer microfiber, method and fast response rate actuators and heating textiles

    KAUST Repository

    Zhou, Jian

    2016-06-09

    A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy- thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet- spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S · cm-1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S · cm-1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S · cm-1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young\\'s modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

  18. Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-01-01

    Herein, we report for the first time, conducting polymer (polyaniline (PANI) and polypyrrole (PPY)) coated carbon nanocoils (CNCs) as efficient binder-free electrode materials for supercapacitors. CNCs act as a perfect backbone for the uniform distribution of the conducting polymers in the composites. In two electrode configuration, the samples exhibited high specific capacitance with the values reaching up to 360 and 202 F g -1 for PANI/CNCs and PPY/CNCs respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be comparable to one of the best reported values for polymer coated multi-walled carbon nanotubes. In addition, the fabricated PANI/CNC based supercapacitors exhibited a high value of 44.61 Wh kg -1 for maximum storage energy per unit mass. Although the devices exhibit an initial capacitance loss due to the instability of the polymer, the specific capacitance stabilizes at a fixed value after 500 charge-discharge cycles. © 2012 The Royal Society of Chemistry.

  19. Stably Doped Conducting Polymer Nanoshells by Surface Initiated Polymerization.

    Science.gov (United States)

    Li, Junwei; Yoon, Soon Joon; Hsieh, Bao-Yu; Tai, Wanyi; O'Donnell, Matthew; Gao, Xiaohu

    2015-12-09

    Despite broad applications ranging from electronics to biomedical sensing and imaging, a long-standing problem of conducting polymers is the poor resistance to dedoping, which directly affects their signature electrical and optical properties. This problem is particularly significant for biomedical uses because of fast leaching of dopant ions in physiological environments. Here, we describe a new approach to engineer multimodal core-shell nanoparticles with a stably doped conductive polymer shell in biological environments. It was achieved by making a densely packed polymer brush rather than changing its molecular structure. Polyaniline (PANI) was used as a model compound due to its concentrated near-infrared (NIR) absorption. It was grafted onto a magnetic nanoparticle via a polydopamine intermediate layer. Remarkably, at pH 7 its conductivity is ca. 2000× higher than conventional PANI nanoshells. Similarly, its NIR absorption is enhanced by 2 orders of magnitude, ideal for photothermal imaging and therapy. Another surprising finding is its nonfouling property, even outperforming polyethylene glycol. This platform technology is also expected to open exciting opportunities in engineering stable conductive materials for electronics, imaging, and sensing.

  20. Surface Modification of the Conducting Polymer, Polypyrrole, via Affinity Peptide**

    Science.gov (United States)

    Nickels, Jonathan D.; Schmidt, Christine E.

    2012-01-01

    A novel strategy for affinity-based surface modification of the conducting polymer, polypyrrole, (PPy), has been developed. A 12-amino acid peptide (THRTSTLDYFVI, hereafter denoted T59) was previously identified via the phage display technique. This peptide non-covalently binds to the chlorine-doped conducting polymer polypyrrole (PPyCl). Studies have previously shown that conductive polymers have promising application in neural electrodes, sensors, and for improving regeneration and healing of peripheral nerves and other tissues. Thus, the strong and specific attachment of bio-active molecules to the surface of PPy using the T59 affinity peptide is an exciting new approach to enhance the bioactivity of electrically active materials for various biomedical applications. We demonstrate this by using T59 as a tether to modify PPyCl with the laminin fragment IKVAV to enhance cell interactions, as well as with the so-called stealth molecule poly(ethylene glycol; PEG) to decrease cell interactions. Using these two modification strategies, we were able to control cell attachment and neurite extension on the PPy surface, which is critical for different applications (i.e., the goal for tissue regeneration is to enhance cell interactions, whereas the goal for electrode and sensor applications is to reduce glial cell interactions and thus decrease scarring). Significantly, the conductivity of the PPyCl surface was unaffected by this surface modification technique, which is not the case with other methods that have been explored to surface modify conducting polymers. Finally, using subcutaneous implants, we confirmed that the PPyCl treated with the T59 peptide did not react in vivo differently than untreated PPyCl. PMID:23129217

  1. Surface modification of the conducting polymer, polypyrrole, via affinity peptide.

    Science.gov (United States)

    Nickels, Jonathan D; Schmidt, Christine E

    2013-05-01

    A novel strategy for affinity-based surface modification of the conducting polymer, polypyrrole, (PPy), has been developed. A 12-amino acid peptide (THRTSTLDYFVI, hereafter denoted T59) was previously identified via the phage display technique. This peptide noncovalently binds to the chlorine-doped conducting polymer polypyrrole (PPyCl). Studies have previously shown that conductive polymers have promising application in neural electrodes, sensors, and for improving regeneration and healing of peripheral nerves and other tissues. Thus, the strong and specific attachment of bioactive molecules to the surface of PPy using the T59 affinity peptide is an exciting new approach to enhance the bioactivity of electrically active materials for various biomedical applications. We demonstrate this by using T59 as a tether to modify PPyCl with the laminin fragment IKVAV to enhance cell interactions, as well as with the so-called stealth molecule poly(ethylene glycol; PEG) to decrease cell interactions. Using these two modification strategies, we were able to control cell attachment and neurite extension on the PPy surface, which is critical for different applications (i.e., the goal for tissue regeneration is to enhance cell interactions, whereas the goal for electrode and sensor applications is to reduce glial cell interactions and thus decrease scarring). Significantly, the conductivity of the PPyCl surface was unaffected by this surface modification technique, which is not the case with other methods that have been explored to surface modify conducting polymers. Finally, using subcutaneous implants, we confirmed that the PPyCl treated with the T59 peptide did not react in vivo differently than untreated PPyCl. Copyright © 2012 Wiley Periodicals, Inc.

  2. Influence of Al2O3 on the ionic conductivity of plasticized PVC-PEG blend polymer electrolytes

    Science.gov (United States)

    Ravindran, D.; Vickraman, P.

    2016-05-01

    Polymer electrolytes with PVC-PEG blend as host matrix and LiClO4 as dopant salt was prepared through conventional solution casting method. To enhance the conductivity propylene carbonate (PC) was used as plasticizer. The influence of ceramic filler Al2O3 on the conductivity of the electrolyte films were studied by varying the (PVC: Al2O3) ratio. The films were subjected to XRD, complex impedance analysis and SEM analysis. The XRD studies reveal a marginal increase in the amorphous phase of the electrolyte films due to the incorporation of filler. The AC impedance analysis shows the dependency of ionic conductivity on the content (wt %) of filler and exhibit a maximum at 4 wt% filler. The SEM analysis depicts the occurrence of phase separation in electrolyte which is attributed to the poor solubility of polymer PVC in the liquid electrolyte.

  3. Investigation of ITO free transparent conducting polymer based electrode

    Science.gov (United States)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  4. Development of the conductive polymer matrix composite with low concentration of the conductive filler

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xiangyang [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: haoxy@tsinghua.edu.cn; Gai Guosheng; Yang Yufen [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang Yihe [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Nan Cewen [Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2008-05-15

    Composite particles with ultra-high molecular polyethylene (UHMWPE) core and carbon black (CB) or carbon nanotube (CNT) shell were produced by particle composite system, then molded into conductive polymer composites. Morphology of these composite particles was investigated by scanning electron microscopy (SEM). Matrix particles are coated with CB or CNTs very well. And CNTs are not being cut short. The results of electrical behavior study show that these polymer composites have low percolation threshold. Conductive networks of CB and CNT were seen by optical microscopy. Related mechanism is discussed.

  5. Process optimization of ultrasonic spray coating of polymer films.

    Science.gov (United States)

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  6. Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories

    Science.gov (United States)

    Möller, Sven; Forrest, Stephen R.; Perlov, Craig; Jackson, Warren; Taussig, Carl

    2003-12-01

    We demonstrate a nonvolatile, write-once-read-many-times (WORM) memory device employing a hybrid organic/inorganic semiconductor architecture consisting of thin film p-i-n silicon diode on a stainless steel substrate integrated in series with a conductive polymer fuse. The nonlinearity of the silicon diodes enables a passive matrix memory architecture, while the conductive polyethylenedioxythiophene:polystyrene sulfonic acid polymer serves as a reliable switch with fuse-like behavior for data storage. The polymer can be switched at ˜2 μs, resulting in a permanent decrease of conductivity of the memory pixel by up to a factor of 103. The switching mechanism is primarily due to a current and thermally dependent redox reaction in the polymer, limited by the double injection of both holes and electrons. The switched device performance does not degrade after many thousand read cycles in ambient at room temperature. Our results suggest that low cost, organic/inorganic WORM memories are feasible for light weight, high density, robust, and fast archival storage applications.

  7. PRESSURE DRIVEN CONDUCTING POLYMER MEMBRANES DERIVED FROM LAYER BY LAYER FORMATION AND CHARACTERIZATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    IZZATI IZNI YUSOFF

    2016-08-01

    Full Text Available The layer-by-layer method is a technique used for the fabrication of ultra-thin defect free films which involves alternating sequential adsorption of polycations and polyanions, while conducting polymer is characterized by a conjugated structure of alternating single and double bonds. The use of layer-by-layer in producing a membrane for separation has received considerable interest due to its properties. However, the introduction of conducting polymer as a base membrane is relatively new. Therefore, in this review, we discuss in detail three types of LBL techniques (dip, spin and spray layer-by-layer along with their parameters. We will also summarize current developments on the characterization of modified membrane prepared using the layer-by-layer techniques in terms of morphology, physical and chemical properties, and separation performances.

  8. CHEMICALLY DEPOSITED SILVER FILM USED AS A SERS-ACTIVE OVER COATING LAYER FOR POLYMER FILM

    Institute of Scientific and Technical Information of China (English)

    Xiao-ning Liu; Gi Xue; Yun Lu; Jun Zhang; Fen-ting Li; Chen-chen Xue; Stephen Z.D. Cheng

    2001-01-01

    When colloidal silver particles were chemically deposited onto polymer film as an over-coating layer, surfaceenhanced Raman scattering (SERS) spectra could be collected for the surface analysis. SERS measurements of liquid crystal film were successfully performed without disturbing the surface morphology.

  9. Electron beam and gamma ray irradiated polymer electrolyte films: Dielectric properties

    Directory of Open Access Journals (Sweden)

    S. Raghu

    2016-04-01

    Full Text Available In this study, polymer electrolyte films were irradiated with electron beam (EB and Gamma ray (GR at 50 and 150 kGy. The induced chemical changes in films due to irradiations have been confirmed from the Fourier Transform Infra red (FT-IR spectra. The X-ray Diffractometry (XRD results show that crystallinity decreases by ∼20% in EB and ∼10% in GR irradiated films respectively compared to non-irradiated film. The micro structural arrangement was investigated by Scanning Electronic Microscopy (SEM and the images reveal that there is a substantial improvement in the surface morphology in irradiated films. The real (ε′ and imaginary (ε″ dielectric constant and AC conductivity are found to increase with increase in irradiation dose. Improved dielectric properties and conductivity (1.74 x 10−4 & 1.15 x 10−4 S/cm, respectively, for EB and GR irradiated films at room temperature after irradiation and it confirm that EB and GR irradiation can be simple and effective route to obtaining highly conductive polymer electrolytes. From this study it is confirm that EB is more effectiveness than GR irradiation.

  10. Roll-to-roll embossing of optical linear Fresnel lens polymer film for solar concentration.

    Science.gov (United States)

    Zhang, XinQuan; Liu, Kui; Shan, Xuechuan; Liu, Yuchan

    2014-12-15

    Roll-to-roll manufacturing has been proven to be a high-throughput and low-cost technology for continuous fabrication of functional optical polymer films. In this paper, we have firstly studied a complete manufacturing cycle of linear Fresnel lens polymer film for solar concentration in the aspects of ultra-precision diamond machining of metal roller mold, roll-to-roll embossing, and measurement on film profile and functionality. A metal roller mold patterned with linear Fresnel lenses is obtained using single point diamond turning technique. The roller mold is installed onto a self-developed roll-to-roll UV embossing system to realize continuous manufacturing of linear Fresnel lens film. Profile measurement of the machined roller mold and the embossed polymer film, which is conducted using a stylus profilometer, shows good agreement between measured facet angles with designed ones. Functionality test is conducted on a solar simulation system with a reference solar cell, and results show that strong light concentration is realized.

  11. Sub-Micrometer Size Structure Fabrication Using a Conductive Polymer

    Directory of Open Access Journals (Sweden)

    Junji Sone

    2014-12-01

    Full Text Available Stereolithography that uses a femtosecond laser was employed as a method for multiphoton-sensitized polymerization. We studied the stereolithography method, which produces duplicate solid shapes corresponding to the trajectory of the laser focus point and can be used to build a three-dimensional (3D structure using a conductive polymer. To achieve this, we first considered a suitable polymerization condition for line stereolithography. However, this introduced a problem of irregular polymerization. To overcome this, we constructed a support in the polymerized part using a protein material. This method can stabilize polymerization, but it is not suited for building 3D shapes. Therefore, we considered whether heat accumulation causes the irregular polymerization; consequently, the reduction method of the repetition rate of the femtosecond laser was used to reduce the heating process. This method enabled stabilization and building of a 3D shape using photo-polymerization of a conductive polymer.

  12. Layer-by-layer structured polymer/TiO2 thin film and its gate dielectric application.

    Science.gov (United States)

    Park, Bong Jun; Park, Jae Hoon; Choi, Jong Sun; Choi, Hyoung Jin

    2010-07-01

    Composite materials of the polymer and inorganic dielectric material have been investigated due to synergistic effect of both flexible properties of the polymer and dielectric properties of the inorganic material. In this study, poly(methyl methacrylate-co-methacrylic acid)/titanium dioxide (PMMA-co-MAA/TiO2) bilayer films were fabricated using a spin coating method followed by a self assembled sol-gel process and then examined for a gate dielectric application of the OTFT. Fracture and surface morphologies of the bilayer film on silicon wafer was observed via both SEM and AFM. Dielectric constant of the composite film synthesized was found to be larger than that of pure polymer film. In addition, with pentacene as a conducting layer, device performance of the composite film was characterized, and it was found that the threshold gate voltage was reduced while the field induced current was increased.

  13. Prospects of Organic Conducting Polymer Modified Electrodes: Enzymosensors

    Directory of Open Access Journals (Sweden)

    Ravindra P. Singh

    2012-01-01

    Full Text Available Organic conducting polymer modified electrodes (OCPMEs have emerged as potential candidates for electrochemical biosensors due to their easy preparation methods along with unique properties, like stability in air and being compatible with biological molecules in a neutral aqueous solution. OCPMEs are playing an important role in the improvement of public health and environment for the detection of desired analytes with high sensitivity and specificity. In this paper, we highlight the prospects of OCMEs-based electrochemical enzymosensors.

  14. Thermal Annealing-Induced Self-Stretching: Fabrication of Anisotropic Polymer Particles on Polymer Films.

    Science.gov (United States)

    Lo, Yu-Ching; Chiu, Yu-Jing; Tseng, Hsiao-Fan; Chen, Jiun-Tai

    2017-10-06

    Designing anisotropic particles of various shapes draws great attention to scientists nowadays. In this work, we develop a facile and simple method to fabricate anisotropic polymer particles from spherical polymer particles. Polyvinyl alcohol (PVA) films spin-coated with polystyrene (PS) microspheres are confined on both sides using binder clips and are heated above the glass transition temperatures of the polymers. During the thermal annealing process, the PS particles sink into the PVA films and transform to anisotropic particles. Depending on the distances to the bound regions, oblate spheroid PS particles or prolate spheroid particles with different aspect ratios can be obtained. The transformation of the particles is mainly driven by the stretching forces and the squeezing forces. The main advantage of this method is that anisotropic particles with different shapes can be fabricated simultaneously on a single film. We expect this novel method can be helpful to various fields including colloids science, suspension rheology, and drug delivery.

  15. Microscopic mechanism of reinforcement and conductivity in polymer nanocomposite materials

    Science.gov (United States)

    Chang, Tae-Eun

    Modification of polymers by adding various nano-particles is an important method to obtain effective enhancement of materials properties. Within this class of materials, carbon nanotubes (CNT) are among the most studied materials for polymer reinforcement due to their extraordinary mechanical properties, superior thermal and electronic properties, and high aspect ratio. However, to unlock the potential of CNTs for applications, CNTs must be well dispersed in a polymer matrix and the microscopic mechanism of polymer reinforcement by CNTs must be understood. In this study, single-wall carbon nanotube (SWNT) composites with polypropylene (PP)-SWNT and polystyrene (PS)-SWNT were prepared and analyzed. Microscopic study of the mechanism of reinforcement and conductivity by SWNT included Raman spectroscopy, wide-angle X-ray diffraction (WAXD) and dielectric measurement. For PP-SWNT composites, tensile tests show a three times increase in the Young's modulus with addition of only 1 wt% SWNT, and much diminished increase of modulus with further increase in SWNT concentration. For PS-SWNT composites, well-dispersed SWNT/PS composite has been produced, using initial annealing of SWNT and optimum sonication conditions. The studies on the tangential mode in the Raman spectra and TEM indicated well-dispersed SWNTs in a PS matrix. We show that conductivity appears in composites already at very low concentrations, hinting at the formation of a 'percolative' network even below 0.5% of SWNT. The Raman studies for both composites show good transfer of the applied stress from the polymer matrices to SWNTs. However, no significant improvement of mechanical property is observed for PS-SWNT composites. The reason for only a slight increase of mechanical property remains unknown.

  16. Micro-indentation relaxation measurements in polymer thin films

    Science.gov (United States)

    Shinozaki, D. M.; Lu, Y.

    1997-07-01

    A micro-indenter consisting of a piezo-electric driven flat cylindrical punch has been used to measure the dynamic mechanical properties of polystyrene films as thin as 50 μm. The measured viscoelastic response was sensitive to the bonding of the polystyrene to an underlying silicon substrate for films which were thinner than one indenter diameter. The instrument therefore was shown to have practical use in measuring the dynamic mechanical response of polymer films, and the strength of bonding between disparate materials.

  17. Effects of dispersion forces in the instability of polymer films

    Institute of Scientific and Technical Information of China (English)

    Zhao He-Ping; Ophelia K.C.Tsui; Liu Zheng-You

    2006-01-01

    Spontaneous rupture of some polymer films upon heating is commonplace. The very criterion for this instability is the system free energy possessing a negative curvature. Within the framework of full frequency-dependent theory of dispersion forces, we have derived the excess free energy of a typical system-polystyrene film deposited on the silicon substrate. The excess free energy, wavelengths and growth rates are calculate and a comparison is made between the accurate results and the approximate results. It is found that the stability of the film can be tuned by the variation of the thickness of the coating and the retardation effects can be significant sometimes.

  18. Conductive layer for biaxially oriented semiconductor film growth

    Science.gov (United States)

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  19. Ion conduction mechanism in non-aqueous polymer electrolytes based on oxalic acid: Effect of plasticizer and polymer

    Energy Technology Data Exchange (ETDEWEB)

    Missan, Harinder Pal Singh; Chu, P.P. [Department of Chemistry, National Central University, Chungli 32001 (Taiwan); Sekhon, S.S. [Department of Applied Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India)

    2006-08-25

    Non-aqueous proton-conducting polymer electrolytes in the film form are synthesized through the complexation of oxalic acid (OA) and polyvinylidenefluoride-co-hexafluoro propylene (PVdF-HFP). Interestingly, the addition of a small amount of the basic component dimethylacetamide (DMA) gives rise to a three-order increase in conductivity. The value is found to depend on the concentrations of the weak acid and DMA in the electrolytes. A maximum conductivity of 0.12x10{sup -3}Scm{sup -1} has been achieved at ambient temperature for electrolytes containing 40wt.% OA with DMA. The observed increase in conductivity is considered to be due to interactions taking place between the high dielectric polymer media, the acid and the basic plasticizer. These interactions are confirmed from fourier transform infra red (FTIR) studies and supported by differential scanning calorimetry (DSC) measurements. Apart from providing acid-base interaction, the base DMA also improves the surface morphology and reduces the pore volume, both of which help to retain the acid-base complex within the membrane. (author)

  20. Thermal conductivity and interface thermal conductance of thin films in Li ion batteries

    Science.gov (United States)

    Jagannadham, K.

    2016-09-01

    Laser physical vapor deposition is used to deposit thin films of lithium phosphorous oxynitride in nitrogen and lithium nickel manganese oxide in oxygen ambient on Si substrate. LIPON film is also deposited on LiNiMnO film that is deposited on Si. Graphene films consisting of graphene platelets are deposited on Si substrate from a suspension in isopropyl alcohol. Li-graphene films are obtained after Li adsorption by immersion in LiCl solution and further drying. Transient thermo reflectance signal is used to determine the cross-plane thermal conductivity of different layers and interface thermal conductance of the interfaces. The results show that LIPON film with lower thermal conductivity is a thermal barrier. The interface thermal conductance between LIPON and Au or Si is found to be very low. Thermal conductivity of LiNiMnO is found to be reasonably high so that it is not a barrier to thermal transport. Film with graphene platelets shows a higher value and Li adsorbed graphene film shows a much higher value of cross-plane thermal conductivity. The value of interface thermal conductance between graphene and Au or Si (100) substrate is also much lower. The implications of the results for the thermal transport in thin film Li batteries are discussed.

  1. Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Register

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Acikgöz, Canet; Daugaard, Anders Egede;

    2012-01-01

    A versatile procedure is presented for fast and efficient micropatterning of multiple types of covalently bound surface chemistry in perfect register on and between conductive polymer microcircuits. The micropatterning principle is applied to several types of native and functionalized PEDOT (poly(3......,4-ethylenedioxythiophene)) thin films. The method is based on contacting PEDOT-type thin films with a micropatterned agarose stamp containing an oxidant (aqueous hypochlorite) and applying a nonionic detergent. Where contacted, PEDOT not only loses its conductance but is entirely removed, thereby locally revealing...... the underlying substrate. Surface analysis showed that the substrate surface chemistry was fully exposed and not affected by the treatment. Click chemistry could thus be applied to selectively modify re-exposed alkyne and azide functional groups of functionalized polystyrene substrates. The versatility...

  2. Ion Transport and Discharge Characteristics of Polymer Blend (PVP/PVA) Electrolyte Films Doped with Potassium Iodide

    Science.gov (United States)

    Umadevi, C.; Mohan, K. R.; Achari, V. B. S.; Sharma, A. K.; Rao, V. V. R. N.

    2010-12-01

    Solid polymer blend electrolyte films based on PVP/PVA complexed with KI were prepared by the solution cast technique. Various experimental techniques such as electrical conductivity and transport number measurement were used to characterize the polymer electrolyte films. Electrochemical cells with the polymer electrolytes (PVP+PVA+KI) were fabricated in the configuration K/(PVP+PVA+KI)/ (I2+C+electrode). The discharge characteristics of the cells were studied under a constant load of 100 KΩ. The open-circuit voltage, short-circuit current and discharge time for the plateau region are measured. Several other cell parameters were evaluated and are reported.

  3. Double-electrochromic coordination polymer network films.

    Science.gov (United States)

    Maier, Anna; Cheng, Kalie; Savych, Julia; Tieke, Bernd

    2011-07-01

    Formation and characteristic properties of organized double-electrochromic films consisting of electrochromic poly(4-(2,2':6,2″-terpyridyl)phenyliminofluorene) (P-1)-zinc ion complexes and electrochromic anions are reported. The anions are 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonate) (ABTS) and poly((4-sulfonatophenyl)iminofluorene) (P-2). The films were prepared upon multiple sequential adsorption of P-1 and the zinc salts of ABTS and P-2 on solid supports using coordinative interactions between the Zn ions and the terpyridine (tpy) ligands. The ABTS and P-2 ions are incorporated in the films via electrostatic forces neutralizing the charge of the complexed divalent zinc (Zn(2+)) ions. The optical, electrochemical, and electrochromic properties of the films are described. Films consisting of the Zn ion complex of P-1 and ABTS are yellow in the neutral state and change their color to brownish gray and finally blue, if anodically oxidized at ∼640 mV vs FOC. Films containing the Zn ion complex of P-1, with P-2 as a counterion, are yellow in the neutral state and change color to dark red and finally blue, if anodically oxidized at ∼450 mV vs FOC. Compared with previously reported films of the Zn ion complex of P-1 with nonelectroactive hexafluorophosphate as the counterion, the new films exhibit faster response times, as well as higher contrast, and the colors in the oxidized state are modified. The films are stable under ambient conditions and might be useful as active layers in electrochromic devices.

  4. Interfacial Slip in Soap Films with Hydrosoluble Polymer

    Science.gov (United States)

    Adelizzi, E. A.; Berg, S.; Troian, S. M.

    2003-11-01

    The thickness of a Newtonian soap film entrained at small capillary number should scale as Ca^2/3 provided the bounding surfaces are rigid. Previous studies show that soap films containing associating, low concentration, high molecular weight (M_w) polymer exhibit strong deviations from this scaling. We report results by laser interferometry of the entrained film thickness for the associating pair SDS/PEO over a large range in polymer molecular weight. Direct comparison to predictions of hydrodynamic models based on viscoelastic behavior shows poor agreement.Modification of the Frankel analysis to account for mobile films through a Navier slip condition yields good agreement. In addition, the slip length Ls increases as M_w^3/5, consistent with a correlation based on a polymer chain size for freely jointed chains with excluded volume effects. Although developed to explain slip at liquid-solid interfaces, the Tolstoi-Larson prediction that Ls scales as the polymer size agrees favorably with our results. Whether the slip behavior is due to Marangoni effects cannot be ruled out.

  5. Structuring of Thin-Film Polymer Mixtures upon Solvent Evaporation

    NARCIS (Netherlands)

    Schaefer, C.; Michels, J. J.; van der Schoot, P.

    2016-01-01

    We theoretically study the impact of solvent evaporation on the dynamics of isothermal phase separation of ternary polymer solutions in thin films. In the early stages we obtain a spinodal length scale that decreases with time under the influence of ongoing evaporation. After that rapid demixing

  6. Polymer thick-film sensors: possibilities for smartcard biometrics

    NARCIS (Netherlands)

    Henderson, N.J.; Papakostas, T.V.; White, N.M.; Hartel, P.H.

    2002-01-01

    In this paper the potential of polymer thick-film sensors are assessed for use as biometric sensors on smartcards. Piezoelectric and piezoresistive sensors have been printed on flexible polyester, then bonded to smartcard blanks. The tactile interaction of a person with these sensors has been invest

  7. Dynamics and structure formation in thin polymer melt films

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, Ralf [Max-Planck-Institut for Dynamics and Self-Organization, Bunsenstrasse 10, 37073 Goettingen (Germany); Herminghaus, Stephan [Max-Planck-Institut for Dynamics and Self-Organization, Bunsenstrasse 10, 37073 Goettingen (Germany); Neto, Chiara [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Schlagowski, Stefan [Department of Applied Physics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Podzimek, Daniel [Experimental Physics, Saarland University, 66041 Saarbruecken (Germany); Konrad, Renate [Experimental Physics, Saarland University, 66041 Saarbruecken (Germany); Mantz, Hubert [Experimental Physics, Saarland University, 66041 Saarbruecken (Germany); Jacobs, Karin [Experimental Physics, Saarland University, 66041 Saarbruecken (Germany)

    2005-03-09

    The stability of thin liquid coatings plays a fundamental role in everyday life. We studied the stability conditions of thin (3 to 300 nm) liquid polymer films on various substrates. The key role is played by the effective interface potential {phi} of the system air/film/substrate, which determines the dewetting scenario in case the film is not stable. We describe in this study how to distinguish a spinodal dewetting scenario from heterogeneous and homogeneous dewetting by analysing the emerging structures of the film surface by e.g. Minkowski measures. We also include line tension studies of tiny droplets, showing that the long-range part of {phi} does affect the drop profile, but only very close to the three phase boundary line. The dynamic properties of the films are characterized via various experimental methods: the form of the dewetting front, for example, was recorded by scanning probe microscopy and gives insight into the boundary condition between the liquid and the substrate. We further report experiments probing the viscosity and the glass transition temperature of nm-thick films using e.g. ellipsometry. Here we find that even short-chained polymer melts exhibit a significant reduction of the glass transition temperature as the film thickness is reduced below 100 nm.

  8. Toward an understanding of the formation of conducting polymer nanofibers.

    Science.gov (United States)

    Tran, Henry D; Wang, Yue; D'Arcy, Julio M; Kaner, Richard B

    2008-09-23

    Introducing small amounts of additives into polymerization reactions to produce conducting polymers can have a profound impact on the resulting polymer morphology. When an oligomer such as aniline dimer is added to the polymerization of aniline, the nanofibers produced are longer and less entangled than those typically observed. The addition of aniline dimer can even induce nanofiber formation under synthetic conditions that generally do not favor a nanofibrillar morphology. This finding can be extended to both the synthesis of polythiophene and polypyrrole nanofibers. The traditional oxidative polymerization of thiophene or pyrrole only produces agglomerated particles. However, when minute amounts of thiophene or pyrrole oligomers are added to the reaction, the resulting polymers possess a nanofibrillar morphology. These results reveal important insights into a semirigid rod nucleation phenomenon that has hitherto been little explored. When polyaniline nucleates homogeneously, surface energy requirements necessitate the formation of ordered nuclei which leads to the directional polymerization of aniline. This ultimately leads to the one-dimensional nanofibrillar morphology observed in the final product. The synthetic procedures developed here are simple, scalable, and do not require any templates or other additives that are not inherent to the polymer.

  9. Biomimetic sensing layer based on electrospun conductive polymer webs.

    Science.gov (United States)

    Zampetti, E; Pantalei, S; Scalese, S; Bearzotti, A; De Cesare, F; Spinella, C; Macagnano, A

    2011-01-15

    The aim of the present study is to combine a bio-inspired nanofibrous artificial epithelium to the electronic nose (e-nose) principles. The sensing device set up was an electronic nose consisting of an array of 9 micro-chemoresistors (Cr-Au, 3×3) coated with electrospun nanofibrous structures. These were comprised of doped polyemeraldine base blended with 3 different polymers: polyethylene oxide, polyvinilpyrrolidone and polystyrene, which acted as carriers for the conducting polymer and were the major responsible of the features of each fibrous overlay (electrical parameters, selectivity and sensitivity ranges). The two sensing strategies here adopted and compared consisted in the use of 2 different textural coatings: a single- and a double-overlay, where the double-overlay resulting from overdeposition of 2 different polymer blends. Such e-nose included a plurality of nanofibres whose electrical parameters were at the same time depending on each polymer exposure to analytes (NO(2), NH(3)) and on the spatial distribution of the interlacing fibres. The morphology of the coating arrangements of this novel e-nose was investigated by scanning electron microscopy (SEM) and its sensor responses were processed by multicomponent data analyses (PCA and PLS) reporting encouraging results for detection and recognition of analytes at ppb levels.

  10. Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Naoki Imazu

    2014-04-01

    Full Text Available The fabrication of flexible transparent conducting films (TCFs is important for the development of the next-generation flexible devices. In this study, we used double-walled carbon nanotubes (DWCNTs as the starting material and described a fabrication method of flexible TCFs. We have determined in a quantitative way that the key factors are the length and the dispersion states of the DWCNTs as well as the weight-ratios of dispersant polymer/DWCNTs. By controlling such factors, we have readily fabricated a flexible highly transparent (94% transmittance and conductive (surface resistivity = 320 Ω sq−1 DWCNT film without adding any chemical doping that is often used to reduce the surface resistivity. By applying a wet coating, we have succeeded in the fabrication of large-scale conducting transparent DWCNT films based on the role-to-role method.

  11. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  12. Transparent lithiated polymer films for thermal neutron detection

    Science.gov (United States)

    Mabe, Andrew N.; Auxier, John D.; Urffer, Matthew J.; Penumadu, Dayakar; Schweitzer, George K.; Miller, Laurence F.

    2013-09-01

    Novel water-soluble 6Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using 6Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum 6Li loading obtained that resulted in a transparent film was 4.36% by mass (6Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of 6Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein.

  13. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  14. Research on the electronic and optical properties of polymer and other organic molecular thin films

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The main goal of the work is to find materials and methods of optimization of organic layered electroluminescent cells and to study such properties of polymers and other organic materials that can be used in various opto-electronic devices. The summary of results obtained during the first year of work is presented. They are: (1) the possibility to produce electroluminescent cells using a vacuum deposition photoresist technology for commercial photoresists has been demonstrated; (2) the idea to replace the polyaryl polymers by other polymers with weaker hole conductivity for optimization of electroluminescent cells with ITO-Al electrodes has been suggested. The goal is to obtain amorphous processable thin films of radiative recombination layers in electroluminescent devices; (3) procedures of preparation of high-quality vacuum-deposited poly (p-phenylene) (PPP) films on various substrates have been developed; (4) it was found for the first time that the fluorescence intensity of PPP films depends on the degree of polymerization; (5) the role of interfaces between organic compounds, on one side, and metals or semiconductors, on the other side, has been studied and quenching of the fluorescence caused by semiconductor layer in thin sandwiches has been observed; (6) studies of the dynamics of photoexcitations revealed the exciton self-trapping in quasi-one-dimensional aggregates; and (7) conditions for preparation of highly crystalline fullerene C{sub 60} films by vacuum deposition have been found. Composites of C{sub 60} with conjugated polymers have been prepared.

  15. Development of Thin Conducting Film Fabrication Methods.

    Science.gov (United States)

    1979-12-01

    mediate mandrels ( beeswax , polymeric resins such as PVA, PVC, PBS, Saran). Efforts to transfer the foils intact from formation on intermediate mandrels...methods Investigated for removing and transferring pyrolytic carbon films onto cylindrical electrodes consist of: (1) melted beeswax and other high...substrate material for this study. In this particular investigation, several 2.5-cm x 10-cm-diameter fused silica cylindrical mandrels were CVD coated

  16. Conduction Mechanisms in Thick Film Microcircuits

    Science.gov (United States)

    1975-12-01

    AREMCO 3100 Screen Printing Machine 53 3.11 Squeegee Design 55 3.12 Effect of Screen Printer Parameters on Filin Weight Deposited 59 3.13 Variation of...deviation of printing performance. This is discussed in greater detail sIfter the materials and machine are described. 3.5.2 Screening Material and...beyoni the range of monolithic technology can be satisfied by combining monolithic and thick film technologies. Design functions such as flexibility

  17. Electrochemical preparation of polypyrrole conducting films

    Directory of Open Access Journals (Sweden)

    Mária Filkusová*

    2010-12-01

    Full Text Available Cyclic voltammetry has been used to investigate the electrochemical polymerization of pyrrole on the surface of a paraffin impregnated graphite electrode (PIGE. Effect of pH and concentration of the electrolyte solution on the electrochemical deposition of polypyrrole (PPy was studied. The structure of the deposited layers was studied using scanning electron microscope (SEM. Well–adhering black PPy films were obtained.

  18. Conducting polymer coatings in electrochemical technology: part 2 – application areas.

    OpenAIRE

    Ponce De Leon, Carlos; Campbell, Sheelagh; Smith, James; Walsh, Frank

    2008-01-01

    Conducting polymers can combine the electronic characteristics of metals with the engineering properties of polymers. Polypyrrole (PPy), polythiophene (PTh) and polyaniline (PAni) are common examples of conducting polymers which can be electrodeposited from their respective heterocyclic monomers. The applications of these and other electrodeposited polymer materials are considered in this review. Application areas include electronic and optical materials, sensors, bioimplants, actuators and c...

  19. Preparation and characterization of polymer-clay nanocomposite films

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Polymer/clay nanocomposite films were prepared by means of electrodeposition of aqueous suspension including cathodic electrophoretic acrylic resin (CEAR) and Na+-montmorillonite (NMMT). Studies of XRD,SEM and TEM indicated well-dispersed NMMT platelets in the films prepared. The ideal dispersity achieved was thought to be the result of aqueous compatibility between CEAR molecules and NMMT platelets and the result of the water-involved process as well. The modulus and strength of the polymer/clay nanocomposite coatings tested by tensile testing and nano-indentation were effectively improved compared to those of the virgin CEAR film. In addition,the adhesion strength,flexibility and water-resistance represented by Chinese national standard (GB) kept the best grades.

  20. Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G.P. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Solid State Ionics Research Laboratory, School of Studies in Physics, Pt. Ravishankar Shukla University, Raipur 492010, C.G. (India); Agrawal, R.C. [Solid State Ionics Research Laboratory, School of Studies in Physics, Pt. Ravishankar Shukla University, Raipur 492010, C.G. (India); Hashmi, S.A. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2009-05-15

    Experimental investigations are performed on novel magnesium ion-conducting gel polymer electrolyte nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), dispersed with nanosized magnesium oxide (MgO) particles. The nanocomposite materials are in the form of free-standing films. Various physical and electrochemical analyses demonstrate promising characteristics of these films, suitable as electrolytes in rechargeable magnesium batteries. The optimized material with 3 wt.% MgO offers a maximum electrical conductivity of {proportional_to}8 x 10{sup -3} S cm{sup -1} at room temperature ({proportional_to}25 C) with good thermal and electrochemical stabilities. The ion/filler-polymer interactions and possible conformational changes in host polymer PVdF-HFP due to the liquid electrolyte entrapment and dispersion of nanosized MgO are examined by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscopic (SEM) methods. The Mg{sup 2+} ion conduction in the gel film is confirmed from the cyclic voltammetry, impedance spectroscopy and transport number measurements. The Mg{sup 2+} ion transport number (t{sub +}) is enhanced substantially and found to have a maximum of {proportional_to}0.44 for the addition of 10 wt.% MgO nanoparticles. The enhancement in t{sub +} is explained on the basis of the formation of space-charge regions due to the presence of MgO:Mg{sup 2+}-like species, that supports Mg{sup 2+} ion motion. (author)

  1. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes.

    Science.gov (United States)

    Abidian, Mohammad Reza; Martin, David C

    2008-03-01

    Neural prostheses transduce bioelectric signals to electronic signals at the interface between neural tissue and neural microelectrodes. A low impedance electrode-tissue interface is important for the quality of signal during recording as well as quantity of applied charge density during stimulation. However, neural microelectrode sites exhibit high impedance because of their small geometric surface area. Here we analyze nanostructured-conducting polymers that can be used to significantly decrease the impedance of microelectrode typically by about two orders of magnitude and increase the charge transfer capacity of microelectrodes by three orders of magnitude. In this study poly(pyrrole) (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes were electrochemically polymerized on the surface of neural microelectrode sites (1250 microm(2)). An equivalent circuit model comprising a coating capacitance in parallel with a pore resistance and interface impedance in series was developed and fitted to experimental results to characterize the physical and electrical properties of the interface. To confirm that the fitting parameters correlate with physical quantities of interface, theoretical equations were used to calculate the parameter values thereby validating the proposed model. Finally, an apparent diffusion coefficient was calculated for PPy film (29.2+/-1.1 x 10(-6) cm(2)/s), PPy nanotubes (PPy NTs) (72.4+/-3.3 x 10(-6) cm(2)/s), PEDOT film (7.4+/-2.1 x 10(-6) cm(2)/s), and PEDOT nanotubes (PEDOT NTs) (13.0+/-1.8 x 10(-6) cm(2)/s). The apparent diffusion coefficient of conducting polymer nanotubes was larger than the corresponding conducting polymer films.

  2. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  3. Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers

    Science.gov (United States)

    2007-11-02

    in converting electric energy to thermal energy for the decon applications. Other conductive materials, such as polythiophenes , polypyrroles, carbon...Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers...Joule)-heating with conducting polymers. The basic concept is that electrically conducting polymers, such as polyaniline, can be used as coatings or

  4. Conducting polymer nanofibers for high sensitivity detection of chemical analytes.

    Science.gov (United States)

    Kumar, Abhishek; Leshchiner, Ignaty; Nagarajan, Subhalakshmi; Nagarajan, Ramaswamy; Kumar, Jayant

    2008-03-01

    Possessing large surface area materials is vital for high sensitivity detection of analyte. We report a novel, inexpensive and simple technique to make high surface area sensing interfaces using electrospinning. Conducting polymers (CP) nanotubes were made by electrospinning a solution of a catalyst (ferric tosylate) along with poly (lactic acid), which is an environment friendly biodegradable polymer. Further vapor deposition polymerization of the monomer ethylenedioxy thiophene (EDOT) on the nanofiber surface yielded poly (EDOT) covered fibers. X-ray photo electron spectroscopy (XPS) study reveals the presence of PEDOT predominantly on the surface of nanofibers. Conducting nanotubes had been received by dissolving the polymer in the fiber core. By a similar technique we had covalently incorporated fluorescent dyes on the nanofiber surface. The materials obtained show promise as efficient sensing elements. UV-Vis characterization confirms the formation of PEDOT nanotubes and incorporation of chromophores on the fiber surface. The morphological characterization was carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  5. Anti-biofouling properties of amphiphilic phosphorylcholine polymer films.

    Science.gov (United States)

    Li, Yan; Liu, Cheng-Mei; Yang, Jin-Ying; Gao, Ya-Hui; Li, Xue-Song; Que, Guo-He; Lu, J R

    2011-07-01

    Surfaces of amphiphilic phosphorylcholine polymer (PC1036) prepared by spin-coating were characterized by spectroscopic ellipsometry, water contact angle and atomic force microscopy. The antifouling properties of the PC1036 films to marine benthic diatom Nitzschia closterium MMDL533 were also investigated. The results showed that the dry PC1036 film promoted the adhesion of N. closterium MMDL533 because the hydrophobic lauryl groups were present in the film surface. The 2 h-swelled PC1036 films had excellent anti-fouling properties with extremely low attachment densities and retention densities no matter what the annealing temperature was. The thickness of the coated films lower than 147 Å had a profound effect on the film anti-fouling properties. Otherwise, when the film thickness was higher than that value, there was no more improvement of diatom cell reduction observed. The annealing temperature had only a little effect on the film resistant to diatom adhesion, which might be attributed to two factors including the PC group packing densities in the outer PC layer and the equilibrated water volume fraction in the 2 h-swelled PC1036 films.

  6. Synthesis of Nano Conducting Polymer Based Polyaniline and it's Composite: Mechanical Properties, Conductivity and Thermal Studies

    Directory of Open Access Journals (Sweden)

    M. Banimahd Keivani

    2010-01-01

    Full Text Available Polyaniline (PAn was prepared chemically in the presence of bronsted acid from aqueous solutions. Polyaniline- nylon 6 composite (termed as PAn/Ny6 prepared via solvent casting method. The preparation conditions were optimized with regard to the mechanical properties of the polymer composite. It was found that the molar ratio of PAn to nylon have the greatest effect in determining the mechanical properties of polymer composite. Electrical conductivity was measured using standard method of four point probe. Spectrophotometric analysis (UV-Vis was used for investigation of the effect of thermal treatment on polyaniline and it’s composite.

  7. Highly stretchable polymer semiconductor films through the nanoconfinement effect.

    Science.gov (United States)

    Xu, Jie; Wang, Sihong; Wang, Ging-Ji Nathan; Zhu, Chenxin; Luo, Shaochuan; Jin, Lihua; Gu, Xiaodan; Chen, Shucheng; Feig, Vivian R; To, John W F; Rondeau-Gagné, Simon; Park, Joonsuk; Schroeder, Bob C; Lu, Chien; Oh, Jin Young; Wang, Yanming; Kim, Yun-Hi; Yan, He; Sinclair, Robert; Zhou, Dongshan; Xue, Gi; Murmann, Boris; Linder, Christian; Cai, Wei; Tok, Jeffery B-H; Chung, Jong Won; Bao, Zhenan

    2017-01-06

    Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode. Copyright © 2017, American Association for the Advancement of Science.

  8. Thermal conductivity of polymer composites with oriented boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hong Jun; Eoh, Young Jun [Department of Materials Engineering, Kyonggi University, Suwon (Korea, Republic of); Park, Sung Dae [Electronic Materials and Device Research Center, Korea Electronics Technology Institute, Seongnam (Korea, Republic of); Kim, Eung Soo, E-mail: eskim@kyonggi.ac.kr [Department of Materials Engineering, Kyonggi University, Suwon (Korea, Republic of)

    2014-08-20

    Highlights: • Thermal conductivity depended on the orientation of BN in the polymer matrices. • Hexagonal boron nitride (BN) particles were treated by C{sub 27}H{sub 27}N{sub 3}O{sub 2} and C{sub 14}H{sub 6}O{sub 8}. • Amphiphilic-agent-treated BN particles are more easily oriented in the composite. • BN/PVA composites with C{sub 14}H{sub 6}O{sub 8}-treated BN showed the highest thermal conductivity. • Thermal conductivity of the composites was compared with several theoretical models. - Abstract: Thermal conductivity of boron nitride (BN) with polyvinyl alcohol (PVA) and/or polyvinyl butyral (PVB) was investigated as a function of the degree of BN orientation, the numbers of hydroxyl groups in the polymer matrices and the amphiphilic agents used. The composites with in-plane orientation of BN showed a higher thermal conductivity than the composites with out-of-plane orientation of BN due to the increase of thermal pathway. For a given BN content, the composites with in-plane orientation of BN/PVA showed higher thermal conductivity than the composites with in-plane orientation of BN/PVB. This result could be attributed to the improved degree of orientation of BN, caused by a larger number of hydroxyl groups being present. Those treated with C{sub 14}H{sub 6}O{sub 8} amphiphilic agent demonstrated a higher thermal conductivity than those treated by C{sub 27}H{sub 27}N{sub 3}O{sub 2}. The measured thermal conductivity of the composites was compared with that predicted by the several theoretical models.

  9. Applications of conducting polymers and their issues in biomedical engineering.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2010-10-06

    Conducting polymers (CPs) have attracted much interest as suitable matrices of biomolecules and have been used to enhance the stability, speed and sensitivity of various biomedical devices. Moreover, CPs are inexpensive, easy to synthesize and versatile because their properties can be readily modulated by (i) surface functionalization techniques and (ii) the use of a wide range of molecules that can be entrapped or used as dopants. This paper discusses the various surface modifications of the CP that can be employed in order to impart physico-chemical and biological guidance cues that promote cell adhesion/proliferation at the polymer-tissue interface. This ability of the CP to induce various cellular mechanisms widens its applications in medical fields and bioengineering.

  10. The role of MgBr2 to enhance the ionic conductivity of PVA/PEDOT:PSS polymer composite

    Directory of Open Access Journals (Sweden)

    Eslam M. Sheha

    2015-07-01

    Full Text Available A solid polymer electrolyte system based on poly(vinyl alcohol (PVA and poly(3,4-Etylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS complexed with magnesium bromide (MgBr2 salt was prepared using solution cast technique. The ionic conductivity is observed to increase with increasing MgBr2 concentration. The maximum conductivity was found to be 9.89 × 10−6 S/cm for optimum polymer composite film (30 wt.% MgBr2 at room temperature. The increase in the conductivity is attributed to the increase in the number of ions as the salt concentration is increased. This has been proven by dielectric studies. The increase in conductivity is also attributable to the increase in the fraction of amorphous region in the electrolyte films as confirmed by their structural, thermal, electrical and optical properties.

  11. Electrodeposited polymer encapsulated nickel sulphide thin films: frequency switching material

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sumanta, E-mail: sumantajana85@gmail.com [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mukherjee, Nillohit [Centre of Excellence for Green Energy and Sensor Systems, Bengal Engineering and Science University, Howrah 711103, WB (India); Chakraborty, Biswajit [Department of Chemistry, Vivekananda Mahavidyalay, Burdwan 713103, WB (India); Mitra, Bibhas Chandra [Department of Physics, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India); Mondal, Anup, E-mail: anupmondal2000@yahoo.co.in [Department of Chemistry, Bengal Engineering and Science University, Botanic Garden, Howrah 711103, WB (India)

    2014-05-01

    Graphical abstract: Polyvinylpyrrolidone encapsulated NiS thin films were synthesized electrochemically. The light induced frequency switching study of the synthesized material was carried out and it was observed that the films performed well as a switching device under 1 Sun illumination. This pulse generation within an insulating polymer encapsulated semicondctor matrix (PVP NiS) might be due to surface covering which leads to reduction of recombination process. Highlights: • PVP-NiS thin films were electrochemically synthesized. • Encapsulation of PVP causes surface modification of NiS by reducing surface states. • The synthesized thin films were used as frequency switching material which generates ~ 50 Hz frequency under 1 Sun irradiation. Abstract: Polyvinylpyrrolidone (PVP) encapsulated nickel sulfide (NiS) thin films have been synthesized electrochemically from aqueous solution of hydrated nickel chloride (NiCl₂, 6H₂O), thioacetamide (CH₃C(S) NH₂) (TAA) and polyvinylpyrrolidone (PVP). Surface modification of nickel sulfide (NiS) thin films was achieved by this polymer encapsulation. X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), field emission scanning electron microscopy (FESEM) and Energy dispersive X-radiation (EDAX) techniques were used for the characterization of thin films. Infrared spectroscopy (IR) confirmed the formation of polymer encapsulated semiconductor. Frequency switching generation study shows that the encapsulated material could be used as a frequency switching device that generates a frequency ~ 50 Hz under 1 Sun illumination. Encapsulation with PVP causes surface modification that reduces the surface states and barrier height. As a result, the width of the depletion region decreases. So the number of electron-hole pairs increases. Consequently, the number of excitons and exciton related emission increases and this leads to reduction of recombination process and shows photo induced

  12. Rapid Voltammetric Measurements at Conducting Polymer Microelectrodes Using Ultralow-Capacitance Poly(3,4-ethylenedioxythiophene):Tosylate

    DEFF Research Database (Denmark)

    Meier, Adam R.; Matteucci, Marco; Vreeland, Richard F.

    2016-01-01

    :tOsylate microelectrodes and were used to perform fast-scan cyclic voltammetry (FSCV) measurements. Using a scan rate of 100 V/s, we measured ferrocene carboxylic acid and dopamine by FSCV. In contrast to carbon-fiber microelectrodes, the reduction peak showed higher sensitivity when compared to the oxidation peak......We use a vapor-phase synthesis to generate conducting polymer films with low apparent capacitance and high conductance enabling rapid electrochemical measurements. Specifically, oxidative chemical vapor deposition was used to create thin films of poly(3,4-ethylenedioxythiophene):tosylate (PEDOT......:tosylate). These films had a conductance of 17.1 ± 1.7 S/cm. Furthermore, they had an apparent capacitance of 197 ± 14 μF/cm2, which is an order of magnitude lower than current commercially available and previously reported PEDOT. Using a multistage photolithography process, these films were patterned into PEDOT...

  13. Synthesis of environmentally responsive organic materials by application of ion track holes in polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Omichi, Hideki; Yoshida, Masaru; Asano, Masaharu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Katakai, Ryoichi; Spohr, R.; Vetter, J.

    1997-03-01

    Polymer films were irradiated by heavy ion beams and etched by a concentrated alkali solution to produce particle track membranes (PTMs). Then the PTMs were chemically modified by grafting such monomers as amino acid group containing methacryloyl and N-isopropylacrylamide the polymers of which are known as environmentally responsive hydrogels. The size of pores of the modified PTMs under different temperatures in water was followed by electron microscopy. The pore was controlled from an open state to a completely closed state by changing temperature. The conductivity through the membrane was measured by changing the temperature of the cell. (author)

  14. Ultrabroadband terahertz conductivity of Si nanocrystal films

    DEFF Research Database (Denmark)

    Cooke, D. G.; Meldrum, A.; Jepsen, P. Uhd

    2012-01-01

    The terahertz conductivity of silicon nanoparticles embedded in glass with varying density is studied with ultra-broadband terahertz spectroscopy on picosecond time scales following fs optical excitation. The transition from relatively isolated charge carriers to densities which allow inter...... the applicability of this simple model to the conductivity of nanoparticle ensembles over the entire THz spectral window....

  15. Nanofiber Anisotropic Conductive Films (ACF) for Ultra-Fine-Pitch Chip-on-Glass (COG) Interconnections

    Science.gov (United States)

    Lee, Sang-Hoon; Kim, Tae-Wan; Suk, Kyung-Lim; Paik, Kyung-Wook

    2015-11-01

    Nanofiber anisotropic conductive films (ACF) were invented, by adapting nanofiber technology to ACF materials, to overcome the limitations of ultra-fine-pitch interconnection packaging, i.e. shorts and open circuits as a result of the narrow space between bumps and electrodes. For nanofiber ACF, poly(vinylidene fluoride) (PVDF) and poly(butylene succinate) (PBS) polymers were used as nanofiber polymer materials. For PVDF and PBS nanofiber ACF, conductive particles of diameter 3.5 μm were incorporated into nanofibers by electrospinning. In ultra-fine-pitch chip-on-glass assembly, insulation was significantly improved by using nanofiber ACF, because nanofibers inside the ACF suppressed the mobility of conductive particles, preventing them from flowing out during the bonding process. Capture of conductive particles was increased from 31% (conventional ACF) to 65%, and stable electrical properties and reliability were achieved by use of nanofiber ACF.

  16. Nanodiamond-polymer nanoparticle composites and their thin films

    Science.gov (United States)

    Attia, N. F.; Rao, J. P.; Geckeler, K. E.

    2014-04-01

    Nanodiamonds obtained from detonation processes have received a great deal of attention during the past decades because of their unique properties and applications. The dispersion of nanodiamond particles can be achieved by different methods including the use of polymer nanoparticles. Here, we describe the dispersion of nanodiamonds in conjunction with sonication using poly(vinylpyrrolidone) nanoparticles with a particle size range of 23.3-61.3 nm, providing a good, economic, and efficient method for the dispersion. The average particle size was found to be 37.5 nm, as confirmed by transmission electron microscopy. The interaction between the nanodiamonds and polymer nanoparticles was characterized by FTIR spectroscopy and the effect of the polymer nanoparticle concentration, sonication time, and frequency on the dispersion process of nanodiamonds is highlighted. In addition, we prepared thin films of nanodiamond-polymer composites with different nanodiamond contents that showed good nanodiamond dispersion. The thin film can act as a UV filter and is transparent in the visible region. The thin films of nanodiamond-poly(vinylpyrrolidone) nanoparticles were characterized by SEM and UV-Vis spectroscopy.

  17. Soiling and Cleaning of Polymer Film Solar Reflectors

    Directory of Open Access Journals (Sweden)

    Christopher Sansom

    2016-11-01

    Full Text Available This paper describes the accelerated ageing of commercially available silvered polymer film by contact cleaning using brushes and water in the presence of soiling created by dust and sand particles. These conditions represent cleaning regimes in real concentrating solar power (CSP solar fields in arid environments, where contact cleaning using brushes and water is often required to clean the reflecting surfaces. Whilst suitable for glass reflectors, this paper discusses the effects of these established cleaning processes on the optical and visual characteristics of polymer film surfaces, and then describes the development of a more benign but effective contact cleaning process for cleaning polymer reflectors. The effects of a range of cleaning brushes are discussed, with and without the presence of water, in the presence of sand and dust particles from selected representative locations. The experiments were repeated using different experimental equipment at Plataforma Solar de Almería (PSA in Spain and Cranfield University in the UK. The results highlight differences that are attributable to the experimental methods used. Reflectance measurements and visual inspection show that a soft cleaning brush with a small amount of water, used in a cleaning head with both linear and rotational motion, can clean polymer film reflecting surfaces without inflicting surface damage or reducing specular reflectance.

  18. Deformation Hysteresis of Electrohydrodynamic Patterning on a Thin Polymer Film.

    Science.gov (United States)

    Yang, Qingzhen; Li, Ben Q; Tian, Hongmiao; Li, Xiangming; Shao, Jinyou; Chen, Xiaoliang; Xu, Feng

    2016-07-13

    Electrohydrodynamic patterning is a technique that enables micro/nanostructures via imposing an external voltage on thin polymer films. In this investigation, we studied the electrohydrodynamic patterning theoretically and experimentally, with special interest focused on the equilibrium state. It is found that the equilibrium structure height increases with the voltage. In addition, we have observed, and believe it to be the first time, a hysteresis phenomenon exists in the relationship between the voltage and structure height. With an increase in the voltage, a critical value (the first critical voltage) is noticed, above which the polymer film would increase dramatically until it comes into contact with the template. However, with a decrease in the voltage, a smaller voltage (the second critical voltage) is needed to detach the polymer from the template. The mismatch of the first and second critical voltages distorts the voltage-structure height curve into an "S" shape. Such a phenomenon is verified for three representative templates and also by experiments. Furthermore, the effects of some parameters (e.g., polymer film thickness and dielectric constant) on this hysteresis phenomenon are also discussed.

  19. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  20. Superhydrophobic SAM Modified Electrodes for Enhanced Current Limiting Properties in Intrinsic Conducting Polymer Surge Protection Devices.

    Science.gov (United States)

    Jabarullah, Noor H; Verrelli, Emanuele; Mauldin, Clayton; Navarro, Luis A; Golden, Josh H; Madianos, Leonidas M; Kemp, Neil T

    2015-06-09

    Surface interface engineering using superhydrophobic gold electrodes made with 1-dodecanethiol self-assembled monolayer (SAM) has been used to enhance the current limiting properties of novel surge protection devices based on the intrinsic conducting polymer, polyaniline doped with methanesulfonic acid. The resulting devices show significantly enhanced current limiting characteristics, including current saturation, foldback, and negative differential effects. We show how SAM modification changes the morphology of the polymer film directly adjacent to the electrodes, leading to the formation of an interfacial compact thin film that lowers the contact resistance at the Au-polymer interface. We attribute the enhanced current limiting properties of the devices to a combination of lower contact resistance and increased Joule heating within this interface region which during a current surge produces a current blocking resistive barrier due to a thermally induced dedoping effect caused by the rapid diffusion of moisture away from this region. The effect is exacerbated at higher applied voltages as the higher temperature leads to stronger depletion of charge carriers in this region, resulting in a negative differential resistance effect.

  1. High conductivity transparent carbon nanotube films deposited from superacid

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, David S; Lee, Roland; Hu Liangbing [Unidym Incorporated, 1244 Reamwood Drive, Sunnyvale, CA 94089 (United States); Heintz, Amy M; Moore, Bryon; Cucksey, Chad; Risser, Steven, E-mail: dhecht@gmail.com [Battelle, 505 King Avenue, Columbus, OH 43201 (United States)

    2011-02-18

    Carbon nanotubes (CNTs) were deposited from a chlorosulfonic superacid solution onto PET substrates by a filtration/transfer method. The sheet resistance and transmission (at 550 nm) of the films were 60 {Omega}/sq and 90.9% respectively, which corresponds to a DC conductivity of 12 825 S cm{sup -1} and a DC/optical conductivity ratio of 64.1. This is the highest DC conductivity reported for CNT thin films to date, and attributed to both the high quality of the CNT material and the exfoliation/doping by the superacid. This work demonstrates that CNT transparent films have not reached the conductivity limit; continued improvements will enable these films to be used as the transparent electrode for applications in solid state lighting, LCD displays, touch panels, and photovoltaics.

  2. High conductivity transparent carbon nanotube films deposited from superacid.

    Science.gov (United States)

    Hecht, David S; Heintz, Amy M; Lee, Roland; Hu, Liangbing; Moore, Bryon; Cucksey, Chad; Risser, Steven

    2011-02-18

    Carbon nanotubes (CNTs) were deposited from a chlorosulfonic superacid solution onto PET substrates by a filtration/transfer method. The sheet resistance and transmission (at 550 nm) of the films were 60 Ω/sq and 90.9% respectively, which corresponds to a DC conductivity of 12,825 S cm(-1) and a DC/optical conductivity ratio of 64.1. This is the highest DC conductivity reported for CNT thin films to date, and attributed to both the high quality of the CNT material and the exfoliation/doping by the superacid. This work demonstrates that CNT transparent films have not reached the conductivity limit; continued improvements will enable these films to be used as the transparent electrode for applications in solid state lighting, LCD displays, touch panels, and photovoltaics.

  3. Electrical conductivity of polyaniline doped PVC–PMMA polymer blends

    Indian Academy of Sciences (India)

    S H Deshmukh; D K Burghate; V P Akhare; V S Deogaonkar; P T Deshmukh; M S Deshmukh

    2007-02-01

    The electrical conductivity of polyaniline doped polyvinylchloride (PVC) and poly(methyl methacrylate) (PMMA) thin films has been measured by studying the – characteristics at various temperatures in the range 323–363 K. The results are presented in the form of – characteristics and analysis has been made by interpretation of Poole–Frenkel, Fowler–Nordheim, Schottky ln() vs plots, Richardson and Arrhenius plots. The analysis of these results suggests that Schottky and Richardson mechanisms are primarily responsible for the observed conduction.

  4. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  5. Surface conductivity measurements in nanometric to micrometric foam films.

    Science.gov (United States)

    Bonhomme, Oriane; Mounier, Anne; Simon, Gilles; Biance, Anne-Laure

    2015-05-20

    Foam films (a liquid lamella in air covered by surfactants) are tools of choice for nanofluidic characterization as they are intrinsically nanometric. Their size is indeed fixed by a balance between external pressure and particular molecular interactions in the vicinity of interfaces. To probe the exact nature of these interfaces, different characterizations can be performed. Among them, conductivity in confined systems is a direct probe of the electrostatic environment in the vicinity of the surface. Therefore, we designed a dedicated experiment to measure this conductivity in a cylindrical bubble coupled to interferometry for film thickness characterization. We then show that this conductivity depends on the surfactant nature. These conductivity measurements have been performed in an extremely confined system, the so called Newton black foam films. Unexpectedly in this case, a conductivity close to surface conductivity is recovered.

  6. Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends

    Science.gov (United States)

    Ye, Hui; Xu, Jun John

    Here we report novel zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends with or without the incorporation of a small amount of organic carbonates. Their thermal properties, ionic conductivity and electrochemical properties are characterized and the effect of different Zn salts and incorporation of a small amount of organic carbonates are investigated. These polymer electrolyte membranes exhibit essentially no or very low volatility, high thermal stability, high ionic conductivity, wide electrochemical stability window, acceptable interfacial resistance with zinc, and the capability for reversible Zn plating/stripping. Particularly promising are electrolyte systems based on the combination of low lattice energy zinc imide salt and a special co-solvent of oligomeric poly(ethylene glycol) dimethyl ether (PEGDME) mixed with a small amount of ethylene carbonate (EC), dimensionally stabilized with PVDF-HFP. Such novel polymer electrolyte membranes could lead to the development of new kinds of electrochemical energy storage devices based on zinc electrochemistry, including solid-state, thin-film rechargeable zinc/air cells envisaged.

  7. Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hui; Xu, Jun John [Department of Materials Science and Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 (United States)

    2007-03-20

    Here we report novel zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends with or without the incorporation of a small amount of organic carbonates. Their thermal properties, ionic conductivity and electrochemical properties are characterized and the effect of different Zn salts and incorporation of a small amount of organic carbonates are investigated. These polymer electrolyte membranes exhibit essentially no or very low volatility, high thermal stability, high ionic conductivity, wide electrochemical stability window, acceptable interfacial resistance with zinc, and the capability for reversible Zn plating/stripping. Particularly promising are electrolyte systems based on the combination of low lattice energy zinc imide salt and a special co-solvent of oligomeric poly(ethylene glycol) dimethyl ether (PEGDME) mixed with a small amount of ethylene carbonate (EC), dimensionally stabilized with PVDF-HFP. Such novel polymer electrolyte membranes could lead to the development of new kinds of electrochemical energy storage devices based on zinc electrochemistry, including solid-state, thin-film rechargeable zinc/air cells envisaged. (author)

  8. Conducting-polymer-driven actively shaped propellers and screws

    Science.gov (United States)

    Madden, John D.; Schmid, Bryan; Lafontaine, Serge R.; Madden, Peter G. A.; Hover, Franz S.; McLetchie, Karl; Hunter, Ian W.

    2003-07-01

    Conducting polymer actuators are employed to create actively shaped hydrodynamic foils. The active foils are designed to allow control over camber, much like the ailerons of an airplane wing. Control of camber promises to enable variable thrust in propellers and screws, increased maneuverability, and improved stealth. The design and fabrication of the active foils are presented, the forces are measured and operation is demonstrated both in still air and water. The foils have a "wing" span of 240 mm, and an average chord length (width) of 70 mm. The trailing 30 mm of the foil is composed of a thin polypyrrole actuator that curls chordwise to achieve variable camber. The actuator consists of two 30 μm thick sheets of hexafluorophosphate doped polypyrrole separated from each other by a gel electrolyte. A polymer layer encapsulates the entire structure. Potentials are applied between the polymer layers to induce reversible bending by approximately 35 degrees, and generating forces of 0.15 N. These forces and displacements are expected to enable operation in water at flow rates of > 1 m/s and ~ 30 m/s in air.

  9. Formation of conducting nanochannels in diamond-like carbon films

    Science.gov (United States)

    Evtukh, A.; Litovchenko, V.; Semenenko, M.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.

    2006-09-01

    A sharp increase of the emission current at high electric fields and a decrease of the threshold voltage after pre-breakdown conditioning of diamond-like carbon (DLC) films have been measured. This effect was observed for DLC-coated silicon tips and GaAs wedges. During electron field emission (EFE) at high electric fields the energy barriers caused by an sp3 phase between sp2 inclusions can be broken, resulting in the formation of conducting nanochannels between the semiconductor-DLC interface and the surface of the DLC film. At high current densities and the resulting local heating, the diamond-like sp3 phase transforms into a conducting graphite-like sp2 phase. As a result an electrical conducting nanostructured channel is formed in the DLC film. The diameter of the conducting nanochannel was estimated from the reduced threshold voltage after pre-breakdown conditioning to be in the range of 5-25 nm. The presence of this nanochannel in an insulating matrix leads to a local enhancement of the electric field and a reduced threshold voltage for EFE. Based on the observed features an efficient method of conducting nanochannel matrix formation in flat DLC films for improved EFE efficiency is proposed. It mainly uses a silicon tip array as an upper electrode in contact with the DLC film. The formation of nanochannels starts at the interface between the tips and the DLC film. This opens new possibilities of aligned and high-density conducting channel formation.

  10. AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF4 gel polymer electrolytes

    Science.gov (United States)

    Osman, Z.; Mohd Ghazali, M. I.; Othman, L.; Md Isa, K. B.

    2012-01-01

    Polymethylmethacrylate (PMMA)-based gel polymer electrolytes comprising ethylene carbonate-propylene carbonate (EC/PC) mixed solvent plasticizer and various concentrations of lithium tetrafluoroborate (LiBF4) salt are prepared using a solvent casting technique. Electrical conductivity and transference number measurements were carried out to investigate conductivity and charge transport in the gel polymer electrolytes. The conductivity results show that the ionic conductivity of the samples increases when the amount of salt is increased, however decreases after reaching the optimum value. This result is consistent with the transference number measurements. The conductivity-frequency dependence plots show two distinct regions; i.e. at lower frequencies the conductivity increases with increasing frequency and the frequency independent plateau region at higher frequencies. The temperature-dependence conductivity of the films seems to obey the Arrhenius rule.

  11. Conductive polymer sensor arrays for smart orthopaedic implants

    Science.gov (United States)

    Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.

    2017-04-01

    This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.

  12. TWO-LAYER MODEL DESCRIPTION OF POLYMER THIN FILM DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    Dong-dong Peng; Ran-xing Nancy Li; Chi-hang Lam; Ophelia K.C.Tsui

    2013-01-01

    Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca.100 nm.It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk.In this paper,we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining,bulk-like layer in the film.Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide,where divergent thickness dependences are observed.

  13. Conducting Graphite/Cellulose Composite Film as a Candidate for Chemical Vapor-Sensing Material

    Directory of Open Access Journals (Sweden)

    Kaihua Liu

    2014-07-01

    Full Text Available A type of conductive graphite/cellulose composite film used for chemical vapor-sensing material was prepared at room temperature in the ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIm]Cl. Graphite was pretreated with both oxidation and reduction processes. Due to the use of N,N-carbonyldiimidazole (CDI, as a covalent cross-linking agent in [BMIm]Cl, there were limited chemical bonds between the graphite and cellulose. The composite film was analyzed using Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy, and X-ray photoelectron spectroscopy (XRD. When these conducting films were exposed to certain organic vapors, their electrical resistances quickly changed, showing gas sensitivity. The percolation threshold of the conducting film was about 5 wt%. The gas-sensing behavior of these films in solvent were the opposite of those gas-sensing materials based on a non-polar polymer matrix. A typical negative vapor coefficient (NVC was observed when the film was placed in polar organic solvents such as methanol, ethanol, and acetone.

  14. Superhydrophobic conducting polymers based on hydrocarbon poly(3,4-ethylenedioxyselenophene).

    Science.gov (United States)

    Dunand, Oceane; Darmanin, Thierry; Guittard, Frederic

    2013-09-16

    We report the first studied example of wettability of conducting polymers based on poly(3,4-ethylenedioxyselenophene). Hydrocarbon 3,4-ethylenedioxyselenophene (C2H5 to C12H25) derivatives are synthesized and electropolymerized in propylene carbonate using lithium tetrafluoroborate (LiBF4) and lithium bistrifluoromethanesulfonimidate (LiTf2N) as electrolyte. Highly structured films are obtained from a C8H17 chain independent of the electrolyte used. Superhydrophobic properties with high adhesion are specifically reached if using a C12H25 chain and LiBF4. The surface morphology is porous and highly structured as the films consist of assemblies of nanofibrils. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, D. [Department of Physics, Amrita Viswha Vidyapeetham, Bangalore, India, E-mail: d-praveen@blr.amrita.edu (India); Damle, Ramakrishna [Department of Physics, Bangalore University, Bangalore, India. E-mail: ramkrishnadamle@bub.ernet.in (India)

    2016-05-23

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO{sub 4}){sub 2}, NH{sub 4}I etc., have already been tried in the past with some success. Also various nanoparticles like Al{sub 2}O{sub 3}, TiO{sub 2} etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  16. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    Science.gov (United States)

    Praveen, D.; Damle, Ramakrishna

    2016-05-01

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO4)2, NH4I etc., have already been tried in the past with some success. Also various nanoparticles like Al2O3, TiO2 etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  17. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)]. E-mail: ramesh@mail.utar.edu.my; Chai, M.F. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2007-05-15

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt in the polymer electrolyte complexes.

  18. Photo-Induced Magnetic Anisotropy of Polymer Film Containing Azobenzene Organic Free Radical Group

    Institute of Scientific and Technical Information of China (English)

    徐则达; 张勇; 陈小芳; 范星河; 宛新华; 周其凤

    2003-01-01

    The forward degenerate four-wave mixing geometry was employed to induce microstructure in an organic free radical azobenzene polymer film. Before irradiated with Ar+ laser beams (λ = 514.5 nm), the azobenzene organic free radical polymer exhibits magnetic isotropic measured by superconducting quantum interference device. After photo-induced microstructure, the polymer film becomes magnetic anisotropy. When the applied magnetic field H = 50 Gauss, the magnetization along the normal direction of the polymer film is Mz = 5.5 × 10-5 emu/g,which is larger than Mx = 4.1 × 10-5 emu/g in the direction parallel to the polymer film.

  19. Transparent lithiated polymer films for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Mabe, Andrew N., E-mail: andrew.n.mabe@gmail.com [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Auxier, John D. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Urffer, Matthew J. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Penumadu, Dayakar [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Schweitzer, George K. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Miller, Laurence F. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-09-11

    Novel water-soluble {sup 6}Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using {sup 6}Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum {sup 6}Li loading obtained that resulted in a transparent film was 4.36% by mass ({sup 6}Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of {sup 6}Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein. -- Highlights: • A transparent polymer scintillator containing 3.85 wt% {sup 6}Li has been synthesized. • This class of polymeric thermal neutron scintillation detector is water-soluble. • Salicylic acid, presumably in the form of lithium salicylate, is used as a fluor. • The material emits 373 photons/α ({sup 241}Am) and an average of 139 photons/β ({sup 36}Cl). • The material emits 360 photons per thermal neutron capture event.

  20. Microstructure Evolution during Solvent Evaporation from Thin Film Polymer Mixtures

    Science.gov (United States)

    Clarke, Nigel; Souche, Mireille; Buxton, Gavin

    2009-03-01

    We present simulations of the phase separation dynamics in a thin film polymer blend solution subject to solvent evaporation [1]. If the upper and lower surfaces are neutral with respect to the different components, we find that as the solvent diffuses through the film, and evaporates from the surface, phase separation becomes energetically favourable progressively throughout the film. This produces an ordering front which propagates through the film and leaves an ordered lateral morphology in its wake. In order to understand microstructure evolution if the surface interactions are strong enough that the film initially separates into a two layers, we have perfomed a linear analysis of the Marangoni instability of a deformable interface between two fluid layers of finite depths, submitted to a gradient of solvent concentration induced by the evaporation [2]. Qualitative comparison with experimental observations of spin-coating processes of solution of two immiscible polymers are then performed, yielding satisfactory agreement.[0pt] [1] G. A. Buxton and N.Clarke, Europhysics Letters, 78, 56006, 2007.[0pt] [2] M. Souche and N. Clarke, European Physical Journal E, in press.