WorldWideScience

Sample records for film modified electrode

  1. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  2. Catalytic EC′ reaction at a thin film modified electrode

    International Nuclear Information System (INIS)

    Gerbino, Leandro; Baruzzi, Ana M.; Iglesias, Rodrigo A.

    2013-01-01

    Numerical simulations of cyclic voltammograms corresponding to a catalytic EC′ reaction taking place at a thin film modified electrode are performed by way of finite difference method. Besides considering the chemical kinetic occurring inside the thin film, the model takes into account the different diffusion coefficients for each species at each of the involved phases, i.e. the thin film layer and bulk solution. The theoretical formulation is given in terms of dimensionless model parameters but a brief discussion of each of these parameters and their relationship to experimental variables is presented. Special emphasis is given to the use of working curve characteristics to quantify diffusion coefficient, homogeneous kinetic constant and thickness of the thin layer in a real system. Validation of the model is made by comparison of experimental results corresponding to the electron charge transfer of Ru(NH 3 ) 6 3+ /Ru(NH 3 ) 6 2+ hemi-couple at a thin film of a cross-linked chitosan film containing an immobilized redox dye

  3. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  4. Selective oxidation of serotonin and norepinephrine over eriochrome cyanine R film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yao Hong; Li Shaoguang [Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004 (China); Tang Yuhai [Institute of Analytical Sciences, Xi' an Jiaotong University, Xi' an 710061 (China); Chen Yan [Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004 (China); Chen Yuanzhong [Fujian Institute of Hematology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou 350001 (China)], E-Mail: chenyz@pub3.fz.fj.cn; Lin Xinhua [Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350004 (China)], E-mail: xhlin1963@sin.com

    2009-08-01

    A novel ECR-modified electrode is fabricated by electrodeposition of Eriochrome Cyanine R (ECR) at a glassy carbon (GC) electrode by cyclic voltammetry (CV) in double-distilled water. The characterization of the ECR film modified electrode is carried out by atomic force microscopy (AFM), infrared spectra (IR), spectroelectrochemistry and cyclic voltammetry. The results show that a slightly heterogeneous film formed on the surface of the modified electrode, and the calculated surface concentration of ECR is 2 x 10{sup -10} mol/cm{sup -2}. The ECR film modified GC electrode shows excellent electrocatalytic activities toward the oxidation of serotonin (5-HT) and norepinephrine (NE). Furthermore, the modified electrode can separately detect 5-HT and NE, even in the presence of 200-fold concentration of ascorbic acid (AA) and 25-fold concentration of uric acid (UA). Using differential pulse voltammetry (DPV), the peak currents of 5-HT and NE recorded in pH 7 solution are linearly dependent on their concentrations in the range of 0.05-5 {mu}M and 2-50 {mu}M, respectively. The limits of detection are 0.05 and 1.5 {mu}M for 5-HT and NE, respectively. The ECR film modified electrode can be stored stable for at least 1 week in 0.05 M PBS (pH 7) at 4 {sup o}C in a refrigerator. Owing to its excellent selectivity and sensitivity, the modified electrode could provide a promising tool for the simultaneous determination of 5-HT and NE in complex biosamples.

  5. Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes

    International Nuclear Information System (INIS)

    Yuan Shuai; Hu Shengshui

    2004-01-01

    A nano-TiO 2 film from stable aqueous dispersion has been modified on a glassy carbon electrode (GCE), and was characterized by scanning electron microscopy (SEM) and surface-enhanced Raman spectroscopy (SERS). This nanostructured film exhibits an ability to improve the electron-transfer rate between electrode and dopamine (DA), and electrocatalyze the redox of DA. The electrocatalytical behavior of DA was examined by cyclic voltammetry (CV). Combined with Nafion, the bilayer-modified electrode (N/T/GCE) gives a sensitive voltammetric response of DA regardless of excess ascorbic acid (AA). Electrochemical impedance spectroscopy (EIS) at a fixed potential was performed at variously treated GCEs. The mechanism of the electrode reaction of DA at N/T/GCE and the equivalent circuits of different GCEs have been proposed

  6. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    Science.gov (United States)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  7. High PEC conversion efficiencies from CuSe film electrodes modified with metalloporphyrin/polyethylene matrices

    International Nuclear Information System (INIS)

    Zyoud, Ahed; Al-Kerm, Rola S.; Al-Kerm, Rana S.; Waseem, Mansur; Mohammed, H.S. Helal; Park, DaeHoon; Campet, Guy; Sabli, Nordin; Hilal, Hikmat S.

    2015-01-01

    Enhancement of hole-transfer across CuSe electrode/liquid junction can be facilitated by coating with metalloporphyrin complexes embedded inside polyethylene matrices. - Highlights: • CuSe films were electrochemically deposited onto FTO/Glass • Annealing CuSe film electrodes enhanced PEC characteristics • PEC characteristics were further enhanced by metalloporphyrin/polyethylene matrices, yielding ∼15% efficiency • Matrix behavior as charge transfer mediator enhanced electrode conversion efficiency and stability - Abstract: Electrodeposited CuSe film electrodes have been prepared onto FTO/glass by a facile method based on earlier methods described for other systems. The films were characterized, modified by annealing and further characterized. The films were then modified by coating with tetra(-4-pyridyl) pophyrinato-manganese (MnTPyP) complexes embedded inside commercial polyethylene (PE) matrices. The effects of modifications on different film properties, such as X-ray diffraction (XRD) patterns, surface morphology, photoluminescence (PL) spectra and electronic absorption spectra were investigated. Compared with other thin film electrode systems, very high photoelectrochemical (PEC) conversion efficiency values have been observed here. Pre-annealing the CuSe films at 150°C for 2 h, followed by attaching the MnTPyP/PE matrices remarkably enhanced their PEC characteristics. The conversion efficiency was significantly enhanced, from less than 1.0% to more than 15%. Fill factor (FF) was also enhanced from ∼30% to ∼80%. Values of open-circuit potential (V OC ) and short-circuit current (J SC ) were significantly enhanced. While annealing affects uniformity, particle inter-connection and surface texture of the CuSe films, the MnTPyP complex species behaves as an additional charge-transfer mediator across the film/electrolyte junction. Optimization of PEC characteristics, using different deposition times, different annealing temperatures, different

  8. Voltammetric Determination of Guanine on the Electrode Modified by Gold Deposit and Nafion Film

    Directory of Open Access Journals (Sweden)

    L.G. Shaidarova

    2016-09-01

    Full Text Available Electrodeposited gold and Nafion-gold composite on the surface of glassy carbon electrodes (GCE have shown electrocatalytic activity during guanine oxidation. In comparison with the unmodified electrode, decreasing of the oxidation potential by 100 mV and increasing of the current of organic compound oxidation have been observed. When the Nafion (NF film is applied to the surface of the glassy carbon electrode with electrodeposited gold, a five-fold increase of guanine oxidation current has been achieved compared to its oxidation on the modified electrode without the NF film. Conditions have been found for electrodeposition of gold on the surface of the glassy carbon electrode, including that one covered with the NF film, as well as for registration of the maximum catalytic current on these electrodes. Linear dependence of the electrocatalytic response of the modified electrode from the guanine concentration has been observed in the range from 5·10–6 to 5·10–3 mol·L–1 (for Au GCE and from 5·10–7 to 5·10–3 mol·L–1 (for NF-Au GCE.

  9. Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide.

    Science.gov (United States)

    Ghaderi, Seyran; Mehrgardi, Masoud Ayatollahi

    2014-08-01

    In this manuscript, the electrocatalytic reduction of hydrogen peroxides on Prussian blue (PB) modified nanoporous gold film (NPGF) electrode is described. The PB/NPGF is prepared by simple anodizing of a smooth gold film followed by PB film electrodeposition method. The morphology of the PB/NPGF electrode is characterized using scanning electron microscopy (SEM). The effect of solution pH and the scan rates on the voltammetric responses of hydrogen peroxide have also been examined. The amperometric determination of H2O2 shows two linear dynamic responses over the concentration range of 1μM-10μM and 10μM-100μM with a detection limit of 3.6×10(-7)M. Furthermore, this electrode demonstrated good stability, repeatability and selectivity remarkably. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    Science.gov (United States)

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  11. Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor

    International Nuclear Information System (INIS)

    Limbut, Warakorn; Thavarungkul, Panote; Kanatharana, Proespichaya; Wongkittisuksa, Booncharoen; Asawatreratanakul, Punnee; Limsakul, Chusak

    2010-01-01

    Cost-effective disposable electrodes were fabricated from copper clad laminate, usually used for printed circuit board (PCB) in electronic industries, by using dry film photoresist. Electro-oxidation (anodisation) was employed to obtain a good formation of thiourea film on the electrode surface. The affinity binding pair of carcinoembryonic antigen (CEA) and anti-carcinoembryonic antigen (anti-CEA) was used as a model system. Anti-CEA was immobilized on thiourea film via covalent coupling. This modified electrode was incorporated with a capacitive system for CEA analysis. This capacitive immunosensor provided a linear range between 0.01 and 10 ng ml -1 with a detection limit of 10 pg ml -1 . When applied to analyze CEA in serum samples, the results agreed well with the enzyme linked fluorescent assay (ELFA) technique (P > 0.05). The proposed strategy for the preparation of disposable modified copper electrode is very cost effective and simple. Moreover, it provides good reproducibility. This technique can easily be applied to immobilize other biological sensing elements for biosensors development.

  12. Electrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine film modified electrode towards 6-mercaptopurine and 2-mercaptobenzimidazole

    OpenAIRE

    Fan, Jie-Ping; Zhang, Xiao-Min; Ying, Min

    2010-01-01

    The electrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine (poly-CoTAPc) film modified on the glassy carbon electrode (GCE) towards 6-mercaptopurine (6MP) and 2-Mercaptobenzimidazole (MBI) was studied. Comparing with the case at the unmodified GCE, the poly-CoTAPc film decreased the overpotential of oxidation of 6MP (1.0 x 10-3 mol L-1) and MBI (1.0 x 10-3 mol L-1) by 335 and 189 mV, respectively, and increased the peak current by about 3 and 2 times, respectively, wh...

  13. Determination of zinc and cadmium with characterized Electrodes of carbon and polyurethane modified by a bismuth film

    Directory of Open Access Journals (Sweden)

    Jossy Karla Brasil Bernardelli

    2011-09-01

    Full Text Available This study aims to use electrodes modified with bismuth films for the determination of zinc and cadmium. The film was electrodeposited ex situ on a composite carbon electrode with polyurethane and 2% metallic bismuth (2BiE and on a carbon bar electrode (CBE. The electrodes were characterized by scanning electron microscopy and energy dispersive spectroscopy. Through differential pulse anodic stripping voltammetry, the electrodes 2BiE and CBE containing bismuth films showed a limit of detection (LOD of 5.56 × 10-5 and 3.07 × 10-5 g.L-1 for cadmium and 1.24 × 10-4 and 1.53 × 10-4 g.L-1 for zinc, respectively. The presence of a bismuth film increased the sensitivity of both electrodes.

  14. Study and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    M. Behpour

    2013-06-01

    Full Text Available A graphene nanosheets (GNS film coated glassy carbon electrode (GCE was fabricated for sensitive determination of tyrosine (Tyr. The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalytic activity toward the anodic oxidation of Tyr by a marked enhancement in the current intensity and the shift in the oxidation potential to lower values (50 mV in comparison with the bare GCE. Some kinetic parameters such as the electron transfer coefficient (α were also determined for the Tyr oxidation. The detection limit  for Tyr was found to be 2.0×10-8 M (n=9, and the peak current increases linearly with the Tyr concentration within the molar concentration ranges of 5.0 ×10-6 to 1.2 ×10-4 M. The modified electrode shows good sensitivity, selectivity and stability. The prepared electrode was applied for the determination of Tyr in real sample.

  15. Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases

    International Nuclear Information System (INIS)

    Levin, O.V.; Karushev, M.P.; Timonov, A.M.; Alekseeva, E.V.; Zhang, Shuanghua; Malev, V.V.

    2013-01-01

    Electrochemical properties of glassy carbon electrodes modified by two polymer films of different nickel complexes with Schiff base ligands containing methoxy substituents in their aromatic parts were studied in acetonitrile solutions with cyclic voltammetry, quartz crystal microbalance, atomic force microscopy, and impedance spectroscopy. It was observed that introduction of such substituents leads to a noticeable splitting of cycling voltammetric curves into at least two ox/red transitions. In addition, solvent flows accompanying the counter-ions ones during charging/discharge processes within the films appeared significantly greater than those observed in the case of non-substituted ligands. The obtained impedance results as a whole were satisfactorily treated in scope of the so-called model of homogeneous films with two kinds of charge carriers. However, determinations of the Warburg constant as a function of the electrode potential require additional verifications, at least in the ranges of overlapping ox/red transitions. In particular, it was established that in this region the impedance frequency dependence was some superposition of the diffusion (Warburg) and the pseudo-capacitive constituents. This, most likely, resulted from the presence of three kinds of charge carriers in the film interior

  16. Manganese dioxide-graphene nanocomposite film modified electrode as a sensitive voltammetric sensor of indomethacin detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuxia; Zhang, Zhenfa; Zhang, Cuizong; Huang, Wei; Liang, Caiyun; Peng, Jinyun [Guangxi Normal University for Nationalities, Chongzuo (China)

    2016-08-15

    Excess amount of analgesic and anti-inflammatory drug, such as indomethacin, often leads to serious gastrointestinal complications; therefore, amount of such active compound should be regulated in commercial drugs. This study proposes an efficient analytical technique to detect indomethacin selectively. We prepared and investigated electrochemical properties of a manganese dioxide-graphene nanocomposite film modified glassy carbon electrode (MnO{sub 2}-Gr/GCE). The behavior of the modified electrode as electrocatalyst towards indomethacin oxidation was also examined. The cyclic voltammetric results reveal that the electrocatalytic activity for the oxidation of indomethacin can significantly be enhanced on the MnO{sub 2}-Gr/GCE. Indomethacin exhibited a sensitive anodic peak at about 0.90 V at MnO{sub 2}-Gr/GCE. The data obtained from differential pulse voltammetry showed that the anodic peak currents were linearly dependent on the indomethacin concentrations in the range of 1.0 X 10{sup -7} to 2.5 X 10{sup -5} mol/L with a detection limit of 3.2 X 10{sup -8} mol/L (S/N = 3). Most importantly, the proposed method shows efficient and selective sensing of indomethacin in commercial harmaceutical formulations. This is the first report of a voltammetric sensor for indomethacin using MnO{sub 2}-Gr/GCE. We believe that this new method can be commercialized for routine applications in laboratories.

  17. Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol-gel film modified gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, P. [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul, Tamilnadu (India); John, S. Abraham, E-mail: abrajohn@yahoo.co.in [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul, Tamilnadu (India)

    2010-03-24

    We are reporting the highly sensitive determination of hydroxylamine (HA) using 2-mercapto-4-methyl-5-thiazoleacetic acid (TAA) capped fused spherical gold nanoparticles (AuNPs) modified Au electrode. The fused TAA-AuNPs were immobilized on (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film, which was pre-assembled on Au electrode. The immobilization of fused TAA-AuNPs on MPTS sol-gel film was confirmed by UV-vis absorption spectroscopy and atomic force microscopy (AFM). The AFM image showed that the AuNPs retained the fused spherical morphology after immobilized on sol-gel film. The fused TAA-AuNPs on MPTS modified Au electrode were used for the determination of HA in phosphate buffer (PB) solution (pH = 7.2). When compared to bare Au electrode, the fused AuNPs modified electrode not only shifted the oxidation potential of HA towards less positive potential but also enhanced its oxidation peak current. Further, the oxidation of HA was highly stable at fused AuNPs modified electrode. Using amperometric method, determination of 17.5 nM HA was achieved for the first time. Further, the current response of HA increases linearly while increasing its concentration from 17.5 nM to 22 mM and a detection limit was found to be 0.39 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 17.5 nM HA in the presence of 200-fold excess of common interferents such as urea, NO{sub 2}{sup -}, NH{sub 4}{sup +}, oxalate, Mn{sup 2+}, Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Ba{sup 2+} and Cu{sup 2+}. The practical application of the present modified electrode was demonstrated by measuring the concentration of HA in ground water samples.

  18. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  19. Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode

    International Nuclear Information System (INIS)

    Liu Zhuan; Zhou Yikai; Wang Yanying; Cheng Qin; Wu Kangbing

    2012-01-01

    Highlights: ► The enhanced oxidation of ractopamine on MWCNT film surface was firstly studied. ► The oxidation occurred at phenolic hydroxyl groups and transferred two electrons. ► A sensitive and effective electrochemical sensor was developed for ractopamine. ► It was used to detect ractopamine in animal tissues, the recovery was satisfactory. - Abstract: Insoluble multi-walled carbon nanotube (MWCNT) was readily dispersed into water in the presence of dihexadecyl hydrogen phosphate, and then used to modify the surface of glassy carbon electrode (GCE) by means of solvent evaporation. Scanning electron microscopy test indicated that the GCE surface was coated with uniform MWCNT film. The resulting MWCNT film-modified GCE greatly enhanced the oxidation signal of ractopamine. The oxidation mechanism was studied, and it was found that the oxidation of ractopamine occurred at two phenolic hydroxyl groups, involving two protons and two electrons. Moreover, the influences of pH value, amount of MWCNT, accumulation potential and time were investigated on the oxidation signal of ractopamine. Based on the strong enhancement effect of MWCNT, a sensitive, rapid and simple electrochemical method was developed for the detection of ractopamine. The linear range was from 50 μg L −1 to 2 mg L −1 , and the detection limit was 20 μg L −1 . Finally, this method was successfully used to detect the content of ractopamine in pork and liver samples, and the recovery was in the range from 93.1% to 107.2%.

  20. Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    A new chemically modified glassy carbon electrode based on bismuth film coated mesoporous silica nanoparticles was developed and evaluated for reliable quantification of trace Pb 2+ and Cd 2+ by anodic stripping square wave voltammetry in natural water samples. Compared with conventional bismuth film electrodes or bismuth nanoparticles modified electrodes, this electrode exhibited significantly improved sensitivity and stability for Pb 2+ and Cd 2+ detection. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 2-150 μg L −1 with a detect limit of 0.2 μg L −1 for Pb 2+ , and 0.6 μg L −1 for Cd 2+ for 120s deposition. Good reproducibility was achieved on both single and equally prepared electrodes. In addition, scanning electron microscopy reveals that fibril-like bismuth structures were formed on silica nanoparticles, which could be responsible for the improved voltammetric performance due to the enhanced surface area. Finally, the developed electrode was applied to determine Pb 2+ and Cd 2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb 2+ and Cd 2+

  1. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  2. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  3. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  4. Development of a poly(alizarin red S)/ionic liquid film modified electrode for voltammetric determination of catechol

    International Nuclear Information System (INIS)

    Zhang, Qing; Pan, Dawei; Zhang, Haiyun; Han, Haitao; Kang, Qi

    2014-01-01

    Highlights: • This study is the first to conduct electroploymerization of ARS in RTILs. • BMIMBF 4 was successfully mixed in polymeric ARS film. • PARS/BMIMBF 4 film was tighter, smoother and better electrochemical property. • PARS/BMIMBF 4 /GCE showed superior performance for catechol determination. - Abstract: A novel modified electrode for voltammetric catechol determination was fabricated by electroploymerization of alizarin red S (ARS) onto a glassy carbon electrode (GCE) in one kind of room-temperature ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIMBF 4 ). The polymeric ARS/ionic liquid (PARS/BMIMBF 4 ) film modified electrode was characterized by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrochemical methods. The EDX, XPS and FTIR results indicated that PARS/BMIMBF 4 film was successfully obtained. Compared with the GCE modified by electroploymerization of ARS in aqueous solution, the GCE modified by electroploymerization of ARS in BMIMBF 4 showed smoother and more compact morphology for coating and better electroanalytical properties. Given the combined electrochemical activity of PARS and excellent conductivity of BMIMBF 4 , the PARS/BMIMBF 4 /GCE has been successfully used for catechol determination by differential pulse voltammetry (DPV) with a linear range of 0.10 to 500 μM. The sensitivity and detection limit are 42 nA/μM and 0.026 μM, respectively. The PARS/BMIMBF 4 modified electrode was successfully applied to the determination of catechol in real water samples and may serve as a simple but high-performance sensor for the determination of some environmental pollutants

  5. Voltammetry of osmium-modified DNA at a mercury film electrode application in detecting DNA hybridization

    Czech Academy of Sciences Publication Activity Database

    Kostečka, Pavel; Havran, Luděk; Pivoňková, Hana; Fojta, Miroslav

    2004-01-01

    Roč. 63, 1-2 (2004), s. 245-248 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004108; GA AV ČR KJB4004302 Institutional research plan: CEZ:AV0Z5004920 Keywords : osmium * DNA hybridization * mercury film electrode Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  6. Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Mir Reza [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Jouyban, Abolghasem [Faculty of Pharmacy and Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Asadpour-Zeynali, Karim [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of)]. E-mail: asadpour@tabrizu.ac.ir

    2007-06-20

    Electrocatalytic oxidation of hydrazine (HZ) was studied on an overoxidized polypyrrole (OPPy) modified glassy carbon electrode using cyclic voltammetry and chronoamperometry techniques. The OPPy-modified glassy carbon electrode has very high catalytic ability for electrooxidation of HZ, which appeared as a reduced overpotential in a wide operational pH range of 5-10. The overall numbers of electrons involved in the catalytic oxidation of HZ, the number of electrons involved in the rate-determining and diffusion coefficient of HZ were estimated using cyclic voltammetry and chronoamperometry. It has been shown that using the OPPy-modified electrode, HZ can be determined by cyclic voltammetry and amperometry with limit of detection 36 and 3.7 {mu}M, respectively. The results of the analysis suggest that the proposed method promises accurate results and could be employed for the routine determination of HZ.

  7. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    Science.gov (United States)

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A molecular theory of chemically modified electrodes with self-assembled redox polyelectrolye thin films: Reversible cyclic voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Tagliazucchi, Mario; Calvo, Ernesto J. [INQUIMAE, DQIAyQF Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Szleifer, Igal [Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2008-10-01

    A molecular theory of chemically modified electrodes is applied to study redox polyelectroyte modified electrodes. The molecular approach explicitly includes the size, shape, charge distribution, and conformations of all of the molecular species in the system as well as the chemical equilibria (redox and acid-base) and intermolecular interactions. An osmium pyridine-bipyridine complex covalently bound to poly(allyl-amine) backbone (PAH-Os) adsorbed onto mercapto-propane sulfonate (MPS) thiolated gold electrode is described. The potential and electrolyte composition dependent redox and nonredox capacitance can be calculated with the molecular theory in very good agreement with voltammetric experiments under reversible conditions without the use of freely adjustable parameter. Unlike existing phenomenological models the theory links the electrochemical behavior with the structure of the polymer layer. The theory predicts a highly inhomogeneous distribution of acid-base and redox states that strongly couples with the spatial arrangement of the molecular species in the nanometric redox film. (author)

  9. Nafion/2,2'-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Torma, Ferenc; Kadar, Mihaly; Toth, Klara; Tatar, Eniko

    2008-01-01

    This paper describes the fabrication, characterisation and the application of a Nafion/2,2'-bipyridyl/bismuth composite film-coated glassy carbon electrode (NC(Bpy)BiFE) for the anodic stripping voltammetric determination of trace metal ions (Zn 2+ , Cd 2+ and Pb 2+ ). The NC(Bpy)BiFE electrode is prepared by first applying a 2.5 mm 3 drop of a coating solution containing 0.5 wt% Nafion and 0.1% (w/v) 2,2'-bipyridil (Bpy) onto the surface of a glassy carbon electrode, while the Bi film was plated in situ simultaneously with the target metal ions at -1.4 V. The main advantage of the polymer coated bismuth film electrode is that the sensitivity of the stripping responses is increased considerably due to the incorporation of the neutral chelating agent of 2,2'-bipyridyl (Bpy) in the Nafion film, while the Nafion coating improved the mechanical stability of the bismuth film and its resistance to the interference of surfactants. The key experimental parameters relevant to both the electrode fabrication and the voltammetric measurement were optimized on the basis of the stripping signals. With a 2 min deposition time in the presence of oxygen, linear calibration curves were obtained in a wide concentration range (about 2-0.001 μM) with detection limits of 8.6 nM (0.56 μg dm -3 ) for Zn 2+ , 1.1 nM (0.12 μg dm -3 ) for Cd 2+ and 0.37 nM (0.077 μg dm -3 ) for Pb 2+ . For nine successive preconcentration/determination/electrode renewal experiments the standard deviations were between 3 and 5% at 1.2 μM for zinc and 0.3-0.3 μM concentration level for lead and cadmium, respectively, and the method exhibited excellent selectivity in the presence of the excess of several potential interfering metal ions. The analytical utility of the stripping voltammetric method elaborated was tested in the assay of heavy metals in some real samples and the method was validated by ICP-MS technique

  10. Determination of uric acid in the presence of ascorbic acid with hexacyanoferrate lanthanum film modified electrode

    International Nuclear Information System (INIS)

    Wang Guangfeng; Meng Jian; Liu Hongying; Jiao Shoufeng; Zhang Wei; Chen Daolei; Fang Bin

    2008-01-01

    A glassy carbon electrode modified with LaHCF was constructed and was characterized by cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The resulting LaHCF modified glassy carbon electrode had a good catalytic character on uric acid (UA) and was used to detect uric acid and ascorbic acid (AA) simultaneously. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards UA and AA with activation overpotential. For UA and AA in mixture, one can well separate from the other with a potential large enough to allow the determination of one in presence of the other. The DPV peak currents obtained increased linearly on the UA in the range of 2.0 x 10 -7 to 1.0 x 10 -4 mol/L with the detection limit (signal-to-noise ratio was 3) for UA 1.0 x 10 -7 mol/L. The proposed method showed excellent selectivity and stability, and the determination of UA and AA simultaneously in urine was satisfactory

  11. Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Raoof, Jahan-Bakhsh; Ojani, Reza; Rashid-Nadimi, Sahar

    2004-01-15

    Functionalized polypyrrole film were prepared by incorporation of (Fe(CN){sub 6}){sup 4-} as doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode (CPE) in aqueous solution by using potentiostatic method. The electrochemical behavior of the (Fe(CN){sub 6}){sup 3-}/(Fe(CN){sub 6}){sup 4-} redox couple in polypyrrole was studied by cyclic voltammetry and double step potential chronoamperometry methods. In this study, an obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole/ferrocyanide films modified carbon paste electrode (Ppy/FCNMCPEs) was demonstrated by oxidation of ascorbic acid. It has been found that under optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such electrode occurs at a potential about 540 mV less positive than unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, {alpha} and catalytic reaction rate constant, k{sub h}', were also determined by using various electrochemical approaches. The catalytic oxidation peak current showed a linear dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 4.5x10{sup -4} to 9.62x10{sup -3} M of ascorbic acid with a correlation coefficient of 0.9999. The detection limit (2{sigma}) was determined as 5.82x10{sup -5} M.

  12. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Ghalkhani, Masoumeh

    2010-01-01

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 μM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  13. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of)

    2010-04-15

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 muM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  14. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film

    International Nuclear Information System (INIS)

    Wang Wenju; Wang Fang; Yao Yanli; Hu Shengshui; Shiu, Kwok-Keung

    2010-01-01

    The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H 2 O 2 which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H 2 O 2 production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M -1 cm -2 at an applied potential of -0.10 V in air-saturated electrolytes.

  15. Acetylene black paste electrode modified with a molecularly imprinted chitosan film for the detection of bisphenol A

    International Nuclear Information System (INIS)

    Deng, Peihong; Xu, Zhifeng; Li, Junhua; Kuang, Yunfei

    2013-01-01

    We report on a voltammetric sensor for bisphenol A (BPA) that is based on an acetylene-black paste electrode modified with a chitosan film molecularly imprinted for BPA. The sensor responds linearly to BPA in the 80 nM to 10 μM concentration range, and the detection limit is 60 nM (at an S/N of 3). The use of a molecular imprint provides an efficient way for eliminating interferences from potentially interfering substances. The high sensitivity, selectivity and stability of the sensor demonstrate its practical application for the determination of BPA in plastic samples. (author)

  16. Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes.

    Science.gov (United States)

    Torres, A Carolina; Ghica, M Emilia; Brett, Christopher M A

    2013-04-01

    A new and simple-to-prepare hypoxanthine biosensor has been developed using xanthine oxidase (XOD) immobilised on carbon electrode surfaces. XOD was immobilised by glutaraldehyde cross-linking on carbon film (CF) electrodes and on carbon nanotube (CNT) modified CF (CNT/CF). A comparison of the performance of the two configurations was carried out by the current response using amperometry at fixed potential; the best characteristics being exhibited by XOD/CNT/CF modified electrodes. The effects of electrolyte pH and applied potential were evaluated, and a proposal is made for the enzyme mechanism of action involving competition between regeneration of flavin adenine dinucleotide and reduction of hydrogen peroxide. Under optimised conditions, the determination of hypoxanthine was carried out at -0.2 V vs. a saturated calomel electrode (SCE) with a detection limit of 0.75 μM on electrodes with CNT and at -0.3 V vs. SCE with a detection limit of 0.77 μM on electrodes without CNT. The applicability of the biosensor was verified by performing an interference study, reproducibility and stability were investigated, and hypoxanthine was successfully determined in sardine and shrimp samples.

  17. A hydroxylamine electrochemical sensor based on electrodeposition of porous ZnO nanofilms onto carbon nanotubes films modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Cuihong; Wang Guangfeng; Liu Min; Feng Yuehua; Zhang Zhidan [College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Beijing East Road No. 1, Anhui Normal University, Anhui, Wuhu 241000 (China); Fang Bin, E-mail: binfang_47@yahoo.com.c [College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Beijing East Road No. 1, Anhui Normal University, Anhui, Wuhu 241000 (China)

    2010-03-01

    A novel route (electrodeposition) for the fabrication of porous ZnO nanofilms attached multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (GCEs) was proposed. The morphological characterization of ZnO/MWCNT films was examined by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The performances of the ZnO/MWCNTs/GCE were characterized with cyclic voltammetry (CV), Nyquist plot (EIS) and typical amperometric response (i-t). The potential utility of electrodes constructed was demonstrated by applying them to the analytical determination of hydroxylamine concentration. An optimized limit of detection of 0.12 muM was obtained at a signal-to-noise ratio of 3 and with a fast response time (within 3 s). Additionally, the ZnO/MWCNTs/GCE exhibited a wide linear range from 0.4 to 1.9 x 10{sup 4} muM and higher sensitivity. The ease of fabrication, high stability, and low cost of the modified electrode are the promising features of the proposed sensor.

  18. Deactivation of nickel hydroxide-gold modified electrodes

    OpenAIRE

    Caram, Bruno; Tucceri, Ricardo

    2013-01-01

    The aim of the present work was to study how the charge-transport process of a nickel hydroxide film electrochemically synthesized on a gold substrate is modified when the electrode is stored for a long time. It was found that nickel hydroxide films are deactivated under storage, that is, films became less conductive than films immediately prepared (nondeactivated). This study was carried out in the context of the rotating disc electrode voltammetry when the modified electrode contacts an ele...

  19. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dorraji, Parisa S.; Jalali, Fahimeh, E-mail: fjalali@razi.ac.ir

    2016-04-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  20. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dorraji, Parisa S.; Jalali, Fahimeh

    2016-01-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  1. Use of polished and mercury film-modified silver solid amalgam electrodes in electrochemical analysis of DNA

    Czech Academy of Sciences Publication Activity Database

    Fadrná, Renata; Cahová, Kateřina; Havran, Luděk; Josypčuk, Bohdan; Fojta, Miroslav

    2005-01-01

    Roč. 17, 5-6 (2005), s. 452-459 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA203/04/1325; GA AV ČR KJB4004302 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : DNA electrochemistry * solid amalgam electrodes * mercury film electrodes * DNA damage Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.189, year: 2005

  2. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  3. Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode

    International Nuclear Information System (INIS)

    Wang, Zhiqiang; Wang, Hui; Zhang, Zhihao; Yang, Xiaojing; Liu, Gang

    2014-01-01

    In this study, a novel stannum film/poly(p-aminobenzene sulfonic acid)/graphene composite modified glassy carbon electrode (GCE) was prepared by using electrodeposition of exfoliated graphene oxide, electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and in situ plating stannum fim methods, successively. This sensor was further used for sensitive determination of trace cadmium ions by square wave anodic stripping voltammetry (SWASV). The morphologies and electrochemistry properties of the modified electrode were characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry. It was found that the formed graphene layer on the top of GCE could remarkably facilitate the electron transfer and enlarge the specific surface area of the electrode. While the poly(p-ABSA) film could effectively increase the adhesion and stability of graphene layer, enhance ion-exchange capacity and prevent the macromolecule in real samples absorbing on the surface of electrode. By combining co-deposits ability with heavy metals of stannum film, the obtained electrode exhibited a good stripping performance for the analysis of Cd(II). Under the optimum conditions, a linear response was observed in the range from 1.0 to 70.0 μgL −1 with a detection limit of 0.05 μgL −1 (S/N = 3). The sensor was further applied to the determination of cadmium ions in real water samples with satisfactory results

  4. Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kun [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Alex, Saji [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Department of Chemistry, Government College for Women, Thiruvananthapuram, Kerala 695014 (India); Siegel, Gene [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2015-01-01

    A novel electrochemical glucose sensor was developed by employing a composite film of plant-like Zinc oxide (ZnO) and chitosan stabilized spherical gold nanoparticles (AuNPs) on which Glucose oxidaze (GOx) was immobilized. The ZnO was deposited on an indium tin oxide (ITO) coated glass and the AuNPs of average diameter of 23 nm were loaded on ZnO as the second layer. The prepared ITO/ZnO/AuNPs/GOx bioelectrode exhibited a low value of Michaelis–Menten constant of 1.70 mM indicating a good bio-matrix for GOx. The studies of electrochemical properties of the electrode using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that, the presence of AuNPs provides significant enhancement of the electron transfer rate during redox reactions. The linear sweep voltammetry (LSV) shows that the ITO/ZnO/AuNPs/GOx based sensor has a high sensitivity of 3.12 μA·mM{sup −1}·cm{sup −2} in the range of 50 mg/dL to 400 mg/dL glucose concentration. The results show promising application of the gold nanoparticle modified plant-like ZnO composite bioelectrode for electrochemical sensing of glucose.

  5. Direct electrochemistry of myoglobin in a layer-by-layer film on an ionic liquid modified electrode containing CeO2 nanoparticles and hyaluronic acid

    International Nuclear Information System (INIS)

    Gao, R.; Zheng, J.; Zheng, X.

    2011-01-01

    We describe an ionic liquid modified electrode (CPE-IL) for sensing hydrogen peroxide (HP) that was modified by the layer-by-layer technique with myoglobin (Mb). In addition, the surface of the electrode was modified with CeO 2 nanoparticles (nano-CeO 2 ) and hyaluronic acid. UV-vis and FTIR spectroscopy confirmed that Mb retains its native structure in the composite film. Scanning electron microscopy showed that the nano-CeO 2 closely interact with Mb to form an inhomogeneously distributed film. Cyclic voltammetry reveals a pair of quasi-reversible redox peaks of Mb, with the cathodic peak at -0. 357 V and the anodic peak at -0. 269 V. The peak separation (ΔE p ) and the formal potential (E σ ) are 88 mV and -0. 313 V (vs. Ag/AgCl), respectively. The Mb immobilized in the modified electrode displays an excellent electrocatalytic activity towards HP in the 0. 6 to 78. 0 μM concentration range. The limit of detection is 50 nM (S/N = 3), and then the Michaelis-Menten constant is 71. 8 μM. We believe that such a composite film has potential to further investigate other redox proteins and in the fabrication of third-generation biosensors. (author)

  6. Electrocatalytic reduction of oxygen at glassy carbon electrode modified by polypyrrole/anthraquinones composite film in various pH media

    International Nuclear Information System (INIS)

    Valarselvan, S.; Manisankar, P.

    2011-01-01

    Graphical abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . Highlights: → Hydroxyl derivatives of anthraquinones as electrocatalysts for dioxygen reduction. → AQ/PPy composite film on GC electrode exhibits potent electrocatalytic activity. → Substituent groups influence electrocatalytic dioxygen reduction. → Surface coverage varies the rate of electrocatalytic dioxygen reduction. - Abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. The electrochemical behaviour of the modified electrodes was examined in various pH media and both the formal potential of anthraquinones and reduction potential of dioxygen exhibited pH dependence. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . pH 6.0 was chosen as the most suitable medium to study the electrocatalysis by comparing the peak potential of oxygen reduction and enhancement in peak current for oxygen reduction. The diffusion coefficient values of AQ at the modified electrodes and the number of electrons involved in AQ reduction were evaluated by chronoamperometric and chronocoulometric techniques, respectively. In addition, hydrodynamic voltammetric studies showed the involvement of two electrons in O 2 reduction. The mass specific activity of AQ used, the diffusion coefficient of oxygen and the heterogeneous rate constants for the oxygen reduction at the surface of modified electrodes were also determined by rotating disk voltammetry.

  7. Poly(brilliant green) and poly(thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors.

    Science.gov (United States)

    Ghica, M Emilia; Brett, Christopher M A

    2014-12-01

    Poly(brilliant green) (PBG) and poly(thionine) (PTH) films have been formed on carbon film electrodes (CFEs) modified with carbon nanotubes (CNT) by electropolymerisation using potential cycling. Voltammetric and electrochemical impedance characterisation were performed. Glucose oxidase and uricase, as model enzymes, were immobilised on top of PBG/CNT/CFE and PTH/CNT/CFE for glucose and uric acid (UA) biosensing. Amperometric determination of glucose and UA was carried out in phosphate buffer pH 7.0 at -0.20 and +0.30 V vs. SCE, respectively, and the results were compared with other similarly modified electrodes existing in the literature. An interference study and recovery measurements in natural samples were successfully performed, indicating these architectures to be good and promising biosensor platforms. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  9. Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes

    Science.gov (United States)

    Kazazi, Mahdi; Sedighi, Ali Reza; Mokhtari, Mohammad Amin

    2018-05-01

    A facile and efficient two-step procedure was developed for the fabrication of a high-performance and binder-free cobalt oxide-carbon nanotubes (CO/CNT) pseudocapacitive electrode. First, CNTs were deposited on the surface of a chemically activated graphite sheet by cathodic electrophoretic deposition technique from their ethanolic suspension. In the next step, a thin film of cobalt oxide was electrodeposited on the CNTs coated graphite substrate by a galvanostatic method, followed by a thermal treatment in air. The structure and morphology of the prepared cobaltite electrode with and without CNT interlayer were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and nitrogen adsorption-desorption measurement. The results indicated that Co3O4 nanoparticles were uniformly attached on the surface of CNTs, to form a porous-structured CO/CNT composite electrode with a high specific surface area of 144.9 m2 g-1. Owing to the superior electrical conductivity of CNTs, high surface area and open porous structure, and improved integrity of the electrode structure, the composite electrode delivered a high areal capacitance of 4.96F cm-2 at a current density of 2 mA cm-2, a superior rate performance (64.7% capacitance retention from 2 mA cm-2 to 50 mA cm-2), as well as excellent cycling stability (91.8% capacitance retention after 2000 cycles), which are higher than those of the pure cobaltite electrode.

  10. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) nanocomposite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanbo [Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China); College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001 (China); Yu, Dajun; Yu, Yanyan [Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China); Zhou, Tianshu [Department of Environmental Science, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China); Shi, Guoyue, E-mail: gyshi@chem.ecnu.edu.cn [Department of Chemistry and Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663 Zhongshan Road(N), Shanghai, 200062 (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer A sensitive electrochemical sensor for detecting methyl parathion in environmental samples. Black-Right-Pointing-Pointer The preparation, characterization and application of this novel MWCNTs-PAAM nanocomposite. Black-Right-Pointing-Pointer The MWCNTs-PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion. Black-Right-Pointing-Pointer Wide linear range and low detection limit of the proposed method for detecting methyl parathion. - Abstract: A sensitive electrochemical differential pulse voltammetry method was developed for detecting methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) (MWCNTs-PAAM) nanocomposite film modified glassy carbon electrode. The novel MWCNTs-PAAM nanocomposite, containing high content of amide groups, was synthesized by PAAM polymerizing at the vinyl group functionalized MWCNTs surface using free radical polymerization. The MWCNTs-PAAM nanocomposite was characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis and scanning electron microscopy. Electrochemical behavior and interference studies of MWCNTs-PAAM/GCE for methyl parathion were investigated. The experimental results demonstrated that the MWCNTs-PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion compared with some metal ions and nitroaromatic compounds, which exist in environmental samples. The adsorbed amount of methyl parathion on the MWCNTs-PAAM/GCE approached the equilibrium value upon 5 min adsorption time. A linear calibration curve for methyl parathion was obtained in the concentration range from 5.0 Multiplication-Sign 10{sup -9} to 1.0 Multiplication-Sign 10{sup -5} mol L{sup -1}, with a detection limit of 2.0 Multiplication-Sign 10{sup -9} mol L{sup -1}. The MWCNTs-PAAM/GCE was proved to be a suitable sensing tool for the fast, sensitive and selective determination of methyl parathion in environmental water samples.

  11. Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes–poly(acrylamide) nanocomposite film modified electrode

    International Nuclear Information System (INIS)

    Zeng, Yanbo; Yu, Dajun; Yu, Yanyan; Zhou, Tianshu; Shi, Guoyue

    2012-01-01

    Highlights: ► A sensitive electrochemical sensor for detecting methyl parathion in environmental samples. ► The preparation, characterization and application of this novel MWCNTs–PAAM nanocomposite. ► The MWCNTs–PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion. ► Wide linear range and low detection limit of the proposed method for detecting methyl parathion. - Abstract: A sensitive electrochemical differential pulse voltammetry method was developed for detecting methyl parathion based on multiwalled carbon nanotubes–poly(acrylamide) (MWCNTs–PAAM) nanocomposite film modified glassy carbon electrode. The novel MWCNTs–PAAM nanocomposite, containing high content of amide groups, was synthesized by PAAM polymerizing at the vinyl group functionalized MWCNTs surface using free radical polymerization. The MWCNTs–PAAM nanocomposite was characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis and scanning electron microscopy. Electrochemical behavior and interference studies of MWCNTs–PAAM/GCE for methyl parathion were investigated. The experimental results demonstrated that the MWCNTs–PAAM/GCE exhibited a high adsorption and strong affinity toward methyl parathion compared with some metal ions and nitroaromatic compounds, which exist in environmental samples. The adsorbed amount of methyl parathion on the MWCNTs–PAAM/GCE approached the equilibrium value upon 5 min adsorption time. A linear calibration curve for methyl parathion was obtained in the concentration range from 5.0 × 10 −9 to 1.0 × 10 −5 mol L −1 , with a detection limit of 2.0 × 10 −9 mol L −1 . The MWCNTs–PAAM/GCE was proved to be a suitable sensing tool for the fast, sensitive and selective determination of methyl parathion in environmental water samples.

  12. 3,5-Diamino-1,2,4-triazole@electrochemically reduced graphene oxide film modified electrode for the electrochemical determination of 4-nitrophenol

    International Nuclear Information System (INIS)

    Kumar, Deivasigamani Ranjith; Kesavan, Srinivasan; Baynosa, Marjorie Lara; Shim, Jae-Jin

    2017-01-01

    Highlights: •Triazole film was formed on electrochemically reduced graphene oxide. •pDAT@ERGO/GC was utilized for the electrochemical determination of 4-nitrophenol. •pDAT@ERGO/GC electrode offered wide concentration and nanomolar detection limit. •The fabricated electrode was employed in water sample analyses. -- Abstract: In this study, an eco-friendly benign method for the modification of electrochemically reduced graphene oxide (ERGO) on glassy carbon (GC) surface and electrochemical polymerized 3,5-diamino-1,2,4-triazole (DAT) film composite (pDAT@ERGO/GC) electrode was developed. The surface morphologies of the pDAT@ERGO/GC modified electrode were analyzed by field emission scanning electron microscopy (FESEM). FESEM images indicated that the ERGO supported pDAT has an almost homogeneous morphology structure with a size of 70 to 80 nm. It is due to the water oxidation reaction occurred while pDAT@ERGO/GC fabrication peak at +1.4 V leads to O 2 evolution and oxygen functional group functionalization on ERGO, which confirmed by X-ray photoelectron spectroscopy (XPS). In contrast, the bare GC modified with pDAT showed randomly arranged irregular bulky morphology structure compared to those of pDAT@ERGO/GC. Electrochemical reduction of graphene oxide was confirmed by Raman spectroscopy, XPS, and electrochemical impedance spectroscopy (EIS). The pDAT@ERGO/GC modified electrode was used for the electrochemical determination of 4-nitrophenol (4-NP). The 4-NP oxidation peak was observed at +0.25 V, and the differential pulse voltammetry demonstrated wide concentration range (5–1500 μM), high sensitivity (0.7113 μA μM −1 ), and low limit of detection (37 nM). Moreover, the pDAT@ERGO/GC electrode was applied to real water sample analysis by standard addition method, where in good recoveries (97.8% to 102.4%) were obtained.

  13. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  14. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  15. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    Science.gov (United States)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Voltammetric Response of Alizarin Red S-Confined Film-Coated Electrodes to Diol and Polyol Compounds: Use of Phenylboronic Acid-Modified Poly(ethyleneimine) as Film Component.

    Science.gov (United States)

    Takahashi, Shigehiro; Suzuki, Iwao; Ojima, Takuto; Minaki, Daichi; Anzai, Jun-Ichi

    2018-01-22

    Alizarin red S (ARS) was confined in layer-by-layer (LbL) films composed of phenylboronic acid-modified poly(ethyleneimine) (PBA-PEI) and carboxymethylcellulose (CMC) to study the voltammetric response to diol and polyol compounds. The LbL film-coated gold (Au) electrode and quartz slide were immersed in an ARS solution to uptake ARS into the film. UV-visible absorption spectra of ARS-confined LbL film suggested that ARS formed boronate ester (ARS-PBS) in the film. The cyclic voltammetry of the ARS-confined LbL film-coated electrodes exhibited oxidation peaks at -0.50 and -0.62 V, which were ascribed to the oxidation reactions of ARS-PBS and free ARS, respectively, in the LbL film. The peak current at -0.62 V increased upon the addition of diol or polyol compounds such as L-dopa, glucose, and sorbitol into the solution, depending on the concentration, whereas the peak current at -0.50 V decreased. The results suggest a possible use of ARS-confined PBA-PEI/CMC LbL film-coated Au electrodes for the construction of voltammetric sensors for diol and polyol compounds.

  17. ATR-SEIRAS study of CO adsorption and oxidation on Rh modified Au(111-25 nm) film electrodes in 0.1 M H2SO4

    International Nuclear Information System (INIS)

    Xu, Qinqin; Berná, Antonio; Pobelov, Ilya V.; Rodes, Antonio; Feliu, Juan M.; Wandlowski, Thomas; Kuzume, Akiyoshi

    2015-01-01

    Rh modified Au(111-25 nm) electrodes, prepared by electron beam evaporation and galvanostatic deposition, were employed to study adsorption and electro-oxidation of CO on Rh in 0.1 M sulfuric acid solution by in situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). The results of ATR-SEIRAS experiments were compared with those obtained by infrared reflection absorption spectroscopy on three low-index Rh single crystal surfaces. The Rh film deposited on Au(111-25 nm) electrode consists of 3D clusters forming a highly stepped [n(111) × (111)]-like surface with narrow (111) terraces. When CO was dosed at the hydrogen adsorption potential region, CO adsorbed in both atop (CO L ) and bridge (CO B ) configurations, as well as coadsorbed water species, were detected on the Rh film electrode. A partial interconversion of spectroscopic bands due to the CO displacement from bridge to atop sites was found during the anodic potential scan, revealing that there is a potential-dependent preference of CO adsorption sites on Rh surfaces. Our data indicate that CO oxidation on Rh electrode surface in acidic media involves coadsorbed water and follows the nucleation and growth model of a Langmuir-Hinshelwood type reaction

  18. Very sensitive electrochemical determination of diuron on glassy carbon electrode modified with reduced graphene oxide-gold nanoparticle-Nafion composite film.

    Science.gov (United States)

    Zarei, K; Khodadadi, A

    2017-10-01

    In this work, a very sensitive electrochemical sensor based on glassy carbon electrode (GCE) modified with reduced graphene oxide-gold nanoparticles/Nafion (rGO-AuNPs/Nafion) composite film was applied to determine diuron. Synthesized GO was characterized using X-ray diffraction (XRD) and UV-visible spectroscopy. The surface morphology of the rGO-AuNPs/Nafion film was also characterized using scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry (CV) and adsorptive differential pulse voltammetry (AdDPV) were applied to investigate the electrochemical response of the diuron on the modified electrode. The electrode showed a linear response at 1.0×10 -9 -1.0×10 -7 M and a detection limit of 0.3nM under the optimized conditions. The effect of some other species on the determination of diuron was investigated and the sensor showed good selectivity for determination of diuron. The constructed sensor was applied to determine diuron in enriched samples of orange juice, mineral and tap water which statistical t-test showed accuracy of method. Also the sensor was applied to obtain diuron content in the tea sample. The reliability of the proposed sensor was confirmed after comparing the results with those obtained using high performance liquid chromatography (HPLC) as a comparative method. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Amperometric sensing of NADH and ethanol using a hybrid film electrode modified with electrochemically fabricated zirconia nanotubes and poly (acid fuchsin)

    International Nuclear Information System (INIS)

    Liu, X.; Li, B.; Zhan, G.; Liu, C.; Li, C.; Ma, M.

    2012-01-01

    We report on a glassy carbon electrode (GCE) modified with a film of chitosin containing acid fuchsin (AF) adsorbed onto zirconia nanotubes. The mixture was polymerized by cyclic voltammetric scannings in the potential range from - 0. 8 V to +1. 3 V in buffer solution to produce a hybrid film electrode (nano-ZrO 2 /PAF/GCE). The morphology of the hybrid film electrode surface was characterized by scanning electron microscopy. Its electrochemical properties were studied via electrochemical impedance spectroscopy. The electrochemical response of nicotinamide adenine dinucleotide (NADH) was investigated by differential pulse voltammetry and amperometry. The results indicated that the nano-ZrO 2 /PAF/GCE possesses well synergistic catalytic activity towards NADH. Compared to an unmodified GCE, the oxidation overpotential is negatively shifted by 224 mV, and the oxidation current is significantly increased. Under optimal conditions, the amperometric response is linearly proportional to the concentration of NADH in the 1. 0 - 100. 0 μM concentration range. Ethanol also can be determined by amperometry if alcohol dehydrogenase and NADH are added to the sample. Two linear relationships between current and alcohol concentration were obtained. They cover the range from 0. 03 to 1. 0 mM, and from 1. 0 to 12. 0 mM. (author)

  20. Direct electrochemistry and electrocatalysis of hemoglobin at three-dimensional gold film electrode modified with self-assembled monolayers of 3-mercaptopropylphosphonic acid

    International Nuclear Information System (INIS)

    Chen Yu; Yang Xiaojing; Guo Lirong; Li Jing; Xia Xinghua; Zheng Limin

    2009-01-01

    Multilayered hemoglobin (Hb) molecules were successfully immobilized on three-dimensional gold film electrode modified with self-assembled monolayers (SAMs) of 3-mercaptopropylphosphonic acid. Direct electrochemistry of the immobilized multilayered Hb occurs with high thermal stability and electrochemical stability. In the multilayered Hb film, the most inner Hb molecules can directly transfer electron with the electrode, while the Hb protein beyond this layer communicates electron with the electrode via protein-protein electron exchange. In addition, the proposed functional interface can greatly enhance electron transfer rate of the immobilized Hb protein (k s = 15.8 ± 2.0 s -1 ) due to the increase of roughness of the gold substrate. Under optimized experimental conditions, the multilayered Hb film displays good bioelectrocatalytic activity toward the reduction of hydrogen peroxide. This electrochemical sensor shows fast response (less than 1 s), wide linear range (7.8 x 10 -8 to 9.1 x 10 -5 M) and low detection limit (2.5 x 10 -8 M), which can be attributed to good mass transport, large Hb proteins loading per unit area and fast electron transfer rate of Hb protein.

  1. Peroxynitrite Sensor Based on a Screen Printed Carbon Electrode Modified with a Poly(2,6-dihydroxynaphthalene Film

    Directory of Open Access Journals (Sweden)

    Ioana Silvia Hosu

    2016-11-01

    Full Text Available For the first time the electropolymerization of 2,6-dihydroxynaphthalene (2,6-DHN on a screen printed carbon electrode (SPCE was investigated and evaluated for peroxynitrite (PON detection. Cyclic voltammetry was used to electrodeposit the poly(2,6-DHN on the carbon electrode surface. The surface morphology and structure of poly(2,6-DHN film were investigated by SEM and FTIR analysis, and the electrochemical features by cyclic voltammetry. The poly(2,6-DHN/SPCE sensor showed excellent electrocatalytic activity for PON oxidation in alkaline solutions at very low potentials (0–100 mV vs. Ag/AgCl pseudoreference. An amperometric FIA (flow injection analysis system based on the developed sensor was optimized for PON measurements and a linear concentration range from 2 to 300 μM PON, with a LOD of 0.2 μM, was achieved. The optimized sensor inserted in the FIA system exhibited good sensitivity (4.12 nA·μM−1, selectivity, stability and intra-/inter-electrode reproducibility for PON determination.

  2. Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors.

    Science.gov (United States)

    Yang, Jiang; Kwak, Tae-Joon; Zhang, Xiaodong; McClain, Robert; Chang, Woo-Jin; Gunasekaran, Sundaram

    2016-11-22

    A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.

  3. Potentiometric sulfite biosensor based on entrapment of sulfite oxidase in a polypyrrole film on a platinum electrode modified with platinum nanoparticles

    International Nuclear Information System (INIS)

    Adeloju, Samuel B.; Hussain, Shahid

    2016-01-01

    The surface of a platinum electrode has been modified with platinum nanoparticles (PtNPs) and the enzyme sulfite oxidase (SOx), was entrapped on its surface in an ultrathin polypyrrole (PPy) film. The PtNPs, with a diameter of 30-40 nm, were deposited on the Pt electrode by cycling the electrode potential 20 times from -200 to 200 mV at a sweep rate of 50 mV.s"-"1. Morphological evidence of the successful incorporation of SOx and the presence of PtNPs were obtained by scanning electron microscopy. Also, the electrochemical behavior of the PtNPs/PPy-SOx film was examined by cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy and potentiometry. Under optimized conditions, the biosensor achieved a sensitivity of 57.5 mV.decade"-"1, a linear response that extends from 0.75 to 65 μM of sulfite, a detection limit of 12.4 nM, and a response time of 3-5 s. The biosensor was successfully applied to the determination of sulfite in wine and beer samples. (author)

  4. Ammonium ions determination with polypyrrole modified electrode

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available The present work relates the preparation of polypyrrole films (PPy deposited on surfaces of glass carbon, nickel and ITO (tin oxide doped with indium on PET plastic, in order to study the ammonium detection. The popypyrrole films were polymerized with dodecylbenzenesulfonate (DBSA on the electrodes, at + 0,70 V vs. Ag/AgCl, based on a solution containing the pyrrole monomer and the amphiphilic salt. Films deposited on glass carbon presented better performance. Cyclic voltammetries, between – 1,50 to + 0,5 V vs. Ag/AgCl, were repeated adding different concentrations of NH4Cl, in order to observe the behavior of the film as a possible detector of ions NH4+. The peak current for oxidation varies with the concentration of ammonium. A linear region can be observed in the band of 0 to 80 mM, with a sensibility (Sppy approximately similar to 4,2 mA mM-1 cm-2, showing the efficacy of the electrodes as sensors of ammonium ions. The amount of deposited polymer, controlled by the time of growth, does not influence on the sensor sensibility. The modified electrode was used to determine ammonium in grounded waters.

  5. Polyaniline Langmuir-Blodgett film modified glassy carbon electrode as a voltammetric sensor for determination of Ag+ ions

    International Nuclear Information System (INIS)

    Liu Qiongyan; Wang Fei; Qiao Yonghui; Zhang Shusheng; Ye Baoxian

    2010-01-01

    A highly sensitive electrochemical sensor made of a glassy carbon electrode (GCE) coated with a Langmuir-Blodgett film (LB) containing polyaniline (PAn) doped with p-toluenesulfonic acid (PTSA) (LB/PAn-PTSA/GCE) has been used for the detection of trace concentrations of Ag + . UV-vis absorption spectra indicated that the PAn was doped by PTSA. The surface morphology of the PAn LB film was characterized by atomic force microscopy (AFM). The electrochemical properties of this LB/PAn-PTSA/GCE were studied using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The LB/PAn-PTSA/GCE was used as a voltammetric sensor for determination of trace Ag + at pH 5.0 using linear scanning stripping voltammetry. Under the optimal experimental conditions, the stripping current was proportional to the Ag + concentration over the range from 6.0 x 10 -10 mol L -1 to 1.0 x 10 -6 mol L -1 , with a detection limit of 4.0 x 10 -10 mol L -1 . The high sensitivity, selectivity, and stability of this LB/PAn-PTSA/GCE also demonstrated its practical utility for simple, rapid and economical determination of Ag + in water samples.

  6. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes.

    Science.gov (United States)

    Eissa, Shimaa; Tlili, Chaker; L'Hocine, Lamia; Zourob, Mohammed

    2012-01-01

    A novel label-free voltammetric immunosensor for sensitive detection of β-lactoglobulin using graphene modified screen printed electrodes has been developed. The derivatization of the graphene electrode surface was achieved by electrochemical reduction of in situ generated 4-nitrophenyl diazonium cations in aqueous acidic solution, followed by electrochemical reduction of the terminal nitro groups to amines. The electrochemical modification protocol was optimized in order to generate monolayer of nitrophenyl groups on the graphene surface without complete passivation of the electrode. Unlike the reported method for graphene functionalization, we demonstrated here the ability of the electrografting of aryl diazonium salt to attach an organic film to the graphene surface in a controlled manner by choosing the suitable grafting protocol. Next, the amine groups on the graphene surface were activated using glutaraldehyde and used for the covalent immobilization of β-lactoglobulin antibodies. Cyclic and differential pulse voltammetry carried out in an aqueous solution containing [Fe(CN)(6)](3-/4-) redox pair have been used for the immunosensor characterization. The results demonstrated that the DPV reduction peak current of [Fe(CN)(6)](3-/4-) decreased linearly with increasing the concentration of β-lactoglobulin due to the formation of antibody-antigen complex on the modified electrode surface. The immunosensor obtained using this novel approach enabled a detection limit of 0.85 pg mL(-1) and a dynamic range from 1 pg mL(-1) to 100 ng mL(-1) of β-lactoglobulin in PBS buffer. In addition, the immunosensor evaluated in different samples including cake, cheese snacks, a sweet biscuit, showing excellent correlation with the results obtained from commercially enzyme-linked immunosorbent assay (ELISA) method. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    International Nuclear Information System (INIS)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing

    2016-01-01

    Graphical abstract: A poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified glassy carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) without any pretreatment. - Highlights: • A poly(RhB)/graphene oxide/multiwalled carbon nanotubes composite was synthesized. • The composite film was characterized by SEM, XRD, EIS and Raman spectroscopy. • The simultaneous electrochemical determination of 2,4,6-TCP and PCP was realized. • The electrode showed high sensitivity, excellent reproducibility and good stability. • The electrode was used to determine 2,4,6-TCP and PCP in practical water samples. - Abstract: In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10"−"9 to 1.0 × 10"−"7 M and 1.0 × 10"−"7 to 1.0 × 10"−"4 M with the detection limit (S/N = 3) of 8.0 × 10"−"1"0 M. And the linear concentration ranges for PCP were 2.0 × 10"−"9 to 1.0 × 10"−"7 M and 1.0 × 10"−"7 to 9.0 × 10"−"5 M with the detection limit of 5.0 × 10"−"1"0 M

  8. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing, E-mail: yuanx@nenu.edu.cn

    2016-01-15

    Graphical abstract: A poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified glassy carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) without any pretreatment. - Highlights: • A poly(RhB)/graphene oxide/multiwalled carbon nanotubes composite was synthesized. • The composite film was characterized by SEM, XRD, EIS and Raman spectroscopy. • The simultaneous electrochemical determination of 2,4,6-TCP and PCP was realized. • The electrode showed high sensitivity, excellent reproducibility and good stability. • The electrode was used to determine 2,4,6-TCP and PCP in practical water samples. - Abstract: In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10{sup −9} to 1.0 × 10{sup −7} M and 1.0 × 10{sup −7} to 1.0 × 10{sup −4} M with the detection limit (S/N = 3) of 8.0 × 10{sup −10} M. And the linear concentration ranges for PCP were 2.0 × 10{sup −9} to 1.0 × 10{sup −7} M and 1.0 × 10{sup −7} to 9.0 × 10{sup −5} M with the

  9. A sensitive electrochemical immunosensor based on poly(2-aminobenzylamine) film modified screen-printed carbon electrode for label-free detection of human immunoglobulin G.

    Science.gov (United States)

    Putnin, Thitirat; Jumpathong, Watthanachai; Laocharoensuk, Rawiwan; Jakmunee, Jaroon; Ounnunkad, Kontad

    2018-08-01

    This work focuses on fabricating poly(2-aminobenzylamine)-modified screen-printed carbon electrode as an electrochemical immunosensor for the label-free detection of human immunoglobulin G. To selectively detect immunoglobulin G, the anti-immunoglobulin G antibody with high affinity to immunoglobulin G was covalently linked with the amine group of poly(2-aminobenzylamine) film-deposited screen-printed carbon electrode. The selectivity for immunoglobulin G was subsequently assured by being challenged with redox-active interferences and adventitious adsorption did not significantly interfere the analyte signal. To obviate the use of costly secondary antibody, the [Fe(CN) 6 ] 4-/3- redox probe was instead applied to measure the number of human immunoglobulin G through the immunocomplex formation that is quantitatively related to the level of the differential pulse voltammetric current. The resulting immunosensor exhibited good sensitivity with the detection limit of 0.15 ng mL -1 , limit of quantitation of 0.50 ng mL -1 and the linear range from 1.0 to 50 ng mL -1 . Given those striking analytical performances and the affordability arising from using cheap screen-printed carbon electrode with label-free detection, the immunosensor serves as a promising model for the next-step development of a diagnostic tool.

  10. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    Science.gov (United States)

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2− detection

    International Nuclear Information System (INIS)

    Valentini, Federica; Cristofanelli, Lara; Carbone, Marilena; Palleschi, Giuseppe

    2012-01-01

    In this work a new chemical sensor for the H 2 O 2 and nitrite amperometric detection was assembled, using a glassy carbon (GC) bare electrode modified by two different nanocomposite materials. The nanocomposite films were prepared by casting a functionalised carbon nanofiber (CNF-COOH) and single-walled carbon nanotubes (SWCNT-OH, for comparison) on the glassy carbon electrode surface; then an iron(III) protoporphyrin IX (Fe(III)P) was adsorbed on these modified surfaces. A morphological investigation of the nanocomposite layers was also carried out, using the Scanning Electron Microscopy (SEM). The electrochemical characterization, performed optimising several electro-analytical parameters (such as different medium, pH, temperature, scan rate, and potential window), demonstrated that the direct electrochemistry of the Fe(III)P/Fe(II)P redox couple involves 1e − /1H + process. A kinetic evaluation of the electron-transfer reaction mechanism was also carried out, demonstrating that the heterogeneous electron transfer rate constant resulted higher at CNF/hemin/GC biosensor than that evaluated at SWCNT/hemin/GC modified electrode. Finally, the electrocatalytic activity toward the H 2 O 2 reduction was also demonstrated for both sensors but better results were observed working at CNF/hemin/GC modified electrode, especially in terms of an extended linearity (ranging from 50 to 1000 μM), a lower detection limit (L.O.D. = 3σ) of 2.0 × 10 −6 M, a higher sensitivity of 2.2 × 10 −3 A M −1 cm −2 , a fast response time (9 s), a good reproducibility (RSD% −3 to 2.5 × 10 −1 M), a lower detection limit (L.O.D. = 3σ) of 3.18 × 10 −4 M, a higher sensitivity of 1.2 × 10 −2 A M −1 cm −2 , a fast response time of 10 s, a good reproducibility (RSD% <1, n = 3) and finally a good operational stability.

  12. Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode.

    Science.gov (United States)

    Zhang, Weikang; Liu, Tao; Zheng, Xiaojiang; Huang, Wensheng; Wan, Chidan

    2009-11-01

    The insoluble multi-walled carbon nanotubes (MWNT) was successfully dispersed into water in the presence of hydrophobic surfactant. After that, MWNT film-coated glassy carbon electrode (GCE) was achieved via dip-coating and evaporating water. Owing to huge surface area, high sorption capacity and subtle electronic properties, MWNT film exhibits highly efficient accumulation efficiency as well as considerable surface enhancement effects to Sunset Yellow and Tartrazine. As a result, the oxidation peak currents of Sunset Yellow and Tartrazine remarkably increase at the MWNT film-modified GCE. Based on this, a novel electrochemical method was developed for the simultaneous determination of Sunset Yellow and Tartrazine. The limits of detection are 10.0 ng mL(-1) (2.2 x 10(-8)mol L(-1)) and 0.1 microg mL(-1) (1.88 x 10(-7)mol L(-1)) for Sunset Yellow and Tartrazine. Finally, the proposed method was successfully used to detect Sunset Yellow and Tartrazine in soft drinks.

  13. Mercury-free sono-electroanalytical detection of lead in human blood by use of bismuth-film-modified boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kruusma, Jaanus [Institute of Physical Chemistry, University of Tartu, Jakobi 2, 51013, Tartu (Estonia); Banks, Craig E.; Compton, Richard G. [Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QZ, Oxford (United Kingdom)

    2004-06-01

    We report the electroanalytical determination of lead by anodic stripping voltammetry at in-situ-formed, bismuth-film-modified, boron-doped diamond electrodes. Detection limits in 0.1 mol L{sup -1} nitric acid solution of 9.6x10{sup -8} mol L{sup -1} (0.2 ppb) and 1.1x10{sup -8} mol L{sup -1} (2.3 ppb) were obtained after 60 and 300 s deposition times, respectively. An acoustically assisted deposition procedure was also investigated and found to result in improved limits of detection of 2.6 x 10{sup -8} mol L{sup -1} (5.4 ppb) and 8.5 x 10{sup -10} mol L{sup -1} (0.18 ppb) for 60 and 300 s accumulation times, respectively. Furthermore, the sensitivity obtained under quiescent and insonated conditions increased from 5.5 (quiescent) to 76.7 A mol{sup -1} L (insonated) for 60 s accumulation and from 25.8 (quiescent) to 317.6 A mol{sup -1} L (insonated) for 300 s accumulation. Investigation of the use of ultrasound with diluted blood revealed detection limits of the order of 10{sup -8} mol L{sup -1} were achievable with excellent inter- and intra-reproducibility and sensitivity of 411.9 A mol{sup -1} L. For the first time, electroanalytical detection of lead in diluted blood is shown to be possible by use of insonated in-situ-formed bismuth-film-modified boron-doped diamond electrodes. This method is a rapid, sensitive, and non-toxic means of clinical sensing of lead in whole human blood. (orig.)

  14. Glucose Oxidation on Gold-modified Copper Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Pyo, Sung Gyu; Son, Hyungbin; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Son, Hyungbin [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-09-15

    The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

  15. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Mohammadi-Behzad, Leila

    2015-01-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk

  16. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand2013@gmail.com; Mohammadi-Behzad, Leila

    2015-12-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk.

  17. Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Balamurugan, A.; Chen Shenming

    2007-01-01

    Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 x 10 -6 to 1 x 10 -5 M. The detection limit is 5 x 10 -7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid

  18. Elaboration of modified poly(NiII-DHS films as electrodes by the electropolymerization of Ni(II-[5,5′-dihydroxysalen] onto indium tin oxide surface and study of their electrocatalytic behavior toward aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Ali Ourari

    2017-11-01

    Full Text Available Nickel(II-DHS complex was obtained from N,N′-bis(2,5-dihydroxybenzylidene-1,2-diaminoethane (H2DHS ligand and nickel acetate tetrahydrated in ethanolic solution with stirring under reflux. This complex, dissolved in an alkaline solution, was oxidized to form electroactive films strongly adhered on the ITO (indium tin oxide electrode surface. In this alkaline solution, the poly-[NiII-DHS]/ITO films showed the typical voltammetric response of (Ni2+/Ni3+ redox couple centers which are immobilized in the polymer-film. The modified electrodes (MEs obtained were also characterized by several techniques such as scanning electronic microscopy, atomic force microscopy and electrochemical methods. The electrocatalytic behavior of these MEs toward the oxidation reaction of some aliphatic alcohols such as methanol, ethanol, 2-Methyl-1-propanol and isopropanol was investigated. The voltammograms recorded with these alcohols showed good electrocatalytic efficiency. The electrocatalytic currents were at least 80 times higher than those obtained for the oxidation of methanol on electrodes modified with nickel hydroxide films in alkaline solutions. We noticed that these electrocatalytic currents are proportional to the concentration of methanol (0.050–0.30 μM. In contrast, those recorded for the oxidation of other aliphatic short chain alcohols such as ethanol, 2-methyl-1-propanol and isopropanol are rather moderately weaker. In all cases the electrocatalytic currents presented a linear dependence with the concentration of alcohol. These modified electrodes could be applied as alcohol sensors.

  19. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu Xiuli; Yang Wu; Ren Jie; Guo Hao; Long Shijia; Chen Jiaojiao; Gao Jinzhang

    2012-01-01

    Highlights: ► This work developed a novel electrochemical biosensors for guanine and adenine detection simultaneously. ► A disposable electrode based on graphene sheets, ionic liquid and chitosan was proposed. ► The presented method was also applied to simultaneous determination of guanine and adenine in denatured DNA samples with satisfying results. ► Easy fabrication, high sensitivity, excellent reproducibility and long-term stability. - Abstract: A graphene sheets (GS), ionic liquid (IL) and chitosan (CS) modified electrode was fabricated and the modified electrode displayed excellent electrochemical catalytic activities toward guanine and adenine. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 2, α = 0.58 for guanine, and n = 2, α = 0.51 for adenine, which indicated the electrochemical oxidation of guanine and adenine on GS/IL/CS modified electrode was a two-electron and two-proton process. The oxidation overpotentials of guanine and adenine were decreased significantly compared with those obtained at the bare glassy carbon electrode and multi-walled carbon nanotubes modified electrode. The modified electrode exhibited good analytical performance and was successfully applied for individual and simultaneous determination of guanine and adenine. Low detection limits of 0.75 μM for guanine and 0.45 μM for adenine were obtained, with the linear calibration curves over the concentration range 2.5–150 μM and 1.5–350 μM, respectively. At the same time, the proposed method was successfully applied for the determination of guanine and adenine in denatured DNA samples with satisfying results. Moreover, the GS/IL/CS modified electrode exhibited good sensitivity, long-term stability and reproducibility for the determination of guanine and adenine.

  20. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film.

    Science.gov (United States)

    Deng, Peihong; Xu, Zhifeng; Zeng, Rongying; Ding, Chunxia

    2015-08-01

    The graphene-polyvinylpyrrolidone composite film modified acetylene black paste electrode (GR-PVP/ABPE) was fabricated and used to determine vanillin. In 0.1M H3PO4 solution, the oxidation peak current of vanillin increased significantly at GR-PVP/ABPE compared with bare ABPE, PVP/ABPE and GR/ABPE. The oxidation mechanism was discussed. The experimental conditions that exert influence on the voltammetric determination of vanillin, such as supporting electrolytes, pH values, accumulation potential and accumulation time, were optimized. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. Under the optimal experimental conditions, the oxidation peak current was proportional to vanillin concentration in the range of 0.02-2.0 μM, 2.0-40 μM and 40-100 μM. The detection limit was 10nM. This sensor was used successfully for vanillin determination in various food samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  2. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  3. Determination of biogenic amines from electrocatalytic responses of graphite electrodes modified with metallic osmium or an osmium oxide-ruthenium cyanide film

    International Nuclear Information System (INIS)

    Shajdarova, L.G.; Gedmina, A.V.; Chelnokova, I.A.; Budnikov, G.K.

    2008-01-01

    Particles of osmium or an inorganic polymeric film of osmium oxide-ruthenium cyanide (OsO-RuCN) electrodeposited on glassy carbon (GC) electrocatalyze the oxidation of dopamine (DA), adrenaline (AD), and noradrenaline (NAD). It is found that these biogenic amines are determined with a high sensitivity by oxidation at an electrode with an OsO-RuCN film. Procedures for the voltammetric determination of DA, AD, or NAD at a composite film electrode are developed. The currents of the substrate oxidation are linear functions of the concentrations in the ranges from 5x10 -7 to 1x10 -3 M for DA and from 1x10 -6 to 1x10 -3 M for AD and NAD [ru

  4. LiFePO_4_−_xN_y thin-film electrodes coated on carbon fiber-modified current collectors for pseudocapacitors

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Huang, Wei-Chieh

    2015-01-01

    LiFePO_4_−_xN_y thin films were sputter-deposited on micron carbon fibers (MCFs) under a gas mixture of N_2/Ar/H_2 as electrode materials in pseudocapacitors. The MCFs were fabricated by thermal chemical vapor deposition on stainless steel substrates as current collectors. Various amounts of N_2 were introduced by controlling the flow ratios of N_2 to Ar/H_2. The LiFePO_4_−_xN_y thin films coated on the surfaces of MCFs were observed by field emission scanning electron microscopy. The electrochemical properties of the LiFePO_4_−_xN_y thin films were characterized using cyclic voltammetry and charge–discharge processes. The LiFePO_4_−_xN_y thin-film electrode deposited under the optimal N_2 contents exhibited a high specific capacitance of 722 F/g at 1 A/g. Even at a current of 20 A/g, the electrode delivered a capacitance of 298 F/g. The pseudocapacitors using LiFePO_4_−_xN_y thin-film electrodes showed no significant capacitance fading after 1000 cycles at 1 A/g. The results indicated that nitrogen doping improved the electrochemical performances of LiFePO_4, demonstrating the potential of LiFePO_4_−_xN_y as an active material in pseudocapacitors. - Highlights: • LiFePO_4_−_xN_y thin films were sputter-deposited on micron carbon fibers (MCFs). • MCFs only act as a three-dimensional current collector in this system. • The pseudocapacitor exhibits a high specific capacitance.

  5. Organic conductive films for semiconductor electrodes

    Science.gov (United States)

    Frank, Arthur J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  6. Improved stability of titanium based boron-doped chemical vapor deposited diamond thin-film electrode by modifying titanium substrate surface

    International Nuclear Information System (INIS)

    Lim, P.Y.; Lin, F.Y.; Shih, H.C.; Ralchenko, V.G.; Varnin, V.P.; Pleskov, Yu.V.; Hsu, S.F.; Chou, S.S.; Hsu, P.L.

    2008-01-01

    The film quality and electrochemical properties of BDD (boron-doped diamond) thin films grown by hot-filament chemical vapor deposition technique on titanium substrates that had been subjected to a range of pre-treatment processes were evaluated. The pre-roughened Ti-substrates are shown to support more adherent BDD films. It is evident that acid-etching the Ti-substrate involves surface hydrogenation that enhances nucleation and formation of diamond thereon. The prepared BDD film exhibits wide potential window and electrochemical reversibility. It also demonstrated a better long-term electrochemical stability based on the low variation in voltametric background current upon the exposing of the electrodes to repeated cycles of electrochemical metal deposition/stripping process

  7. In situ Observation of Direct Electron Transfer Reaction of Cytochrome c Immobilized on ITO Electrode Modified with 11-{2-[2-(2-Methoxyethoxy)ethoxy]ethoxy}undecylphosphonic Acid Self-assembled Monolayer Film by Electrochemical Slab Optical Waveguide Spectroscopy.

    Science.gov (United States)

    Matsuda, Naoki; Okabe, Hirotaka; Omura, Ayako; Nakano, Miki; Miyake, Koji

    2017-01-01

    To immobilize cytochrome c (cyt.c) on an ITO electrode while keeping its direct electron transfer (DET) functionality, the ITO electrode surface was modified with 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid (CH 3 O (CH 2 CH 2 O) 3 C 11 H 22 PO(OH) 2 , M-EG 3 -UPA) self-assembled monolayer (SAM) film. After a 100-times washing process to exchange a phosphate buffer saline solution surrounding cyt.c and ITO electrode to a fresh one, an in situ observation of visible absorption spectral change with slab optical waveguide (SOWG) spectroscopy showed that 87.7% of the cyt.c adsorbed on the M-EG 3 -UPA modified ITO electrode remained on the ITO electrode. The SOWG absorption spectra corresponding to oxidized and reduced cyt.c were observed with setting the ITO electrode potential at 0.3 and -0.3 V vs. Ag/AgCl, respectively, while probing the DET reaction between cyt.c and ITO electrode occurred. The amount of cyt.c was evaluated to be about 19.4% of a monolayer coverage based on the coulomb amount in oxidation and reduction peaks on cyclic voltammetry (CV) data. The CV peak current maintained to be 83.4% compared with the initial value for a M-EG 3 -UPA modified ITO electrode after 60 min continuous scan with 0.1 V/s between 0.3 and -0.3 V vs. Ag/AgCl.

  8. Simultaneous determination of cysteine, uric acid and tyrosine using Au-nanoparticles/poly(E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Taei, M., E-mail: m.taei@ch.iut.ac.ir; Hasanpour, F.; Salavati, H.; Banitaba, S.H.; Kazemi, F.

    2016-02-01

    A novel Au nanoparticles/poly(E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol (AuNPs/PTAT) film modified glassy carbon electrode (AuNPs/PTAT/GCE) was fabricated for the simultaneous determination of three antioxidants named, cysteine (Cys), uric acid (UA) and tyrosine (Tyr). The bare glassy carbon electrode (GCE) fails to separate the oxidation peak potentials of these molecules, while PTAT film modified electrode can resolve them. Electrochemical impedance spectroscopy (EIS) study indicates that the charge transfer resistance of bare electrode increased as (E)-4-(p-tolyldiazenyl)benzene-1,2,3-triol was electropolymerized at the bare electrode. Furthermore, EIS exhibits enhancement of electron transfer kinetics between analytes and electrode after electrodeposition of Au nanoparticles. Differential pulse voltammetry results show that the electrocatalytic current increases linearly in the ranges of 2–540 μmol L{sup −1} for Cys, 5–820 μmol L{sup −1} for UA and 10–560 μmol L{sup −1} for Tyr with detection limits (S/N = 3) of 0.04 μmol L{sup −1}, 0.1 μmol L{sup −1} and 2 μmol L{sup −1} for Cys, UA and Tyr, respectively. The proposed method was successfully applied for simultaneous determination of Cys, UA and Tyr in human urine samples. - Highlights: • AuNPs/PTAT/GCE was fabricated by electrodeposition and electropolymerization. • The sensor reduced the overpotential for oxidation of Cys. • This electrode was successfully used for simultaneous sensing of Cys, UA and Tyr. • This sensor was effectively used for detection Cys, UA and Tyr in real samples.

  9. Modified silver nanowire transparent electrodes with exceptional stability against oxidation

    International Nuclear Information System (INIS)

    Idier, J; Neri, W; Ly, I; Poulin, P; Backov, R; Labrugère, C

    2016-01-01

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh 3 ) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh 3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh 3 . The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc /σ op . This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc /σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh 3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones. (paper)

  10. Modified electrode voltammetric sensors for trace metals in environmental samples

    Directory of Open Access Journals (Sweden)

    Brett Christopher M.A.

    2000-01-01

    Full Text Available Nafion-modified mercury thin film electrodes have been investigated for the analysis of trace metals in environmental samples of waters and effluent by batch injection analysis with square wave anodic stripping voltammetry. The method, involving injection over the detector electrode of untreated samples of volume of the order of 50 microlitres has fast response, blocking and fouling of the electrode is minimum as shown by studies with surface-active components. Comparison is made between glassy carbon substrate electrodes and carbon fibre microelectrode array substrates, the latter leading to a small sensitivity enhancement. Application to analysis of river water and industrial effluent for labile zinc, cadmium, lead and copper ions is demonstrated in collected samples and after acid digestion.

  11. Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: Application to the electrocatalytic oxidation of L-cysteine

    International Nuclear Information System (INIS)

    Qu Lingbo; Yang Suling; Li Gang; Yang Ran; Li Jianjun; Yu Lanlan

    2011-01-01

    An yttrium hexacyanoferrate nanoparticle/multi-walled carbon nanotube/Nafion (YHCFNP/MWNT/Nafion)-modified glassy carbon electrode (GCE) was constructed. Several techniques, including infrared spectroscopy, energy dispersive spectrometry, scanning electron microscopy and electrochemistry, were performed to characterize the yttrium hexacyanoferrate nanoparticles. The electrochemical behavior of the YHCFNP/MWNT/Nafion-modified GCE in response to L-cysteine oxidation was studied. The response current of L-cysteine oxidation at the YHCFNP/MWNT/Nafion-modified GCE was obviously higher than that at the bare GCE or other modified GCE. The effects of pH, scan rate and interference on the response to L-cysteine oxidation were investigated. In addition, on the basis of these findings, a determination of L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was carried out. Under the optimum experimental conditions, the electrochemical response to L-cysteine at the YHCFNP/MWNT/Nafion-modified GCE was fast (within 4 s). Linear calibration plots were obtained over the range of 0.20-11.4 μmol L -1 with a low detection limit of 0.16 μmol L -1 . The YHCFNP/MWNT/Nafion-modified GCE exhibited several advantages, such as high stability and good resistance against interference by ascorbic acid and other oxidizable amino acids.

  12. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  13. Cyclic Voltammetric Investigation of Dopamine at Poly-(Gabapentin Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    M. T. Shreenivas

    2011-01-01

    Full Text Available The poly (gabapentin film was prepared on the surface of carbon paste electrode by electrochemical method using cyclic voltammetric technique. The poly (gabapentin film-modified carbon paste electrode was calibrated with standard potassium ferrocyanide solution in 1 M KCl as a supporting electrolyte. The prepared poly (gabapentin film-coated electrode exhibits excellent electrocatalytic activity towards the detection of dopamine at physiological pH. The scan rate effect was found to be diffusion-controlled electrode process. The concentration effect of dopamine was studied, and the redox peak potentials of dopamine were dependant on pH.

  14. Characterization and electrocatalytic application of silver modified polypyrrole electrodes

    Directory of Open Access Journals (Sweden)

    A. DEKANSKI

    2005-02-01

    Full Text Available Silver modified polypyrrole electrodeswere preparedwith the aim of testing them for the electrooxidation of formaldehyde in alkaline solution. The modification of polypyrrole by immersion in aqueous AgNO3 solution was studied by cyclic voltammetry and vacuum techniques (AES and XPS. The influence of time of immersion and the thickness of the polypyrrole film, prepared by electrochemical polymerization, on the modification of the polymer were examined. The results acquired from both electrochemical and spectroscopic examinations show that immersion of a polypyrrole electrode in a AgNO3 solution results in its modificationwith silver, which is deposited in the elemental state on the surface. The quantity of silver deposited depends not only on the immersion time but also on the thickness of the polymer film. A modified PPy/Ag electrode exhibits catalytic activity for the electrooxidation of CH2O in NaOH. In spite of the low quantity of silver, the activity of the electrode for this reaction is comparable to that of a polycrystalline silver electrode.

  15. Carbon film electrodes for super capacitor applications

    Science.gov (United States)

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  16. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2

    International Nuclear Information System (INIS)

    Li, Su-Juan; Du, Ji-Min; Zhang, Jia-Ping; Zhang, Meng-Jie; Chen, Jing

    2014-01-01

    We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H 2 O 2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoO x NPs or graphene sheets only, the new electrode displays larger oxidative current response to H 2 O 2 , probably due to the synergistic effects between the graphene sheets and the CoO x NPs. The sensor responds to H 2 O 2 with a sensitivity of 148.6 μA mM −1 cm −2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H 2 O 2 in hydrogen peroxide samples. (author)

  17. Polymyxin-coated Au and carbon nanotube electrodes for stable [NiFe]-hydrogenase film voltammetry.

    NARCIS (Netherlands)

    Hoeben, F.J.M.; Heller, I.; Albracht, S.P.J.; Dekker, C.; Lemay, S.G.; Heering, H.A.

    2008-01-01

    We report on the use of polymyxin (PM), a cyclic cationic lipodecapeptide, as an electrode modifier for studying protein film voltammetry (PFV) on Au and single-walled carbon nanotube (SWNT) electrodes. Pretreating the electrodes with PM allows for the subsequent immobilization of an active

  18. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  19. Study of surface-modified PVP gate dielectric in organic thin film transistors with the nano-particle silver ink source/drain electrode.

    Science.gov (United States)

    Yun, Ho-Jin; Ham, Yong-Hyun; Shin, Hong-Sik; Jeong, Kwang-Seok; Park, Jeong-Gyu; Choi, Deuk-Sung; Lee, Ga-Won

    2011-07-01

    We have fabricated the flexible pentacene based organic thin film transistors (OTFTs) with formulated poly[4-vinylphenol] (PVP) gate dielectrics treated by CF4/O2 plasma on poly[ethersulfones] (PES) substrate. The solution of gate dielectrics is made by adding methylated poly[melamine-co-formaldehyde] (MMF) to PVP. The PVP gate dielectric layer was cross linked at 90 degrees under UV ozone exposure. Source/drain electrodes are formed by micro contact printing (MCP) method using nano particle silver ink for the purposes of low cost and high throughput. The optimized OTFT shows the device performance with field effect mobility of the 0.88 cm2/V s, subthreshold slope of 2.2 V/decade, and on/off current ratios of 1.8 x 10(-6) at -40 V gate bias. We found that hydrophobic PVP gate dielectric surface can influence on the initial film morphologies of pentacene making dense, which is more important for high performance OTFTs than large grain size. Moreover, hydrophobic gate dielelctric surface reduces voids and -OH groups that interrupt the carrier transport in OTFTs.

  20. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  1. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive...

  2. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  3. Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with l-cysteine: preliminary results

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2009-01-01

    Full Text Available The surface of glassy carbon (GC electrode has been modified by oxidation of L-cysteine. The covalent modified GC electrode with L-Cysteine has been studied, according the supporting electrolyte used. Favourable interactions between the L-cysteine film and DA enhance the current response compared to that at the Nafion GC and bare GC electrodes, achieving better performances than those other electrodes. This behaviour was as result of the adsorption of the cysteine layer film, compact and uniform formation; depending on L-cysteine solution (phosphate buffer or chloridric acid supporting electrolyte used for modifying GC surface. In cyclic voltammetric measurements, modified electrodes can successfully separate the oxidation/reduction DA peaks in different buffer solutions, but an evident dependence in the response was obtained as function of pH and modified electrode. The modified electrode prepared with L-cysteine/HCl solution was used to obtain the calibration curve and it exhibited a stable and sensitive response to DA. The results are described and discussed in the light of the existing literature.

  4. Improved performance of CdSe/CdS co-sensitized solar cells adopting efficient CuS counter electrode modified by PbS film using SILAR method

    Science.gov (United States)

    Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Fang, Biaopeng; Zeng, Jiali

    2018-04-01

    In this paper, CuS film was deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method, and then modified by PbS using simple successive ionic layer absorption and reaction (SILAR) method with different cycles. These CuS/PbS films were utilized as counter electrodes (CEs) for CdSe/CdS co-sensitized solar cells. Field-emission scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer was used to characterize the CuS/PbS films. The results show that CuS/PbS (10 cycles) CE exhibits an improved power conversion efficiency of 5.54% under the illumination of one sun (100 mW cm-2), which is higher than the CuS/PbS (0 cycles), CuS/PbS (5 cycles), and CuS/PbS (15 cycles) CEs. This enhancement is mainly attributed to good catalytic activity and lower charge-transfer and series resistances, which have been proved by electrochemical impedance spectroscopy, and Tafel polarization measurements.

  5. Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode

    International Nuclear Information System (INIS)

    Chen, Xuemin; Ren, Tongqing; Ma, Ming; Wang, Zhengguo; Zhan, Guoqing; Li, Chunya

    2013-01-01

    Highlights: • Single-walled carbon nanotubes (SWCNTs)-ionic liquid (IL) nanocomposite fabrication. • SWCNTs-Poly-IL film modified electrode was prepared and characterized. • Voltammetric behaviors of bisphenol A were investigated thoroughly. • Sensitive voltammetric method for bisphenol A determination was developed. -- Abstract: Using carboxylic acid-functionalized single walled carbon nanotubes (SWCNTs-COO − ) as an anion and 3-butyl-1-[3-(N-pyrrolyl)propyl]imidazolium as a cation, a novel SWCNTs-COO-ionic liquid (SWCNTs-COO-IL) nanocomposite was fabricated successfully. The as-prepared SWCNTs-COO-IL nanocomposite was confirmed with transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis, FTIR and Raman spectroscopy. The SWCNTs-COO-IL nanocomposite was coated onto a glassy carbon electrode surface followed by cyclic voltammetric scanning to fabricate a SWCNTs/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode (SWCNTs/Poly-IL/GCE). Scanning electron microscope and electrochemical impedance spectroscopy were used to characterize SWCNTs/Poly-IL/GCE. Electrochemical behaviors of bisphenol A (BPA) at the SWCNTs/Poly-IL/GCE were investigated thoroughly. It was found that an obvious oxidation peak appeared without reduction peak in the reverse scanning, indicating an irreversible electrochemical process. The oxidation peak currents of BPA were linearly related to scan rate in the range of 20–300 mV s −1 , suggesting an adsorption controlled process rather than a diffusion controlled process. Differential pulse voltammetry was employed for the voltammetric sensing of BPA. Experimental conditions such as film thickness, pH value, accumulation potential and time that influence the analytical performance of the SWCNTs/Poly-IL/GCE were optimized. Under optimal conditions, the oxidation peak current was linearly related to BPA concentration in the range of 5.0 × 10 −9 to 3.0 × 10 −5 mol L

  6. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  7. Formation of a robust and stable film comprising ionic liquid and polyoxometalate on glassy carbon electrode modified with multiwalled carbon nanotubes: Toward sensitive and fast detection of hydrogen peroxide and iodate

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.i [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195 - 1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Hamidi, Hassan [Department of Chemistry, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195 - 1159, Gava Zang, Zanjan (Iran, Islamic Republic of); Gorton, Lo [Institute of Chemistry, Lund University, P.O. Box 124, S-221 00 Lund (Sweden)

    2010-06-30

    A robust and stable film comprising n-octylpyridinum hexafluorophosphate ([C{sub 8}Py][PF{sub 6}]) and 1:12 phosphomolybdic acid (PMo{sub 12}) was prepared on glassy carbon electrodes modified with multiwall carbon nanotubes (GCE/MWCNTs) by dip-coating. The cyclic voltammograms of the GCE/MWCNTs/[C{sub 8}Py][PF{sub 6}]-PMo{sub 12} showed three well-defined pairs of redox peaks due to the PMo{sub 12} system. The surface coverage for the immobilized PMo{sub 12} and the average values of the electron transfer rate constant for three pairs of redox peaks were evaluated. The GCE/MWCNTs/[C{sub 8}Py][PF{sub 6}]-PMo{sub 12} showed great electrocatalytic activity towards the reduction of H{sub 2}O{sub 2} and iodate. The kinetic parameters of the catalytic reduction of hydrogen peroxide and iodate at the electrode surface and analytical features of the sensor for amperometric determination of hydrogen peroxide and iodate were evaluated.

  8. Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Lin Xiangqin [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China)]. E-mail: xqlin@ustc.edu.cn

    2007-07-23

    A novel biosensor was fabricated by electrochemical deposition of gold nanoclusters on ultrathin overoxidized polypyrrole (PPyox) film, formed a nano-Au/PPyox composite on glassy carbon electrode (nano-Au/PPyox/GCE). The properties of the nanocomposite have been characterized by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and electrochemical investigations. The nano-Au/PPyox/GCE had strongly catalytic activity toward the oxidation of epinephrine (EP), uric acid (UA) and ascorbic acid (AA), and resolved the overlapping voltammetric response of EP, UA and AA into three well-defined peaks with a large anodic peak difference. The catalytic peak currents obtained from differential pulse voltammetry increased linearly with increasing EP and UA concentrations in the range of 3.0 x 10{sup -7} to 2.1 x 10{sup -5} M and 5.0 x 10{sup -8} to 2.8 x 10{sup -5} M with a detection limit of 3.0 x 10{sup -8} and 1.2 x 10{sup -8} M (s/n = 3), respectively. The results showed that the modified electrode can selectively determine EP and UA in the coexistence of a large amount of AA. In addition, the sensor exhibited excellent sensitivity, selectivity and stability. The nano-Au/PPyox/GCE has been applied to determination of EP in epinephrine hydrochloride injection and UA in urine samples with satisfactory results.

  9. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    OpenAIRE

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 ? 10?6 to 100 ? 10?6?mol?L?1 with determination coefficient and method detection limit (LoD = 3?s/slope) of 0....

  10. EDTA modified glassy carbon electrode: Preparation and characterization

    International Nuclear Information System (INIS)

    Ustuendag, Zafer; Solak, Ali Osman

    2009-01-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){2-[bis(carboxymethyl)amino]-ethyl}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb 2+ ions was investigated if this electrode could be used as a metal sensor.

  11. Applications of Graphene-Modified Electrodes in Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2016-09-01

    Full Text Available Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC. In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and chemical vapor deposition, are summarized. According to the different functions of the graphene-modified materials in the MFC anode and cathode chambers, a series of design concepts for MFC electrodes are assembled, e.g., enhancing the biocompatibility and improving the extracellular electron transfer efficiency for anode electrodes and increasing the active sites and strengthening the reduction pathway for cathode electrodes. In spite of the challenges of MFC electrodes, graphene-modified electrodes are promising for MFC development to address the reduction in efficiency brought about by organic waste by converting it into electrical energy.

  12. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine.

    Science.gov (United States)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming

    2013-05-24

    We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant kb, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0×10(-8) to 2.0×10(-5) mol L(-1), with a low limit of detection (LOD) of 1.25×10(-8) mol L(-1) for SY and 1.43×10(-8) mol L(-1) for TT (SN(-1)=3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant differences were found. By the treatment of the experimental data, the electrochemical reaction mechanisms of SY and TT both involved a one-electron-one-proton-transfer process. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Oxidation of methanol on perovskite-type La{sub 2-x}Sr{sub x}NiO{sub 4} (0 {<=} x {<=} 1) film electrodes modified by dispersed nickel in 1 M KOH

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R.N.; Singh, A.; Mishra, D.; Anindita [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (India); Chartier, P. [Laboratoire d' Electrochimie et Chimie Physique du Corps Solide, Institut de Chimie LC3-UMR7177 CNRS/ULP, Universite Louis Pasteur, 67000, Strasbourg (France)

    2008-12-01

    Finely-dispersed nickel particles are electrodeposited on high surface-area perovskite-type La{sub 2-x}Sr{sub x}NiO{sub 4} (0 {<=} x {<=} 1) electrodes for possible use in a direct methanol fuel cell (DMFC). The study is conducted by cyclic voltammetry, chronoamperometry, impedance spectroscopy and anodic Tafel polarization techniques. The results show that the apparent electrocatalytic activities of the modified oxide electrodes are much higher than those of unmodified electrodes under similar experimental conditions; the observed activity is the greatest with the modified La{sub 1.5}Sr{sub 0.5}NiO{sub 4} electrode. At 0.550 V (vs. Hg vertical stroke HgO) in 1 M KOH + 1 M CH{sub 3}OH at 25 C, the latter electrode delivers a current density of over 200 mA cm{sup -2}, whereas other electrodes of the series produce relatively low values (65-117 mA cm{sup -2}). To our knowledge, such high methanol oxidation current densities have not been reported on any other non-platinum electrode in alkaline solution. Further, the modified electrodes are not poisoned by methanol oxidation intermediates/products. (author)

  14. Direct Electrochemistry of Horseradish Peroxidase on NiO Nanoflower Modified Electrode and Its Electrocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Lijun Yan

    2016-09-01

    Full Text Available In this paper nickel oxide (NiO nanoflower was synthesized and used for the realization of direct electrochemistry of horseradish peroxidase (HRP. By using carbon ionic liquid electrode (CILE as the substrate electrode, NiO-HRP composite was casted on the surface of CILE with chitosan (CTS as the film forming material and the modified electrode was denoted as CTS/NiO-HRP/CILE. UV-Vis absorption and FT-IR spectra confirmed that HRP retained its native structure after mixed with NiO nanoflower. Direct electron transfer of HRP on the modified electrode was investigated by cyclic voltammetry with a pair of quasi-reversible redox waves appeared, indicating that the presence of NiO nanoflower on the electrode surface could accelerate the electron transfer rate between the electroactive center of HRP and the substrate electrode. Electrochemical behaviors of HRP on the modified electrode were carefully investigated. The HRP modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid with wider linear range and lower detection limit. Therefore the presence of NiO nanoflower could provide a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. The fabricated electrochemical biosensor displayed the advantages such as high sensitivity, good reproducibility and long-term stability. This work is licensed under a Creative Commons Attribution 4.0 International License.

  15. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  16. A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles-thionine-reduced graphene oxide nanocomposite film modified glassy carbon electrode.

    Science.gov (United States)

    Kong, Fen-Ying; Xu, Mao-Tian; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-10-15

    In this paper, gold nanoparticle-thionine-reduced graphene oxide (GNP-THi-GR) nanocomposites were prepared to design a label-free immunosensor for the sensitive detection of carcinoembryonic antigen (CEA). The nanocomposites with good biocompatibility, excellent redox electrochemical activity and large surface area were coated onto the glassy carbon electrode (GCE) surface and then CEA antibody (anti-CEA) was immobilized on the electrode to construct the immunosensor. The morphologies and electrochemistry of the formed nanocomposites were investigated by using scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrometry, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). CV and differential pulse voltammetry (DPV) studies demonstrated that the formation of antibody-antigen complexes decreased the peak current of THi in the GNP-THi-GR nanocomposites. The decreased currents were proportional to the CEA concentration in the range of 10-500 pg/mL with a detection limit of 4 pg/mL. The proposed method was simple, fast and inexpensive for the determination of CEA at very low levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Square-wave adsorptive stripping voltammetric determination of nanomolar levels of bezafibrate using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film.

    Science.gov (United States)

    Ardila, Jorge Armando; Oliveira, Geiser Gabriel; Medeiros, Roberta Antigo; Fatibello-Filho, Orlando

    2014-04-07

    A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.

  18. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine

    International Nuclear Information System (INIS)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming

    2013-01-01

    Graphical abstract: -- Highlights: •A green and facile approach for synthesis of β-CD-PDDA-Gr at room temperature. •We present the β-CD-PDDA-Gr modified GC-RDE for simultaneous detection of SY and TT. •SY and TT's electrooxidations are both the one-electron-one-proton-transfer process. •Diffusion coefficients and standard rate constants of SY and TT were discussed. -- Abstract: We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant k b , were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0 × 10 −8 to 2.0 × 10 −5 mol L −1 , with a low limit of detection (LOD) of 1.25 × 10 −8 mol L −1 for SY and 1.43 × 10 −8 mol L −1 for TT (S N −1 = 3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant differences were found. By the treatment of the

  19. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming, E-mail: wangcm@lzu.edu.cn

    2013-05-24

    Graphical abstract: -- Highlights: •A green and facile approach for synthesis of β-CD-PDDA-Gr at room temperature. •We present the β-CD-PDDA-Gr modified GC-RDE for simultaneous detection of SY and TT. •SY and TT's electrooxidations are both the one-electron-one-proton-transfer process. •Diffusion coefficients and standard rate constants of SY and TT were discussed. -- Abstract: We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant k{sub b}, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0 × 10{sup −8} to 2.0 × 10{sup −5} mol L{sup −1}, with a low limit of detection (LOD) of 1.25 × 10{sup −8} mol L{sup −1} for SY and 1.43 × 10{sup −8} mol L{sup −1} for TT (S N{sup −1} = 3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant

  20. Chirality of magneto-electrodeposited metal film electrodes

    International Nuclear Information System (INIS)

    Mogi, Iwao; Watanabe, Kazuo

    2008-01-01

    The chiral electrode behaviors of magneto-electrodeposited (MED) Ag and Cu films were examined for the electrochemical reactions of D-glucose, L-glucose and L-cysteine. The Ag and Cu films were electrodeposited under a magnetic field of 2 T parallel (+2 T) or antiparallel (-2 T) to the faradaic current. For MED films of both Ag and Cu, the oxidation current of L-glucose was larger than that of D-glucose on the +2 T-film electrodes, and the results were opposite on the - 2 T-film electrodes. These facts demonstrate that the MED metal films possess the ability of chiral recognition for D- and L-glucoses. The MED Ag film electrodes also exhibited chiral behavior for the oxidation of L-cysteine

  1. Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode.

    Science.gov (United States)

    Zhao, Jun; Zhang, Yu; Wu, Kangbing; Chen, Jianwei; Zhou, Yikai

    2011-09-15

    A novel electrochemical method using multi-wall carbon nanotube (MWNT) film-modified electrode was developed for the detection of quinoline yellow. In pH 8 phosphate buffer, an irreversible oxidation peak at 0.71V was observed for quinoline yellow. Compared with the unmodified electrode, the MWNT film-modified electrode greatly increases the oxidation peak current of quinoline yellow, showing notable enhancement effect. The effects of pH value, amount of MWNT, accumulation potential and time were studied on the oxidation peak current of quinoline yellow. The linear range is from 0.75 to 20mgL(-1), and the limit of detection is 0.5mgL(-1). It was applied to the detection of quinoline yellow in commercial soft drinks, and the results consisted with the value that obtained by high-performance liquid chromatography. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  3. Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: Oxidation of phenol

    International Nuclear Information System (INIS)

    Hernandez, Maria; Fernandez, Lenys; Borras, Carlos; Mostany, Jorge; Carrero, Hermes

    2007-01-01

    The characteristics of hydrotalcite (HT)-like clay films containing ionic and nonionic surfactants and their ability to oxidize phenol have been examined. The HT clay (Co/Al-NO 3 ) was synthesized by coprecipitation techniques and then modified with surfactants such as sodium dodecylbenzenesulfonate (SDBS), octylphenoxypolyethoxyethanol (TX100) or cetylpyridinium bromide (CPB). X-ray diffraction analysis revealed that the interlayer basal spacing varied depending on the type of surfactant retained by the HT. The presence of SDBS and CPB expanded the HT interlayer, which in the presence of TX100 did not show an appreciable change. Phenol oxidation is favored at surfactant-HT-GC modified electrodes, after a preconcentration time, compared to phenol oxidation at HT-GC or GC electrodes. Surfactant-HT-GC modified electrodes display good stability in continuous electrochemical phenol oxidation. At pH values between 6 and 10.8, both SDBS-HT-GC and TX100-HT-GC modified electrodes seem to be promising electrodes for the detection of phenol in water; while the CPB-HT-GC modified electrode should be affected by the inorganic anions

  4. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naderi, Leila [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of); Institute for advanced technology, Shahid Rajaee Teacher Training University, Lavizan, Tehran, 16788 (Iran, Islamic Republic of)

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001–2.0 μM and 2.0–10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. - Highlights: • The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the modified electrode with different carbon nanomaterials by Linear sweep voltammetry. • Two linear dynamic ranges and a low detection limit were obtained. • The modified electrode was applied for the detection of Fu in pharmaceutical and clinical preparations.

  5. Redox poly[Ni(saldMp)] modified activated carbon electrode in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gao Fei [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Li Jianling, E-mail: lijianling@ustb.edu.c [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang Yakun; Wang Xindong [Department of Physical Chemistry, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Kang Feiyu [Department of Material Science and Engineering, Tsinghua University, Beijing 100083 (China)

    2010-08-01

    The complex (2,2-dimethyl-1,3-propanediaminebis(salicylideneaminato))-nickel(II), [Ni(saldMp)], was oxidatively electropolymerized on activated carbon (AC) electrode in acetonitrile solution. The poly[Ni(saldMp)] presented an incomplete coated film on the surface of carbon particles of AC electrode by field emission scanning electron microscopy. The electrochemical behaviors of poly[Ni(saldMp)] modified activated carbon (PAC) electrode were evaluated in different potential ranges by cyclic voltammetry. Counterions and solvent swelling mainly occurred up to 0.6 V for PAC electrode by the comparison of D{sup 1/2}C values calculated from chronoamperometry experiments. Both the Ohmic resistance and Faraday resistance of PAC electrode gradually approached to those of AC electrode when its potential was ranging from 1.2 V to 0.0 V. Galvanostatic charge/discharge experiments indicated that both the specific capacitance and energy density were effectively improved by the reversible redox reaction of poly[Ni(saldMp)] film under the high current density up to 10 mA cm{sup -2} for AC electrode. The specific capacitance of PAC electrode decreased during the first 50 cycles but thereafter it remained constant for the next 200 cycles. This study showed the redox polymer may be an attractive material in supercapacitors.

  6. Determination of kojic acid based on the interface enhancement effects of carbon nanotube/alizarin red S modified electrode.

    Science.gov (United States)

    Liu, Jieshu; Zhou, Dazhai; Liu, Xiaopeng; Wu, Kangbing; Wan, Chidan

    2009-04-01

    Based on non-covalent interactions such as pi-pi stacking, van der Waals interactions and strong adsorption, alizarin red S (ARS) interacts with multi-walled carbon nanotubes (MWNT), improving the solubility of MWNT in water and resulting in a stable MWNT/ARS solution. By successive cyclic sweeps between 0.0 and 2.2V in the MWNT/ARS solution, a MWNT/ARS composite film was fabricated on an electrode surface. The electrochemical behaviors of kojic acid at the bare electrode, the ARS film-modified electrode and the MWNT/ARS film-modified electrode were investigated. It was found that the oxidation signal of kojic acid significantly increased at the MWNT/ARS film-modified electrode, which was attributed to the unique properties of MWNT such as large surface area, strong adsorptive ability and subtle electronic character. The effects of pH and cyclic number of electropolymerization were examined. A rapid, sensitive and simple electrochemical method was then developed for the determination of kojic acid. This method exhibits good linearity over the range from 4.0 x 10(-7) to 6.0 x 10(-5)mol L(-1), and the limit of detection is as low as 1.0 x 10(-7)mol L(-1). In order to validate feasibility, the MWNT/ARS film-modified electrode was used for quantitative analysis of kojic acid in food samples.

  7. Copper nanoparticle modified carbon electrode for determination of dopamine

    International Nuclear Information System (INIS)

    Oztekin, Yasemin; Tok, Mutahire; Bilici, Esra; Mikoliunaite, Lina; Yazicigil, Zafer; Ramanaviciene, Almira; Ramanavicius, Arunas

    2012-01-01

    This paper reports the synthesis and characterization of copper nanoparticles (CuNPs) and application of copper nanoparticle-modified glassy carbon electrode for the electrochemical determination of dopamine. Electrochemical measurements were performed using differently modified glassy carbon (GC) electrodes. Bare, oxidized before modification and copper nanoparticle-modified glassy carbon electrodes (bare-GC, ox-GC and CuNP/GC electrodes, respectively) were characterized by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of redox probes. Atomic force microscopy was used for the visualization of electrode surfaces. The CuNP/GC electrode was found to be suitable for the selective determination of dopamine even in the presence of ascorbic acid, uric acid, and p-acetamidophenol. The observed linear range of CuNP/GC for dopamine was from 0.1 nM to 1.0 μM while the detection limit was estimated to be 50 pM. It was demonstrated that here reported glassy carbon electrode modified by copper nanoparticles is suitable for the determination of dopamine in real samples such as human blood serum.

  8. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  9. Carbon materials modified by plasma treatment as electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lota, Grzegorz; Frackowiak, Elzbieta [Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Tyczkowski, Jacek; Kapica, Ryszard [Technical University of Lodz, Faculty of Process and Environmental Engineering, Division of Molecular Engineering, Wolczanska 213, 90-924 Lodz (Poland); Lota, Katarzyna [Institute of Non-Ferrous Metals Branch in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362 Poznan (Poland)

    2010-11-15

    The carbon material was modified by RF plasma with various reactive gases: O{sub 2}, Ar and CO{sub 2}. Physicochemical properties of the final carbon products were characterized using different techniques such as gas adsorption method and XPS. Plasma modified materials enriched in oxygen functionalities were investigated as electrodes for supercapacitors in acidic medium. The electrochemical measurements have been carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy. The electrochemical measurements have confirmed that capacity characteristics are closely connected with a type of plasma exposition. Modification processes have an influence on the kind and amount of surface functional groups in the carbon matrix. The moderate increase of capacity of carbon materials modified by plasma has been observed using symmetric two-electrode systems. Whereas investigations made in three-electrode system proved that the suitable selection of plasma modification parameters allows to obtain promising negative and positive electrode materials for supercapacitor application. (author)

  10. 1-ethanone modified carbon paste electrode

    African Journals Online (AJOL)

    a

    7.00) in cyclic voltammetry, the oxidation of L-cysteic acid at the surface of 4FEPEMCPE is occurred at a potential about 220 mV less positive than that an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, K/ h, were also determined using.

  11. EDTA modified glassy carbon electrode: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, Degol Street, Tandogan, 06100 Ankara (Turkey)], E-mail: osolak@science.ankara.edu.tr

    2009-11-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){l_brace}2-[bis(carboxymethyl)amino]-ethyl{r_brace}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb{sup 2+} ions was investigated if this electrode could be used as a metal sensor.

  12. Bioelectrocatalytic mediatorless dioxygen reduction at carbon ceramic electrodes modified with bilirubin oxidase

    International Nuclear Information System (INIS)

    Nogala, Wojciech; Celebanska, Anna; Szot, Katarzyna; Wittstock, Gunther; Opallo, Marcin

    2010-01-01

    Carbon ceramic electrodes were prepared by sol-gel processing of a hydrophobic precursor - methyltrimethoxysilane (MTMOS) - together with dispersed graphite microparticles according to a literature procedure. Bilirubin oxidase (BOx) was adsorbed on this electrode from buffer solution and this process was followed by atomic force microscopy (AFM). The electrodes exhibited efficient mediatorless electrocatalytic activity towards dioxygen reduction. The activity depends on the time of adsorption of the enzyme and the pH. The electrode remains active in neutral solution. The bioelectrocatalytic activity is further increased when a fraction of the carbon microparticles is replaced by sulfonated carbon nanoparticles (CNPs). This additive enhances the electrical communication between the enzyme and the electronic conductor. At pH 7 the carbon ceramic electrode modified with bilirubin oxidase retains ca. half of its highest activity. The role of the modified nanoparticles is confirmed by experiments in which a film embedded in a hydrophobic silicate matrix also exhibited efficient mediatorless biocatalytic dioxygen reduction. Scanning electrochemical microscopy (SECM) of the studied electrodes indicated a rather even distribution of the catalytic activity over the electrode surface.

  13. Biocompatible Poly(catecholamine)-Film Electrode for Potentiometric Cell Sensing.

    Science.gov (United States)

    Kajisa, Taira; Yanagimoto, Yoshiyuki; Saito, Akiko; Sakata, Toshiya

    2018-02-23

    Surface-coated poly(catecholamine) (pCA) films have attracted attention as biomaterial interfaces owing to their biocompatible and physicochemical characteristics. In this paper, we report that pCA-film-coated electrodes are useful for potentiometric biosensing devices. Four different types of pCA film, l-dopa, dopamine, norepinephrine, and epinephrine, with thicknesses in the range of 7-27 nm were electropolymerized by oxidation on Au electrodes by using cyclic voltammetry. By using the pCA-film electrodes, the pH responsivities were found to be 39.3-47.7 mV/pH within the pH range of 1.68 to 10.01 on the basis of the equilibrium reaction with hydrogen ions and the functional groups of the pCAs. The pCA films suppressed nonspecific signals generated by other ions (Na + , K + , Ca 2+ ) and proteins such as albumin. Thus, the pCA-film electrodes can be used in pH-sensitive and pH-selective biosensors. HeLa cells were cultivated on the surface of the pCA-film electrodes to monitor cellular activities. The surface potential of the pCA-film electrodes changed markedly because of cellular activity; therefore, the change in the hydrogen ion concentration around the cell/pCA-film interface could be monitored in real time. This was caused by carbon dioxide or lactic acid that is generated by cellular respiration and dissolves in the culture medium, resulting in the change of hydrogen concentration. pCA-film electrodes are suitable for use in biocompatible and pH-responsive biosensors, enabling the more selective detection of biological phenomena.

  14. Redox electrodes comprised of polymer-modified carbon nanomaterials

    Science.gov (United States)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  15. Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Wang Qingxiang; Wang Yuhua; Liu Shengyun; Wang Liheng; Gao Feng; Gao Fei; Sun Wei

    2012-01-01

    In this paper 1-ethyl-3-methylimidazolium tetrafluoroborate based carbon ionic liquid electrode (CILE) was fabricated and further modified with chitosan (CTS) and graphene (GR) composite film. The fabricated CTS-GR/CILE was further used for the investigation on the electrochemical behavior of bisphenol A (BPA) by cyclic voltammetry and differential pulse voltammetry. A well-defined anodic peak appeared at 0.436 V in 0.1 mol/L pH 8.0 Britton–Robinson buffer solution, which was attributed to the electrooxidation of BPA on the modified electrode. The electrochemical parameters of BPA on the modified electrode were calculated with the results of the charge transfer coefficient (α) as 0.662 and the apparent heterogeneous electron transfer rate constant (k s ) as 1.36 s −1 . Under the optimal conditions, a linear relationship between the oxidation peak current of BPA and its concentration can be obtained in the range from 0.1 μmol/L to 800.0 μmol/L with the limit of detection as 2.64 × 10 −8 mol/L (3σ). The CTS-GR/CILE was applied to the detection of BPA content in plastic products with satisfactory results. - Highlights: ► A graphene modified carbon ionic liquid electrode was fabricated and characterized. ► Electrochemical behaviors of bisphenol A were investigated. ► Bisphenol A was detected by the proposed electrode.

  16. Electrochemistry of metoclopramide at multi-walled carbon nanotube modified electrode and its voltammetric detection.

    Science.gov (United States)

    Guo, Wei; Geng, Mingjiang; Zhou, Lingyun

    2012-01-01

    A simple, sensitive and inexpensive electrochemical method was developed for the determination of metoclopramide (MCP) with a multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE). MWNT was dispersed into polyacrylic acid (PAA); the aqueous suspension was then cast on GCE electrodes, forming MWNT-PAA films after evaporation of the solvent. The electrochemical behavior of MCP at the MWNT-modified electrode was investigated in detail. Compared with the bare GCE, the MWNT-modified electrode exhibits electrocatalytic activity to the oxidation of MCP because of the significant oxidation peak-current enhancement. Furthermore, various experimental parameters, such as the solution pH value, the amount of MWNT-PAA suspension and accumulation conditions were optimized for the determination of MCP. Based on the electrocatalytic effect of the MWNT-modified electrode, linear sweep voltammetry (LSV) was developed for the determination of MCP with the linear response in the range from 1.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) and a detection limit of 5.0 × 10(-8) mol L(-1). The method has been successfully applied to the determination of MCP in commercial MCP tablets.

  17. Determination of glutamine and glutamic acid in mammalian cell cultures using tetrathiafulvalene modified enzyme electrodes.

    Science.gov (United States)

    Mulchandani, A; Bassi, A S

    1996-01-01

    Tetrathiafulvalene (TTF) mediated amperometric enzyme electrodes have been developed for the monitoring of L-glutamine and L-glutamic acid in growing mammalian cell cultures. The detection of glutamine was accomplished by a coupled enzyme system comprised of glutaminase plus glutamate oxidase, while the detection of glutamic acid was carried out by a single enzyme, glutamate oxidase. The appropriate enzyme(s) were immoblized on the Triton-X treated surface of tetrathiafulvalene modified carbon paste electrodes by adsorption, in conjunction with entrapment by an electrochemically deposited copolymer film of 1,3-phenylenediamine and resorcinol. Operating conditions for the glutamine enzyme electrode were optimized with respect to the amount of enzymes immoblized, pH, temperature and mobile phase flow rate for operation in a flow injection (FIA) system. When applied to glutamine and glutamic acid measurements in mammalian cell culture in FIA, the results obtained with enzyme electrodes were in excellent agreement with those determined by enzymatic analysis.

  18. Bismuth Modified Carbon-Based Electrodes for the Determination of Selected Neonicotinoid Insecticides

    Directory of Open Access Journals (Sweden)

    Marko Rodić

    2011-05-01

    Full Text Available Two types of bismuth modified electrodes, a bismuth-film modified glassy carbon (BiF-GCE and a bismuth bulk modified carbon paste, were applied for the determination of selected nitroguanidine neonicotinoid insecticides. The method based on an ex situ prepared BiF-GCE operated in the differential pulse voltammetric (DPV mode was applied to determine clothianidin in the concentration range from 2.5 to 23 μg cm−3 with a relative standard deviation (RSD not exceeding 1.5%. The tricresyl phosphate-based carbon paste electrodes (TCP-CPEs, bulk modified with 5 and 20 w/w% of bismuth, showed a different analytical performance in the determination of imidacloprid, regarding the peak shape, potential window, and noise level. The TCP-CPE with 5% Bi was advantageous, and the developed DPV method based on it allowed the determination in the concentration range from 1.7 to 60 μg cm−3 with an RSD of 2.4%. To get a deeper insight into the morphology of the bismuth-based sensor surfaces, scanning electron microscopic measurements were performed of both the surface film and the bulk modified electrodes.

  19. Basic electrochemical properties of sputtered gold film electrodes

    International Nuclear Information System (INIS)

    Libansky, Milan; Zima, Jiri; Barek, Jiri; Reznickova, Alena; Svorcik, Vaclav; Dejmkova, Hana

    2017-01-01

    Gold nanolayers made by sputtering of pure gold (physical vapour deposition) are commonly used for many biophysical and material applications. However, the use of sputtering method for fabrication of working electrodes for electroanalytical purposes is less common. This paper focuses on the testing and characterization of sputtered working roughened gold nanostructured film electrodes, which fall into category of upcoming desirable new generation of nanostructured gold working electrodes. Gold nanostructured films (80 nm thin) were sputtered onto 50 μm thin PTFE substrates with three different types of treatment: pristine, plasma treated, and plasma treated and subsequently spontaneously grafted with biphenyl-4,4′-dithiol. The characterization of gold nanostructured film electrodes was carried out by examination of the electrode reaction of standard redox probes (ferrocyanide/ferricyanide, hydroquinone/benzoquinone) in different types of supporting electrolytes (BR buffers of various pH, KCl, KNO 3 , H 2 SO 4 ), by exploration of the electrode surface by scanning electron microscopy, by atomic force microscopy accompanied by elementary analysis and contact angle measurements. The testing of electrodes was complemented by an attempt to calculate their real surface areas from Randles-Sevcik equation. All results were compared to conventional bulk gold electrode. The practical applicability of the nanostructured gold electrodes as sensors for the determination of environmental pollutants was verified by voltammetric determination of hydroquinone as a model electrochemically oxidisable organic environmental pollutant.

  20. NITROANILINE FILM-HOLE MODIFIED GLASSY CARBON ...

    African Journals Online (AJOL)

    substances (such as ascorbic acid, uric acid and so on) that exist together .... stirring the electrolytes in the cell, a small magnetic bar was used in BASi C3 ..... Stephen, A.; Narayanan, V. New electrochemical sensor based on Ni-doped .... Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J. Application of graphene-modified electrode for.

  1. Electrochemical Investigation of Catechol at Poly(niacinamide Modified Carbon Paste Electrode: A Voltammetric Study

    Directory of Open Access Journals (Sweden)

    A. B. Teradale

    2016-01-01

    Full Text Available A polymeric thin film modified electrode, that is, poly(niacinamide modified carbon paste electrode (MCPE, was developed for the electrochemical determination of catechol (CC by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE, the poly(niacinamide MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M and limit of quantification (10S/M were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.

  2. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali; Levi, Kemal; McGehee, Michae D.; Dauskardt, Reinhold H.

    2012-01-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial

  3. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali

    2012-08-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.

  4. Modified diamond electrodes for electrolysis and electroanalysis applications

    International Nuclear Information System (INIS)

    Einaga, Yasuaki; Sato, Rika; Olivia, Herlambang; Shin, Dongchan; Ivandini, T.A.; Fujishima, Akira

    2004-01-01

    The outstanding properties of diamond make it a very attractive material for use in many potential applications. In particular, the superior electrochemical properties of highly boron-doped conductive diamond films, prepared by the chemical vapor deposition (CVD) process, have received attention from electrochemists. This paper reports several diversified applications of boron-doped diamond electrodes; highly sensitive and interference-free microfiber electrodes with over-oxidized polypyrrole modification, integrated electrochemical detector for microchip capillary electrophoresis (CE), and smoothing treatments of micro-polycrystalline surface. Studies have been made of the electrochemical properties of each system and their application in electroanalysis is discussed

  5. Facile direct electron transfer in glucose oxidase modified electrodes

    International Nuclear Information System (INIS)

    Wang Dan; Chen Liwei

    2009-01-01

    Glucose oxidase (GOx) is widely used in the glucose biosensor industry. However, mediatorless direct electron transfer (DET) from GOx to electrode surfaces is very slow. Recently, mediatorless DET has been reported via the incorporation of nanomaterials such as carbon nanotubes and nanoparticles in the modification of electrodes. Here we report GOx electrodes showing DET without the need for any nanomaterials. The enzyme after immobilization with poly-L-lysine (PLL) and Nafion retains the biocatalytic activities and oxidizes glucose efficiently. The amperometric response of Nafion-PLL-GOx modified electrode is linearly proportional to the concentration of glucose up to 10 mM with a sensitivity of 0.75 μA/mM at a low detection potential (-0.460 V vs. Ag/AgCl). The methodology developed in this study will have impact on glucose biosensors and biofuel cells and may potentially simplify enzyme immobilization in other biosensing systems.

  6. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    A nanostructured gold modified glassy carbon electrode (Aunano/GCE) was employed for the determination of trace chromium(VI). To prepare Aunano/GCE, the GCE was immersed into KAuCl4 solution and electrodeposition was conducted at the potential of -0.4 V (vs Ag/AgCl) for 600 s. Scanning electron microscopy ...

  7. Hydrogen-bonding effects on film structure and photoelectrochemical properties of porphyrin and fullerene composites on nanostructured TiO 2 electrodes

    NARCIS (Netherlands)

    Kira, Aiko; Tanaka, Masanobu; Umeyama, Tomokazu; Matano, Yoshihiro; Yoshimoto, Naoki; Zhang, Yi; Ye, Shen; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Imahori, Hiroshi

    2007-01-01

    Hydrogen-bonding effects on film structures and photophysical, photoelectrochemical, and photovoltaic properties have been examined in mixed films of porphyrin and fullerene composites with and without hydrogen bonding on nanostructured TiO2 electrodes. The nanostructured TiO2 electrodes modified

  8. Ion transport and phase transformation in thin film intercalation electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wunde, Fabian; Nowak, Susann; Muerter, Juliane; Hadjixenophontos, Efi; Berkemeier, Frank; Schmitz, Guido [Stuttgart Univ. (Germany). Inst. fuer Materialwissenschaft

    2017-11-15

    Thin film battery electrodes of the olivine structure LiFePO{sub 4} and the spinel phase LiMn{sub 2}O{sub 4} are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO{sub 4} clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles-Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO{sub 4} have the character of an ion-conductor of vanishing electronic conductivity.

  9. Surface modification of amine-functionalised graphite for preparation of cobalt hexacyanoferrate (CoHCF)-modified electrode: an amperometric sensor for determination of butylated hydroxyanisole (BHA).

    Science.gov (United States)

    Prabakar, S J Richard; Narayanan, S Sriman

    2006-12-01

    A cobalt hexacyanoferrate (CoHCF)-modified graphite paraffin wax composite electrode was prepared by a new approach. An amine-functionalised graphite powder was used for the fabrication of the electrode. A functionalised graphite paraffin wax composite electrode was prepared and the surface of the electrode was modified with a thin film of CoHCF. Various parameters that influence the electrochemical behaviour of the modified electrode were studied by varying the background electrolytes, scan rates and pH. The modified electrode showed good electrocatalytic activity towards the oxidation of butylated hydroxyanisole (BHA) under optimal conditions and showed a linear response over the range from 7.9 x 10(-7) to 1.9 x 10(-4) M of BHA with a correlation coefficient of 0.9988. The limit of detection was 1.9 x 10(-7) M. Electrocatalytic oxidation of BHA was effective at the modified electrode at a significantly reduced potential and at a broader pH range. The utility of the modified electrode as an amperometric sensor for the determination of BHA in flow systems was evaluated by carrying out hydrodynamic and chronoamperometric experiments. The modified electrode showed very good stability and a longer shelf life. The modified electrode was applied for the determination of BHA in spiked samples of chewing gum and edible sunflower oil. The advantage of this method is the ease of electrode fabrication, good stability, longer shelf life, low cost and its diverse application for BHA determination.

  10. Norepinephrine-modified glassy carbon electrode for the simultaneous determination of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Zare, H.R.; Memarzadeh, F.; Ardakani, M. Mazloum; Namazian, M.; Golabi, S.M.

    2005-01-01

    The oxidation of norepinephrine (NE) on a preactivated glassy carbon electrode leads to the formation of a deposited layer of about 4.2 x 10 -10 mol cm -2 at the surface of the electrode. The electron transfer rate constant, k s , and charge transfer coefficient, α, for electron transfer between the electrode and immobilized NE film were calculated as 44 s -1 and 0.46, respectively. The NE-modified glassy carbon electrode exhibited good electrocatalytic properties towards ascorbic acid (AA) oxidation in phosphate buffer (pH 7.0) with an overpotential of about 475 mV lower than that of the bare electrode. The electrocatalytic response was evaluated by cyclic voltammetry, chronoamperometry, amperometry and rotating disk voltammetry. The overall number of electrons involved in the catalytic oxidation of AA and the number of electrons involved in the rate-determining step are 2 and 1, respectively. The rate constant for the catalytic oxidation of AA was evaluated by RDE voltammetry and an average value of k h was found to be 8.42 x 10 3 M -1 s -1 . Amperometric determination of AA in stirred solution exhibits a linear range of 2.0-1300.0 μM (correlation coefficient 0.9999) and a detection limit of 0.076 μM. The precision of amperometry was found to be 1.9% for replicate determination of a 49.0 μM solution of AA (n = 6). In differential pulse voltammetric measurements, the NE-modified glassy carbon electrode can separate the AA and uric acid (UA) signals. Ascorbic acid oxidizes at more negative potential than UA. Also, the simultaneous determination of UA and AA is achieved at the NE-modified electrode

  11. Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4/SiO2 multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode

    International Nuclear Information System (INIS)

    Hu Yufang; Li Jiaxing; Zhang Zhaohui; Zhang Huabin; Luo Lijuan; Yao Shouzhuo

    2011-01-01

    Graphical abstract: A novel imprinted sol-gel electrochemical sensor based on Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposite film and a thin MIP film has been developed on a carbon electrode. Highlights: → A novel imprinted sol-gel electrochemical sensor based on Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposites has been developed. → Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposites act as 'electronic wires' to enhance the electron transfer. → The inherent specificity of the MIPs brings about highly selectivity. The imprinted sensor detects benzylpenicillin in real samples successfully. - Abstract: Herein, a novel imprinted sol-gel electrochemical sensor based on multi-walled carbon nanotubes (MWNTs) doped with chitosan film on a carbon electrode has been developed. Prior to doped, the MWNTs have been decorated with Fe 3 O 4 nanoparticles which have been coated uniformly with SiO 2 layer. The characterization of imprinted sensor has been carried out by X-ray diffraction and scanning electron microscopy. The performance of the proposed imprinted sensor has been investigated using cyclic voltammetry and differential pulse voltammetry. The imprinted sensor offers a fast response and sensitive benzylpenicillin quantification. The fabricated benzylpenicillin imprinted sensor exhibits a linear response from 5.0 x 10 -8 to 1.0 x 10 -3 mol L -1 with a detection limit of 1.5 x 10 -9 mol L -1 . For samples analysis, perfect recoveries of the imprinted sensor for benzylpenicillin indicated that the imprinted sensor was able to detect benzylpenicillin in real samples successfully.

  12. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  13. Sensitive determination of buformin using poly-aminobenzoic acid modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Gui-Ying Jin

    2012-12-01

    Full Text Available Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS. The polymer showed an excellent electrocatalytic activity for the reduction of buformin. In pH 7.0 ABS, the cathodic peak current increased linearly over three concentration intervals of buformin, and the detection limit (S/N=3 was 2.0×10−9 g/mL. The method was successfully applied to directly determine buformin in tablets with standard addition recoveries of 95.8–102.5%. The proposed method is simple, cheap and highly efficient. Keywords: Chemically modified electrode, Aminobenzoic acid, Buformin

  14. Determination of nitrite ion at schiff's base derivative of chitosan modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Xu Zhongliang; Zhang Jianmei; Liu Shujuan; Peng Daofeng

    2007-01-01

    Chitosan react with salicyclaldehyde by schiff's base reaction in water, a polymer product S-CTS can be prepared. Glassy carbon electrode was modified with S-CTS by drop-coating method. Then, its electrocatalysis effect on the reduction of nitrite by the films of S-CTS was investigated. Experimental results showed that S-CTS modified electrode could reduce the oxidation overpotential of nitrite in pH4.5 B-R buffer solution, the peak current of reduction was proportional to the concentration of nitrite and a good linear relation from 0.20 to 81 mg/kg (r=0.9899) with a detection limit of 2.8 x 10 -7 mol/L was obtained. The methods have been applied to determining nitrite in some samples, satisfactory results were obtained. (authors)

  15. Electrocatalytic behaviour of hybrid cobalt–manganese hexacyanoferrate film on glassy carbon electrode

    International Nuclear Information System (INIS)

    Vinu Mohan, A.M.; Rambabu, Gutru; Aswini, K.K.; Biju, V.M.

    2014-01-01

    A thin film of hybrid cobalt–manganese hexacyanoferrate (CoMnHCF), a redox mediator was electrodeposited on a glassy carbon (GC) electrode and was employed as an amperometric sensor towards L-Tryptophan (L-Trp). The hybrid film was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction technique (XRD), scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDAX), and electrochemical techniques. The atomic absorption spectroscopic analysis provided the stoichiometry of the hybrid film to be K 1.74-y Co y Mn 0.78 [Fe(CN) 6 ], y ≤ 0.68. The electrochemical impedance study revealed the excellent charge transfer properties of GC/CoMnHCF electrode. The voltammetric investigations demonstrated exceptional electrocatalytic properties of the hybrid film modified electrode when compared to that of bare GC, GC/CoHCF and GC/MnHCF electrodes, towards the L-Trp oxidation. The kinetic parameters such as electron transfer coefficient, the electron transfer rate constant, the diffusion coefficient and the catalytic rate constant for the electrooxidation process of L-Trp were investigated. The amperometric detection of L-Trp employing GC/CoMnHCF electrode possessed a good sensitivity of 10 × 10 −2 A M −1 cm −2 in a wide range of detection (2–200 μM) at a reduced overpotential of 680 mV. In addition, the proposed amperometric method was applied to the detection of L-Trp in commercial milk samples with reproducible results. - Highlights: • A hybrid cobalt–manganese hexacyanoferrate film was prepared. • The hybrid film possesses excellent charge transfer properties. • The hybrid film exhibits excellent electrocatalytic properties towards Tryptophan. • Tryptophan detection is possible from commercial milk samples

  16. Electrocatalytic behaviour and application of manganese porphyrin/gold nanoparticle- surface modified glassy carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sebarchievici, I., E-mail: incemc@incemc.ro [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Tăranu, B.O. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Birdeanu, M. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania); Rus, S.F. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Fagadar-Cosma, E., E-mail: efagadar@yahoo.com [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania)

    2016-12-30

    Highlights: • Mn-porphyrin/gold nanoparticle-modified glassy carbon electrodes were obtained. • AFM investigations of thin films display multilayer of triangular type architecture. • Oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controled. • There is a linear dependence between H{sub 2}O{sub 2} concentration and the currents intensity. • The modified electrodes show better electrochemical detection ability to H{sub 2}O{sub 2}. - Abstract: The main purpose of this research was to obtain manganese porphyrin/gold nanoparticle-modified glassy carbon electrodes and to use them for the detection of H{sub 2}O{sub 2}. Two sets of modified electrodes were prepared by drop-cast deposition of 5,10,15,20-tetra(4-methyl-phenyl)porphyrinato manganese(III) chloride alone and of the same Mn-porphyrin and gold-colloid solution and comparatively characterized by Raman, UV–vis, ellipsometry, AFM and TEM microscopy, XPS and cyclic voltammetry. XPS spectrum recorded for GC-MnP-nAu modified electrode displayed the characteristic signals of gold nanoparticles. The optical parameters have greater values for GC-MnP-nAu in comparison with GC-MnP, due to increasing charge transfer efficiency. The MnP-nAu film mediates the electron transfer between H{sub 2}O{sub 2} and GC, evidenced by an increase in the current intensity of the anodic peak, and facilitates the electrochemical regeneration of oxidized H{sub 2}O{sub 2} at cathodic potentials. From the cyclic voltammetry experiments a linear relationship between H{sub 2}O{sub 2} concentration vs oxidation and reduction currents was observed. The linear dependence between density of current and the square root of the scan rate indicates that the oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controlled. The GC-MnP-nAu modified electrode shows great potential as electrochemical sensor for determination of hydrogen peroxide.

  17. Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes.

    Science.gov (United States)

    Kamga Wagheu, Josephine; Forano, Claude; Besse-Hoggan, Pascale; Tonle, Ignas K; Ngameni, Emmanuel; Mousty, Christine

    2013-01-15

    A natural Cameroonian smectite-type clay (SaNa) was exchanged with cationic surfactants, namely cetyltrimethylammonium (CTA) and didodecyldimethyl ammonium (DDA) modifying its physico-chemical properties. The resulting organoclays that have higher adsorption capacity for mesotrione than the pristine SaNa clay, have been used as modifiers of glassy carbon electrode for the electrochemical detection of this herbicide by square wave voltammetry. The stripping performances of SaNa, SaCTA and SaDDA modified electrodes were therefore evaluated and the experimental parameters were optimized. SaDDA gives the best results in deoxygenated acetate buffer solution (pH 6.0) after 2 min accumulation under open circuit conditions. Under optimal conditions, the reduction current is proportional to mesotrione concentration in the range from 0.25 to 2.5 μM with a detection limit of 0.26 μM. The fabricated electrode was also applied for the commercial formulation CALLISTO, used in European maize market. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.

    Science.gov (United States)

    Shahrokhian, Saeed; Naderi, Leila; Ghalkhani, Masoumeh

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001-2.0 μM and 2.0-10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Stripping voltammetric behavior of technetium at various chemically modified electrodes

    International Nuclear Information System (INIS)

    Dick, R.

    1990-09-01

    In monitoring of nuclear processing plants and storage facilities the necessity arises of assaying traces of the artificial radioactive element technetium. The oxidation states IV and VII are of particular interest. Stripping voltammetry is among the methods of assay which are suited for this purpose. It allows an enhanced selectivity to be achieved by preconcentration of the analyte and of an oxidation state of the analyte, respectively, at the electrode used. This specific enrichment is successful after appropriate chemical modification of the electrode through immobilization of a Tc-specific reagent. When various approaches of chemical modification of a glassy carbon electrode were examined, the tetraphenylarsonium chloride extractant, which is highly selective with respect to technetium, proved to be the best suited reagent, capable of fixation both by ionic and by covalent bonding on an electrodeposited polymer film. For ionic immobilization the reagent was reacted to m-sulfophenyltriphenyl arsonium and then bound to a copolymer of vinylferrocene and vinylpyridine, which had been provided with cations. It was possible to enrich Tc(VII) at such an electrode and to determine it by stripping voltammetry down to a concentration of 1x10 -8 M after 5 minutes enrichment time. (orig./EF) [de

  20. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.; Fan, Shanhui

    2010-01-01

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from

  1. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.

    Science.gov (United States)

    Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton

    2017-08-16

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

  2. Catalase-Based Modified Graphite Electrode for Hydrogen Peroxide Detection in Different Beverages

    Directory of Open Access Journals (Sweden)

    Giovanni Fusco

    2016-01-01

    Full Text Available A catalase-based (NAF/MWCNTs nanocomposite film modified glassy carbon electrode for hydrogen peroxide (H2O2 detection was developed. The developed biosensor was characterized in terms of its bioelectrochemical properties. Cyclic voltammetry (CV technique was employed to study the redox features of the enzyme in the absence and in the presence of nanomaterials dispersed in Nafion® polymeric solution. The electron transfer coefficient, α, and the electron transfer rate constant, ks, were found to be 0.42 and 1.71 s−1, at pH 7.0, respectively. Subsequently, the same modification steps were applied to mesoporous graphite screen-printed electrodes. Also, these electrodes were characterized in terms of their main electrochemical and kinetic parameters. The biosensor performances improved considerably after modification with nanomaterials. Moreover, the association of Nafion with carbon nanotubes retained the biological activity of the redox protein. The enzyme electrode response was linear in the range 2.5–1150 μmol L−1, with LOD of 0.83 μmol L−1. From the experimental data, we can assess the possibility of using the modified biosensor as a useful tool for H2O2 determination in packaged beverages.

  3. Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode

    International Nuclear Information System (INIS)

    Yeh, W.-M.; Ho, K.-C.

    2005-01-01

    This study incorporates morphine into a molecularly imprinted polymer (MIP) for the amperometric detection of morphine. The polymer, poly(3,4-ethylenedioxythiophene), PEDOT, is an electroactive film that catalyzes morphine oxidation and lowers the oxidization potential on an indium tin oxide (ITO) electrode. The MIP-PEDOT modified electrode is prepared by electropolymerizing PEDOT onto an ITO electrode in a 0.1 M LiClO 4 solution with template addition (morphine). After template molecule extraction, the oxidizing current of the MIP-PEDOT modified electrode is measured in a 0.1 M KCl solution (pH = 5.3) at 0.75 V (versus Ag/AgCl/sat'd KCl) with the morphine concentration varying in the 0.1-5 mM range. A linear range, displaying the relationship between steady-state currents and morphine concentrations, from 0.1 to 1 mM, is obtained. The proposed amperometric sensor could be used for morphine detection with a sensitivity of 91.86 μA/cm 2 per mM. A detection limit of 0.2 mM at a signal-to-noise ratio of 3 is achieved. Moreover, the proposed method can discriminate between morphine and its analogs, such as codeine

  4. Fabrication of graphene/gold-modified screen-printed electrode for detection of carcinoembryonic antigen

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.F. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor (Malaysia); Lim, H.N., E-mail: janetlimhn@gmail.com [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor (Malaysia); Shams, N. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor (Malaysia); Jayabal, S.; Pandikumar, A.; Huang, N.M. [Low Dimensional Materials Research Centre (LDMRC), Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-01-01

    Immunosensors based on gold nanoparticles and reduced graphene oxide (AuNPs/rGO)-modified screen-printed electrodes (SPEs) were successfully synthesized using an electrochemical deposition method. The modified SPEs were characterized using a field emission scanning electron microscope (FESEM) and Raman spectroscopy to analyze the morphology and composition of AuNPs and rGO. Both the FESEM and Raman spectroscopy revealed that the AuNPs were successfully anchored on the thin film of rGO deposited on the surface of the SPEs. Characterization with a ferri–ferrocyanide couple [Fe(CN){sub 6}{sup 3−/4−}] showed that the electron transfer kinetic between the analyte and electrode was enhanced after the modification with the AuNPs/rGO composite on the electrode surface, in addition to increasing the effective surface area of the electrode. The modified SPE was immobilized with a sandwich type immunosensor to mimic the ELISA (enzyme-linked immunosorbent assay) immunoassay. The modified SPE that was fortified with the sandwich type immunosensor exhibited double electrochemical responses in the detection of carcinoembryonic antigen (CEA), with linear ranges of 0.5–50 ng/mL and 250–2000 ng/mL and limits of detection of 0.28 ng/mL and 181.5 ng/mL, respectively. - Highlights: • An AuNP/rGO-modified SPE is prepared via an in-situ electrodeposition method. • It is introduced in a sandwich-type immunoassay for the detection of CEA. • The LODs for CEA are 0.28 ng/mL for 0.5–25 ng/mL, and 181.5 ng/mL for 250–2000 ng/mL.

  5. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    Science.gov (United States)

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. On modifying the magnetite films with complexonates

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Bardasheva, T.I.

    1992-01-01

    Formation of magnetite layers on the surface of low-carbon steels and in neutral ammonium-nitrade eelctrolytes containing complexonate type inhibitors is studied to improve protection corrosion resistance of oxide coatings by means of electrochemical and gravimetrical techniques. Phosphonates are determined to affect kinetics and thickness of magnetite film formation, to increase protection properties of oxide layers. Complexonate-modified oxide coating is characterized by increased corrosion-resistance including that to chloride activating action

  7. Electroactive cytochrome P450BM3 cast polyion films on graphite electrodes

    International Nuclear Information System (INIS)

    Pardo-Jacques, Aurelie; Basseguy, Regine; Bergel, Alain

    2006-01-01

    Films of electrochemically active cytochrome P450 BM 3 were constructed on graphite electrodes using alternate assembly with polyethyleneimine (PEI). The original layer-by-layer adsorption method was slightly modified here to form so-called 'cast polyion' films. The cast polyion films were elaborated by immobilizing two successive layers of PEI and protein in very large excess with respect to a monolayer, without any intermediate washing step. Following the immobilization steps by SEM showed that uniform films of a few micrometers were deposited on the graphite surface. The electrochemically activity of the immobilized cytP450 was tested with regard to the reduction of oxygen and the one-electron reduction of the heme. Cyclic voltammetry indicated surface concentration of electrochemically active cytP450 around 0.6nmol/cm 2 , which corresponded to 5% of the total amount of protein that was consumed by the immobilisation process. Adapting the procedure to a graphite felt electrode with the view of scaling up porous electrodes for large scale synthesis increased the concentration to 0.9nmol/cm 2 . Cast polyion films may represent a simple technique to immobilize high amount of electrochemically active protein, keeping the advantage of the electrostatic interactions of the regular layer-by-layer method

  8. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    Science.gov (United States)

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A pH sensor based on the TiO{sub 2} nanotube array modified Ti electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Rongrong; Xu Meizhu [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, 523 Gongye Road, Fuzhou 350002, Fujian (China); Wang Jian, E-mail: jwang@fzu.edu.c [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, 523 Gongye Road, Fuzhou 350002, Fujian (China); Chen Guonan, E-mail: guonanchen@126.co [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, 523 Gongye Road, Fuzhou 350002, Fujian (China)

    2010-08-01

    In this paper, a novel solid state pH sensor was fabricated by anodization of titanium substrate electrode. The relationship between pH sensitivity and hydrophilicity or surface morphology of TiO{sub 2} film was investigated. Amorphous TiO{sub 2} nanotube has better pH response than anatase TiO{sub 2} nanotube. After being irradiated by ultraviolet light (UV), the potential response of the electrode modified by amorphous TiO{sub 2} nanotube was close to Nernst equation (59 mV/pH). SEM, XRD, and XPS were used to characterize electrodes. Possible mechanism was discussed by analyzing surface hydroxyl groups, crystal structure and hydrophilicity of the electrodes. The electrode has been used to detect some kinds of soft drinks and shows good response.

  10. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

    OpenAIRE

    Karim Asadpour-Zeynali; Venus Baghalabadi

    2017-01-01

    In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak ...

  11. Preparation and voltammetric characterization of electrodes coated with Langmuir-Schaefer ultrathin films of Nafion®

    Directory of Open Access Journals (Sweden)

    Bertoncello Paolo

    2003-01-01

    Full Text Available Ultrathin films of Nafion® perfluorinated polymer were deposited on indium-tin oxide electrodes (ITO by using Langmuir-Schaefer (LS technique, after optimization of the subphase composition conditions. Morphological characteristics of these coatings were obtained by Atomic Force Microscopy (AFM. Nafion® LS films showed a good uniformity and complete coverage of the electrode surface, however a different organization degree of the polymer layer was evidenced with respect to thin films deposited by spin-coating. ITO electrodes modified with Nafion® LS coatings preconcentrate by ion-exchange electroactive cations, such as Ru[(NH36]3+, dissolved in diluted solutions. The electroactive species is retained by the Nafion® LS coated ITO also after transfer of the modified electrode into pure supporting electrolyte. This allowed the use of the ruthenium complex as voltammetric probe to test diffusion phenomena within the Nafion® LS films. Apparent diffusion coefficients (Dapp of Ru[(NH36]3+ incorporated in Nafion® LS films were obtained by voltammetric measurements. Dapp values decrease slightly by increasing the amount of ruthenium complex incorporated in the ultrathin film. They are significantly lower than values typical for recasted Nafion® films, in agreement with the highly condensed nature of the Nafion® LS fims.

  12. Characterization and electrocatalytic application of silver modified polypyrrole electrodes

    OpenAIRE

    A. DEKANSKI; S. TERZIC; V. M. JOVANOVIC

    2005-01-01

    Silver modified polypyrrole electrodeswere preparedwith the aim of testing them for the electrooxidation of formaldehyde in alkaline solution. The modification of polypyrrole by immersion in aqueous AgNO3 solution was studied by cyclic voltammetry and vacuum techniques (AES and XPS). The influence of time of immersion and the thickness of the polypyrrole film, prepared by electrochemical polymerization, on the modification of the polymer were examined. The results acquired from both electroch...

  13. MATHEMATICAL MODEL OF CATALYTIC PROCESSES AT MODIFIED ELECTRODES

    Directory of Open Access Journals (Sweden)

    Femila Mercy Rani Joseph

    Full Text Available A mathematical modeling of electrocatalytic processes taking place at modified electrodes is discussed. In this paper we obtained the approximate analytical solutions for the nonlinear equations under non steady state conditions using homotopy perturbation method. Simple and approximate polynomial expressions for the concentration of reactant, product and charge carrier were obtained in terms of diffusion coefficient and rate constant. In this work the numerical simulation of the problem is reported using Scilab program. In this manuscript analytical results are compared with simulation results and satisfactory agreement is noted.

  14. Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines

    International Nuclear Information System (INIS)

    Shi, Peiying; Miao, Xiaoqing; Yao, Hong; Lin, Sijie; Wei, Biyu; Chen, Jianji; Lin, Xinhua; Tang, Yuhai

    2013-01-01

    Graphical abstract: A 5-hydroxytryptamine (5-HT) modified electrode was fabricated by electro-polymerization of 5-HT on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) in 0.05 M PBS (pH 7). The characterization of the modified electrode was carried out by atomic force microscopy (AFM), voltammetry and electrochemical impedance spectroscopy (EIS). The mechanism of electro-deposition of 5-HT at GCE was discussed based on electrochemical studies and quantum chemical calculations. The poly(5-HT)-modified electrode could separately detect NE and UA, even in the presence of 10-fold concentration of ascorbic acid (AA) and was applied successfully to the analysis of NE preparations and healthy human urines. Due to the favorable functionalized groups (-NH 2 and -OH), electroactivity, biocompatibility and stability, the poly(5-HT) film could be a promising immobilization matrix for anchoring interested biological molecules in the fabrication of sensors and biosensors. Highlights: ► A poly(5-HT)-modified electrode was fabricated originally by CV. ► The electro-deposition mechanism of 5-HT at GCE was proposed. ► The polymer film shows favorable electrocatalytic properties to NE and UA. ► The modified GCE was applied to the sensing analysis of real samples. -- Abstract: A poly(5-hydroxytryptamine) (poly(5-HT)) modified electrode was fabricated by electropolymerization of 5-hydroxytryptamine (5-HT) on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) in 0.05 M PBS (pH 7). The characterization of poly(5-HT)-modified electrode was carried out by atomic force microscopy (AFM), voltammetry and electrochemical impedance spectroscopy (EIS). Results showed that a brown and heterogeneous film was formed on the surface of the modified electrode. The mechanism of electro-deposition of 5-HT at GCE was discussed. The modified electrode showed good affinity and electrocatalytic properties to some species, such as norepinephrine (NE) and uric acid (UA). Furthermore

  15. Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine

    Directory of Open Access Journals (Sweden)

    Jun-ichi Anzai

    2013-05-01

    Full Text Available The surface of a glassy carbon (GC electrode was modified with reduced graphene oxide (rGO to evaluate the electrochemical response of the modified GC electrodes to hydrogen peroxide (H2O2 and hydrazine. The electrode potential of the GC electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene oxide (GO to deposit rGO on the surface of the GC electrode. The surface morphology of the modified GC electrode was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM and AFM observations revealed that aggregated rGO was deposited on the GC electrode, forming a rather rough surface. The rGO-modified electrodes exhibited significantly higher responses in redox reactions of H2O2 as compared with the response of an unmodified GC electrode. In addition, the electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also higher than that of the unmodified GC electrode. The response of the rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified electrodes are useful for constructing electrochemical sensors.

  16. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    Science.gov (United States)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  17. Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    International Nuclear Information System (INIS)

    Watanabe, Yuichi; Suemori, Kouji; Hoshino, Satoshi

    2016-01-01

    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO 2 porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO 2 porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode are attributed to its lower resistivity than that of the TiO 2 porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications.

  18. On dual nature of effect of adsorbed polymeric hydroxide films on rate of different electrode processes

    International Nuclear Information System (INIS)

    Zakharkina, P.S.; Korshunov, V.N.

    1985-01-01

    The effect of cation Er 3+ hydrolysis products on the electrochemical behaviour of Zn and Na amalgams is studied. The i, t-curves are presented which are moasUred from a film Hg-electrode in 1M LiCl- and 1MNaCl solUtions both with and without the 10 -3 MErCl 3 addition, along with the I, t-dependences obtained from a rotation disk Zn-electrode at E=-1.45 B against the background of 0.1 MLi 2 SO 4 with the 1.5x10 -3 M Er 2 (SO 4 ) 3 addition. Polymeric films of REE oxohydroxo compounds exhibit a distinct dualism in the effect on the rate of different electrode reactions; provided a proton donor is the depolarizator, the films being considered confirm their name of catalytically active matrices accelerating hydrogen evolution by a modified bridge mechanism variant. In case of metal charge-ionization process these films become inhibitors and the more effective, the more hydrated is the corresponding REE ion

  19. Electrochemical Sensor for Determination of Parathion Based on Electropolymerization Poly(Safranine Film Electrode

    Directory of Open Access Journals (Sweden)

    Xingyuan Liu

    2011-01-01

    Full Text Available Parathion has been determined with voltammetric technique based on a novel sensor fabricated by electropolymerization of safranine on a glassy carbon electrode (GCE. The electrochemical behavior of poly(safranine film electrode and its electrocatalytic activity toward parathion were studied in detail by cyclic voltammetry (CV and linear sweep voltammetry (LSV. All experimental parameters were optimized, and LSV was proposed for its determination. In optimal working conditions, the reduction current of parathion at this poly(safranine-modified electrode exhibited a good linear relationship with parathion concentration in the range of 3.43×10−8 to 3.43×10−5 mol L−1. The detection limit was 1.0×10−8 mol L−1. The high sensitivity and selectivity of the sensor were demonstrated by its practical application for the determination of trace amounts of parathion in fruit samples.

  20. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Grochowska, Katarzyna, E-mail: kgrochowska@imp.gda.pl [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland); Karczewski, Jakub [Solid State Physics Department, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk (Poland); Śliwiński, Gerard [Centre for Plasma and Laser Engineering, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St, 80-231 Gdańsk (Poland)

    2015-12-01

    Graphical abstract: - Highlights: • ITO electrodes modified by NP arrays prepared by laser dewetting of thin Au films. • Enhanced activity, linear response and high sensitivity towards glucose. • Promising biosensor material AuNP-modified ITO of improved performance. - Abstract: The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40–120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  1. A nano-structured Ni(II)-chelidamic acid modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Azadbakht, Azadeh [Department of Chemistry, Faculty of Basic Science, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

    2012-10-01

    A nano-structured Ni(II)-chelidamic acid (2,6-dicarboxy-4-hydroxypyridine) film was electrodeposited on a gold nanoparticle-cysteine-gold electrode. The morphology of Ni(II)-chelidamic acid gold nanoparticle self-assembled electrode was investigated by scanning electron microscopy (SEM). Electrocatalytic oxidation of methanol on the surface of modified electrode was studied by cyclic voltammetry and chronoamperometry methods. The hydrodynamic amperometry at a rotating modified electrode at constant potential versus reference electrode was used for detection of methanol. Under optimized conditions the calibration plots are linear in the concentration range 0-50 mM with a detection limit of 15 {mu}M. The formed matrix in our work possessed a 3D porous network structure with a large effective surface area, high catalytic activity and behaved like microelectrode ensembles. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for analytical purposes. - Highlights: Black-Right-Pointing-Pointer The Au electrode modified with thin Ni(II)/CHE-AuNP film shows stable and reproducible behavior. Black-Right-Pointing-Pointer Long stability and excellent electrochemical reversibility were observed. Black-Right-Pointing-Pointer This modified electrode shows excellent catalytic activity for methanol oxidation. Black-Right-Pointing-Pointer Combination of unique properties of AuNP and Ni(II)/CHE resulted in improvement of current responses.

  2. Developing electrodes chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA) by voltammetry

    International Nuclear Information System (INIS)

    Tadini, Maraine Catarina; Balbino, Marco Antonio; Eleoterio, Izabel Cristina; Siqueirade Oliveira, Laura; Dias, Luis Gustavo; Jean-François Demets, Grégoire; Firmino de Oliveira, Marcelo

    2014-01-01

    Graphical abstract: - Highlights: • A new stand in forensic chemistry. • Voltammetric method for the determination of MDMA in seized samples. • A new voltammetric sensor for MDMA. - Abstract: This study aimed to develop an electrode chemically modified with cucurbit[6]uril to detect 3,4-methylenedioxymethamphetamine (MDMA), the main active principle of ecstasy samples, by voltammetry. We modified the electrode surface with a film containing cucurbit[6]uril, Nafion, and methanol, using the dip coating or the spin coating technique. During analysis, we employed an electrochemical cell with a conventional three-electrode system and KCl solution (0.1 mol L −1 ) as the supporting electrolyte. We conducted cyclic voltammetry at concentrations ranging from 4.2 × 10 −6 to 4.8 × 10 −5 mol L −1 . We also accomplished scanning electron microscopy, to investigate the structural behavior of the film that originated on the electrode surface. We obtained the following results when we used dip coating to prepare the modified electrode: standard deviation (SD) = 0.024 μA, limit of detection (LOD) = 3.5 μmol L −1 , limit of quantification (LOQ) = 11.7 μmol L −1 , and amperometric sensitivity (m) = 20.9 × 10 3 μA L mol −1 . As for spin coating, we obtained SD = 0.024 μA, LOD = 2.7 μmol L −1 , LOQ = 9.1 μmol L −1 and m = 25.9 × 10 3 μA mol L −1 . These are very promising data: the modified electrode is more sensitive than the conventional glassy carbon electrode under the studied experimental conditions

  3. A Metal Matrix CNTS Modified Electrode Fabricated Using Micromachining-Based Implantation Method for Improving Sensitivity and Stability

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-01-01

    Full Text Available The metal matrix carbon nanotubes modified electrode (MCME has been fabricated by a novel process involving preparation of carbon nanotubes (CNTs/polyimide (PI composite film, wet, etching, sputtering, electroplating, and wet-etch releasing. Pretreated CNTs are dispersed in PI by mechanical ball milling and then CNTs solution is spin-coated on the substrate. The CNTs/PI composite film is etched away a layer of PI to expose tips of CNTs using buffering solution. These exposed tips of CNTs are covered by metal particles in sputtering process as metal seed layer, followed by metal supporting film formed by electroplating. The MCME is obtained after releasing PI film from the metal supporting film. The MCME shows well morphology of uniform distributional protruding tips of CNTs and increased electron transfer efficiency with strong bonding connection between CNTs and metal matrix, which greatly improves sensitivity and stability of the MCME. The oxidation peak of the MCME in cyclic voltammeter (CV test is 1.7 times more than that of CNTs suspension spin-coated metal electrode (SCME. The decline of peak current of the MCME after fifty cycles is only 1.8% much less than 67% of the SCME. Better sensitivity and stability may be helpful for CNTs modified electrodes wide application for trace test of many special materials.

  4. Modifying thin film diamond for electronic applications

    International Nuclear Information System (INIS)

    Baral, B.

    1999-01-01

    The unique combination of properties that diamond possesses are being exploited in both electronic and mechanical applications. An important step forward in the field has been the ability to grow thin film diamond by chemical vapour deposition (CVD) methods and to control parameters such as crystal orientation, dopant level and surface roughness. An extensive understanding of the surface of any potential electronic material is vital to fully comprehend its behaviour within device structures. The surface itself ultimately controls key aspects of device performance when interfaced with other materials. This study has provided insight into important chemical reactions on polycrystalline CVD diamond surfaces, addressing how certain surface modifications will ultimately affect the properties of the material. A review of the structure, bonding, properties and potential of diamond along with an account of the current state of diamond technology and CVD diamond growth is provided. The experimental chapter reviews bulk material and surface analytical techniques employed in this work and is followed by an investigation of cleaning treatments for polycrystalline CVD diamond aimed at removing non-diamond carbon from the surface. Selective acid etch treatments are compared and contrasted for efficacy with excimer laser irradiation and hydrogen plasma etching. The adsorption/desorption kinetics of potential dopant-containing precursors on polycrystalline CVD diamond surfaces have been investigated to compare their effectiveness at introducing dopants into the diamond during the growth stage. Both boron and sulphur-containing precursor compounds have been investigated. Treating polycrystalline CVD diamond in various atmospheres / combination of atmospheres has been performed to enhance electron field emission from the films. Films which do not emit electrons under low field conditions can be modified such that they emit at fields as low as 10 V/μm. The origin of this enhancement

  5. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    Science.gov (United States)

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  6. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Meareg Amare

    2017-01-01

    Full Text Available Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6×10-6 to 100×10-6 mol L−1 with determination coefficient and method detection limit (LoD = 3 s/slope of 0.99925 and 8.37×10-7 mol L−1, respectively, supplemented by recovery results of 93.79–102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w% of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

  7. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10 -6 to 100 × 10 -6  mol L -1 with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10 -7  mol L -1 , respectively, supplemented by recovery results of 93.79-102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users' highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

  8. Amperometric Immunosensor Based on a Protein A/Deposited Gold Nanocrystals Modified Electrode for Carbofuran Detection

    Directory of Open Access Journals (Sweden)

    Xia Sun

    2011-12-01

    Full Text Available In this paper, an amperometric immunosensor modified with protein A/deposited gold nanocrystals (DpAu was developed for the ultrasensitive detection of carbofuran residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein A (PA and improve the electrode conductivity. Then PA was dropped onto the surface of DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin (BSA was employed to block the possible remaining active sites avoiding any nonspecific adsorption. The fabrication procedure of the immunosensor was characterized by electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV, respectively. With the excellent electroconductivity of DpAu and the PA’s oriented immobilization of antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. The influences of the electrodeposition time of DpAu, pH of the detection solution and incubation time on the current response of the fabricated immunosensor were investigated. Under optimized conditions, the current response was proportional to the concentration of carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high specificity, reproducibility, stability and regeneration performance, which may open a new door for ultrasensitive detection of carbofuran residues in vegetables and fruits.

  9. ELECTROCHEMICAL DETERMINATION OF HYDROGEN SULFIDE AT CARBON NANOTUBE MODIFIED ELECTRODES. (R830900)

    Science.gov (United States)

    Carbon nanotube (CNT) modified glassy carbon electrodes exhibiting a strong and stable electrocatalytic response towards sulfide are described. A substantial (400 mV) decrease in the overvoltage of the sulfide oxidation reaction (compared to ordinary carbon electrodes) is...

  10. Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine

    International Nuclear Information System (INIS)

    Zare, Hamid R.; Nasirizadeh, Navid

    2007-01-01

    A new hydrazine sensor has been fabricated by immobilizing hematoxylin at the surface of a glassy carbon electrode (GCE) modified with multi-wall carbon nanotube (MWCNT). The adsorbed thin films of hematoxylin on the MWCNT modified GCE show one pair of peaks with surface confined characteristics. The hematoxylin MWCNT (HMWCNT) modified GCE shows highly catalytic activity toward hydrazine electro-oxidation. The results show that the peak potential of hydrazine at HMWCNT modified GCE surface shifted by about 167 and 255 mV toward negative values compared with that at an MWCNT and activated modified GCE surface, respectively. In addition, at HMWCNT modified electrode surface remarkably improvement the sensitivity of determination of hydrazine. The kinetic parameters, such as the electron transfer coefficient, α, and the standard heterogeneous rate constant, k 0 , for oxidation of hydrazine at the HMWCNT modified GCE were determined and also is shown that the heterogeneous rate constant, k', is strongly potential dependent. The overall number of electron involved in the catalytic oxidation of hydrazine and the number of electrons involved in the rate-determining steps are 2 and 1, respectively. The amperometric detection of hydrazine is carried out at 220 mV in 0.1 M phosphate buffer solution (pH 7) with linear response range 2.0-122.8 μM hydrazine, detection limit of 0.68 μM and sensitivity of 0.0208 μA μM -1 . Finally the amperometric response for hydrazine determination is reproducible, fast and extremely stable, with no loss in sensitivity over a continual 400 s operation

  11. Transferred metal electrode films for large-area electronic devices

    International Nuclear Information System (INIS)

    Yang, Jin-Guo; Kam, Fong-Yu; Chua, Lay-Lay

    2014-01-01

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300 nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm −1 have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS ® (Zeon). High-quality OFETs with sub-10 V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films

  12. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.

    Science.gov (United States)

    Pérez, Briza; Del Valle, Manel; Alegret, Salvador; Merkoçi, Arben

    2007-12-15

    Carbon materials (CMs), such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and carbon microparticles (CMPs) are used as doping materials for electrochemical sensors. The efficiency of these materials (either before or after acidic treatments) while being used as electrocatalysts in electrochemical sensors is discussed for beta-nicotinamide adenine dinucleotide (NADH) detection using cyclic voltammetry (CV). The sensitivity of the electrodes (glassy carbon (GC) and gold (Au)) modified with both treated and untreated materials have been deeply studied. The response efficiencies of the GC and Au electrodes modified with CNF and CMP, using dimethylformamide (DMF) as dispersing agent are significantly different due to the peculiar physical and chemical characteristics of each doping material. Several differences between the electrocatalytic activities of CMs modified electrodes upon NADH oxidation have been observed. The CNF film promotes better the electron transfer of NADH minimizing the oxidation potential at +0.352 V. Moreover higher currents for the NADH oxidation peak have been observed for these electrodes. The shown differences in the electrochemical reactivities of CNF and CMP modified electrodes should be with interest for future applications in biosensors.

  13. Electrochemical Effect of Different Modified Glassy Carbon Electrodes on the Values of Diffusion Coefficient for Some Heavy Metal Ions

    International Nuclear Information System (INIS)

    Radhi, M M; Alwan, S H; Amir, Y K A; Tee, T W

    2013-01-01

    Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C 60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C 60 /GCE and AC/GCE, these electrodes were modified in Li + solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li + /GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg 2+ , Cd 2+ , and Mn 2+ . Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (D f ) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li + act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li+/GCE, but it has low values at unmodified GCE.

  14. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Quintana, Josefina [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy); Amine, Aziz [Faculte des Sciences et Techniques, B.P.146, Mohammadia, Morocco, Rome (Italy); Punzo, Francesco; Destri, Giovanni Li [LAMSUN and CSGI at Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95125, Catania (Italy); Bianchini, Chiara [Dipartimento di Ingegneria Chimica Materiali Ambienti dell' Universita degli Studi ' La Sapienza' di Roma, via Eudossiana 18, 00184 Rome (Italy); Zane, Daniela; Curulli, Antonella [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR,via del Castro Laurenziano 7, 00161 Rome (Italy); Palleschi, Giuseppe; Moscone, Danila [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Consorzio Interuniversitario Biostrutture e Biosistemi ' INBB' , Viale Medaglie d' Oro 305, 00136 Rome (Italy)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer 'In situ' Bi-SPE has higher sensitivity than 'ex situ' Bi-SPE and 'Bi{sub 2}O{sub 3} bulk' SPE. Black-Right-Pointing-Pointer Electrochemical treatment of SPE before Bi film deposition allows one to reach low LOD. Black-Right-Pointing-Pointer The linearity of Pb{sup 2+} in HCl and HClO{sub 4} is greatly affected by the ionic strength. Black-Right-Pointing-Pointer Satisfactory values of the recovery percentage were obtained in drinking water samples. - Abstract: Lead determination was carried out in the frame of the European Union project Biocop ( (www.biocop.org)) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using 'in situ', 'ex situ' and 'bulk' procedures was carried out. On the basis of the results obtained, we confirmed that the 'in situ' procedure resulted in better analytical performances with respect to not only 'ex situ' but also to 'Bi{sub 2}O{sub 3} bulk' modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 {mu}g L{sup -1} and a detection limit of 0.15 {mu}g L{sup -1}. We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of

  15. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection

    International Nuclear Information System (INIS)

    Calvo Quintana, Josefina; Arduini, Fabiana; Amine, Aziz; Punzo, Francesco; Destri, Giovanni Li; Bianchini, Chiara; Zane, Daniela; Curulli, Antonella; Palleschi, Giuseppe; Moscone, Danila

    2011-01-01

    Highlights: ► “In situ” Bi-SPE has higher sensitivity than “ex situ” Bi-SPE and “Bi 2 O 3 bulk” SPE. ► Electrochemical treatment of SPE before Bi film deposition allows one to reach low LOD. ► The linearity of Pb 2+ in HCl and HClO 4 is greatly affected by the ionic strength. ► Satisfactory values of the recovery percentage were obtained in drinking water samples. - Abstract: Lead determination was carried out in the frame of the European Union project Biocop ( (www.biocop.org)) using a bismuth-modified screen-printed electrode (Bi-SPE) and the stripping analysis technique. In order to choose a sensitive Bi-SPE for lead detection, an analytical comparative study of electrodes modified by Bi using “in situ”, “ex situ” and “bulk” procedures was carried out. On the basis of the results obtained, we confirmed that the “in situ” procedure resulted in better analytical performances with respect to not only “ex situ” but also to “Bi 2 O 3 bulk” modified electrodes, allowing for a linear range of lead ion concentration from 0.5 to 100 μg L −1 and a detection limit of 0.15 μg L −1 . We demonstrated that, before the Bi film deposition, an oxidative electrochemical pre-treatment of the working electrode could be useful because it eliminates traces of lead in the graphite-ink, as shown with stripping measurements. It also improves the electrochemical performance of the electrodes as demonstrated with Electrochemical Impedance Spectroscopy (EIS) measurements. The influence of different analytical parameters, such as the electrolyte solution composition (acetate buffer, chloridric acid, nitric acid, perchloric acid) and the ionic strength was investigated in order to evaluate how to treat the sample before the analysis. The morphology of prepared “in situ” Bi-SPEs was also characterized by Atomic Force Microscopy (AFM). Finally, the Bi-SPEs were used to determine the concentration of lead ions in tap and commercial water

  16. Carbon Powder Based Films on Traditional Solid Electrodes as an Alternative to Disposable Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Barek, J.; Fojta, Miroslav

    2006-01-01

    Roč. 18, č. 11 (2006), s. 1126-1130 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA203/03/0182; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : voltammetry * solid electrodes * ink film * disposable sensor Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  17. Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Chrisey, Douglas B; Pradhan, Dhiren Kumar; Katiyar, Rajesh Kumar; Misra, Pankaj; Scott, J F; Katiyar, Ram S; Coondoo, Indrani; Panwar, Neeraj

    2014-01-01

    We report photovoltaic (PV) effect in multiferroic Bi 0.9 Sm 0.1 Fe 0.95 Co 0.05 O 3 (BSFCO) thin films. Transition metal modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD). PV response is observed under illumination both in sandwich and lateral electrode configurations. The open-circuit voltage (V oc ) and the short-circuit current density (J sc ) of the films in sandwich electrode configuration under illumination are measured to be 0.9 V and −0.051 µA cm −2 . Additionally, we report piezoresponse for BSFCO films, which confirms ferroelectric piezoelectric behaviour. (paper)

  18. Trans-membrane electron transfer in red blood cells immobilized in a chitosan film on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Yu, Chunmei; Wang, Li; Zhu, Zhenkun; Bao, Ning; Gu, Haiying

    2014-01-01

    We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s ) of Hb in RBCs is 0.42 s −1 , and <1.13 s −1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode. (author)

  19. Horseradish Peroxidase (HRP Immobilized Poly(aniline-co-m-aminophenol Film Electrodes–fabrication and Evaluation as Hydrogen Peroxide Sensor

    Directory of Open Access Journals (Sweden)

    Seong-Ho Choi

    2007-05-01

    Full Text Available Enzyme modified electrodes were fabricated with poly(aniline-co-m-aminophenol. Electrochemical polymerization of aniline and m-aminophenol wasperformed to get the film of copolymer on the surface of gold electrode. Modifiedelectrodes were fabricated by two methods, physical entrapment and covalent cross-linking.In one of the method, gold nanoparticles were loaded into the copolymer film andhorseradish peroxidase (HRP was immobilized into the Au nanoparticle loaded copolymerfilm through physical entrapment. In the other method, the amino and -OH groups in thecopolymer are utilized to form covalent functionalization with HRP via glutaric dialdehydeas cross-linker/mediator. The conducting copolymer/enzyme modified electrodes preparedby physical entrapment/covalent functionalization of enzyme were tested forelectrocatalytic activities towards sensing of H2O2. Amperometric results indicate thatenzyme modified electrode via physical entrapment possesses better electrocatalyticperformance over covalent functionalized enzyme electrode.

  20. Hofmeister effects on the glucose oxidase hydrogel-modified electrode

    International Nuclear Information System (INIS)

    Suzuki, Aimi; Tsujimura, Seiya

    2016-01-01

    We describe the consistent effect of salts in the electrolyte solution on glucose oxidation current production in the redox hydrogel-modified electrode containing glucose oxidase as an electrocatalyst and Os complex mediator. The ions affect not only on the electron transfer between the enzyme and the Os complex, but also on the hydrogel structure. This study found that the degree of the effect can be characterized by Hofmeister series. The relative decrease in oxidization current is the lowest in the middle of the Hofmeister series, and increases monotonically on either side. An increase of ionic strength inhibits the electron transfer from the active site of glucose oxidase to Os complex. In addition to this, the kosmotropic anions, which are strongly hydrated, caused hydrogel deswelling (shrinking). The more chaotropic an ion is, the more it adsorbs to uncharged parts of polymer/enzyme with dispersion force, and the swelling of the hydrogel decreases the catalytic current. This study impacts the design of hydrogel electrode and selection of electrolyte ions for bioelectronic applications.

  1. Electrochemical investigations of Pu(IV)/Pu(III) redox reaction using graphene modified glassy carbon electrodes and a comparison to the performance of SWCNTs modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, Jayashree; Sharma, Manoj K.; Kamat, J.V.

    2016-01-01

    Highlights: • First report of aqueous electrochemistry of Plutonium on graphene modified electrode. • Graphene is best electrocatalytic material for Pu(IV)/Pu(III) redox couple among the reported modifiers viz. reduced graphene oxide (rGO) and SWCNT’s. • The electrochemical reversibility of Pu(IV)/Pu(III) redox couple improves significantly on graphene modified electrode compared to previously reported rGO & SWCNTs modified electrodes • Donnan interaction between plutonium species and graphene surface offers a possibility for designing a highly sensitive sensor for plutonium • Graphene modified electrode shows higher sensitivity for the determination of plutonium compared to glassy carbon and single walled carbon nanotube modified electrode - Abstract: The work reported in this paper demonstrates for the first time that graphene modified glassy carbon electrode (Gr/GC) show remarkable electrocatalysis towards Pu(IV)/Pu(III) redox reaction and the results were compared with that of single-walled carbon nanotubes modified GC (SWCNTs/GC) and glassy carbon (GC) electrodes. Graphene catalyzes the exchange of current of the Pu(IV)/Pu(III) couple by reducing both the anodic and cathodic overpotentials. The Gr/GC electrode shows higher peak currents (i p ) and smaller peak potential separation (ΔE p ) values than the SWCNTs/GC and GC electrodes. The heterogeneous electron transfer rate constants (k s ), charge transfer coefficients (α) and the diffusion coefficients (D) involved in the electrocatalytic redox reaction were determined. Our observations show that graphene is best electrocatalytic material among both the SWCNTs and GC to study Pu(IV)/Pu(III) redox reaction.

  2. Electrochemical Preparation of a Molecularly Imprinted Polypyrrole-modified Pencil Graphite Electrode for Determination of Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Yücel Sahin

    2008-09-01

    Full Text Available A molecularly imprinted polymer (MIP polypyrrole (PPy-based film was fabricated for the determination of ascorbic acid. The film was prepared by incorporation of a template molecule (ascorbic acid during the electropolymerization of pyrrole onto a pencil graphite electrode (PGE in aqueous solution using a cyclic voltammetry method. The performance of the imprinted and non-imprinted (NIP films was evaluated by differential pulse voltammetry (DPV. The effect of pH, monomer and template concentrations, electropolymerization cycles and interferents on the performance of the MIP electrode was investigated and optimized. The molecularly imprinted film exhibited a high selectivity and sensitivity toward ascorbic acid. The DPV peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 0.25 to 7.0 mM of ascorbic acid with a correlation coefficient of 0.9946. The detection limit (3σ was determined as 7.4x10-5 M (S/N=3. The molecularly-imprinted polypyrrole-modified pencil graphite electrode showed a stable and reproducible response, without any influence of interferents commonly existing in pharmaceutical samples. The proposed method is simple and quick. The PPy electrodes have a low response time, good mechanical stability and are disposable simple to construct.

  3. Polypyrrole Coated Cellulosic Substrate Modified by Copper Oxide as Electrode for Nitrate Electroreduction

    Science.gov (United States)

    Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.

    2015-08-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.

  4. Carbon paste electrode modified with silver thimerosal for the potentiometric flow injection analysis of silver(I)

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Hosny [Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt)]. E-mail: dr_hosny@yahoo.com

    2005-07-27

    The utility of carbon paste electrode modified with silver ethylmercurythiosalicylate (silver thimerosal) in both static mode and flow injection analysis (FIA) is demonstrated. The electrode was fully characterized in terms of composition, response time, thermal stability, usable pH and ionic strength ranges. It has been shown that diisononyl phthalate (DINP) acts as more suitable solvent mediator for preparation of the electrode, which exhibits linear response range to Ag(I) extending from 5.0 x 10{sup -7} to 1.0 x 10{sup -3} M with detection limit of 2.5 x 10{sup -7} M and Nernstian slope of 59.3 {+-} 1.0 mV/decade. The proposed chemically modified carbon paste electrode shows a very good selectivity for Ag(I) over a wide variety of metal ions and successfully used for the determination of the silver content of silver sulphadiazine (burning cream) and developed radiological films. The electrode was also used as an indicator electrode in the potentiometric titration of thiopental and thimerosal with AgNO{sub 3}.

  5. Immobilization of biomolecules on cysteamine-modified polyaniline film for highly sensitive biosensing.

    Science.gov (United States)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong; Xue, Jian; Chen, Xianfeng

    2014-03-01

    We present a new cysteamine (CS)-modified polyaniline (PANI) film for highly efficient immobilization of biomolecules in biosensing technology. This electrochemical deposited PANI film treated with CS and glutaraldehyde could be employed as an excellent substrate for biomolecules immobilization. The parameters of PANI growth were optimized to obtain suitable surface morphology of films for biomolecules combination with the help of electron and atomic force microscopy. Cyclic voltammetry (CV) was utilized to illustrate the different electrochemical activities of each modified electrode. Due to the existence of sulfydryl group and amino group in CS, surface modification with CS was proven to reduce oxidized units on PANI film remarkably, as evidenced by both ATR-FTIR and Raman spectroscopy characterizations. Furthermore, bovine serum albumin (BSA) was used as the model protein to investigate the immobilization efficiency of biomolecules on the PANI film, comparative study using quartz crystal microbalance (QCM) showed that BSA immobilized on CS-modified PANI could be increased by at least 20% than that without CS-modified PANI in BSA solution with the concentration of 0.1-1mg/mL. The CS-modified PANI film would be significant for the immobilization and detection of biomolecules and especially promising in the application of immunosensor for ultrasensitive detection. © 2013 Published by Elsevier B.V.

  6. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    Science.gov (United States)

    Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2014-12-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

  7. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Coppedè, Nicola; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Valitova, Irina; Cicoira, Fabio; Mahvash, Farzaneh; Santato, Clara; Martel, Richard

    2014-01-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs. (paper)

  8. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  9. Single-Layer Pentacene Field-Effect Transistors Using Electrodes Modified With Self-assembled Monolayers

    NARCIS (Netherlands)

    Asadi, Kamal; Wu, Yu; Gholamrezaie, Fatemeh; Rudolf, Petra; Blom, Paul W. M.

    2009-01-01

    Pentacene field-effect transistor performance can be improved by modifying metal electrodes with self-assembled monolayers. The dominant role in performance is played by pentacene morphology rather than the work function of the modified electrodes. With optimized processing conditions,

  10. EUGENOL POLYMER MODIFIED TITANIUM ELECTRODE FOR THE ANALYSIS OF CARBOCYSTEINE

    OpenAIRE

    S. EL QOUATLI; R. T. NGONO; R. NAJIH; A. CHTAINI

    2012-01-01

    A eugenol polymer immobilized electrode was developed for the assay of the carbocysteine compound. The electrochemical sensor was made by in situ electropolymerization of eugenol at titanium electrode. Cyclic voltamperometry at prepared electrode permitted to point out a reversible pattern for carbocysteine electrooxidation.

  11. EUGENOL POLYMER MODIFIED TITANIUM ELECTRODE FOR THE ANALYSIS OF CARBOCYSTEINE

    Directory of Open Access Journals (Sweden)

    S. EL QOUATLI

    2012-06-01

    Full Text Available A eugenol polymer immobilized electrode was developed for the assay of the carbocysteine compound. The electrochemical sensor was made by in situ electropolymerization of eugenol at titanium electrode. Cyclic voltamperometry at prepared electrode permitted to point out a reversible pattern for carbocysteine electrooxidation.

  12. Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose

    International Nuclear Information System (INIS)

    Elahi, M. Yousef; Mousavi, M.F.; Ghasemi, S.

    2008-01-01

    A nano-structured Ni(II)-curcumin (curcumin: 1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) film is electrodeposited on a glassy carbon electrode in alkaline solution. The morphology of polyNi(II)-curcumin (NC) was investigated by scanning electron microscopy (SEM). The SEM results show NC has a nano-globular structure in the range 20-50 nm. Using cyclic voltammetry, linear sweep voltammetry, chronoamperometry, steady-state polarization measurements and electrochemical impedance spectroscopy (EIS) showed that the nano-structure NC film acts as an efficient material for the electrocatalytic oxidation of fructose. According to the voltammetric studies, the increase in the anodic peak current and subsequent decrease in the corresponding cathodic current, fructose was oxidized on the electrode surface via an electrocatalytic mechanism. The EIS results show that the charge-transfer resistance has as a function of fructose concentration, time interval and applied potential. The increase in the fructose concentration and time interval in fructose solution results in enhanced charge transfer resistance in Nyquist plots. The EIS results indicate that fructose electrooxidation at various potentials shows different impedance behaviors. At lower potentials, a semicircle is observed in the first quadrant of impedance plot. With further increase of the potential, a transition of the semicircle from the first to the second quadrant occurs. Also, the results obtained show that the rate of fructose electrooxidation depends on concentration of OH - . Electron transfer coefficient, diffusion coefficient and rate constant of the electrocatalytic oxidation reaction are obtained. The modified electrode was used as a sensor for determination of fructose with a good dynamic range and a low detection limit

  13. Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases

    Science.gov (United States)

    Nazaruk, Ewa; Smoliński, Sławomir; Swatko-Ossor, Marta; Ginalska, Grażyna; Fiedurek, Jan; Rogalski, Jerzy; Bilewicz, Renata

    Two glassy carbon electrodes modified with enzymes embedded in lyotropic liquid-crystalline cubic phase were used for the biofuel cell construction. The monoolein liquid-crystalline film allowed to avoid separators in the biofuel cell. Glucose and oxygen as fuels, and glucose oxidase and laccase as anode and cathode biocatalysts, respectively were used. The biofuel cell parameters were examined in McIlvaine buffer, pH 7 solution containing 15 mM of glucose and saturated with dioxygen. A series of mediators were tested taking into account their formal potentials, stability in the cubic phase and efficiency of mediation. Most stable was the biofuel cell based on tetrathiafulvalene (TTF) and 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as anode and cathode mediators, respectively. The open-circuit voltage was equal to 450 ± 40 mV. The power densities and current densities were measured for all the systems studied.

  14. Selective Detection of Serotonin from the Interference by Ascorbic Acid and Uric Acid at Poly(thionine)-modified Glassy Carbon Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ahammad, A. J. Saleh; Nath, Narayan Chandra Deb; Kim, Sung Hyun [Konkuk University, Seoul (Korea, Republic of); Kim, Young Jun; Lee, Jae Joon [Konkuk University, Chungju (Korea, Republic of)

    2011-03-15

    Various approaches, such as using polymer film modified electrode, applying chemical modification, employing nano materials and molecularly imprinted polymers, have been developed to detect 5-HT selectively from interferences. The polymer-modified electrodes have widely been used because of their enhanced selectivity and sensitivity for many analytes. Previously, we have reported the role of poly(thionine) film (PTH) deposited on the electrochemically preanodized glassy carbon electrode (GCE) for the separation of the voltammetric signal of dopamine (DA) from that of AA and UA. In this communication, we are presenting the preliminary results of the electrochemical signal separation of 5-HT by suppressing those of AA and UA on another type PTH modified GCE (PTHGCE) which is prepared by electrochemical deposition of PTH directly on the mechanically polished GCE.

  15. Bilayered Oxide thin films for transparent electrode application

    Science.gov (United States)

    Dutta, Titas; Narayan, Jagdish

    2008-10-01

    Ga doped ZnO films with electrical and optical properties comparable to indium tin oxide (ITO) is a promising candidate for transparent conducting oxides (TCOs) because of its superior stability in hydrogen environment, benign nature and relatively inexpensive supply. However, ZnO based TCO films suffer from low work function, which is a critical parameter for device applications. We report here the growth of a novel bilayered structure consisting of very thin (few monolayers) ITO, MoOx layer on Zn0.95Ga0.05O film for transparent electrode applications by using pulsed laser deposition technique at different temperatures and oxygen partial pressure. The characteristics of the ITO film and the heterostructure have been investigated in detail using XRD, TEM, XPS, and electrical and optical property measurements. It is envisaged that the overall transmittance and the resistivity are dictated by the thicker layer of ZnGa0.05O beneath the ITO layer. Hence, this study is aimed to improve the surface characteristics without affecting the overall transmittance and sheet resistance. This will enhance the transport of the carriers across the heterojunction in the device, thus, resulting in the increase in device efficiency.

  16. Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis.

    Science.gov (United States)

    Paramo, Erica; Palmero, Susana; Heras, Aranzazu; Colina, Alvaro

    2018-02-01

    A novel methodology to prepare sensors based on carbon nanostructures electrodes modified by metal nanoparticles is proposed. As a proof of concept, a novel bismuth nanoparticle/carbon nanofiber (Bi-NPs/CNF) electrode and a carbon nanotube (CNT)/gold nanoparticle (Au-NPs) have been developed. Bi-NPs/CNF films were prepared by 1) filtering a dispersion of CNFs on a polytetrafluorethylene (PTFE) filter, and 2) filtering a dispersion of Bi-NPs chemically synthesized through this CNF/PTFE film. Next the electrode is prepared by sticking the Bi-NPs/CNF/PTFE film on a PET substrate. In this work, Bi-NPs/CNF ratio was optimized using a Cd 2+ solution as a probe sample. The Cd anodic stripping peak intensity, registered by differential pulse anodic stripping voltammetry (DPASV), is selected as target signal. The voltammograms registered for Cd stripping with this Bi-NPs/CNF/PTFE electrode showed well-defined and highly reproducible electrochemical. The optimized Bi-NPs/CNF electrode exhibits a Cd 2+ detection limit of 53.57 ppb. To demonstrate the utility and versatility of this methodology, single walled carbon nanotubes (SWCNTs) and gold nanoparticles (Au-NPs) were selected to prepare a completely different electrode. Thus, the new Au-NPs/SWCNT/PTFE electrode was tested with a multiresponse technique. In this case, UV/Vis absorption spectroelectrochemistry experiments were carried out for studying dopamine, demonstrating the good performance of the Au-NPs/SWCNT electrode developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electrochemical oxidation of ascorbic acid mediated by carbon nano tubes/ Li+/ carbon paste modified solid electrode

    International Nuclear Information System (INIS)

    Goh, J.K.; Tan, W.T.

    2008-01-01

    Multi-walled carbon nano tube (MWCNT) was used to modify BPPG electrode because of its unique structure and extraordinary properties. MWCNT modified electrode exhibited obvious enhancing and electro catalyzing effects to the oxidation of ascorbic acid using cyclic voltammetry technique. MWCNT was bonded on BPPG electrode surface using carbon paste with ratio of 30 % (w/ W) carbon paste (binder): 70 % (w/ w) MWCNT. This method of modification has lowered the capacitance background current and enabled lower detection limit of ascorbic acid concentration. The electrical conductivity property of MWCNT modified electrode was further improved with the intercalation with lithium ion and resulted in current enhancement of 2 times on the oxidation current of ascorbic acid. Parameters of pH and temperature showed significant relation to the sensitivity of MWCNT modified electrode. Under the optimized parameters, the calibration curve constructed was linear up from 50 μM to 5 mM with sensitivity of 34.5 mA M -1 . The practical application of MWCNT modified electrode was demonstrated with Vitamin C pill and orange juice. Good reproducibility and recovery of ascorbic acid concentration showed the feasibility of MWCNT modified electrode to be used in the detection of ascorbic acid in aqueous solution. This also proposed MWCNT modified BPPG electrode possessed advantages such as low detection limit, high stability, low cost and simplicity in fabrication. (author)

  18. Design and modelling of enzyme/poly-pyrrole modified electrodes for bio-catalyzed electro-synthesis processes

    International Nuclear Information System (INIS)

    Gros, Pierre

    1996-01-01

    This research thesis reports a study which aims at developing, analyzing and integrating an electrode-enzyme interface within an electro-enzymatic reactor to develop electrochemical biosensors. The adopted method comprises a confinement of the enzyme at the electrode surface by means of an electro-formed poly-pyrrole film. The author reports an experimental and theoretical study of the coupling between electrochemical reaction, enzymatic reaction and matter transfer in the polymer in order to better understand the operation of so-modified electrodes. Different parameters have an influence on the reaction rate. A numerical model (validated by experiments) allows the identification of the reaction limiting stages. A new elaboration protocol allows the polymer permeability to be increased. The interface is first applied to the reduction of the NAD coenzyme, and the process is also applied to the production of gluconic acid [fr

  19. Understanding anodic wear at boron doped diamond film electrodes

    International Nuclear Information System (INIS)

    Chaplin, Brian P.; Hubler, David K.; Farrell, James

    2013-01-01

    This research investigated the mechanisms associated with anodic wear of boron-doped diamond (BDD) film electrodes. Cyclic voltammetry (CV), x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS) were used to measure changes in electrode response and surface chemistry as a function of the charge passed and applied current density. Density functional theory (DFT) modeling was used to evaluate possible reaction mechanisms. The initial hydrogen-terminated surface was electrochemically oxidized at lower potentials than water oxidation (≤ 1.83 V/SHE), and was not catalyzed by the hydrogen-terminated surface. In the region where water oxidation produces hydroxyl radicals (OH·), the hydrogen-terminated surface may also be oxidized by chemical reaction with OH·. Oxygen atoms became incorporated into the surface via reaction of carbon atoms with OH·, forming both C = O and C-OH functional groups, that were also detected by XPS measurements. Experimental and DFT modeling results indicate that the oxygenated diamond surface lowers the potential for activationless water oxidation from 2.74 V/SHE for the hydrogen terminated surface to 2.29 V/SHE for the oxygenated surface. Electrode wear was accelerated at high current densities (i.e., 500 mA cm −2 ), where SEM results indicated oxidation of the BDD film resulted in significant surface roughening. These results are supported by EIS measurements that document an increase in the double-layer capacitance as a function of the charge passed. DFT simulations provide a possible mechanism that explains the observed diamond oxidation. DFT simulation results indicate that BDD edge sites (=CH 2 ) can be converted to COOH functional groups, which are further oxidized via reactions with OH· to form H 2 CO 3(aq.) with an activation energy of 58.9 kJ mol −1

  20. A Palladium-Tin Modified Microband Electrode Array for Nitrate Determination

    Directory of Open Access Journals (Sweden)

    Yexiang Fu

    2015-09-01

    Full Text Available A microband electrode array modified with palladium-tin bimetallic composite has been developed for nitrate determination. The microband electrode array was fabricated by Micro Electro-Mechanical System (MEMS technique. Palladium and tin were electrodeposited successively on the electrode, forming a double-layer structure. The effect of the Pd-Sn composite was investigated and its enhancement of catalytic activity and lifetime was revealed. The Pd-Sn modified electrode showed good linearity (R2 = 0.998 from 1 mg/L to 20 mg/L for nitrate determination with a sensitivity of 398 μA/(mg∙L−1∙cm2. The electrode exhibited a satisfying analytical performance after 60 days of storage, indicating a long lifetime. Good repeatability was also displayed by the Pd-Sn modified electrodes. The results provided an option for nitrate determination in water.

  1. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    Science.gov (United States)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  2. Determination of Thallium(I by Hybrid Mesoporous Silica (SBA-15 Modified Electrode

    Directory of Open Access Journals (Sweden)

    Geeta Rani

    2016-01-01

    Full Text Available Chemically modified mesoporous silica material (SBA-15 was used for the construction of Tl(I selective carbon paste electrode. The best response was found with the electrode containing 10% modifier as electrode material. The electrode has a lower detection limit of 6.0 × 10−9 M in a working concentration range of 1.0 × 10−8–1.0 × 10−1 M. The selectivity coefficient calculated by match potential method (MPM shows the high selectivity of electrode towards Tl(I over other tested ions. The electrode was successfully applied as an indicator electrode for the titration of 0.01 M TlNO3 solution with standards EDTA solution and for sequential titration of mixture of different anions.

  3. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    OpenAIRE

    Yu, Yuan; Zhou, Yanli; Wu, Liangzhuan; Zhi, Jinfang

    2012-01-01

    Boron-doped diamond (BDD) thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC), carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitiv...

  4. Determination of picogram quantities of oligodeoxynucleotides by stripping voltammetry at mercury modified graphite electrode surfaces

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Jelen, František; Fojt, Lukáš; Vetterl, Vladimír

    2005-01-01

    Roč. 577, č. 2 (2005), s. 263-272 ISSN 0022-0728 R&D Projects: GA AV ČR IAA4004404; GA AV ČR(CZ) KJB4004305; GA AV ČR(CZ) IBS5004107; GA ČR(CZ) GA203/02/0422 Institutional research plan: CEZ:AV0Z50040507 Keywords : pyrolitic graphite electrode * glassy carbon electrode * mercury film electrodes Subject RIV: BO - Biophysics Impact factor: 2.223, year: 2005

  5. Analytical electrochemistry of vitamin B12 on a bismuth-film electrode surface

    International Nuclear Information System (INIS)

    Kreft, Gabriel L.; Braga, Otoniel C. de; Spinelli, Almir

    2012-01-01

    Cyclic voltammetry (CV) and square wave adsorptive stripping voltammetry (SWAdSV) were used to investigate the performance of an ex situ plated bismuth-film electrode (BiFE) employed to study the electrochemical behavior and the electroanalytical determination of vitamin B 12 . Two pH-dependent reversible peaks were observed for the B 12r –B 12s (Co(II)–Co(I)) couple after pre-concentration of vitamin B 12 at −1.2 V for 30 s. An adsorption-controlled reaction rate with one electron involved in the electrochemical step was observed for the mechanism implicated. The calibration curve obtained in a Britton–Robinson solution at pH 12.0 was linear in the concentration range of 0.100–1.000 μmol L −1 (r = 0.9980). The detection limit was found to be 33.1 nmol L −1 . The electrode was successfully employed for the determination of vitamin B 12 in two pharmaceutical products. The electrode performance was compared with those of modified and unmodified electrodes as well as with the UV–vis spectrophotometric method.

  6. A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex modified electrode

    International Nuclear Information System (INIS)

    Boopathi, Mannan; Won, Mi-Sook; Shim, Yoon-Bo

    2004-01-01

    Complexation of Cu ions in a terthiophene carboxylic acid (TTCA) polymer film resulted an enhanced anodic current for acetaminophen oxidation when compared to polymer coated and bare glassy carbon electrodes in human blood and buffer media. Scanning electron microscopy (SEM) and ESCA experiments indicate the involvement of copper in the electrocatalytic oxidation of acetaminophen. No interference was observed from other biologically important and phenolic compounds used with this modified electrode. Especially, the non-interference from N-acetylcysteine, an antidote for the treatment of acetaminophen poisoning, reveals the proposed method's superiority in medicinal applications. In addition, the present modified electrode avoids surface fouling at higher concentrations of acetaminophen. The calibration range obtained with CV was based between 2.0x10 -5 and 5.0x10 -3 M [r 2 =0.997 (n=5, R.S.D.=2.5%); DL=5.0x10 -6 M (S/N=3)]. The analytical utility of the modified electrode was achieved by analyzing the content of acetaminophen in different drugs without pretreatment using CV and amperometric techniques

  7. Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase

    International Nuclear Information System (INIS)

    Saadaoui, Maroua; Sánchez, Alfredo; Díez, Paula; Raouafi, Noureddine; Pingarrón, José M.; Villalonga, Reynaldo

    2016-01-01

    Glassy carbon electrodes were modified with silica materials such as silica nanoparticles, mesoporous silica nanoparticles and mesoporous silica thin films with the aim to introduce scaffolds suitable for the immobilization of enzymes. Xanthine oxidase was selected as a model enzyme, and xanthine as the target analyte. A comparison of the modified electrodes showed the biosensor prepared with mesoporous silica nanoparticles to perform best. By using the respective biosensor, xanthine can be amperometrically determined (via measurement of enzymatically formed hydrogen peroxide) at a working voltage of 0.7 V (vs. Ag/AgCl) with a 0.28 μM detection limit. The biosensor was evaluated in terms of potential interferences, reproducibility and stability, and applied to the determination of fish freshness via sensing of xanthine. (author)

  8. Exploring the origins of the apparent "electrocatalytic" oxidation of kojic acid at graphene modified electrodes.

    Science.gov (United States)

    Figueiredo-Filho, Luiz C S; Brownson, Dale A C; Fatibello-Filho, Orlando; Banks, Craig E

    2013-08-21

    We explore the recent reports that the use of graphene modified electrodes gives rise to the electrocatalytic oxidation of kojic acid. It is demonstrated that large quantifiable voltammetric signatures are observed on bare/unmodified graphitic electrodes, which are shown to be analytically useful and superior to those observed at graphene modified alternatives. This work is of importance as it shows that control experiments are critical and must be undertaken before "electrocatalysis" is conferred when investigating graphene in electrochemistry. In terms of the electroanalytical response of graphene modified electrodes, a bare edge plane pyrolytic graphite electrode is shown to give rise to an improved linear range and limit of detection, questioning the need to modify electrodes with graphene.

  9. Cobalt nano-sheet supported on graphite modified paper as a binder free electrode for peroxide electrooxidation

    International Nuclear Information System (INIS)

    Zhang, Dongming; Cao, Dianxue; Ye, Ke; Yin, Jinling; Cheng, Kui; Wang, Guiling

    2014-01-01

    Graphical abstract: - Highlights: • A novel and binder free Co@graphite/paper electrode is employed for H 2 O 2 electrooxidation. • The obtained Co@graphite/paper electrode exhibits remarkably high catalytic activity and good stability for the electrooxidation of H 2 O 2 . • The high catalytic activity, low cost and environment-friendly make the Co@graphite/paper electrode as a promising anode material in DPPFC. - Abstract: A novel and binder free Co@graphite/paper electrode is prepared by electrodeposition Co nano-sheet on the surface of a graphite layer modified paper substrate. The morphology and phase structure of the Co@graphite/paper electrode are characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer, transmission electron microscope and X-ray diffractometer. The catalytic activity of the Co@graphite/paper electrode for H 2 O 2 electrooxidation is investigated by means of cyclic voltammetry and chronoamperometry. The catalyst combines tightly with the paper and exhibits a good stability. The oxidation current density reaches to 580 mA cm −2 in 2 mol dm −3 NaOH and 0.5 mol dm −3 H 2 O 2 at 0.5 V. Besides, we illustrate the reaction mechanization of the H 2 O 2 electrooxidation on the Co film

  10. Kinetics of oxygen reduction reaction at tin-adatoms-modified gold electrodes in acidic media

    International Nuclear Information System (INIS)

    Miah, Md. Rezwan; Ohsaka, Takeo

    2009-01-01

    In the present report, oxygen reduction reaction (ORR) at polycrystalline gold (Au (poly)) electrode in situ modified by the underpotential deposition (upd) of Sn-adatoms is addressed. The ORR was investigated at the Sn-adatoms-modified Au (poly) electrode by the hydrodynamic voltammetric technique with a view to evaluating the various related kinetic parameters. The results demonstrated that the underpotential deposited Sn-adatoms on the Au (poly) electrode substantially promoted the activity of the electrode towards an exclusive one-step four-electron ORR forming H 2 O as the final product.

  11. Kinetics of oxygen reduction reaction at tin-adatoms-modified gold electrodes in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md. Rezwan [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)], E-mail: mrmche@yahoo.com; Ohsaka, Takeo [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)], E-mail: ohsaka@echem.titech.ac.jp

    2009-10-01

    In the present report, oxygen reduction reaction (ORR) at polycrystalline gold (Au (poly)) electrode in situ modified by the underpotential deposition (upd) of Sn-adatoms is addressed. The ORR was investigated at the Sn-adatoms-modified Au (poly) electrode by the hydrodynamic voltammetric technique with a view to evaluating the various related kinetic parameters. The results demonstrated that the underpotential deposited Sn-adatoms on the Au (poly) electrode substantially promoted the activity of the electrode towards an exclusive one-step four-electron ORR forming H{sub 2}O as the final product.

  12. Potentiodynamic formation of gold nanoparticles film on glassy carbon electrode using aminophenyl diazonium cations grafted gold nanoparticles: Determination of histamine H2 receptor antagonist

    International Nuclear Information System (INIS)

    Kesavan, Srinivasan; Revin, S. Brillians; John, S. Abraham

    2014-01-01

    Graphical abstract: - Highlights: • Grafting based AuNPs were synthesized in aqueous medium by spontaneous grafting. • GC/ITO electrode was modified with AuNPs film by potentiodynamic method. • AuNPs film modified electrode was characterized by XPS, AFM and CV. • Simultaneous determination of ranitidine and paracetamol was demonstrated. • Practical application was demonstrated in commercial drugs. - Abstract: The aminophenyl (AP) functionalized AuNPs (AP-AuNPs) were synthesized in aqueous medium by spontaneous grafting method and were used for the formation of AuNPs film on glassy carbon (GC) and indium tin oxide (ITO) surfaces by potentiodynamic method. The formed AP-AuNPs film modified electrodes were characterized by cyclic voltammetry (CV), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). EIS studies show that the electron transfer reaction of [Fe(CN) 6 ] 3-/4− was higher at the AP-AuNPs film modified electrode (1.58 × 10 −4 cm s −1 ) than at bare (3.78 × 10 −5 cm s −1 ) GC electrode. The surface coverage of the AP-AuNPs film modified electrode was found to be 4.4 × 10 −10 mol cm −2 . The film formation takes place via -NH 2 groups of AP-AuNPs, which was confirmed by XPS from the observed peaks corresponding to =N-H (396.7 eV), -N-H (399.2 eV), -N = N- (400.2 eV) and -N + -H (403.3 eV). The AP-AuNPs film modified electrode was successfully utilized for the determination of histamine H 2 receptor antagonist ranitidine (RA). Further, the AP-AuNPs film modified electrode was effectively used for the selective determination of RA in the presence of 40-fold excess paracetamol. The present method was successfully used to determine the concentration of RA in commercial drugs

  13. Covalent attachment of thionine onto gold electrode modified with cadmium sulfide nanoparticles: Improvement of electrocatalytic and photelectrocatalytic reduction of hydrogen peroxide

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Rahmatpanah, Rojzin; Hallaj, Rahman; Roushani, Mahmoud

    2013-01-01

    A newly developed strategy based on gold (Au) electrode modified with cadmium sulfide nanoparticles (CdSnp) and thionine (Th) was proposed toward electrocatalytic and photoelectrocatalytic hydrogen peroxide (H 2 O 2 ) reduction. At first, a thin film of CdS nanoparticles was electrodeposited onto Au electrode. Then, the CdS/Au electrode was modified with mercaptoacetic acid (MAA), which not only acts as a stabilizing agent to prevent the chalcogenide CdS nanocrystals from aggregation but also as a linker for subsequent attachment of Th onto the CdS nanoparticles. The effective covalent immobilization of Th was achieved through amide bond formation reaction between -NH 2 groups of Th and -COOH groups of MAA, using dicyclohexylcarbodiimide (DCC) as condensation agent. The Au/CdS/Th modified electrode showed a well-defined redox couple with surface confined characteristics at wide pH range (2–12). The heterogeneous electron transfer rate constant (k s ) and the surface coverage of immobilized Th on the modified electrode was obtained as 0.12 s −1 and 4.35 × 10 −9 mole cm −2 , respectively. The electrocatalytic activity and stability of the modified electrode toward hydrogen peroxide reduction was investigated and it was found that the Au/CdS/Th electrode illustrates excellent electrocatalytic activity toward H 2 O 2 reduction at reduced overpotential. The detection limit, sensitivity and catalytic rate constant (k cat ) of the modified electrode toward H 2 O 2 were 55 nM, 3.4 μA μM −1 cm −2 and 3.75 (±0.1) × 10 3 M −1 s −1 , respectively, at linear concentration range up to 10 mM. Upon light irradiation, about two-fold improvements were attained in sensitivity and detection limit of the modified electrode toward H 2 O 2 electrocatalytic determination

  14. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup [Dept. of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul (Korea, Republic of)

    2015-04-15

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu{sup 2+} ion-binding capability and its binding constant 8.7 μM.

  15. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications

    International Nuclear Information System (INIS)

    Jirimali, Harishchandra Digambar; Saravanakumar, Duraisamy; Shin, Woon Sup

    2015-01-01

    In this study, we report the synthesis of 2,3-dihydroxybenzaldehyde (catechol)-linked chitosan (cat-chitosan) and the preparation of its composite with carbon (cat-chitosan/carbon) to construct a catechol-modified electrode. The synthesis is similar to our previous work on hydroquinone–chitosan/carbon composite electrode. We synthesized catechol-linked chitosan polymer and prepared the its composite electrode with carbon. The catchitosan/carbon composite electrode shows a reversible confined redox behavior by the catechol functional group. The electrode catalyzes the oxidation of NADH. It has Cu"2"+ ion-binding capability and its binding constant 8.7 μM.

  16. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness

    KAUST Repository

    Jana, Partha Sarathi; Katuri, Krishna; Kavanagh, Paul; Kumar, Amit Ravi Pradeep; Leech, Dó nal

    2014-01-01

    Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria to transfer electrons to solid anodes is a key feature of this emerging technology, yet the electron transfer mechanism is not fully characterized as yet. Acetate oxidation current generated from biofilms of an EAB, Geobacter sulfurreducens, on graphite electrodes as a function of time does not correlate with film thickness. Values of film thickness, and the number and local concentration of electrically connected redox sites within Geobacter sulfurreducens biofilms as well as a charge transport diffusion co-efficient for the biofilm can be estimated from non-turnover voltammetry. The thicker biofilms, of 50 ± 9 μm, display higher charge transport diffusion co-efficient than that in thinner films, as increased film porosity of these films improves ion transport, required to maintain electro-neutrality upon electrolysis. This journal is © the Partner Organisations 2014.

  17. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    Science.gov (United States)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an

  18. Amperometric biosensor for the detection of hydrogen peroxide using catalase modified electrodes in polyacrylamide.

    Science.gov (United States)

    Varma, Shailly; Mattiasson, Bo

    2005-09-23

    A simple biosensor for the detection of hydrogen peroxide in organic solvents has been developed and coupled to a flow injection analysis (FIA) system. Catalase was entrapped in polyacrylamide gel and placed on the surface of platinum (working electrode) fixed in a Teflon holder with Ag-wire (auxiliary electrode), followed by addition of filter paper soaked in KCl. The entrapped catalase gel was held on the electrode using membranes. The effects of cellulose and polytetrafluroethylene (PTFE) membranes on the electrode response towards hydrogen peroxide have been studied. The modified electrode has been used to study the detection of hydrogen peroxide in solvents like water, dimethyl sulfoxide (DMSO), and 1,4-dioxane using amperometric techniques like cyclic voltammetry (CV) and FIA. The CV of modified catalase electrode showed a broad oxidation peak at -150 mV and a clear reduction peak at -212 mV in the presence of hydrogen peroxide. Comparison of CV with hydrogen peroxide in various solvents has been carried out. The electrode showed an irreversible kinetics with DMSO as the solvent. A flow cell has been designed in order to carry on FIA studies to obtain calibration plots for hydrogen peroxide with the modified electrode. The calibration plots in several solvents such as water, dimethyl sulfoxide, 1,4-dioxane have been obtained. The throughput of the enzyme electrode was 10 injections per hour. Due to the presence of membrane the response time of the electrode is concentration dependent.

  19. Screen-Printed Carbon Electrodes Modified with Cobalt Phthalocyanine for Selective Sulfur Detection in Cosmetic Products

    Directory of Open Access Journals (Sweden)

    Ying Shih

    2011-06-01

    Full Text Available Cobalt phthalocyanine (CoPc films were deposited on the surface of a screen-printed carbon electrode using a simple drop coating method. The cyclic voltammogram of the resulting CoPc modified screen-printed electrode (CoPc/SPE prepared under optimum conditions shows a well-behaved redox couple due to the (CoI/CoII system. The CoPc/SPE surface demonstrates excellent electrochemical activity towards the oxidation of sulfur in a 0.01 mol·L−1 NaOH. A linear calibration curve with the detection limit (DL, S/N = 3 of 0.325 mg·L−1 was achieved by CoPc/SPE coupled with flow injection analysis of the sulfur concentration ranging from 4 to 1120 mg·L−1. The precision of the system response was evaluated (3.60% and 3.52% RSD for 12 repeated injections, in the range of 64 and 480 mg·L−1 sulfur. The applicability of the method was successfully demonstrated in a real sample analysis of sulfur in anti-acne creams, and good recovery was obtained. The CoPc/SPE displayed several advantages in sulfur determination including easy fabrication, high stability, and low cost.

  20. Electrochemical characterization of glassy carbon electrode modified with 1,10-phenanthroline groups by two pathways: reduction of the corresponding diazonium ions and reduction of phenanthroline

    International Nuclear Information System (INIS)

    Shul, Galyna; Weissmann, Martin; Bélanger, Daniel

    2015-01-01

    The electrochemical behaviour of 1,10-phenanthroline molecules immobilized on a glassy carbon electrode surface by electrochemical reduction of the corresponding in-situ generated diazonium ions in an aqueous solution was investigated. Firstly, the derivatization of glassy carbon electrode was confirmed by the presence of the barrier effect in the solution of a redox probe. Secondly, atomic force microscopy measurements revealed the deposition of thin (< 2 nm) uniform 1,10-phenanthroline film on the surface of pyrolyzed photoresist film electrode. Thirdly, the initially electrochemically inactive grafted organic film became electroactive after being subjected to electrochemical reduction and oxidation. Fourthly, the electrochemical behaviour of phenanthroline modified electrode by electrochemical reduction of the corresponding diazonium cations was found to be similar to that of electrode modified by electrochemical reduction of only phenanthroline dissolved in an aqueous acid solution. Finally, cyclic voltammetry experiments using various methyl substituted phenanthroline derivatives provided direct evidence that functional groups responsible for the film electroactivity are formed at 5 or/and 6 positions of grafted phenanthroline molecules. On the other hand, a phenanthroline derivative having these positions blocked by methyl groups can also display electroactivity with position 7 being most likely involved in the observed redox process

  1. Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    MansouriMajd, Samira; Teymourian, Hazhir; Salimi, Abdollah; Hallaj, Rahman

    2013-01-01

    In this study, the preparation of a glassy carbon (GC) electrode modified with chitosan/NH 2 -ionic liquid/manganese oxide nanoparticles (Chit/NH 2 -IL/MnO x ) was described for electrocatalytic detection of theophylline (TP). First, chitosan hydrogel (Chit) was electrodeposited on the GC electrode surface at a constant potential (−1.5 V) in acidic solution. Then, the previously synthesized amine-terminated 1-(3-Aminopropyl)-3-methylimidazolium bromide ionic liquid (NH 2 -IL) was covalently attached to the modified electrode via glutaraldehyde (GA) as linking agent. Finally, manganese oxide (MnO x ) nanoparticles were electrodeposited onto the Chit/NH 2 -IL film by potential cycling between −1.0 and 1.7 V in Mn(CH 3 COO) 2 ·4H 2 O neutral aqueous solution. Electrochemical behavior of the modified electrode was evaluated by cyclic voltammetry (CV) technique. The charge transfer coefficient (α) and electron transfer rate constant (k s ) for MnOOH/MnO 2 redox couple were calculated to be 0.35 and 1.62 s −1 , respectively. The resulting system brings new capabilities for electrochemical sensing through combining the advantages of IL and MnO x nanoparticles. The differential pulse voltammetric (DPV) results indicated the high ability of GC/Chit/NH 2 -IL/MnO x modified electrode to catalyze the oxidation of TP. DPV determination of TP in acetate buffer solution (pH 5) gave linear responses over the concentration range up to 120 μM with the detection limit of 50 nM and sensitivity of 804 nA μM −1 . Furthermore, the applicability of the sensor for TP analysis in pharmaceutical samples has been successfully demonstrated

  2. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    Science.gov (United States)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  3. Influence of crystal phases on electro-optic properties of epitaxially grown lanthanum-modified lead zirconate titanate films

    Science.gov (United States)

    Masuda, Shin; Seki, Atsushi; Masuda, Yoichiro

    2010-02-01

    We describe here how we have improved the crystal qualities and controlled the crystal phase of the lanthanum-modified lead zirconate titanate (PLZT) film without changing the composition ratio using an oxygen-pressure crystallization process. A PLZT film deposited on a SrTiO3 substrate with the largest electro-optic (EO) coefficient of 498 pm/V has been achieved by controlling the crystal phase of the film. Additionally, a fatigue-free lead zirconate titanate (PZT) capacitor with platinum electrodes has been realized by reducing the oxygen vacancies in the films.

  4. Chronopotentiometric stripping analysis of selenium using mercury film electrode

    Directory of Open Access Journals (Sweden)

    Suturović Zvonimir J.

    2002-01-01

    Full Text Available The influence of the most important experimental factors in chronopotentiometric stripping analysis (CSA of selenium( IV using mercury film working electrode was examined. Interferences of copper, iron and lead were investigated as well. The possibility of avoiding prolonged deaeration of the solution was examined by applying medium exchange modification of the technique, where the dissolution of the deposit was performed in calcium-chloride solution. Detection limits obtained for the modification of the CSA with prior deaeration and medium exchange modification were 0.4 μg/dmJ and 1.15μg/dmJ, respectively. Accuracy of the defined techniques has been confirmed by analysing reference material (RM 8436 -wheat durum flour. The results obtained by applying both modifications of the technique showed a very good agreement of total selenium content with declareted value.

  5. Digital simulation of anodic stripping voltammetry from thin film electrodes

    International Nuclear Information System (INIS)

    Magallanes, J.F.

    1984-01-01

    The anodic stripping voltammetry (ASV) is routinely applied to control of Cu(II) in heavy water in the primary cooling loop of the Nuclear Power Reactor. The anodic stripping voltammetry (ASV) is a very well-known technique in electroanalytical chemistry. However, due to the complexity of the phenomena, it is practised with the fundamentals of empiric considerations. A geometric model for the anodic stripping voltammetry (ASV) from thin film electrodes which can be calculated by explicit digital simulation method is proposed as a possibility of solving the electrochemically reversible, cuasi-reversible and irreversible reactions under linear potential scan and multiple potential scans. (Until now the analytical mathematical method was applied to reversible reactions). All the results are compared with analytical solutions and experimental results and it permits to conclude that the anodic stripping voltammetry (ASV) can be studied with the simplicity and potentialities of explicit digital simulation methods. (M.E.L.) [es

  6. Preparation and characterization of micro-grid modified In_2O_3:W films

    International Nuclear Information System (INIS)

    Dong, Dongmei; Wang, Wenwen; Zhang, Fan; Fu, Qiang; Pan, Jiaojiao

    2016-01-01

    Tungsten doped indium oxide (In_2O_3:W, IWO) thin films with IWO micro-grid covered surface were prepared at room temperature using techniques of radio frequency (RF) magnetron sputtering and polystyrene (PS) microsphere template. The composition, crystallization structures, surface morphologies, and optical and electrical properties of the films were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, spectrophotometer from visible to near infrared (NIR) range and Hall effect measurement, respectively. Periodic micro-grid modified surface was obtained to improve light trapping properties. The effects of the PS micro-spheres diameters and the sputtering time on the surface morphology, transmittance in NIR range, diffuse reflection and conductive properties of the IWO films are investigated. Experiments show that surface modification of the IWO film with micro-grid under the optimized condition can improve the conductivity of the films by 15%, and the diffuse reflectance by 150%, with less than 8% decrease of the transmittance in the visible region. The study would be beneficial to the light trapping effect of solar cells using IWO films as transparent electrodes. - Highlights: • In_2O_3:W (IWO) films were obtained by reactive frequency magnetron sputtering. • IWO micro-grids were prepared on the surface of IWO films. • Influences of micro-grid size and sputtering time on IWO films were analyzed. • Both high conductivity and transparency are acquired in near-infrared region.

  7. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    Science.gov (United States)

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Modification of oxide films by ion implantation: TiO2-films modified by Ti+ and O+ as example

    International Nuclear Information System (INIS)

    Schultze, J.W.; Elfenthal, L.; Leitner, K.; Meyer, O.

    1988-01-01

    Oxide films can be modified by ion implantation. Changes in the electrochemical properties of the films are due to the deposition profile of the implanted ion, ie doping and stoichiometric changes, as well as to the radiation damage. The latter is due to the formation of Frenkel defects and at high concentrations to a complete amorphization of the oxide film. TiOsub(x)-films with 1 + - and O + -ions into anodic oxide films on titanium. The electrode capacity shows always the behaviour of an n-type semiconductor with an almost constant flatband potential but a strong maximum donor concentration at about 3% Ti + concentration. Oxygen implantation, on the other hand, causes a small increase of donor concentration only at high concentration of O + . Electron transfer reactions show strong modifications of the electronic behaviour of the oxide film with a maximum again at 3% titanium. Photocurrent spectra prove the increasing amorphization and show interband states 2.6 eV above the VB or below the CB. During repassivation measurements at various potentials different defects formed by Ti + - and O + -implantation become mobile. A tentative model of the band structure is constructed which takes into account the interband states due to localised Ti + - and O + -ions. The modification of ion implanted oxide films is compared with the effects of other preparation techniques. (author)

  9. Chemically-modified electrodes in photoelectrochemical cells. [Tin oxide and TiO/sub 2/ semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fox, M A; Hohman, J R; Kamat, P V

    1893-01-01

    Tin oxide and titanium dioxide semiconductor electrodes hae been covalently modified by the attachment of functionalized olefins and arenes through surface silanation or via a cyanuric chloride linkage. The excited state and electrochemical properties of the molecules so attached are significantly affected by the semiconductor. Photocurrent measurements and time-resolved laser coulostatic monitoring have been employed to elucidate the mechanism of charge injection on these modified surfaces. 17 references, 7 figures.

  10. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  11. Direct Quantification of Cd2+ in the Presence of Cu2+ by a Combination of Anodic Stripping Voltammetry Using a Bi-Film-Modified Glassy Carbon Electrode and an Artificial Neural Network.

    Science.gov (United States)

    Zhao, Guo; Wang, Hui; Liu, Gang

    2017-07-03

    Abstract : In this study, a novel method based on a Bi/glassy carbon electrode (Bi/GCE) for quantitatively and directly detecting Cd 2+ in the presence of Cu 2+ without further electrode modifications by combining square-wave anodic stripping voltammetry (SWASV) and a back-propagation artificial neural network (BP-ANN) has been proposed. The influence of the Cu 2+ concentration on the stripping response to Cd 2+ was studied. In addition, the effect of the ferrocyanide concentration on the SWASV detection of Cd 2+ in the presence of Cu 2+ was investigated. A BP-ANN with two inputs and one output was used to establish the nonlinear relationship between the concentration of Cd 2+ and the stripping peak currents of Cu 2+ and Cd 2+ . The factors affecting the SWASV detection of Cd 2+ and the key parameters of the BP-ANN were optimized. Moreover, the direct calibration model (i.e., adding 0.1 mM ferrocyanide before detection), the BP-ANN model and other prediction models were compared to verify the prediction performance of these models in terms of their mean absolute errors (MAEs), root mean square errors (RMSEs) and correlation coefficients. The BP-ANN model exhibited higher prediction accuracy than the direct calibration model and the other prediction models. Finally, the proposed method was used to detect Cd 2+ in soil samples with satisfactory results.

  12. Novel amperometric sensor using metolcarb-imprinted film as the recognition element on a gold electrode and its application

    International Nuclear Information System (INIS)

    Pan Mingfei; Fang Guozhen; Liu Bing; Qian Kun; Wang Shuo

    2011-01-01

    A molecularly imprinted film is electrochemically synthesized on a gold electrode using cyclic voltammetry to electropolymerize o-aminothiophenol in the presence of metolcarb (MTMC). The mechanism of the imprinting process and a number of factors affecting the activity of the imprinted film are discussed and optimized. Scanning electron microscope observations and binding measurements have proved that an MTMC-imprinted film (with a thickness of nearly 100 nm) was formed on the surface of the gold electrode. The film exhibited high binding affinity and selectivity towards the template MTMC, as well as good penetrability, reproducibility and stability. A novel amperometry sensor using the imprinted film as recognition element was developed for MTMC determination in food samples. Under the experimental conditions, the MTMC standard is linear within the concentration range studied (r 2 = 0.9906). The limit of detection (S/N = 3) of the modified electrode was achieved to 1.34 x 10 -8 mol L -1 . Recoveries of MTMC from spiked apple juice, cabbage and cucumber samples for the developed electrochemical assay ranged from 94.80% to 102.43%, which was with great correlation coefficient (0.9929) with results from high-performance liquid chromatography. In practical application, the prepared amperometric sensor also showed good reproducibility and long lifetime for storage. The research in this study has offered a rapid, accurate and sensitive electrochemical method for quantitative determination of MTMC in food products.

  13. Novel amperometric sensor using metolcarb-imprinted film as the recognition element on a gold electrode and its application

    Energy Technology Data Exchange (ETDEWEB)

    Pan Mingfei; Fang Guozhen; Liu Bing; Qian Kun [Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang Shuo, E-mail: pmf2006@126.com [Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2011-04-01

    A molecularly imprinted film is electrochemically synthesized on a gold electrode using cyclic voltammetry to electropolymerize o-aminothiophenol in the presence of metolcarb (MTMC). The mechanism of the imprinting process and a number of factors affecting the activity of the imprinted film are discussed and optimized. Scanning electron microscope observations and binding measurements have proved that an MTMC-imprinted film (with a thickness of nearly 100 nm) was formed on the surface of the gold electrode. The film exhibited high binding affinity and selectivity towards the template MTMC, as well as good penetrability, reproducibility and stability. A novel amperometry sensor using the imprinted film as recognition element was developed for MTMC determination in food samples. Under the experimental conditions, the MTMC standard is linear within the concentration range studied (r{sup 2} = 0.9906). The limit of detection (S/N = 3) of the modified electrode was achieved to 1.34 x 10{sup -8} mol L{sup -1}. Recoveries of MTMC from spiked apple juice, cabbage and cucumber samples for the developed electrochemical assay ranged from 94.80% to 102.43%, which was with great correlation coefficient (0.9929) with results from high-performance liquid chromatography. In practical application, the prepared amperometric sensor also showed good reproducibility and long lifetime for storage. The research in this study has offered a rapid, accurate and sensitive electrochemical method for quantitative determination of MTMC in food products.

  14. Effects of Thickness, Pulse Duration, and Size of Strip Electrode on Ferroelectric Electron Emission of Lead Zirconate Titanate Films

    Science.gov (United States)

    Yaseen, Muhammad; Ren, Wei; Chen, Xiaofeng; Feng, Yujun; Shi, Peng; Wu, Xiaoqing

    2018-02-01

    Sol-gel-derived lead zirconate titanate (PZT) thin-film emitters with thickness up to 9.8 μm have been prepared on Pt/TiO2/SiO2/Si wafer via chemical solution deposition with/without polyvinylpyrrolidone (PVP) modification, and the relationship between the film thickness and electron emission investigated. Notable electron emission was observed on application of a trigger voltage of 120 V for PZT film with thickness of 1.1 μm. Increasing the film thickness decreased the threshold field to initiate electron emission for non-PVP-modified films. In contrast, the electron emission behavior of PVP-modified films did not show significant dependence on film thickness, probably due to their porous structure. The emission current increased with decreasing strip width and space between strips. Furthermore, it was observed that increasing the duration of the applied pulse increased the magnitude of the emission current. The stray field on the PZT film thickness was also calculated and found to increase with increasing ferroelectric sample thickness. The PZT emitters were found to be fatigue free up to 105 emission cycles. Saturated emission current of around 25 mA to 30 mA was achieved for the electrode pattern used in this work.

  15. Preparation and Performance of Sb-SnO2 / Ti Electrode Modified with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    WEI Jin-zhi

    2017-06-01

    Full Text Available In order to improve the electro-catalytic oxidation activity and stability of Sb-SnO2 /Ti electrode,the CNTs-Sb-SnO2 /Ti electrode was prepared by sol-gel-thermal decomposition method. The microstructure and electrochemical properties of the modified electrode was characterized via SEM electrochemical impedance spectroscope ( EIS ,polarization curve and congo red degradation experiments. Furthermore,its the stability was investigated by accelerated life test. The results indicate that when the optimal doping amount of CNTs is 2. 0 g /L the congo red removal rate increases by 14. 7% using the CNTs-Sb-SnO2 /Ti electrode compared with the Sb-SnO2 /Ti electrode. Meanwhile pore structure appears and roughness increases on the surface of modified electrodes leading to larger specific surface area of electrode. Then the modified electrodes exhibit higher oxygen evolution potential and lower charge transfer resistance. Additionally,accelerated life tests reveal that the modified electrode has better electro-catalytic stability while the service life increases by

  16. Nitrite electrochemical sensor based on prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-09-01

    Full Text Available Nitrite, NO2- (in neutral), and NO (in acidic media) were used as analytical probe to investigate the electrocatalytic properties of Prussian blue nanoparticles (PB) modified edge plane pyrolytic graphite (EPPG) electrode. Results indicate...

  17. Electrodeposited nanostructured raspberry-like gold-modified electrodes for electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-10-15

    A facile method for fabrication of raspberry-like Au nanostructures (Au NRBs)-modified electrode by electrodeposition and its applications toward the electrocatalytic oxidation of methanol (MOR) in alkaline medium and oxygen reduction reaction (ORR) in both alkaline and acidic media are demonstrated. The Au NRBs are characterized by UV-Vis absorption spectra, SEM, X-ray diffraction, and electrochemical measurements. The growth of Au NRBs was monitored by recording the in-situ absorption spectral changes during electrodeposition using spectroelectrochemical technique. Here we systematically studied the MOR by varying several reaction parameters such as potential scan rate and methanol concentration. The electrocatalytic poisoning effect due to the MOR products are not observed at the Au NRBs-modified electrode. At the alkaline medium the Au NRBs-modified electrode shows the better catalytic activities toward the MOR and ORR when compared to the poly crystalline gold and bare glassy carbon electrodes. The Au NRBs-modified electrode is a promising and inexpensive electrode material for other electrocatalytic applications.Graphical AbstractRaspberry-like Au nanostructures modified electrode is prepared and used for electrocatalytic applications.

  18. Modification of Patterned Nanoporous Gold Thin Film Electrodes via Electro-annealing and Electrochemical Etching

    Science.gov (United States)

    Dorofeeva, Tatiana

    Nanostructured materials have had a major impact on various fields, including medicine, catalysis, and energy storage, for the major part due to unique phenomena that arise at nanoscale. For this reason, there is a sustained need for new nanostructured materials, techniques to pattern them, and methods to precisely control their nanostructure. To that end, the primary focus of this dissertation is to demonstrate novel techniques to fabricate and tailor the morphology of a class of nanoporous metals, obtained by a process known as dealloying. In this process, while the less noble constituent of an alloy is chemically dissolved, surface-diffusion of the more noble constituent leads to self-assembly of a bicontinuous ligament network with characteristic porosity of ˜70% and ligament diameter of 10s of nanometers. As a model material produced by dealloying, this work employ nanoporous gold (np-Au), which has attracted significant attention of desirable features, such as high effective surface area, electrical conductivity, well-defined thiol-based surface modification strategies, microfabrication-compatibility, and biocompatibility. The most commonly method used to modify the morphology of np-Au is thermal treatment, where the enhanced diffusivity of the surface atoms leads to ligament (and consequently pore) coarsening. This method, however, is not conducive to modifying the morphology of thin films at specific locations on the film, which is necessary for creating devices that may need to contain different morphologies on a single device. In addition, coarsening attained by thermal treatment also leads to an undesirable reduction in effective surface area. In response to these challenges, this work demonstrates two different techniques that enables in situ modification of np-Au thin film electrodes obtained by sputter-deposition of a precursors silver-rich gold-silver alloy. The first method, referred to as electro-annealing, is achieved by injecting electrical

  19. The electrocatalytical reduction of m-nitrophenol on palladium nanoparticles modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Shi Qiaofang; Diao Guowang

    2011-01-01

    Highlights: ► The deposition of palladium on a GC electrode was performed by cyclic voltammetry. ► SEM images showed palladium nanoparticles deposited on a glassy carbon (GC) electrode. ► The Pd/GC electrode can effectively catalyze m-nitrophenol in aqueous media. ► The reduction of m-nitrophenol on the Pd/GC electrode depended on potential and pH. ► XPS spectra of the Pd/GC electrodes demonstrated the presence of palladium. - Abstract: Palladium nanoparticles modified glassy carbon electrodes (Pd/GC) were prepared via the electrodeposition of palladium on a glassy carbon (GC) electrode using cyclic voltammetry in different sweeping potential ranges. The scanning electron microscope images of palladium particles on the GC electrodes indicate that palladium particles with diameters of 20–50 nm were homogeneously dispersed on the GC electrode at the optimal deposition conditions, which can effectively catalyze the reduction of m-nitrophenol in aqueous solutions, but their catalytic activities are strongly related to the deposition conditions of Pd. The X-ray photoelectron spectroscopy spectra of the Pd/GC electrode confirmed that 37.1% Pd was contained in the surface composition of the Pd/GC electrode. The cyclic voltammograms of the Pd/GC electrode in the solution of m-nitrophenol show that the reduction peak of m-nitrophenol shifts towards the more positive potentials, accompanied with an increase in the peak current compared to the bare GC electrode. The electrocatalytic activity of the Pd/GC electrode is affected by pH values of the solution. In addition, the electrolysis of m-nitrophenol under a constant potential indicates that the reduction current of m-nitrophenol on the Pd/GC electrode is approximately 20 times larger than that on the bare GC electrode.

  20. Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

    International Nuclear Information System (INIS)

    Niu Zhi-Qiang; Ma Wen-Jun; Dong Hai-Bo; Li Jin-Zhu; Zhou Wei-Ya

    2011-01-01

    An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications. (cross-disciplinary physics and related areas of science and technology)

  1. Electrochemical determination of xanthine oxidase inhibitor drug in urate lowering therapy using graphene nanosheets modified electrode

    International Nuclear Information System (INIS)

    Raj, M. Amal; John, S. Abraham

    2014-01-01

    We report the electrochemical determination of urate lowering therapeutic drug, allopurinol (AP) using the electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The ERGO modified GCE was fabricated by self–assembling graphene oxide (GO) on 1,6-hexadiamine (HDA) modified GCE by the electrostatic interaction between the positively charged amine group and the negatively charged GO layers followed by the electrochemical reduction of GO layers at negative potential. XPS results confirmed the attachment of GO and its electrochemical reduction. The electrochemical behavior of AP was examined at ERGO modified electrode in the presence of ascorbic acid (AA) and uric acid (UA). It was found that ERGO modified electrode not only enhanced the oxidation currents of AP, AA and UA but also showed stable signals for them for repetitive potential cycles. The present modified electrode was successfully used to determine these analytes simultaneously in a mixture. Selective determination of AP in the presence of high concentrations of AA and UA was also demonstrated at ERGO modified GCE. Using amperometry, detections of 40 and 200 nM of UA and AP were achieved and the detection limits were found to be 9.0 × 10 −9 M and 1.1 × 10 −7 M, respectively (S/N = 3). Further, the practical application of the present modified electrode was demonstrated by simultaneously determining the concentrations of AA, UA and AP in human blood serum and urine samples

  2. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ghorbani-Bidkorbeh, Fatemeh; Shahrokhian, Saeed; Mohammadi, Ali; Dinarvand, Rassoul

    2010-01-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  3. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    International Nuclear Information System (INIS)

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-01-01

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed

  4. NITROANILINE FILM-HOLE MODIFIED GLASSY CARBON ...

    African Journals Online (AJOL)

    [36] Three sequential electronucleation steps were used to increase the number ... reduction peak current decreased in the subsequent scans, indicating monolayer coverage of. PNA films on ..... Langmuir 2007, 23, 10823-10830. 35. Olana ...

  5. Sulfonated Polyaniline Coated Mercury Film Electrodes for Voltammetric Analysis of Metals in Water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2001-11-01

    Full Text Available The electrochemical polymerization of 2-aminobenzenesulfonic acid with and without aniline has been carried by cyclic potencial sweep in sulfuric acid solution at the glassy carbon electrode. The polymer and copolymer formed have been characterized voltammetrically. The sulfonated polyaniline coated mercury thin-film electrodes have been evaluated for use with anodic stripping voltammetry. The electrodes were tested and compared with a conventional thin-film mercury electrode. Calibration plots showed linearity up to 10-7 mol L-1. Detection limits for zinc, lead and cadmium test species are very similar at around 12 nmol L-1. Applications to analysis of waters samples are demonstrated.

  6. Optimized electrode coverage of membrane actuators based on epitaxial PZT thin films

    International Nuclear Information System (INIS)

    Nguyen, M D; Dekkers, M; Blank, D H A; Rijnders, G; Nazeer, H

    2013-01-01

    This research presents an optimization of piezoelectric membrane actuators by maximizing the actuator displacement. Membrane actuators based on epitaxial Pb(Zr,Ti)O 3 thin films grown on all-oxide electrodes and buffer layers using silicon technology were fabricated. Electrode coverage was found to be an important factor in the actuation displacement of the piezoelectric membranes. The optimum electrode coverage for maximum displacement was theoretically determined to be 39%, which is in good agreement with the experimental results. Dependences of membrane displacement and optimum electrode coverage on membrane diameter and PZT-film/Si-device-layer thickness ratio have also been investigated. (paper)

  7. Amperometric Sensor Used for Determination of Thiocyanate with a Silver Nanoparticles Modified Electrode

    OpenAIRE

    Wang, Guang-Feng; Li, Mao-Guo; Gao, Ying-Chun; Fang, Bin

    2004-01-01

    Abstract: A novel electrode modified with silver nanoparticles was fabricated. It is found that the reducibility of silver nanoparticles is higher than for bulk silver by comparing a silver nanoparticles modified electrode with a silver micro-disk electrode. When SCN- was added, a new oxidation peak occurred and the anodic peak current of silver nanoparticles decreased. The new anodic peak current is proportional to the thiocyanate concentration in the range of 5.0×10-7~4.0×10-4 mol/L i...

  8. Electrocatalytic performance of Pu(IV)/Pu(III) redox reaction at graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, J.S.; Kamat, J.V.; Aggarwal, S.K.

    2014-01-01

    In this paper we explore the analytical perspectives of graphene modified electrode utilising commercially available graphene, which is well characterised, completely free from surfactants and has not been purposely oxidised or treated. We compare and critically contrast the electro-analytical performance of graphene modified glassy carbon electrodes (Gr/GC) with that of unmodified GC electrode towards Pu(IV)/Pu(III) redox reaction, monitoring of which has considerable importance in a plethora of areas where electrochemistry is conveniently and beneficially utilised for determination of nuclear fuels

  9. Voltammetric enzyme sensor for urea using mercaptohydroquinone-modified gold electrode as the base transducer.

    Science.gov (United States)

    Mizutani, F; Yabuki, S; Sato, Y

    1997-01-01

    A voltammetric urea-sensing electrode was prepared by combining a lipid-attached urease layer with a 2,5-dihydroxythiophenol-modified gold electrode. A self-assembled monolayer of dihydroxythiophenol was prepared on the gold surface by soaking the electrode into an ethanolic solution containing the modifier. A layer of the lipid-attached enzyme and that of acetyl cellulose overcoat were successively made on the dihydroxythiophenol-modified electrode by applying a dip-coating procedure. The addition of urea in a test solution (10 mM phosphate buffer, pH 7.0) brought about an increase of pH near the urease layer. The pH shift accompanied a negative shift of the anodic peak, which corresponded to the electro-oxidation of dihydroxyphenol moiety to form quinone, on the linear sweep voltammograms for the urease/dihydroxythiophenol electrode. The concentration of urea (0.2-5 mM) could be determined by measuring the electrode current at -0.05 V versus Ag/AgCl from the voltammogram. The electrode was applied to the determination of urea in human urine; the measurement of electrode current at such a low potential provided the urea determination without any electrochemical interference from L-ascorbic acid and uric acid.

  10. Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Sun Wei; Wang Dandan; Li Guicun; Zhai Ziqin; Zhao Ruijun; Jiao Kui

    2008-01-01

    In this paper the direct electron transfer of hemoglobin (Hb) was carefully investigated by using a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF 6 ) modified carbon paste electrode (CILE) as the basal working electrode. Hb was immobilized on the surface of CILE with the nanocomposite film composed of Nafion and CdS nanorods by a step-by-step method. UV-vis and FT-IR spectra showed that Hb in the composite film remained its native structure. The direct electrochemical behaviors of Hb in the composite film were further studied in a pH 7.0 phosphate buffer solution (PBS). A pair of well-defined and quasi-reversible cyclic voltammetric peaks of Hb was obtained with the formal potential (E 0 ') at -0.295 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The direct electrochemistry of Hb was achieved on the modified electrode and the apparent heterogeneous electron transfer rate constant (k s ) was calculated to be 0.291 s -1 . The formal potentials of Hb Fe(III)/Fe(II) couple shifted negatively with the increase of buffer pH and a slope value of -45.1 mV/pH was got, which indicated that one electron transfer accompanied with one proton transportation. The fabricated Hb sensor showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA)

  11. Modified cermet fuel electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  12. Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles

    International Nuclear Information System (INIS)

    Razmi, H.; Mohammad-Rezaei, R.

    2010-01-01

    An electrochemical sensor was developed for determination of hydrogen peroxide (HP) based on a carbon ceramic electrode modified with iron pentacyanonitrosylferrate (FePCNF). The surface of an iron-doped CCE was derivatized in a solution of PCNF by cycling the electrode potential between -0. 2 and +1. 3 V for about 60 times. The morphology and the composition of the resulting electrode were characterized by scanning electron microscopy and Fourier transform infrared techniques. The electrode displayed excellent response to the electro-oxidation of HP which is linearly related to its concentration in the range from 0. 5 μM to 1300 μM. The detection limit is 0. 4 μM, and the sensitivity is 849 A M -1 cm -2 . The modified electrode was used to determination of HP in hair coloring creams as real samples. (author)

  13. Improvement of Amperometric Sensor Used for Determination of Nitrate with Polypyrrole Nanowires Modified Electrode

    Directory of Open Access Journals (Sweden)

    Shi-chang Wang

    2005-12-01

    Full Text Available Polypyrrole(PPy nanowire modified electrodes were developed by template-freeelectrochemical method based on graphite electrode. The modified electrode wascharacterized by their amperometric response towards nitrate ions. Before reduction ofnitrate ions, electrochemical solid-phase extraction (EC-SPE of nitrate in/on modifiedelectrodes was conducted. It is found that the unusual nanowired structure of polypyrrolelayer (instead of well known cauliflower structure allows us to increase the effectivesurface area of the electrode and subsequently the sensitivity. And the effects ofelectrochemical preparation parameters of PPy nanowire modified electrodes on theircorresponding characters were evaluated. The experimental results show that theelectrochemical preparation parameters of the modified electrodes such as scan rate,polymerization potential, temperature of polymerization solution and polymerization timehave significantly effects on the morphology of PPy nanowires and subsequently effectivesurface area of the electrode and electroreduction current density of nitrate. Thedetermination sensitivity may be varied according to the modification parameters. Under acertain polymerization conditions, the corresponding sensitivity reaches 336.28 mA/M cm2 and the detection limit is 1.52×10-6 M. The proposed method was successfully applied in thedetection of nitrate in the real samples.

  14. The electrochemical behavior and surface structure of titanium electrodes modified by ion beams

    International Nuclear Information System (INIS)

    Huang, G.F.; Xie, Z.; Huang, W.Q.; Yang, S.B.; Zhao, L.H.

    2004-01-01

    Industrial grade titanium modified by ion implantation and sputtering was used as electrodes. The effect of ion beam modification on the electrochemical behavior and surface structure of electrodes was investigated. Also discussed is the hydrogen evolution process of the electrode in acidic solution. Several ions such as Fe + , C + , W + , Ni + and others, were implanted into the electrode. The electrochemical tests were carried out in 1N H 2 SO 4 solution at 30±1 deg. C. The electrode potential was measured versus a saturate calomel electrode as a function of immersion time. The cathodic polarization curves were measured by the stable potential static method. The surface layer composition and the chemical state of the electrodes were also investigated by Auger electron spectrometer (AES) and X-ray photoelectron spectroscopy (XPS) technique. The results show that: (1) the stability of modified electrodes depends on the active elements introduced by ion implantation and sputtering deposition. (2) The hydrogen evolution activity of industrial grade titanium may be improved greatly by ion beam modification. (3) Ion beam modification changed the composition and the surface state of electrodes over a certain depth range and forms an activity layer having catalytic hydrogen evolution, which inhibited the absorption of hydrogen and formation of titanium hydride. Thus promoted hydrogen evolution and improved the hydrogen evolution catalytic activity in industrial grade titanium

  15. Fabrication and Film Qualification of Sr Modified Pb(Ca) TiO3 Thin Films

    International Nuclear Information System (INIS)

    Naw Hla Myat San; Khin Aye Thwe; Than Than Win; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    Strontium and calcium - modified lead titanate (Pb0.7 Ca0.15 Sr0.15 ) TiO3 (PCST)thin films were prepared by using spin coating technique. Phase transition of PCST was interpreted by means of Er-T characteristics. Process temperature dependence on micro-structure of PCST film was studied. Charge conduction mechanism of PCST thin film was also investigated for film qualification.

  16. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode

    International Nuclear Information System (INIS)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-01-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb) = dI p,a (Meb) / d[Meb] = 19.65 μA μM −1 ), a low detection limit (LOD (Meb) = 19 nM) and a wide linear dynamic range (0.06–3 μM) was resulted for the voltammetric quantification of Meb. - Highlights: • Electrochemical oxidation mechanism of Meb was investigated. • A carbon nanostructure modified electrode was developed for the determination of Meb. • The modified electrode surface was characterized by SEM and impedance studies. • This study provides an effective chemically modified electrode with satisfactory repeatability and reproducibility

  17. Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.

    Science.gov (United States)

    Suroviec, Alice H

    2017-01-01

    The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.

  18. Poly(o-methoxyaniline modified electrode for detection of lithium ions

    Directory of Open Access Journals (Sweden)

    Cleber Antonio Lindino

    2012-01-01

    Full Text Available This paper reports the use of an electrode modified with poly(o-methoxyaniline for detecting lithium ions. These ions are present in drugs used for treating bipolar disorder and that requires periodical monitoring of the concentration of lithium in blood serum. Poly(o-methoxyaniline was obtained electrochemically by cyclic voltammetry on the surface of a gold electrode. The results showed that the electrode modified with a conducting polymer responded to lithium ions in the concentration range of 1 x 10-5 to 1 x 10-4 mol L-1 . The results also confirmed that the performance of the modified electrode was comparable to that of the standard method (atomic emission spectrophotometry.

  19. Nanostructured Modified Electrode for Electrocatalytic Determination of Epinephrine in the Presence of Acetaminophen

    Directory of Open Access Journals (Sweden)

    M. Mazloum-Ardakani

    2011-04-01

    Full Text Available In this paper, a nanostructured modified electrode was fabricated by incorporating of 2,2′-[1,9-nonanediylbis(nitriloethylidyne]-bis-hydroquinone (NNH as a newly synthesized modifier and TiO2 nanoparticles to the carbon paste (MTCPE and then was used for the electroanalysis of epinephrine (EP. The electrochemical studies were carried out by using cyclic voltammetry, chronoamperometry and differential pulse voltammetry (DPV techniques. It has been found that the oxidation of EP at the surface of this electrode occurs at a potential about 235 mV less positive than that of an unmodified carbon paste electrode. A dynamic range of 1.0–2000.0 μM, with a detection limit of 0.37 μM for EP, was obtained using DPV. Also, this modified electrode exhibits well separated oxidation peaks for EP and acetaminophen (AC using DPV.

  20. Poly(ο-methoxyaniline) modified electrode for detection of lithium ions

    International Nuclear Information System (INIS)

    Lindino, Cleber Antonio; Casagrande, Marcella; Peiter, Andreia; Ribeiro, Caroline

    2012-01-01

    This paper reports the use of an electrode modified with poly(ο-methoxyaniline) for detecting lithium ions. These ions are present in drugs used for treating bipolar disorder and that requires periodical monitoring of the concentration of lithium in blood serum. Poly(ο-methoxyaniline) was obtained electrochemically by cyclic voltammetry on the surface of a gold electrode. The results showed that the electrode modified with a conducting polymer responded to lithium ions in the concentration range of 1 x 10 -5 to 1 x 10 -4 mol L -1 . The results also confirmed that the performance of the modified electrode was comparable to that of the standard method (atomic emission spectrophotometry). (author)

  1. Poly({omicron}-methoxyaniline) modified electrode for detection of lithium ions

    Energy Technology Data Exchange (ETDEWEB)

    Lindino, Cleber Antonio; Casagrande, Marcella; Peiter, Andreia; Ribeiro, Caroline [Departamento de Quimica, Universidade Estadual do Oeste do Parana, Toledo, PR (Brazil)

    2012-07-01

    This paper reports the use of an electrode modified with poly({omicron}-methoxyaniline) for detecting lithium ions. These ions are present in drugs used for treating bipolar disorder and that requires periodical monitoring of the concentration of lithium in blood serum. Poly({omicron}-methoxyaniline) was obtained electrochemically by cyclic voltammetry on the surface of a gold electrode. The results showed that the electrode modified with a conducting polymer responded to lithium ions in the concentration range of 1 x 10{sup -5} to 1 x 10{sup -4} mol L{sup -1}. The results also confirmed that the performance of the modified electrode was comparable to that of the standard method (atomic emission spectrophotometry). (author)

  2. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode

    DEFF Research Database (Denmark)

    Castillo, John J.; Svendsen, Winnie Edith; Rozlosnik, Noemi

    2013-01-01

    This article describes the preparation of a graphene electrode modified with a new conjugate of peptide nanotubes and folic acid for the selective detection of human cervical cancer cells over-expressing folate receptors. The functionalization of peptide nanotubes with folic acid was confirmed...... by fluorescence microscopy and atomic force microscopy. The peptide nanotube–folic acid modified graphene electrode was characterized by scanning electron microscopy and cyclic voltammetry. The modification of the graphene electrode with peptide nanotube–folic acid led to an increase in the current signal....... The human cervical cancer cells were bound to the modified electrode through the folic acid–folate receptor interaction. Cyclic voltammograms in the presence of [Fe(CN)6]3/4 as a redox species demonstrated that the binding of the folate receptor from human cervical cancer cells to the peptide nanotube...

  3. Functional materials in amperometric sensing polymeric, inorganic, and nanocomposite materials for modified electrodes

    CERN Document Server

    Seeber, Renato; Zanardi, Chiara

    2014-01-01

    Amperometric sensors, biosensors included, particularly rely on suitable electrode materials. Progress in material science has led to a wide variety of options that are available today. For the first time, these novel functional electrode coating materials are reviewed in this monograph, written by and for electroanalytical chemists. This includes intrinsically conducting, redox and ion-exchange polymers, metal and carbon nanostructures, silica based materials. Monolayers and relatively thick films are considered. The authors critically discuss preparation methods, in addition to chemical and

  4. Sol-gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultra trace sensing of dopamine in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (India); Kumar, Deepak; Madhuri, Rashmi; Tiwari, Mahavir Prasad [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (India)

    2011-08-01

    Highlights: > MWCNTs-CE was prepared by silane acrylate which provides a nanometer thin MIP film. > The sensor was modified by iniferter and MIP using 'surface grafting-from approach'. > A comparative study was performed between differentially designed ceramic electrodes. > The sensor can detect dopamine in real samples with LODs (0.143-0.154 ng mL{sup -1}). - Abstract: A new class of composite electrodes made of sol-gel derived ceramic-multiwalled carbon nanotubes is used for the growth of a nanometer thin film adopting 'surface grafting-from approach'. For this the multiwalled carbon nanotubes-ceramic electrode surface is first modified with an iniferter (benzyl N,N-diethyldithiocarbamate) and then dopamine imprinted polymer, under UV irradiation, for differential pulse anodic stripping voltammetric sensing of dopamine in aqueous, blood serum, cerebrospinal fluid, and pharmaceutical samples (detection limit 0.143-0.154 ng mL{sup -1}, 3{sigma}), without any cross reactivity, interferences and false-positive contributions. Such composite electrodes offer higher stability, electron kinetics, and renewable porous surface of larger electroactive area (with insignificant capacitance) than carbon ceramic electrodes. Additional cyclic voltammetry (stripping mode) and chronocoulometry experiments were performed to explore electrodics and kinetics of electro-oxidation of dopamine.

  5. Multilayer Films Electrodes Consisted of Cashew Gum and Polyaniline Assembled by the Layer-by-Layer Technique: Electrochemical Characterization and Its Use for Dopamine Determination

    Directory of Open Access Journals (Sweden)

    Sergio Bitencourt Araújo Barros

    2012-01-01

    with PANI or PANI-PA intercalated with CG or with PVS alternately resulting in four films with different sequences: PANI/CG PANI-PA/CG, PANI/PVS and PANI-PA/PVS, respectively. Analysis by cyclic voltammetry (CV of the films showed that the presence of gum increases the stability of the films in acidic medium. The performance of the modified electrode of PANI-PA/CG was evaluated in electro analytical determination of dopamine (DA. The tests showed great sensitivity of the film for this analyte that was detected at 10−5 mol L−1.

  6. DNA-modified electrodes (Ⅶ)——Preparation and characterization of DNA-bonded and DNA-adsorbed SAM/Au electrodes

    Institute of Scientific and Technical Information of China (English)

    陆琪; 庞代文; 胡深; 程介克; 蔡雄伟; 施财辉; 毛秉伟; 戴鸿平

    1999-01-01

    Two kinds of DNA-modified electrodes were prepared by covalent and adsorptive immobilization of DNA onto self-assembled monolayers of 2, 2’-dithiodiethanol on gold electrodes and characterized by cyclic voltammetry, Xray photoelectron spectroscopy and scanning tunneling microscopy. The results suggest that the methods are satisfactory for the immobilization of DNA on electrodes.

  7. Simultaneous determination of naphthol isomers at poly(3-methylthiophene)-nano-Au modified electrode with the enhancement of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Li, Linlin [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Shandong Institute for Product Quality Inspection, Jinan 250100 (China); Liu, Enli; Wang, Xiaolin; Chen, Jia [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Xiaoli, E-mail: zhangxl@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-08-01

    A polymer film incorporated gold nanoparticle modified electrode was fabricated. The fabricated process involved eletrodeposition of gold nanoparticles and electropolymerization of the 3-methylthiophene (abbreviated 3MT) onto the glassy carbon electrode (GCE). The resulting electrode (P3MT-nano-Au/GCE) was characterized by scanning electron microscopy (SEM), and a simultaneous determination of naphthol isomers at P3MT-nano-Au/GCE was studied using semi-derivative voltammetry. Because of the synergistic effect of gold nanoparticles and poly(3MT), the sensitivity and distinguishability in the simultaneous determination of naphthol isomers were greatly increased. Besides, a further increase in the detecting sensitivity of naphthol isomers could be obtained in the presence of surfactant, cetyl trimethyl ammonium bromide (CTAB). Also, the role of different kinds of surfactants was texted and the action mechanism was discussed in detail. Under the optimal conditions, the linear calibration ranges of the determination of naphthols were 7.0 × 10{sup −7} to 1.5 × 10{sup −4} mol/L for 1-naphthol and 1.0 × 10{sup −6} to 1.5 × 10{sup −4} mol/L for 2-naphthol with detection limits of 1.0 × 10{sup −7} and 3.0 × 10{sup −7} mol/L (S/N = 3), respectively. - Highlights: • Nano-Au-polymer film was fabricated by eletrodeposition and electropolymerization. • Naphthol isomers were detected simultaneously. • Surfactant improved the sensitivity and selectivity.

  8. Preparation of Modified Films with Protein from Grouper Fish

    Science.gov (United States)

    Tecante, A.; Granados-Navarrete, S.; Martínez-García, C.

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  9. Preparation of Modified Films with Protein from Grouper Fish

    Directory of Open Access Journals (Sweden)

    M. A. Valdivia-López

    2016-01-01

    Full Text Available A protein concentrate (PC was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts, and glucono-δ-lactone (GDL with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v protein and 75% sorbitol and 4% (w/v protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials.

  10. Amperometric detection of hydrogen peroxide at nano-nickel oxide/thionine and celestine blue nanocomposite-modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Noorbakhsh, Abdollah; Salimi, Abdollah

    2009-01-01

    A simple procedure was developed to prepare a glassy carbon (GC) electrode modified with nickel oxide (NiOx) nanoparticles and water-soluble dyes. By immersing the GC/NiOx modified electrode into thionine (TH) or celestine blue (CB) solutions for a short period of time (5-120 s), a thin film of the proposed molecules was immobilized onto the electrode surface. The modified electrodes showed stable and a well-defined redox couples at a wide pH range (2-12), with surface confined characteristics. In comparison to usual methods for the immobilization of dye molecules, such as electropolymerization or adsorption on the surface of preanodized electrodes, the electrochemical reversibility and stability of these modified electrodes have been improved. The surface coverage and heterogeneous electron transfer rate constants (k s ) of thionin and celestin blue immobilized on a NiOx-GC electrode were approximately 3.5 x 10 -10 mol cm -2 , 6.12 s -1 , 5.9 x 10 -10 mol cm -2 and 6.58 s -1 , respectively. The results clearly show the high loading ability of the NiOx nanoparticles and great facilitation of the electron transfer between the immobilized TH, CB and NiOx nanoparticles. The modified electrodes show excellent electrocatalytic activity toward hydrogen peroxide reduction at a reduced overpotential. The catalytic rate constants for hydrogen peroxide reduction at GC/NiOx/CB and GC/NiOx/TH were 7.96 (±0.2) x 10 3 M -1 s -1 and 5.5 (±0.2) x 10 3 M -1 s -1 , respectively. The detection limit, sensitivity and linear concentration range for hydrogen peroxide detection were 1.67 μM, 4.14 nA μM -1 nA μM -1 and 5 μM to 20 mM, and 0.36 μM, 7.62 nA μM -1 , and 1 μM to 10 mM for the GC/NiOx/TH and GC/NiOx/CB modified electrodes, respectively. Compared to other modified electrodes, these modified electrodes have many advantages, such as remarkable catalytic activity, good reproducibility, simple preparation procedures and long-term stabilities of signal responses during

  11. Gold nanoparticles embedded electropolymerized thin film of pyrimidine derivative on glassy carbon electrode for highly sensitive detection of l-cysteine.

    Science.gov (United States)

    Kannan, Ayyadurai; Sevvel, Ranganathan

    2017-09-01

    This paper demonstrates the fabrication of novel gold nanoparticles incorporated poly (4-amino-6-hydroxy-2-mercaptopyrimidine) (Nano-Au/Poly-AHMP) film modified glassy carbon electrode and it is employed for highly sensitive detection of l-cysteine (CYS). The modified electrode was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). SEM images of modified electrode revealed the homogeneous distribution of gold nanoparticles on poly (4-amino-6-hydroxy-2-mercaptopyrimidine) thin film modified glassy carbon electrode. The modified electrode was successfully utilized for highly selective and sensitive determination of l-cysteine at physiological pH7.0. The present electrochemical sensor successfully resolved the voltammetric signals of ascorbic acid (AA) and l-cysteine with peak separation of 0.510V. To the best of our knowledge, this is the first report of larger peak separation between AA and CYS. Wide linear concentration ranges (2μM-500μM), low detection limit (0.020μM), an excellent reproducibility and stability are achieved for cysteine sensing with this Nano-Au/Poly-AHMP/GCE. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Voltammetry of Os(VI)-modified polysaccharides at carbon electrodes

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1763-1766 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GA301/07/0490; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemical modification of polysaccharides * Os(VI)L-polysaccharide adducts * pyrolytic graphite electrodes Subject RIV: BO - Biophysics Impact factor: 2.630, year: 2009

  13. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode

    International Nuclear Information System (INIS)

    Deng, Chunyan; Chen, Jinzhuo; Nie, Zhou; Yang, Minghui; Si, Shihui

    2012-01-01

    In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 μA mM −1 , and the detection limit of 1.4 × 10 −6 M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite. - Highlights: ► Polythionine (PTH) was used as a mediator for electrocatalytic reduction of nitrite. ► Carbon nanotubes (CNTs) improve electron transfer between the electrode and nitrite. ► The PTH/CNT/glassy carbon electrode showed excellent nitrite detection performance.

  14. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salinas-Torres, David [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Huerta, Francisco [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1. E-03801 Alcoy (Spain); Montilla, Francisco, E-mail: francisco.montilla@ua.e [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain); Morallon, Emilia [Departamento de Quimica Fisica and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apdo. de Correos 99, E-03080 Alicante (Spain)

    2011-02-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong {pi}-{pi} interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  15. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  16. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  17. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin

    International Nuclear Information System (INIS)

    Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei

    2016-01-01

    In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO–Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO–Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). - Graphical abstract: Direct electrochemistry of myoglobin was realized on a three-dimensional reduced graphene oxide and gold nanocomposite modified carbon ionic liquid electrode. - Highlights: • A three-dimensional reduced graphene oxide and gold composite was synthesized by electrodeposition. • Myoglobin was immobilized on the modified electrode to obtain an electrochemical sensor. • Direct electrochemistry of myoglobin was realized on the modified electrode. • The myoglobin modified electrode showed excellent electrocatalytic reduction to trichloroacetic acid.

  18. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Liu Yinping [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-11-30

    Highlights: > A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. > This sensor exhibited excellent electrocatalytic oxidation to nitrite. > This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 {mu}M and with a detection limit of 0.5 {mu}M. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  19. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun; Ai Shiyun; Liu Yinping

    2011-01-01

    Highlights: → A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. → This sensor exhibited excellent electrocatalytic oxidation to nitrite. → This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 μM and with a detection limit of 0.5 μM. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  20. Proteus Mirabilis Bacteria Biosensor Development Based on Modified Gold Electrode with 4-Carboxyphenyl Diazonium Salts for Heavy Metals Toxicity Detection

    Directory of Open Access Journals (Sweden)

    Yosra BRAHAM

    2014-05-01

    Full Text Available In this work we describe a new biosensor for heavy metals detection, based on the immobilization of bacteria, Proteus mirabilis on gold electrode modified with aryl electrografting film. To enhance the stability of the biosystem, additional materials were used such as functionalized Fe3O4 nanoparticles (NPs, cationic (PAH, anionic (PSS polyelectrolytes, Bovine Serum Albumin (BSA and glutaraldehyde as a cross-linking agent. Before the immobilization step, the activity of Proteus mirabilis bacteria in the presence of heavy metals ions was attempted using the ion ammonium selective electrodes (ISEs. The modication of the gold electrodes with the electrochemical reduction of 4- carboxyphenyl diazonium salts to form stable layers for sensing applications was characterized by cyclic voltammetry and chronoamperometry measurements. The adhesion of the bacteria cell on gold electrode was evaluated using contact angle measurements. The immobilized bacteria-metal interaction was evaluated using the electrochemical impedance spectroscopy (EIS measurements. A notable effect of metal on the bacteria activity is observed in the concentration range from 10-3 to 1 µM and from 1µM to 1nM for Co2+, Cd2+, Cu2+ and Hg2+, respectively.

  1. Amperometric biosensor for hydrogen peroxide based on Hemoglobin/DNA/Poly-2,6-pyridinediamine modified gold electrode

    International Nuclear Information System (INIS)

    Tong Zhongqiang; Yuan Ruo; Chai Yaqin; Chen Shihong; Xie Yi

    2007-01-01

    An amperometric biosensor for hydrogen peroxide (H 2 O 2 ) was fabricated based on immobilization of hemoglobin (Hb) on DNA/Poly-2,6-pyridinediamine (PPD) modified Au electrode. PPD thin films were firstly electro-deposited on Au electrode surface which provide a template to attach negatively charged DNA molecules by electrostatic attraction. The adsorbed DNA network provides a good microenvironment for the immobilization of biomolecules and promotes electron transfer between the immobilized Hb and the electrode surface. The fabrication process of the biosensor was characterized by electrochemical impedance spectroscopy. Experimental conditions influencing the biosensor performance such as pH, potential and temperature were assessed and optimized. The proposed biosensor displayed a good electrocatalytic response to the reduction of H 2 O 2 , its linear range is 1.7 μM to 3 mM with a detection limit of 1.0 μM based on the signal-to-noise ratio of 3 (S/N = 3) under the optimized conditions. The Michaelis-Menten constant K m app of Hb immobilized on the electrode surface was found to be 0.8 mM. The biosensor shows high sensitivity and stability. Importantly, this deposition methodology could be further developed for the immobilization of other proteins and biocompounds

  2. Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of α-fetoprotein.

    Science.gov (United States)

    Jiang, Wen; Yuan, Ruo; Chai, Ya-Qin; Yin, Bing

    2010-12-01

    In this article, a conspicuously simple and highly sensitive amperometric immunosensor based on the sequential electrodeposition of Prussian blue (PB) and gold nanoparticles (GNPs) on multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (GCE) surface is proposed for the detection of α-fetoprotein (AFP). By comparison with PB, the MWCNT/PB composite film had been proven to show much better electrochemical stability and a larger response current. The electrodeposited GNP film can be used not only to immobilize biomolecules but also to avoid the leakage of PB and to prevent shedding of MWCNT/PB composite film from the electrode surface. The performance and factors influencing the performance of the immunosensor were investigated. Under optimal experimental conditions, the proposed immunosensor for AFP was observed with an ultralow limit of detection (LOD) equal to 3 pg/ml (at 3δ), and the linear working range spanned the concentrations of AFP from 0.01 to 300 ng/ml. Moreover, the immunosensor, as well as a commercially available kit, was examined for use in the determination of AFP in real human serum specimens. More significant, the assay mentioned here is simpler than the traditional enzyme-linked immunosorbent assay (ELISA), and an excellent correlation of levels of AFP measured was obtained, indicating that the developed immunoassay could be a promising alternative approach for detection of AFP and other tumor markers in the clinical diagnosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Binder-free manganese oxide/carbon nanomaterials thin film electrode for supercapacitors.

    Science.gov (United States)

    Wang, Ning; Wu, Chuxin; Li, Jiaxin; Dong, Guofa; Guan, Lunhui

    2011-11-01

    A ternary thin film electrode was created by coating manganese oxide onto a network composed of single-walled carbon nanotubes and single-walled carbon nanohorns. The electrode exhibited a porous structure, which is a promising architecture for supercapacitors applications. The maximum specific capacitances of 357 F/g for total electrode at 1 A/g were achieved in 0.1 M Na(2)SO(4) aqueous solution.

  4. Micromachined Dense Palladium Electrodes for Thin-film Solid Acid Fuel Cells

    NARCIS (Netherlands)

    Unnikrishnan, S.

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work

  5. Electrochemical removal of fluoride from water by PAOA-modified carbon felt electrodes in a continuous flow reactor.

    Science.gov (United States)

    Cui, Hao; Qian, Yan; An, Hao; Sun, Chencheng; Zhai, Jianping; Li, Qin

    2012-08-01

    A novel poly(aniline-co-o-aminophenol) (PAOA) modified carbon felt electrode reactor was designed and investigated for fluoride removal from aqueous solutions. This reactor design is innovative because it operates under a wider pH range because of coating with a copolymer PAOA ion exchange film. In addition, contaminant mass transfer from bulk solution to the electrode surface is enhanced by the porous carbon felt as an electron-conducting carrier material compared to other reactors. The electrically controlled anion exchange mechanism was investigated by X-ray photoelectron spectroscopy and cyclic voltammetry. The applicability of the reactor in the field was tested through a series of continuous flow experiments. When the flow rate and initial fluoride concentration were increased, the breakthrough curve became sharper, which lead to a decrease in the breakthrough time and the defluoridation capacity of the reactor. The terminal potential values largely influenced fluoride removal by the reactor and the optimal defluoridation efficiency was observed at around 1.2V. The breakthrough capacities were all >10mg/g over a wide pH range (pH 5-9) with an initial fluoride concentration of 10mg/L. Consecutive treatment-regeneration studies over a week (once each day) revealed that the PAOA-modified carbon felt electrode could be effectively regenerated for reuse. The PAOA-modified carbon felt electrode reactor is a promising system that could be made commercially available for fluoride removal from aqueous solutions in field applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Direct electrochemistry and electrocatalysis of myoglobin using an ionic liquid-modified carbon paste electrode coated with Co3O4 nanorods and gold nanoparticles

    International Nuclear Information System (INIS)

    Wang, Xiaofeng; You, Zheng; Sha, Hailiang; Gong, Shixing; Niu, Qingjuan; Sun, Wei

    2014-01-01

    A nanohybrid biomaterial was fabricated by mixing Co 3 O 4 nanorods, gold nanoparticles (Au-NPs) and myoglobin (Mb), and depositing it on the surface of a carbon paste electrode containing the ionic liquid N-hexylpyridinium hexafluorophosphate as the binder. UV–vis and FT-IR revealed the Mb in the composite film to have remained in its native structure. A pair of well-defined redox peaks appears in cyclic voltammograms and indicates direct electron transfer from the Mb to the underlying electrode. The results are attributed to the favorable orientation of Mb in the composite film, to the synergistic effects of Co 3 O 4 nanorods and Au-NPs. The modified electrode shows excellent electrocatalytic ability towards the reduction of substrates such as trichloroacetic acid and nitrite, and displays good stability and reproducibility. (author)

  7. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode

    International Nuclear Information System (INIS)

    Zhang, Ya; Zheng, Jian Bin

    2007-01-01

    Ionic liquid, 1-heptyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6 ), has been used to fabricate two new electrodes, carbon ionic liquid electrode (CILE) and ionic liquid modified carbon paste electrode (IL/CPE), using graphite powder mixed with HMIMPF 6 or the mixture of HMIMPF 6 /paraffin liquid as the binder, respectively. The electrochemical behaviors of hydroquinone at the CILE, the IL/CPE and the CPE were investigated in phosphate buffer solution. At all these electrodes, hydroquinone showed a pair of redox peaks. The order of the current response and the standard rate constant of hydroquinone at these electrodes were as follows: CILE > IL/CPE > CPE, while the peak-to-peak potential separation was in an opposite sequence: CILE < IL/CPE < CPE. The results show the superiority of CILE to IL/CPE and CPE, and IL/CPE to CPE in terms of promoting electron transfer, improving reversibility and enhancing sensitivity. The CILE was chosen as working electrode to determine hydroquinone by differential pulse voltammetry, which can be used for sensitive, simple and rapid determination of hydroquinone in medicated skin cosmetic cream

  8. Supercapacitors based on modified graphene electrodes with poly(ionic liquid)

    Science.gov (United States)

    Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.

    2014-06-01

    The improved accessibility of the electrolyte to the surface of carbon nanomaterials is a challenge to be overcome in supercapacitors based on ionic liquid electrolytes. In this study, we report the preparation of supercapacitors based on reduced graphene oxide (RGO) electrodes and ionic liquid as the electrolyte (specifically, 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide or [MPPy][TFSI]). Two types of electrodes were compared: the RGO-based electrode and a poly(ionic liquid)-modified RGO electrode (PIL:RGO). The supercapacitor produced with the PIL:RGO electrode and [MPPy][TFSI] showed an electrochemical stability of 3 V and provided a capacitance of 71.5 F g-1 at room temperature; this capacitance is 130% higher with respect to the RGO-based supercapacitor. The decrease of the specific capacitance after 2000 cycles is only 10% for the PIL:RGO-based device. The results revealed the potential of the PIL:RGO material as an electrode for supercapacitors. This composite electrode increases the compatibility with the ionic liquid electrolyte compared to an RGO electrode, promoting an increase in the effective surface area of the electrode accessible to the electrolyte ions.

  9. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Science.gov (United States)

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. On the adsorption and kinetics of phase transients of adenosine at the different carbon electrodes modified with a mercury layer

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Simonaho, S.P.; Silvennoinen, R.; Vetterl, Vladimír

    2003-01-01

    Roč. 48, č. 6 (2003), s. 651-668 ISSN 0013-4686 R&D Projects: GA AV ČR IAA4004002; GA AV ČR IBS5004107 Institutional research plan: CEZ:AV0Z5004920 Keywords : glassy carbon electrode * pyrolytic graphite electrode * mercury film electrode Subject RIV: BO - Biophysics Impact factor: 1.996, year: 2003

  11. Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Low, Sze-Hsien; Lau, Gih-Keong

    2014-01-01

    Metal thin films, which have high conductivity, are much stiffer and may fracture at a much lower strain than dielectric elastomers. In order to fabricate compliant electrodes for use in dielectric elastomer actuators (DEAs), metal thin films have been formed into either zigzag patterns or corrugations, which favour bending and only allow uniaxial DEA deformations. However, biaxially compliant electrodes are desired in order to maximize generated forces of DEA. In this paper, we present crumpled metal thin-film electrodes that are biaxially compliant and have full area coverage over the dielectric elastomer. These crumpled metal thin-film electrodes are more stretchable than flat metal thin films; they remain conductive beyond 110% radial strain. Also, crumpling reduced the stiffening effect of metal thin films on the soft elastomer. As such, DEAs using crumpled metal thin-film electrodes managed to attain relatively high actuated area strains of up to 128% at 1.8 kV (102 Vμm −1 ). (paper)

  12. Determination of hydrogen peroxide using a Prussian Blue modified macroporous gold electrode

    International Nuclear Information System (INIS)

    Yang, Jiao; Lin, Meng; Cho, MiSuk; Lee, Youngkwan

    2015-01-01

    We describe an electrochemical sensor for hydrogen peroxide (H 2 O 2 ) that is making use of Prussian Blue (PB) electrodeposited on a macroporous (mp) gold skeleton electrode. An mp-Cu film was first prepared as a template and the converted into an mp-Au film through a replacement reaction without destructing the structure. Next, a layer of PB was electrochemically deposited on the surface of the mp-Au film. The surface morphology of the electrode was characterized by scanning electron microscopy. Attenuated total reflection infrared spectroscopy and X-ray photoelectron spectroscopy were applied to confirm the structural features. The mp-PB/Au film electrode displays high electro-catalytic activity for the reduction of H 2 O 2 at a working potential of −50 mV (vs. Ag/AgCl) and is very stable. It has a linear response to H 2 O 2 in the 50 μM to 11.3 mM concentration range and a sensitivity of 767 μA∙mM −1 cm −2 . The electrode also revealed good selectivity in the presence of electro-active species such as ascorbic acid and uric acid. (author)

  13. Electroactivity of tin modified platinum electrodes for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, F.C.; de Andrade, A.R.; Olivi, P. [Departamento de Quimica da Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, Caixa Postal 3900, 14040-901 Ribeirao Preto, SP (Brazil); dos Anjos, D.M.; Vigier, F.; Leger, J.-M.; Hahn, F.; Coutanceau, C.; Kokoh, K.B. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France); Gonzalez, E.R.; Tremiliosi-Filho, G. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2007-05-01

    Different electrochemical techniques like cyclic voltammetry and chronoamperometry and tests in a single direct ethanol fuel cell (DEFC) were used to evaluate the catalytic activity of various compositions of PtSn electrodes prepared by thermal decomposition for ethanol electrooxidation. This oxidation process was also investigated by in situ infrared reflectance spectroscopy to determine the presence of adsorbed intermediates. The experimental results showed that PtSn can oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also found, which demonstrates that the rupture of the C-C bond in the ethanol molecule can also take place during the oxidation process. This intermediate species was oxidized to CO{sub 2} which was detected by IR spectroscopy and chromatography. With Pt{sub 90}Sn{sub 10}/C as anode catalyst, single DEFC tests carried out using MEAs with a geometric electrode area of 5 cm{sup 2} allowed to produce a power density of ca. 72 mW cm{sup -2} at 110 C. (author)

  14. Highly sensitive interference-free electrochemical determination of pyridoxine at graphene modified electrode: Importance in Parkinson and Asthma treatments.

    Science.gov (United States)

    Raj, M Amal; Gowthaman, N S K; John, S Abraham

    2016-07-15

    To reduce the side effects in the medication of Parkinson and Asthma, pyridoxine (PY) is administered along with l-3,4-dihydroxyphenyl alanine (l-dopa) and theophylline (TP), respectively. However, excessive dosage of PY leads to nervous disorder. Thus, a sensitive and selective electrochemical method was developed for the determination of PY in the presence of major interferences including TP, l-dopa, ascorbic acid (AA) and riboflavin (RB) using electrochemically reduced graphene oxide (ERGO) film modified glassy carbon electrode (GCE) in this paper. The ERGO fabrication process involves the nucleophilic substitution of graphene oxide at basic pH on amine terminal of 1,6-hexadiamine which was pre-assembled on GCE followed by electrochemical reduction. The electrocatalytic activity of the ERGO modified electrode was examined towards the oxidation of PY. It greatly enhanced the oxidation current of PY in contrast to bare and GO modified GCEs due to facile electron transfer besides π-π interaction between ERGO film and PY. Since TP and l-dopa drugs antagonize the drug action of PY, ERGO modified GCE was also used for the simultaneous determination of PY and l-dopa and PY and TP. Further, the selective determination of PY in the presence of other water soluble vitamins such as ascorbic acid and riboflavin was also demonstrated. Using amperometry, detection of 100nM PY was achieved and the detection limit was found to be 5.6×10(-8)M (S/N=3). The practical application of the present method was demonstrated by determining the concentration of PY in human blood serum and commercial drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  16. Electrode size and boundary condition independent measurement of the effective piezoelectric coefficient of thin films

    Directory of Open Access Journals (Sweden)

    M. Stewart

    2015-02-01

    Full Text Available The determination of the piezoelectric coefficient of thin films using interferometry is hindered by bending contributions. Using finite element analysis (FEA simulations, we show that the Lefki and Dormans approximations using either single or double-beam measurements cannot be used with finite top electrode sizes. We introduce a novel method for characterising piezoelectric thin films which uses a differential measurement over the discontinuity at the electrode edge as an internal reference, thereby eliminating bending contributions. This step height is shown to be electrode size and boundary condition independent. An analytical expression is derived which gives good agreement with FEA predictions of the step height.

  17. Sensitive detection of hydroxylamine at a simple baicalin carbon nanotubes modified electrode.

    Science.gov (United States)

    Zhang, Hongfang; Zheng, Jianbin

    2012-05-15

    A baicalin multi-wall carbon nanotubes (BaMWCNT) modified glassy carbon electrode (GCE) for the sensitive determination of hydroxylamine was described. The BaMWCNT/GCE with dramatic stability was firstly fabricated with a simple adsorption method. And it showed excellent catalytic activity toward the electrooxidation of hydroxylamine. The amperometric response at the BaMWCNT/GCE modified electrode increased linearly to hydroxylamine concentrations in the range of 0.5 μM to 0.4mM with a detection limit of 0.1 μM. The modified electrode was applied to detection hydroxylamine in the tap water, and the average recovery for the standards added was 96.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    Science.gov (United States)

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  19. Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes.

    Science.gov (United States)

    Arribas, Alberto Sánchez; Martínez-Fernández, Marta; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2013-02-15

    The use of glassy carbon electrodes (GCEs) modified with multi-walled carbon nanotube (CNT) films for the continuous monitoring of polyphenols in flow systems has been examined. The performance of these modified electrodes was evaluated and compared to bare GCE by cyclic voltammetry experiments and by flow injection analysis (FIA) with amperometric detection monitoring the response of gallic, caffeic, ferulic and p-coumaric acids in 0.050 M acetate buffer pH 4.5 containing 100 mM NaCl. The GCE modified with CNT dispersions in polyethyleneimine (PEI) provided lower overpotentials, higher sensitivity and much higher signal stability under a dynamic regime than bare GCEs. These properties allowed the estimation of the total polyphenol content in red and white wines with a remarkable long-term stability in the measurements despite the presence of potential fouling substances in the wine matrix. In addition, the versatility of the electrochemical methodology allowed the selective estimation of the easily oxidisable polyphenol fraction as well as the total polyphenol content just by tuning the detection potential at +0.30 or 0.70 V, respectively. The significance of the electrochemical results was demonstrated through correlation studies with the results obtained with conventional spectrophotometric assays for polyphenols (Folin-Ciocalteu, absorbance at 280 nm index and colour intensity index). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Characteristics of sputtered Al-doped ZnO films for transparent electrodes of organic thin-film transistor

    International Nuclear Information System (INIS)

    Park, Yong Seob; Kim, Han-Ki

    2011-01-01

    Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (I D -V D ), drain current-gate voltage (I D -V G ), threshold voltage (V T ), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 x 10 -3 Ω.cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm 2 /V s and the on/off ratio of ∼ 10 5 . Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs.

  1. Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B{sub 12} analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pala, Betül Bozdoğan [Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, 06800 Ankara (Turkey); Vural, Tayfun [Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Kuralay, Filiz [Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200 Ordu (Turkey); Çırak, Tamer [Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, 06800 Ankara (Turkey); Bolat, Gülçin; Abacı, Serdar [Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2014-06-01

    In this study, peptide nanostructures from diphenylalanine were synthesized in various solvents with various polarities and characterized with Scanning Electron Microscopy (SEM) and Powder X-ray Diffraction (PXRD) techniques. Formation of peptide nanofibrils, nanovesicles, nanoribbons, and nanotubes was observed in different solvent mediums. In order to investigate the effects of peptide nanotubes (PNT) on electrochemical behavior of disposable pencil graphite electrodes (PGE), electrode surfaces were modified with fabricated peptide nanotubes. Electrochemical activity of the pencil graphite electrode was increased with the deposition of PNTs on the surface. The effects of the solvent type, the peptide nanotube concentration, and the passive adsorption time of peptide nanotubes on pencil graphite electrode were studied. For further electrochemical studies, electrodes were modified for 30 min by immobilizing PNTs, which were prepared in water at 6 mg/mL concentration. Vitamin B{sub 12} analyses were performed by the Square Wave (SW) voltammetry method using modified PGEs. The obtained data showed linearity over the range of 0.2 μM and 9.50 μM Vitamin B{sub 12} concentration with high sensitivity. Results showed that PNT modified PGEs were highly simple, fast, cost effective, and feasible for the electro-analytical determination of Vitamin B{sub 12} in real samples.

  2. Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B12 analysis

    International Nuclear Information System (INIS)

    Pala, Betül Bozdoğan; Vural, Tayfun; Kuralay, Filiz; Çırak, Tamer; Bolat, Gülçin; Abacı, Serdar; Denkbaş, Emir Baki

    2014-01-01

    In this study, peptide nanostructures from diphenylalanine were synthesized in various solvents with various polarities and characterized with Scanning Electron Microscopy (SEM) and Powder X-ray Diffraction (PXRD) techniques. Formation of peptide nanofibrils, nanovesicles, nanoribbons, and nanotubes was observed in different solvent mediums. In order to investigate the effects of peptide nanotubes (PNT) on electrochemical behavior of disposable pencil graphite electrodes (PGE), electrode surfaces were modified with fabricated peptide nanotubes. Electrochemical activity of the pencil graphite electrode was increased with the deposition of PNTs on the surface. The effects of the solvent type, the peptide nanotube concentration, and the passive adsorption time of peptide nanotubes on pencil graphite electrode were studied. For further electrochemical studies, electrodes were modified for 30 min by immobilizing PNTs, which were prepared in water at 6 mg/mL concentration. Vitamin B 12 analyses were performed by the Square Wave (SW) voltammetry method using modified PGEs. The obtained data showed linearity over the range of 0.2 μM and 9.50 μM Vitamin B 12 concentration with high sensitivity. Results showed that PNT modified PGEs were highly simple, fast, cost effective, and feasible for the electro-analytical determination of Vitamin B 12 in real samples.

  3. Photo- and electro-chromism of diarylethene modified ITO electrodes - towards molecular based read-write-erase information storage

    NARCIS (Netherlands)

    Areephong, J.; Browne, W.R.; Katsonis, N.; Feringa, B.L.

    2006-01-01

    Molecular memory devices based on dithienylethene switch modified ITO electrodes undergo reversible ring opening/closing both photo- and electro-chemically with non-destructive electrochemical readout.

  4. Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode

    International Nuclear Information System (INIS)

    Deng Chunyan; Chen Jinhua; Chen Xiaoli; Wang Mengdong; Nie Zhou; Yao Shouzhuo

    2009-01-01

    A boron-doped carbon nanotube (BCNT)-modified glassy carbon (GC) electrode was constructed for the detection of L-cysteine (L-CySH). The electrochemical behavior of BCNTs in response to L-cysteine oxidation was investigated. The response current of L-CySH oxidation at the BCNT/GC electrode was obviously higher than that at the bare GC electrode or the CNT/GC electrode. This finding may be ascribed to the excellent electrochemical properties of the BCNT/GC electrode. Moreover, on the basis of this finding, a determination of L-CySH at the BCNT/GC electrode was carried out. The effects of pH, scan rate and interferents on the response of L-CySH oxidation were investigated. Under the optimum experimental conditions, the detection response for L-CySH on the BCNT/GC electrode was fast (within 7 s). It was found to be linear from 7.8 x 10 -7 to 2 x 10 -4 M (r = 0.998), with a high sensitivity of 25.3 ± 1.2 nA mM -1 and a low detection limit of 0.26 ± 0.01 μM. The BCNT/GC electrode exhibited high stability and good resistance against interference by other oxidizable amino acids (tryptophan and tyrosine)

  5. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition

    International Nuclear Information System (INIS)

    Du Chunsheng; Pan Ning

    2006-01-01

    Carbon nanotube thin films have been successfully fabricated by the electrophoretic deposition technique. The supercapacitors built from such thin film electrodes have a very small equivalent series resistance, and a high specific power density over 20 kW kg -1 was thus obtained. More importantly, the supercapacitors showed superior frequency response. Our study also demonstrated that these carbon nanotube thin films can serve as coating layers over ordinary current collectors to drastically enhance the electrode performance, indicating a huge potential in supercapacitor and battery manufacturing

  6. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  7. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....

  8. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Adam Johan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  9. Towards the conception of an amperometric sensor of L-tyrosine based on Hemin/PAMAM/MWCNT modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ma Qiang; Ai Shiyun; Yin Huanshun; Chen Quanpeng; Tang Tiantian

    2010-01-01

    A novel amperometric sensor was fabricated based on the immobilization of hemin onto the poly (amidoamine)/multi-walled carbon nanotube (PAMAM/MWCNT) nanocomposite film modified glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and ultraviolet visible (UV-vis) adsorption spectroscopy were used to investigate the possible state and electrochemical activity of the immobilized hemin. In the Hemin/PAMAM/MWCNT nanocomposite film, MWCNT layer possessed excellent inherent conductivity to enhance the electron transfer rate, while the layer of PAMAM greatly enlarged the surface average concentration of hemin (Γ) on the modified electrode. Therefore, the nanocomposite film showed enhanced electrocatalytical activity towards the oxidation of L-tyrosine. The kinetic parameters of the modified electrode were investigated. In pH 7.0 phosphate buffer solution (PBS), the sensor exhibits a wide linear range from 0.1 μM to 28.8 μM L-tyrosine with a detection limit of 0.01 μM and a high sensitivity of 0.31 μA μM -1 cm -2 . In addition, the response time of the L-tyrosine sensor is less than 5 s. The excellent performance of the sensor is largely attributed to the electro-generated high reactive oxoiron (IV) porphyrin (O = Fe IV -P) which effectively catalyzed the oxidation of L-tyrosine. A mechanism was herein proposed for the catalytic oxidation of L-tyrosine by oxoiron (IV) porphyrin complexes.

  10. Modified Starch-Chitosan Edible Films: Physicochemical and Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Monserrat Escamilla-García

    2017-12-01

    Full Text Available Starch and chitosan are widely used for preparation of edible films that are of great interest in food preservation. This work was aimed to analyze the relationship between structural and physical properties of edible films based on a mixture of chitosan and modified starches. In addition, films were tested for antimicrobial activity against Listeria innocua. Films were prepared by the casting method using chitosan (CT, waxy (WS, oxidized (OS and acetylated (AS corn starches and their mixtures. The CT-starches films showed improved barrier and mechanical properties as compared with those made from individual components, CT-OS film presented the lowest thickness (74 ± 7 µm, water content (11.53% ± 0.85%, w/w, solubility (26.77% ± 1.40%, w/v and water vapor permeability ((1.18 ± 0.48 × 10−9 g·s−1·m−1·Pa−1. This film showed low hardness (2.30 ± 0.19 MPa, low surface roughness (Rq = 3.20 ± 0.41 nm and was the most elastic (Young’s modulus = 0.11 ± 0.06 GPa. In addition, films made from CT-starches mixtures reduced CT antimicrobial activity against L. innocua, depending on the type of modified starch. This was attributed to interactions between acetyl groups of AS with the carbonyl and amino groups of CT, leaving CT with less positive charge. Interaction of the pyranose ring of OS with CT led to increased OH groups that upon interaction with amino groups, decreased the positive charge of CT, and this effect is responsible for the reduced antimicrobial activity. It was found that the type of starch modification influenced interactions with chitosan, leading to different films properties.

  11. Ultrathin and stable Nickel films as transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Grilli, M.L., E-mail: marialuisa.grilli@enea.it [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Di Sarcina, I. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Bossi, S. [ENEA, Robotics Laboratory, Via Anguillarese 301, 00123 Rome (Italy); The Biorobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa (Italy); Rinaldi, A.; Pilloni, L.; Piegari, A. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy)

    2015-11-02

    Ultrathin stable transparent conductive nickel films were deposited on quartz substrates by radio frequency sputtering at room temperature. Such films showed visible transmittance up to 80% and conductivity up to 1.8 × 10{sup 4} S/cm, further increased to 2,3 × 10{sup 5} S/cm by incorporation of a micrometric silver grid. Atomic force microscopy and scanning electron microscopy revealed quite compact, smooth and low surface roughness films. Excellent film stability, ease, fast and low cost process fabrication make these films highly competitive compared to indium tin oxide alternative transparent conductors. Films were characterized regarding their morphological, optical and electrical properties. - Highlights: • Indium-free transparent conductors are proposed. • Ultrathin Ni films are fabricated with a very fast process at room temperature. • Films have conductivity values up to 1.8 × 10{sup 4} S/cm. • Ni ultrathin films are good candidates for UV and NIR optoelectronic applications.

  12. Ferroelectric and Piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film

    International Nuclear Information System (INIS)

    Dutta, Soma; Antony Jeyaseelan, A.; Sruthi, S.

    2014-01-01

    Lanthanum modified lead zirconate titanate (PLZT) thick film with molecular formula of Pb 0.92 La 0.08 (Zr 0.52 Ti 0.48 ) 0.98 O 3 was grown preferentially along (111) direction on Pt/SiO 2 /Si (platinum/silicon oxide/silicon) substrate by spin coating of chemical solution. The directional growth of the film was facilitated by platinum (Pt) (111) template and rapid thermal annealing. X-ray diffraction pattern and atomic force microscopy revealed the preferential growth of the PLZT film. The film was characterized for ferroelectric and detailed piezoelectric properties in a parallel plate capacitor (metal–PLZT–metal) configuration. Ferroelectric characterization of the film showed saturated hysteresis loop with remanent polarization and coercive electric field values of 10.14 μC/cm 2 and 42 kV/cm, respectively, at an applied field of 300 kV/cm. Longitudinal piezoelectric coefficient (d 33,f ) was measured by employing converse piezoelectric effect where electrical charge response and displacement were measured with electrical voltage excitation on the sample electrodes. The effective transverse piezoelectric coefficient (e 31,f ) was derived from charge measurement with an applied mechanical excitation strain by using the four point bending method. d 33,f and e 31,f coefficients of PLZT films were found to be 380 pm/V and − 0.831 C/m 2 respectively. - Highlights: • PLZT (111) film is prepared by spin coating of chemical sol on Pt (111) template. • Piezoelectric d 33 value (380 pm/V) of PLZT film is found 20% higher than PZT. • Transverse piezocoefficient e 31,f of PLZT film is reported for the first time

  13. Ferroelectric and Piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Soma, E-mail: som@nal.res.in; Antony Jeyaseelan, A.; Sruthi, S.

    2014-07-01

    Lanthanum modified lead zirconate titanate (PLZT) thick film with molecular formula of Pb{sub 0.92}La{sub 0.08}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.98}O{sub 3} was grown preferentially along (111) direction on Pt/SiO{sub 2}/Si (platinum/silicon oxide/silicon) substrate by spin coating of chemical solution. The directional growth of the film was facilitated by platinum (Pt) (111) template and rapid thermal annealing. X-ray diffraction pattern and atomic force microscopy revealed the preferential growth of the PLZT film. The film was characterized for ferroelectric and detailed piezoelectric properties in a parallel plate capacitor (metal–PLZT–metal) configuration. Ferroelectric characterization of the film showed saturated hysteresis loop with remanent polarization and coercive electric field values of 10.14 μC/cm{sup 2} and 42 kV/cm, respectively, at an applied field of 300 kV/cm. Longitudinal piezoelectric coefficient (d{sub 33,f}) was measured by employing converse piezoelectric effect where electrical charge response and displacement were measured with electrical voltage excitation on the sample electrodes. The effective transverse piezoelectric coefficient (e{sub 31,f}) was derived from charge measurement with an applied mechanical excitation strain by using the four point bending method. d{sub 33,f} and e{sub 31,f} coefficients of PLZT films were found to be 380 pm/V and − 0.831 C/m{sup 2} respectively. - Highlights: • PLZT (111) film is prepared by spin coating of chemical sol on Pt (111) template. • Piezoelectric d{sub 33} value (380 pm/V) of PLZT film is found 20% higher than PZT. • Transverse piezocoefficient e{sub 31,f} of PLZT film is reported for the first time.

  14. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    International Nuclear Information System (INIS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Doering, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2 , and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96 deg. to 30-37 deg. and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy

  15. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  16. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Isbir, Aybueke A.; Solak, Ali Osman; Ustuendag, Zafer; Bilge, Selen; Kilic, Zeynel

    2006-01-01

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO 2 , keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined

  17. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Isbir, Aybueke A. [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)]. E-mail: osolak@science.ankara.edu.tr; Ustuendag, Zafer [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Bilge, Selen [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Kilic, Zeynel [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)

    2006-07-28

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO{sub 2}, keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined.

  18. Neuroticism modifies psychophysiological responses to fearful films.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Reynaud

    Full Text Available BACKGROUND: Neuroticism is a personality component frequently found in anxious and depressive psychiatric disorders. The influence of neuroticism on negative emotions could be due to its action on stimuli related to fear and sadness, but this remains debated. Our goal was thus to better understand the impact of neuroticism through verbal and physiological assessment in response to stimuli inducing fear and sadness as compared to another negative emotion (disgust. METHODS: Fifteen low neurotic and 18 high neurotic subjects were assessed on an emotional attending task by using film excerpts inducing fear, disgust, and sadness. We recorded skin conductance response (SCR and corrugator muscle activity (frowning as indices of emotional expression. RESULTS: SCR was larger in high neurotic subjects than in low neurotics for fear relative to sadness and disgust. Moreover, corrugator activity and SCR were larger in high than in low neurotic subjects when fear was induced. CONCLUSION: After decades of evidence that individuals higher in neuroticism experience more intense emotional reactions to even minor stressors, our results indicate that they show greater SCR and expressive reactivity specifically to stimuli evoking fear rather than to those inducing sadness or disgust. Fear processing seems mainly under the influence of neuroticism. This modulation of autonomic activity by neurotics in response to threat/fear may explain their increased vulnerability to anxious psychopathologies such as PTSD (post traumatic stress disorder.

  19. Surfactant-promoted Prussian Blue-modified carbon electrodes: enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences.

    Science.gov (United States)

    Salazar, P; Martín, M; O'Neill, R D; Roche, R; González-Mora, J L

    2012-04-01

    We report here for the first time a comparison of the beneficial effects of different cationic surfactants - cetyl trimethyl ammonium bromide (CTAB), benzethonium chloride (BZT) and cetylpyridinium chloride (CPC) - for the electrochemical synthesis of Prussian Blue (PB) films, using cyclic voltammetry (CV), on screen-printed carbon electrodes (SPCEs). Their electrochemical properties were investigated, paying special attention to parameters such as the amount of PB deposited, film thickness, charge transfer rate, permeability, reversibility, stability and sensitivity to hydrogen peroxide detection. All surfactant-enhanced PB-modified SPCEs displayed a significant improvement in their electrochemical properties compared with PB-modified SPCEs formed in the absence of surfactants. Surfactant-modified electrodes displayed a consistently higher PB surface concentration value of 2.1±0.4×10(-8) mol cm(-2) (mean±SD, n=3) indicating that PB deposition efficiency was improved 2-3 fold. K(+) and Na(+) permeability properties of the films were also studied, as were kinetic parameters, such as the surface electron transfer rate constant (k(s)) and the transfer coefficient (α). The hydrogen peroxide sensitivity of surfactant-modified PB films generated by 10 electro-deposition CV cycles gave values of 0.63 A M(-1) cm(-2), which is higher than those reported previously for SPCEs by other authors. Finally, the first lactate microbiosensor described in the literature based on BZT-modified PB-coated carbon fiber electrodes is presented. Its very small cross-section (~10 μm diameter) makes it particularly suitable for neuroscience studies in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effect of mediator added to modified paste carbon electrodes with immobilized laccase from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Marcelo Silva Ferreira

    2015-05-01

    Full Text Available Carbon paste electrodes based on the immobilization of laccase from Aspergillus oryzae were developed and voltammetric measurements were performed to evaluate the amperometric response. The 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid diammonium salt  (ABTS functions as substrate and mediator for the laccase enzyme. Electrodes were modified  in two different conditions: without mediator (EPC/laccase and with mediator (EPC/laccase/ABTS. The addition of ABTS as a mediator increased eight-fold the amperometric response. The electrode was sensitive to pH variation with best response at pH 4.0. Studies on different concentrations of laccase and ABTS at different pH rates revealed that the composition 187 U mL-1 in laccase and 200 µL of ABTS obtained the highest amperometric response. The carbon paste electrode modified with ABTS proved to be a good base for the immobilization of the laccase enzyme. Moreover, it is easy to manufacture and inexpensive to produce a modified electrode with potential application in biosensors.

  1. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1

    Science.gov (United States)

    Zheng, Dan; Guo, Peng; Xiong, Juan; Wang, Shengfu

    2016-09-01

    A ZnO-based film bulk acoustic resonator has been fabricated using a magnetron sputtering technology, which was employed as a biosensor for detection of mucin 1. The resonant frequency of the thin-film bulk acoustic resonator was located near at 1503.3 MHz. The average electromechanical coupling factor {K}_{eff}^2 and quality factor Q were 2.39 % and 224, respectively. Using the specific binding system of avidin-biotin, the streptavidin was self-assembled on the top gold electrode as the sensitive layer to indirectly test the MUC1 molecules. The resonant frequency of the biosensor decreases in response to the mass loading in range of 20-500 nM. The sensor modified with the streptavidin exhibits a high sensitivity of 4642.6 Hz/nM and a good selectivity.

  2. Remarkable sensitivity for detection of bisphenol A on a gold electrode modified with nickel tetraamino phthalocyanine containing Ni-O-Ni bridges.

    Science.gov (United States)

    Chauke, Vongani; Matemadombo, Fungisai; Nyokong, Tebello

    2010-06-15

    This work reports the electrocatalysis of bisphenol A on Ni(II) tetraamino metallophthalocyanine (NiTAPc) polymer modified gold electrode containing Ni-O-Ni bridges (represented as Ni(OH)TAPc). The Ni(II)TAPc films were electro-transformed in 0.1 mol L(-1) NaOH aqueous solution to form 'O-Ni-O oxo bridges', forming poly-n-Ni(OH)TAPc (where n is the number of polymerising scans). poly-30-Ni(OH)TAPc, poly-50-Ni(OH)TAPc, poly-70-Ni(OH)TAPc and poly-90-Ni(OH)TAPc films were investigated. The polymeric films were characterised by electrochemical impedance spectroscopy and the charge transfer resistance (R(CT)) values increased with film thickness. The best catalytic activity for the detection of bisphenol A was on poly-70-Ni(OH)TAPc. Electrode resistance to passivation improved with polymer thickness. The electrocatalytic behaviour of bisphenol A was compared to that of p-nitrophenol in terms of electrode passivation and regeneration. The latter was found to passivate the electrode less than the former. The poly-70-Ni(OH)TAPc modified electrode could reliably detect bisphenol A in a concentration range of 7x10(-4) to 3x10(-2)mol L(-1) with a limit of detection of 3.68x10(-9)mol L(-1). The sensitivity was 3.26x10(-4)A mol(-1) L cm(-2). Copyright 2010 Elsevier B.V. All rights reserved.

  3. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-01-01

    Highlights: • Hydrogen peroxide biosensor was constructed by combining the advantageous properties of MWCNTs and Co 3 O 4 . • Incorporating Co 3 O 4 nanoparticles into MWCNTs/gelatin film increased the electron transfer. • Co 3 O 4 /MWCNTs/gelatin/HRP/Nafion/GCE showed strong anti-interference ability. • Hydrogen peroxide was successfully determined in disinfector with an average recovery of 100.78 ± 0.89. - Abstract: In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co 3 O 4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co 3 O 4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at −0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10 −7 –1.9 × 10 −5 M with a detection limit of 7.4 × 10 −7 . The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89

  4. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhai, Haiyun; Liang, Zhixian; Chen, Zuanguang; Wang, Haihang; Liu, Zhenping; Su, Zihao; Zhou, Qing

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • A novel and reliable AgNPs/SF-GR modified glassy carbon electrode was constructed and characterized. • The AgNPs/SF-GR/GCE was successfully applied in the shrimp for simultaneous determination of MTZ and CAP. • Under optimized conditions, common substances such as UA, AA, DA and ion did not interfered in the electrode performance. • The modified electrode exhibited considerable sensitivity, stability and reproducibility. • This fabricated electrode achieved a satisfactory level compared with other electrodes toward MTZ and CAP. -- Abstract: A novel silver nanoparticles/sulfonated functionalized graphene modified glassy carbon electrode (AgNPs/SF-GR/GCE) was fabricated to determine chloramphenicol and metronidazole simultaneously. Taking advantage of sulfonic group, AgNPs were successfully electrodeposited on functionalized GR immobilized on the surface of a GCE. Scanning electron microscopy and energy spectrum analysis results confirmed that AgNPs were deposited on the functionalized GR film. Compared to the bare GCE or the pristine SF-GR modified electrode, AgNPs/SF-GR/GCE exhibited excellent electroreduction towards chloramphenicol and metronidazole. In addition, the two antibacterial drugs were separated completely in 0.10 M citric acid-sodium citrate buffer (pH 4.0) by differential pulse stripping voltammetry under optimum conditions. The cathodic current was linearly related with 0.02∼20.0 μM chloramphenicol and 0.10∼20.0 μM metronidazole, with the detection limits of 0.01 μM and 0.05 μM respectively. Furthermore, AgNPs/SF-GR/GCE was applied to the simultaneous determination of chloramphenicol and metronidazole in an aquatic product

  5. Biosensing of glucose in flow injection analysis system based on glucose oxidase-quantum dot modified pencil graphite electrode.

    Science.gov (United States)

    Sağlam, Özlem; Kızılkaya, Bayram; Uysal, Hüseyin; Dilgin, Yusuf

    2016-01-15

    A novel amperometric glucose biosensor was proposed in flow injection analysis (FIA) system using glucose oxidase (GOD) and Quantum dot (ZnS-CdS) modified Pencil Graphite Electrode (PGE). After ZnS-CdS film was electrochemically deposited onto PGE surface, GOD was immobilized on the surface of ZnS-CdS/PGE through crosslinking with chitosan (CT). A pair of well-defined reversible redox peak of GOD was observed at GOD/CT/ZnS-CdS/PGE based on enzyme electrode by direct electron transfer between the protein and electrode. Further, obtained GOD/CT/ZnS-CdS/PGE offers a disposable, low cost, selective and sensitive electrochemical biosensing of glucose in FIA system based on the decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen. Under optimum conditions (flow rate, 1.3mL min(-1); transmission tubing length, 10cm; injection volume, 100μL; and constant applied potential, -500mV vs. Ag/AgCl), the proposed method displayed a linear response to glucose in the range of 0.01-1.0mM with detection limit of 3.0µM. The results obtained from this study would provide the basis for further development of the biosensing using PGE based FIA systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Gab; Kim, Chang Soo; Peck, Dong Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of)

    1998-03-15

    In order to develop a kW-class polymer electrolyte membrane fuel cell (PEMFC), several electrodes have been fabricated by different catalyst layer preparation procedures and evaluated based on the cell performance. Conventional carbon paper and carbon cloth electrodes were fabricated using a ptfe-bonded Pt/C electrol catalyst by coating and rolling methods. Thin-film catalyst/ionomer composite layers were also formed on the membrane by direct coating and transfer printing techniques. The performance evaluation with catalyst layer preparation methods was carried out using a large or small electrode single cell. Conventional and thin film membrane and electrode assemblies (MEAs) with small electrode area showed a performance of 350 and 650 mA/cm{sup 2} at 0.6 V, respectively. The performance of direct coated thin film catalyst layer with 300 cm{sup 2} MEAs was higher than those of the conventional and transfer printing technique MEAs. The influence of some characteristic parameters of the thin film electrode on electrochemical performance was examined. Various other aspects of overall operation of PEMFC stacks were also discussed. (orig.)

  7. Facile green synthesis of silver nanodendrite/cellulose acetate thin film electrodes for flexible supercapacitors.

    Science.gov (United States)

    Devarayan, Kesavan; Park, Jiyoung; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-05-01

    In this study, we present a highly efficient and economical solution called as 'in situ hydrogenation' for preparation of highly conductive thin film electrode based on silver nanodendrites. The silver nanodendrite (AgND)/cellulose acetate (CA) thin film electrodes exhibited sheet resistance ranging from 0.32ohm/sq to 122.1ohm/sq which could be controlled by changing the concentration of both silver and polymer. In addition, these electrodes exhibited outstanding toughness during the bending test. Further, these thin film electrodes have great potential for scale-up with an average weight of 3mg/cm 2 and can be also combined with active nanomaterials such as multiwalled carbon nanotubes (MWCNTs) to fabricate AgND/CA/MWCNTs thin film for high-performance flexible supercapacitor electrode. The AgND/CA/MWCNTs electrodes exhibited a maximum specific capacitance of 237F/g at a current density of 0.3A/g. After 1000 cycles, the AgND/MWCNT/CA exhibited a decrease of 16.0% of specific capacitance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Flexible probe for measuring local conductivity variations in Li-ion electrode films

    Science.gov (United States)

    Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian

    2018-04-01

    Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.

  9. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.

    Science.gov (United States)

    Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S

    2011-01-25

    We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.

  10. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals.

    Science.gov (United States)

    Yang, Gongjun; Wang, Cunxiao; Zhang, Rui; Wang, Chenying; Qu, Qishu; Hu, Xiaoya

    2008-06-01

    Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.

  11. Direct determination of creatinine based on poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode.

    Science.gov (United States)

    Han, Ping; Xu, Shimei; Feng, Shun; Hao, Yanjun; Wang, Jide

    2016-05-01

    In this work, the direct determination of creatinine was achieved using a poly(ethyleneimine)/phosphotungstic acid multilayer modified electrode with the assistance of Copper(II) ions by cyclic voltammetry. The quantity of creatinine were determined by measuring the redox peak current of Cu(II)-creatinine complex/Cu(I)-creatinine complex. Factors affecting the response current of creatinine at the modified electrode were optimized. A linear relationship between the response current and the concentration of creatinine ranging from 0.125 to 62.5μM was obtained with a detection limit of 0.06μM. The proposed method was applied to determine creatinine in human urine, and satisfied results were gotten which was validated in accordance with high performance liquid chromatography. The proposed electrode provided a promising alternative in routine sensing for creatinine without enzymatic assistance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Electrochemical Determination of Uric Acid at CdTe Quantum Dot Modified Glassy Carbon Electrodes.

    Science.gov (United States)

    Pan, Deng; Rong, Shengzhong; Zhang, Guangteng; Zhang, Yannan; Zhou, Qiang; Liu, Fenghai; Li, Miaojing; Chang, Dong; Pan, Hongzhi

    2015-01-01

    Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of uric acid (UA) at a CdTe quantum dot (QD) modified the glassy carbon electrode (GCE). CdTe QDs, as new semiconductor nanocrystals, can greatly improve the peak current of UA. The anodic peak current of UA was linear with its concentration between 1.0×10(-6) and 4.0×10(-4) M in 0.1 M pH 5.0 phosphate buffer solution. The LOD for UA at the CdTe electrode (1.0×10(-7) M) was superior to that of the GCE. In addition, we also determined the effects of scan rate, pH, and interferences of UA for the voltammetric behavior and detection. The results indicated that modified electrode possessed excellent reproducibility and stability. Finally, a new and efficient electrochemical sensor for detecting UA was developed.

  13. Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode

    International Nuclear Information System (INIS)

    Cui, Min; Xu, Bing; Hu, Chuangang; Shao, Hui Bo; Qu, Liangti

    2013-01-01

    Direct electrochemistry of glucose oxidase (GOD) on three-dimensional (3D) interpenetrating porous graphene electrodes has been reported, which have been fabricated by one-step electrochemical reduction of graphene oxide (GO) from its aqueous suspension. The electrochemically reduced GO (ERGO) modified electrodes exhibited excellent electron transfer properties for GOD and enhanced the enzyme activity and stability by the assistance of chitosan. The immobilized GOD shows a fast electron transfer with the rate constant (k s ) of 6.05 s −1 . It is worth mentioning that in the air-saturated phosphate buffer solution without any mediator, the resultant modified electrodes exhibited low detection limit of 1.7 μM with wide linear range of 0.02–3.2 mM and high sensitivity and high selectivity for measuring glucose. It would also be extended to various enzymes and bioactive molecules to develop the biosensor or other bio-electrochemical devices

  14. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    Science.gov (United States)

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  15. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  16. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Science.gov (United States)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  17. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    International Nuclear Information System (INIS)

    Xue Kuanhong; Liu Jiamei; Wei Ribing; Chen Shaopeng

    2006-01-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2 SO 4 , at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E pa and E pc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k 0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process

  18. Simultaneous detection of ascorbic acid, uric acid and homovanillic acid at copper modified electrode

    International Nuclear Information System (INIS)

    Selvaraju, T.; Ramaraj, R.

    2007-01-01

    The copper was deposited on glassy carbon (GC) and indium tin oxide (ITO) electrodes by electrochemical method. The copper structures on electrode were characterized by atomic force microscope, X-ray diffractometeric pattern and differential pulse voltammetric studies. Optimal conditions for uniform growth of copper structures on the electrode were established. Voltammetric sensor was fabricated using the copper deposited GC electrode for the simultaneous detection and determination of uric acid (UA) and homovanillic acid (HVA) in the presence of excess concentrations of ascorbic acid (AA). The voltammetric signals due to AA and UA oxidation were well separated with a potential difference of 400 mV and AA did not interfere with the measurement of UA and HVA at the GC/Cu electrode. Linear calibration curves were obtained in the concentration range 1-40 μM for AA and 20-50 μM for UA at physiological pH and a detection limit of 10 nM of UA in the presence of 10-fold excess concentrations of AA was achieved. The simultaneous detection of submicromolar concentrations of AA, UA and HVA was achieved at the GC/Cu electrode. The practical utility of the present GC/Cu modified electrode was demonstrated by measuring the AA content in Vitamin C tablet, UA content in human urine and blood serum samples with satisfactory results

  19. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  20. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    Science.gov (United States)

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  1. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    Science.gov (United States)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  2. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo, E-mail: jibojiang0506@163.com; Han, Sheng, E-mail: hansheng654321@sina.com

    2015-12-01

    Highlights: • The effective surface area of the modified CPE has been expanded after self-assembly. • The GO–La composite exhibited excellent electrocatalytic activity toward DA. • The GO–La/CPE presented high selectivity, sensitivity, excellent stability and repeatability. - Abstract: A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO–La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO–La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO–La/CPE electrode for determining DA was linear in the region of 0.01–0.1 μM and 0.1–400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  3. Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes

    Science.gov (United States)

    Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.

    2016-01-01

    Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials. PMID:27283872

  4. Simultaneous determination of paracetamol and ascorbic acid using tetraoctylammonium bromide capped gold nanoparticles immobilized on 1,6-hexanedithiol modified Au electrode

    International Nuclear Information System (INIS)

    Nair, Santhosh S.; John, S. Abraham; Sagara, Takamasa

    2009-01-01

    Tetraoctylammonium bromide stabilized gold nanoparticles (TOAB-AuNPs) attached to 1,6-hexanedithiol (HDT) modified Au electrode was used for the simultaneous determination of paracetamol (PA) and ascorbic acid (AA) at physiological pH. The attachment of TOAB-AuNPs on HDT modified Au surface was confirmed by attenuated total reflectance (ATR)-FT-IR spectroscopy and atomic force microscope (AFM). The ATR-FT-IR spectrum of TOAB-AuNPs attached to the HDT monolayer showed a characteristic stretching modes corresponding to -CH 2 and -CH 3 of TOAB, confirming the immobilization of AuNPs with surface-protecting TOAB ions on the surface of the AuNPs after being attached to HDT modified Au electrode. AFM image showed that the immobilized AuNPs were spherical in shape and densely packed to a film of ca. 7 nm thickness. Interestingly, TOAB-AuNPs modified electrode shifted the oxidation potential of PA towards less positive potential by 70 mV and enhanced its oxidation current twice when compared to bare Au electrode. In addition, the AuNPs modified electrode separated the oxidation potentials of AA and PA by 210 mV, whereas bare Au electrode failed to resolve them. The amperometry current of PA was increased linearly from 1.50 x 10 -7 to 1.34 x 10 -5 M with a correlation coefficient of 0.9981 and the lowest detection limit was found to be 2.6 nM (S/N = 3). The present method was successfully used to determine the concentration of PA in human blood plasma and commercial drugs.

  5. Simultaneous determination of paracetamol and ascorbic acid using tetraoctylammonium bromide capped gold nanoparticles immobilized on 1,6-hexanedithiol modified Au electrode

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Santhosh S. [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul (India); John, S. Abraham [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul (India)], E-mail: abrajohn@yahoo.co.in; Sagara, Takamasa [Department of Chemistry, Gandhigram Rural University, Gandhigram 624302, Dindigul (India)], E-mail: sagara@nagasaki-u.ac.jp

    2009-11-30

    Tetraoctylammonium bromide stabilized gold nanoparticles (TOAB-AuNPs) attached to 1,6-hexanedithiol (HDT) modified Au electrode was used for the simultaneous determination of paracetamol (PA) and ascorbic acid (AA) at physiological pH. The attachment of TOAB-AuNPs on HDT modified Au surface was confirmed by attenuated total reflectance (ATR)-FT-IR spectroscopy and atomic force microscope (AFM). The ATR-FT-IR spectrum of TOAB-AuNPs attached to the HDT monolayer showed a characteristic stretching modes corresponding to -CH{sub 2} and -CH{sub 3} of TOAB, confirming the immobilization of AuNPs with surface-protecting TOAB ions on the surface of the AuNPs after being attached to HDT modified Au electrode. AFM image showed that the immobilized AuNPs were spherical in shape and densely packed to a film of ca. 7 nm thickness. Interestingly, TOAB-AuNPs modified electrode shifted the oxidation potential of PA towards less positive potential by 70 mV and enhanced its oxidation current twice when compared to bare Au electrode. In addition, the AuNPs modified electrode separated the oxidation potentials of AA and PA by 210 mV, whereas bare Au electrode failed to resolve them. The amperometry current of PA was increased linearly from 1.50 x 10{sup -7} to 1.34 x 10{sup -5} M with a correlation coefficient of 0.9981 and the lowest detection limit was found to be 2.6 nM (S/N = 3). The present method was successfully used to determine the concentration of PA in human blood plasma and commercial drugs.

  6. Microstructure of thin film platinum electrodes on yttrium stabilized zirconia prepared by sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Toghan, Arafat, E-mail: arafat.toghan@pci.uni-hannover.de [Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany); Khodari, M. [Chemistry Department, Faculty of Science, South Valley University, Qena, 83523 (Egypt); Steinbach, F.; Imbihl, R. [Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany)

    2011-09-01

    (111) oriented thin film Pt electrodes were prepared on single crystals of yttrium-stabilized zirconia (YSZ) by sputter deposition of platinum. The electrodes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and by profilometry. SEM images of the as-sputtered platinum film show a compact amorphous Pt film covering uniformly the substrate. Upon annealing at 1123 K, gaps and pores at the interface develop leading to a partial dewetting of the Pt film. Increasing the annealing temperature to 1373 K transforms the polycrystalline Pt film into single crystalline grains exhibiting a (111) orientation towards the substrate.

  7. Tunnelling conductive hybrid films of gold nanoparticles and cellulose and their applications as electrochemical electrodes

    International Nuclear Information System (INIS)

    Liu, Zhiming; Wang, Xuefeng; Wu, Wenjian; Li, Mei

    2015-01-01

    Conductive hybrid films of metal nanoparticles and polymers have practical applications in the fields of sensing, microelectronics and catalysis, etc. Herein, we present the electrochemical availability of tunnelling conductive hybrid films of gold nanoparticles (GNPs) and cellulose. The hybrid films were provided with stable tunnelling conductive properties with 12 nm GNPs of 12.7% (in weight). For the first time, the conductive hybrid films were used as substrates of electrochemical electrodes to load calmodulin (CaM) proteins for sensing of calcium cations. The electrodes of hybrid films with 20 nm GNPs of 46.7% (in weight) exhibited stable electrochemical properties, and showed significant responses to calcium cations with concentrations as low as 10 −9 M after being loaded with CaM proteins. (paper)

  8. Determination of fenitrothion in water using a voltammetric sensor based on a polymer-modified glassy carbon electrode.

    Science.gov (United States)

    Amare, Meareg; Abicho, Samuel; Admassie, Shimelis

    2014-01-01

    A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.

  9. Electrografting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt forming electrocatalytic organic films on gold or graphene oxide gold hybrid electrodes

    International Nuclear Information System (INIS)

    Gómez-Anquela, C.; Revenga-Parra, M.; Abad, J.M.; Marín, A. García; Pau, J.L.; Pariente, F.; Piqueras, J.; Lorenzo, E.

    2014-01-01

    Electroactive films containing redox active phenothiazine moieties are covalently bound onto gold and graphene oxide gold hybrid electrodes, using reductive redox grafting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt. The grafting procedure is based on continuous voltammetric potential sweep of solutions containing the phenothiazine diazonium salt previously generated in situ. Control of the film thickness, electroactivity and stability can easily be exerted through appropriate choice of the concentration and number of potential scans performed. Cyclic Voltammetry, Electrochemical Quartz Crystal Microbalance (EQCM) and Spectroscopic Ellipsometry are used to characterize the growth process as well as the viscoelastic properties of the resulting stable electrografted films. The electron transfer reactions through the films are mediated by the presence of the Azure A redox moieties, which show a quasi-reversible electrochemical response and exhibit a potent electrocatalytic effect toward the oxidation of NADH. This electrocatalytic model has been used to compare the properties of Azure A electrografted films generated on gold electrodes with those obtained on hybrid electrodes composed by graphene oxide modified gold electrodes

  10. In and Ga Codoped ZnO Film as a Front Electrode for Thin Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Duy Phong Pham

    2014-01-01

    Full Text Available Doped ZnO thin films have attracted much attention in the research community as front-contact transparent conducting electrodes in thin film silicon solar cells. The prerequisite in both low resistivity and high transmittance in visible and near-infrared region for hydrogenated microcrystalline or amorphous/microcrystalline tandem thin film silicon solar cells has promoted further improvements of this material. In this work, we propose the combination of major Ga and minor In impurities codoped in ZnO film (IGZO to improve the film optoelectronic properties. A wide range of Ga and In contents in sputtering targets was explored to find optimum optical and electrical properties of deposited films. The results show that an appropriate combination of In and Ga atoms in ZnO material, followed by in-air thermal annealing process, can enhance the crystallization, conductivity, and transmittance of IGZO thin films, which can be well used as front-contact electrodes in thin film silicon solar cells.

  11. Detection of nicotine based on molecularly imprinted TiO{sub 2}-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.-T.; Chen, P.-Y.; Chen, J.-G.; Suryanarayanan, Vembu [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Ho, K.-C. [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)], E-mail: kcho@ntu.edu.tw

    2009-02-02

    Amperometric detection of nicotine (NIC) was carried out on a titanium dioxide (TiO{sub 2})/poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrode by a molecular imprinting technique. In order to improve the conductivity of the substrate, PEDOT was coated onto the sintered electrode by in situ electrochemical polymerization of the monomer. The sensing potential of the NIC-imprinted TiO{sub 2} electrode (ITO/TiO{sub 2}[NIC]/PEDOT) in a phosphate-buffered saline (PBS) solution (pH 7.4) containing 0.1 M KCl was determined to be 0.88 V (vs. Ag/AgCl/saturated KCl). The linear detection range for NIC oxidation on the so-called ITO/TiO{sub 2}[NIC]/PEDOT electrode was 0-5 mM, with a sensitivity and limit of detection of 31.35 {mu}A mM{sup -1} cm{sup -2} and 4.9 {mu}M, respectively. When comparing with the performance of the non-imprinted one, the sensitivity ratio was about 1.24. The sensitivity enhancement was attributed to the increase in the electroactive area of the imprinted electrode. The at-rest stability of the ITO/TiO{sub 2}[NIC]/PEDOT electrode was tested over a period of 3 days. The current response remained about 85% of its initial value at the end of 2 days. The ITO/TiO{sub 2}[NIC]/PEDOT electrode showed reasonably good selectivity in distinguishing NIC from its major interferent, (-)-cotinine (COT). Moreover, scanning electrochemical microscopy (SECM) was employed to elucidate the surface morphology of the imprinted and non-imprinted electrodes using Fe(CN){sub 6}{sup 3-}/Fe(CN){sub 6}{sup 4-} as a redox probe on a platinum tip. The imprinted electrode was further characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR)

  12. Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes

    International Nuclear Information System (INIS)

    Nguyen, Le Huy; Nguyen, Ngoc Thinh; Nguyen, Hai Binh; Tran, Dai Lam; Nguyen, Tuan Dung

    2012-01-01

    Polyaniline-carboxylic multiwalled carbon nanotubes composite film (PANi-MWCNT) has been polymerized on the surface of interdigitated platinum electrode (fabricated by MEMS technology) which was compatibly connected to Autolab interface via universal serial bus (USB). An amperometric biosensor based on covalent immobilization of cholesterol oxidase (ChOx) on PANi–MWCNT film with potassium ferricyanide (FeCN) as the redox mediator was developed. The mediator helps to shuttle the electrons between the immobilized ChOx and the PANi-MWCNT electrode, therefore operating at a low potential of −0.3 V compared to the saturated calomel electrode (SCE). This potential precludes the interfering compounds from oxidization. The bio-electrode exhibits good linearity from 0.02 to 1.2 mM cholesterol concentration with a correlation coefficient of 0.9985

  13. Polymer Photovoltaic Cell Using TiO2/G-PEDOT Nanocomplex Film as Electrode

    Directory of Open Access Journals (Sweden)

    F. X. Xie

    2008-01-01

    Full Text Available Using TiO2/G-PEDOT (PEDOT/PSS doped with glycerol nanocomplex film as a substitute for metal electrode in organic photovoltaic cell is described. Indium tin oxide (ITO worked as cathode and TiO2/G-PEDOT nanocomplex works as anode. The thickness of TiO2 layer in nanocomplex greatly affects the act of this nonmetallic electrode of the device. To enhance its performance, this inverted organic photovoltaic cell uses another TiO2 layer as electron selective layer contacted to ITO coated glass substrates. All films made by solution processing techniques are coated on the transparent substrate (glass with a conducting film ITO. The efficiency of this solar cell is compared with the conventional device using Al as electrode.

  14. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method

    International Nuclear Information System (INIS)

    Liu, Zaijian; Wang, Wei; Wang, Jia; Peng, Xin; Wang, Yanhua; Zhang, Penghui; Wang, Haijie; Gao, Congjie

    2014-01-01

    Corrosion behavior of carbon steel under seawater film with various thickness was investigated by the wire beam electrode (WBE) method. It was found that the corrosion rate of carbon steel increased significantly under thin seawater film than it was immersed in seawater. The current variation under seawater film indicated that the thickness of diffusion layer of oxygen was about 500 μm, and the maximal current appeared around 40 μm, at which corrosion rate transited from cathodic control to anodic control. The results suggest that WBE method is helpful to study the corrosion process under thin electrolyte film

  15. Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Rodthongkum, Nadnudda, E-mail: Nadnudda.R@chula.ac.th [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Ruecha, Nipapan [Program in Macromolecular Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Rangkupan, Ratthapol [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Center of Innovative Nanotechnology, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Vachet, Richard W. [Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01002 (United States); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2013-12-04

    Graphical abstract: -- Highlights: •A novel electrode based on electrospun graphene/polyaniline/polystyrene nanofibers has been developed. •The proposed system provides ultrahigh sensitivity, good selectivity and wide linearity for the determination of dopamine. •This system was successfully applied to determine dopamine in complex biological environment with excellent reproducibility. -- Abstract: A novel and highly sensitive electrochemical system based on electrospun graphene/polyaniline/polystyrene (G/PANI/PS) nanofiber-modified screen-printed carbon electrodes has been developed for dopamine (DA) determination. A dramatic increase (9 times) in the current signal for the redox reaction of a standard, ferri/ferrocyanide [Fe(CN){sub 6}]{sup 3−/4−} couple was found when compared to an unmodified electrode. This modified electrode also exhibited favorable electron transfer kinetics and excellent electrocatalytic activity toward the oxidation of DA. When used together with square wave voltammetry (SWV), DA can be selectively determined in the presence of the common interferents (i.e. ascorbic acid and uric acid). Under optimal conditions, a very low limit of detection (0.05 nM) and limit of quantification (0.30 nM) were achieved for DA. In addition, a wide dynamic range of 0.1 nM to 100 μM was found for this electrode system. Finally, the system can be successfully applied to determine DA in complex biological environment (e.g. human serum, urine) with excellent reproducibility.

  16. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode

    International Nuclear Information System (INIS)

    Bukkitgar, Shikandar D.; Shetti, Nagaraj P.

    2016-01-01

    A novel sensor for the determination of 5-fluorouracil was constructed by electrochemical deposition of methylene blue on surface of carbon paste electrode. The electrode surface morphology was studied using Atomic force microscopy and XRD. The electrochemical activity of modified electrode was characterized using cyclic voltammetry and differential pulse method. The developed sensor shows impressive enlargement in sensitivity of 5-fluorouracil determination. The peak currents obtained from differential pulse voltammetry was linear with concentration of 5-fluorouracil in the range 4 × 10 −5 –1 × 10 −7 M and detection limit and quantification limit were calculated to be 2.04 nM and 6.18 nM respectively. Further, the sensor was successfully applied in pharmaceutical and biological fluid sample analysis. - Highlights: • Electrochemical oxidation of 5-fluorouracil has been investigated for first time at methylene blue modified carbon paste electrode • The electrode process was irreversible and diffusion controlled • Probable electrochemical mechanism was proposed which involved two proton and two electron transfer reaction • The LOD and LOQ values were calculated to be 2.04 nM and 6.18 nM, respectively, with good selectivity and sensitivity. • Proposed method was applied to 5-Fluorouracil determination in pharmaceutical and spiked human urine samples

  17. Determination of ascorbic acid in pharmaceutical preparation and fruit juice using modified carbon paste electrode

    Directory of Open Access Journals (Sweden)

    Simona Žabčíková

    2016-06-01

    Full Text Available Acrobic acid is key substance in the human metabolism and the rapid and accurate determination in food is of a great interest. Ascorbic acid is an electroactive compound, however poorly responded on the bare carbon paste electrodes. In this paper, brilliant cresyl blue and multi-walled carbon nanotubes were used for the modification of carbon paste electrode. Brilliant cresyl blue acts as a mediator improving the transition of electrons, whereas multiwalled carbon nanotubes increased the surface of the electrode. Both brilliant cresyl blue and multiwalled carbon nanotubes were added directly to the composite material. The electrochemical behavior of modified electode was determined in electrolyte at various pH, and the effect of the scan rate was also performed. It was shown that the electrochemical process on the surface of the modified carbon paste electrode was diffusion-controlled. The resulted modified carbon paste electrode showed a good electrocatalytic activity towards the oxidation of ascorbic acid at a reduced overpotential of +100 mV descreasing the risk of interferences. A linear response of the ascorbic acid oxidation current measured by the amperometry in the range of 0.1 - 350 µmol.L-1 was obtained applying the sensor for the standard solution. The limit of detection and limit of quantification was found to be 0.05 and 0.15 µmol.L-1, respectively. The novel method was applied for the determination of ascorbic acid in pharmaceutical vitamin preparation and fruit juice, and the results were in good agreement with the standard HPLC method. The presented modification of carbon paste electrode is suitable for the fast, sensitive and very accurate determination of ascorbic acid in fruit juices and pharmaceutical preparation.

  18. Nitrite reduction on a multimetallic porphyrin/polyoxotungstate layer-by-layer modified electrodes

    International Nuclear Information System (INIS)

    García, Macarena; Honores, Jessica; Quezada, Diego; Díaz, Carlos; Dreyse, Paulina; Celis, Freddy; Kubiak, Clifford P.; Canzi, Gabriele; Guzmán, Fernando

    2016-01-01

    Electro and photoelectrochemical reduction of nitrite in aqueous solution was studied using a multielectrocatalysts modified ITO electrode. ITO modification was carried out using the layer-by-layer (LBL) method, where sequential electrostatic assemblies were formed using a μ-(meso-5,10,15,20-tetra(pirydil)porphyrin)tetrakis{bis(bipyridine)chloride ruthenium (II)} [MTRP] n+ , coordinated in its central cavity with Mn(III), Zn(II) or Ni(II) as a cationic layer, and polyoxotungstate [SiW 12 O 40 ] 4− as the anionic layer. Electrochemical measurements and UV–vis spectroscopy were used to monitor the modification process. Optimal results were obtained when three layers were deposited onto the ITO surface and were stable in aqueous solution. The order of the multilayer formation was explored by comparing a modified electrode where [Zn(II)TRP] 4+ was the outermost layer with an electrode where [SiW 12 O 40 ] 4− was the outer layer. Results show that the best performing electrode is one with [SiW 12 O 40 ] 4− as the outer layer. Nitrite reduction on these electrode surfaces was studied in dark conditions and under light irradiation. Potential controlled electrolysis experiments were also performed, finding hydroxylamine, hydrazine and ammonia as the reduction products in dark conditions. Under light irradiation, only hydrazine and ammonia were found and, we observed an increase in the amount of obtained product. In this case, the electrolysis was carried out 150 mV less and half of time than in dark conditions. These results show that the combination of light and potential give rise to an improvement in the electrocatalytic properties of the modified electrodes. Continuous photolysis and IR spectroelectrochemical experiments were carried out to determinate the nature of this phenomena, evidencing the formation of an intermediary species between nitrite and [Mn(III)TRP] 5+.

  19. Direct electrochemistry of glucose oxidase and glucose biosensing on a hydroxyl fullerenes modified glassy carbon electrode.

    Science.gov (United States)

    Gao, Yun-Fei; Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, Bao-Lin; Hong, Jun; Sheibani, Nader; Ghourchian, Hedayatollah; Hong, Tao; Moosavi-Movahedi, Ali Akbar

    2014-10-15

    Direct electrochemistry of glucose oxidase (GOD) was achieved when GOD-hydroxyl fullerenes (HFs) nano-complex was immobilized on a glassy carbon (GC) electrode and protected with a chitosan (Chit) membrane. The ultraviolet-visible absorption spectrometry (UV-vis), transmission electron microscopy (TEM), and circular dichroism spectropolarimeter (CD) methods were utilized for additional characterization of the GOD, GOD-HFs and Chit/GOD-HFs. Chit/HFs may preserve the secondary structure and catalytic properties of GOD. The cyclic voltammograms (CVs) of the modified GC electrode showed a pair of well-defined quasi-reversible redox peaks with the formal potential (E°') of 353 ± 2 mV versus Ag/AgCl at a scan rate of 0.05 V/s. The heterogeneous electron transfer constant (ks) was calculated to be 2.7 ± 0.2s(-1). The modified electrode response to glucose was linear in the concentrations ranging from 0.05 to 1.0mM, with a detection limit of 5 ± 1 μM. The apparent Michaelis-Menten constant (Km(app)) was 694 ± 8 μM. Thus, the modified electrode could be applied as a third generation biosensor for glucose with high sensitivity, selectivity and low detection limit. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Oxidized multi walled carbon nanotubes for improving the electrocatalytic activity of a benzofuran derivative modified electrode

    Directory of Open Access Journals (Sweden)

    Mohammad Mazloum-Ardakani

    2016-01-01

    Full Text Available In the present paper, the use of a novel carbon paste electrode modified by 7,8-dihydroxy-3,3,6-trimethyl-3,4-dihydrodibenzo[b,d]furan-1(2H-one (DTD and oxidized multi-walled carbon nanotubes (OCNTs is described for determination of levodopa (LD, acetaminophen (AC and tryptophan (Trp by a simple and rapid method. At first, the electrochemical behavior of DTD is studied, then, the mediated oxidation of LD at the modified electrode is investigated. At the optimum pH of 7.4, the oxidation of LD occurs at a potential about 330 mV less positive than that of an unmodified carbon paste electrode. Based on differential pulse voltammetry (DPV, the oxidation current of LD exhibits a linear range between 1.0 and 2000.0 μM of LD with a detection limit (3σ of 0.36 μM. DPV was also used for simultaneous determination of LD, AC and Trp at the modified electrode. Finally, the proposed electrochemical sensor was used for determinations of these substances in human serum sample.

  1. Electrochemical sensor for ranitidine determination based on carbon paste electrode modified with oxovanadium (IV) salen complex.

    Science.gov (United States)

    Raymundo-Pereira, Paulo A; Teixeira, Marcos F S; Fatibello-Filho, Orlando; Dockal, Edward R; Bonifácio, Viviane Gomes; Marcolino, Luiz H

    2013-10-01

    The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. Copyright © 2013. Published by Elsevier B.V.

  2. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T

    Directory of Open Access Journals (Sweden)

    Karim Asadpour-Zeynali

    2017-06-01

    Full Text Available In this work poly eriochrome black T (EBT was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH was investigated. The poly (EBT-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak current depends on the concentration of INH and solution pH. The number of electrons involved in the rate determining step was found 1. The diffusion coefficient of isoniazid was also estimated using chronoamperometry technique. The experimental results showed that the mediated oxidation peak current of isoniazid is linearly dependent on the concentration of isoniazid in the ranges of 8.0 × 10-6 – 1.18 × 10-3 M and 2.90 × 10-5 M – 1.67× 10-3 M with differential pulse voltammetry (DPV and amperometry methods, respectively. The detection limits (S/N = 3 were found to be 6.0 μM and 16.4 μM by DPV and amperometry methods, respectively. This developed method was applied to the determination of isoniazid in tablet samples with satisfactory results.

  3. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode

    International Nuclear Information System (INIS)

    Zhou Ming; Guo Liping; Lin Fanyun; Liu Haixia

    2007-01-01

    In this work, we have developed a convenient and efficient method for the functionalization of ordered mesoporous carbon (OMC) using polyoxometalate H 6 P 2 Mo 18 O 62 .xH 2 O (P 2 Mo 18 ). By the method, glassy carbon (GC) electrode modified with P 2 Mo 18 which was immobilized on the channel surface of OMC was prepared and characterized for the first time. The large specific surface area and porous structure of the modified OMC particles result in high heteropolyacid loading, and the P 2 Mo 18 entrapped in this order matrix is stable. Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption-desorption isotherm and X-ray diffraction (XRD) were employed to give insight into the intermolecular interaction between OMC and P 2 Mo 18 . The electrochemical behavior of the modified electrode was studied in detail, including pH-dependence, stability and so on. The cyclic voltammetry (CV) and amperometry studies demonstrated that P 2 Mo 18 /OMC/GC electrode has high stability, fast response and good electrocatalytic activity for the reduction of nitrite, bromate, idonate, and hydrogen peroxide. The mechanism of catalysis on P 2 Mo 18 /OMC/GC electrode was discussed. Moreover, the development of our approach for OMC functionalization suggests the potential applications in catalysis, molecular electronics and sensors

  4. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tashkhourian, J., E-mail: tashkhourian@susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Daneshi, M.; Nami-Ana, F. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71456 (Iran, Islamic Republic of); Behbahani, M.; Bagheri, A. [Department of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2016-11-15

    Highlights: • An electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode was developed. • The electrode provides an accessible surface for simultaneous determination of hydroquinone and catechol. • Hydroquinone and catechol are highly toxic to both environment and human even at very low concentrations. - Abstract: A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120 mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0 μM–1.0 mM range for hydroquinone with the detection limit of 1.2 μM and from 30.0 μM–1.0 mM for catechol with the detection limit of 1.1 μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  5. Electrochemical detection of phenolic estrogenic compounds at clay modified carbon paste electrode

    Science.gov (United States)

    Belkamssa, N.; Ouattara, L.; Kawachi, A.; Tsujimura, M.; Isoda, H.; Chtaini, A.; Ksibi, M.

    2015-04-01

    A simple and sensitive electroanalytical method was developed to determine the Endocrine Disrupting chemical 4-tert-octylphenol on clay modified carbon paste electrode (Clay/CPE). The electrochemical response of the proposed electrode was studied by means of cyclic and square wave voltammetry. It has found that the oxidation of 4-tert-octylphenol on the clay/CPE displayed a well-defined oxidation peak. Under these optimal conditions, a linear relation between concentrations of 4-tert-octylphenol current response was obtained over range of 7.26×10-6 to 3.87×10-7 with a detection and quantification limit of 9.2×10-7 M and 3.06×10-6 M, respectively. The correlation coefficient is 0.9963. The modified electrode showed suitable sensitivity, high stability and an accurate detection of 4-tert-octylphenol. The modified electrode also relevant suitable selectivity for various phenolic estrogenic compounds.

  6. Investigation of top electrode for PZT thick films based MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Kristiansen, Paw T.

    2010-01-01

    In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 mu m. Three test structures are used...... to investigate the optimal thickness of the top electrode, the degradation of the piezoelectric properties of the PZT film in absence of a diffusion barrier layer and finally how to fabricate electrical interconnects down the edge of the PZT thick film. The roughness of the PZT is found to have a strong...... influence on the conductance of the top electrode influencing the optimal top electrode thickness. A 100 nm thick top electrode on the PZT thick film with a surface roughness of 273 nm has a 4.5 times higher resistance compared to a similar wire on a planar SiO2 surface which has a surface roughness of less...

  7. Development of carbon paste electrodes modified by molecularly imprinted polymer as potentiometry sensor of uric acid

    Science.gov (United States)

    Khasanah, Miratul; Darmokoesoemo, Handoko; Widayanti, Nesti; Kadmi, Yassine; Elmsellem, Hicham; Kusuma, Heri Septya

    The development of carbon paste electrodes modified by molecularly imprinted polymer (MIP) for the potentiometric analysis of uric acid was carried out in this study. The aim of the study was to determine the optimum composition of the electrode constituent material, the optimum pH of the uric acid solution, and the performance of the electrode, which was measured by its response time, measurement range, Nernst factor, detection limits, selectivity coefficient, precision, accuracy, and life time. MIP was made from methyl methacrylate as the monomer, ethylene glycol dimethacrylate as the cross-linker, and uric acid as the template. Electrodes that give optimum performance were produced from carbon, MIP, and paraffin with a ratio of 40:25:35 (% w/w). The obtained results show that the measurement of uric acid solution gives optimum results at pH 5, Nernst factor of 30.19 mV/decade, and a measurement range of 10-6-10-3 M. The minimum detection limit of this method was 3.03.10-6 M, and the precision and accuracy toward uric acid with concentration of 10-6-10-3 M ranged between 1.36-2.03% and 63.9-166%. The selectivity coefficient value was less than 1, which indicated that the electrode was selective against uric acid and not interfered with by urea. This electrode has a response time of less than 2 min; its life time is 8 weeks with 104 usage times.

  8. Poly(alizarin red)/Graphene modified glassy carbon electrode for simultaneous determination of purine and pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Ba Xi; Luo Liqiang [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Ding Yaping, E-mail: wdingyp@sina.com [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Zhang Zhen [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Chu Yuliang [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Wang Bijun; Ouyang Xiaoqian [Department of Chemistry, Shanghai University, Shanghai 200444 (China)

    2012-11-08

    Graphical abstract: DPVs of PAR/Graphene/GCE (a) and the bare GCE (c) in 0.1 M PBS containing 50.0 {mu}M G, 50.0 {mu}M A, 100.0 {mu}M T and 100.0 {mu}M C, (b) PAR/Graphene/GCE in 0.1 M PBS. Highlights: Black-Right-Pointing-Pointer The sensor exhibited well-separated peaks and low detection limit. Black-Right-Pointing-Pointer The sensor possesses high sensitivity and wide linear range. Black-Right-Pointing-Pointer The sensor was used for simultaneous detection of G, A, T and C successfully. Black-Right-Pointing-Pointer The sensor was applied in a fish sperm DNA sample with satisfactory results. Black-Right-Pointing-Pointer The proposed sensor has good stability and reproducibility. - Abstract: In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.

  9. Poly(alizarin red)/Graphene modified glassy carbon electrode for simultaneous determination of purine and pyrimidine

    International Nuclear Information System (INIS)

    Ba Xi; Luo Liqiang; Ding Yaping; Zhang Zhen; Chu Yuliang; Wang Bijun; Ouyang Xiaoqian

    2012-01-01

    Graphical abstract: DPVs of PAR/Graphene/GCE (a) and the bare GCE (c) in 0.1 M PBS containing 50.0 μM G, 50.0 μM A, 100.0 μM T and 100.0 μM C, (b) PAR/Graphene/GCE in 0.1 M PBS. Highlights: ► The sensor exhibited well-separated peaks and low detection limit. ► The sensor possesses high sensitivity and wide linear range. ► The sensor was used for simultaneous detection of G, A, T and C successfully. ► The sensor was applied in a fish sperm DNA sample with satisfactory results. ► The proposed sensor has good stability and reproducibility. - Abstract: In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.

  10. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    Science.gov (United States)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  11. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process...... with a line width down to 3 μ m. A 700 nm thick ZrO2 layer as insolating diffusion barrier layer is found to be insufficient as barrier layer for PZT on a silicon substrate sintered at 850°C. EDX shows diffusion of Si into the PZT layer....

  12. POLYPYRROLE COATED CELLULOSIC SUBSTRATE MODIFIED BY COPPER OXIDE AS ELECTRODE FOR NITRATE ELECTROREDUCTION

    OpenAIRE

    A. HAMAM; D. OUKIL; A. DIB; H. HAMMACHE; L. MAKHLOUFI; B. SAIDANI

    2015-01-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electr...

  13. Effect of top electrode material on radiation-induced degradation of ferroelectric thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, Steven J.; Bassiri-Gharb, Nazanin [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Deng, Carmen Z.; Callaway, Connor P. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Paul, McKinley K. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Woodward Academy, College Park, Georgia 30337 (United States); Fisher, Kenzie J. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Riverwood International Charter School, Atlanta, Georgia 30328 (United States); Guerrier, Jonathon E.; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Rudy, Ryan Q.; Polcawich, Ronald G. [Army Research Laboratory, Adelphi, Maryland 20783 (United States); Glaser, Evan R.; Cress, Cory D. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-07-14

    The effects of gamma irradiation on the dielectric and piezoelectric responses of Pb[Zr{sub 0.52}Ti{sub 0.48}]O{sub 3} (PZT) thin film stacks were investigated for structures with conductive oxide (IrO{sub 2}) and metallic (Pt) top electrodes. The samples showed, generally, degradation of various key dielectric, ferroelectric, and electromechanical responses when exposed to 2.5 Mrad (Si) {sup 60}Co gamma radiation. However, the low-field, relative dielectric permittivity, ε{sub r}, remained largely unaffected by irradiation in samples with both types of electrodes. Samples with Pt top electrodes showed substantial degradation of the remanent polarization and overall piezoelectric response, as well as pinching of the polarization hysteresis curves and creation of multiple peaks in the permittivity-electric field curves post irradiation. The samples with oxide electrodes, however, were largely impervious to the same radiation dose, with less than 5% change in any of the functional characteristics. The results suggest a radiation-induced change in the defect population or defect energy in PZT with metallic top electrodes, which substantially affects motion of internal interfaces such as domain walls. Additionally, the differences observed for stacks with different electrode materials implicate the ferroelectric–electrode interface as either the predominant source of radiation-induced effects (Pt electrodes) or the site of healing for radiation-induced defects (IrO{sub 2} electrodes).

  14. Electrochemical fabrication of TiO2 nanoparticles/[BMIM]BF4 ionic liquid hybrid film electrode and its application in determination of p-acetaminophen

    International Nuclear Information System (INIS)

    Wang, Bin; Li, Yuan; Qin, Xianjing; Zhan, Guoqing; Ma, Ming; Li, Chunya

    2012-01-01

    A water soluble ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF 4 ), was incorporated into TiO 2 nanoparticles to fabricate a hybrid film modified glassy carbon electrode (nano‐TiO 2 /[BMIM]BF 4 /GCE) through electrochemical deposition in a tetrabutyltitanate sol solution containing [BMIM]BF 4 . The obtained nano‐TiO 2 /[BMIM]BF 4 /GCEs were characterized scanning electronic microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). Electrochemical behaviors of p‐acetaminophen at the nano‐TiO 2 /[BMIM]BF 4 /GCEs were thoroughly investigated. Compared to the redox reaction of p‐acetaminophen using an unmodified electrode under the same conditions, a new reduction peak was observed clearly at 0.26 V with the modified electrode. In addition, the peak potential for the oxidation of p‐acetaminophen was found to shift negatively about 90 mV and the current response increased significantly. These changes indicate that the nano‐TiO 2 /[BMIM]BF 4 hybrid film can improve the redox reactions of p‐acetaminophen in aqueous medium. Under optimum conditions, a linear relationship was obtained for the p‐acetaminophen solutions with concentration in the range from 5.0 × 10 −8 to 5.0 × 10 −5 M. The estimated detection limit was 1.0 × 10 −8 M (S/N = 3). The newly developed method was applied for the determination of p-acetaminophen in urine samples. - Highlights: ► Nano-TiO 2 /[BMIM]BF 4 hybrid film electrode was fabricated with electrodeposition. ► Voltammetric behavior of p-acetaminophen at the obtained electrode was investigated. ► The hybrid film electrode shows good electrocatalytic response to p-acetaminophen. ► p-acetaminophen in urine samples was successfully determined.

  15. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.

    Science.gov (United States)

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-06-05

    A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s(-1). The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L(-1) with a detection limit of 0.0153 mmol L(-1) (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L(-1) with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L(-1) with a detection limit of 0.282 μmol L(-1) (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Contact Resistance Reduction of ZnO Thin Film Transistors (TFTs) with Saw-Shaped Electrode

    KAUST Repository

    Park, Woojin

    2018-05-15

    We report a saw-shaped electrode architecture ZnO thin film transistor (TFT) for effectively increase channel width. Such a saw-shaped electrode has ~2 times longer contact line at the contact metal/ZnO channel junction. We experimentally observed an enhancement in the output drive current by 50% and reduction in the contact resistance by over 50%, when compared to a typical shaped electrode ZnO TFT consuming the same chip area. This performance enhancement is attributed to extension of channel width. This technique can contribute to device performance enhancement and especially reduction in the contact resistance which is a serious challenge.

  17. Electrogenerated chemiluminescence of a cationic cyclometalated iridium complex–Nafion modified electrode in neutral aqueous solution

    International Nuclear Information System (INIS)

    Dong, YongPing; Ni, ZiYue; Zhang, Jing; Tong, BiHai; Chu, XiangFeng

    2013-01-01

    Electrogenerated chemiluminescence (ECL) of a cationic cyclometalated iridium complex, [(pqcm) 2 Ir(bpy)](PF 6 ) (1, pqcmH=2-phenyl-quinoline-4-carboxylic acid methyl ester, bpy=2,2′-bipyridine), was investigated at a bare glassy carbon electrode in CH 3 CN solution and 4 ECL peaks were observed. Then, the ECL of the iridium complex was studied in neutral phosphate buffer solution (PBS) by immobilizing it on a glassy carbon electrode. Two closely located ECL peaks were obtained at 1.07 and 1.40 V when the potential was scanned from −3.00 V to 2.20 V, while only one broad ECL peak located around −2.0 V was obtained when the potential was scanned from 2.20 V to −3.00 V. In the presence of oxalate, one ECL peak located around 1.22 V could be obtained except the broad ECL peak located at −2.00 V. The ECL peak at positive potential range was enhanced more than one magnitude in the presence of Nafion and was nearly 5-times higher than that of Ru(bpy) 3 2+ –Nafion modified electrode, suggesting that the synthesized iridium complex has great application potential in ECL detection. The ECL spectra of iridium complex were identical to its photoluminescence spectrum, indicating the same metal-to-ligand charge transfer (MLCT) excited states. The mechanisms of ECL were proposed based on the experimental results. The present ECL sensor gave a linear response for the oxalate concentration from 1.0×10 −6 to 1.0×10 −4 mol L −1 with a detection limit (S/N=3) of 9.1×10 −7 mol L −1 . -- Graphical abstract: Electrochemiluminescence (ECL) of immobilized novel cationic cyclometalated iridium complex in neutral phosphate buffer solution is reported for the first time. The intensity of iridium complex ECL is 5-times higher than that of Ru(bpy) 3 2+ ECL. Highlights: ► Cationic cyclometalated iridium complex was modified on a bare electrode. ► Electrochemiluminescence (ECL) of the modified electrode was studied. ► The ECL intensity is higher than that of Ru

  18. Hydrophobicity of electron beam modified surface of hydroxyapatite films

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, M., E-mail: gregor@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Tofail, S.A.M. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Zahoran, M.; Truchly, M. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Vargova, M. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Laffir, F. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Plesch, G. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Kus, P.; Plecenik, A. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2015-05-15

    Highlights: • Surface potential of hydroxyapatite films were modified by focused electron beam. • Micron-sized domains of modified surface potential were created. • Wettability and surface free energy of the irradiated areas was studied. • Possible mechanisms of increased surface hydrophobicity are discussed. - Abstract: Arrays of micron-sized domains of modified surface potential were created on hydroxyapatite films by mid-energy (20 keV) electron beam irradiation available in a laboratory scanning electron microscope. The dosage of electron beam was varied between 10{sup −3} and 10{sup 3} μC/cm{sup 2} to inject charge into the film surface. Contrary to the conventional electrowetting theory, the dosage of injected charge used in creating such microdomains caused a gradual increase of the water contact angle from 57° to 93° due to the elimination of the polar component of the surface free energy. Surface contamination by carbonaceous species can be held only partially responsible for such behavior at lower dosage of electron beam. A transfer of free surface charge to water and an electron beam induced disruption of polar orientation of OH ions have been attributed to be influencial factors in the overall dewetting behavior.

  19. Development of liquid film thickness measurement technique by high-density multipoint electrodes method

    International Nuclear Information System (INIS)

    Arai, Takahiro; Furuya, Masahiro; Kanai, Taizo

    2010-01-01

    High-density multipoint electrode method was developed to measure a liquid film thickness transient on a curved surface. The devised method allows us to measure spatial distribution of liquid film with its conductance between electrodes. The sensor was designed and fabricated as a multilayer print circuit board, where electrode pairs were distributed in reticular pattern with narrow interval. In order to measure a lot of electrode pairs at a high sampling rate, signal-processing method used by the wire mesh sensor measurement system was applied. An electrochemical impedance spectrometry concludes that the sampling rate of 1000 slices/s is feasible without signal distortion by electric double layer. The method was validated with two experimental campaigns: (1) a droplet impingement on a flat film and (2) a jet impingement on a rod-shape sensor surface. In the former experiment, a water droplet having 4 mm in diameter impinged onto the 1 mm thick film layer. A visual observation study with high-speed video camera shows after the liquid impingement, the water layer thinning process was clearly demonstrated with the sensor. For the latter experiment, the flexible circuit board was bended to form a cylindrical shape to measure water film on a simulated fuel rod in bundle geometry. A water jet having 3 mm in diameter impinged onto the rod-shape sensor surface. The process of wetting area enlargement on the rod surface was demonstrated in the same manner that the video-frames showed. (author)

  20. Electron transfer at boron-doped diamond electrodes modified by graphitic micro-domains

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E.; Devilliers, D. [Pierre et Marie Curie Univ., Paris (France). Electrochemistry Lab.; Comninellis, C. [Lausanne Ecole Polytechnique, Lausanne (Switzerland). Groupe de Genie Electrochimique

    2006-07-01

    Boron-doped (BDD) electrodes have been used in electrolysis procedures for the last 10 years. The mechanical stability of the electrode, its large electrochemical window and its low capacitive current place this new electrode material as an alternative for replacing more costly or toxic materials such as mercury. However, the ferri/ferrocyanide system of boron-doped electrodes has shown contradictory results in the literature. This study proposed a cathodic pre-treatment which relied on the presence of residual graphitic domains formed during the preparation of the BDD film. An experiment was conducted in which the doping procedure was used to control the amount of graphitic phase on the electrode with highly oriented pyrolytic graphite (HOPG) grafted on the BDD surface. Surface characterization with Raman spectroscopy and Scanning Electron Microscopy (SEM) was then carried out using cyclic voltammetry and electrochemical impedance spectroscopy. The electroanalytical determination of the amount of graphitic micro-domains was described and a pulse procedure was proposed which obtained a reproducible surface state. 2 refs., 2 figs.

  1. Highly conductive and flexible color filter electrode using multilayer film structure

    Science.gov (United States)

    Han, Jun Hee; Kim, Dong-Young; Kim, Dohong; Choi, Kyung Cheol

    2016-07-01

    In this paper, a high performance flexible component that serves as a color filter and an electrode simultaneously is suggested. The suggested highly conductive and flexible color filter electrode (CFE) has a multilayer film structure composed of silver (Ag) and tungsten trioxide (WO3). The CFE maintained its color filtering capability even when the films were bent on a polyethylene terephthalate (PET) film. Low sheet resistance of the CFE was obtained using WO3 as a bridge layer that connects two Ag layers electrically. The sheet resistance was less than 2 Ω/sq. and it was negligibly changed after bending the film, confirming the flexibility of the CFE. The CFE can be easily fabricated using a thermal evaporator and is easily patterned by photolithography or a shadow mask. The proposed CFE has enormous potential for applications involving optical devices including large area devices and flexible devices.

  2. Improvement in fatigue property for a PZT ferroelectric film device with SRO electrode film prepared by chemical solution deposition

    International Nuclear Information System (INIS)

    Miyazaki, H.; Miwa, Y.; Suzuki, H.

    2007-01-01

    PZT films with (1 0 0) and (1 1 0) orientation were prepared by spin coating using the chemical solution deposition (CSD) method on an SRO/Si or a Pt/Ti/SiO 2 /Si substrate. The remnant polarization and the saturation polarization of the PZT/SRO/Si film were 21 and 35 μC/cm 2 , and those of the PZT/Pt/Ti/SiO 2 /Si film were 20 and 31 μC/cm 2 . The remnant polarization of the PZT/SRO/Si film maintained more than 10 8 switching cycles, and the fatigue property was observed for the PZT film fabricated on the Pt/Ti/SiO 2 /Si electrode

  3. PZT Thin-Film Micro Probe Device with Dual Top Electrodes

    Science.gov (United States)

    Luo, Chuan

    Lead zirconate titanate (PZT) thin-film actuators have been studied intensively for years because of their potential applications in many fields. In this dissertation, a PZT thin-film micro probe device is designed, fabricated, studied, and proven to be acceptable as an intracochlear acoustic actuator. The micro probe device takes the form of a cantilever with a PZT thin-film diaphragm at the tip of the probe. The tip portion of the probe will be implanted in cochlea later in animal tests to prove its feasibility in hearing rehabilitation. The contribution of the dissertation is three-fold. First, a dual top electrodes design, consisting of a center electrode and an outer electrode, is developed to improve actuation displacement of the PZT thin-film diaphragm. The improvement by the dual top electrodes design is studied via a finite element model. When the dimensions of the dual electrodes are optimized, the displacement of the PZT thin-film diaphragm increases about 30%. A PZT thin-film diaphragm with dual top electrodes is fabricated to prove the concept, and experimental results confirm the predictions from the finite element analyses. Moreover, the dual electrode design can accommodate presence of significant residual stresses in the PZT thin-film diaphragm by changing the phase difference between the two electrodes. Second, a PZT thin-film micro probe device is fabricated and tested. The fabrication process consists of PZT thin-film deposition and deep reactive ion etching (DRIE). The uniqueness of the fabrication process is an automatic dicing mechanism that allows a large number of probes to be released easily from the wafer. Moreover, the fabrication is very efficient, because the DRIE process will form the PZT thin-film diaphragm and the special dicing mechanism simultaneously. After the probes are fabricated, they are tested with various possible implantation depths (i.e., boundary conditions). Experimental results show that future implantation depths

  4. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  5. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  6. Investigation of passivating films on Li-electrode by the method of photoelectronic emission

    International Nuclear Information System (INIS)

    Nimon, E.S.; Churikov, A.V.; Gamayunova, I.M.; L'vov, A.L.

    1995-01-01

    Spectral dependences of photoeffect under conditions of pulsed illumination by visible and near IR radiation of Li-electrode surface in propylene carbonate and thionyl chloride base solutions have been studied. Photoemission of electrons from lithium to passivating films on its surface is the primary stage of the cathode photoeffect detected. The method of electron photoemission is used to obtain information on the composition and characteristics of the passivating films. 21 refs., 7 figs., 1 tab

  7. Preparation and characterization of micro-grid modified In{sub 2}O{sub 3}:W films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Dongmei; Wang, Wenwen, E-mail: 08569@buaa.edu.cn; Zhang, Fan; Fu, Qiang; Pan, Jiaojiao

    2016-08-01

    Tungsten doped indium oxide (In{sub 2}O{sub 3}:W, IWO) thin films with IWO micro-grid covered surface were prepared at room temperature using techniques of radio frequency (RF) magnetron sputtering and polystyrene (PS) microsphere template. The composition, crystallization structures, surface morphologies, and optical and electrical properties of the films were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, spectrophotometer from visible to near infrared (NIR) range and Hall effect measurement, respectively. Periodic micro-grid modified surface was obtained to improve light trapping properties. The effects of the PS micro-spheres diameters and the sputtering time on the surface morphology, transmittance in NIR range, diffuse reflection and conductive properties of the IWO films are investigated. Experiments show that surface modification of the IWO film with micro-grid under the optimized condition can improve the conductivity of the films by 15%, and the diffuse reflectance by 150%, with less than 8% decrease of the transmittance in the visible region. The study would be beneficial to the light trapping effect of solar cells using IWO films as transparent electrodes. - Highlights: • In{sub 2}O{sub 3}:W (IWO) films were obtained by reactive frequency magnetron sputtering. • IWO micro-grids were prepared on the surface of IWO films. • Influences of micro-grid size and sputtering time on IWO films were analyzed. • Both high conductivity and transparency are acquired in near-infrared region.

  8. Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS

    DEFF Research Database (Denmark)

    McIntyre, Melissa D.; Walker, Robert; Traulsen, Marie Lund

    2015-01-01

    an applied potential.1-3 The presented work explores the polarisation induced changes in LSM electrode composition by utilizing in operando Raman spectroscopy and post mortem ToF-SIMS depth profiling on LSM thin film model electrodes fabricated by pulsed laser deposition on YSZ substrates with a thin (200 nm...... recorded through the LSM thin film electrodes and revealed distinct compositional changes throughout the electrodes (Figure 2). The electrode elements and impurities separated into distinct layers that were more pronounced for the stronger applied polarisations. The mechanism behind this separation...

  9. PEDOT as a Flexible Organic Electrode for a Thin Film Acoustic Energy Harvester.

    Science.gov (United States)

    Kim, Younghoon; Na, Jongbeom; Park, Chihyun; Shin, Haijin; Kim, Eunkyoung

    2015-08-05

    An efficient thin film acoustic energy harvester was explored using flexible poly(3,4-ethylene dioxythiophene) (PEDOT) films as electrodes in an all-organic triboelectric generator (AO-TEG). A thin film AO-TEG structured as PEDOT/Kapton//PET/PEDOT was prepared by the solution casting polymerization(SCP) on the dielectric polymer films. As-prepared AO-TEG showed high flexibility and durability due to the strong adhesion between the electrodes and the dielectric polymer. The short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power density (Pw) reached 50 mA/m(2), 700 V, and 12.9 W/m(2) respectively. The output current density decreased with the increase in the electrode resistance (Re), but the energy loss in the organic electrodes was negligible. The AO-TEG could light up 180 LEDs instantaneously upon touching of the AO-TEG with a palm (∼120 N). With the flexible structure, the AO-TEG was worn as clothes and generated electricity to light LEDs upon regular human movement. Furthermore, the AO-TEG was applicable as a thin film acoustic energy harvester, which used music to generate electricity enough for powering of 5 LEDs. An AO-TEG with a PEDOT electrode (Re = 200 Ω) showed instantaneous peak-to-peak voltage generation of 11 V under a sound pressure level (SPL) of 90-100 dB. The harvested acoustic energy through the AO-TEG was 350 μJ from the 4 min playing of the same single song. This is the first demonstration of a flexible triboelectric generator (TEG) using an organic electrode for harvesting acoustic energy from ambient environment.

  10. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    Science.gov (United States)

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Cao, Lili; Deng, Ying; Gong, Shixing [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Shi, Fan; Li, Gaonan; Sun, Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China)

    2013-06-05

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k{sub s}) as 0.97 s{sup −1}. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L{sup −1} with a detection limit of 0.0153 mmol L{sup −1} (3σ), H{sub 2}O{sub 2} in the concentration range from 0.1 to 516.0 mmol L{sup −1} with a detection limit of 34.9 nmol/L (3σ) and NaNO{sub 2} in the concentration range from 0.5 to 650.0 mmol L{sup −1} with a detection limit of 0

  12. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-01-01

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k s ) as 0.97 s −1 . The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L −1 with a detection limit of 0.0153 mmol L −1 (3σ), H 2 O 2 in the concentration range from 0.1 to 516.0 mmol L −1 with a detection limit of 34.9 nmol/L (3σ) and NaNO 2 in the concentration range from 0.5 to 650.0 mmol L −1 with a detection limit of 0.282 μmol L −1 (3σ). So the proposed

  13. Application of thin film mercury electrodes and solid amalgam electrodes in electrochemical analysis of the nucleic acids components: detection of the two-dimensional phase transients of adenosine

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Vetterl, Vladimír

    2004-01-01

    Roč. 63, 1-2 (2004), s. 37-41 ISSN 1567-5394 R&D Projects: GA AV ČR KJB4004305; GA AV ČR IBS5004107 Institutional research plan: CEZ:AV0Z5004920 Keywords : mercury film electrodes * solid amalgam electrodes * roughness Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  14. Fabrication of conducting polymer-gold nanoparticles film on electrodes using monolayer protected gold nanoparticles and its electrocatalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Palanisamy [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Dindigul (India); School of Chemical and Biomedical Engineering, N1.3, B4-01, 70 Nanyang Drive, Nanyang Technological University, Singapore 637457 (Singapore); John, S. Abraham, E-mail: abrajohn@yahoo.co.in [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Dindigul (India)

    2011-08-01

    We wish to report a simple and new strategy for the fabrication of gold nanoparticles-conducting polymer film on glassy carbon (GC) and indium tin oxide (ITO) surfaces using 5-amino-2-mercapto-1,3,4-thiadiazole capped gold nanoparticles (AMT-AuNPs) in 0.01 M H{sub 2}SO{sub 4} by electropolymerization. The presence of amine groups on the surface of the AuNPs was responsible for the deposition of the AMT-AuNPs film on the electrode surface. The atomic force microscopy (AFM) studies reveal that the fabricated p-AMT-AuNPs film showed homogeneously distributed AuNPs with a spherical shape of {approx}8 nm diameter. The XPS spectrum shows the binding energies at 83.8 and 87.5 eV in the Au 4f region corresponding to 4f{sub 7/2} and 4f{sub 5/2}, respectively. The position and difference between these two peaks (3.7 eV) exactly match the value reported for Au{sup 0}. The N1s XPS showed three binding energies at 396.7, 399.6 and 403.3 eV, corresponding to the =NH, -NH- and -N{sup +}H-, respectively, confirming that the electropolymerization proceeded through the oxidation of -NH{sub 2} groups present on the periphery of the AMT-AuNPs. The application of the present p-AMT-AuNPs modified electrode was demonstrated by studying the electro reduction of oxygen at pH 7.2. The p-AMT-AuNPs film enhanced the oxygen reduction current more than three times than that of p-AMT film prepared under identical conditions.

  15. Electrochemical Treatment of Wastewater Containing Mixed Reactive Dyes Using Carbon Nanotube Modified Cathode Electrodes

    Directory of Open Access Journals (Sweden)

    Nader Djafarzadeh

    2016-11-01

    Full Text Available Nowadays, advanced electrochemical oxidation processes are promising methods for the treatment of wastewaters containing organic dyes. One of these methods is the Electro-Fenton (EF technique in which an electrical current is applied to the cathode and anode electrodes to promote electrochemical reactions that generate hydroxyl radicals which mineralize organic pollutants and remove them from wastewater. To carry out the Electro-Fenton process iIn this work, the carbon paper (CP electrode was initially modified with carbon nanotubes (CNT to produce the CP-CNT electrode which was used as the cathode to remove a mixture of organic dyestuff (containing Reactive Blue 69, Reactive Red 195, and Reactive Yellow 84 from wastewaters. Comparison of the two types of cathode electrodes (i.e., CNT and the modified CP-CNT showed that the CP-CNT outperformed the CP electrode. The EF process was employed to treat 500 ml of a mixture of dyes (50 mg/L of each dye containing sodium soulfate and Fe+3 ions. The results revealed that the highest color removal efficiency was achieved when a current of 300 mA was applied for 210 min. COD measurments were used to calculate the effective current and power consumption. It was found that the 300 mA current applied over a period of 210 min yielded the highest effective current and the lowest power consumption. The amount of dyes mineralized by the EF process in the dye solution indicated that 78% of the initial COD had been removed under the above conditions. It may be concluded that the Electro-Fenton process can be successfully used for the treatment of wastewaters containing mixtures of dye pollutants. Cathode electrode type, electrical current, and electrolysis duration were identified as the parameters affecting the process.

  16. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong; Su, Wen; Fu, Yingyi [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Hu, Jingbo, E-mail: hujingbo@bnu.edu.cn [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China)

    2016-12-30

    Graphical abstract: We report a simple and controllable synthesis of CuO-nanoparticle-modified ITO by employing a combination of ion-implantation and annealing methods for the first time. The optimum CuO/ITO electrode shows uniform morphology, highly accessible surface area, long-term stability and excellent electrochemical performance towards biomolecules such as glucose in alkaline solution. - Highlights: • Controllably annealed CuO/ITO electrode was synthesized for the first time. • The generation mechanism of CuO nanoparticles is revealed. • The optimum CuO/ITO electrode shows excellent electrochemical performance. • A reference for the controllable preparation of other metal oxide nanoparticles. - Abstract: In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments’ characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm{sup −2} mM{sup −1} with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  17. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode.

    Science.gov (United States)

    Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju

    2006-03-01

    The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.

  18. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  19. Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jiaoyan; Cao, Xiyue [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Xia, Jianfei, E-mail: xiajianfei@126.com [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Gong, Shida [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Wang, Zonghua, E-mail: wangzonghua@qdu.edu.cn [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Lu, Lin [College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Zibo Normal College, Zibo, Shandong 255100 (China)

    2016-08-31

    A sensitive non-enzymatic glucose electrochemical biosensor (Cu/PMo{sub 12}-GR/GCE) was developed based on the combination of copper nanoparticles (CuNPs) and phosphomolybdic acid functionalized graphene (PMo{sub 12}-GR). PMo{sub 12}-GR films were modified on the surface of glassy carbon electrode (GCE) through electrostatic self-assembly with the aid of poly diallyl dimethyl ammonium chloride (PDDA). Then CuNPs were successfully decorated onto the PMo{sub 12}-GR modified GCE through electrodeposition. The morphology of Cu/PMo{sub 12}-GR/GCE was characterized by scanning electron microscope (SEM). Cyclic voltammetry (CV) and chronoamperometry were used to investigate the electrochemical performances of the biosensor. The results indicated that the modified electrode displayed a synergistic effect of PMo{sub 12}-GR sheets and CuNPs towards the electro-oxidation of glucose in the alkaline solution. At the optimal detection potential of 0.50 V, the response towards glucose presented a linear response ranging from 0.10 μM to 1.0 mM with a detection limit of 3.0 × 10{sup −2} μM (S/N = 3). In addition, Cu/PMo{sub 12}-GR/GCE possessed a high selectivity, good reproducibility, excellent stability and acceptable recovery, which indicating the potential application in clinical field. - Highlights: • Cu/PMo{sub 12}-GR/GCE as a non-enzymatic glucose electrochemical sensor. • PMo{sub 12} is efficient for the uniform growth of Cu-NPs and electron transport. • The sensor exhibits good sensitivity and specificity towards glucose.

  20. Zinc oxide inverse opal electrodes modified by glucose oxidase for electrochemical and photoelectrochemical biosensor.

    Science.gov (United States)

    Xia, Lei; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Xu, Lin; Song, Hongwei

    2014-09-15

    The ZnO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method using the polymethylmethacrylate (PMMA) as a template. For glucose detection, glucose oxidase (GOD) was further immobilized on the inwall and surface of the IOPCs. The biosensing properties toward glucose of the Nafion/GOD/ZnO IOPCs modified FTO electrodes were carefully studied and the results indicated that the sensitivity of ZnO IOPCs modified electrode was 18 times than reference electrode due to the large surface area and uniform porous structure of ZnO IOPCs. Moreover, photoelectrochemical detection for glucose using the electrode was realized and the sensitivity approached to 52.4 µA mM(-1) cm(-2), which was about four times to electrochemical detection (14.1 µA mM(-1) cm(-2)). It indicated that photoelectrochemical detection can highly improve the sensor performance than conventional electrochemical method. It also exhibited an excellent anti-interference property and a good stability at the same time. This work provides a promising approach for realizing excellent photoelectrochemical biosensor of similar semiconductor photoelectric material. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis.

    Science.gov (United States)

    Cheemalapati, Srikanth; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A

    2014-09-01

    A simple and sensitive electrochemical method has been proposed for the determination of isoniazid (INZ). For the first time, rhodium (Rh) modified glassy carbon electrode (GCE) has been employed for the determination of INZ by linear sweep voltammetry technique (LSV). Compared with the unmodified electrode, the proposed Rh modified electrode provides strong electrocatalytic activity toward INZ with significant enhancement in the anodic peak current. Scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) results reveal the morphology of Rh particles. With the advantages of wide linearity (70-1300μM), good sensitivity (0.139μAμM(-1)cm(-2)) and low detection limit (13μM), this proposed sensor holds great potential for the determination of INZ in real samples. The practicality of the proposed electrode for the detection of INZ in human urine and blood plasma samples has been successfully demonstrated using LSV technique. Through the determination of INZ in commercially available pharmaceutical tablets, the practical applicability of the proposed method has been validated. The recovery results are found to be in good agreement with the labeled amounts of INZ in tablets, thus showing its great potential for use in clinical and pharmaceutical analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  3. Immobilization of Glucose Oxidase on Modified-Carbon-Paste-Electrodes for Microfuel Cell

    Directory of Open Access Journals (Sweden)

    Laksmi Ambarsari

    2016-03-01

    Full Text Available Glucose oxidase (GOx is being developed for many applications such as an implantable fuel cell, due to its attractive property of operating under physiological conditions. This study reports the functional immobilization of glucose oxidase onto polyaniline-nanofiber-modified-carbon-paste-electrodes (GOx/MCPE as bioanodes in fuel cell applications. In particular, GOx is immobilized onto the electrode surface via a linker molecule (glutaraldehyde. Polyaniline, synthesized by the interfacial polymerization method, produces a morphological form of nanofibers (100-120 nm which have good conductivity. The performance of the polyaniline-modified-carbon-paste-electrode (MCPE was better than the carbon- paste-electrode (CPE alone. The optimal pH and temperature of the GOx/MCPE were 4.5 (in 100 mM acetate buffer and 65 °C, respectively. The GOx/MCPE exhibit high catalytic performances (activation energy 16.4 kJ mol-1, have a high affinity for glucose (Km value 37.79 µM and can have a maximum current (Imax of 3.95 mA. The sensitivity of the bioelectrode also was high at 57.79 mA mM-1 cm-2.

  4. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Devilliers, D. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Comninellis, Ch. [Unite de Genie Electrochimique, Institut de sciences des procedes chimiques et biologiques, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne (Switzerland)

    2005-04-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp{sup 3} diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp{sup 3} diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp{sup 2} contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them.

  5. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    International Nuclear Information System (INIS)

    Mahe, E.; Devilliers, D.; Comninellis, Ch.

    2005-01-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp 3 diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp 3 diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp 2 contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them

  6. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes.

    Science.gov (United States)

    Wang, Sheng-Fu; Xu, Qiao

    2007-05-01

    In this paper, some electrochemical parameters of ethamsylate at a multi-walled carbon nanotube modified glassy carbon electrode, such as the charge number, exchange current density, standard heterogeneous rate constant and diffusion coefficient, were measured by cyclic voltammetry, chronoamperometry and chronocoulometry. The modified electrode exhibits good promotion of the electrochemical reaction of ethamsylate and increases the standard heterogeneous rate constant of ethamsylate greatly. The differential pulse voltammetry responses of ethamsylate were linearly dependent on its concentrations in a range from 2.0 x 10(-6) to 6.0 x 10(-5) mol L(-1), with a detection limit of 4.0 x 10(-7) mol L(-1).

  7. Using Poly-L-Histidine Modified Glassy Carbon Electrode to Trace Hydroquinone in the Sewage Water

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available A sensitive voltammetric method for trace measurements of hydroquinone in the sewage water is described. The poly-L-histidine is prepared to modify the glassy carbon electrode in order to improve the electrochemical catalysis of interesting substances such as hydroquinone. The influence of the base solution, pH value, and scanning speed on the tracing of hydroquinone is discussed, and the experimental procedures and conditions are optimized. The laboratory results show that it is possible to construct a linear calibration curve between the peak current of hydroquinone on modified electrode and its concentration at the level of 0.00001 mol/L. The potential limitation of the method is suggested by a linear peaking shift model as well. The method was successfully applied to the determination of hydroquinone in the actual sample of industrial waste water.

  8. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  9. Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors

    Science.gov (United States)

    Lee, J.; Johnson, L.; Safari, A.; Ramesh, R.; Sands, T.; Gilchrist, H.; Keramidas, V. G.

    1993-07-01

    Pb(Zr(0.52)Ti(0.48))O3 (PZT)/Y1Ba2Cu3O(x) (YBCO) heterostructures were grown by pulsed laser deposition, in which PZT films were epitaxial, highly oriented, or polycrystalline. These PZT films were obtained by varying the deposition temperature from 550 to 760 C or by using various substrates such as SrTiO3 (100), MgO (100), and r-plane sapphire. PZT films with Pt top electrodes exhibited large fatigue with 35-50 percent loss of the remanent polarization after 10 exp 9 cycles, depending on the crystalline quality. Polycrystalline films showed better fatigue resistance than epitaxial or highly oriented films. However, PZT films with both top and bottom YBCO electrodes had significantly improved fatigue resistance for both epitaxial and polycrystalline films. Electrode material seems to be a more important parameter in fatigue than the crystalline quality of the PZT films.

  10. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-08-01

    Thin films of Cu2Sb, prepared on stainless steel and copper substrates with a pulsed laser deposition technique at room temperature, have been evaluated as electrodes in lithium cells. The electrodes operate by a lithium insertion/copper extrusion reaction mechanism, the reversibility of which is superior when copper substrates are used, particularly when electrochemical cycling is restricted to the voltage range 0.65-1.4 V vs. Li/Li+. The superior performance of Cu2Sb films on copper is attributed to the more active participation of the extruded copper in the functioning of the electrode. The continual and extensive extrusion of copper on cycling the cells leads to the isolation of Li3Sb particles and a consequent formation of Sb. Improved cycling stability of both types of electrodes was obtained when cells were cycled between 0.65 and 1.4 V. A low-capacity lithium-ion cell with Cu2Sb and LiNi0.8Co0.15Al0.05O2 electrodes, laminated from powders, shows excellent cycling stability over the voltage range 3.15 - 2.2 V, the potential difference corresponding to approximately 0.65-1.4 V for the Cu2Sb electrode vs. Li/Li+. Chemical self-discharge of lithiated Cu2Sb electrodes by reaction with the electrolyte was severe when cells were allowed to relax on open circuit after reaching a lower voltage limit of 0.1 V. The solid electrolyte interphase (SEI) layer formed on Cu2Sb electrodes after cells had been cycled between 1.4 and 0.65 V vs. Li/Li+ was characterized by Fourier-transform infrared spectroscopy; the SEI layer contributes to the large irreversible capacity loss on the initial cycle of these cells. The data contribute to a better understanding of the electrochemical behavior of intermetallic electrodes in rechargeable lithium batteries.

  11. Glucose biosensors based on a gold nanodendrite modified screen-printed electrode

    International Nuclear Information System (INIS)

    Liu, Hsi-Chien; Tsai, Chung-Che; Wang, Gou-Jen

    2013-01-01

    In this study, an enzymatic glucose biosensor based on a three-dimensional gold nanodendrite (GND) modified screen-printed electrode was developed. The GNDs were electrochemically synthesized on the working electrode component of a commercially available screen-printed electrode using a solution acquired by dissolving bulk gold in aqua regia as the precursor. The 3D GND electrode greatly enhanced the effective sensing area of the biosensor, which improved the sensitivity of glucose detection. Actual glucose detections demonstrated that the fabricated devices could perform at a sensitivity of 46.76 μA mM −1 cm −2 with a linear detection range from 28 μM–8.4 mM and detection limit of 7 μM. A fast response time (∼3 s) was also observed. Moreover, only a 20 μl glucose oxidase is required for detection owing to the incorporation of the commercially available screen-printed electrode. (paper)

  12. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    Science.gov (United States)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  13. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection.

    Science.gov (United States)

    Li, Bing; Pan, Genhua; Avent, Neil D; Lowry, Roy B; Madgett, Tracey E; Waines, Paul L

    2015-10-15

    A novel printed graphene electrode modified with electrochemically reduced graphene oxide was developed for the detection of a specific oligonucleotide sequence. The graphene oxide was immobilized onto the surface of a graphene electrode via π-π bonds and electrochemical reduction of graphene oxide was achieved by cyclic voltammetry. A much higher redox current was observed from the reduced graphene oxide-graphene double-layer electrode, a 42% and 36.7% increase, respectively, in comparison with that of a bare printed graphene or reduced graphene oxide electrode. The good electron transfer activity is attributed to a combination of the large number of electroactive sites in reduced graphene oxide and the high conductivity nature of graphene. The probe ssDNA was further immobilized onto the surface of the reduced graphene oxide-graphene double-layer electrode via π-π bonds and then hybridized with its target cDNA. The change of peak current due to the hybridized dsDNA could be used for quantitative sensing of DNA concentration. It has been demonstrated that a linear range from 10(-7)M to 10(-12)M is achievable for the detection of human immunodeficiency virus 1 gene with a detection limit of 1.58 × 10(-13)M as determined by three times standard deviation of zero DNA concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Enhanced electrochemical oxidation of methanol on copper electrodes modified by electrocorrosion and electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Carugno, Sofía [INQUIMAE – DQIAQF, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires (Argentina); Chassaing, Elisabeth [IRDEP (UMR7174), EDF R and D, 6 Quai Watier, 78401 Chatou (France); Rosso, Michel [LPMC (UMR7643), CNRS, Ecole Polytechnique, F91128 Palaiseau Cedex (France); González, Graciela A., E-mail: graciela@qi.fcen.uba.ar [INQUIMAE – DQIAQF, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires (Argentina)

    2014-02-14

    In this paper, we report a study of electrocatalytic oxidation of methanol on copper electrodes subjected to different surface treatments, either electrocorrosion or electrodeposition in the absence of strong hydrogen co-deposition. The surface morphology of treated electrodes was examined by Field Emission Scanning Electron Microscopy (FE-SEM). The effect of different treatment conditions and the methanol concentration dependence were evaluated by cyclic voltammetric technique. The results indicate that the oxidation of methanol can be enhanced by a suitable micro and nano structure generated by these treatments. This enhanced electrode activity is related to an increase of the effective surface area and/or to an increase of the surface concentration of electroactive molecules or intermediates. - Highlights: • We presented simple treatments to increase the response of copper electrodes. • Copper electrodes were modified by electrocorrosion and electrodeposition. • Scanning Electron Microscopy images reveal the effects of the different treatments. • The response is enhanced by an area increase and/or intermediates concentration. • For each treatment the concentration range of the diffusion control is analyzed.

  15. Graphene-modified nickel foam electrode for cathodic degradation of nitrofuranzone: Kinetics, transformation products and toxicity

    Directory of Open Access Journals (Sweden)

    Ya Ma

    2017-12-01

    Full Text Available Simple, efficient, and durable electrodes are highly demanded for practical electro­chemical process. In this study, a reduced graphene oxide modified nickel foam electrode (GR‑Ni foam was facilely prepared via one-step cyclic voltammetry electrodeposition of gra­phene oxide suspension onto the Ni foam. The electrochemical degradation of nitrofuran­zone (NFZ, a kind of typical antibiotics was studied on the GR-Ni foam cathode. The cyclic voltammetry and electrochemical impedance spectra analysis confirmed that presence of GR loading accelerated the electron transfer from the cathode surface to NFZ. With the applied cathode potential of −1.25 V (vs. Ag/AgCl, the removal efficiency of NFZ (C0 = 20 mg L−1 at the GR-Ni foam electrode reached up to 99 % within 30 min, showing a higher reaction rate constant (0.1297 min−1 than 0.0870 min−1 at the Pd-Ni foam and 0.0186 min−1 at the Ni foam electrode. It was also found that the pH, dissolved oxygen and NFZ initial concentration have slight effect on NFZ degradation at the GR-Ni foam electrode. The reactions first occurred at nitro groups (-NO2, unsaturated C=N bonds and N-N bonds to generate furan ring-containing products, and then these products were transformed into linear diamine products. The direct reduction by electrons was mainly responsible for NFZ reduction at the GR-Ni foam electrode. Even after 18 cycles, the removal efficiency of NFZ still reached up to 98 % within 1 h. In addition, the cathodic degradation process could eliminate the antibacterial activity of NFZ. The GR-Ni foam electrode would have a great potential in electrochemical process for treating wastewater containing furan antibiotics.

  16. Simple protein structure-sensitive chronopotentiometric analysis with dithiothreitol-modified Hg electrodes

    Czech Academy of Sciences Publication Activity Database

    Ostatná, Veronika; Černocká, Hana; Paleček, Emil

    2012-01-01

    Roč. 87, SI (2012), s. 84-88 ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) KJB100040901; GA ČR(CZ) GAP301/11/2055; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : protein electroanalysis * DTT-modified electrodes * electrocatalysis Subject RIV: BO - Biophysics Impact factor: 3.947, year: 2012

  17. Ready fabrication of thin-film electrodes from building nanocrystals for micro-supercapacitors.

    Science.gov (United States)

    Chen, Zheng; Weng, Ding; Wang, Xiaolei; Cheng, Yanhua; Wang, Ge; Lu, Yunfeng

    2012-04-18

    Thin-film pseudocapacitor electrodes with ultrafast lithium storage kinetics, high capacitance and excellent cycling stability were fabricated from monodispersed TiO(2) building nanocrystals, providing a novel approach towards next-generation micro-supercapacitor applications. This journal is © The Royal Society of Chemistry 2012

  18. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so

  19. Investigation of interaction between silver oxide electrode and separator hydrated cellulose film in silver-cadmium accumulators

    International Nuclear Information System (INIS)

    Molotkova, E.N.; Yarochkina, E.N.

    1975-01-01

    Oxidation-reduction interaction of the oxysilver electrode with hydrocellulose film during storing charged silver-cadmium accumulators. It was demonstrated that accumulator electric characteristics durinq storing are linearly depending on the capacity of this hydrocellulose film to interact with silver oxide: the more silver is absorbed by film the quicker is the decreasing of the electromotive force and capacity of the accumulators. Preservation of the silver electrode capacity in the silver-cadmium accumulators is determined first of all by hydrocellulose separation film properties and especially by film layer adjacent to positive electrode. The more inert film layer is, regarding to silver oxide in the electrolite, the slower is dissolution of the electrode and also decompousing speed of AgO, the longer is the accumulator preservation time

  20. MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim.

    Science.gov (United States)

    da Silva, Hélder; Pacheco, João G; Magalhães, Júlia M C S; Viswanathan, Subramanian; Delerue-Matos, Cristina

    2014-02-15

    A novel sensitive electrochemical sensor was developed by electropolymerization of pyrrole (PY) and molecularly imprinted polymer (MIP) which was synthesized onto a glassy carbon electrode (GCE) in aqueous solution using cyclic voltammetry in the presence of Trimethoprim (TMP) as template molecules. Furthermore, a previous electrode modification was performed by deposition of a suspension of graphene on the electrode's surface. The performance of the imprinted and non-imprinted (NIP) films was evaluated by impedance spectroscopy (EIS) and cyclic voltammetry (CV) of a ferric solution. The molecularly imprinted film exhibited a high selectivity and sensitivity toward TMP. The sensor presented a linear range, between peak current intensity and logarithm of TMP concentration between 1.0 × 10(-6) and 1.0 × 10(-4)M. The results were accurate (with recoveries higher than 94%), precise (with standard deviations less than 5%) and the detection limit was 1.3 × 10(-7)M. The new sensor is selective, simple to construct and easy to operate. The MIP sensor was successfully applied to quantify TMP in urine samples. © 2013 Elsevier B.V. All rights reserved.

  1. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  2. Preparation and characterization of graphene/turbostratic carbon derived from chitosan film for supercapacitor electrodes

    Science.gov (United States)

    Hanappi, M. F. Y. M.; Deraman, M.; Suleman, M.; Othman, M. A. R.; Basri, N. H.; Nor, N. S. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.

    2018-04-01

    Electrochemical capacitors or supercapacitors are the potential energy storage devices which are known for having higher specific capacitance and specific energy than electrolytic capacitors. Electric double-layer capacitors (EDLCs) also referred as ultracapacitors is a class of supercapacitors that employ different forms of carbon like activated carbon, CNT, graphene etc., as electrodes. The performance of the supercapacitors is determined by its components namely electrolyte, electrode, etc. Carbon electrodes with high surface area and desired pore size distribution are always preferred and which can be tailored by varying the precursor and method of preparation. In recent years, owing to their low cost, ease of synthesis, high stability and conductivity, the activated carbons derived from biomass precursors have been investigated as potential electrode material for the EDLCs. In this report, we present the preparation and characterization of graphene/turbostratic carbon monolith (CM) electrodes from the carbon grains (CGs) obtained by carbonization (under the flow of nitrogen, N2 gas and over a temperature range from 600 °C to 1000 °C) of biomass precursor chitosan film. The procedure to prepare the chitosan film is described elsewhere. The carbon grains are characterized using Raman spectroscopy (RS) and X-ray diffraction (XRD). We expect that the CGs would have the similar characteristics as graphene and would be a potential electrode material for EDLCs application.

  3. Electrochemical Deposition of CdTe Semiconductor Thin Films for Solar Cell Application Using Two-Electrode and Three-Electrode Configurations: A Comparative Study

    Directory of Open Access Journals (Sweden)

    O. K. Echendu

    2016-01-01

    Full Text Available Thin films of CdTe semiconductor were electrochemically deposited using two-electrode and three-electrode configurations in potentiostatic mode for comparison. Cadmium sulphate and tellurium dioxide were used as cadmium and tellurium sources, respectively. The layers obtained using both configurations exhibit similar structural, optical, and electrical properties with no specific dependence on any particular electrode configuration used. These results indicate that electrochemical deposition (electrodeposition of CdTe and semiconductors in general can equally be carried out using two-electrode system as well as the conventional three-electrode system without compromising the essential qualities of the materials produced. The results also highlight the advantages of the two-electrode configuration in process simplification, cost reduction, and removal of a possible impurity source in the growth system, especially as the reference electrode ages.

  4. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode.

    Science.gov (United States)

    Nguyen, Hoai Viet; Richtera, Lukas; Moulick, Amitava; Xhaxhiu, Kledi; Kudr, Jiri; Cernei, Natalia; Polanska, Hana; Heger, Zbynek; Masarik, Michal; Kopel, Pavel; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-04-25

    In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.

  5. Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes

    International Nuclear Information System (INIS)

    Arvinte, A.; Pinteala, M.; Mahosenaho, M.; Sesay, A.M.; Virtanen, V.

    2011-01-01

    The electrochemical oxidation of p-nitrophenol (p-NP) has been studied comparatively on a graphene modified electrode and a multiwall carbon nanotube (MWNT) electrode by using cyclic and differential pulse voltammetry. The sensors were fabricated by modifying screen-printed electrodes with graphene and MWNT nanomaterials, respectively, both dispersed in Nafion polymer. p-NP is irreversibly oxidized at +0. 9 V (vs. the Ag/AgCl) in solutions of pH 7. The height and potential of the peaks depend on pH in the range from 5 to 11. In acidic media, p-NP yields a well-defined oxidation peak at +0. 96 V which gradually increases in height with the concentration of the analyte. In case of differential pulse voltammetry in sulfuric acid solution, the sensitivity is practically the same for both electrodes. The modified electrodes display an unusually wide linear response (from 10 μM to 0. 62 mM of p-NP), with a detection limit of 0. 6 μM in case of the graphene electrode, and of 1. 3 μM in case of the MWNT electrode. (author)

  6. A glassy carbon electrode modified with cerium phosphate nanotubes for the simultaneous determination of hydroquinone, catechol and resorcinol.

    Science.gov (United States)

    Li, Zhen; Yue, Yuhua; Hao, Yanjun; Feng, Shun; Zhou, Xianli

    2018-03-12

    A nafion film containing cerium phosphate nanotubes was pasted onto a glassy carbon electrode (GCE) to obtain a sensor for hydroquinone (HQ). The morphologies and components of the coating were characterized by transmission electron microscopy, scanning electron microscopy and energy-dispersive spectroscopy. Cyclic voltammetry and differential pulse voltammetry (DPV) showed the specific surface of the electrode to be significantly increased and the electron transfer rate to be accelerated. The modified GCE was applied to the determination of hydroquinone (HQ) via DPV. The oxidation current increases linearly in the 0.23 μM to 16 mM HQ concentration range which is as wide as five orders of magnitude. The limit of detection is 0.12 μM (based on a signal-to-noise ratio of 3), and the sensitivity is 1.41 μA·μM -1  cm -2 . The method was further applied to the simultaneous determination of HQ, catechol and resorcinol. The potentials for the three species are well separated (20, 134, and 572 mV vs SCE). Average recoveries from (spiked) real water samples are between 95.2 and 107.0%, with relative standard deviations of 0.9~2.7% (for n = 3) at three spiking levels. The method was validated by independent assays using HPLC. Graphical abstract ᅟ.

  7. Annealing Effect on the Photoelectrochemical Properties of BiVO_4 Thin Film Electrodes

    International Nuclear Information System (INIS)

    Siti Nur Farhana Mohd Nasir; Mohd Asri Mat Teridi; Mehdi Ebadi; Sagu, J.S.

    2015-01-01

    Monoclinic bismuth vanadate (BiVO_4) thin film electrodes were fabricated on fluorine-doped tin oxide via aerosol-assisted chemical vapour deposition (AACVD). Annealing and without annealing effect of thin films were analysed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible spectrophotometry (UV-Vis) and current voltage measurement. All BiVO_4 thin films showed an anodic photocurrent. The sample of BiVO_4 annealed at 400 degree Celsius exhibited the highest photocurrent density of 0.44 mAcm"-"2 vs. Ag/ AgCl at 1.23 V. (author)

  8. Photoelectrochemistry of copper(I) acetylide films electrodeposited onto copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G.; Cattarin, S.; Mengoli, G.; Fleischmann, M.; Peter, L.M.

    1986-01-01

    Films of copper acetylide (Cu/sub 2/C/sub 2/) were grown electrochemically on copper and characterized by transmittance and reflectance techniques. The photoelectrochemical properties of the filmed electrodes in alkaline solution indicate that Cu/sub 2/C/sub 2/ behaves as a p-type semiconducting material (1.5 eV band gap). The photocurrents depend on film thickness and aging and high resistivity or recombination losses limit the quantum yield to some 4% for thicknesses of practical importance (250 nm).

  9. Preparation and Characterization of Nicke-iron Alloy Film as Freestanding Electrode for Oxygen Evolution Reaction

    Directory of Open Access Journals (Sweden)

    Yao Mengqi

    2018-01-01

    Full Text Available This work reports the porous nicke-iron alloy film supported on stainless steel mesh as freestanding electrode for enhanced oxygen evolution reaction (OER catalyst prepared from an one step electrodeposition method. Results indicated that the porous nickle-iron alloy film exhibits a low overpotential of 270 mV at 10 mA cm-2 and excellent electroconductibility. The superior OER properties can be attributed to its novel synthetic process, conductive substrate and porous structure. This work will provide a new strategy to fabricate alloy film for OER electrocatalyst.

  10. Simultaneous determination of dopamine, uric acid and nitrite using carboxylated graphene oxide/lanthanum modified electrode

    International Nuclear Information System (INIS)

    Ye, Fengying; Feng, Chenqi; Jiang, Jibo; Han, Sheng

    2015-01-01

    Highlights: • The carboxylated graphene oxide/lanthanum-modified glassy carbon electrode (GO-COOLa/GCE) was successfully utilized for the simultaneous detection and quantification of DA, UA and NO 2 − . • Combining the benefits of carboxylated graphene oxide and lanthanum, the modified sensor displayed large peak separations, long linear ranges and low detection limits for simultaneously detecting DA, UA and NO 2 − . • The GO-COOLa/GCE electrode showed well stability, good repeatability, rapid response, and high catalytic performance toward the oxidations of DA, UA and NO 2 − . - Abstract: A bare glassy carbon electrode (GCE) was reformed by carboxylated graphene oxide/lanthanum, and the modified electrode, called GO-COOLa/GCE, was fabricated for simultaneously detecting dopamine (DA), uric acid (UA) and nitrite (NO 2 − ) by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. Several factors which affected the electrocatalytic activity of the GO-COOLa/GCE electrode, such as the effect of pH, scan rate and concentration were studied. Due to the combination of carboxylated graphene oxide and lanthanum ions, the GO-COOLa/GCE sensor showed rapid response, excellent selectivity and high catalytic performance toward the electrooxidation of DA, UA and NO 2 − . In optimized conditions, two linear response ranges for determining DA were obtained over ranges of 0.01-1.96×10 2 μM and 1.96×10 2 -1.23×10 3 μM with detection limit of 0.018 μM (S/N = 3). And the responses of the GO-COOLa/GCE electrode for UA and NO 2 − were linear in the region of 1-1.53×10 3 μM and 1-2.75×10 3 μM with detection limits of 0.058 μM and 0.070 μM, respectively. Furthermore, this reformed electrode was successfully used to the detection of DA, UA and NO 2 − in real urine and serum samples, showing its promising application in the electroanalysis of real samples.

  11. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2006-01-01

    A novel and sensitive electrochemical DNA biosensor based on electrochemically fabricated polyaniline nanowire and methylene blue for DNA hybridization detection is presented. Nanowires of conducting polymers were directly synthesized through a three-step electrochemical deposition procedure in an aniline-containing electrolyte solution, by using the glassy carbon electrode (GCE) as the working electrode. The morphology of the polyaniline films was examined using a field emission scanning electron microscope (SEM). The diameters of the nanowires range from 80 to 100 nm. The polyaniline nanowires-coated electrode exhibited very good electrochemical conductivity. Oligonucleotides with phosphate groups at the 5' end were covalently linked onto the amino groups of polyaniline nanowires on the electrode. The hybridization events were monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The approach described here can effectively discriminate complementary from non-complementary DNA sequence, with a detection limit of 1.0 x 10 -12 mol l -1 of complementary target, suggesting that the polyaniline nanowires hold great promises for sensitive electrochemical biosensor applications

  12. Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology

    Directory of Open Access Journals (Sweden)

    Robert Koncki

    2006-04-01

    Full Text Available Various planar technologies are employed for developing solid-state sensorshaving low cost, small size and high reproducibility; thin- and thick-film technologies aremost suitable for such productions. Screen-printing is especially suitable due to itssimplicity, low-cost, high reproducibility and efficiency in large-scale production. Thistechnology enables the deposition of a thick layer and allows precise pattern control.Moreover, this is a highly economic technology, saving large amounts of the used inks. Inthe course of repetitions of the film-deposition procedure there is no waste of material dueto additivity of this thick-film technology. Finally, the thick films can be easily and quicklydeposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodesbased on ionophores as well as crystalline ion-selective materials dedicated forpotentiometric measurements are demonstrated. Analytical parameters of these sensors arecomparable with those reported for conventional potentiometric electrodes. All mentionedthick-film strip electrodes have been totally fabricated in only one, fully automated thick-film technology, without any additional manual, chemical or electrochemical steps. In allcases simple, inexpensive, commercially available materials, i.e. flexible, plastic substratesand easily cured polymer-based pastes were used.

  13. Enzymatic logic calculation systems based on solid-state electrochemiluminescence and molecularly imprinted polymer film electrodes.

    Science.gov (United States)

    Lian, Wenjing; Liang, Jiying; Shen, Li; Jin, Yue; Liu, Hongyun

    2018-02-15

    The molecularly imprinted polymer (MIP) films were electropolymerized on the surface of Au electrodes with luminol and pyrrole (PY) as the two monomers and ampicillin (AM) as the template molecule. The electrochemiluminescence (ECL) intensity peak of polyluminol (PL) of the AM-free MIP films at 0.7V vs Ag/AgCl could be greatly enhanced by AM rebinding. In addition, the ECL signals of the MIP films could also be enhanced by the addition of glucose oxidase (GOD)/glucose and/or ferrocenedicarboxylic acid (Fc(COOH) 2 ) in the testing solution. Moreover, Fc(COOH) 2 exhibited cyclic voltammetric (CV) response at the AM-free MIP film electrodes. Based on these results, a binary 3-input/6-output biomolecular logic gate system was established with AM, GOD and Fc(COOH) 2 as inputs and the ECL responses at different levels and CV signal as outputs. Some functional non-Boolean logic devices such as an encoder, a decoder and a demultiplexer were also constructed on the same platform. Particularly, on the basis of the same system, a ternary AND logic gate was established. The present work combined MIP film electrodes, the solid-state ECL, and the enzymatic reaction together, and various types of biomolecular logic circuits and devices were developed, which opened a novel avenue to construct more complicated bio-logic gate systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    Science.gov (United States)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Impedance response of carbon nanotube-titania electrodes dried under modified gravity

    International Nuclear Information System (INIS)

    Ordenana-Martinez, A.S.; Rincon, M.E.; Vargas, M.; Ramos, E.

    2011-01-01

    The synthesis and impregnation of porous titania films by commercial multiwalled carbon nanotubes and nanotube rich carbon soot are reported. The samples were dried under terrestrial gravity g and in a centrifuge accelerated at 13 g. X-Ray Diffraction data and Scanning Electron Microscopy images indicated differences in the crystal structure and tendency to agglomeration in both carbon types, providing different microstructures of functionally graded electrodes. Drying the samples in a centrifuge helps to the distribution of carbon nanoparticles and to the decrement of the impedance at the contact interfaces. The presence of titania weakens the differences observed in both drying protocols, but not the differences due to the carbon source. Superior capacitance and network conductivity were observed in electrodes based on commercial carbon nanotubes.

  16. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    International Nuclear Information System (INIS)

    Ong, Hui-Yng; Shrestha, Milan; Lau, Gih-Keong

    2015-01-01

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window

  17. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Hui-Yng [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Engineering, Nanyang Polytechnic, Singapore 569830 (Singapore); Shrestha, Milan; Lau, Gih-Keong, E-mail: mgklau@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-09-28

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window.

  18. Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Pourbahram, Bahareh; Mansouri-Majd, Samira; Hallaj, Rahman

    2015-01-01

    Highlights: • CNTs/chitosan/GC electrode used as platform for electrodeposition of MnO x -nanoflakes. • Modified electrode has excellent catalytic activity for oxidation of Cr 3+ at pH 3–7. • Detection limit and sensitivity of sensor for Cr 3+ detection were 0.3 μM and 18.7 nA/μM. • Sensor has good stability and high selectivity in the presence of common interferences. • Sensor applied for the detection of Cr 3+ in real samples with satisfactory results. - Abstract: In this research a nanocomposite containing chitosan (Chit) and maltiwalled carbon nanotubes (MWCNTs) was applied as platform for immobilization of electrodeposited manganese oxide (MnOx) nanostructures. First, glassy carbon (GC) electrode modified with thin film of Chitosan/MWCNTs nanocomposite. Then MnO x nanostructures was electrodeposited onto Chitosan/MWCNTs modified GC electrode using combination of constant potential step (0.6 V) and cyclic voltammetry(0.3–0.6 V) techniques. The XRD patterns and scanning electron microscope images indicated immobilization of uniformly MnOx nanoflakes with high crystallite onto MWCNTs/Chit film. The modified electrode shows a well-defined redox couple for Mn 2+ /MnO 2 system. Charge transfer coefficient (α), electron transfer rate constant (k s ) and surface concentration (Γ) were 0.394, 3.44 s −1 and 3.3 × 10 −11 mol cm −2 , respectively. The modified electrode showed excellent electrocatalytic activity toward oxidation of chromium (III) at natural pH solutions. Cyclic voltammetry and hydrodynamic amperometery were applied as measuring techniques for chromium detection. Detection limit, sensitivity and linear concentration range of the sensor were, 0.3 (μM), 18.7 nAμ M −1 and 3 μM to 200 μM, respectively. Moreover, the sensor retained about 90% of its original response toward Cr(III) after storage three months in ambient condition. Furthermore, the sensor response toward different common interferences was negligible. Finally, the

  19. Electrochemical Determination of Food Preservative Nitrite with Gold Nanoparticles/p-Aminothiophenol-Modified Gold Electrode.

    Science.gov (United States)

    Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat

    2016-08-02

    Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl₄ solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO₂(-) solution and in sausage sample solution, to which different concentrations of NO₂(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.

  20. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection.

    Science.gov (United States)

    Ji, Daizong; Liu, Lei; Li, Shuang; Chen, Chen; Lu, Yanli; Wu, Jiajia; Liu, Qingjun

    2017-12-15

    Smartphone-based electrochemical devices have such advantages as the low price, miniaturization, and obtaining the real-time data. As a popular electrochemical method, cyclic voltammetry (CV) has shown its great practicability for quantitative detection and electrodes modification. In this study, a smartphone-based CV system with a simple method of electrode modification was constructed to perform electrochemical detections. The system was composed of these main portions: modified electrodes, portable electrochemical detector and smartphone. Among them, the detector was comprised of an energy transformation module applying the stimuli signals, and a low-cost potentiostat module for CV measurements with a Bluetooth module for transmitting data and commands. With an Application (App), the smartphone was used as the controller and displayer of the system. Through controlling of different scan rates, the smartphone-based system could perform CV detections for redox couples with test errors less than 3.8% compared to that of commercial electrochemical workstation. Also, the reduced graphene oxide (rGO) and sensitive substance could be modified by the system on the screen printed electrodes for detections. As a demonstration, 3-amino phenylboronic acid (APBA) was used as the sensitive substance to fabricate a glucose sensor. Finally, the experimental data of the system were shown the linear, sensitive, and specific responses to glucose at different doses, even in blood serum as low as about 0.026mM with 3δ/slope calculation. Thus, the system could show great potentials of detection and modification of electrodes in various fields, such as public health, water monitoring, and food quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhang, Yuehua; Wu, Lihua; Lei, Wu; Xia, Xifeng; Xia, Mingzhu; Hao, Qingli

    2014-01-01

    Graphical abstract: - Highlights: • Polycarbazole/N-doping graphene (PCZ/N-GE) composite was fabricated. • The PCZ/N-GE composite shows good electrocatalytic activity to 4-nitrophenol. • PCZ/N-GE modified electrode was used for determination of 4-nitrophenol. • The proposed sensor exhibits good sensitivity, stability and reproducibility. - Abstract: Polycarbazole (PCZ)/nitrogen-doped graphene (N-GE) composite was prepared by electropolymerization of carbazole on the N-GE modified glass carbon electrode (N-GE/GCE) for fabricating a novel electrochemical sensor for 4-nitrophenol (4-NP). The PCZ/N-GE shows high conductivity and well-distributed nanostructure. The redox behavior of 4-NP at a PCZ/N-GE/GCE was investigated in acetate buffer solution by cyclic voltammetry (CV), compared with the bare GCE, reduced graphene oxide (RGO), N-GE and PCZ modified GCEs. The results indicate that all modified electrodes show the enhanced reduction peak currents. However, the PCZ/N-GE/GCE exhibits the highest peak current and most positive reduction potential of 4-NP, which reflects the PCZ/N-GE composite has the best electrocatalytic activity towards 4-NP. The enhanced electrochemical performance of PCZ/N-GE and the electrocatalytic activity to 4-NP are contributed to the synergic effect of PCZ and N-GE with highly conductivity and large surface area, which can greatly facilitate the electron-transfer processes between the electrolyte and electrode. An electrochemical sensor for 4-NP was developed based on the PCZ/N-GE modified electrode under the optimized conditions. The reduction peak current was linear with the concentration of 4-NP in the range of 8 × 10 -7 ∼2 × 10 -5 M. The low detection limit of the sensor was estimated to be 0.062 μM (S/N = 3). The sensor based on PCZ/N-GE/GCE was also applied to the detection of 4-NP in real water samples

  2. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Wu Kangbing; Hu Shengshui; Fei Junjie; Bai Wen

    2003-01-01

    A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd 2+ and Pb 2+ first adsorb onto the surface of a MWNT film coated GCE and then reduce at -1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at -0.88 and -0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I - significantly enhances the stripping peak currents since it induces Cd 2+ and Pb 2+ to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd 2+ from 2.5x10 -8 to 1x10 -5 mol/l and with that of Pb 2+ from 2x10 -8 to 1x10 -5 mol/l. The lowest detectable concentrations of Cd 2+ and Pb 2+ are estimated to be 6x10 -9 and 4x10 -9 mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd 2+ and Pb 2+ in water samples

  3. The preparation and corrosion resistance of Ce and Nd modified anodic films on aluminum

    International Nuclear Information System (INIS)

    Li Qizheng; Tang Yuming; Zuo Yu

    2010-01-01

    Rare earth element Ce and Nd modified anodic films were prepared on aluminum surface by a relatively simple method: the aluminum samples were first immersed in Ni(NO 3 ) 2 solutions containing Ce or Nd salts at 90 deg. C, then were dried and anodized. The contents of Ce or Nd in the anodic films were from 0.5% to 0.9%, and about 4-5% Ni was also introduced in the films. The modified anodic films were more compact with much smaller pores and increased hardness. In neutral, acidic and basic NaCl solutions, the rare earth modified films showed obviously improved corrosion resistance. The Ce modified films showed better corrosion resistance than Nd modified films. The cracking resistance of the films under heating was also improved.