WorldWideScience

Sample records for film metal oxide-polymer

  1. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  2. Metal oxide targets produced by the polymer-assisted deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Mitch A., E-mail: mitch@berkeley.ed [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ashby, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gates, Jacklyn M. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stavsetra, Liv [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gregorich, Kenneth E.; Nitsche, Heino [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-02-11

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  3. Metal oxide targets produced by the polymer-assisted deposition method

    International Nuclear Information System (INIS)

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T.; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2010-01-01

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  4. Thin HTSC films produced by a polymer metal precursor technique

    Science.gov (United States)

    Lampe, L. v.; Zygalsky, F.; Hinrichsen, G.

    In precursors the metal ions are combined with acid groups of polymethacrylic acid (PMAA), polyacrylic acid (PAA) or novolac. Compared to thermal degradation temperature of pure polymers those of precursors are low. Precursors films were patterned by UV lithography. Diffractometric investigations showed that the c-axis oriented epitaxial films of YBa 2Cu 3O x and Bi 2Sr 2CaCu 2O x originated from amorphous metal oxide films, which were received after thermal degradation of the precursor. Transition temperatures and current densities were determined by electric resistivity measurements.

  5. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Varaprasad, Kokkarachedu, E-mail: varmaindian@gmail.com [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Pariguana, Manuel [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Centro de Innovación Tecnológica Agroindustrial CITE Agroindustrial, Panamericana Sur Km, 293.3, Ica (Peru); Raghavendra, Gownolla Malegowd [Department of Packaging, Yonsei University, Wonju, Gangwon-do 220 710 (Korea, Republic of); Jayaramudu, Tippabattini [Center for Nano Cellulose Future Composites, Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Ku, Incheon 402–751 (Korea, Republic of); Sadiku, Emmanuel Rotimi [Department of Polymer Technology, Tshwane University of Technology, CSIR-Campus, Pretoria 0040 (South Africa)

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. - Graphical abstract: Biodegradable metal-oxide/polymer nanocomposites films prepared by using poly-ε-caprolactone with disposed PET oil bottles terephthalic acid monomer. The development of biodegradable film provides a new material with desirable mechanical, physical and chemical properties and can be utilized for industrial applications. - Highlights: • Terephthalic acid obtained from disposed PET oil bottles via precipitation technique. • New nano metal-oxides were developed by double precipitation technique. • Nano metal-oxide polymer films were synthesized by solvent evaporation method. • Nano metal-oxide polymer films exhibit superior mechanical characteristics.

  6. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The interfacial chemistry of metallized, oxide coated, and nanocomposite coated polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.P. [Durham Univ. (United Kingdom). Dept. of Chemistry; Kochem, K.H. [HOECHST Aktiengesellschaft, Werk Kalle/Albert, Geschaftsbereich H, Rheingaustrasse 190-196, D-65174 Wiesbaden (Germany); Revell, K.M. [CAMVAC (Europe) Ltd., Burrell Way, Thetford, Norfolk IP24 3QY (United Kingdom); Kelly, R.S.A. [CAMVAC (Europe) Ltd., Burrell Way, Thetford, Norfolk IP24 3QY (United Kingdom); Badyal, J.P.S. [Durham Univ. (United Kingdom). Dept. of Chemistry

    1995-02-15

    Aluminium, aluminium oxide, and aluminium/aluminium oxide nanocomposite coated polymer substrates have been characterized by X-ray photoelectron spectroscopy, transmission electron microscopy, argon ion sputter depth profiling, and gas permeation measurements. A comparison of the similarities and differences between these coatings has provided a detailed insight into the physicochemical origins of gas barrier associated with metallized plastics. Keywords: Aluminium; Aluminium oxide; Coatings; X-ray photoelectron spectroscopy ((orig.))

  8. Metal Oxides Doped PPY-PVA Blend Thin Films Based Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. B. DUPARE

    2009-02-01

    Full Text Available Synthesis of metal oxides doped polypyrrole–polyvinyl alcohol blend thin films by in situ chemical oxidative polymerization, using microwave oven on glass substrate for development of Ammonia and Trimethyl ammine hazardous gas sensor. The all experimental process carried out at room temperature(304 K. These polymer materials were characterized by Chemical analyses, spectral studies (UV-visible and IR and conductivity measurement by four –probe technique. The surface morphology as observed in the SEM image was observed to be uniformly covering the entire substrate surface. The sensor was used for different concentration (ppm of TMA and Ammonia gas investigation at room temperature (304 k. This study found to possess improved electrical, mechanical and environmental stability metal oxides doped PPY-PVA films.

  9. High performance inkjet-printed metal oxide thin film transistors via addition of insulating polymer with proper molecular weight

    Science.gov (United States)

    Sun, Dawei; Chen, Cihai; Zhang, Jun; Wu, Xiaomin; Chen, Huipeng; Guo, Tailiang

    2018-01-01

    Fabrication of metal oxide thin film transistor (MOTFT) arrays using the inkjet printing process has caused tremendous interest for low-cost and large-area flexible electronic devices. However, the inkjet-printed MOTFT arrays usually exhibited a non-uniform geometry due to the coffee ring effect, which restricted their commercial application. Therefore, in this work, a strategy is reported to control the geometry and enhance device performance of inkjet-printed MOTFT arrays by the addition of an insulating polymer to the precursor solution prior to film deposition. Moreover, the impact of the polymer molecular weight (MW) on the geometry, chemical constitution, crystallization, and MOTFT properties of inkjet-printed metal oxide depositions was investigated. The results demonstrated that with an increase of MW of polystyrene (PS) from 2000 to 200 000, the coffee ring was gradually faded and the coffee ring effect was completely eliminated when MW reached 200 000, which is associated with the enhanced viscosity with the insulating polymer, providing a high resistance to the outward capillary flow, which facilitated the depinning of the contact line, leading to the elimination of the coffee ring. More importantly, the carrier mobility increased significantly from 4.2 cm2 V-1 s-1 up to 13.7 cm2 V-1 s-1 as PS MW increased from 2000 to 200 000, which was about 3 times that of the pristine In2O3 TFTs. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy results indicated that PS doping of In2O3 films not only frustrated crystallization but also altered chemical constitution by enhancing the formation of the M-O structure, both of which facilitated the carrier transport. These results demonstrated that the simple polymer additive process provides a promising method that can efficiently control the geometry of MO arrays during inkjet printing and maximize the device performance of MOTFT arrays, which showed great potential for the application in next

  10. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  11. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications

    International Nuclear Information System (INIS)

    Sarkar, Sudipta; Guibal, E.; Quignard, F.; SenGupta, A. K.

    2012-01-01

    Metal and metal oxide nanoparticles exhibit unique properties in regard to sorption behaviors, magnetic activity, chemical reduction, ligand sequestration among others. To this end, attempts are being continuously made to take advantage of them in multitude of applications including separation, catalysis, environmental remediation, sensing, biomedical applications and others. However, metal and metal oxide nanoparticles lack chemical stability and mechanical strength. They exhibit extremely high pressure drop or head loss in fixed-bed column operation and are not suitable for any flow-through systems. Also, nanoparticles tend to aggregate; this phenomenon reduces their high surface area to volume ratio and subsequently reduces effectiveness. By appropriately dispersing metal and metal oxide nanoparticles into synthetic and naturally occurring polymers, many of the shortcomings can be overcome without compromising the parent properties of the nanoparticles. Furthermore, the appropriate choice of the polymer host with specific functional groups may even lead to the enhancement of the properties of nanoparticles. The synthesis of hybrid materials involves two broad pathways: dispersing the nanoparticles (i) within pre-formed or commercially available polymers; and (ii) during the polymerization process. This review presents a broad coverage of nanoparticles and polymeric/biopolymeric host materials and the resulting properties of the hybrid composites. In addition, the review discusses the role of the Donnan membrane effect exerted by the host functionalized polymer in harnessing the desirable properties of metal and metal oxide nanoparticles for intended applications.

  12. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  13. Graphene Oxide Monolayer as a Compatibilizer at the Polymer-Polymer Interface for Stabilizing Polymer Bilayer Films against Dewetting.

    Science.gov (United States)

    Kim, Tae-Ho; Kim, Hyeri; Choi, Ki-In; Yoo, Jeseung; Seo, Young-Soo; Lee, Jeong-Soo; Koo, Jaseung

    2016-12-06

    We investigate the effect of adding graphene oxide (GO) sheets at the polymer-polymer interface on the dewetting dynamics and compatibility of immiscible polymer bilayer films. GO monolayers are deposited at the poly(methyl methacrylate) (PMMA)-polystyrene (PS) interface by the Langmuir-Schaefer technique. GO monolayers are found to significantly inhibit the dewetting behavior of both PMMA films (on PS substrates) and PS films (on PMMA substrates). This can be interpreted in terms of an interfacial interaction between the GO sheets and these polymers, which is evidenced by the reduced contact angle of the dewet droplets. The favorable interaction of GO with both PS and PMMA facilitates compatibilization of the immiscible polymer bilayer films, thereby stabilizing their bilayer films against dewetting. This compatibilization effect is verified by neutron reflectivity measurements, which reveal that the addition of GO monolayers broadens the interface between PS and the deuterated PMMA films by 2.2 times over that of the bilayer in the absence of GO.

  14. The role of polymer films on the oxidation of magnetite nanoparticles

    Science.gov (United States)

    Letti, C. J.; Paterno, L. G.; Pereira-da-Silva, M. A.; Morais, P. C.; Soler, M. A. G.

    2017-02-01

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe3O4-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe3O4-np/PSS)n with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe3O4-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe3O4-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe3O4-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite.

  15. Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate

    International Nuclear Information System (INIS)

    Barranco, V.; Carpentier, J.; Grundmeier, G.

    2004-01-01

    The barrier properties of thin model organosilicon plasma polymers layers on iron are characterised by means of electrochemical impedance spectroscopy (EIS). Tailored thin plasma polymers of controlled morphology and chemical composition were deposited from a microwave discharge. By the analysis of the obtained impedance diagrams, the evolution of the water uptake φ, coating resistance and polymer capacitance with immersion time were monitored and the diffusion coefficients of the water through the films were calculated. The impedance data correlated well with the chemical structure and morphology of the plasma polymer films with a thickness of less than 100 nm. The composition of the films were determined by means of infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The morphology of the plasma polymer surface and the interface between the plasma polymer and the metal were characterised using atomic force microscopy (AFM). It could be shown that, at higher pressure, the film roughness increases which is probably due to the adsorption of plasma polymer nanoparticles formed in the plasma bulk and the faster film growth. This leads to voids with a size of a few tens of nanometers at the polymer/metal interface. The film roughness increases from the interface to the outer surface of the film. By lowering the pressure and thereby slowing the deposition rate, the plasma polymers perfectly imitate the substrate topography and lead to an excellent blocking of the metal surface. Moreover, the ratio of siloxane bonds to methyl-silyl groups increases which implies that the crosslink density is higher at lower deposition rate. The EIS data consistently showed higher coating resistance as well as lower interfacial capacitance values and a better stability over time for the film deposited at slower pressure. The diffusion coefficient of water in thin and ultra-thin plasma

  16. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  17. The role of polymer films on the oxidation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Letti, C.J. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Paterno, L.G. [Universidade de Brasilia, Instituto de Quimica, 70910-000 Brasilia, DF (Brazil); Pereira-da-Silva, M.A. [Instituto de Fisica de São Carlos, USP, 13560-9700 São Carlos, SP (Brazil); Centro Universitario Central Paulista – UNICEP, 13563-470 São Carlos, SP (Brazil); Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Soler, M.A.G., E-mail: soler@unb.br [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil)

    2017-02-15

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe{sub 3}O{sub 4}-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe{sub 3}O{sub 4}-np/PSS){sub n} with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe{sub 3}O{sub 4}-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe{sub 3}O{sub 4}-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite. - Graphical abstract: Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films avoids the oxidation and phase transformation of nanosized magnetite. - Highlights: • (Fe{sub 3}O{sub 4}-np/PSS){sub n} nanofilms, with n=2 up to 25, where layer-by-layer assembled. • The influence of film architecture on the Fe{sub 3}O{sub 4}-np oxidation was investigated through Raman spectroscopy. • Encapsulation of Fe{sub 3}O{sub 4}-np by PSS showed to be very efficient to avoid the Fe{sub 3}O{sub 4}-np oxidation.

  18. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  19. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  20. Transparent indium zinc oxide thin films used in photovoltaic cells based on polymer blends

    International Nuclear Information System (INIS)

    Besleaga, Cristina; Ion, L.; Ghenescu, Veta; Socol, G.; Radu, A.; Arghir, Iulia; Florica, Camelia; Antohe, S.

    2012-01-01

    Indium zinc oxide (IZO) thin films were obtained using pulsed laser deposition. The samples were prepared by ablation of targets with In concentrations, In/(In + Zn), of 80 at.%, at low substrate temperatures under reactive atmosphere. IZO films were used as transparent electrodes in polymer-based – poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 1:1 blend – photovoltaic cells. The action spectra measurements revealed that IZO-based photovoltaic structures have performances comparable with those using indium–tin–oxide as transparent electrode. - Highlights: ► Indium zinc oxide films were grown by pulsed laser deposition at room temperature. ► The films had large free carrier density and reasonably high mobility. ► These films fit for transparent electrodes in polymer-based photovoltaic cells.

  1. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Science.gov (United States)

    Martinson, Alex B.; Kim, In Soo

    2017-09-26

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  2. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.

    Science.gov (United States)

    Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C

    2015-05-01

    Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigation of optical properties of aluminium oxide doped polystyrene polymer nanocomposite films

    Science.gov (United States)

    Bhavsar, Shilpa; Patel, Gnansagar B.; Singh, N. L.

    2018-03-01

    In the present work, a simple solution casting method was utilized to synthesize aluminium oxide (Al2O3) doped polystyrene (PS) polymer nanocomposite films. As synthesized films were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultra violet (UV)-visible spectroscopy, photoluminescence (PL) method and scanning electron microscopy (SEM). The crystalline nature of the films was found to decrease after incorporation of filler in the polymer matrix as revealed by XRD results. A new carbonyl group was appeared in the FTIR spectra and confirmed the charge transfer reaction between filler and polymer matrix. The decrease in the band gap was found with the filler concentration in the synthesized polymer nanocomposite films. Photoluminescence emission spectra of nanocomposites were observed at 411 nm, 435 nm and 462 nm, respectively in violet-blue region which indicates interaction between the dopant and the polymer matrix. The PL emission spectra of polymer nanocomposite films with 3 wt% of Al2O3 filler exhibited higher peak intensity. The Al2O3 filler dispersion is found to reduce band gap and promote luminescence property in polystyrene. SEM analysis indicates the agglomeration of Al2O3 nanoparticles into PS matrix at higher concentration.

  4. Structural and Electrical Properties of Graphene Oxide-Doped PVA/PVP Blend Nanocomposite Polymer Films

    Directory of Open Access Journals (Sweden)

    S. K. Shahenoor Basha

    2018-01-01

    Full Text Available Graphene oxide (GO nanoparticles were incorporated in PVA/PVP blend polymers for the preparation of nanocomposite polymer films by the solution cast technique. XRD, FTIR, DSC, SEM, and UV-visible studies were performed on the prepared nanocomposite polymer films. XRD revealed the amorphous nature of the prepared films. Thermal analysis of the nanocomposite polymer films was analyzed by DSC. SEM revealed the morphological features and the degree of roughness of the samples. DC conductivity studies were under taken on the samples, and the conductivity was found to be 6.13 × 10−4 S·cm−1 for the polymer film prepared at room temperature. A solid-state battery has been fabricated with the chemical composition of Mg+/(PVA/PVP  :  GO/(I2 + C + electrolyte, and its cell parameters like power density and current density were calculated.

  5. Study of oxide/metal/oxide thin films for transparent electronics and solar cells applications by spectroscopic ellipsometry

    Directory of Open Access Journals (Sweden)

    Mihaela Girtan

    2017-05-01

    Full Text Available A comprehensive study of a class of Oxide/Metal/Oxide (Oxide = ITO, AZO, TiO2 and Bi2O3, Metal = Au thin films was done by correlating the spectrophotometric studies with the ellispometric models. Films were deposited by successive sputtering from metallic targets In:Sn, Zn:Al, Ti and Bi in reactive atmosphere (for the oxide films and respective inert atmosphere (for the metallic Au interlayer films on glass substrates. The measurements of optical constants n—the refractive index and k—the extinction coefficient, at different incident photon energies for single oxide films and also for the three layers films oxide/metal/oxide samples were made using the spectroscopic ellipsometry (SE technique. The ellipsometry modelling process was coupled with the recorded transmission spectra data of a double beam spectrophotometer and the best fitting parameters were obtained not only by fitting the n and k experimental data with the dispersion fitting curves as usual is practiced in the most reported data in literature, but also by comparing the calculated the transmission coefficient from ellipsometry with the experimental values obtained from direct spectrophotometry measurements. In this way the best dispersion model was deduced for each sample. Very good correlations were obtained for the other different thin films characteristics such as the films thickness, optical band gap and electrical resistivity obtained by other measurements and calculation techniques. The ellipsometric modelling, can hence give the possibility in the future to predict, by ellipsometric simulations, the proper device architecture in function of the preferred optical and electrical properties.

  6. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  7. High Precision Metal Thin Film Liftoff Technique

    Science.gov (United States)

    Brown, Ari D. (Inventor); Patel, Amil A. (Inventor)

    2015-01-01

    A metal film liftoff process includes applying a polymer layer onto a silicon substrate, applying a germanium layer over the polymer layer to create a bilayer lift off mask, applying a patterned photoresist layer over the germanium layer, removing an exposed portion of the germanium layer, removing the photoresist layer and a portion of the polymer layer to expose a portion of the substrate and create an overhanging structure of the germanium layer, depositing a metal film over the exposed portion of the substrate and the germanium layer, and removing the polymer and germanium layers along with the overlaying metal film.

  8. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  9. Electrocatalytic oxidation of ascorbic acid by [Fe(CN){sub 6}]{sup 3-/4-} redox couple electrostatically trapped in cationic N,N-dimethylaniline polymer film electropolymerized on diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Protiva Rani [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Saha, Madhu Sudan [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Okajima, Takeyoshi [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)]. E-mail: ohsaka@echem.titech.ac.jp

    2006-06-01

    Multinegatively charged metal complex, hexacyanoferrate ([Fe(CN){sub 6}]{sup 4-}), was electrostatically trapped in the cationic polymer film of N,N-dimethylaniline (PDMA) which was electrochemically deposited on the boron-doped diamond (BDD) electrode by controlled-potential electro-oxidation of the monomer. This ferrocyanide-trapped PDMA film was used to catalyze the oxidation of ascorbic acid (AA). Increase in the oxidation current response with a negative shift of the anodic peak potential was observed at the cationic PDMA film-coated BDD (PDMA|BDD) electrode, compared with that at the bare BDD electrode. A more drastic enhancement in the oxidation peak current as well as more negative shift of oxidation potential was found at the ferrocyanide-trapped PDMA film-coated BDD ([Fe(CN){sub 6}]{sup 3-/4-}|PDMA|BDD) electrode. This [Fe(CN){sub 6}]{sup 3-/4-}|PDMA|BDD electrode can be used as an amperometric sensor of AA. Ferrocyanide, electrostatically trapped in the polymer film shows more electrocatalytic activity than that coordinatively attached to the polymer film or dissolved in the solution phase. The electrocatalytic current depends on the surface coverage of ferricyanide, {gamma} {sub Fe}, within the polymer film. Diffusion coefficient (D) of AA in the solution was estimated by rotating disk electrode voltammetry: D = (5.8 {+-} 0.3) x 10{sup -6} cm{sup 2} s{sup -1}. The second-order rate constant for the catalytic oxidation of AA by ferricyanide was also estimated to be 9.0 x 10{sup 4} M{sup -1} s{sup -1}. In the hydrodynamic amperometry using the [Fe(CN){sub 6}]{sup 3-/4-}|PDMA|BDD electrode, a successive addition of 1 {mu}M AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.233 {mu}A cm{sup -2} {mu}M{sup -1}.

  10. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing.

    Science.gov (United States)

    Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai

    2016-03-01

    We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.

  11. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  12. Differential reflectometry of thin film metal oxides on copper, tungsten, molybdenum and chromium

    International Nuclear Information System (INIS)

    Urban, F.K. III; Hummel, R.E.; Verink, E.D. Jr.

    1982-01-01

    A differential reflectometry study was undertaken to investigate the characteristics of thin oxide films on metal substrates. The oxides were produced by heating pure metals of copper, tungsten, molybdenum and chromium in dry oxygen. A new 'halfpolishing' technique was applied to obtain specimens with a step in oxide thickness in order to make them suitable for differential reflectometry. It was found that oxides formed this way yielded the same differential reflectograms as by electrochemical oxidation. A mathematical model involving the interaction of light with a thin corrosion product on metal substrates was applied to generate computer calculated differential reflectograms utilizing various optical constants and thicknesses of the assumed film. Three different thickness ranges have been identified. (a) For large film thicknesses, the differential reflectograms are distinguished by a sequence of interference peaks. (b) If the product of thickness and refraction index of the films is smaller than about 40 nm, no interference peaks are present. Any experimentally observed peaks in differential reflectograms of these films are caused entirely by electron interband transitions. (c) In an intermediate thickness range, superposition of interference and interband peaks are observed. (author)

  13. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, O.; Solar, P.; Kylian, O.; Drabik, M.; Artemenko, A.; Kousal, J.; Hanus, J.; Pesicka, J.; Matolinova, I. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Kolibalova, E. [Tescan, Libusina trida 21, 632 00 Brno (Czech Republic); Slavinska, D. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Biederman, H., E-mail: bieder@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic)

    2012-04-02

    Nanocomposite metal/plasma polymer films have been prepared by simultaneous plasma polymerization using a mixture of Ar/n-hexane and metal cluster beams. A simple compact cluster gas aggregation source is described and characterized with emphasis on the determination of the amount of charged clusters and their size distribution. It is shown that the fraction of neutral, positively and negatively charged nanoclusters leaving the gas aggregation source is largely influenced by used operational conditions. In addition, it is demonstrated that a large portion of Ag clusters is positively charged, especially when higher currents are used for their production. Deposition of nanocomposite Ag/C:H plasma polymer films is described in detail by means of cluster gas aggregation source. Basic characterization of the films is performed using transmission electron microscopy, ultraviolet-visible and Fourier-transform infrared spectroscopies. It is shown that the morphology, structure and optical properties of such prepared nanocomposites differ significantly from the ones fabricated by means of magnetron sputtering of Ag target in Ar/n-hexane mixture.

  14. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    International Nuclear Information System (INIS)

    Gac, Arnaud

    2002-01-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (∼850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms. (author)

  15. Metallic oxide switches using thick film technology

    Science.gov (United States)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  16. Study of thin metal films and oxide materials for nanoelectronics applications

    OpenAIRE

    De Los Santos Valladares, Luis

    2012-01-01

    Appendix A Pages 132-134 have been removed from this online version of the thesis for publisher copyright reasons. These had contained page images from the cover of Nanotechnology, Vol. 21, Nov 2010 and its corresponding web alert Different types of thin metal films and oxide materials are studied for their potential application in nanoelectronics: gold and copper films, nickel nanoelectrodes, oxide nanograin superconductors, carboxyl ferromagnetic microspheres and graphene oxide...

  17. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  18. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    Science.gov (United States)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  19. Transferred metal electrode films for large-area electronic devices

    International Nuclear Information System (INIS)

    Yang, Jin-Guo; Kam, Fong-Yu; Chua, Lay-Lay

    2014-01-01

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300 nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm −1 have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS ® (Zeon). High-quality OFETs with sub-10 V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films

  20. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  1. Hard X-ray photoemission spectroscopy of transition-metal oxide thin films and interfaces

    International Nuclear Information System (INIS)

    Wadati, H.; Fujimori, A.

    2013-01-01

    Highlights: •Photoemission spectroscopy is a powerful technique to study the electronic structures of transition-metal oxides. •Hard X-ray photoemission spectroscopy (HXPES) is a new type of photoemission spectroscopy which can probe bulk states. •HXPES is very suitable for studying oxide thin films such as the composition dependence and the film thickness dependence. -- Abstract: Photoemission spectroscopy is a powerful experimental technique to study the electronic structures of solids, especially of transition-metal oxides. Recently, hard X-ray photoemission spectroscopy (HXPES) has emerged as a more relevant experimental technique to obtain clear information about bulk states. Here, we describe how HXPES can be conveniently applied to study the interesting subjects on oxide thin films such as the composition dependence and the film thickness dependence of the electronic structures and the interfacial electronic structure of multilayers

  2. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  3. Rapid synthesis of flexible conductive polymer nanocomposite films

    International Nuclear Information System (INIS)

    Blattmann, C O; Sotiriou, G A; Pratsinis, S E

    2015-01-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5  × 10 4 S cm −1 ), even during repetitive bending. (paper)

  4. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    Science.gov (United States)

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  5. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides

  6. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    Science.gov (United States)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  7. Analysis of the stability of native oxide films at liquid lead/metal interfaces

    International Nuclear Information System (INIS)

    Lesueur, C.; Chatain, D.; Gas, P.; Bergman, C.; Baque, F.

    2002-01-01

    The interface between liquid lead and different metallic solids (pure metals: Al, Fe and Ni, and T91 steel) was investigated below 400 deg C under ultrahigh vacuum (UHV) by wetting experiments. The aim was to check the physical stability of native oxide films grown at the surface of the substrates, along a contact with liquid lead. Two types of metallic substrates were used: i) conventional bulk polycrystals, and ii) nanocrystalline films obtained by e-beam evaporation under UHV. The actual contact between liquid lead and the solid substrates was achieved by preparing lead drops in-situ. Wetting experiments were performed using sessile drop and/or liquid bridge methods. Fresh solid surfaces and former liquid/solid interfaces can be explored by squeezing and stretching a liquid lead bridge formed between two parallel and horizontal substrates. It is shown that the contact with liquid lead produces the detachment of the native oxide films grown on the metallic solids. It is concluded that if oxide coatings are needed to protect a metallic solid from attack by liquid lead, they should be self-renewable. (authors)

  8. The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Friederike

    2007-11-19

    This thesis addresses the effect of the parent metal-substrate orientation on the thermodynamics and kinetics of ultra-thin oxide-film growth on bare metals upon their exposure to oxygen gas at low temperatures (up to 650 K). A model description has been developed to predict the thermodynamically stable microstructure of a thin oxide film grown on its bare metal substrate as function of the oxidation conditions and the substrate orientation. For Mg and Ni, the critical oxide-film thickness is less than 1 oxide monolayer and therefore the initial development of an amorphous oxide phase on these metal substrates is unlikely. Finally, for Cu and densely packed Cr and Fe metal surfaces, oxide overgrowth is predicted to proceed by the direct formation and growth of a crystalline oxide phase. Further, polished Al single-crystals with {l_brace}111{r_brace}, {l_brace}100{r_brace} and {l_brace}110{r_brace} surface orientations were introduced in an ultra-high vacuum system for specimen processing and analysis. After surface cleaning and annealing, the bare Al substrates have been oxidized by exposure to pure oxygen gas. During the oxidation, the oxide-film growth kinetics has been established by real-time in-situ spectroscopic ellipsometry. After the oxidation, the oxide-film microstructures were investigated by angle-resolved X-ray photoelectron spectroscopy and low energy electron diffraction. Finally, high-resolution transmission electron microscopic analysis was applied to study the microstructure and morphology of the grown oxide films on an atomic scale. (orig.)

  9. Mesoscopic Iron-Oxide Nanorod Polymer Nanocomposite Films

    Science.gov (United States)

    Ferrier, Robert; Ohno, Kohji; Composto, Russell

    2012-02-01

    Dispersion of nanostructures in polymer matrices is required in order to take advantage of the unique properties of the nano-sized filler. This work investigates the dispersion of mesoscopic (200 nm long) iron-oxide rods (FeNRs) grafted with poly(methyl methacrylate) (PMMA) brushes having molecular weights (MWs) of 3.7K, 32K and 160K. These rods were then dispersed in either a poly(methyl methacrylate) or poly(oxyethylene) (PEO) matrix film so that the matrix/brush interaction is either entropic (PMMA matrix) or enthalpic and entropic (PEO matrix). Transmission electron microscopy (TEM) was used to determine the dispersion of the FeNRs in the polymer matrix. The results show that the FeNRs with the largest brush were always dispersed in the matrix, whereas the rods with the shorter brushes always aggregated in the matrix. This suggests that the brush MW is a critical parameter to achieve dispersion of these mesoscopic materials. This work can be extended to understand the dispersion of other types of mesocopic particles

  10. Effect of graphite loading on the electrical and mechanical properties of Poly (Ethylene Oxide)/Poly (Vinyl Chloride) polymer films

    Science.gov (United States)

    Hajar, M. D. S.; Supri, A. G.; Hanif, M. P. M.; Yazid, M. I. M.

    2017-10-01

    In this study, films consisting of a blend of poly (ethylene oxide)/poly (vinyl chloride) (PEO/PVC) and a conductive filler, graphite were prepared and characterized for their mechanical and electrical properties. Solid polymer blend films based on PEO/PVC (50/50 wt%/wt%) with different graphite loading were prepared by using solution casting technique. Electrical conductivity results discovered the conductivity increased with increasing of filler loading. However, increasing amount of graphite loading led to a decreased in tensile strength and young’s modulus of PEO/PVC/Graphite polymer films. The dispersion of graphite and mechanism of conductive path in the polymer films were also investigated by scanning electron microscopy (SEM). The morphology of the PEO/PVC/Graphite polymer films shows that agglomeration occurred to complete the connection of conductive path, thus improving the conductivity behavior of the polymer films.

  11. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  12. Chemical interaction and adhesion characteristics at the interface of metals (Cu, Ta) and low-k cyclohexane-based plasma polymer (CHexPP) films

    International Nuclear Information System (INIS)

    Kim, K.J.; Kim, K.S.; Lee, N.-E.; Choi, J.; Jung, D.

    2001-01-01

    Chemical interaction and adhesion characteristics between metals (Cu, Ta) and low-k plasma-treated cyclohexane-based plasma polymer (CHexPP) films were studied. In order to generate new functional groups that may contribute to the improvement of adhesion between metal and plasma polymer, we performed O 2 , N 2 , and H 2 /He mixture plasma treatment on the surfaces of CHexPP films. Chemical interactions at the interface between metals (Cu, Ta) and plasma-treated CHexPP films were analyzed by x-ray photoelectron spectroscopy. The effect of plasma treatment and thermal annealing on the adhesion characteristics was measured by a tape test and scratch test. The formation of new binding states on the surface of plasma-treated CHexPP films improved adhesion characteristics between metals and CHexPP films. Thermal annealing improves the adhesion property of Cu/CHexPP films, but degrades the adhesion property of Ta/CHexPP films

  13. Porous Aluminum Oxide and Magnesium Oxide Films Using Organic Hydrogels as Structure Matrices

    Directory of Open Access Journals (Sweden)

    Zimei Chen

    2018-03-01

    Full Text Available We describe the synthesis of mesoporous Al2O3 and MgO layers on silicon wafer substrates by using poly(dimethylacrylamide hydrogels as porogenic matrices. Hydrogel films are prepared by spreading the polymer through spin-coating, followed by photo-cross-linking and anchoring to the substrate surface. The metal oxides are obtained by swelling the hydrogels in the respective metal nitrate solutions and subsequent thermal conversion. Combustion of the hydrogel results in mesoporous metal oxide layers with thicknesses in the μm range and high specific surface areas up to 558 m2∙g−1. Materials are characterized by SEM, FIB ablation, EDX, and Kr physisorption porosimetry.

  14. Characterization of quaternary metal oxide films by synchrotron x-ray fluorescence microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.L.; Thompson, A.C.; Russo, R.E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A high demand for thin films in industrial technology has been responsible for the creation of new techniques for the fabrication of such films. One highly effective method for the syntheses of variable composition thin films is pulsed-laser deposition (PLD). The technique has a large number of characteristics which make it an attractive approach for making films. It offers rapid deposition rates, congruent material transfer, simple target requirements from which to make the films, in situ multilayer deposition, and no gas composition or pressure requirements. Additionally, the technique can also afford crystalline films and films with novel structures. Pulsed-laser deposition can be used to make films of semiconductors, insulators, high-temperature superconductors, diamond-like films, and piezoelectric materials. Quaternary metal oxides involving calcium, nickel, and potassium have been shown to be quite effective in the catalysis of coal gasification and methane coupling. One approach to incorporating all three of the metal oxides into one phase is the use of laser ablation to prepare films of the catalysts so that they may be used for coatings, smooth surfaces on which to conduct detailed studies of gas-solid interface reactions that are involved in catalytic processes, and other applications. The problem of dissimilar boiling points of the three metal oxides system is overcome, since the laser ablation process effects the volatilization of all three components from the laser target essentially simultaneously. There is strong interest in gaining an understanding of the chemical and morphological aspects of the films that are deposited. Phenomena such as lattice defects and chemical heterogeneity are of interest. The experimental data discussed here are restricted to the matrix homogeneity of the films themselves for films which were void of microparticles.

  15. Direct Fabrication of Inkjet-Printed Dielectric Film for Metal-Insulator-Metal Capacitors

    Science.gov (United States)

    Cho, Cheng-Lin; Kao, Hsuan-ling; Wu, Yung-Hsien; Chang, Li-Chun; Cheng, Chun-Hu

    2018-01-01

    In this study, an inkjet-printed dielectric film that used a polymer-based SU-8 ink was fabricated for use in a metal-insulator-metal (MIM) capacitor. Thermal treatment of the inkjet-printed SU-8 polymer film affected its surface morphology, chemical structure, and surface wettability. A 20-min soft-bake at 60°C was applied to eliminate inkjet-printed bubbles and ripples. The ultraviolet-exposed SU-8 polymer film was crosslinked at temperatures between 120°C and 220°C and became disordered at 270°C, demonstrated using Fourier-transform infrared spectroscopy. A maximum SU-8 polymer film hard-bake temperature of 120°C was identified, and a printing process was subsequently employed because the appropriate water contact angle of the printed film was 79°. Under the appropriate inkjet printing conditions, the two-transmission-line method was used to extract the dielectric and electrical properties of the SU-8 polymer film, and the electrical behavior of the fabricated MIM capacitor was also characterized.

  16. Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seonuk; Jeong, Yong Jin; Baek, Yonghwa; Kim, Lae Ho; Jang, Jin Hyuk; Kim, Yebyeol [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); An, Tae Kyu [Department of Polymer Science & Engineering, Korea National University of Transportation, 50 Daehak-Ro, Chungju (Korea, Republic of); Nam, Sooji, E-mail: sjnam15@etri.re.kr [Information Control Device Section, Electronics and Telecommunications Research Institute, Daejeon, 305-700 (Korea, Republic of); Kim, Se Hyun, E-mail: shkim97@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 712-749 (Korea, Republic of); Jang, Jaeyoung, E-mail: jyjang15@hanyang.ac.kr [Department of Energy Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Chan Eon, E-mail: cep@postech.ac.kr [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2017-08-31

    Highlights: • Sol-gel-derived aluminum oxide thin films were prepared using ultraviolet (UV) annealing. • UV irradiation dramatically promoted the densification of AlO{sub x} during the annealing stage, thereby forming a close-packed AlO{sub x} film. • The resulting AlO{sub x} films deposited on polymer substrates exhibited good water vapor blocking properties with low water vapor transmission rates (WVTRs). - Abstract: Here, we report the fabrication of low-temperature sol-gel-derived aluminum oxide (AlO{sub x}) films via ultraviolet (UV) annealing and the investigation of their water vapor blocking properties by measuring the water vapor transmission rates (WVTRs). The UV annealing process induced the formation of a dense metal-oxygen-metal bond (Al-O-Al structure) at low temperatures (<200 °C) that are compatible with commercial plastic substrates. The density of the UV-annealed AlO{sub x} thin film at 180 °C was comparable to that of AlO{sub x} thin films that have been thermally annealed at 350 °C. Furthermore, the UV-annealed AlO{sub x} thin films exhibited a high optical transparency in the visible region (>99%) and good electrical insulating properties (∼10{sup −7} A/cm{sup 2} at 2 MV/cm). Finally, we confirmed that a dense AlO{sub x} thin film was successfully deposited onto the plastic substrate via UV annealing at low temperatures, leading to a substantial reduction in the WVTRs. The Ca corrosion test was used to measure the WVTRs of AlO{sub x} thin films deposited onto polyethylene naphthalate or polyimide substrates, determined to be 0.0095 g m{sup −2} day{sup −1} (25 °C, 50% relative humidity) and 0.26 g m{sup −2} day{sup −1}, respectively.

  17. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Science.gov (United States)

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  19. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    International Nuclear Information System (INIS)

    Biederman, H.; Holland, L.

    1983-01-01

    Fluorocarbon films have been prepared by plasma polymerization of CF 4 using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an r.f. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF 4 [25%]-argon[75%] mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF 4 [87%]-argon[13%] were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF 4 as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an EAS study. The sheet resistivity of the metal/polymer film complexes was determined. (orig.)

  20. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    Energy Technology Data Exchange (ETDEWEB)

    Biederman, H.; Holland, L. (Sussex Univ., Brighton (UK). Lab. for Plasma Materials Processing)

    1983-07-01

    Fluorocarbon films have been prepared by plasma polymerization of CF/sub 4/ using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an R.F. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF/sub 4/(25%)-argon(75%) mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF/sub 4/(87%)-argon(13%) were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF/sub 4/ as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an EAS study. The sheet resistivity of the metal/polymer film complexes was determined.

  1. Optimization of synthesis protocols to control the nanostructure and the morphology of metal oxide thin films for memristive applications

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, G., E-mail: giacomo.baldi@cnr.it; Bosi, M.; Attolini, G.; Berzina, T.; Mosca, R.; Ponraj, J. S.; Iannotta, S. [IMEM-CNR Institute, Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Giusti, G.; Nozar, P.; Toccoli, T.; Verucchi, R. [IMEM-CNR Institute, Via alla Cascata 56/C, Povo – I-38123 Trento (Italy); Collini, C.; Lorenzelli, L. [FBK Bruno Kessler Foundation, Via Sommarive 18, I-38123 Trento (Italy)

    2015-03-10

    We propose a multi-technique approach based on in-vacuum synthesis of metal oxides to optimize the memristive properties of devices that use a metal oxide thin film as insulating layer. Pulsed Microplasma Cluster Source (PMCS) is based on supersonic beams seeded by clusters of the metal oxide. Nanocrystalline TiO{sub 2} thin films can be grown at room temperature, controlling the oxide stoichiometry from titanium metal up to a significant oxygen excess. Pulsed Electron beam Deposition (PED) is suitable to grow crystalline thin films on large areas, a step towards producing device arrays with controlled morphology and stoichiometry. Atomic Layer Deposition (ALD) is a powerful technique to grow materials layer-by-layer, finely controlling the chemical and structural properties of the film up to thickness of 50-80 nm. We will present a few examples of metal-insulator-metal structures showing a pinched hysteresis loop in their current-voltage characteristic. The structure, stoichiometry and morphology of the metal oxide layer, either aluminum oxide or titanium dioxide, is investigated by means of scanning electron microscopy (SEM) and by Raman scattering.

  2. Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties

    Science.gov (United States)

    Takele, H.; Schürmann, U.; Greve, H.; Paretkar, D.; Zaporojtchenko, V.; Faupel, F.

    2006-02-01

    Nanocomposite films containing Au nanoparticles embedded in a polymer matrix were prepared by vapour phase co-deposition of Au and polymers (Teflon AF and Poly(α -methylstyrene)) in high vacuum. The microstructure of the composite materials as well as metal content strongly depend on the condensation coefficient of the Au atoms, the deposition rates of the components, the substrate temperature, and the type of polymer matrix. The condensation coefficient, which varies between 0.03 and 1, was determined from energy dispersive X-ray spectrometer (EDX) and surface profilometry. It is shown that the microstructure of nanocomposites (size, size distribution, and interparticle separation of metal clusters), which was determined by transmission electron microscopy, can be controlled by the deposition parameters and the choice of polymer matrix. The optical absorption in the visible region due to the particle plasmon resonance has a strong dependence on the metal filling factor. The correlation between the microstructure of nanocomposites and optical properties, studied using UV-Vis spectroscopy, was also established. Further more, the electrical properties of the composites were studied as a function of the metal volume fraction. It was observed that the nanocomposite films exhibit a percolation threshold at a metal volume fraction of 0.43 and 0.20 for gold nanoclusters in Teflon AF and Poly(α-methylstyrene), respectively.

  3. Selective Metallization of Well Aligned PS-b-P2VP Block Copolymers in Thin Films and in Confined Geometries

    Science.gov (United States)

    Sievert, James D.; Watkins, James J.; Russell, Thomas P.

    2006-03-01

    Well aligned, microphase-separated structures of styrene-2-vinylpyridine block copolymers are being used as templates for macromolecule-metal nanocomposites. These composites are either prepared as thin films or confined in nanoporous aluminum oxide membranes. Under optimal conditions, templates are prepared as thin films or confined nanorods and metallized without disturbing the ordered structure. We have developed a procedure that deposits metal within the polymer using supercritical carbon dioxide-soluble metal precursors. The use of supercritical carbon dioxide allows for selective metallization of the polymer at or below the glass transition, without disrupting the morphology. In addition, similar procedures have been investigated using metal salts and acids. Using these techniques, metals and metal-sulfides including silver, gold, platinum and zinc sulfide have been selectively deposited.

  4. Metal{Polymer Hybrid Materials For Flexible Transparent Conductors

    Science.gov (United States)

    Narayanan, Sudarshan

    The field of organic electronics, till recently a mere research topic, is currently making rapid strides and tremendous progress into entering the mainstream electronics industry with several applications and products such as OLED televisions, curved displays, wearable devices, flexible solar cells, etc. already having been commercialized. A major component in these devices, especially for photovoltaic applications, is a transparent conductor used as one of the electrodes, which in most commercial applications are highly doped wide bandgap semiconducting oxides also called Transparent Conducting Oxides (TCOs). However, TCOs exhibit inherent disadvantages such as limited supply, brittle mechanical properties, expensive processing that present major barriers for the more widespread economic use in applications such as exible transparent conductors, owing to which suitable alternative materials are being sought. In this context we present two approaches in realizing alternative TCs using metal-polymer hybrid materials, with high figures of merit that are easily processable, reasonably inexpensive and mechanically robust as well. In this context, our first approach employs laminated metal-polymer photonic bandgap structures to effectively tune optical and electrical properties by an appropriate design of the material stack, factoring in the effect of the materials involved, the number of layers and layer properties. We have found that in the case of a four-bilayer Au/polystyrene (AujPS) laminate structure, an enhancement in optical transmittance of ˜ 500% in comparison to a monolithic A film of equivalent thickness, can be achieved. The high conductivity (˜ 106 O--1cm--1) of the metallic component, Au in this case, also ensures planar conductivity; metallic inclusions in the dielectric polymer layer can in principle give rise to out-of-plane conductivity as well enabling a fully functional TC. Such materials also have immense potential for several other applications

  5. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    KAUST Repository

    Mora Cordova, Angel; Khan, Kamran; El Sayed, Tamer

    2014-01-01

    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show

  6. Water-Mediated Photochemical Treatments for Low-Temperature Passivation of Metal-Oxide Thin-Film Transistors.

    Science.gov (United States)

    Heo, Jae Sang; Jo, Jeong-Wan; Kang, Jingu; Jeong, Chan-Yong; Jeong, Hu Young; Kim, Sung Kyu; Kim, Kwanpyo; Kwon, Hyuck-In; Kim, Jaekyun; Kim, Yong-Hoon; Kim, Myung-Gil; Park, Sung Kyu

    2016-04-27

    The low-temperature electrical passivation of an amorphous oxide semiconductor (AOS) thin-film transistor (TFT) is achieved by a deep ultraviolet (DUV) light irradiation-water treatment-DUV irradiation (DWD) method. The water treatment of the first DUV-annealed amorphous indium-gallium-zinc-oxide (a-IGZO) thin film is likely to induce the preferred adsorption of water molecules at the oxygen vacancies and leads to subsequent hydroxide formation in the bulk a-IGZO films. Although the water treatment initially degraded the electrical performance of the a-IGZO TFTs, the second DUV irradiation on the water-treated devices may enable a more complete metal-oxygen-metal lattice formation while maintaining low oxygen vacancies in the oxide films. Overall, the stable and dense metal-oxygen-metal (M-O-M) network formation could be easily achieved at low temperatures (below 150 °C). The successful passivation of structural imperfections in the a-IGZO TFTs, such as hydroxyl group (OH-) and oxygen vacancies, mainly results in the enhanced electrical performances of the DWD-processed a-IGZO TFTs (on/off current ratio of 8.65 × 10(9), subthreshold slope of 0.16 V/decade, an average mobility of >6.94 cm(2) V(-1) s(-1), and a bias stability of ΔVTH IGZO TFTs.

  7. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Felix; Sekhar Yadavalli, Nataraja; Santer, Svetlana [Department of Experimental Physics, Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany)

    2013-12-16

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely.

  8. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  9. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Maryam Siadat

    2009-11-01

    Full Text Available Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2, tungsten oxide (WO3 and indium oxide (In2O3 were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD. The morphology studied with scanning electron microscopy (SEM and atomic force microscopy (AFM shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H2S (10 ppm at low operating temperatures (100 and 200 °C and the best response in terms of Rair/Rgas is given by Cu-SnO2 films (2500 followed by WO3 (1200 and In2O3 (75. Moreover, all the films exhibit no cross-sensitivity to other reducing (SO2 or oxidizing (NO2 gases.

  10. Synthesis of biocidal polymers containing metal NPs using an electron beam

    International Nuclear Information System (INIS)

    Choi, Kwonyong; Kim, Seong-Eun; Kim, Hee-Yeon; Yoon, Jeyong; Lee, Jong-Chan

    2012-01-01

    Metal containing antibacterial polymers were prepared by the polymerization of methylmethacrylate and methacrylic acid with copper or zinc. When the thin film of the polymers coated on a glass was irradiated with an electron beam, nanoparticles were obtained. It was found that these polymers exhibited a potent antibacterial activity against the Gram-negative bacteria, Escherichia coli. The metal containing polymers showed a 99.999% (5.0 logs) reduction in E. coli at a contact time of 12 h. In addition, polymers had a good antifouling effect against marine organisms. - Graphical abstract: Biocidal activity of Cu nanoparticle/polymer composite film against Gram-negative bacteria. Highlights: ► Metal containing antibacterial polymers were prepared with copper. ► Using the electron beam, nanoparticles were obtained. ► It was found that these polymers exhibited potent biocidal activity against E. coli. ► The metal containing polymers showed a 99.999% reduction of E. coli.

  11. Photoelectrochemical properties and band structure of oxide films on zirconium-transition metal alloys

    International Nuclear Information System (INIS)

    Takahashi, Kazuo; Uno, Masayoshi; Okui, Mihoko; Yamanaka, Shinsuke

    2006-01-01

    The microalloying effects of 4d and 5d transition metals, M (M: Nb, Mo, Ta, W) on the photoelectrochemical properties, the flat band potential (U fb ) and the band gap energy (E g ), for zirconium oxide films were investigated by photoelectrochemical measurements and band calculation. Button ingots of zirconium-5 mol% M (M: Nb, Mo, Ta, W) were made from high-purity metals (99.9% purity) by arc melting in a purified argon atmosphere. These plate specimens were sealed into silica tubes in vacuum, and then homogenized at 1273 K for 24 h. Subsequently, these specimens were oxidized up to 1173 K. The photocurrent of each specimen was evaluated at room temperature under the irradiation of Xe lamp (500 W) through grating monochrometer and cut-off filter. 0.1 M Na 2 SO 4 solution was used as the electrolyte. The value of the flat band potential was higher and the value of the band gap energy was smaller than that of pure zirconium oxide film in all sample. It was found from the calculation by CASTEP code that the decreases in band gap energy of these oxide films was due to formation of 4d or 5d orbital of transition metals

  12. Deep reduced PEDOT films support electrochemical applications: Biomimetic color front.

    Directory of Open Access Journals (Sweden)

    Toribio Fernandez OTERO

    2015-02-01

    Full Text Available Most of the literature accepts, despite many controversial results, that during oxidation/reduction films of conducting polymers move from electronic conductors to insulators. Thus, engineers and device’s designers are forced to use metallic supports to reoxidize the material for reversible device work. Electrochromic front experiments appear as main visual support of the claimed insulating nature of reduced conducting polymers. Here we present a different design of the biomimetic electrochromic front that corroborates the electronic and ionic conducting nature of deep reduced films. The direct contact PEDOT metal/electrolyte and film/electrolyte was prevented from electrolyte contact until 1cm far from the metal contact with protecting Parafilm®. The deep reduced PEDOT film supports the flow of high currents promoting reaction induced electrochromic color changes beginning 1 cm far from the metal-polymer electrical contact and advancing, through the reduced film, towards the metal contact. Reverse color changes during oxidation/reduction always are initiated at the film/electrolyte contact advancing, under the protecting film, towards the film/metal contact. Both reduced and oxidized states of the film demonstrate electronic and ionic conductivities high enough to be used for electronic applications or, as self-supported electrodes, for electrochemical devices. The electrochemically stimulated conformational relaxation (ESCR model explains those results.

  13. Mesoporous silicon oxide films and their uses as templates in obtaining nanostructured conductive polymers

    Science.gov (United States)

    Salgado, R.; Arteaga, G. C.; Arias, J. M.

    2018-04-01

    Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.

  14. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  15. Work function and quantum efficiency study of metal oxide thin films on Ag(100)

    Science.gov (United States)

    Chang, V.; Noakes, T. C. Q.; Harrison, N. M.

    2018-04-01

    Increasing the quantum efficiency (QE) of metal photocathodes is in the design and development of photocathodes for free-electron laser applications. The growth of metal oxide thin films on certain metal surfaces has previously been shown to reduce the work function (WF). Using a photoemission model B. Camino et al. [Comput. Mater. Sci. 122, 331 (2016), 10.1016/j.commatsci.2016.05.025] based on the three-step model combined with density functional theory calculations we predict that the growth of a finite number of MgO(100) or BaO(100) layers on the Ag(100) surface increases significantly the QE compared with the clean Ag(100) surface for a photon energy of 4.7 eV. Different mechanisms for affecting the QE are identified for the different metal oxide thin films. The addition of MgO(100) increases the QE due to the reduction of the WF and the direct excitation of electrons from the Ag surface to the MgO conduction band. For BaO(100) thin films, an additional mechanism is in operation as the oxide film also photoemits at this energy. We also note that a significant increase in the QE for photons with an energy of a few eV above the WF is achieved due to an increase in the inelastic mean-free path of the electrons.

  16. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, Gul [MiQro Innovation Collaborative Centre (C2MI), 45, boul. de l' Aéroport, Bromont, QC, J2L 1S8 (Canada); Mining & Materials Engineering, McGill University, 3610,University Street, Montreal, QC, H3A 0C5 (Canada); Duong, Xuan Truong [Department of Mechanical Engineering, Ecole polytechnique de Montréal, Montréal, QC, H3C 3T5 (Canada); Thai Nguyen University of Technology, 3-2 Street, Thai Nguyen City (Viet Nam); Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh [Thai Nguyen University of Technology, 3-2 Street, Thai Nguyen City (Viet Nam); Salimy, Siamak [ePeer Review LLC, 145 Pine Haven Shores Rd, Suite 1000-X, Shelburne, VT 05482 (United States); Le, Xuan Tuan, E-mail: xuantuan.le@teledyne.com [MiQro Innovation Collaborative Centre (C2MI), 45, boul. de l' Aéroport, Bromont, QC, J2L 1S8 (Canada); Thai Nguyen University of Technology, 3-2 Street, Thai Nguyen City (Viet Nam)

    2017-06-15

    Highlights: • Electroless deposition of Ni-B film on KMPR photoresist polymer insulator with excellent adhesion has been achieved. • This metallization has been carried out in aqueous solutions at low temperature. • Polyamine palladium complexes grafts serve as seeds for the electroless plating on KMPR. • This electroless metallization process is simple, industrially feasible, chromium-free and environment-friendly. - Abstract: While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  17. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  18. Neutron Reflectivity Measurement for Polymer Dynamics near Graphene Oxide Monolayers

    Science.gov (United States)

    Koo, Jaseung

    We investigated the diffusion dynamics of polymer chains confined between graphene oxide layers using neutron reflectivity (NR). The bilayers of polymethylmetacrylate (PMMA)/ deuterated PMMA (d-PMMA) films and polystyrene (PS)/d-PS films with various film thickness sandwiched between Langmuir-Blodgett (LB) monolayers of graphene oxide (GO) were prepared. From the NR results, we found that PMMA diffusion dynamics was reduced near the GO surface while the PS diffusion was not significantly changed. This is due to the different strength of GO-polymer interaction. In this talk, these diffusion results will be compared with dewetting dynamics of polymer thin films on the GO monolayers. This has given us the basis for development of graphene-based nanoelectronics with high efficiency, such as heterojunction devices for polymer photovoltaic (OPV) applications.

  19. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial orientational order; thin film; second harmonic gen- eration; silver ... able content of metal nanoparticles would be of considerable value from an appli- ... polar chain and perpendicular to it [10].

  20. Sputtered indium oxide films

    International Nuclear Information System (INIS)

    Gillery, F.H.

    1986-01-01

    A method is described for depositing on a substrate multiple layer films comprising at least one primary layer of a metal oxide and at least one primary layer of a metal other than the metal of the oxide layer. The improvement described here comprises improving the adhesion between the metal oxide and metal layers by depositing between the layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers. An article of manufacture is described comprising a nonmetallic substrate, and deposited thereon in any order: a. at least one coating layer of metal; b. at least one coating layer of an oxide of a metal other than the metal of the metal layer; and c. deposited between the metal and metal oxide layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers

  1. Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes.

    Science.gov (United States)

    Park, Sanghoon; Kim, Yura; Jung, Hyosub; Park, Jun-Young; Lee, Naesung; Seo, Yongho

    2017-12-11

    In this study, we investigated an energy harvesting effect of tensile stress using piezoelectric polymers and flexible electrodes. A chemical-vapor-deposition grown graphene film was transferred onto both sides of the PVDF and P(VDF-TrFE) films simultaneously by means of a conventional wet chemical method. Output voltage induced by sound waves was measured and analyzed when a mechanical tension was applied to the device. Another energy harvester was made with a metallic electrode, where Al and Ag were deposited by using an electron-beam evaporator. When acoustic vibrations (105 dB) were applied to the graphene/PVDF/graphene device, an induced voltage of 7.6 V pp was measured with a tensile stress of 1.75 MPa, and this was increased up to 9.1 V pp with a stress of 2.18 MPa for the metal/P(VDF-TrFE)/metal device. The 9 metal/PVDF/metal layers were stacked as an energy harvester, and tension was applied by using springs. Also, we fabricated a full-wave rectifying circuit to store the electrical energy in a 100 μF capacitor, and external vibration generated the electrical charges. As a result, the stored voltage at the capacitor, obtained from the harvester via a bridge diode rectifier, was saturated to ~7.04 V after 180 s charging time.

  2. Stages of polymer transformation during remote plasma oxidation (RPO) at atmospheric pressure

    Science.gov (United States)

    Luan, P.; Oehrlein, G. S.

    2018-04-01

    The interaction of cold temperature plasma sources with materials can be separated into two types: ‘direct’ and ‘remote’ treatments. Compared to the ‘direct’ treatment which involves energetic charged species along with short-lived, strongly oxidative neutral species, ‘remote’ treatment by the long-lived weakly oxidative species is less invasive and better for producing uniformly treated surfaces. In this paper, we examine the prototypical case of remote plasma oxidation (RPO) of polymer materials by employing a surface micro-discharge (in a N2/O2 mixture environment) treatment on polystyrene. Using material characterization techniques including real-time ellipsometry, x-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, the time evolution of polymer film thickness, refractive index, surface, and bulk chemical composition were evaluated. These measurements revealed three consecutive stages of polymer transformation, i.e. surface adsorption and oxidation, bulk film permeation and thickness expansion followed by the material removal as a result of RPO. By correlating the observed film thickness changes with simultaneously obtained chemical information, we found that the three stages were due to the three effects of weakly oxidative species on polymers: (1) surface oxidation and nitrate (R-ONO2) chemisorption, (2) bulk oxidation, and (3) etching. Our results demonstrate that surface adsorption and oxidation, bulk oxidation, and etching can all happen during one continuous plasma treatment. We show that surface nitrate is only adsorbed on the top few nanometers of the polymer surface. The polymer film expansion also provided evidence for the diffusion and reaction of long-lived plasma species in the polymer bulk. Besides, we found that the remote plasma etched surface was relatively rich in O-C=O (ester or carboxylic acid). These findings clarify the roles of long-lived weakly oxidative plasma species on polymers and advance

  3. Optimum deposition, structure, and properties of tantalum oxide films

    International Nuclear Information System (INIS)

    Lin, Y.C.

    1985-01-01

    Amorphous, ductile, and uniform Ta 2 O 5 films that acted as diffusion barriers were developed by sputter depositing Ta metal on Al single crystals (99.99%) and subsequently anodizing these thin films. The morphology, microstructure, composition and properties were characterized by scanning and transmission electron microscopy, surface and Fourier transform infrared spectroscopy, X-ray diffraction, and fluorescence. Superior corrosion resistance in a water saturated Cl 2 atmosphere was provided by Ta 2 O 5 coating on Al single crystal substrates but not on Al alloys. The strong Ta-O bond, the non-porous nature of the film and good adhesion to the substrate are attributed to the outstanding corrosion resistance of these oxide coatings. Al alloy surfaces are not protected, since the anodic film formed over grain boundaries, processing lines and emergent precipitates is poorly adherent, thus providing loci for corrosion. These problems were eliminated by casting a 400 A layer of tantalum oxyhydroxide polymer from ethanol solution onto Al substrate and curing to a Ta 2 O 5 layer that effectively resisted attack by wet Cl 2 . The mechanical properties of Ta 2 O 5 films on Al alloys were studied at various pH's by in-situ fatigue loading coupled with electrochemical measurements of corrosion potential and corrosion current. These results indicate the fatigue resistance of this oxide film effectively protects the underlying metal from strong HCl solution attack. The very unusual ductility and high corrosion resistance of Ta 2 O 5 films could be related to the graphite-like structure that exists in the amorphous state of this oxide

  4. Chemical resistance of thin film materials based on metal oxides grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Sammelselg, Väino; Netšipailo, Ivan; Aidla, Aleks; Tarre, Aivar; Aarik, Lauri; Asari, Jelena; Ritslaid, Peeter; Aarik, Jaan

    2013-01-01

    Etching rate of technologically important metal oxide thin films in hot sulphuric acid was investigated. The films of Al-, Ti-, Cr-, and Ta-oxides studied were grown by atomic layer deposition (ALD) method on silicon substrates from different precursors in large ranges of growth temperatures (80–900 °C) in order to reveal process parameters that allow deposition of coatings with higher chemical resistance. The results obtained demonstrate that application of processes that yield films with lower concentration of residual impurities as well as crystallization of films in thermal ALD processes leads to significant decrease of etching rate. Crystalline films of materials studied showed etching rates down to values of < 5 pm/s. - Highlights: • Etching of atomic layer deposited thin metal oxide films in hot H 2 SO 4 was studied. • Smallest etching rates of < 5 pm/s for TiO 2 , Al 2 O 3 , and Cr 2 O 3 were reached. • Highest etching rate of 2.8 nm/s for Al 2 O 3 was occurred. • Remarkable differences in etching of non- and crystalline films were observed

  5. Semiconductor/metal nanocomposites formed by in situ reduction method in multilayer thin films

    International Nuclear Information System (INIS)

    Song Yanli; Wang Enbo; Tian Chungui; Mao Baodong; Wang Chunlei

    2009-01-01

    A layer-by-layer adsorption and in situ reduction method was adopted for synthesizing semiconductor/metal nanocomposites in multilayer ultra-thin films. Alternate adsorption of ZnO nanoparticles modified with poly(ethyleneimine), hydrogentetrachloroaurate and poly(styrenesulfonate) sodium results in the formation of ZnO/AuCl 4 - -loaded multilayer films. In situ reduction of the incorporated metal ions by heating yields ZnO/Au nanocomposites in the films. UV-vis absorption spectroscopy and X-ray photoelectron spectroscopy were used to characterize the components of the composite films. UV-vis spectra indicate regular growth of the films. The electrochemistry behavior of the multilayer films was studied in detail on indium tin oxide electrode. The combined results suggest that the layer-by-layer adsorption and subsequent reduction method used here provides an effective way to synthesize ZnO/Au nanocomposites in the polymer matrix

  6. Metal oxide semiconductor thin-film transistors for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Münzenrieder, Niko [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Sensor Technology Research Centre, University of Sussex, Falmer (United Kingdom); Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D. [Department of Physics and Centre for Plastic Electronics, Imperial College London, London (United Kingdom)

    2016-06-15

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In

  7. Sulfur polymer cement encapsulation of RCRA toxic metals and metal oxides

    International Nuclear Information System (INIS)

    Calhoun, C.L. Jr.; Nulf, L.E.; Gorin, A.H.

    1995-06-01

    A study was conducted to determine the suitability of Sulfur Polymer Cement (SPC) encapsulation technology for the stabilization of RCRA toxic metal and metal oxide wastes. In a series of bench-scale experiments, the effects of sodium sulfide additions to the waste mixture, residence time, and temperature profile were evaluated. In addition, an effort was made to ascertain the degree to which SPC affords chemical stabilization as opposed to physical encapsulation. Experimental results have demonstrated that at the 25 wt % loading level, SPC can effectively immobilize Cr, Cr 2 O 3 , Hg, Pb, and Se to levels below regulatory limits. SPC encapsulation also has been shown to significantly reduce the leachability of other toxic compounds including PbO, PbO 2 , As 2 O 3 , BaO, and CdO. In addition, data has confirmed sulfide conversion of Hg, Pb, PbO, PbO 2 , and BaO as the product of their reaction with SPC

  8. Charge-flow structures as polymeric early-warning fire alarm devices. M.S. Thesis; [metal oxide semiconductors

    Science.gov (United States)

    Sechen, C. M.; Senturia, S. D.

    1977-01-01

    The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires.

  9. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    International Nuclear Information System (INIS)

    Gniadek, Marianna; Donten, Mikolaj; Stojek, Zbigniew

    2010-01-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag + oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  10. Electroless formation of conductive polymer-metal nanostructured composites at boundary of two immiscible solvents. Morphology and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gniadek, Marianna [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Donten, Mikolaj, E-mail: donten@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Stojek, Zbigniew, E-mail: stojek@chem.uw.edu.p [Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland)

    2010-11-01

    Formation of polypyrrole (PPy) with metallic inclusions was carried out at the interface between the aqueous phase containing an oxidizer and an organic solution of the monomer. A variety of the polymer-metal composites were obtained in the system. When the oxidizers were silver- and gold salts the obtained material contained from 4 to 9 at.% of metal. In the case of Ag{sup +} oxidant the structure of the metallic silver objects varied and included beads and ultra thin wires covered by polymer film, nanocrystals, micrometer cuboid monocrystals and microplates. Metallic gold practically appeared only in one structure-granules. The granules of Au incorporated into PPy were porous and made of very fine flat crystals of thickness in the nanometer range. The use of copper salts never led to the formation of metallic species in the composite. The influence of selected process parameters such as temperature and concentration of the reactants on the polymerization reaction was investigated. The composites with metallic nanoobjects were found to be better catalysts for the electrooxidation of ascorbic acids compared to pure polypyrrole. SEM, X-ray diffractometry, Raman spectroscopy and voltammetry were used in the investigation.

  11. Oxidation films morphology

    International Nuclear Information System (INIS)

    Paidassi, J.

    1960-01-01

    After studying the oxidation of several pure polyvalent metals (Fe, Cu, Mn, Ni, U) and of their oxides at high temperature and atmospheric pressure, the author suggests how to modify the usual representation of the oxide film (a piling of different oxide layers, homogeneous on a micrographic scale with a equi-axial crystallisation, free of mechanical tensions, with flat boundary surfaces) to have it nearer to reality. In this first part, the author exposes the study of the real micrographic structure of the oxidation film and gives examples of precipitation in the oxides during the cooling of the oxidised sample. (author) [fr

  12. Chemistry of the metal-polymer interfacial region.

    Science.gov (United States)

    Leidheiser, H; Deck, P D

    1988-09-02

    In many polymer-metal systems, chemical bonds are formed that involve metal-oxygen-carbon complexes. Infrared and Mössbauer spectroscopic studies indicate that carboxylate groups play an important role in some systems. The oxygen sources may be the polymer, the oxygen present in the oxide on the metal surface, or atmospheric oxygen. Diffusion of metal ions from the substrate into the polymer interphase may occur in some systems that are cured at elevated temperatures. It is unclear whether a similar, less extensive diffusion occurs over long time periods in systems maintained at room temperature. The interfacial region is dynamic, and chemical changes occur with aging at room temperature. Positron annihilation spectroscopy may have application to characterizing the voids at the metal-polymer interface.

  13. Anomalous temperature dependence of the current in a metal-oxide-polymer resistive switching diode

    NARCIS (Netherlands)

    Gomes, H.L.; Rocha, P.R.F.; Kiazadeh, A.; Leeuw, de D.M.; Meskers, S.C.J.

    2011-01-01

    Metal-oxide polymer diodes exhibit non-volatile resistive switching. The current–voltage characteristics have been studied as a function of temperature. The low-conductance state follows a thermally activated behaviour. The high-conductance state shows a multistep-like behaviour and below 300 K an

  14. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors T...

  15. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    Science.gov (United States)

    Zeb, Gul; Duong, Xuan Truong; Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh; Salimy, Siamak; Le, Xuan Tuan

    2017-06-01

    While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  16. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  17. Prediction of crack density and electrical resistance changes in indium tin oxide/polymer thin films under tensile loading

    KAUST Repository

    Mora Cordova, Angel; Khan, Kamran; El Sayed, Tamer

    2014-01-01

    We present unified predictions for the crack onset strain, evolution of crack density, and changes in electrical resistance in indium tin oxide/polymer thin films under tensile loading. We propose a damage mechanics model to quantify and predict

  18. Metal-Oxide Film Conversions Involving Large Anions

    Energy Technology Data Exchange (ETDEWEB)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C. [The University of Western Ontario, Chemistry Department, 1151 Richmond St., N6A 5B7, London, Ontario (Canada)

    2008-07-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I{sup -}, Br{sup -}, S{sup 2-}). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag{sub 2}O to (1) AgI and (2) AgBr. (authors)

  19. Metal-Oxide Film Conversions Involving Large Anions

    International Nuclear Information System (INIS)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C.

    2008-01-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I - , Br - , S 2- ). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag 2 O to (1) AgI and (2) AgBr. (authors)

  20. Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte

    International Nuclear Information System (INIS)

    Moreno, Mabel; Quijada, Raúl; Santa Ana, María A.; Benavente, Eglantina; Gomez-Romero, Pedro; González, Guillermo

    2011-01-01

    Highlights: ► Poly(ethylene oxide)/intercalated clay nanocomposite as filler in solid poly(ethylene oxide) electrolytes. ► Nanocomposite filler improves mechanical properties, transparency, and conductivity of poly(ethylene oxide) electrolyte films. ► Nanocomposite is more effective than unmodified clay in improving polymer electrolyte properties. ► Low Li/polymer ratio avoids crystalline Li complexes, so effects mainly arise from the polymer. ► High nanocomposite/poly(ethylene oxide)-matrix affinity enhances microhomogeneity in the polyelectrolyte. - Abstract: Solvent-free solid polymer electrolytes (SPEs) based on two different poly(ethylene oxide), PEO Mw 600,000 and 4,000,000 and intercalated clays are reported. The inorganic additives used were lithiated bentonite and the nanocomposite PEO-bentonite with the same polymer used as matrix. SPE films, obtained in the scale of grams by mixing the components in a Brabender-type batch mixer and molding at 130 °C, were characterized by X-ray diffraction analysis, UV–vis spectroscopy, and thermal analysis. During the preparation of the films, the unmodified clay got intercalated in situ. Comparative analysis of ionic conductivity and mechanical properties of the films show that the conductivity increases with the inclusion of fillers, especially for the polymer with low molecular weight. This effect is more pronounced when using PEO-bentonite as additive. Under selected work conditions, avoiding the presence of crystalline lithium complexes, observed effects are mainly centered on the polymer. An explanation, considering the higher affinity between the modified clay and PEO matrix which leads to differences in the micro homogeneity degree between both types of polymer electrolytes is proposed.

  1. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Wenya [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zhou, Qun, E-mail: zhq@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Li, Shuangshuang [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Zhao, Wei; Li, Na [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zheng, Junwei, E-mail: jwzheng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2015-10-30

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  2. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    International Nuclear Information System (INIS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-01-01

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  3. Photonic effects in microstructured conjugated polymer films and light emitting diodes

    International Nuclear Information System (INIS)

    Matterson, B.J.

    2002-03-01

    This thesis reports an investigation into the photonic effects caused by wavelength scale microstructure patterned onto films of conjugated polymers. The efficiency of light emitting diodes (LEDs) made from conjugated polymers is limited in part by the trapping of light into waveguide modes caused by the high refractive index of these materials. Waveguide modes in films of poly(p,-phenylene vinylene) (PPV) and poly(2-methoxy, 5-(2'ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) are analysed and the refractive index of these materials is calculated. The photoluminescence of conjugated polymer films that have been spun onto textured substrates is analysed. It is found that the photoluminescence quantum yield of a film spun onto a substrate inscribed with a grating is increased. It is also found that the photoluminescence spectrum of the film is dramatically altered and varies substantially with viewing angle. The features in the spectrum caused by the grating are strongly polarized. These effects are analysed and are attributed to the scattering of waveguided light out of the film. It is found that films spun onto metal gratings exhibit especially strong scattering. The effect of metal gratings with various grating depths is analysed. The possible contribution of band gaps to the photoluminescence spectrum from polymers on strong metal gratings is discussed. LEDs that include grating structures are constructed and analysed. It is found that having grating structures on the metal layers that are used as electrodes in the LED does not adversely affect the electrical properties of the LED. It is demonstrated that grating in the LED is able to substantially increase the light emission without using extra electrical power. The emission spectra from LEDs are observed to vary with angle, and exhibit considerable polarization. (author)

  4. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte......, electrochemical performances are steady, indicating the stability of the cell. Under electrical load, a progressive degradation is activated. Post-test analysis reveals both mechanical and chemical degradation of the cell. Cracks and delamination of the thin films promote a significant nickel diffusion and new...

  5. Metal adsorption of gamma-irradiated carboxymethyl cellulose/polyethylene oxide blend films

    Science.gov (United States)

    El-Naggar, Amal A.; Magida, M. M.; Ibrahim, Sayeda M.

    2016-03-01

    Blend films of different ratios of carboxymethyl cellulose (CMC)/polyethylene oxide (PEO) were prepared by the solution casting method. To investigate the effect of irradiation on all properties of prepared blend, it was exposed to different gamma irradiation doses (10, 20, and 30 kGy). Physical properties such as gel fraction (GF) (%) and swelling (SW) (%) were investigated. It was found that the GF (%) increases with increasing irradiation dose up to 20 kGy, while SW (%) decreases with an increase in the irradiation doses for all blend compositions. Moreover, the structural and mechanical properties of the prepared films were studied. The results of the mechanical properties obtained showed that there is an improvement in these properties with an increase in both CMC and irradiation dose up to 20 kGy. The efficiency of metal ions uptake was measured using a UV spectrophotometer. The prepared films showed good tendency to absorb and release metal ions from aqueous media. Thus, the CMC/PEO film can be used in agricultural domain.

  6. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  7. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    Science.gov (United States)

    Tompkins, Brendan D.

    membrane surfaces was significantly improved by plasma treatment. XPS and SEM analyses revealed increased oxygen incorporation onto the surface of the membranes, without any damage to the surface or pore structure. Contact angle measurements on a membrane treated in a stacked assembly suggest the plasma effectively modified the entire pore cross section. Plasma treatment also increased water flux through the membranes, with results from plasma modified membranes matching those from commercially available hydrophilic membranes (treated with wetting agent). Mechanisms for the observed modification are discussed in terms of OH and O radicals implanting oxygen functionality into the polymers. Oxidizing plasma systems (O2, CO2, H2O vapor, and formic acid vapor) were used to modify track-etched polycarbonate membranes and explore the mechanisms and species responsible for etching polycarbonate during plasma processing. Etch rates were measured using scanning electron microscopy; modified polycarbonate surfaces were further characterized using x-ray photoelectron spectroscopy and water contact angles. Etch rates and surface characterization results were combined with optical emission spectroscopy data used to identify gas-phase species and their relative densities. Although the oxide functionalities implanted by each plasma system were similar, the H2O vapor and formic acid vapor plasmas yielded the lowest contact angles after treatment. The CO2, H2O vapor, and formic acid vapor plasma-modified surfaces were, however, found to be similarly stable one month after treatment. Overall, etch rate correlated directly to the relative gas-phase density of atomic oxygen and, to a lesser extent, hydroxyl radicals. PECVD of acetic acid vapor (CH3COOH) was used to deposit films on PC-TE and silicon wafer substrates. The CH3COOH films were characterized using XPS, wCA, and SEM. This modification technique resulted in continuous deposition and self-limiting deposition of a-CxO yHz films on Si

  8. Metal/metal-oxide interfaces: A surface science approach to the study of adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Peden, C.H.F.; Kidd, K.B.; Shinn, N.D. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (USA))

    1991-05-01

    Metal-oxide/metal interfaces play an important role, for example, in the joining of an oxide ceramic to a metal for sealing applications. In order to probe the chemical and physical properties of such an interface, we have performed Auger electron spectroscopic (AES) and temperature programed desorption (TPD) experiments on a model system composed of very thin films of Cr, Fe, Ni, or Cu evaporated onto a very thin thermally grown oxide on a W single crystal. Monolayer films of Fe and Cr were found (by AES) to completely wet the oxide surface upon deposition, and were stable up to temperatures at which the films desorbed ({approx}1300 K). In contrast, monolayer Ni and Cu films formed three-dimensional islands exposing the oxidized W surface either upon annealing (Ni) or even upon room-temperature deposition (Cu). The relative interfacial interaction between the overlayer metal and the oxide, as assessed by TPD, increases in the series Cu{lt}Ni{lt}Fe{lt}Cr. This trend follows the heats of formation of the various oxides of these metals.

  9. Radiation deterioration of several aromatic polymers under oxidative conditions

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki

    1987-01-01

    Radiation-induced oxidative irradiation effects (with γ-rays under oxygen pressure) or poly(aryl sulphones) (U-PS and PES), poly(aryl ester) (U-Polymer), poly(aryl amide) (A-Film) and poly(aryl ether ether ketone) (PEEK) have been studied based on changes in tensile properties. The deterioration dose estimated from the decrease in the elongation at break was as low as one-fifth to one-tenth of that in high-dose-rate electron-beam irradiation, but the order of radiation resistance of the polymers did not differ from that in electron-beam irradiation, i.e. PEEK > A-Film > U-Polymer > U-PS > PES. The radiation stability of aromatic units under oxidative conditions was estimated from a comparison of the radiation resistance of the polymers themselves and their chemical structures. The following order was obtained: diphenyl ether, diphenyl ketone > aromatic amide>> bisphenol A > diphenyl sulphone. The deterioration mechanism of PEEK under oxidative irradiation was studied by measuring dynamic viscoelastic properties. It was concluded that deterioration in mechanical properties under oxidative irradiation was brought about by chain scission only. (author)

  10. Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base.

    Science.gov (United States)

    Lyons, Michael E G; Doyle, Richard L; Brandon, Michael P

    2011-12-28

    Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.

  11. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors - A review

    Science.gov (United States)

    Faraji, Soheila; Ani, Farid Nasir

    2014-10-01

    Electrochemical capacitors (ECs), also known as pseudocapacitors or supercapacitors (SCs), is receiving great attention for its potential applications in electric and hybrid electric vehicles because of their ability to store energy, alongside with the advantage of delivering the stored energy much more rapidly than batteries, namely power density. To become primary devices for power supply, supercapacitors must be developed further to improve their ability to deliver high energy and power simultaneously. In this concern, a lot of effort is devoted to the investigation of pseudocapacitive transition-metal-based oxides/hydroxides such as ruthenium oxide, manganese oxide, cobalt oxide, nickel oxide, cobalt hydroxide, nickel hydroxide, and mixed metal oxides/hydroxides such as nickel cobaltite and nickel-cobalt oxy-hydroxides. This is mainly due to the fact that they can produce much higher specific capacitances than typical carbon-based electric double-layer capacitors and electronically conducting polymers. This review presents supercapacitor performance data of metal oxide thin film electrodes by microwave-assisted as an inexpensive, quick and versatile technique. Supercapacitors have established the specific capacitance (Cs) principles, therefore, it is likely that metal oxide films will continue to play a major role in supercapacitor technology and are expected to considerably increase the capabilities of these devices in near future.

  12. Micro-layers of polystyrene film preventing metal oxidation: implications in cultural heritage conservation

    Science.gov (United States)

    Giambi, Francesca; Carretti, Emiliano; Dei, Luigi; Baglioni, Piero

    2014-12-01

    Protection of surfaces directly exposed to the detrimental action of degradative agents (i.e. oxygen, air pollutants and bacteria) is one of the most important challenges in the field of conservation of works of art. Metallic objects are subjected to specific surface corrosion phenomena that, over the years, make mandatory the research of innovative materials that should avoid the direct contact between the metal surface and the weathering agents. In this paper, the set-up, characterisation and application of a new reversible material for preserving metal artefacts are reported. Micro-layers constituted of low-adhesive polystyrene (PS) films obtained from recycling waste packaging materials made of expanded PS were studied. The morphology and thickness of PS films were characterised by optical, atomic force and scanning electron microscopy (SEM). A further check on thickness was carried out by means of visible spectrophotometry doping the films with a hydrophobic dye. Thermal properties of the PS micro-layers were studied by means of differential scanning calorimetry coupled with optical microscopy. Permeability of the PS films to water vapour was also determined. The potential of the low-adhesive PS films, that enabled an easy removal in case of film deterioration, for preventing metal oxidation was investigated on brass specimens by simulating standard artificial corrosion programmes. Morphological and chemical (coupling the energy-dispersive X-rays spectrometry to SEM measurements) analyses carried out on these metal samples showed promising results in terms of surface protection against corrosion.

  13. Simultaneous Patterning of Independent Metal/Metal Oxide Multi-Layer Films Using Two-Tone Photo-Acid Generating Compound Systems

    Directory of Open Access Journals (Sweden)

    Hideo Honma

    2012-10-01

    Full Text Available (1 The photo-induced solubility and positive-tone direct photo-patterning of iron, copper and lanthanides chelated with 4-(2-nitrobenzyloxycarbonylcatechol (NBOC or 4-(6-nitroveratryloxycarbonylcatechol (NVOC was investigated. Photo-patterning of iron, copper, cerium, samarium, europium, terbium, dysprosium, holmium, erbium and lutetium complexes was accomplished. Continuous films were formed by the pyrolysis of metal complex films at 500 °C. (2 Based on the difference in the photo-reaction excitation wavelength profile of NBOC and NVOC complexes, a short and simple method for simultaneous micro-patterning of two independent films on each side of a transparent glass substrate was developed. Using the developed procedure, indium tin oxide and/or titanium oxide films were formed on each side of a quartz substrate without use of resist or etching.

  14. Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors.

    Science.gov (United States)

    Xu, Wangying; Li, Hao; Xu, Jian-Bin; Wang, Lei

    2018-03-06

    Solution-processed metal oxide thin-film transistors (TFTs) are considered as one of the most promising transistor technologies for future large-area flexible electronics. This review surveys the recent advances in solution-based oxide TFTs, including n-type oxide semiconductors, oxide dielectrics and p-type oxide semiconductors. Firstly, we provide an introduction on oxide TFTs and the TFT configurations and operating principles. Secondly, we present the recent progress in solution-processed n-type transistors, with a special focus on low-temperature and large-area solution processed approaches as well as novel non-display applications. Thirdly, we give a detailed analysis of the state-of-the-art solution-processed oxide dielectrics for low-voltage electronics. Fourthly, we discuss the recent progress in solution-based p-type oxide semiconductors, which will enable the highly desirable future low-cost large-area complementary circuits. Finally, we draw the conclusions and outline the perspectives over the research field.

  15. Novel method to deposit metal particles on transition metal oxide films and its application in lithium-ion batteries

    International Nuclear Information System (INIS)

    Pan Qinmin; Wang Min; Wang Hongbo; Zhao Jianwei; Yin Geping

    2008-01-01

    A novel method to modify the surfaces of transition metal oxides (MO) film-electrode was proposed in this study. At first, a monolayer of terephthalic acid was covalently bonded to the surfaces of Cu 2 O films. Then silver (Ag) particles were electrodeposited on the monolayer-grafted films by a potential-step process. The resulting Ag-Cu 2 O films exhibited improved electrochemical performance as negative electrodes in lithium-ion batteries compared to the original Cu 2 O films. An increase in electrical contact between Cu 2 O particles was considered to be responsible for the improvement in the electrochemical properties

  16. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  17. Polymer-Oxide Nanolayer/Al Composite Cathode for Efficient Polymer Light-Emitting Diodes

    National Research Council Canada - National Science Library

    Guo, Tzung-Fang; Wen, Ten-Chin

    2007-01-01

    ...). The author proposed to place a salt-free, polymer-oxide nanolayer at the interface between the light-emissive polymer layer with Al as the device cathode instead of using low work function metals, such as Ca or LiF/Al...

  18. XPS characterization of the anodic oxide film formed on uranium metal in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Guo Huanjun; Wang Qingfu; Zhao Zhengping; Zhong Yongqiang

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) is used to examine the anodic oxide film formed on uranium metal in 0.8 mol/L NaOH solution. The U4f 7/2 fitting spectra suggests that the anodic oxide film is composed of uranium trioxide and a small amount of UO 2+x . Under UHV condition, the U4f peak shifts to the lower binding energy, while a gradual increase in the intensity of U5f peak and the broad of U4f peak are also observed. All of these changes are due to reduction of uranium trioxide in the anodic oxide film. XPS quantitative analysis confirms the occurrence of reduction reaction

  19. Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films.

    Science.gov (United States)

    Xu, Zedong; Gao, Min; Yu, Lina; Lu, Liying; Xu, Xiaoguang; Jiang, Yong

    2014-10-22

    The resistive switching behavior of Co-nanoparticle-dispersed polypyrrole (PPy) composite films is studied. A novel design method for resistive random access memory (ReRAM) is proposed. The conducting polymer films with metal nanocrystal (NC)-dispersed carbon chains induce the spontaneous oxidization of the conducting polymer at the surface. The resistive switching behavior is achieved by an electric field controlling the oxygen ion mobility between the metal electrode and the conducting polymer film to realize the mutual transition between intrinsic conduction (low resistive state) and oxidized layer conduction (high resistive state). Furthermore, the formation process of intrinsic conductive paths can be effectively controlled in the conducting polymer ReRAM using metal NCs in films because the inner metal NCs induce electric field lines converging around them and the intensity of the electric field at the tip of NCs can greatly exceed that of the other region. Metal NCs can also bring new characteristics for ReRAM, such as magnetism by dispersing magnetic metal NCs in polymer, to obtain multifunctional electronic devices or meet some special purpose in future applications. Our works will enrich the application fields of the electromagnetic PPy composite films and present a novel material for ReRAM devices.

  20. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    Science.gov (United States)

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  1. Formation of corrosion-resistant oxide film on uranium

    International Nuclear Information System (INIS)

    Petit, G.S.

    1976-01-01

    A vacuum heat-treatment method was developed for coating metallic uranium with an adherent protective film of uranium oxide. The film is prepared by vacuum heat-treating the metallic uranium at 625 0 C for 1 h while controlling the amount of oxygen being metered into the furnace. Uranium coupons with the protective film were exposed for several hundred hours in a corrosion test bath at 95 0 C and 100 percent RH without corroding. Film thicknesses ranging from 5 to 25 μm (0.0002 to 0.001 in.) were prepared and corrosion tested; the film thickness can be controlled to less than +-2.5 μm (+-0.0001 in.). The oxide film is hard, nonwetting, and very adherent. The resulting surface finish of the metal is equivalent to that of the original finish. The advantages of the oxide films over other protective coatings are given. 12 fig

  2. Flexible ITO-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Krebs, Frederik C

    2013-01-01

    Indium tin oxide (ITO) is the material-of-choice for transparent conductors in any optoelectronic application. However, scarce resources of indium and high market demand of ITO have created large price fluctuations and future supply concerns. In polymer solar cells (PSCs), ITO is the single......-cost alternatives to ITO suitable for use in PSCs. These alternatives belong to four material groups: polymers; metal and polymer composites; metal nanowires and ultra-thin metal films; and carbon nanotubes and graphene. We further present the progress of employing these alternatives in PSCs and identify future...

  3. Efficiency Enhancement in Bulk Heterojunction Polymer Photovoltaic Cells Using ZrTiO4/Bi2O3 Metal-Oxide Nanocomposites

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Neppolian, B.; Shim, Hee-Sang

    2010-01-01

    We report the effect of metal-oxide nanocomposites on the performance of bulk heterojunction polymer solar cells. A photoactive layer composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was blended with a newly developed ZrTiO4/Bi2O3 (BITZ) metal-oxide...

  4. Stability of Polymer Ultrathin Films (Top-Down Approach.

    Science.gov (United States)

    Bal, Jayanta Kumar; Beuvier, Thomas; Unni, Aparna Beena; Chavez Panduro, Elvia Anabela; Vignaud, Guillaume; Delorme, Nicolas; Chebil, Mohamed Souheib; Grohens, Yves; Gibaud, Alain

    2015-08-25

    In polymer physics, the dewetting of spin-coated polystyrene ultrathin films on silicon remains mysterious. By adopting a simple top-down method based on good solvent rinsing, we are able to prepare flat polystyrene films with a controlled thickness ranging from 1.3 to 7.0 nm. Their stability was scrutinized after a classical annealing procedure above the glass transition temperature. Films were found to be stable on oxide-free silicon irrespective of film thickness, while they were unstable (2.9 nm) on 2 nm oxide-covered silicon substrates. The Lifshitz-van der Waals intermolecular theory that predicts the domains of stability as a function of the film thickness and of the substrate nature is now fully reconciled with our experimental observations. We surmise that this reconciliation is due to the good solvent rinsing procedure that removes the residual stress and/or the density variation of the polystyrene films inhibiting thermodynamically the dewetting on oxide-free silicon.

  5. PEO + PVP blended polymer composite

    Indian Academy of Sciences (India)

    Blended polymer films of polyethylene oxide + polyvinyl pyrrolidone (PEO + PVP) containing transition metal (TM) ions like Fe3+, Co2+ and Ni2+ have been synthesized by a solution casting method. For these films, structural, thermal, magnetic and optical properties have been studied. X-ray diffraction results reveal the ...

  6. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Science.gov (United States)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  7. Analysis of polymer/oxide interfaces under ambient conditions - An experimental perspective

    Science.gov (United States)

    González-Orive, A.; Giner, I.; de los Arcos, T.; Keller, A.; Grundmeier, G.

    2018-06-01

    In many different hybrid materials and materials composites polymers adhere to bulk oxides or oxide covered metal. The formed polymer/oxide interfaces are of crucial importance for the functionality and durability of such complex materials. Especially, under humid and corrosive conditions such interfaces tend to degrade due to permeability of polymers for water, the high adsorption energy of water on oxide surfaces and even corrosion processes of the metal. Different experimental studies considered such interfaces ranging from spectroscopy to electrochemical analysis. However, it is still a challenge to understand the complex interaction especially under non-ideal ambient conditions. The perspective article presents an overview on the existing experimental approaches and considers most recent experimental developments with regard to their potential applications in the area of polymer/oxide interfaces in the future.

  8. Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by γ-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    Siyuan Xie

    2013-01-01

    Full Text Available In this paper, reduced graphene oxide (RGO was prepared by means of γ-ray irradiation of graphene oxide (GO in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance.

  9. Swift heavy ion induced de wetting of metal oxide thin films on silicon

    International Nuclear Information System (INIS)

    Bolse, T.; Paulus, H.; Bolse, W.

    2006-01-01

    We have observed that thin oxide coatings (NiO, Fe 2 O 3 ) tend to dewet their Si substrate when being bombarded with swift heavy ions (350-600 MeV Au ions) even though the irradiation was carried out about 80 K and hence, the films never reached their melting point. Scanning electron and atomic force microscopy reveal a surprising similarity of the dewetting morphologies with those observed for molten polymer films on Si, which have recently been reported by others [S. Herminghaus, K. Jakobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, S. Schlagowsky, Science 282 (1998) 916; R. Seemann, S. Herminghaus, K. Jacobs, J. Phys.: Condens. Matter 13 (2001) 4925]. Like in that cases also here heterogeneous and homogeneous hole nucleation could be identified. Heterogeneous nucleation is less pronounced in Fe 2 O 3 /Si than in NiO/Si. The occurrence of spinodal-like dewetting cannot be detected unambiguously. The dewetting kinetics were determined by means of Rutherford backscattering spectroscopy and found to slightly differ for the two compounds. The dewetting kinetics as well as the final dewetting pattern strongly depend on the initial film thicknesses. No dewetting occurs for film thicknesses above about 150 nm, while for very small thicknesses below about 40 nm the film decays into nm-sized spherical droplets. At intermediate film thicknesses percolated networks of small oxide bridges are formed

  10. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  11. Orientation of One-Dimensional Silicon Polymer Films Studied by X-Ray Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Abdul Mannan

    2012-01-01

    Full Text Available Molecular orientations for thin films of one-dimensional silicon polymers grown by vacuum evaporation have been assigned by near-edge X-ray absorption fine structure (NEXAFS using linearly polarized synchrotron radiation. The polymer investigated was polydimethylsilane (PDMS which is the simplest stable silicon polymer, and one of the candidate materials for one-dimensional molecular wire. For PDMS films deposited on highly oriented pyrolytic graphite (HOPG, four resonance peaks have been identified in the Si K-edge NEXAFS spectra. Among these peaks, the intensities of the two peaks lower-energy at 1842.0 eV and 1843.2 eV were found to be strongly polarization dependent. The peaks are assigned to the resonance excitations from the Si 1s to σ∗ pyz and σ∗ px orbitals localized at the Si–C and Si–Si bonds, respectively. Quantitative evaluation of the polarization dependence of the NEXAFS spectra revealed that the molecules are self-assembled on HOPG surface, and the backbones of the PDMS are oriented nearly parallel to the surface. The observed orientation is opposite to the previously observed results for PDMS on the other surfaces such as oxide (indium tin oxide and metal (polycrystalline copper. The flat-lying feature of PDMS observed only on HOPG surface is attributed to the interaction between CH bonds in PDMS and π orbitals in HOPG surface.

  12. All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Films

    DEFF Research Database (Denmark)

    Angmo, Dechan; Dam, Henrik Friis; Andersen, Thomas Rieks

    2014-01-01

    A solution-processed silver film is employed in the processing of top-illuminated indium-tin-oxide (ITO)-free polymer solar cells in single- and double-junction (tandem) structures. The nontransparent silver film fully covers the substrate and serves as the bottom electrode whereas a PEDOT...... in terms of surface morphological and topographical properties and to ITO in terms of flexibility. The slot–die coated Ag film demonstrates extremely low roughness (a root-meansquare roughness of 3 nm was measured over 240_320 mm2 area), is highly conductive (

  13. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  14. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    Science.gov (United States)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  15. Active metal oxides and polymer hybrids as biomaterials

    Science.gov (United States)

    Jarrell, John D.

    Bone anchored prosthetic attachments, like other percutaneous devices, suffer from poor soft tissue integration, seen as chronic inflammation, infection, epithelial downgrowth and regression. We looked at the use of metal oxides as bioactive agents that elicit different bioresponses, ranging from cell attachment, tissue integration and reduction of inflammation to modulation of cell proliferation, morphology and microbe killing. This study presents a novel method for creating titanium oxide and polydimethylsiloxane (PDMS) hybrid coated microplates for high throughput biological, bacterial and photocatalytic screening that overcomes several limitations of using bulk metal samples. Titanium oxide coatings were doped with silver, zinc, vanadium, aluminum, calcium and phosphorous, while PDMS was doped with titanium, vanadium and silver and subjected to hydrothermal heat treatment to determine the influence of chemistry and crystallinity on the viability, proliferation and adhesion of human fibroblasts, keratinocytes and Hela cells. Also explored was the influence of Ag and Zn doping on E. coli proliferation. We determined how titanium concentration in hybrids and silver doping influenced the photocatalytic degradation of methylene blue by coatings. A combined sub/percutaneous, polyurethane device was developed and implanted into the backs of CD hairless rats to investigate how optimized coatings influenced soft tissue integration in vivo. We demonstrate that the bioresponse of cells to coatings is controlled by elemental doping (V & Ag) and that planktonic bacterial growth was greatly reduced or stopped by Ag, but not Zn doping. Hydrothermal heat treatments (65 °C and 121 °C) did not greatly influence cellular bioresponse to coatings. We discovered a range of temperature resistant (up to 400 °C), solid state dispersions with enhanced ability to block full spectrum photon transmission and degrade methylene using medical x-rays, UV, visible and infrared photons. We

  16. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin filmsOxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  17. Nuclear microanalysis of oxide films on structural steel

    International Nuclear Information System (INIS)

    Istomin, I.V.; Karabash, V.A.; Maisyukov, V.D.; Sosnin, A.N.; Shorin, V.S.

    1989-01-01

    Studies of the behavior of structural materials in nuclear power plants have indicated the important role of oxide films on metals, especially metals of the iron group. The films may be formed as a result of the corrosion of the metal in an aggressive coolant. At the same time, some oxide films have anticorrosive properties and can be produced specially by the introduction of inhibitor-passivators, e.g., molecular oxygen, into the aggressive medium. Experimental data on the film growth rate make it possible to determine the kinetics of the oxidation process, the nature of the diffusion of the main components through the film, and the role of the phase transitions (crystal-chemical transformations) and point defects during the migration of oxygen and metal ions through the oxide. In this study nuclear microanalysis is used to measure the parameters of oxide films formed on 10Cr2Mo and 1Cr18Ni10Ti steels in steam in the temperature range 320-620C. In this method the film parameters in the general analysis of the energy spectra of deuterons back-scattered from iron nuclei and protons in the case of the 16 O(d,p 1 ) 17 O nuclear reaction. With this approach and an initial deuteron energy E o = 0.9 MeV the range of the measurable thickness t of the films is 0.001-1.5 mg/cm 2 . The data obtained not only confirm the high sensitivity of the nuclear microanalysis method but also demonstrate that it can be used for nondestructive quality control of the surface

  18. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  19. Unidirectional oxide hetero-interface thin-film diode

    International Nuclear Information System (INIS)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-01-01

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10 5 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10 2  Hz < f < 10 6  Hz, providing a high feasibility for practical applications

  20. Unidirectional oxide hetero-interface thin-film diode

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Youn Sang, E-mail: younskim@snu.ac.kr [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institute of Convergence Technology, Gyeonggi-do 443-270 (Korea, Republic of)

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  1. Chemically abrupt interface between Ce oxide and Fe films

    International Nuclear Information System (INIS)

    Lee, H.G.; Lee, D.; Kim, S.; Kim, S.G.; Hwang, Chanyong

    2005-01-01

    A chemically abrupt Fe/Ce oxide interface can be formed by initial oxidation of an Fe film followed by deposition of Ce metal. Once a Ce oxide layer is formed on top of Fe, it acts a passivation barrier for oxygen diffusion. Further deposition of Ce metal followed by its oxidation preserve the abrupt interface between Ce oxide and Fe films. The Fe and Ce oxidation states have been monitored at each stage using X-ray photoelectron spectroscopy

  2. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  3. ITO-MgF2 Film Development for PowerSphere Polymer Surface Protection

    Science.gov (United States)

    Hambourger, Paul D.; Kerslake, Thomas W.; Waters, Deborah L.

    2004-01-01

    Multi-kilogram class microsatellites with a PowerSphere electric power system are attractive for fulfilling a variety of potential NASA missions. However, PowerSphere polymer surfaces must be coated with a film that has suitable electrical sheet resistivity for electrostatic discharge control, be resistant to atomic oxygen attack, be transparent to ultraviolet light for composite structure curing and resist ultraviolet light induced darkening for efficient photovoltaic cell operation. In addition, the film must be tolerant of polymer layer folding associated with launch stowage of PowerSphere inflatable structures. An excellent film material candidate to meet these requirements is co-sputtered, indium oxide (In2O3) - tin oxide (SnO2), known as 'ITO', and magnesium fluoride (MgF2). While basic ITO-MgF2 film properties have been the subject of research over the last decade, further research is required in the areas of film durability for space-inflatable applications and precise film property control for large scale commercial production. In this paper, the authors present film durability results for a folded polymer substrate and film resistance to vacuum UV darkening. The authors discuss methods and results in the area of film sheet resistivity measurement and active control, particularly dual-channel, plasma emission line measurement of ITO and MgF2 plasma sources. ITO-MgF2 film polymer coupon preparation is described as well as film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed microscopically and electrically. Results show that an approx. 500A ITO-18vol% MgF2 film is a promising candidate to protect PowerSphere polymer surfaces for Earth orbit missions. Preliminary data also indicate that in situ film measurement methods are promising for active film resistivity control in future large scale production. Future film research plans are also

  4. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    International Nuclear Information System (INIS)

    Seveno, R.; Braud, A.; Gundel, H.W.

    2005-01-01

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O 3 , PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO 3 ) by chemical solution deposition is studied. The SrRuO 3 thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO 3 layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 μC/cm were found

  5. Excimer laser assisted re-oxidation of BaTiO3 thin films on Ni metal foils

    International Nuclear Information System (INIS)

    Bharadwaja, S. S. N.; Ko, S. W.; Qu, W.; Clark, T.; Rajashekhar, A.; Motyka, M.; Podraza, N.; Randall, C. A.; Trolier-McKinstry, S.

    2016-01-01

    Excimer laser assisted re-oxidation for reduced, crystallized BaTiO 3 thin films on Ni-foils was investigated. It was found that the BaTiO 3 can be re-oxidized at an oxygen partial pressure of ∼50 mTorr and substrate temperature of 350 °C without forming a NiO x interface layer between the film and base metal foil. The dielectric permittivity of re-oxidized films was >1000 with loss tangent values <2% at 100 Hz, 30 mV rms excitation signal. Electron Energy Loss Spectroscopy indicated that BaTiO 3 thin films can be re-oxidized to an oxygen stoichiometry close to ∼3 (e.g., stoichiometric). High resolution cross sectional transmission electron microscopy showed no evidence of NiO x formation between the BaTiO 3 and the Ni foil upon excimer laser re-oxidation. Spectroscopic ellipsometry studies on laser re-oxidized [001] C and [111] C BaTiO 3 single crystals indicate that the re-oxidation of BaTiO 3 single crystals is augmented by photo-excitation of the ozone, as well as laser pulse induced temperature and local stress gradients

  6. Nitric Oxide Detection with Glassy Carbon Electrodes Coated with Charge-different Polymer Films

    Directory of Open Access Journals (Sweden)

    Jianping Lei

    2005-04-01

    Full Text Available Trace amounts of nitric oxide (NO have been determined in aqueous phosphate buffersolutions (pH=7.4 by using a glassy carbon electrode coated with three charge-different polymerfilms. The glassy carbon electrode was coated first with negatively charged Nafion film containingtetrakis(pentafluorophenylporphyrin iron(III chloride (Fe(IIITPFPP as the NO oxidation catalyst,and then with positively charged poly(acrylamide-co-diallyldimethylammonium chloride (PADDAand with neutral poly(dimethylsiloxane (silicone at the outermost layer. This polymer-coatedelectrode showed an excellent selectivity towards NO against possible concomitants in blood such asnitrite, ascorbic acid, uric acid, and dopamine. All current ratios between each concomitant and NOat the cyclic voltammogram was in 10-3 ~ 10-4. This type of electrode showed a detection limit of80 nM for NO. It was speculated from the electrochemical study in methanol that high-valent oxoiron(IV of Fe(TPFPP participated in the catalytic oxidation of NO.

  7. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  8. A novel fabrication method for surface integration of metal structures into polymers (SIMSIP)

    Science.gov (United States)

    Carrion-Gonzalez, Hector

    Recently developed flexible electronics applications require that the thin metal films embedded on elastomer substrates also be flexible. These electronic systems are radically different in terms of performance and functionality than conventional silicon-based devices. A key question is whether the metal deposited on flexible films can survive large strains without rupture. Cumbersome macro-fabrication methods have been developed for functional and bendable electronics (e.g., interconnects) encapsulated between layers of polymer films. However, future electronic applications may require electronic flexible devices to be in intimate contact with curved surfaces (e.g., retinal implants) and to be robust enough to withstand large and repeated mechanical deformations. In this research, a novel technique for surface integration of metal structures into polymers (SIMSIP) was developed. Surface embedding, as opposed to placing metal on polymers, provides better adherence while leaving the surface accessible for contacts. This was accomplished by first fabricating the micro-scale metal patterns on a quartz or Teflon mother substrate, and then embedding them to a flexible polyimide thin film. The technique was successfully used to embed micro-metal structures of gold (Au), silver (Ag), and copper (Cu) into polyimide films without affecting the functional properties of the either the metals or the polymers. Experimental results confirm the successful surface-embedding of metal structures as narrow as 0.6 microm wide for different geometries commonly used in circuit design. Although similar approaches exist in literature, the proposed methodology provides a simpler and more reliable way of producing flexible circuits/electronics that is also suitable for high volume manufacturing. In order to demonstrate the flexibility of metal interconnects fabricated using the SIMSIP technique, multiple Au electrodes (5 microm and 2.5 microm wide) were tested using the X-theta bending

  9. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  10. Vacuum-based surface modification of organic and metallic substrates

    Science.gov (United States)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous

  11. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Su; Noh, Yong-Jin; Kwon, Sung-Nam; Na, Seok-In, E-mail: nsi12@jbnu.ac.kr [Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Jeon, Ye-Jin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Seok-Soon, E-mail: sskim@kunsan.ac.kr [Department of Nano and Chemical Engineering, Kunsan National University, Kunsan, Jeollabuk-do 753-701 (Korea, Republic of); Kim, Tae-Wook [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of)

    2015-07-13

    We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

  12. The resistance changes of carbon and metal oxide film resistors by irradiation of 60Co γ rays

    International Nuclear Information System (INIS)

    Okamoto, Shinichi; Fujino, Takahiro; Furuta, Junichiro; Yoshida, Toshio

    1979-01-01

    The resistance changes of glass-sealed deposited-carbon-film and carbon-coated-film resitors and metal oxide glazed resistors made in USA were studied by gamma-ray irradiation. (1) The resistances of deposited-carbon-film resistors of 50, 100 and 200 megohm did not change by irradiation of gamma rays up to 1.9 x 10 9 R. (2) The carbon-coated-film resistors of 100, 1000, 10000 and 100000 megohm had negative resistance changes by irradiation of gamma rays up to 9.9 x 10 8 R. (3) The resistances of metal oxide glazed resistors of 100, 1000 and 10000 megohm did not change by irradiation of gamma rays up to 8.8 x 10 8 R. When radiation monitoring instruments with hi-meg resistors are used in a gamma field with high intensity, the resistors must not be exposed to gamma rays with high doses, or the resistors which do not change by gamma-ray irradiation must be selected. (author)

  13. Significance of an in-situ generated boundary film on tribocorrosion behavior of polymer-metal sliding pair.

    Science.gov (United States)

    Xu, Yongkun; Qi, Huimin; Li, Guitao; Guo, Xueping; Wan, Yong; Zhang, Ga

    2018-05-15

    Polymer composites have a high potential for applications as tribo-materials exposed to sea water owing to their self-lubrication characteristic and high chemical stability. In the present work, tribological behaviors of polyetheretherketone (PEEK) composites rubbing with stainless steel in sea water were explored using a pin-on-disc tribometer integrated with a potentiostat for electrochemical control. It was demonstrated that further adding 5 vol% hexagonal boron nitride (h-BN) nanoparticles into PEEK reinforced with short carbon fibers (SCF) significantly enhanced the wear resistance. Moreover, the stainless steel exhibited significantly enhanced tribocorrosion resistance when rubbing with the hybrid nanocomposite, in comparison to the sliding against PEEK filled only with SCF. Nanostructures of the boundary films formed on the steel surface were comprehensively investigated. It was manifested that tribo-chemistry products of h-BN, i.e. H 3 BO 3 and B 2 O 3 , were arrayed in a closely packed boundary film. It seems that inclusion of layer-structured H 3 BO 3 and B 2 O 3 improved the resilience of the boundary film. The continuous boundary film covering the steel surface provided a lubrication effect and strengthened the passivation layer. A new route for enhancing simultaneously tribological and corrosion resistance of polymer-metal pairs by controlling in-situ tribo-chemistry was thus proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Electrochemistry of hydrous oxide films

    International Nuclear Information System (INIS)

    Burke, L.D.; Lyons, M.E.G.

    1986-01-01

    The formation, acid-base properties, structural aspects, and transport processes of hydrous oxide films are discussed. Classical and nonclassical theoretical models of the oxide-solution interface are compared. Monolayer oxidation, behavior, and crystal growth of oxides on platinum, palladium, gold, iridium, rhodium, ruthenium, and some non-noble metals, including tungsten, are reviewed and compared

  15. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Seveno, R. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)]. E-mail: raynald.seveno@univ-nantes.fr; Braud, A. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France); Gundel, H.W. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)

    2005-12-22

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O{sub 3}, PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO{sub 3}) by chemical solution deposition is studied. The SrRuO{sub 3} thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO{sub 3} layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 {mu}C/cm were found.

  16. Anomalous transmission through heavily doped conducting polymer films with periodic subwavelength hole array

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-08-01

    We observed resonantly enhanced (or anomalous transmission) terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF 6 molecules [PPy(PF6)]. The anomalous transmission spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the resonantly enhanced transmission peaks are broader in the exotic metallic PPy(PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, indicating that the surface plasmon polaritons on the PPy(PF6) film surfaces have higher attenuation.

  17. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    KAUST Repository

    Mora Cordova, Angel

    2014-11-01

    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show that the new model is suitable for cyclic loading. After calibration with experimental data, we are able to capture the stress-strain behavior and changes in electrical resistance of ITO thin films. We are also able to predict the crack density using calibrations from our previous model. Finally, we demonstrate the capabilities of our model based on simulations using material properties reported in the literature. Our model is implemented in the commercially available finite element software ABAQUS using a user subroutine UMAT.[Figure not available: see fulltext.].

  18. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    Skryabin M.L.

    2017-12-01

    Full Text Available The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential dependence of the current density from the electric field in the surface film of the base metal. The role of discharges in the formation of oxide layers on the treated surface. Proposed and described features of the three main theories of formation of oxide films on the surface of the piston: physical and geometrical model of Keller; models of formation of oxide films as a colloid formations and plasma theory (theory of oxidation with the formation of plasma in the zone of oxidation. The features of formation of films in each of the models. For the model of Keller porous oxide film is a close-Packed oxide cell, having the shape of a prism. They are based on a hexagonal prism. These cells have normal orientation to the surface of the metal. In the center of the unit cell there is one season that is a channel, whose size is determined by the composition of the electrolyte, the chemical composition of the base metal and the electrical parameters of the process of oxidation. In the micro-arc oxidation process according to this model, the beginning of the formation of cells occurs with the formation of the barrier layer, passing in the porous layer and, over time, the elonga-tion of the pores, due to the constant etching electrolyte. In the theory of formation of the oxide films as kolloidnyh formations revealed that formation of pores in the film is a result of their growth. The anodic oxide is represented by a directed electric field, the alumina gel colloidal and

  19. Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning

    Directory of Open Access Journals (Sweden)

    Xinping Zhang

    2016-02-01

    Full Text Available Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers.

  20. Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates.

    Science.gov (United States)

    Liu, Chih-Ting; Tsai, Chia-Chan; Chu, Chien-Wei; Chi, Mu-Huan; Chung, Pei-Yun; Chen, Jiun-Tai

    2018-04-18

    We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.

  1. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, H., E-mail: helene.takacs@gmail.com [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Viala, B.; Hermán, V. [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); Tortai, J.-H. [LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Duclairoir, F. [Université Grenoble Alpes, INAC, Grenoble 38054 (France); CEA, INAC, Grenoble 38054 (France)

    2016-03-07

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P{sub 1}/P{sub 2}, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P{sub 1} = pyrene-terminated polystyrene is the second shell for electrical insulation, and P{sub 2} = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (∼0.6 T) and ultra-high resistivity (∼10{sup 10 }μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P{sub 1}. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  2. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    International Nuclear Information System (INIS)

    Roberts, R C; Wu, J; Li, D C; Hau, N Y; Chang, Y H; Feng, S P

    2014-01-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm 2 with stable metal performance

  3. Oxidation of vanadium metal in oxygen plasma and their characterizations

    Science.gov (United States)

    Sharma, Rabindar Kumar; Singh, Megha; Kumar, Prabhat; Reddy, G. B.

    2015-09-01

    In this report, the role of oxygen plasma on oxidation of vanadium (V) metal and the volatilization of its oxides has been studied as a function of source (V metal strip) temperature (Tss) and oxygen partial pressure (PO2). The presence of O2-plasma not only enhances the oxidation rate but also ficilitates in transport of oxide molecules from metal to substrate, as confirmed by the simultanous deposition of oxide film onto substrate. Both the oxidized metal strips and oxide films deposited on substrates are characterized separately. The structural and vibrational results evidence the presence of two different oxide phases (i.e. orthorhombic V2O5 and monocilinic V O2) in oxide layers formed on V metal strips, whereas the oxide films deposited on substrates exhibit only orthorhombic phase (i.e. V2O5). The decrease in peak intensities recorded from heated V metal strips on increasing Tss points out the increment in the rate of oxide volatilization, which also confirms by the oxide layer thickness measurements. The SEM results show the noticeable surface changes on V-strips as the function of Tss and PO2 and their optimum values are recorded to be 500 ˚ C and 7.5 × 10-2 Torr, respectively to deposit maximum thick oxide film on substrate. The formation of microcracks on oxidized V-strips, those responsible to countinue oxidation is also confirmed by SEM results. The compositional study of oxide layers formed on V-strips, corroborates their pureness and further assures about the existence of mixed oxide phases. The effect of oxygen partial pressure on oxidation of V-metal has also been discussed in the present report. All the results are well in agreement to each other.

  4. Polymer Thin Film Stabilization.

    Science.gov (United States)

    Costa, A. C.; Oslanec, R.; Composto, R. J.; Vlcek, P.

    1998-03-01

    We study the dewetting dynamics of thin polystyrene (PS) films deposited on silicon oxide surfaces using optical (OM) and atomic force (AFM) microscopes. Quantitative analysis of the hole diameter as a function of annealing time at 175^oC shows that blending poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) with PS acts to dramatically slow down the dewetting rate and even stops holes growth before they impinge. AFM studies show that the hole floor is smooth for a pure PS film but contains residual polymer for the blend. At 5% vol., a PS-b-PMMA with high molar mass and low PMMA is a more effective stabilizing agent than a low molar mass/high PMMA additive. The optimum copolymer concentration is 3% vol. beyond which film stability doesn't improve. Although dewetting is slowed down relative to pure PS, PS/PS-b-PMMA bilayers dewet at a faster rate than blends having the same overall additive concentration.

  5. Polymer-noble metal nanocomposites: Review

    CSIR Research Space (South Africa)

    Folarin, OM

    2011-09-01

    Full Text Available because of their multi-functionality, ease of process-ability, potential for large-scale manufacturing, significantly lighter than metals, ease of synthesis when compared to the oxide/noble metal multi-layers (Gass et al., 2006; Lee et al., 2003.... their easy aggregation arising from their high surface free energy (Lee et al., 2006). In the design of nanocomposites, one must consider the properties of the polymer matrix as well as the stability of the nanoparticles and more importantly...

  6. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  7. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    Science.gov (United States)

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  8. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte

  9. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    Science.gov (United States)

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  10. Microscopy of thin polymer blend films of polystyrene and poly-n-butyl-methacrylate

    International Nuclear Information System (INIS)

    Schmitt, T.; Guttmann, P.; Schmahl, G.; Schmidt, O.; Schoenhense, G.; Mueller-Buschbaum, P.; Stamm, M.

    2000-01-01

    The structure of thin polymer blend films of polystyrene (PS) and poly-n-butyl-methacrylate (PnBMA) was examined with Transmission X-ray Microscopy (TXM), Scanning Force Microscopy (SFM), X-Ray Photoemission Electron Microscopy (X-PEEM) and Optical Microscopy (OM). Thin films were prepared by spin casting of a toluene solution of the polymer mixture onto silicon wafers retaining the native oxide. Depending on blend composition and annealing conditions smooth films with and without holes or films with well pronounced surface features (ribbons or islands) were produced. By TXM measurements a high lateral resolution study of the as cast and the annealed polymer blend samples was performed. The contrast in TXM is due to different absorption of x-radiation of the used polymers and due to variation in thickness. With X-PEEM the lateral distribution of the two polymers near the surface was mapped by employing the characteristic Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of the polymers. The TXM technique is a microscopic method integrating over the total film thickness, whereas the X-PEEM technique is a highly surface sensitive method. TXM and X-PEEM are therefore complementary methods which provide important information on the structure of thin polymer blend films additional to the standard techniques SFM and OM

  11. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    Science.gov (United States)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  12. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    Science.gov (United States)

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  13. Polymer-metal organic framework composite films as affinity layer for capacitive sensor devices

    NARCIS (Netherlands)

    Sachdeva, Sumit; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, Freek; Sudhölter, E.J.R.; Gascon, Jorge; Smet, de L.C.P.M.

    2016-01-01

    We report a simple method for sensor development using polymer-
    MOF composite films. Nanoparticles of NH2-MIL-53(Al) dispersed in a Matrimid
    polyimide were applied as a thin film on top of capacitive sensor devices with planar electrodes. These drop-cast films act as an affinity layer.

  14. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars

    International Nuclear Information System (INIS)

    Afridi, M.U.K.; Ohama, Y.; Demura, K.; Iqbal, M.Z.

    2003-01-01

    This paper evaluates and compares the coalescence of polymer particles (continuous polymer films formation) in powdered polymer-modified mortars (PPMMs) and aqueous polymer-modified mortars (APMMs). Polymer-modified mortars (PMMs) using various redispersible polymer powders (powdered cement modifiers) and polymer dispersions (aqueous cement modifiers) were prepared by varying the polymer-cement ratio (P/C) and were tested for the characterization of polymer films using a scanning electron microscope (SEM) after curing for 28 days. It is concluded from the test results that mortar constituents of unmodified mortar (UMM) are loosely joined with each other due to the absence of polymer films, thus having a structure with comparatively lower mechanical and durability characteristics. By contrast, mortar constituents in PPMMs and APMMs are compactly joined with each other due to the presence of interweaving polymer films, thereby forming a monolithic structure with improved mechanical and durability characteristics. However, the results make obvious the poor coalescence of polymer particles or development of inferior quality polymers films in PPMMs as compared to that observed in APMMs. Moreover, PPMMs show less uniform distribution of polymer films as compared to that in APMMs. Different powdered cement modifiers have different film-forming capabilities. However, such difference is hardly recognized in aqueous cement modifiers. The polymer films in PPMMs and APMMs may acquire different structures. They may appear as mesh-like, thread-like, rugged, dense or fibrous with fine or rough surfaces. Development of coherent polymer films is not well pronounced at a P/C of 5% in PPMMs, whereas sometimes coherent polymer films are observed at a P/C of 5% in APMMs. At a P/C of 10% or more, fully developed, coherent polymer films are observed in both PPMMs and APMMs

  15. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sayantan; Alford, T. L. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA and School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  16. Aluminium oxide barrier films on polymeric web and their conversion for packaging applications

    OpenAIRE

    Struller, CF; Kelly, PJ; Copeland, NJ; Tobin, V; Assender, HE; Holliday, CW; Read, SJ

    2013-01-01

    In recent years, inorganic transparent barrier layers such as aluminium oxide or silicon oxide deposited onto polymer films have emerged as an attractive alternative to polymer based transparent barrier layers for flexible food packaging materials. For this application, barrier properties against water vapour and oxygen are critical. Aluminium oxide coatings can provide good barrier levels at thicknesses in the nanometre range, compared to several micrometres for polymer-based barrier layers....

  17. Electrochemical and chemical methods of metallizing plastic films

    OpenAIRE

    Chapples, J.

    1991-01-01

    This thesis describes two novel techniques for the metallization of non-electroactive polymer films and thicker sectioned polyethylene and nylon substrates. In the first approach, non-electroactive polymer substrates were impregnated with surface layers of polypyrrole and polyaniline, using electrochemical and chemical methods of polymerization. The relative merits of both these approaches are discussed and compared with other methods in the literature. The resultant composi...

  18. Defect-mediated magnetism of transition metal doped zinc oxide thin films

    Science.gov (United States)

    Roberts, Bradley Kirk

    Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which

  19. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage

    Science.gov (United States)

    Mai, Yiyong; Zhang, Fan; Feng, Xinliang

    2013-12-01

    Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.

  20. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  1. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    Science.gov (United States)

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-19

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  2. Vacuum deposition of high quality metal films on porous substrates

    International Nuclear Information System (INIS)

    Barthell, B.L.; Duchane, D.V.

    1982-01-01

    A composite mandrel has been developed consisting of a core of low density polymethylpentene foam overcoated with a thin layer of film-forming polymer. The surface tension and viscosity of the coating solution are important parameters in obtaining a polymer film which forms a continuous, smooth skin over the core without penetrating into the foam matrix. Water soluble film formers with surface tensions in the range of 45 dyn/cm and minimum viscosities of a few hundred centipoises have been found most satisfactory for coating polymethylpentene foam. By means of this technique, continuous polymer fims with thicknesses of 10--20 μm have been formed on the surface of machined polymethylpentene foam blanks. Aluminum has been vacuum deposited onto these composite mandrels to produce metal films which appear smooth and generally defect free even at 10 000 times magnification

  3. Biomimetic synthesis and morphological control of metal carbonates at the air/solution interface

    International Nuclear Information System (INIS)

    Lee, Shichoon; Cho, Kilwon; Son, Younggon

    2012-01-01

    Biomimetic approaches can provide a means of fabricating nanostructured materials under environmentally benign conditions. In this paper, we synthesized metal carbonate films, such as calcite, strontianite, malachite, and hydrozincite films, at the air-solution interface of solutions containing corresponding metal ions by using inflowing CO 2 from the atmosphere. The addition of acidic polymers, fulfilling the role of an acidic protein in biomineralization, provided CaCO 3 nanofibers, SrCO 3 nanofibers oriented in a specific direction, and copper carbonate and zinc carbonate hydroxide thin films. The metal carbonates prepared in this study were used as precursors for the formation of metal oxide nanocrystals via pyrolysis. This work showed that various metal carbonates and metal oxides with nanostructures can be prepared by using atmospheric CO 2 . - Highlights: ► Biomimetic synthesis of metal carbonate nanofilms at the air/solution interface. ► The reaction between metal ions and carbonate ions derived from CO 2 in the air. ► Calcium, strontium, copper and zinc carbonates were formed. ► The morphologies of the nanofilms were controlled by adding the acidic polymer. ► Nanostructured metal oxides were prepared by pyrolysis of the metal carbonates.

  4. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films

    International Nuclear Information System (INIS)

    Blauth, David

    2010-01-01

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO 2 /Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  5. Synthesis by plasma of polymer-metal materials

    International Nuclear Information System (INIS)

    Fernandez R, G.

    2004-01-01

    The objective of this work is the design of an experimental set-up to synthesize polymer- metal composites by plasma with versatility in the conditions of synthesis. The main components are a vacuum system capable to reach up to 10 -2 mbar and valves and accessories to control the pressure in the system. In order to generate the electrical discharges and the plasma, an electrical circuit with an inductive connection at 13.56 MHz of frequency was constructed. The electric field partially ionizes the reactor atmosphere where the polymer-metal composites were synthesized. The reactor has two metallic electrodes, one in front of the other, where the particles electrically charged collide against the electrodes producing ablation on them. The polymer-metal composites were synthesized by means of an inductive connection at 13.56 MHz. Aniline, 3-chlorine-ethylene and electrodes of silver (Ag) and copper (Cu) were used in a cylindrical reactor coupled with an external coil to generate glow discharges. The average pressures were 6.15 X 10 -1 and 5.2 X 10 -1 mbar for the synthesis of Poly aniline (P An) and Poly chloroethylene (PE-CI), respectively. The synthesis was performed during 60 and 180 minutes for P An and PE-CI, respectively. The polymers were formed, as films, with an average thickness of 6.42 μm for P An and, in the case of PE-CI, with an approximately growing rate of 14 ηm/W. The power in the syntheses was 30, 50, 70 and 90 W for P An and 50, 100, 120, 140 170, and 200 W for PE-CI. The characterization of the polymer-metal composites was done by energy dispersive spectroscopy to study the composition and the relation of the elements involved in the synthesis. The morphology of the films was studied by means of scanning electron microscopy. The infrared analysis (IR) was done to study the chemicals bonds and the structure of these polymers. Another important study in these materials was the behavior of the electrical conductivity (σ), which was complemented

  6. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films

    CERN Document Server

    Chen, S J; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    Photoluminescence (PL) properties of ZnO films grown on (001) InP substrates by thermal oxidization of metallic Zn films, in which oxygen vacancies and interstitial Zn ions are compensated by P ions diffusing from (001) InP substrates, are investigated. X-ray diffraction spectra indicate that P ions have diffused into the Zn films and chemically combined with Zn ions to form Zn sub 3 P sub 2. Intense free exciton emission dominates the PL spectra of ZnO films with very weak deep-level emission. Low-temperature PL spectra at 79 K are dominated by neutral-donor bound exciton emission at 3.299 eV (I sub 4) with a linewidth of 17.3 meV and neutral-acceptor bound exciton emission at 3.264 eV. The free exciton emission increases with increasing temperature and eventually dominates the emission spectrum for temperature higher than 170 K. Furthermore, the visible emission around 2.3 eV correlated with oxygen deficiencies and interstitial Zn defects was quenched to a remarkable degree by P diffusing from InP substrate...

  7. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films

    International Nuclear Information System (INIS)

    Chen, S J; Liu, Y C; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    Photoluminescence (PL) properties of ZnO films grown on (001) InP substrates by thermal oxidization of metallic Zn films, in which oxygen vacancies and interstitial Zn ions are compensated by P ions diffusing from (001) InP substrates, are investigated. X-ray diffraction spectra indicate that P ions have diffused into the Zn films and chemically combined with Zn ions to form Zn 3 P 2 . Intense free exciton emission dominates the PL spectra of ZnO films with very weak deep-level emission. Low-temperature PL spectra at 79 K are dominated by neutral-donor bound exciton emission at 3.299 eV (I 4 ) with a linewidth of 17.3 meV and neutral-acceptor bound exciton emission at 3.264 eV. The free exciton emission increases with increasing temperature and eventually dominates the emission spectrum for temperature higher than 170 K. Furthermore, the visible emission around 2.3 eV correlated with oxygen deficiencies and interstitial Zn defects was quenched to a remarkable degree by P diffusing from InP substrates

  8. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  9. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  10. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications

    Science.gov (United States)

    Con, Celal; Cui, Bo

    2017-12-01

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  11. Adhesion and adhesion changes at the copper metal-(acrylonitrile-butadiene-styrene) polymer interface

    NARCIS (Netherlands)

    Kisin, S.; Varst, van der P.G.T.; With, de G.

    2007-01-01

    It is known that the adhesive strength of metallic films on polymer substrates often changes in the course of time. To study this effect in more detail, the adhesion energy of sputtered and galvanically strengthened copper coatings on acrylonitrile–butadiene–styrene polymer substrate was determined

  12. Photopatterning of heterostructured polymer Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Li Tiesheng; Mitsuishi, Masaya; Miyashita, Tokuji

    2008-01-01

    Heterostructured polymer Langmuir-Blodgett (LB) film prepared by using poly(N-dodecylacrylamide-co-t-butyl 4-vinylphenyl carbonate) (p(DDA-tBVPC53)) and poly(N-neopentyl methacrylamide-co-9-anthrylmethyl methacrylate) (p(nPMA-AMMA10)) polymer LB films which can act as photogenerator layers were investigated. Patterns with a resolution of 0.75 μm were obtained on heterostructured polymer LB films composed of 4 layers of p(nPMA-AMMA10) LB film (top layers) and 40 layers of p(DDA-tBVPC53) LB film (under layers) on a silicon wafer by deep UV irradiation followed by development with 1% tetramethylammonium hydroxide aqueous solution. The sensitivity of the heterostructured polymer LB films was improved without loss of the resolution compared with p(DDA-tBVPC53) LB film. The etch resistance of the heterostructured polymer LB films was sufficiently good to allow patterning of a copper film suitable for photomask fabrication

  13. Enhanced Nanotribology and Optimal Self-lubrication in Novel Polymer-Metal Composites

    Science.gov (United States)

    Seam, Alisha; Brostow, Witold; Olea-Mejia, Oscar

    2006-10-01

    Cheaper to produce, light-weight polymeric materials with improved micro and nano-scale tribological characteristics ar gradually replacing the heavier metals in gears, cams, ball-bearings, chains, and other critical machine components which operate under high stress, experience substantial sliding friction and wear, and require external lubrication regimes. Application of such high-performance synthetic materials in a whole range of machinery, manufacturing, aerospace and transportation industries would produce far reaching economic, energy conservation and environmental benefits. This paper devises and investigates a novel and previously untested method of developing self-lubricating and wear-resistant polymer based materials (PBMs) by blending a polymer with small proportions of a metallic additive. Tribological experiments establish that as increasing proportions of the metallic additive Iron (Fe) are added to the polymeric base polyethylene (PE), the friction and wear of the resulting composite (PE-Fe) experiences significant decline until an optimal value of 3 to 5 % Iron and then stabilize. Theoretical analysis reveals this phenomenon to likely be a result of the nano-structural formation of a lubricating oxide layer on surface of the polymer-metal composite. Furthermore, the oxide layer prevented significant degradation of the viscoelastic scratch-recovery of the base polymer, even with 10 percent metal additive (Fe) in the composite samples.

  14. Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide

    Science.gov (United States)

    Krylov, P. S.; Berestennikov, A. S.; Aleshin, A. N.; Komolov, A. S.; Shcherbakov, I. P.; Petrov, V. N.; Trapeznikova, I. N.

    2015-08-01

    The effects of switching were investigated in composite films based on multifunctional polymers. i.e., derivatives of carbazole (PVK) and fluorene (PFD), as well as based on particles of graphene (Gr) and graphene oxide (GO). The concentration of Gr and GO particles in the PVK(PFD) matrix was varied in the range of 2-3 wt %, which corresponded to the percolation threshold in these systems. The atomic composition of the composite films PVK: GO was examined using X-ray photoelectron spectroscopy. It was found that the effect of switching in structures of the form Al/PVK(PFD): GO(Gr)/ITO/PET manifests itself in a sharp change of the electrical resistance of the composite film from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜0.1-0.3 V ( E ˜ 3-5 × 104 V/cm), which is below the threshold switching voltages for similar composites. The mechanism of resistance switching, which is associated with the processes of capture and accumulation of charge carriers by Gr (GO) particles introduced into the matrices of the high-molecular-weight (PVK) and relatively low-molecular-weight (PFD) polymers, was discussed.

  15. Chirality of magneto-electrodeposited metal film electrodes

    International Nuclear Information System (INIS)

    Mogi, Iwao; Watanabe, Kazuo

    2008-01-01

    The chiral electrode behaviors of magneto-electrodeposited (MED) Ag and Cu films were examined for the electrochemical reactions of D-glucose, L-glucose and L-cysteine. The Ag and Cu films were electrodeposited under a magnetic field of 2 T parallel (+2 T) or antiparallel (-2 T) to the faradaic current. For MED films of both Ag and Cu, the oxidation current of L-glucose was larger than that of D-glucose on the +2 T-film electrodes, and the results were opposite on the - 2 T-film electrodes. These facts demonstrate that the MED metal films possess the ability of chiral recognition for D- and L-glucoses. The MED Ag film electrodes also exhibited chiral behavior for the oxidation of L-cysteine

  16. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj; Khan, Yasser; Cha, Dong Kyu; Almadhoun, Mahmoud N.; Li, Ruipeng; Chen, Long; Amassian, Aram; Odeh, Ihab N.; Alshareef, Husam N.

    2013-01-01

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  17. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2013-12-23

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  18. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    Science.gov (United States)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  19. Polymer Nanocomposite Film with Metal Rich Surface Prepared by In Situ Single-Step Formation of Palladium Nanoparticles: An Interesting Way to Combine Specific Functional Properties

    Directory of Open Access Journals (Sweden)

    David Thompson

    2016-10-01

    Full Text Available This paper presents a continuous single-step route that permits preparation of a thermostable polymer/metal nanocomposite film and to combine different functional properties in a unique material. More precisely, palladium nanoparticles are in situ generated in a polyimide matrix thanks to a designed curing cycle which is applied to a polyamic acid/metal precursor solution cast on a glass plate. A metal-rich surface layer which is strongly bonded to the bulk film is formed in addition to homogeneously dispersed metal nanoparticles. This specific morphology leads to obtaining an optically reflective film. The metal nanoparticles act as gas diffusion barriers for helium, oxygen, and carbon dioxide; they induce a tortuosity effect which allows dividing the gas permeation coefficients by a factor near to 2 with respect to the neat polyimide matrix. Moreover, the ability of the in situ synthesized palladium nanoparticles to entrap hydrogen is evidenced. The nanocomposite film properties can be modulated as a function of the location of the film metal-rich surface with respect to the hydrogen feed. The synthesized nanocomposite could represent a major interest for a wide variety of applications, from specific coatings for aerospace or automotive industry, to catalysis applications or sensors.

  20. Raman spectroscopy of sputtered metal-graphene and metal-oxide-graphene interfaces

    Science.gov (United States)

    Chen, Ching-Tzu; Gajek, Marcin; Freitag, Marcus; Kuroda, Marcelo; Perebeinos, Vasili; Raoux, Simone

    2012-02-01

    In this talk, we report our recent development in sputtering deposition of magnetic and non-magnetic metal and metal-oxide thin films on graphene for applications in spintronics and nanoeleoctronics. TEM and SEM images demonstrate homogeneous coverage, uniform thickness, and good crystallinity of the sputtered films. Raman spectroscopy shows that the structure of the underlying graphene is well preserved, and the spectral weight of the defect D mode is comparable to that of the e-beam evaporated samples. Most significantly, we report the first observation of graphene-enhanced surface excitations of crystalline materials. Specifically, we discover two pronounced dispersive Raman modes at the interface of graphene and the nickel-oxide and cobalt-oxide films which we attribute to the strong light absorption and high-order resonant scattering process in the graphene layer. We will present the frequency-dependent, polarization-dependent Raman data of these two modes and discuss their microscopic origin.

  1. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    Science.gov (United States)

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  2. Tailoring of the morphology and chemical composition of thin organosilane microwave plasma polymer layers on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Grundmeier, G.; Thiemann, P.; Carpentier, J.; Shirtcliffe, N.; Stratmann, M

    2004-01-01

    The growth of thin microwave organosilicon plasma polymers on model zinc surfaces was investigated as a function of the film thickness and the oxygen partial pressure during film deposition. The evolution of the topology of the film was studied by atomic force microscopy (AFM). The nano- and micro-roughness was investigated at the inner and the outer surfaces of the plasma polymers. A special etching procedure was developed to reveal the underside of the plasma polymer and thereby its inner surface. Rough films contained voids at the interface, which reduced the polymer/metal contact area. The increase in oxygen partial pressure led to a smoother film growth with a perfect imitation of the substrate topography at the interface. The chemical structure of the films was determined by infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). ToF-SIMS at the outer and the inner surface of the plasma polymers showed that the density of methylsilyl groups increases in the outer surface layer of the plasma polymer and depends on the oxygen partial pressure. The chemical composition of the films could be altered to pure SiO{sub 2} without changing the morphology by using oxygen-plasma post-treatment. This was proved by means of IRRAS and AFM. Chemistry and topology of the films were correlated with the apparent water contact angle. It was found that a linear relationship exists between the nanoscopic roughness of the plasma polymer and the static contact angle of water. Superposition of a nanoscopic roughness of the metal surface and the nanoscopic roughness of methylsilyl-rich films led to ultra-hydrophobic films with water contact angles up to 160 deg.

  3. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    International Nuclear Information System (INIS)

    Vähä-Nissi, Mika; Pitkänen, Marja; Salo, Erkki; Kenttä, Eija; Tanskanen, Anne; Sajavaara, Timo; Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana; Karppinen, Maarit; Harlin, Ali

    2014-01-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al 2 O 3 of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al 2 O 3 thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al 2 O 3 • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli

  4. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  5. Polymer - (BEDT-TTF) polyiodide composites

    Energy Technology Data Exchange (ETDEWEB)

    Ulanski, J [Polymer Inst., Technical Univ. of Lodz (Poland); Glowacki, I [Polymer Inst., Technical Univ. of Lodz (Poland); Kryszewski, M [Polymer Inst., Technical Univ. of Lodz (Poland); Jeszka, J K [Center of Molecular and Macromolecular Studies, Lodz (Poland); Tracz, A [Center of Molecular and Macromolecular Studies, Lodz (Poland); Laukhina, E [Inst. of Chemical Physics, Chernogolovka (Russian Federation)

    1993-03-29

    Preparation and properties of reticulate doped polymers containing BEDT-TTF polyiodide crystalline network are discussed. The highly conducting films are obtained using different methods, including recently developed one in which oxidation of the donor with iodine and crystallization of the resulting salt take place simultaneously in situ, in the swollen polymer matrix. It was found that the temperature dependence of conductivity of the separated microcrystal grown in the film exhibits metallic character with a maximum around 100K. The conductivity of the as-obtained composite increases with temperature up to ca. 120K with an activation energy of ca. 50 meV, then levels off. Annealing of the composites in order to transform the BEDT-TTF polyiodide crystalites into superconducting [beta][sup *]-phase causes dramatic changes in the conductivity behaviour; the [sigma](T) dependence of the composite switches from semiconductor- to metal-like. Stability of the films at ambient conditions is good. (orig.)

  6. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores.

    Science.gov (United States)

    Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke

    2017-06-26

    Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistor with Polarized P(VDF-TrFE) Ferroelectric Polymer Gating

    Science.gov (United States)

    Liu, Xinke; Lu, Youming; Yu, Wenjie; Wu, Jing; He, Jiazhu; Tang, Dan; Liu, Zhihong; Somasuntharam, Pannirselvam; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun; Chen, Shaojun; Seow Tan, Leng

    2015-01-01

    Effect of a polarized P(VDF-TrFE) ferroelectric polymer gating on AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) was investigated. The P(VDF-TrFE) gating in the source/drain access regions of AlGaN/GaN MOS-HEMTs was positively polarized (i.e., partially positively charged hydrogen were aligned to the AlGaN surface) by an applied electric field, resulting in a shift-down of the conduction band at the AlGaN/GaN interface. This increases the 2-dimensional electron gas (2-DEG) density in the source/drain access region of the AlGaN/GaN heterostructure, and thereby reduces the source/drain series resistance. Detailed material characterization of the P(VDF-TrFE) ferroelectric film was also carried out using the atomic force microscopy (AFM), X-ray Diffraction (XRD), and ferroelectric hysteresis loop measurement. PMID:26364872

  8. Molecular dynamics simulations of the embedding of a nano-particle into a polymer film

    International Nuclear Information System (INIS)

    Ochoa, J G Diaz; Binder, K; Paul, W

    2006-01-01

    In this work we report on molecular dynamics simulations of the embedding process of a nano-particle into a polymeric film as a function of temperature. This process has been employed experimentally in recent years to test for a shift of the glass transition of a material due to the confined film geometry and to test for the existence of a liquid-like layer on top of a glassy polymer film. The embedding process is governed thermodynamically by the prewetting properties of the polymer on the nano-particle. We show that the dynamics of the process depends on the Brownian motion characteristics of the nano-particle in and on the polymer film. It displays large sample to sample variations, suggesting that it is an activated process. On the timescales of the simulation an embedding of the nano-particle is only observed for temperatures above the bulk glass transition temperature of the polymer, agreeing with experimental observations on noble metal clusters of comparable size

  9. Contribution to the study of metallic impurities diffusion in a polymer film (KAPTON) under and out of irradiation

    International Nuclear Information System (INIS)

    Marin, N.

    1995-01-01

    The main topic of this work is the diffusion behaviour in the polymer film Kapton, under and out of irradiation, of metallic coatings with different reactivity (copper, nickel, titanium) deposited by sputtering. The analysis of diffusion profiles has been performed by backscattering spectrometry, which, in association with cross-section microscopy, allows to connect the diffusion behaviour to the microscopic structure of the metal/Kapton interface. Generally speaking, the study under thermal annealing shows the importance of peculiarities of commercials polymers. In particular, additional elements they contain are liable to modify their surface characteristics and, as a consequence, diffusion. So, unlike observations in model polyimides, we show that even weakly reactive metals do not diffuse inside the polymer. Besides, there exists an energy threshold of Ar + used for sputtering, above which copper layers become very stable and so come up to industry's expectation. The study under irradiation gives evidence for copper diffusion under irradiation, resulting in 15 mn mean radius spherical clusters inside the modified polymer. This fast diffusion is shown to be due to the concomitant effect of nuclear collisions and temperature. This study is also the opportunity to show dramatic radiation-induced effects in Kapton, more particularly a large modification of mechanical and optical properties with the loss of more volatile elements (H, N,O). With regard to methodology, this study shows the strong ambiguity in the RBS spectrum interpretation in the case of lateral non-uniformity, and we propose a model giving access to the statistical distribution of the non-uniform property of the target. (author). 262 refs., 99 figs., 8 appends

  10. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H., E-mail: dehu2010@gmail.com [Department of Physics, Mangalore University, Mangalagangothri - 574 199 (India)

    2016-05-23

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence of compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.

  11. Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-02-01

    We observed resonantly-enhanced terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF6 molecules [PPy(PF6)]. The "anomalous transmission" spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the `anomalous transmission' peaks are broader in the exotic metallic PPy (PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, showing that the surface plasmon polaritons on the PPy (PF6) film surfaces have higher attenuation.

  12. The application of the barrier-type anodic oxidation method to thickness testing of aluminum films

    Science.gov (United States)

    Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi

    2014-09-01

    The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.

  13. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    Science.gov (United States)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  14. The growth and evolution of thin oxide films on delta-plutonium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Flores, Harry G [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory

    2009-01-01

    The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

  15. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  16. Decontamination of U-metal surface by an oxidation etching system

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.; Kansa, E.J.; Shaffer, R.J.; Weed, H.C. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    A surface treatment to remove surface contamination from uranium (U) metal and/or hydrides of uranium and heavy metals (HM) from U-metal parts is described. In the case of heavy metal atomic contamination on a surface, and potentially several atomic layers beneath, the surface oxidation treatment combines both chemical and chemically driven mechanical processes. The chemical process is a controlled temperature-time oxidation process to create a thin film of uranium oxide (UO{sub 2} and higher oxides) on the U-metal surface. The chemically driven mechanical process is strain induced by the volume increase as the U-metal surface transforms to a UO{sub 2} surface film. These volume strains are significantly large to cause surface failure spalling/scale formation and thus, removal of a U-oxide film that contains the HM-contaminated surface. The case of a HM-hydride surface contamination layer can be treated similarly by using inert hot gas to decompose the U-hydrides and/or HM-hydrides that are contiguous with the surface. A preliminary analysis to design and to plan for a sequence of tests is developed. The tests will provide necessary and sufficient data to evaluate the effective implementation and operational characteristics of a safe and reliable system. The following description is limited to only a surface oxidation process for HM-decontamination. (authors)

  17. Metal-oxide assisted surface treatment of polyimide gate insulators for high-performance organic thin-film transistors.

    Science.gov (United States)

    Kim, Sohee; Ha, Taewook; Yoo, Sungmi; Ka, Jae-Won; Kim, Jinsoo; Won, Jong Chan; Choi, Dong Hoon; Jang, Kwang-Suk; Kim, Yun Ho

    2017-06-14

    We developed a facile method for treating polyimide-based organic gate insulator (OGI) surfaces with self-assembled monolayers (SAMs) by introducing metal-oxide interlayers, called the metal-oxide assisted SAM treatment (MAST). To create sites for surface modification with SAM materials on polyimide-based OGI (KPI) surfaces, the metal-oxide interlayer, here amorphous alumina (α-Al 2 O 3 ), was deposited on the KPI gate insulator using spin-coating via a rapid sol-gel reaction, providing an excellent template for the formation of a high-quality SAM with phosphonic acid anchor groups. The SAM of octadecylphosphonic acid (ODPA) was successfully treated by spin-coating onto the α-Al 2 O 3 -deposited KPI film. After the surface treatment by ODPA/α-Al 2 O 3 , the surface energy of the KPI thin film was remarkably decreased and the molecular compatibility of the film with an organic semiconductor (OSC), 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C 10 ), was increased. Ph-BTBT-C 10 molecules were uniformly deposited on the treated gate insulator surface and grown with high crystallinity, as confirmed by atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis. The mobility of Ph-BTBT-C 10 thin-film transistors (TFTs) was approximately doubled, from 0.56 ± 0.05 cm 2 V -1 s -1 to 1.26 ± 0.06 cm 2 V -1 s -1 , after the surface treatment. The surface treatment of α-Al 2 O 3 and ODPA significantly decreased the threshold voltage from -21.2 V to -8.3 V by reducing the trap sites in the OGI and improving the interfacial properties with the OSC. We suggest that the MAST method for OGIs can be applied to various OGI materials lacking reactive sites using SAMs. It may provide a new platform for the surface treatment of OGIs, similar to that of conventional SiO 2 gate insulators.

  18. Influence of metallic surface states on electron affinity of epitaxial AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2017-06-15

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6–1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2–3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  19. Ultraviolet-visible electroluminescence from metal-oxide-semiconductor devices with CeO2 films on silicon

    International Nuclear Information System (INIS)

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Li, Dongsheng; Ma, Xiangyang; Yang, Deren

    2015-01-01

    We report on ultraviolet-visible (UV-Vis) electroluminescence (EL) from metal-oxide-semiconductor (MOS) devices with the CeO 2 films annealed at low temperatures. At the same injection current, the UV-Vis EL from the MOS device with the 550 °C-annealed CeO 2 film is much stronger than that from the counterpart with the 450 °C-annealed CeO 2 film. This is due to that the 550 °C-annealed CeO 2 film contains more Ce 3+ ions and oxygen vacancies. It is tentatively proposed that the recombination of the electrons in multiple oxygen-vacancy–related energy levels with the holes in Ce 4f 1 energy band pertaining to Ce 3+ ions leads to the UV-Vis EL

  20. Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping

    International Nuclear Information System (INIS)

    Li Dawen; Guo, L Jay

    2008-01-01

    To fully realize the advantages of organic flexible electronics, patterning is very important. In this paper we show that a purely additive patterning technique, termed polymer inking and stamping, can be used to pattern conductive polymer PEDOT and fabricate sub-micron channel length organic thin film transistors. In addition, we applied the technique to transfer a stack of metal/conjugated polymer in one step and fabricated working polymer light-emitting devices. Based on the polymer inking and stamping technique, a roll-to-roll printing for high throughput fabrication has been demonstrated. We investigated and explained the mechanism of this process based on the interfacial energy consideration and by using the finite element analysis. This technique can be further extended to transfer more complex stacked layer structures, which may benefit the research on patterning on flexible substrates

  1. Work Function of Oxide Ultrathin Films on the Ag(100) Surface.

    Science.gov (United States)

    Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Thomas, Iorwerth O; Netzer, Falko P; Ferrari, Anna Maria; Fortunelli, Alessandro

    2012-02-14

    Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression. This flow can also depend on the thickness of the film and be reduced in passing from ML to BL systems. A regular trend is observed along first-row transition metals, exhibiting a maximum for CuO, in which the charge flow to the oxide is so strong as to reverse the direction of rumpling. A simple protocol to estimate separately the contribution due to charge compression is discussed, and the difference between the work function of the bare metal surface and a Pauling-like electronegativity of the free oxide slabs is used as a descriptor quantity to predict the direction of charge transfer.

  2. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  3. Enhancement of dielectric breakdown strengths in polymer film capacitors

    International Nuclear Information System (INIS)

    Binder, M.; Mammone, R.J.; Lavene, B.; Rondeau, E.

    1992-01-01

    This paper reports that breakdown voltages of wound, polymer film/metal foil capacitors have been dramatically increased by briefly exposing them (after they had been spirally wound) to a low pressure, low temperature gas plasma. Exposure of wound, polycarbonate-based capacitors to a 96%CF 4 /4%O 2 gas plasma for 4 minutes, for example, produced a 200% increase in breakdown voltage

  4. Site-selective metallization of polymeric substrates by the hyperbranched polymer templates

    International Nuclear Information System (INIS)

    Li, Peiyuan; Yang, Fang; Li, Xiangcheng; He, Chunling; Su, Wei; Chen, Jinhao; Huo, Lini; Chen, Rui; Lu, Chensheng; Liang, Lifang

    2013-01-01

    We demonstrate a simple, cost-effective and universal technique for the fabrication of copper circuit pattern on flexible polymeric substrate. This method relies on a ternary polyethylenimine-poly(acrylic acid)-substrate film incorporating palladium catalysts, which are used as adhesive interlayers for the copper metallization of flexible polymeric substrates. We demonstrated the fabrication of patterned copper films on a variety of flexible polymers with minimum feature sizes of 200 μm. And the resulting copper circuit showed strong adhesion with underlying flexible polymeric substrates. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM and SEM. The direct patterning of metallic circuit on flexible polymeric substrate indicates great potential for the use in electronics industry.

  5. Site-selective metallization of polymeric substrates by the hyperbranched polymer templates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peiyuan, E-mail: lipearpear@163.com [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Yang, Fang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Li, Xiangcheng [School of Computer, Electronics and Information, Guangxi University, Nanning 530001 (China); He, Chunling [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Su, Wei, E-mail: suwmail@163.com [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Chen, Jinhao [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Huo, Lini; Chen, Rui; Lu, Chensheng [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Liang, Lifang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China)

    2013-09-01

    We demonstrate a simple, cost-effective and universal technique for the fabrication of copper circuit pattern on flexible polymeric substrate. This method relies on a ternary polyethylenimine-poly(acrylic acid)-substrate film incorporating palladium catalysts, which are used as adhesive interlayers for the copper metallization of flexible polymeric substrates. We demonstrated the fabrication of patterned copper films on a variety of flexible polymers with minimum feature sizes of 200 μm. And the resulting copper circuit showed strong adhesion with underlying flexible polymeric substrates. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM and SEM. The direct patterning of metallic circuit on flexible polymeric substrate indicates great potential for the use in electronics industry.

  6. Magnetic properties of thin films obtained by ion implantation of 3d metals in polyethylene-terephthalate

    International Nuclear Information System (INIS)

    Petukhov, V.Yu.; Ibragimova, M.I.; Khabibullina, N.R; Zheglov, E.P.; Muller, R.

    2002-01-01

    Polymer films containing small metal particles have been attracting particular interest because of their unique properties. Implantation of metal ions in polymers is one of the methods to synthesize metal-polymer nano-composite materials. Ion implantation makes possible the magnetic nano-structures with controlled parameters. Previously, we showed that 3d-metal implantation into numerous polymers (polymethylmethacrylate, phosphorus containing polymethylmethacrylate) resulted in the formation of a composite film consisting of metal nanoparticles buried in an implanted layer. The particles are usually found to be distributed randomly in the surface layer. It has been established that structural peculiarities, phase composition, and magnetic properties of synthesized metal-polymer systems depend on the type of the initial polymer matrix, ion types, as well as conditions of ion implantation. In the present study we have been prepared thin metal-polymer composite films by ion-beam implantation of Fe + and Co + ions in polyethylene terephthalate. The implantation of 40 keV ions at room temperature with doses from 2·10 1 6 to 3·10 17 cm -2 have been performed, with the ion current density not exceeding 10 μA/cm 2 . The magnetic properties have been investigated both by ferromagnetic resonance (FMR) and vibrating sample magnetometry (VSM). FMR spectra were recorded using magnetic radio spectrometer Varian E-12 with frequency of 9.5 GHz at room temperature. The dependencies of FMR spectra on orientation have been measured for all samples. Measurements were carried out for two orientations of the sample, normal direction of the films being either parallel or perpendicular to dc magnetic field. The values of the effective magnetization were calculated from orientation dependencies. Thin ferromagnetic films (TFF) have been shown to form for samples with both implanted ions. For samples implanted with Co + ions, the appearance of FMR lines occurs at doses markedly greater

  7. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes.

    Science.gov (United States)

    Chen, Po-Chiang; Shen, Guozhen; Shi, Yi; Chen, Haitian; Zhou, Chongwu

    2010-08-24

    In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.

  8. Developments in hot-filament metal oxide deposition (HFMOD)

    International Nuclear Information System (INIS)

    Durrant, Steven F.; Trasferetti, Benedito C.; Scarminio, Jair; Davanzo, Celso U.; Rouxinol, Francisco P.M.; Gelamo, Rogerio V.; Bica de Moraes, Mario A.

    2008-01-01

    Hot-filament metal oxide deposition (HFMOD) is a variant of conventional hot-filament chemical vapor deposition (HFCVD) recently developed in our laboratory and successfully used to obtain high-quality, uniform films of MO x , WO x and VO x . The method employs the controlled oxidation of a filament of a transition metal heated to 1000 deg. C or more in a rarefied oxygen atmosphere (typically, of about 1 Pa). Metal oxide vapor formed on the surface of the filament is transported a few centimetres to deposit on a suitable substrate. Key system parameters include the choice of filament material and diameter, the applied current and the partial pressures of oxygen in the chamber. Relatively high film deposition rates, such as 31 nm min -1 for MoO x , are obtained. The film stoichiometry depends on the exact deposition conditions. MoO x films, for example, present a mixture of MoO 2 and MoO 3 phases, as revealed by XPS. As determined by Li + intercalation using an electrochemical cell, these films also show a colouration efficiency of 19.5 cm 2 C -1 at a wavelength of 700 nm. MO x and WO x films are promising in applications involving electrochromism and characteristics of their colouring/bleaching cycles are presented. The chemical composition and structure of VO x films examined using IRRAS (infrared reflection-absorption spectroscopy), RBS (Rutherford backscattering spectrometry) and XPS (X-ray photoelectron spectrometry) are also presented

  9. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  10. Polymer-metal hybrid transparent electrodes for flexible electronics

    Science.gov (United States)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius 95% and a sheet resistance solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  11. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  12. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    Science.gov (United States)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  13. Fabrication of Robust Biomolecular Patterns by Reactive Microcontact Printing on NHS Ester Containing Polymer Films

    NARCIS (Netherlands)

    Feng, C.L.; Vancso, Gyula J.; Schönherr, Holger

    2006-01-01

    The fabrication of robust biomolecule microarrays by reactive microcontact printing (CP) on spin-coated thin films of poly(N-hydroxysuccinimidyl methacrylate) (PNHSMA) on oxidized silicon and glass is described. The approach combines the advantages of activated polymer thin films as coupling layers,

  14. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Narayanan, E-mail: venkats3@gmail.co [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Dang, Thuy D. [Air Force Research Laboratory-Nanostructured and Biological Materials Branch (AFRL/RXBN) (United States); Bai Zongwu; McNier, Victor K. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); DeCerbo, Jennifer N. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States); Tsao, B.-H. [University of Dayton Research Institute (UDRI), Dayton, OH 45469 (United States); Stricker, Jeffery T. [Air Force Research Laboratory-Electrical Technology Branch (AFRL/RZPE), Wright-Patterson Air Force Base, OH 45433 (United States)

    2010-04-15

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (approx2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/mum) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  15. Thermoluminescence of films of metal oxides and its application to the low energy ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Azorin N, J.; Rivera M, T.; Furetta, C.; Falcony G, C.; Martinez S, E.; Garcia H, M.

    2002-01-01

    The obtained results from 1997 to date in the project S tudy of the thermoluminescence of metal oxides and their application to the ionizing radiation as regards to the development of ZrO 2 and of Al 2 O 3 doped and without doped films with rare earths are presented. The obtained results irradiating ZrO 2 and of Al 2 O 3 films with ultraviolet light and visible light have been satisfactory; whereas these materials have resulted promising to measure beta particles, X-rays and low energy gamma rays. (Author)

  16. Controlling Film Morphology in Conjugated Polymer

    Science.gov (United States)

    Park, Lee Y.; Munro, Andrea M.; Ginger, David S.

    2009-01-01

    We study the effects of patterned surface chemistry on the microscale and nanoscale morphology of solution-processed donor/acceptor polymer-blend films. Focusing on combinations of interest in polymer solar cells, we demonstrate that patterned surface chemistry can be used to tailor the film morphology of blends of semiconducting polymers such as poly-[2-(3,7-dimethyloctyloxy)-5-methoxy-p-phenylenevinylene] (MDMO-PPV), poly-3-hexylthiophene (P3HT), poly[(9,9-dioctylflorenyl-2,7-diyl)-co-benzothiadiazole)] (F8BT), and poly(9,9-dioctylfluorene-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-1,4-phenylendiamine) (PFB) with the fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We present a method for generating patterned, fullerene-terminated monolayers on gold surfaces, and use microcontact printing and Dip-Pen Nanolithography (DPN) to pattern alkanethiols with both micro- and nanoscale features. After patterning with fullerenes and other functional groups, we backfill the rest of the surface with a variety of thiols to prepare substrates with periodic variations in surface chemistry. Spin coating polymer:PCBM films onto these substrates, followed by thermal annealing under nitrogen, leads to the formation of structured polymer films. We characterize these films with Atomic Force Microscopy (AFM), Raman spectroscopy, and fluorescence microscopy. The surface patterns are effective in guiding phase separation in all of the polymer:PCBM systems investigated, and lead to a rich variety of film morphologies that are inaccessible with unpatterned substrates. We demonstrate our ability to guide pattern formation in films thick enough of be of interest for actual device applications (up to 200 nm in thickness) using feature sizes as small as 100 nm. Finally, we show that the surface chemistry can lead to variations in film morphology on length scales significantly smaller than those used in generating the original surface patterns. The variety of

  17. Qualitative and quantitative analysis of an additive element in metal oxide nanometer film using laser induced breakdown spectroscopy.

    Science.gov (United States)

    Xiu, Junshan; Liu, Shiming; Sun, Meiling; Dong, Lili

    2018-01-20

    The photoelectric performance of metal ion-doped TiO 2 film will be improved with the changing of the compositions and concentrations of additive elements. In this work, the TiO 2 films doped with different Sn concentrations were obtained with the hydrothermal method. Qualitative and quantitative analysis of the Sn element in TiO 2 film was achieved with laser induced breakdown spectroscopy (LIBS) with the calibration curves plotted accordingly. The photoelectric characteristics of TiO 2 films doped with different Sn content were observed with UV visible absorption spectra and J-V curves. All results showed that Sn doping could improve the optical absorption to be red-shifted and advance the photoelectric properties of the TiO 2 films. We had obtained that when the concentration of Sn doping in TiO 2 films was 11.89  mmol/L, which was calculated by the LIBS calibration curves, the current density of the film was the largest, which indicated the best photoelectric performance. It indicated that LIBS was a potential and feasible measured method, which was applied to qualitative and quantitative analysis of the additive element in metal oxide nanometer film.

  18. Tuning of electrical and structural properties of indium oxide films grown by metal organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Wang, Ch.Y.; Cimalla, V.; Romanus, H.; Kups, Th.; Niebelschuetz, M.; Ambacher, O.

    2007-01-01

    Tuning of structural and electrical properties of indium oxide (In 2 O 3 ) films by means of metal organic chemical vapor deposition is demonstrated. Phase selective growth of rhombohedral In 2 O 3 (0001) and body-centered cubic In 2 O 3 (001) polytypes on (0001) sapphire substrates was obtained by adjusting the substrate temperature and trimethylindium flow rate. The specific resistance of the as-grown films can be tuned by about two orders of magnitude by varying the growth conditions

  19. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  20. Expandable and retractable self-rolled structures based on metal/polymer thin film for flow sensing

    Science.gov (United States)

    Zhu, Jianzhong; White, Carl; Saadat, Mehdi; Bart-Smith, Hilary

    2015-11-01

    Most aquatic animals such as fish rely heavily on their ability of detect and respond to ambient flows in order to explore and inhabit various habitats or survive predator-prey encounters. Fish utilize neuromasts in their skin surface and lateral lines in their bodies to align themselves while swimming upstream for migration, avoid obstacles, reduce locomotion cost, and detect flow variations caused by potential predators. In this study, a thin film MEMS sensor analogous to a fish neuromast has been designed for flow sensing. Residual stress arises in many thin film materials during processing. Metal and polymer thin film materials with a significant difference in elastic modular were chosen to form a multiple-layer structure. Upon releasing, the structure rolls into a tube due to mechanical property mismatch. The self-rolled tube can expand or retract, depending on the existence of external force such as flow. An embedded strain sensor detects the deformation of the tube and hence senses the ambient flow. Numerical simulations were conducted to optimize the structural design. Experiments were performed in a flow tank to quantify the performance of the sensor. This research is supported by the Office of Naval Research under the MURI Grant N00014-14-1-0533.

  1. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  2. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  3. Metal oxide nanostructures and their gas sensing properties: a review.

    Science.gov (United States)

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  4. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    Science.gov (United States)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  5. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    Energy Technology Data Exchange (ETDEWEB)

    Jarad, Amer N., E-mail: amer78malay@yahoo.com.my; Ibrahim, Kamarulazizi, E-mail: kamarul@usm.my; Ahmed, Nasser M., E-mail: nas-tiji@yahoo.com [Nano-optoelectronic Research and Technology Laboratory School of physics, University of Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-07-06

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10{sup −5} (Ω.cm){sup −1}, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  6. A study of TiN-coated metal-on-polymer bearing materials for hip prosthesis

    Science.gov (United States)

    Lee, Sung Bai; Choi, Jin Young; Park, Won Woong; Jeon, Jun Hong; Won, Sung Ok; Byun, Ji Young; Lim, Sang Ho; Han, Seung Hee

    2010-08-01

    The TiN-coated metal-on-polymer hip prosthetic pair has the potential to reduce wear debris of UHMWPE (ultra-high molecular weight polyethylene) and to prevent metallic-ion-induced cytotoxicity. However, high quality and adherent film is a key to the clinical success of hip prostheses. In this study, titanium nitride (TiN) films were deposited on stainless steel using plasma immersion ion implantation & deposition (PIII&D) technique to create high-quality film and an adherent interface. The chemical state and composition were analyzed by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and energy dispersive spectroscopy (EDS). The mechanical properties of the films were characterized using a micro-hardness tester and a pin-on-disk wear tester, and an x-ray diffractometer (XRD) was used for a crystallographic analysis. The PIII&D-treated TiN films showed a stoichiometric and (200) preferred orientation and micro-hardness up to 150 % higher than untreated film. A TiN-coated specimen using the PIII&D process also showed less UHMWPE wear compared to untreated specimens. The volumetric wear rate of UHMWPE could be reduced by as much as 42 % compared to when Co-Cr alloy was used. The results of this study show that advanced TiN-coating via the PIII&D process is a viable means of reducing UHMWPE wear in the metal-on-polymer bearing couple.

  7. Developments in hot-filament metal oxide deposition (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Durrant, Steven F. [Laboratorio de Plasmas Tecnologicos, Campus Experimental de Sorocaba, Universidade Estadual Paulista (UNESP), Avenida Tres de Marco, 511, Alto de Boa Vista, 18087-180 Sorocaba, SP (Brazil)], E-mail: steve@sorocaba.unesp.br; Trasferetti, Benedito C. [Departamento de Policia Federal, Superintendencia Regional no Piaui, Setor Tecnico-Cientifico, Avenida Maranhao, 1022/N, 64.000-010, Teresina, PI (Brazil); Scarminio, Jair [Departamento de Fisica, Universidade Estadual de Londrina (UEL), 86051-990, Londrina, PR (Brazil); Davanzo, Celso U. [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP (Brazil); Rouxinol, Francisco P.M.; Gelamo, Rogerio V.; Bica de Moraes, Mario A. [Laboratorio de Processos de Plasma, Departamento de Fisica Aplicada, Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP (Brazil)

    2008-01-15

    Hot-filament metal oxide deposition (HFMOD) is a variant of conventional hot-filament chemical vapor deposition (HFCVD) recently developed in our laboratory and successfully used to obtain high-quality, uniform films of MO{sub x}, WO{sub x} and VO{sub x}. The method employs the controlled oxidation of a filament of a transition metal heated to 1000 deg. C or more in a rarefied oxygen atmosphere (typically, of about 1 Pa). Metal oxide vapor formed on the surface of the filament is transported a few centimetres to deposit on a suitable substrate. Key system parameters include the choice of filament material and diameter, the applied current and the partial pressures of oxygen in the chamber. Relatively high film deposition rates, such as 31 nm min{sup -1} for MoO{sub x}, are obtained. The film stoichiometry depends on the exact deposition conditions. MoO{sub x} films, for example, present a mixture of MoO{sub 2} and MoO{sub 3} phases, as revealed by XPS. As determined by Li{sup +} intercalation using an electrochemical cell, these films also show a colouration efficiency of 19.5 cm{sup 2} C{sup -1} at a wavelength of 700 nm. MO{sub x} and WO{sub x} films are promising in applications involving electrochromism and characteristics of their colouring/bleaching cycles are presented. The chemical composition and structure of VO{sub x} films examined using IRRAS (infrared reflection-absorption spectroscopy), RBS (Rutherford backscattering spectrometry) and XPS (X-ray photoelectron spectrometry) are also presented.

  8. Indium tin oxide films prepared by atmospheric plasma annealing and their semiconductor-metal conductivity transition around room temperature

    International Nuclear Information System (INIS)

    Li Yali; Li Chunyang; He Deyan; Li Junshuai

    2009-01-01

    We report the synthesis of indium tin oxide (ITO) films using the atmospheric plasma annealing (APA) technique combined with the spin-coating method. The ITO film with a low resistivity of ∼4.6 x 10 -4 Ω cm and a high visible light transmittance, above 85%, was achieved. Hall measurement indicates that compared with the optimized ITO films deposited by magnetron sputtering, the above-mentioned ITO film has a higher carrier concentration of ∼1.21 x 10 21 cm -3 and a lower mobility of ∼11.4 cm 2 V -1 s -1 . More interestingly, these electrical characteristics result in the semiconductor-metal conductivity transition around room temperature for the ITO films prepared by APA.

  9. Oxide films in laser additive manufactured Inconel 718

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Cao, X.; Wanjara, P.; Medraj, M.

    2013-01-01

    A continuous-wave 5 kW fiber laser welding system was used in conduction mode to deposit Inconel® alloy 718 (IN718) by employing filler wire on as-serviced IN718 parent material (PM) substrates. The direct laser deposited (DLD) coupons and as-serviced IN718 PM were then evaluated through tensile testing. To understand the failure mechanisms, the tensile fracture surfaces of the as-serviced IN718 PM, DLD and DLD-PM samples were analyzed using scanning electron microscopy. The fracture surfaces revealed the presence of both Al 2 O 3 and Cr 2 O 3 films, although the latter was reasoned to be the main oxide in IN718. Both the experimental observations and thermodynamic analysis indicated that oxidation of some alloying elements in IN718 cannot be completely avoided during manufacturing, whether in the liquid state under vacuum (for casting, the electron beam melting, welding and/or deposition) or with inert gas protection (for welding or laser deposition). The exposed surface of the oxide film on the fracture surface has poor wetting with the metal and thus can constitute a lack of bonding or a crack with either the metal and/or another non-wetted side of the oxide film. On the other hand, the wetted face of the oxide film has good atom-to-atom contact with the metal and may nucleate some intermetallic compounds, such as Laves, Ni 3 Nb-δ, Nb-rich MC and γ′ compounds. The potential of their nucleation on Cr 2 O 3 was assessed using planar disregistry. Coherent planes were found between these intermetallics and Cr 2 O 3

  10. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    International Nuclear Information System (INIS)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-01-01

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In 2 O 3 (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 Ω/□, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit (Φ=T 10 /R sheet ) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices

  11. Mechanisms of charge transport and resistive switching in composite films of semiconducting polymers with nanoparticles of graphene and graphene oxide

    Science.gov (United States)

    Berestennikov, A. S.; Aleshin, A. N.

    2017-11-01

    We have investigated the effect of the resistive switching in the composite films based on polyfunctional polymers - PVK, PFD and PVC mixed with particles of Gr and GO with the concentration of ˜ 1 - 3 wt.%. We have developed the solution processed hybrid memory structures based on PVK and GO particles composite films. The effect of the resistive switching in Al/PVK(PFD; PVC):Gr(GO)/ITO/PET structures manifests itself as a sharp change of the electrical resistance from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜ 0.2-0.4 V. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK(PFD; PVC):Gr(GO)/ITO/PET structures, with the switching time in the range from 1 to 30 μs. The mechanism of resistive switching associated with the processes of capture and accumulation of charge carriers by Gr(GO) particles introduced into the matrixes of the PVK polymer due to the reduction/oxidation processes. The possible mechanisms of energy transfer between organic and inorganic components in PVK(PFD; PVC):GO(Gr) films causes increase mobility are discussed. Incorporating of Gr (GO) particles into the polymer matrix is a promising route to enhance the performance of hybrid memory structures, as well as it is an effective medium for memory cells.

  12. Efficient protein-repelling thin films regulated by chain mobility of low-Tg polymers with increased stability via crosslinking

    Science.gov (United States)

    Zhang, Jinghui; Huang, Zhiwei; Liu, Dan

    2017-12-01

    Polymer thin films are generally employed as coatings on implants to prevent protein adsorption. Polymer chain mobility and surface softness have been found to contribute to the protein resistance, but also bring film instability in a liquid protein medium. We investigated the protein resistance ability of three low-Tg polymers, including hydrophobic polymers polyisoprene (PI), poly(n-butyl methacrylate) (PnBMA) and hydrophilic polyethylene oxide (PEO), by overcoming the instability issue with crosslinking. We found that the Tgs of PI and PEO can be increased to around 0 °C after crosslinking. The remained strong chain mobility of both films can still resist protein adsorption regardless the hydrophobicity, yet greatly increases the film stability under an aqueous circumstance. The PnBMA film increased its Tg to around room temperature after crosslinking, which deteriorated the protein-resistance ability having the surface covered by BSA molecules. Our results support that the chain mobility of a polymer film plays an important role in resisting protein adsorption due to the increased entropy associated with more mobile polymer chains. By tune the degree of crosslinking, the stability of polymer in aqueous environment can be increased while the protein resistant ability can be remained. Our results provide a new strategy to design polymer materials for effective antifouling.

  13. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  14. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  15. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  16. Epitaxial Lift-Off of Centimeter-Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics.

    Science.gov (United States)

    Shen, Lvkang; Wu, Liang; Sheng, Quan; Ma, Chunrui; Zhang, Yong; Lu, Lu; Ma, Ji; Ma, Jing; Bian, Jihong; Yang, Yaodong; Chen, Aiping; Lu, Xiaoli; Liu, Ming; Wang, Hong; Jia, Chun-Lin

    2017-09-01

    Mechanical flexibility of electronic devices has attracted much attention from research due to the great demand in practical applications and rich commercial value. Integration of functional oxide materials in flexible polymer materials has proven an effective way to achieve flexibility of functional electronic devices. However, the chemical and mechanical incompatibilities at the interfaces of dissimilar materials make it still a big challenge to synthesize high-quality single-crystalline oxide thin film directly on flexible polymer substrates. This study reports an improved method that is employed to successfully transfer a centimeter-scaled single-crystalline LiFe 5 O 8 thin film on polyimide substrate. Structural characterizations show that the transferred films have essentially no difference in comparison with the as-grown films with respect to the microstructure. In particular, the transferred LiFe 5 O 8 films exhibit excellent magnetic properties under various mechanical bending statuses and show excellent fatigue properties during the bending cycle tests. These results demonstrate that the improved transfer method provides an effective way to compose single-crystalline functional oxide thin films onto flexible substrates for applications in flexible and wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vogt, Patrick; Bierwagen, Oliver

    2015-01-01

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga 2 O 3 , In 2 O 3 , and SnO 2 on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga 2 O, In 2 O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO 2 , somewhat lower for In 2 O 3 , and the lowest for Ga 2 O 3 . Our findings can be generalized to further oxides that possess related sub-oxides

  18. Control of lipid oxidation by nonmigratory active packaging films prepared by photoinitiated graft polymerization.

    Science.gov (United States)

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2012-08-08

    Transition metal-promoted oxidation impacts the quality, shelf life, and nutrition of many packaged foods. Metal-chelating active packaging therefore offers a means to protect foods against oxidation. Herein, we report the development and characterization of nonmigratory metal-chelating active packaging. To prepare the films, carboxylic acids were grafted onto the surfaces of polypropylene films by photoinitiated graft polymerization of acrylic acid. Attenuated total reflectance/Fourier transform infrared spectroscopy, contact angle, scanning electron microscopy, and iron-chelating assay were used to characterize film properties. Graft polymerization yielded a carboxylic acid density of 68.67 ± 9.99 nmol per cm(2) film, with ferrous iron-chelating activity of 71.07 ± 12.95 nmol per cm(2). The functionalized films extended the lag phase of lipid oxidation in a soybean oil-in-water emulsion system from 2 to 9 days. The application of such nonmigratory active packaging films represents a promising approach to reduce additive use while maintaining food quality.

  19. Finite Element Analysis of Film Stack Architecture for Complementary Metal-Oxide-Semiconductor Image Sensors.

    Science.gov (United States)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-05-02

    Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.

  20. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    Science.gov (United States)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  1. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    Science.gov (United States)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  2. Chemical solution deposition of YBCO thin film by different polymer additives

    International Nuclear Information System (INIS)

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y.; Zhang, H.; Yang, Y.; Cheng, C.H.; Zhao, Y.

    2008-01-01

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T c = 90 K as well as high J c (0 T, 77 K) over 3 MA/cm 2

  3. Chemical solution deposition of YBCO thin film by different polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T{sub c} = 90 K as well as high J{sub c} (0 T, 77 K) over 3 MA/cm{sup 2}.

  4. Field-induced resistance switching at metal/perovskite manganese oxide interface

    International Nuclear Information System (INIS)

    Ohkubo, I.; Tsubouchi, K.; Harada, T.; Kumigashira, H.; Itaka, K.; Matsumoto, Y.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.; Oshima, M.

    2008-01-01

    Planar type metal/insulator/metal structures composed of an epitaxial perovskite manganese oxide layer and various metal electrodes were prepared for electric-field-induced resistance switching. Only the electrode pairs including Al show good resistance switching and the switching ratio reaches its maximum of 1000. This resistance switching occurs around the interface between Al electrodes and epitaxial perovskite manganese oxide thin films

  5. A Novel Synthesis of Gold Nanoparticles Supported on Hybrid Polymer/Metal Oxide as Catalysts for p-Chloronitrobenzene Hydrogenation

    Directory of Open Access Journals (Sweden)

    Cristian H. Campos

    2017-01-01

    Full Text Available This contribution reports a novel preparation of gold nanoparticles on polymer/metal oxide hybrid materials (Au/P[VBTACl]-M metal: Al, Ti or Zr and their use as heterogeneous catalysts in liquid phase hydrogenation of p-chloronitrobenzene. The support was prepared by in situ radical polymerization/sol gel process of (4-vinyl-benzyltrimethylammonium chloride and 3-(trimethoxysilylpropyl methacrylate in conjunction with metal-alkoxides as metal oxide precursors. The supported catalyst was prepared by an ion exchange process using chloroauric acid (HAuCl4 as gold precursor. The support provided the appropriate environment to induce the spontaneous reduction and deposition of gold nanoparticles. The hybrid material was characterized. TEM and DRUV-vis results indicated that the gold forms spherical metallic nanoparticles and that their mean diameter increases in the sequence, Au/P[VBTACl]-Zr > Au/P[VBTACl]-Al > Au/P[VBTACl]-Ti. The reactivity of the Au catalysts toward the p-CNB hydrogenation reaction is attributed to the different particle size distributions of gold nanoparticles in the hybrid supports. The kinetic pseudo-first-order constant values for the catalysts in the hydrogenation reaction increases in the order, Au/P[VBTACl]-Al > Au/P[VBTACl]-Zr > Au/P[VBTACl]-Ti. The selectivity for all the catalytic systems was greater than 99% toward the chloroaniline target product. Finally the catalyst supported on the hybrid with Al as metal oxide could be reused at least four times without loss in activity or selectivity for the hydrogenation of p-CNB in ethanol as solvent.

  6. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites

    International Nuclear Information System (INIS)

    Pakula, Christina; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz; Zargarani, Dordaneh; Herges, Rainer

    2010-01-01

    We present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility. The composites show completely reversible optical switching of the absorption bands upon alternating irradiation with UV and blue light. We also demonstrate reversible light-controlled conductance switching. This is attributed to changes in the metal cluster separation upon isomerization based on model experiments where analogous conductance changes were induced by swelling of the composite films in organic vapors and by tensile stress.

  7. Synthesis by plasma of polymer-metal materials; Sintesis por plasma de materiales polimero-metal

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, G

    2004-07-01

    The objective of this work is the design of an experimental set-up to synthesize polymer- metal composites by plasma with versatility in the conditions of synthesis. The main components are a vacuum system capable to reach up to 10{sup -2} mbar and valves and accessories to control the pressure in the system. In order to generate the electrical discharges and the plasma, an electrical circuit with an inductive connection at 13.56 MHz of frequency was constructed. The electric field partially ionizes the reactor atmosphere where the polymer-metal composites were synthesized. The reactor has two metallic electrodes, one in front of the other, where the particles electrically charged collide against the electrodes producing ablation on them. The polymer-metal composites were synthesized by means of an inductive connection at 13.56 MHz. Aniline, 3-chlorine-ethylene and electrodes of silver (Ag) and copper (Cu) were used in a cylindrical reactor coupled with an external coil to generate glow discharges. The average pressures were 6.15 X 10{sup -1} and 5.2 X 10{sup -1} mbar for the synthesis of Poly aniline (P An) and Poly chloroethylene (PE-CI), respectively. The synthesis was performed during 60 and 180 minutes for P An and PE-CI, respectively. The polymers were formed, as films, with an average thickness of 6.42 {mu}m for P An and, in the case of PE-CI, with an approximately growing rate of 14 {eta}m/W. The power in the syntheses was 30, 50, 70 and 90 W for P An and 50, 100, 120, 140 170, and 200 W for PE-CI. The characterization of the polymer-metal composites was done by energy dispersive spectroscopy to study the composition and the relation of the elements involved in the synthesis. The morphology of the films was studied by means of scanning electron microscopy. The infrared analysis (IR) was done to study the chemicals bonds and the structure of these polymers. Another important study in these materials was the behavior of the electrical conductivity ({sigma

  8. Electrochromics for smart windows: Oxide-based thin films and devices

    Energy Technology Data Exchange (ETDEWEB)

    Granqvist, Claes G.

    2014-08-01

    possibilities to accomplish further porosity by having suitable thin-film deposition parameters. A number of examples on the importance of the detailed deposition conditions are presented, and Section 4 ends with a presentation of the EC properties of films with compositions across the full tungsten–nickel oxide system. Section 5 is devoted to transparent electrical conductors and electrolytes, both of which are necessary in EC devices. Detailed surveys are given of transparent conductors comprising doped-oxide semiconductors, coinage metals, nanowire meshes and other alternatives, and also of electrolytes based on thin films and on polymers. Particular attention is devoted to electrolyte functionalization by nanoparticles. Section 6 considers one particular device construction: A foil that is suitable for glass lamination and which, in the author's view, holds particular promise for low-cost large-area implementation of EC smart windows. Device data are presented, and a discussion is given of quality assessment by use of 1/f noise. The “battery-type” EC device covered in the major part of this critical review is not the only alternative, and Section 7 consists of brief discussions of a number of more or less advanced alternatives such as metal hydrides, suspended particle devices, polymer-dispersed liquid crystals, reversible electroplating, and plasmonic electrochromism based on transparent conducting oxide nanoparticles. Finally, Section 8 provides a brief summary and outlook. The aim of this critical review is not only to paint a picture of the state-of-the-art for electrochromics and its applications in smart windows, but also to provide ample references to current literature of particular relevance and thereby, hopefully, an easy entrance to the research field. - Highlights: • Critical review of electrochromic oxide thin films and devices. • Variable transmittance of visible light and solar energy. • Fenestration in energy efficient buildings.

  9. Electrochromics for smart windows: Oxide-based thin films and devices

    International Nuclear Information System (INIS)

    Granqvist, Claes G.

    2014-01-01

    possibilities to accomplish further porosity by having suitable thin-film deposition parameters. A number of examples on the importance of the detailed deposition conditions are presented, and Section 4 ends with a presentation of the EC properties of films with compositions across the full tungsten–nickel oxide system. Section 5 is devoted to transparent electrical conductors and electrolytes, both of which are necessary in EC devices. Detailed surveys are given of transparent conductors comprising doped-oxide semiconductors, coinage metals, nanowire meshes and other alternatives, and also of electrolytes based on thin films and on polymers. Particular attention is devoted to electrolyte functionalization by nanoparticles. Section 6 considers one particular device construction: A foil that is suitable for glass lamination and which, in the author's view, holds particular promise for low-cost large-area implementation of EC smart windows. Device data are presented, and a discussion is given of quality assessment by use of 1/f noise. The “battery-type” EC device covered in the major part of this critical review is not the only alternative, and Section 7 consists of brief discussions of a number of more or less advanced alternatives such as metal hydrides, suspended particle devices, polymer-dispersed liquid crystals, reversible electroplating, and plasmonic electrochromism based on transparent conducting oxide nanoparticles. Finally, Section 8 provides a brief summary and outlook. The aim of this critical review is not only to paint a picture of the state-of-the-art for electrochromics and its applications in smart windows, but also to provide ample references to current literature of particular relevance and thereby, hopefully, an easy entrance to the research field. - Highlights: • Critical review of electrochromic oxide thin films and devices. • Variable transmittance of visible light and solar energy. • Fenestration in energy efficient buildings

  10. ''In-situ'' spectro-electrochemical studies of radionuclide-contaminated surface films on metals

    International Nuclear Information System (INIS)

    Melendres, C.A.; Mini, S.; Mansour, A.N.

    2000-01-01

    The incorporation of heavy metal ions and radioactive contaminants into hydrous oxide films has been investigated in order to provide fundamental knowledge that could lead to the technological development of cost-effective processes and techniques for the decontamination of storage tanks, piping systems, surfaces, etc., in DOE nuclear facilities. The formation of oxide/hydroxide films was simulated by electrodeposition onto a graphite substrate from solutions of the appropriate metal salt. Synchrotron X-ray Absorption Spectroscopy (XAS), supplemented by Laser Raman Spectroscopy (LRS), was used to determine the structure and composition of the host oxide film, as well as the impurity ion. Results have been obtained for the incorporation of Ce, Sr, Cr, Fe, and U into hydrous nickel oxide films. Ce and Sr oxides/hydroxides are co-precipitated with the nickel oxides in separate phase domains. Cr and Fe, on the other hand, are able to substitute into Ni lattice sites or intercalate in the interlamellar positions of the brucite structure of Ni(OH) 2 . U was found to co-deposit as a U(VI) hydroxide. The mode of incorporation of metal ions depends both on the size and charge of the metal ion. The structure of iron oxide (hydroxide) films prepared by both anodic and cathodic deposition has also been extensively studied. The structure of Fe(OH) 2 was determined to be similar to that of α-Ni(OH) 2 . Anodic deposition from solutions containing Fe 2+ results in a film with a structure similar to γ-FeOOH. From the knowledge gained from the present studies, principles and methods for decontamination have become apparent. Contaminants sorbed on oxide surfaces or co-precipitated may be removed by acid wash and selective dissolution or complexation. Ions incorporated into lattice sites and interlamellar layers will require more drastic cleaning procedures. Electropolishing and the use of an electrochemical brush are among concepts that should be considered seriously for the latter

  11. Composition and corrosion properties of high-temperature oxide films on steel type 18-10

    International Nuclear Information System (INIS)

    Vakulenko, B.F.; Morozov, O.N.; Chernysheva, M.V.

    1985-01-01

    The composition and propeties of oxide films, formed in the process of tube production of steel type 18-10, as well as the behaviour of the steels coated with oxide films under operating conditions of NPP heat-exchange equipment at the 20-300 deg C temperatures are determined. It is found, that the films have a good adhesion to the steel surface and repeat the metal structure without interfering with, the surface defect determination. Introduction of the NaNO 2 corrosion inhibitor decreases the film destruction rate to the level of the base metal corrosion. It is found acceptable to use tubes of steel 18-10 coated with dense oxide films in the heat-exchange and water supply systems of NPP

  12. Effects of iron content on electrical resistivity of oxide films on Zr-base alloys

    International Nuclear Information System (INIS)

    Kubo, Toshio; Uno, Masayoshi

    1991-01-01

    Measurements of electrical resistivity were made for oxide films formed by anodic oxidation and steam oxidation (400degC/12 h) on Zr plates with different Fe contents. When the Fe content was higher than about 1,000 ppm the electrical resistivity of the steam oxide films was almost equivalent to that of the anodic oxide films, while at lower Fe content the former exhibited lower electrical resistivity than the latter by about 1∼3 orders of magnitude. The anodic oxide film was an almost homogeneous single oxide layer. The steam oxide films, on the other hand, were composed of duplex oxide layers. The oxide layer formed in the vicinity of the oxide/metal interface had higher electrical resistivity than the near-surface oxide layer by about 1∼4 orders of magnitude. The oxide layer in the vicinity of the interface could act as a protective film against corrosion and its electrical resistivity is one important factor controlling the layer protectiveness. The electrical resistivity of the oxide/metal interfacial layer was strongly dependent on the Fe content. One possible reason for Fe to improve the corrosion resistance is that Fe ions would tend to stabilize the tetragonal (or cubic) phase and consequently suppress the formation of open pores and cracks in the interfacial layer. (author)

  13. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  14. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  15. Picosecond laser registration of interference pattern by oxidation of thin Cr films

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, Vadim; Yarchuk, Michail [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Zakoldaev, Roman, E-mail: zakoldaev@gmail.com [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Gedvilas, Mindaugas; Račiukaitis, Gediminas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius (Lithuania); Kuzivanov, Michail; Baranov, Alexander [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation)

    2017-05-15

    Highlights: • Periodical patterning of thin films was achieved by combining two technologies. • Selective chemical etching was combined with laser-induced oxidation. • Formation of the protective oxide layer prevented of chromium film from etching. • 1D binary grating with the chromium stripe width of 750 nm was fabricated. - Abstract: The laser oxidation of thin metallic films followed by its selective chemical etching is a promising method for the formation of binary metal structures on the glass substrates. It is important to confirm that even a single ultrashort laser pulse irradiation is able to create the protective oxide layer that makes possible to imprint the thermochemical image. Results of the thermo-chemical treatment of thin chromium films irradiated by picosecond laser pulse utilizing two and four beam interference combined with the chemical etching are presented. The spatial resolution of this method can be high enough due to thermo-chemical sharpening and can be close to the diffraction limit. Micro-Raman spectroscopy was applied for characterization of the chemical composition of the protective oxide layers formed under atmospheric conditions on the surface of thin chromium films.

  16. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Growth of anodic oxide films on oxygen-containing niobium

    Energy Technology Data Exchange (ETDEWEB)

    Habazaki, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: habazaki@eng.hokudai.ac.jp; Ogasawara, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Konno, H. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shimizu, K. [University Chemical Laboratory, Keio University, Yokohama 223-8522 (Japan); Asami, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Saito, K. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nagata, S. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Skeldon, P. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)

    2005-09-20

    The present study is directed at understanding of the influence of oxygen in the metal on anodic film growth on niobium, using sputter-deposited niobium containing from about 0-52 at.% oxygen, with anodizing carried out at high efficiency in phosphoric acid electrolyte. The findings reveal amorphous anodic niobia films, with no significant effect of oxygen on the field strength, transport numbers, mobility of impurity species and capacitance. However, since niobium is partially oxidized due to presence of oxygen in the substrate, less charge is required to form the films, hence reducing the time to reach a particular film thickness and anodizing voltage. Further, the relative thickness of film material formed at the metal/film interface is increased by the incorporation of oxygen species into the films from the substrate, with an associated altered depth of incorporation of phosphorus species into the films.

  18. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels

    Science.gov (United States)

    Im, Hyeon-Gyun; An, Byeong Wan; Jin, Jungho; Jang, Junho; Park, Young-Geun; Park, Jang-Ung; Bae, Byeong-Soo

    2016-02-01

    We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband.We report a high-performance, flexible and robust metal nanotrough-embedded transparent conducting hybrid film (metal nanotrough-GFRHybrimer). Using an electro-spun polymer nanofiber web as a template and vacuum-deposited gold as a conductor, a junction resistance-free continuous metal nanotrough network is formed. Subsequently, the metal nanotrough is embedded on the surface of a glass-fabric reinforced composite substrate (GFRHybrimer). The monolithic composite structure of our transparent conducting film allows simultaneously high thermal stability (24 h at 250 °C in air), a smooth surface topography (Rrms touch screen panel (TSP) is fabricated using the transparent conducting films. The flexible TSP device stably operates on the back of a human hand and on a wristband. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07657a

  19. Tridimensional ionic polymer metal composites: optimization of the manufacturing techniques

    International Nuclear Information System (INIS)

    Bonomo, C; Brunetto, P; Fortuna, L; Graziani, S; Bottino, M; Di Pasquale, G; Pollicino, A

    2010-01-01

    Ionic polymer metal composites (IPMCs) belong to electroactive polymers (EAPs) and have been suggested for various applications due to their light weight and to the fact that they react mechanically when stimulated by an electrical signal and vice versa. Thick IPMCs (3D-IPMCs) have been fabricated by hot pressing several Nafion ® 117 films. Additional post-processes (more cycles of Pt electroless plating and dispersing agents) have been applied to improve the 3D-IPMC performance. The electromechanical response of 3D-IPMCs has been examined by applying electrical signals and measuring the displacement and blocking force produced

  20. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  1. Distortion of chain conformation and reduced entanglement in polymer-graphene oxide nanocomposites

    Science.gov (United States)

    Weir, Michael; Boothroyd, Stephen; Johnson, David; Thompson, Richard; Coleman, Karl; Clarke, Nigel

    Graphene and related two-dimensional materials are excellent candidates as filler materials in polymer nanocomposites due to their extraordinary physical properties and high aspect ratio. To explore the mechanism by which the filler affects the bulk properties of these unique systems, and to build understanding from the macromolecular level upwards, we use a combination of small-angle neutron scattering (SANS) and oscillatory rheology. Where a good dispersion is achieved in poly(methyl methacrylate)-graphene oxide (PMMA-GO) nanocomposites, we observe a reduction in the polymer radius of gyration with increasing GO concentration that is consistent with the predicted behavior of polymer melt chains at a solid interface. We use concepts from thin-film polymer physics to formulate a scaling relation for the reduction in entanglements caused by the GO interfaces. Using these scaling arguments, we utilize SANS results to directly estimate the changes to the elastic plateau modulus of the network of entangled polymer chains, and find a correlation with the measured bulk rheology. We present a direct link between interfacial confinement effects and the bulk polymer nanocomposite properties, whilst demonstrating a model system for measuring thin film polymer physics in the bulk.

  2. Prediction of crack density and electrical resistance changes in indium tin oxide/polymer thin films under tensile loading

    KAUST Repository

    Mora Cordova, Angel

    2014-06-11

    We present unified predictions for the crack onset strain, evolution of crack density, and changes in electrical resistance in indium tin oxide/polymer thin films under tensile loading. We propose a damage mechanics model to quantify and predict such changes as an alternative to fracture mechanics formulations. Our predictions are obtained by assuming that there are no flaws at the onset of loading as opposed to the assumptions of fracture mechanics approaches. We calibrate the crack onset strain and the damage model based on experimental data reported in the literature. We predict crack density and changes in electrical resistance as a function of the damage induced in the films. We implement our model in the commercial finite element software ABAQUS using a user subroutine UMAT. We obtain fair to good agreement with experiments. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  4. Halide based MBE of crystalline metals and oxides

    Energy Technology Data Exchange (ETDEWEB)

    Greenlee, Jordan D.; Calley, W. Laws; Henderson, Walter; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia (United States)

    2012-02-15

    A halide based growth chemistry has been demonstrated which can deliver a range of transition metals using low to moderate effusion cell temperatures (30-700 C) even for high melting point metals. Previously, growth with transition metal species required difficult to control electron beam or impurity inducing metal organic sources. Both crystalline oxide and metal films exhibiting excellent crystal quality are grown using this halide-based growth chemistry. Films are grown using a plasma assisted Molecular Beam Epitaxy (MBE) system with metal-chloride precursors. Crystalline niobium, cobalt, iron, and nickel were grown using this chemistry but the technology can be generalized to almost any metal for which a chloride precursor is available. Additionally, the oxides LiNbO{sub 3} and LiNbO{sub 2} were grown with films exhibiting X-ray diffraction (XRD) rocking curve full-widths at half maximum of 150 and 190 arcseconds respectively. LiNbO{sub 2} films demonstrate a memristive response due to the rapid movement of lithium in the layered crystal structure. The rapid movement of lithium ions in LiNbO{sub 2} memristors is characterized using impedance spectroscopy measurements. The impedance spectroscopy measurements suggest an ionic current of.1 mA for a small drive voltage of 5 mV AC or equivalently an ionic current density of {proportional_to}87 A/cm{sup 2}. This high ionic current density coupled with low charge transfer resistance of {proportional_to}16.5 {omega} and a high relaxation frequency (6.6 MHz) makes this single crystal material appealing for battery applications in addition to memristors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Electroforming and Switching in Oxides of Transition Metals: The Role of Metal Insulator Transition in the Switching Mechanism

    Science.gov (United States)

    Chudnovskii, F. A.; Odynets, L. L.; Pergament, A. L.; Stefanovich, G. B.

    1996-02-01

    Electroforming and switching effects in sandwich structures based on anodic films of transition metal oxides (V, Nb, Ti, Fe, Ta, W, Zr, Hf, Mo) have been studied. After being electroformed, some materials exhibited current-controlled negative resistance with S-shapedV-Icharacteristics. For V, Fe, Ti, and Nb oxides, the temperature dependences of the threshold voltage have been measured. As the temperature increased,Vthdecreased to zero at a critical temperatureT0, which depended on the film material. Comparison of theT0values with the temperatures of metal-insulator phase transition for some compounds (Tt= 120 K for Fe3O4, 340 K for VO2, ∼500 K for Ti2O3, and 1070 K for NbO2) showed that switching was related to the transition in the applied electric field. Channels consisting of the above-mentioned lower oxides were formed in the initial anodic films during the electroforming. The possibility of formation of these oxides with a metal-insulator transition was confirmed by thermodynamic calculations.

  6. Controlled release of tocopherols from polymer blend films

    Science.gov (United States)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  7. Theoretical and Experimental Studies of New Polymer-Metal High-Dielectric Constant Nanocomposites

    Science.gov (United States)

    Ginzburg, Valeriy; Elwell, Michael; Myers, Kyle; Cieslinski, Robert; Malowinski, Sarah; Bernius, Mark

    2006-03-01

    High-dielectric-constant (high-K) gate materials are important for the needs of electronics industry. Most polymers have dielectric constant in the range 2 materials with K > 10 it is necessary to combine polymers with ceramic or metal nanoparticles. Several formulations based on functionalized Au-nanoparticles (R ˜ 5 -— 10 nm) and PMMA matrix polymer are prepared. Nanocomposite films are subsequently cast from solution. We study the morphology of those nanocomposites using theoretical (Self-Consistent Mean-Field Theory [SCMFT]) and experimental (Transmission Electron Microscopy [TEM]) techniques. Good qualitative agreement between theory and experiment is found. The study validates the utility of SCMFT as screening tool for the preparation of stable (or at least metastable) polymer/nanoparticle mixtures.

  8. Dynamic studies of nano-confined polymer thin films

    Science.gov (United States)

    Geng, Kun

    Polymer thin films with the film thickness (h0 ) below 100 nm often exhibit physical properties different from the bulk counterparts. In order to make the best use of polymer thin films in applications, it is important to understand the physical origins of these deviations. In this dissertation, I will investigate how different factors influence dynamic properties of polymer thin films upon nano-confinement, including glass transition temperature (Tg), effective viscosity (etaeff) and self-diffusion coefficient (D ). The first part of this dissertation concerns the impacts of the molecular weight (MW) and tacticity on the Tg's of nano-confined polymer films. Previous experiments showed that the Tg of polymer films could be depressed or increased as h0 decreases. While these observations are usually attributed to the effects of the interfaces, some experiments suggested that MW's and tacticities might also play a role. To understand the effects of these factors, the Tg's of silica-based poly(alpha-methyl styrene) (PalphaMS/SiOx) and poly(methyl methacrylate) (PMMA/SiOx) thin films were studied, and the results suggested that MW's and tacticities influence Tg in nontrivial ways. The second part concerns an effort to resolve the long-standing controversy about the correlation between different dynamics of polymer thin films upon nano-confinement. Firstly, I discuss the experimental results of Tg, D and etaeff of poly(isobutyl methacrylate) films supported by silica (PiBMA/SiOx). Both T g and D were found to be independent of h 0, but etaeff decreased with decreasing h 0. Since both D and etaeff describe transport phenomena known to depend on the local friction coefficient or equivalently the local viscosity, it is questionable why D and etaeff displayed seemingly inconsistent h 0 dependencies. We envisage the different h0 dependencies to be caused by Tg, D and etaeff being different functions of the local T g's (Tg,i) or viscosities (eta i). By assuming a three

  9. Effects of the Molybdenum Oxide/Metal Anode Interfaces on Inverted Polymer Solar Cells

    International Nuclear Information System (INIS)

    Wu Jiang; Guo Xiao-Yang; Xie Zhi-Yuan

    2012-01-01

    Inverted polymer solar cells with molybdenum oxide (MoO 3 ) as an anode buffer layer and different metals (Al or Ag) as anodes are studied. It is found that the inverted cell with a top Ag anode demonstrates enhanced charge collection and higher power conversion efficiency (PCE) compared to the cell with a top Al anode. An 18% increment of PCE is obtained by replacing Al with Ag as the top anode. Further studies show that an interfacial dipole pointing from MoO 3 to Al is formed at MoO 3 /Al interfaces due to electron transfer from Al to MoO 3 while this phenomenon cannot be observed at MoO 3 /Ag interfaces. It is speculated that the electric field at the MoO 3 /Al interface would hinder hole extraction, and hence reduce the short-circuit current

  10. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    Directory of Open Access Journals (Sweden)

    Ana Rešček

    2015-12-01

    Full Text Available This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such materials was studied. The results show that, in comparison to the neat PE and PE/PCL films, some of PE/PCL bilayer films with additives exhibit improved barrier properties i.e. decreased water vapour permeability. Higher thermal stability of modified PE/PCL material is obtained due to a modified mechanism of thermal degradation. The samples with the additive nanoparticles homogeneously dispersed in the polymer matrix showed good mechanical properties. Addition of higher ZnO content contributes to the enhanced antibacterial activity of a material.

  11. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    Science.gov (United States)

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  12. 21 CFR 888.3560 - Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial polymer/metal... Devices § 888.3560 Knee joint patellofemorotibial polymer/metal/polymer semi-constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/polymer semi-constrained...

  13. Antimicrobial Polymers with Metal Nanoparticles

    Science.gov (United States)

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  14. PREFACE: INERA Workshop: Transition Metal Oxide Thin Films-functional Layers in "Smart windows" and Water Splitting Devices. Parallel session of the 18th International School on Condensed Matter Physics

    Science.gov (United States)

    2014-11-01

    The Special issue presents the papers for the INERA Workshop entitled "Transition Metal Oxides as Functional Layers in Smart windows and Water Splitting Devices", which was held in Varna, St. Konstantin and Elena, Bulgaria, from the 4th-6th September 2014. The Workshop is organized within the context of the INERA "Research and Innovation Capacity Strengthening of ISSP-BAS in Multifunctional Nanostructures", FP7 Project REGPOT 316309 program, European project of the Institute of Solid State Physics at the Bulgarian Academy of Sciences. There were 42 participants at the workshop, 16 from Sweden, Germany, Romania and Hungary, 11 invited lecturers, and 28 young participants. There were researchers present from prestigious European laboratories which are leaders in the field of transition metal oxide thin film technologies. The event contributed to training young researchers in innovative thin film technologies, as well as thin films characterization techniques. The topics of the Workshop cover the field of technology and investigation of thin oxide films as functional layers in "Smart windows" and "Water splitting" devices. The topics are related to the application of novel technologies for the preparation of transition metal oxide films and the modification of chromogenic properties towards the improvement of electrochromic and termochromic device parameters for possible industrial deployment. The Workshop addressed the following topics: Metal oxide films-functional layers in energy efficient devices; Photocatalysts and chemical sensing; Novel thin film technologies and applications; Methods of thin films characterizations; From the 37 abstracts sent, 21 manuscripts were written and later refereed. We appreciate the comments from all the referees, and we are grateful for their valuable contributions. Guest Editors: Assoc. Prof. Dr.Tatyana Ivanova Prof. DSc Kostadinka Gesheva Prof. DSc Hassan Chamatti Assoc. Prof. Dr. Georgi Popkirov Workshop Organizing Committee Prof

  15. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a device...

  16. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films.

    Science.gov (United States)

    Zhu, Wen-Kun; Cong, Huai-Ping; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2015-09-09

    Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. FIB NANOPATTERNING OF METAL FILMS ON PMMA SUBSTRATES: NON-SPUTTERING MODE

    DEFF Research Database (Denmark)

    Tavares, Luciana; Adashkevich, Vadzim; Chiriaev, Serguei

    polymer materials, which results in material shrinkage in the irradiated areas [2]. In this work, we demonstrate that this mechanism can be used for nanopatterning thin metal films deposited on PMMA resist spin-coated onto a silicon substrate. For this purpose, the samples were irradiated with He+ FIB...

  18. Transparent electrode designs based on optimal nano-patterning of metallic films

    KAUST Repository

    Catrysse, Peter B.; Fan, Shanhui

    2010-01-01

    , such as indium tin oxide, are commonly used. There is substantial interest in replacing them, however, motivated by practical problems and recent discoveries regarding the optics of nano-patterned metals. When designing nano-patterned metallic films for use

  19. 21 CFR 172.770 - Ethylene oxide polymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...

  20. Oxide films at the nanoscale: new structures, new functions, and new materials.

    Science.gov (United States)

    Giordano, Livia; Pacchioni, Gianfranco

    2011-11-15

    We all make use of oxide ultrathin films, even if we are unaware of doing so. They are essential components of many common devices, such as mobile phones and laptops. The films in these ubiquitous electronics are composed of silicon dioxide, an unsurpassed material in the design of transistors. But oxide films at the nanoscale (typically just 10 nm or less in thickness) are integral to many other applications. In some cases, they form under normal reactive conditions and confer new properties to a material: one example is the corrosion protection of stainless steel, which is the result of a passive film. A new generation of devices for energy production and communications technology, such as ferroelectric ultrathin film capacitors, tunneling magnetoresistance sensors, solar energy materials, solid oxide fuel cells, and many others, are being specifically designed to exploit the unusual properties afforded by reduced oxide thickness. Oxide ultrathin films also have tremendous potential in chemistry, representing a rich new source of catalytic materials. About 20 years ago, researchers began to prepare model systems of truly heterogeneous catalysts based on thin oxide layers grown on single crystals of metal. Only recently, however, was it realized that these systems may behave quite differently from their corresponding bulk oxides. One of the phenomena uncovered is the occurrence of a spontaneous charge transfer from the metal support to an adsorbed species through the thin insulating layer (or vice versa). The importance of this property is clear: conceptually, the activation and bond breaking of adsorbed molecules begin with precisely the same process, electron transfer into an antibonding orbital. But electron transfer can also be harnessed to make a supported metal particle more chemically active, increase its adhesion energy, or change its shape. Most importantly, the basic principles underlying electron transfer and other phenomena (such as structural

  1. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  2. Surface and sub-surface thermal oxidation of ruthenium thin films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    For next generation Extreme UV photolithography, multilayer coatings may require protective capping layers against surface contamination. Ruthenium, as a low-oxidation metal, is often used as a reference material. The oxidation behaviour of Ru thin films has been studied using X-ray reflectometry

  3. Micro structural studies of PVA doped with metal oxide nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. B. Rithin [Dept. of Physics, Srinivas School of Engineering, Mangalore-575025, Karnataka (India); Crasta, Vincent, E-mail: vcrasta@yahoo.com; Viju, F. [Dept. of Physics, St. Joseph Engineering College, Vamanjoor, Mangalore-575028, Karnataka (India); Praveen, B. M. [Dept. of Chemistry, Srinivas School of Engineering, Mangalore-575025, Karnataka (India); Shreeprakash, B. [Dept. of Mechanical Engineering, Srinivas School of Engineering, Mangalore-575025, Karnataka (India)

    2014-04-24

    Nanostructured PVA polymer composites are of rapidly growing interest because of their sized-coupled properties. The present article deals with both ZnO and WO{sub 3} embedded in a polyvinyl alcohol (PVA) matrix using a solvent casting method. These films were characterized using FTIR, XRD, and SEM techniques. The FTIR spectra of the doped PVA shows shift in the bands, which can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The phase homogeneity and morphology of the polymer composites have been analyzed using scanning electron microscope (SEM). The crystal structure and crystallinity of polymer nanocomposites were studied by X-ray diffraction technique (XRD). Thus due to the interaction of dopant and complex formation, the structural repositioning takes place and crystallinity of the nanocomposites decreases.

  4. Relationship between oxide film structures and corrosion resistance of SUS 304 L stainless steel in high temperature pure water

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo; Matsuda, Yasushi.

    1990-01-01

    The effect of various oxidation conditions on metal release of SUS304L stainless steels in deaerated pure water at 488 K was investigated. The behavior of metal release was also discussed in relation to the surface films which were formed by various oxidation treatments. The results obtained are as follows: (1) The oxidation treatment in high purity argon gas at high temperatures for short time such as 1273 K - 2 min (120S) was effective to decrease the metal dissolution, and the oxide films primarily consisted of spinel type double oxide layer containing high concentration of Mn and Cr. (2) The oxidation treatments in non-deaerated pure water at 561 K for 24∼336 h (86.4∼1209.6 ks) were furthermore effective to decrease the metal dissolution. (3) It may be concluded that the key factors controlling the metal release are thickness, structure and compactness together with compositions of surface oxide films. (author)

  5. PEO + PVP blended polymer composite films for multifunctional

    Indian Academy of Sciences (India)

    has been noticed from PEO + PVP : Ni2+ polymer film at 373 K. Emission analysis of Co2+: ... suggested that these TM ions doped PEO + PVP polymer films are found to be potential ... by undertaking some nanoparticles for obtaining the sev-.

  6. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  7. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  8. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  9. Persistent semi-metal-like nature of epitaxial perovskite CaIrO3 thin films

    International Nuclear Information System (INIS)

    Biswas, Abhijit; Jeong, Yoon Hee

    2015-01-01

    Strong spin-orbit coupled 5d transition metal based ABO 3 oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because of the interplay between the Coulomb interactions and strong spin-orbit coupling. Here, we have epitaxially stabilized high quality thin films of perovskite (Pv) CaIrO 3 . Film on the best lattice-matched substrate shows semi-metal-like characteristics. Intriguingly, imposing tensile or compressive strain on the film by altering the underlying lattice-mismatched substrates still maintains semi-metallicity with minute modification of the effective correlation as tensile (compressive) strain results in tiny increases (decreases) of the electronic bandwidth. In addition, magnetoresistance remains positive with a quadratic field dependence. This persistent semi-metal-like nature of Pv-CaIrO 3 thin films with minute changes in the effective correlation by strain may provide new wisdom into strong spin-orbit coupled 5d based oxide physics

  10. The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering: Process and microstructure

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2017-01-01

    Full Text Available Yttrium oxide thin films were prepared by reactive magnetron sputtering in different deposition condition with various oxygen flow rates. The annealing influence on the yttrium oxide film microstructure is investigated. The oxygen flow shows a hysteresis behavior on the deposition rate. With a low oxygen flow rate, the so called metallic mode process with a high deposition rate (up to 1.4µm/h was achieved, while with a high oxygen flow rate, the process was considered to be in the poisoned mode with an extremely low deposition rate (around 20nm/h. X-ray diffraction (XRD results show that the yttrium oxide films that were produced in the metallic mode represent a mixture of different crystal structures including the metastable monoclinic phase and the stable cubic phase, while the poisoned mode products show a dominating monoclinic phase. The thin films prepared in metallic mode have relatively dense structures with less porosity. Annealing at 600 °C for 15h, as a structure stabilizing process, caused a phase transformation that changes the metastable monoclinic phase to stable cubic phase for both poisoned mode and metallic mode. The composition of yttrium oxide thin films changed from nonstoichiometric to stoichiometric together with a lattice parameter variation during annealing process. For the metallic mode deposition however, cracks were formed due to the thermal expansion coefficient difference between thin film and the substrate material which was not seen in poisoned mode deposition. The yttrium oxide thin films that deposited in different modes give various application options as a nuclear material.

  11. 21 CFR 888.3410 - Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer or ceramic/polymer... Devices § 888.3410 Hip joint metal/polymer or ceramic/polymer semiconstrained resurfacing cemented prosthesis. (a) Identification. A hip joint metal/polymer or ceramic/polymer semi-constrained resurfacing...

  12. Study of memory effects in polymer dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Han, Jinwoo

    2006-01-01

    In this work, we have studied the memory effects in polymer dispersed liquid crystal films. We found that optical responses, such as the memory effects, of the films depended strongly on the morphology. For example, memory effects were observed for films with polymer ball morphologies; however, only weak hysteresis effects were observed for films with droplet morphologies. In particular, a stronger memory effect was observed for films with more complicated polymer ball structures. Coincidentally, T TE , the temperature at which the memory state is thermally erased, was generally higher for the films exhibiting a stronger memory effect. In addition, studies of the temporal evolution of the films show that the memory effects become stronger after films have been kept on the shelf for a period of time. This change is likely to be associated with a modification of surface anchoring properties at the LC-polymer interface.

  13. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    Science.gov (United States)

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  14. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  15. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... with pH values in the range from pH 2 to 11 have generally given etch rates below 0.04 Å h-l. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex situ...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  16. Chemical potential pinning due to equilibrium electron transfer at metal/C60-doped polymer interfaces

    Science.gov (United States)

    Heller, C. M.; Campbell, I. H.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C60-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C60 molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C60-doped poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C60-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C60 molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C60 and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C60 in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV.

  17. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  18. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    OpenAIRE

    Rešček, Ana; Kratofil Krehula, Ljerka; Katančić, Zvonimir; Hrnjak-Murgić, Zlata

    2015-01-01

    This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL) films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex) with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such m...

  19. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Science.gov (United States)

    Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.

    2015-09-01

    For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.

  20. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  1. Resistive switching of organic–inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films

    Science.gov (United States)

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-01

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set–reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

  2. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    A method for preparing particulate metal or metal oxide of controlled partile size comprises contacting an an aqueous solution containing dissolved metal values with excess urea at a temperature sufficient to cause urea to react with water to provide a molten urea solution containing the metal values; heating the molten urea solution to cause the metal values to precipitate, forming a mixture containing precipitated metal values; heating the mixture containing precipitated metal values to evaporate volatile material leaving a dry powder containing said metal values. The dry powder can be calcined to provide particulate metal oxide or reduced to provide particulate metal. Oxide mixtures are provided when the aqueous solution contains values of more than one metal. Homogeneousmetal-metal oxide mistures for preparing cermets can be prepared by selectively reducing at least one of the metal oxides. (auth)

  3. Film packed lithium-ion battery with polymer stabilizer

    International Nuclear Information System (INIS)

    Satoh, Masaharu; Nakahara, Kentaro

    2004-01-01

    The 1600 mAh class of film packed lithium-ion battery has been fabricated with the polymer stabilizer. The adhesive polymer covered with fluorinated polymer beads enables to penetrate into the prismatically wounded jerry-roll layers and connects the electrode layers and separator film. The battery demonstrates the improved properties after repeating the charge and discharge processes and should be useful for the various electronics equipment such as notebook type computer

  4. Method of producing homogeneous mixed metal oxides and metal--metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution to leave a molten urea solution containing the metal values. The molten urea solution is heated to above about 180 0 C, whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles

  5. A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films

    International Nuclear Information System (INIS)

    Liu, Haitao; Zeng, Xiaofei; Kong, Xiangrong; Bian, Shuguang; Chen, Jianfeng

    2012-01-01

    Highlights: ► A simple two-step method without further surface modification step was employed. ► ITO nanoparticles were easily to be uniformly dispersed in polymer matrix. ► ITO/polymer nanocomposite film had high transparency and UV/IR blocking properties. - Abstract: Transparent functional indium tin oxide (ITO)/polymer nanocomposite films were fabricated via a simple approach with two steps. Firstly, the functional monodisperse ITO nanoparticles were synthesized via a facile nonaqueous solvothermal method using bifunctional chemical agent (N-methyl-pyrrolidone, NMP) as the reaction solvent and surface modifier. Secondly, the ITO/acrylics polyurethane (PUA) nanocomposite films were fabricated by a simple sol-solution mixing method without any further surface modification step as often employed traditionally. Flower-like ITO nanoclusters with about 45 nm in diameter were mono-dispersed in ethyl acetate and each nanocluster was assembled by nearly spherical nanoparticles with primary size of 7–9 nm in diameter. The ITO nanoclusters exhibited an excellent dispersibility in polymer matrix of PUA, remaining their original size without any further agglomeration. When the loading content of ITO nanoclusters reached to 5 wt%, the transparent functional nanocomposite film featured a high transparency more than 85% in the visible light region (at 550 nm), meanwhile cutting off near-infrared radiation about 50% at 1500 nm and blocking UV ray about 45% at 350 nm. It could be potential for transparent functional coating materials applications.

  6. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    International Nuclear Information System (INIS)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-01-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In 2 O 3 (90 wt %) : SnO 2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature

  7. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Otto J. Gregory

    2013-11-01

    Full Text Available Temperatures of hot section components in today’s gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today’s engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire thermocouples.

  8. Physical and electrical properties of thermal oxidized Sm{sub 2}O{sub 3} gate oxide thin film on Si substrate: Influence of oxidation durations

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Kian Heng; Haseeb, A.S.M.A.; Wong, Yew Hoong, E-mail: yhwong@um.edu.my

    2016-05-01

    Growth of 150 nm Sm{sub 2}O{sub 3} films by sputtered pure samarium metal film on silicon substrates and followed by thermal oxidation process in oxygen ambient at 700 °C through various oxidation durations (5 min, 10 min, 15 min and 20 min) has been carried out. The crystallinity of Sm{sub 2}O{sub 3} film and existence of interfacial layer have been evaluated by X-ray diffraction, Fourier transform infrared and Raman analysis. Crystallite size and microstrain of Sm{sub 2}O{sub 3} were estimated by Williamson–Hall plot analysis. Calculated crystallite size of Sm{sub 2}O{sub 3} from Scherrer equation has similar trend with the value from Williamson–Hall plot. The presence of interfacial layer is supported by composition line scan by energy dispersive X-ray spectroscopy analysis. The surface roughness and surface topography of Sm{sub 2}O{sub 3} film were examined by atomic force microscopy analysis. The electrical characterization revealed that 15 min of oxidation durations with smoothest surface has highest breakdown voltage, lowest leakage current density and highest barrier height value. - Highlights: • Thermal oxidation of sputtered pure metallic Sm in oxygen ambient • Formation of polycrystalline Sm{sub 2}O{sub 3} and semi-polycrystalline interfacial layers • Optimization of oxidation duration of pure metallic Sm in oxygen ambient • Enhanced electrical performance with smooth surface and increased barrier height.

  9. Film packed lithium-ion battery with polymer stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Masaharu; Nakahara, Kentaro [NEC Corp., Environment and Material Research Labs., Kawasaki, Kanagawa (Japan)

    2004-11-30

    The 1600 mAh class of film packed lithium-ion battery has been fabricated with the polymer stabilizer. The adhesive polymer covered with fluorinated polymer beads enables to penetrate into the prismatically wound jerry-roll layers and connects the electrode layers and separator film. The battery demonstrates the improved properties after repeating the charge and discharge processes and should be useful for the various electronic equipment such as notebook type computers. (Author)

  10. Pad printing as a film forming technique for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2009-04-15

    Pad printing as a technique for preparing the active layer in polymer solar cells is presented. The technique employs a silicone rubber stamp to pick up the motif from a gravure plate and transfer it to the substrate. The strengths and limitations of pad printing are discussed and polymer solar cells prepared by pad printing are presented. Devices were prepared on indium tin oxide substrates but in principle the entire photovoltaic device comprising front and back electrodes, barrier layers and active layer could be printed with no need for vacuum steps. The device geometry comprises a spin coated transparent zinc oxide front electrode, a pad printed active layer based on a bulk heterojunction of the thermocleavable polymer poly(3-(2-methylhexyloxycarbonyl)thiophene-co-thiopene) (P3MHOCT) and zinc oxide nanoparticles, spin coated PEDOT:PSS and finally a manually cast thermally cured silver paste back electrode. The P3MHOCT was converted to poly(3-carboxy-dithiophene) (P3CT) in situ by heating the film to 200 C for a brief period. The entire printing and device preparation was carried out in the ambient atmosphere and the devices obtained had a good stability in air during storage and operation. (author)

  11. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); De Smet, Jelle; Willems, Wouter [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); Cools, Pieter; De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); De Smet, Herbert; Van Steenbeerge, Geert [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium)

    2016-07-15

    Highlights: • Laser patterning of thin film PEDOT:PSS on polymer foils is characterized in great detail. • PEDOT:PSS does not need to be fully removed to create electrically insulating patterns. • The underlying polymer foil influences the ablation behavior. - Abstract: Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  12. Persistent semi-metal-like nature of epitaxial perovskite CaIrO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abhijit; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)

    2015-05-21

    Strong spin-orbit coupled 5d transition metal based ABO{sub 3} oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because of the interplay between the Coulomb interactions and strong spin-orbit coupling. Here, we have epitaxially stabilized high quality thin films of perovskite (Pv) CaIrO{sub 3}. Film on the best lattice-matched substrate shows semi-metal-like characteristics. Intriguingly, imposing tensile or compressive strain on the film by altering the underlying lattice-mismatched substrates still maintains semi-metallicity with minute modification of the effective correlation as tensile (compressive) strain results in tiny increases (decreases) of the electronic bandwidth. In addition, magnetoresistance remains positive with a quadratic field dependence. This persistent semi-metal-like nature of Pv-CaIrO{sub 3} thin films with minute changes in the effective correlation by strain may provide new wisdom into strong spin-orbit coupled 5d based oxide physics.

  13. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-01-01

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous

  14. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  15. Synthesis, characterization and applications of polymer-metal ...

    Indian Academy of Sciences (India)

    Abstract. 4-Acryloxy acetophenone was prepared and subjected to suspension polymerization with divinyl- benzene as a cross-linking agent. The resulting network polymer was ligated with benzoyl hydrazone. The functional polymer was treated with metal ions [Cu(II), Fe(II)]. The polymer-metal complexes obtained.

  16. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  17. Photoconduction in silicon rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Lopez, J A; Carrillo-Lopez, J; Flores-Gracia, F J; Garcia-Salgado, G [CIDS-ICUAP, Benemerita Universidad Autonoma de Puebla. Ed. 103 D and C, col. San Manuel, Puebla, Pue. Mexico 72570 (Mexico); Aceves-Mijares, M; Morales-Sanchez, A, E-mail: jluna@buap.siu.m, E-mail: jluna@inaoep.m [INAOE, Luis Enrique Erro No. 1, Apdo. 51, Tonantzintla, Puebla, Mexico 72000 (Mexico)

    2009-05-01

    Photoconduction of silicon rich oxide (SRO) thin films were studied by current-voltage (I-V) measurements, where ultraviolet (UV) and white (Vis) light illumination were applied. SRO thin films were deposited by low pressure chemical vapour deposition (LPCVD) technique, using SiH{sub 4} (silane) and N{sub 2}O (nitrous oxide) as reactive gases at 700 {sup 0}. The gas flow ratio, Ro = [N{sub 2}O]/[SiH{sub 4}] was used to control the silicon excess. The thickness and refractive index of the SRO films were 72.0 nm, 75.5 nm, 59.1 nm, 73.4 nm and 1.7, 1.5, 1.46, 1.45, corresponding to R{sub o} = 10, 20, 30 and 50, respectively. These results were obtained by null ellipsometry. Si nanoparticles (Si-nps) and defects within SRO films permit to obtain interesting photoelectric properties as a high photocurrent and photoconduction. These effects strongly depend on the silicon excess, thickness and structure type. Two different structures (Al/SRO/Si and Al/SRO/SRO/Si metal-oxide-semiconductor (MOS)-like structures) were fabricated and used as devices. The photocurrent in these structures is dominated by the generation of carriers due to the incident photon energies ({approx}3.0-1.6 eV and 5 eV). These structures showed large photoconductive response at room temperature. Therefore, these structures have potential applications in optoelectronics devices.

  18. The Microstructures and Electrical Resistivity of (Al, Cr, TiFeCoNiOx High-Entropy Alloy Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Huei Tsau

    2015-01-01

    Full Text Available The (Al, Cr, TiFeCoNi alloy thin films were deposited by PVD and using the equimolar targets with same compositions from the concept of high-entropy alloys. The thin films became metal oxide films after annealing at vacuum furnace for a period; and the resistivity of these thin films decreased sharply. After optimum annealing treatment, the lowest resistivity of the FeCoNiOx, CrFeCoNiOx, AlFeCoNiOx, and TiFeCoNiOx films was 22, 42, 18, and 35 μΩ-cm, respectively. This value is close to that of most of the metallic alloys. This phenomenon was caused by delaminating of the alloy oxide thin films because the oxidation was from the surfaces of the thin films. The low resistivity of these oxide films was contributed to the nonfully oxidized elements in the bottom layers and also vanishing of the defects during annealing.

  19. Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Barik, Ullash; Srinivasan, S; Nagendra, C L; Subrahmanyam, A

    2003-04-01

    Silver oxide thin films have been prepared on soda lime glass substrates at room temperature (300 K) by reactive DC Magnetron sputtering technique using pure silver metal target; the oxygen flow rates have been varied in the range 0.00-2.01 sccm. The X-ray diffraction data on these films show a systematic change from metallic silver to silver (sub) oxides. The electrical resistivity increases with increasing oxygen flow. The films show a p-type behavior (by both Hall and Seebeck measurements) for the oxygen flow rates of 0.54, 1.09 and 1.43 sccm. The refractive index of the films (at 632.8 nm) decreases with increasing oxygen content and is in the range 1.167-1.145, whereas the p-type films show a higher refractive index (1.186-1.204). The work function of these silver oxide films has been measured by Kelvin Probe technique. The results, in specific, the p-type conductivity in the silver oxide films, have been explained on the basis of the theory of partial ionic charge proposed by Sanderson.

  20. Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films: role of oxygen

    International Nuclear Information System (INIS)

    Kumar Barik, Ullash; Srinivasan, S.; Nagendra, C.L.; Subrahmanyam, A.

    2003-01-01

    Silver oxide thin films have been prepared on soda lime glass substrates at room temperature (300 K) by reactive DC Magnetron sputtering technique using pure silver metal target; the oxygen flow rates have been varied in the range 0.00-2.01 sccm. The X-ray diffraction data on these films show a systematic change from metallic silver to silver (sub) oxides. The electrical resistivity increases with increasing oxygen flow. The films show a p-type behavior (by both Hall and Seebeck measurements) for the oxygen flow rates of 0.54, 1.09 and 1.43 sccm. The refractive index of the films (at 632.8 nm) decreases with increasing oxygen content and is in the range 1.167-1.145, whereas the p-type films show a higher refractive index (1.186-1.204). The work function of these silver oxide films has been measured by Kelvin Probe technique. The results, in specific, the p-type conductivity in the silver oxide films, have been explained on the basis of the theory of partial ionic charge proposed by Sanderson

  1. The scanning probe microscopy study of thin polymer films

    International Nuclear Information System (INIS)

    Harron, H.R.

    1995-08-01

    Scanning Tunnelling Microscopy and Atomic Force Microscopy were used systematically to investigate the morphology, uniformity, coverage and structure of the thin films of several commercially important insulating polymers. Despite the poorly conducting nature of the polymer sample, detailed and convincing images of this class of materials were achieved by STM without the need to coat the samples with a conductive layer. The polymer regions of the sample were further investigated by the use of surface profiling with 'line scans'. The fluctuations of the amplitude therein enabled important film characteristics to be assessed. An environmental stage was designed for the STM to enable the effect of various vapour-sample interactions to be observed during the imaging process. Using the data from the environmental stage in addition to the surface profiling with line scans, an insight into the conduction mechanism and image interpretation was gained. Results suggest that the water content of the sample and its immediate surroundings is an important factor in achieving reliable STM images in air. The initial study culminated with the observation by STM alone of the plasticizer induced crystallization of uncoated PC thin films. The 'amorphous' PC films were observed before crystallization and small ordered regions in roughly the same proportion as that predicted by diffraction studies [Prietschk, 1959 and Schnell, 1964] were imaged. This has never been observed by a microscopy technique. Furthermore, images of the crystalline film contained elongated units that were attributed to the lamellae formations that form the basic building blocks of polymer spherulites. The study continued with the AFM imaging of the growth of crystalline entities in a PC film, without the need for harsh sample treatment or metal coating. A method of casting and crystallizing the films was developed such that the growth was predominantly in two dimensions and consequently ideal for observation by

  2. Magnetic properties of partially oxidized Fe films

    Science.gov (United States)

    Garcia, Miguel Angel; Lopez-Dominguez, Victor; Hernando, Antonio

    Hybrid magnetic nanostructures exhibit appealing properties due to interface and proximity effects. A simple and interesting system of hybrid magnetic nanomaterials are partially oxidized ferromagnetic films. We have fabricated Fe films by thermal evaporation and performed a partial oxidation to magnetite (Fe3O4) by annealing in air at different times and temperatures. The magnetic properties of the films evolve from those of pure metallic iron to pure magnetite, showing intermediate states where the proximity effects control the magnetic behavior. At some stages, the magnetization curves obtained by SQUID and MOKE magnetometry exhibit important differences due to the dissimilar contribution of both phases to the magneto-optical response of the system This work has been supported by the Ministerio Español de Economia y Competitividad (MINECO) MAT2013-48009-C4-1. V.L.D and M.A.G. acknowledges financial support from BBVA foundation.

  3. ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Lavareda, G.; Fortunato, E.; Alves, H.; Goncalves, A.; Varela, J.; Nascimento, R.; Amaral, A.

    2005-01-01

    Indium tin oxide (ITO) films were deposited by radio frequency (rf)-plasma enhanced reactive thermal evaporation (rf-PERTE) at room temperature on intrinsic ZnO/polymer substrates to enhance their electrical and structural properties. The polymer substrate used is polyethylene terephthalate (PET). The thickness of the ZnO films varied in the range 50-150 nm. The average thickness of the ITO films is of about 170 nm. Results show that ITO deposited on bare PET substrates exhibit: an average visible transmittance of about 85% and an electrical resistivity of 5.6 x 10 -2 Ω cm. ITO on ZnO/PET substrates show the optical quality practically preserved and the resistivity decreased to a minimum value of 1.9x10 -3 Ω cm for ZnO layers 125 nm thick. The electrical properties of ITO on ZnO/PET are largely improved by the increase in carrier mobility

  4. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films

    International Nuclear Information System (INIS)

    Park, Myounggu; Kim, Hyonny; Youngblood, Jeffrey P

    2008-01-01

    The strain-dependent electrical resistance characteristics of multi-walled carbon nanotube (MWCNT)/polymer composite films were investigated. In this research, polyethylene oxide (PEO) is used as the polymer matrix. Two representative volume fractions of MWCNT/PEO composite films were selected: 0.56 vol% (near the percolation threshold) and 1.44 vol% (away from the percolation threshold) of MWCNT. An experimental setup which can measure electrical resistance and strain simultaneously and continuously has been developed. Unique and repeatable relationships in resistance versus strain were obtained for multiple specimens with different volume fractions of MWCNT. The overall pattern of electrical resistance change versus strain for the specimens tested consists of linear and nonlinear regions. A resistance change model to describe the combination of linear and nonlinear modes of electrical resistance change as a function of strain is suggested. The unique characteristics in electrical resistance change for different volume fractions imply that MWCNT/PEO composite films can be used as tunable strain sensors and for application into embedded sensor systems in structures

  5. Synthesis of self-detached nanoporous titanium-based metal oxide

    International Nuclear Information System (INIS)

    Hu, F.; Wen, Y.; Chan, K.C.; Yue, T.M.; Zhou, Y.Z.; Zhu, S.L.; Yang, X.J.

    2015-01-01

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO 3 . The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO 2 (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm 2 , a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC

  6. Synthesis of self-detached nanoporous titanium-based metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hu, F. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Wen, Y. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Chan, K.C., E-mail: mfkcchan@inet.polyu.edu.hk [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Yue, T.M. [Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University (Hong Kong); Zhou, Y.Z. [Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jiangxi 343001 (China); Zhu, S.L.; Yang, X.J. [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  7. Stress controlled gas-barrier oxide coatings on semi-crystalline polymers

    International Nuclear Information System (INIS)

    Rochat, G.; Leterrier, Y.; Fayet, P.; Manson, J.-A.E.

    2005-01-01

    Thin silicon oxide (SiO x ) barrier coatings formed by plasma enhanced chemical vapor deposition on poly(ethylene terephthalate) (PET) substrates were subjected to post-deposition annealing treatments in the temperature range for orientation relaxation of the polymer. The resulting change in coating internal stress state was measured by means of thermo-mechanical analyses, and its effect on the coating cohesive properties and coating/polymer adhesion was determined from the analysis of uniaxial fragmentation tests in situ in a scanning electron microscope, assuming a Weibull-type probability of failure and a perfectly plastic stress transfer at the SiO x /PET interface. The strain to failure and intrinsic fracture toughness of the ultrathin oxide coating were found to be as high as 5.7% and 10 J/m 2 , respectively, and its interfacial shear strength with PET was found to be close to 100 MPa. Annealing for 10 min at 150 deg. C did not modify the oxygen permeation properties of the SiO x /PET film, which suggests that the defect population of the oxide was not affected by the thermal treatment. In contrast, the coating internal compressive stress resulting from annealing was shown to increase by 40% the apparent coating cohesive properties and adhesion to the polymer

  8. All-organic polymer-dispersed liquid crystal light-valves integrated with electroactive anthraquinone-2-sulfonate-doped polypyrrole thin films as driving electrodes

    International Nuclear Information System (INIS)

    Wang, Pen-Cheng; Yu, Jing-Yu; Li, Kuan-Hsun

    2011-01-01

    Highlights: → Fabrication of flexible semi-transparent all-polymer electrodes under ambient conditions without using a CVD system. → Characterization of the above electrodes based on anthraquinone-2-sulfonate-doped polypyrrole thin films. → Demonstration of all-organic liquid crystal light-valves with polypyrrole thin films as the driving electrodes. - Abstract: All-organic PDLC (polymer-dispersed liquid crystal) light-valves using all-polymer conductive substrates containing thin films of polypyrrole doped with anthraquinone-2-sulfonate (AQSA - ) as the driving electrodes were fabricated in this study. The all-polymer conductive substrates were prepared under ambient conditions by in situ depositing polypyrrole thin films on blank flexible poly(ethylene terephthalate), or PET, substrates from aqueous media in which oxidative polymerization of pyrrole was taking place. The obtained flexible all-polymer conductive substrates were semi-transparent with cohesive coatings of AQSA - doped polypyrrole thin films (thickness ∼55 nm). The all-polymer flexible conductive substrates had sheet resistivity ∼40 kΩ □ -1 and T% transparency against air ∼78% at 600 nm. The light-valves fabricated using the above all-polymer conductive substrates showed ∼50% transparency against air at 600 nm when 4 V μm -1 electric field was applied.

  9. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Science.gov (United States)

    Schaubroeck, David; De Smet, Jelle; Willems, Wouter; Cools, Pieter; De Geyter, Nathalie; Morent, Rino; De Smet, Herbert; Van Steenbeerge, Geert

    2016-07-01

    Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  10. Highly Enhanced Raman Scattering on Carbonized Polymer Films.

    Science.gov (United States)

    Yoon, Jong-Chul; Hwang, Jongha; Thiyagarajan, Pradheep; Ruoff, Rodney S; Jang, Ji-Hyun

    2017-06-28

    We have discovered a carbonized polymer film to be a reliable and durable carbon-based substrate for carbon enhanced Raman scattering (CERS). Commercially available SU8 was spin coated and carbonized (c-SU8) to yield a film optimized to have a favorable Fermi level position for efficient charge transfer, which results in a significant Raman scattering enhancement under mild measurement conditions. A highly sensitive CERS (detection limit of 10 -8 M) that was uniform over a large area was achieved on a patterned c-SU8 film and the Raman signal intensity has remained constant for 2 years. This approach works not only for the CMOS-compatible c-SU8 film but for any carbonized film with the correct composition and Fermi level, as demonstrated with carbonized-PVA (poly(vinyl alcohol)) and carbonized-PVP (polyvinylpyrollidone) films. Our study certainly expands the rather narrow range of Raman-active material platforms to include robust carbon-based films readily obtained from polymer precursors. As it uses broadly applicable and cheap polymers, it could offer great advantages in the development of practical devices for chemical/bio analysis and sensors.

  11. The use of polymer gel dosimetry to measure dose distribution around metallic implants

    International Nuclear Information System (INIS)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-01-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances. (author)

  12. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    Science.gov (United States)

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  13. Indium Tin Oxide thin film gas sensors for detection of ethanol vapours

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    Indium Tin Oxide (ITO: In 2 O 3 + 17% SnO 2 ) thin films grown on alumina substrate at 648 K temperatures using direct evaporation method with two gold pads deposited on the top for electrical contacts were exposed to ethanol vapours (200-2500 ppm). The operating temperature of the sensor was optimized. The sensitivity variation of films having different thickness was studied. The sensitivity of the films deposited on Si substrates was studied. The response of the film with MgO catalytic layer on sensitivity and selectivity was observed. A novel approach of depositing thin stimulating layer of various metals/oxides below the ITO film was tried and tested

  14. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    Science.gov (United States)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  15. Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films

    Science.gov (United States)

    Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia

    2018-01-01

    Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338

  16. Atomic Layer Deposition of Gallium Oxide Films as Gate Dielectrics in AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors.

    Science.gov (United States)

    Shih, Huan-Yu; Chu, Fu-Chuan; Das, Atanu; Lee, Chia-Yu; Chen, Ming-Jang; Lin, Ray-Ming

    2016-12-01

    In this study, films of gallium oxide (Ga2O3) were prepared through remote plasma atomic layer deposition (RP-ALD) using triethylgallium and oxygen plasma. The chemical composition and optical properties of the Ga2O3 thin films were investigated; the saturation growth displayed a linear dependence with respect to the number of ALD cycles. These uniform ALD films exhibited excellent uniformity and smooth Ga2O3-GaN interfaces. An ALD Ga2O3 film was then used as the gate dielectric and surface passivation layer in a metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT), which exhibited device performance superior to that of a corresponding conventional Schottky gate HEMT. Under similar bias conditions, the gate leakage currents of the MOS-HEMT were two orders of magnitude lower than those of the conventional HEMT, with the power-added efficiency enhanced by up to 9 %. The subthreshold swing and effective interfacial state density of the MOS-HEMT were 78 mV decade(-1) and 3.62 × 10(11) eV(-1) cm(-2), respectively. The direct-current and radio-frequency performances of the MOS-HEMT device were greater than those of the conventional HEMT. In addition, the flicker noise of the MOS-HEMT was lower than that of the conventional HEMT.

  17. Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Suchea, M.; Christoulakis, S.; Katsarakis, N.; Kitsopoulos, T.; Kiriakidis, G.

    2007-01-01

    Pure and aluminum (Al) doped zinc oxide (ZnO and ZAO) thin films have been grown using direct current (dc) magnetron sputtering from pure metallic Zn and ceramic ZnO targets, as well as from Al-doped metallic ZnAl2at.% and ceramic ZnAl2at.%O targets at room temperature (RT). The effects of target composition on the film's surface topology, crystallinity, and optical transmission have been investigated for various oxygen partial pressures in the sputtering atmosphere. It has been shown that Al-doped ZnO films sputtered from either metallic or ceramic targets exhibit different surface morphology than the undoped ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (002). More significantly, Al-doping leads to a larger increase of the optical transmission and energy gap (E g ) of the metallic than of the ceramic target prepared films

  18. Synthesis and surface characterization of electroactive conducting polymers and polyurethane coatings

    Science.gov (United States)

    Vang, Chur Kalec

    The direct electrodeposition of electroactive conducting polymers (ECPs) on active metals such as iron, steel, and aluminum is complicated by the concomitant metal oxidation that occurs at the positive potentials required for polymer formation. In the case of aluminum and its alloys, the oxide layer that forms is an insulator that blocks electron transfer and impedes polymer formation and deposition. As a result, only patchy, nonuniform polymer films are obtained. Electron transfer mediation is a well-known technique for overcoming kinetic limitations of electron transfer at metal electrodes. In this dissertation, we report the use of electron transfer mediation for the direct electrodeposition of polypyrrole onto aluminum and onto Al 2024-T3 alloy. The first few chapters focus on the electrochemistry and use of Tiron RTM (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt) as the mediator. Electroactive conductive polymers (ECPs) were also being investigated for corrosion protection of Al alloys, with a view toward replacement of chromate-based coating systems. The use of electrochemical methods clearly indicated that the electrodeposited Ppy coatings had altered the corrosion behavior of the Al alloy. Degradation mechanisms for self-priming (unicoat), high-gloss, and fluorinated polyurethane aircraft coatings exposed to QUV/H2O radiation were carried out using linear and step-scan photoacoustic (S2-PA) FTIR spectroscopy (Chapters 7--9). FTIR spectroscopic analysis indicated that, as the depth of sampling increased from film-air to film-substrate, an increase of free carbonyl components was observed. These free carbonyl groups are indicative of polyurethane components. Exposure of the polyurethane coating to prolonged periods of extreme weathering conditions indicated a loss of both polyurethane/polyurea components at the air interface, which has lead to an increase of disordered hydrogen-bonding formations. Contact angle measurement further indicated that as

  19. Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2005-01-01

    Indium tin oxide (ITO) thin films have been grown simultaneously onto glass and polymer substrates at room temperature by sputtering from ceramic target. The structure, morphology and electro-optical characteristics of the ITO/glass and ITO/polymer samples have been analyzed by X-ray diffraction, atomic force microscopy, four-point electrical measurements and spectrophotometry. In the selected experimental conditions, the polycrystalline ITO coating shows higher average grain size and higher conductivity, with similar visible transmittance, onto the polymer than onto the glass substrate

  20. UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants.

    Science.gov (United States)

    Lee, Dennis T; Zhao, Junjie; Oldham, Christopher J; Peterson, Gregory W; Parsons, Gregory N

    2017-12-27

    Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al 2 O 3 , ZnO, or TiO 2 ) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH 2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO 2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t 1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO 2 and Al 2 O 3 , ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn 2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

  1. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  2. Lattice cluster theory for dense, thin polymer films.

    Science.gov (United States)

    Freed, Karl F

    2015-04-07

    While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L - 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential "transport" constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.

  3. Lattice cluster theory for dense, thin polymer films

    International Nuclear Information System (INIS)

    Freed, Karl F.

    2015-01-01

    While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L − 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential “transport” constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends

  4. Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%

    Energy Technology Data Exchange (ETDEWEB)

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul, E-mail: Rahul.panat@wsu.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163 (United States)

    2015-08-24

    Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high level of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.

  5. Metal-insulator transition in tin doped indium oxide (ITO thin films: Quantum correction to the electrical conductivity

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Kaushik

    2017-01-01

    Full Text Available Tin doped indium oxide (ITO thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes in low temperatures (25-300 K. The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl∼1; kF is the Fermi wave vector and l is the electron mean free path and degenerate semiconductors. The transport of charge carriers (electrons in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known ‘metal-insulator transition’ (MIT which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC; this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann’s expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  6. Metal-insulator transition in tin doped indium oxide (ITO) thin films: Quantum correction to the electrical conductivity

    Science.gov (United States)

    Kaushik, Deepak Kumar; Kumar, K. Uday; Subrahmanyam, A.

    2017-01-01

    Tin doped indium oxide (ITO) thin films are being used extensively as transparent conductors in several applications. In the present communication, we report the electrical transport in DC magnetron sputtered ITO thin films (prepared at 300 K and subsequently annealed at 673 K in vacuum for 60 minutes) in low temperatures (25-300 K). The low temperature Hall effect and resistivity measurements reveal that the ITO thin films are moderately dis-ordered (kFl˜1; kF is the Fermi wave vector and l is the electron mean free path) and degenerate semiconductors. The transport of charge carriers (electrons) in these disordered ITO thin films takes place via the de-localized states. The disorder effects lead to the well-known `metal-insulator transition' (MIT) which is observed at 110 K in these ITO thin films. The MIT in ITO thin films is explained by the quantum correction to the conductivity (QCC); this approach is based on the inclusion of quantum-mechanical interference effects in Boltzmann's expression of the conductivity of the disordered systems. The insulating behaviour observed in ITO thin films below the MIT temperature is attributed to the combined effect of the weak localization and the electron-electron interactions.

  7. The influence of polymer architectures on the dewetting behavior of thin polymer films: from linear chains to ring chains.

    Science.gov (United States)

    Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia

    2017-05-03

    The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.

  8. On the Design of Oxide Films, Nanomaterials, and Heterostructures for Solar Water Oxidation Photoanodes

    Science.gov (United States)

    Kronawitter, Coleman Xaver

    Photoelectrochemistry and its associated technologies show unique potential to facilitate the large-scale production of solar fuels—those energy-rich chemicals obtained through conversion processes driven by solar energy, mimicking the photosynthetic process of green plants. The critical component of photoelectrochemical devices designed for this purpose is the semiconductor photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with respect to the redox couple of the electrolyte to drive the relevant electrochemical reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient and stable conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions. The unique range of functional properties of oxides, and especially the oxides of transition metals, relates to their associated diversity of cation oxidation states, cation electronic configurations, and crystal structures. In this dissertation, the use of metal oxide films, nanomaterials, and heterostructures in photoelectrodes enabling the solar-driven oxidation of water and generation of hydrogen fuel is examined. A range of transition- and post-transition-metal oxide material systems and nanoscale architectures is presented. The first chapters present results related to electrodes based on alpha-phase iron(III) oxide, a promising visible-light-active material widely investigated for this application. Studies of porous films fabricated by physical vapor deposition reveal the importance of structural quality, as determined by the deposition substrate temperature, on photoelectrochemical performance. Heterostructures with nanoscale feature dimensionality are explored and reviewed in a later chapter

  9. Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films

    Energy Technology Data Exchange (ETDEWEB)

    Campos, João M., E-mail: jmdcampos@ua.pt [CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Instituto de Biotecnologia e Bioengenharia (IBB) and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Ferraria, Ana M.; Botelho do Rego, Ana M. [Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Ribeiro, M. Rosário [Centro de Química Estrutural (CQE) and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Barros-Timmons, Ana [CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-09-15

    Polylactide (PLA) with a terminal triple bond was synthesized by organocatalyzed ring-opening polymerization and coupled with azide-functionalized graphene oxide (GO) through an azide-alkyne cycloaddition “click” reaction. The functionalized graphenic species involved were analyzed by spectroscopic techniques (FT-IR, solid state {sup 13}C NMR, Raman), which confirmed the coupling of PLA and GO. Additionally, an in depth study of the prepared GO, intermediates and GO-g-PLA hybrid was carried out that sheds light on the mechanisms involved in the functionalization path. The obtained GO-g-PLA hybrid, containing at least 20% of biopolymer, presented an exfoliated graphenic structure, as established by XRD. The conditions used in the grafting of the PLA chains inhibited the crystallization and melting observed for the free polymer. Furthermore, the graphene oxide seems to be reduced during functionalization, which can also be an advantage. Nanocomposites were obtained as solvent-cast films, prepared by dispersion of the GO-g-PLA hybrid in commercial PLA. Preliminary results regarding the performance of these nanocomposites, obtained by DSC and DMA, highlighted the effect of functionalization. Loading values as low as 0.5% suffice to improve the mechanical properties over a broad temperature range due to the high surface area resulting from the good dispersibility of polymer functionalized nanofillers and/or their effect on the polymer chain organization. - Highlights: • A graphene oxide/PLA (GO-g-PLA) hybrid was obtained by a grafting-to method. • Grafting of PLA chains onto the surface of GO inhibited polymer crystallization. • The GO-g-PLA material was used in the reinforcement of PLA, as nanocomposite films. • GO-g-PLA provides more homogeneously reinforced nanocomposite films, than neat GO. • Nanocomposite films with 0.5% loading present high storage modulus even above T{sub g}.

  10. Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films

    International Nuclear Information System (INIS)

    Campos, João M.; Ferraria, Ana M.; Botelho do Rego, Ana M.; Ribeiro, M. Rosário; Barros-Timmons, Ana

    2015-01-01

    Polylactide (PLA) with a terminal triple bond was synthesized by organocatalyzed ring-opening polymerization and coupled with azide-functionalized graphene oxide (GO) through an azide-alkyne cycloaddition “click” reaction. The functionalized graphenic species involved were analyzed by spectroscopic techniques (FT-IR, solid state "1"3C NMR, Raman), which confirmed the coupling of PLA and GO. Additionally, an in depth study of the prepared GO, intermediates and GO-g-PLA hybrid was carried out that sheds light on the mechanisms involved in the functionalization path. The obtained GO-g-PLA hybrid, containing at least 20% of biopolymer, presented an exfoliated graphenic structure, as established by XRD. The conditions used in the grafting of the PLA chains inhibited the crystallization and melting observed for the free polymer. Furthermore, the graphene oxide seems to be reduced during functionalization, which can also be an advantage. Nanocomposites were obtained as solvent-cast films, prepared by dispersion of the GO-g-PLA hybrid in commercial PLA. Preliminary results regarding the performance of these nanocomposites, obtained by DSC and DMA, highlighted the effect of functionalization. Loading values as low as 0.5% suffice to improve the mechanical properties over a broad temperature range due to the high surface area resulting from the good dispersibility of polymer functionalized nanofillers and/or their effect on the polymer chain organization. - Highlights: • A graphene oxide/PLA (GO-g-PLA) hybrid was obtained by a grafting-to method. • Grafting of PLA chains onto the surface of GO inhibited polymer crystallization. • The GO-g-PLA material was used in the reinforcement of PLA, as nanocomposite films. • GO-g-PLA provides more homogeneously reinforced nanocomposite films, than neat GO. • Nanocomposite films with 0.5% loading present high storage modulus even above T_g.

  11. Characterization of the surface film on Zr-based bulk metallic glass using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM)

    International Nuclear Information System (INIS)

    Tan Ming; Liu Qiao; Zhang Nian; Hu Huiqin; Li Biao; Kang Xianjie

    2011-01-01

    Highlights: → In this study, we have made four interesting observations. → First, the composition of Al metal ions in the film of the as-cast metallic glass (41%) is much higher than the nominal Al composition of the alloy (9.5%). → We suggest that this should be attributed to the preferential oxidation of Al atoms. → Second, the composition of Al ions in the film of the immersed metallic glass decreases significantly, indicating that the toxic Al oxide and Al ions in the film are dissolved into the solutions during immersion. → Third, the concentration of Cl - ions has no significant effect on the compositions of metal ions in the film. → Fourth, the composition of Zr ions dominates in the film of the immersed metallic glass, indicating that the ZrO 2 oxide in the film is very hard to get corroded in the corrosive solutions. - Abstract: Using XPS, we have for the first time studied the release of metal ions in the film of the Zr-based bulk metallic glass to the corrosive solutions during immersing. The composition of Al ions in the film of the as-cast metallic glass (41%) is substantially higher than the nominal Al composition of the alloy (9.5%). We proposed that the enriched Al ions can be attributed to the preferential oxidation of Al atoms. After immersing in the NaCl- and HCl-solution, the composition of Al ions in the films decreases from 41% to 28.09% and 21.76%, respectively. This indicates that some of the Al ions in the film are dissolved into the solution during immersion. The composition changes of metal ions in the film of the immersed alloys relative to those of the as-cast metallic glass were discussed using the point defect model. SEM was also used to examine the surface morphology of the samples. No pit corrosion was observed in the SEM images of the immersed metal glass.

  12. Polymer filtration: A new technology for selective metals recovery

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I.; Lu, M.T.; Jarvinen, J.J.

    1995-04-01

    Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.

  13. Microstructural variation in titanium oxide thin films deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Pandian, Ramanathaswamy; Natarajan, Gomathi; Kamruddin, M.; Tyagi, A.K.

    2013-01-01

    We report on the microstructural evolution of titanium oxide thin films deposited by reactive DC magnetron sputtering using titanium metal target. By varying the ratio of sputter-gas mixture containing argon, oxygen and nitrogen various phases of titanium oxide, almost pure rutile, rutile-rich and anatase-rich nano-crystalline, were deposited on Si substrates at room temperature. Using high-resolution scanning electron microscopy, X-ray diffraction and micro-Raman techniques the microstructure of the films were revealed. The relationship between the microstructure of the films and the oxygen partial pressure during sputtering is discussed

  14. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a device...

  15. Rf reactive sputtering of indium-tin-oxide films

    International Nuclear Information System (INIS)

    Tvarozek, V.; Novotny, I.; Harman, R.; Kovac, J.

    1986-01-01

    Films of indium-tin-oxide (ITO) have been deposited by rf reactive diode sputtering of metallic InSn alloy targets, or ceramic ITO targets, in an Ar and Ar+0 2 atmosphere. Electrical as well as optical properties of ITO films were controlled by varying sputtering parameters and by post-deposition heat-treatment in Ar, H 2 , N 2 , H 2 +N 2 ambients. The ITO films exhibited low resistivity approx. 2 x 10 -4 Ω cm, high transmittance approx. 90% in the visible spectral region and high reflectance approx. 80% in the near infra-red region. (author)

  16. Investigation of the electrocatalytic activity for oxygen reduction of sputter deposited mixed metal films

    International Nuclear Information System (INIS)

    Schumacher, L.C.; Holzheuter, I.B.; Nucara, M.C.; Dignam, M.J.

    1989-01-01

    Sputter-deposited films of silver with lead, manganese and nickel have been studied as possible oxygen reduction electrocatalysts using cyclic voltammetry, rotating disc studies, steady-state polarization and Auger analysis. In general, the Ag-Pb and Ag-Mn films display superior electrocatalytic activity for O 2 reduction, while the Ag-Ni films' performance is inferior to that of pure Ag. For the Ag-Pb films, which show the highest electrocatalytic activity, the mixed metal films display oxidation-reduction behavior which is not simply a superposition of that of the separate metals, and suggests a mechanism for the improved behavior

  17. Dielectric property study of poly(4-vinylphenol)-graphene oxide nanocomposite thin film

    Science.gov (United States)

    Roy, Dhrubojyoti

    2018-05-01

    Thin film capacitor device having a sandwich structure of indium tin oxide (ITO)-coated glass/polymer or polymer nanocomposite /silver has been fabricated and their dielectric and leakage current properties has been studied. The dielectric properties of the capacitors were characterized for frequencies ranging from 1 KHz to 1 MHz. 5 wt% Poly(4-vinylphenol)(PVPh)-Graphene (GO) nanocomposite exhibited an increase in dielectric constant to 5.6 and small rise in dielectric loss to around˜0.05 at 10 KHz w.r.t polymer. The DC conductivity measurements reveal rise of leakage current in nanocomposite.

  18. Surface oxidation on thin films affects ionization cross section induced by proton beam

    International Nuclear Information System (INIS)

    Bertol, Ana Paula Lamberti; Vasconcellos, M.A.Z.; Hinrichs, Ruth; Limandri, Silvina; Trincavelli, Jorge

    2012-01-01

    Full text: In microanalysis techniques such as Particle Induced X-ray Emission (PIXE), the transformation from intensity to concentration is made by standard less software that needs exact values of fundamental parameters such as the ionization cross section, transition probabilities of the different electronic levels, and fluorescent yield. The three parameters together measure the photon generating probability of an electronic transition and can be determined experimentally under the name of production cross section. These measurements are performed on thin films, with thickness around 10 nm, but most studies do not take into account any spontaneous surface oxidation. In this work, in the attempt to obtain cross section values of Al, Si and Ti, in metallic and oxide films, the influence of surface oxidation on the metallic films was established. Simulations considering the oxidation with the software SIMNRA on the Rutherford backscattering (RBS) spectra obtained from the films provided mass thickness values used to calculate the cross section data that were compared with theoretical values (PWBA and ECPSSR), and with experimental values and empirical adjustments from other studies. The inclusion of the natural oxidation affects the values of cross section, and may be one of the causes of discrepancies between the experimental values published in literature. (author)

  19. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.A.; Linton, R.C.; Finckenor, M.M.; Kamenetzky, R.R.

    1995-02-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  20. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Science.gov (United States)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  1. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films

    Directory of Open Access Journals (Sweden)

    Sarah Loebner

    2016-12-01

    Full Text Available We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

  2. Direct Photopatterning of Electrochromic Polymers

    DEFF Research Database (Denmark)

    Jensen, Jacob; Dyer, Aubrey L.; Shen, D. Eric

    2013-01-01

    Propylenedioxythiophene (ProDOT) polymers are synthesized using an oxidative polymerization route that results in methacrylate substituted poly(ProDOTs) having a Mn of 10–20 kDa wherein the methacrylate functionality constitutes from 6 to 60% of the total monomer units. Solutions of these polymers...... show excellent film forming abilities, with thin films prepared using both spray‐casting and spin‐coating. These polymers are demonstrated to crosslink upon UV irradiation at 350 nm, in the presence of an appropriate photoinitiator, to render the films insoluble to common organic solvents....... Electrochemical, spectroelectrochemical, and colorimetric analyses of the crosslinked polymer films are performed to establish that they retain the same electrochromic qualities as the parent polymers with no detriment to the observed properties. To demonstrate applicability for multi‐film processing...

  3. Structural and Optical Properties of ZnO Thin Film Prepared by Oxidation of Zn Metal Powders

    International Nuclear Information System (INIS)

    Hassan, N.K.; Hashim, M.R.

    2013-01-01

    High quality ZnO nano structures have been fabricated at room temperature by a simple vacuum thermal evaporator from metallic Zn powders (99.999 % purity) on a silicon (100) substrate. The Zn thin films were then transferred into a thermal tube furnace for oxidation at 700 degree Celsius for different time durations. Time was found to be a critical factor in the synthesis. This was followed by characterization of their morphological, structural and optical properties. The morphology of the grown ZnO nano structures exhibited several large grains, which increased gradually with increasing oxidation time. The crystallinity of the grown nano structures was investigated using X-ray diffraction, revealing that the synthesized ZnO was in hexagonal wurtzite phase. The photoluminescence (PL) spectra of the fabricated ZnO nano structures showed high intensity peak in the UV region due to near-band-edge (NBE) emission in which the structures oxidized for 30 min showing highest intensity. (author)

  4. Metal ion reactive thin films using spray electrostatic LbL assembly.

    Science.gov (United States)

    Krogman, Kevin C; Lyon, Katharine F; Hammond, Paula T

    2008-11-20

    By using the spray-layer-by-layer (Spray-LbL) technique, the number of metal counterions trapped within LbL coatings is significantly increased by kinetically freezing the film short of equilibrium, potentially limiting interchain penetration and forcing chains to remain extrinsically compensated to a much greater degree than observed in the traditional dipped LbL technique. The basis for the enhanced entrapment of metal ions such as Cu2+, Fe2+, and Ag+ is addressed, including the equilibrium driving force for extrinsic compensation by soft versus hard metal ions and the impact of Spray-LbL on the kinetics of polymer-ion complexation. These polymer-bound metal-ion coatings are also demonstrated to be effective treatments for air filtration, functionalizing existing filters with the ability to strongly bind toxic industrial compounds such as ammonia or cyanide gases, as well as chemical warfare agent simulants such as chloroethyl ethyl sulfide. On the basis of results reported here, future work could extend this method to include other toxic soft-base ligands such as carbon monoxide, benzene, or organophosphate nerve agents.

  5. π-Donors microstructuring on surface of polymer film by their noncovalent interactions with iodine

    Energy Technology Data Exchange (ETDEWEB)

    Traven, Valerii F., E-mail: valerii.traven@gmail.com [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Ivanov, Ivan V.; Dolotov, Sergei M. [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Veciana, Jaume Miro; Lebedev, Victor S. [Institut de Ciencia de Materials de Barcelona–CSIC, Campus de la UAB, 08193, Bellaterra (Spain); Shulga, Yurii M.; Khasanov, Salavat S. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Acad. N.N. Semenov Prosp., 1, Chernogolovka, 142432 (Russian Federation); Medvedev, Michael G. [A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Vavilova str., 28 (Russian Federation); Laukhina, Elena E. [The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, ICMAB-CSIC, Bellaterra, 08193 (Spain)

    2015-06-15

    Noncovalent (charge transfer) interaction between perylene and iodine in polycarbonate film provides formation of microstructured perylene layer on the polymer surface upon exposure of polymer film which contains dissolved perylene to solvent + iodine vapors. The prepared bilayer film possesses a sensing effect to iodine vapors which can be observed by both fluorescence and electrical conductivity changes. Similar bilayer films have been prepared also with anthracene and phenothiazine as π-donors with use of different polymer matrixes. Interaction of iodine with polycyclic aromatic hydrocarbons (PAH) has also been studied by the M06-2x DFT calculations for better understanding of phenomenon of π-donors microstructuring on surface of polymer film. - Highlights: • Preparation of bilayer polymer films with π-donors on surface for the first time. • π-Donor phase purity is confirmed by XRD, IR spectroscopy, SEM. • Perylene bilayer polymer films possess fluorescence. • Perylene bilayer polymer films loss fluorescence under iodine vapors. • Perylene bilayer polymer films possess electrical conductivity when treated by iodine vapors.

  6. Preparation of oxide glasses from metal alkoxides by sol-gel method

    Science.gov (United States)

    Kamiya, K.; Yoko, T.; Sakka, S.

    1987-01-01

    An investigation is carried out on the types of siloxane polymers produced in the course of the hydrolysis of silicon tetraethoxide, as well as the preparation of oxide glasses from metal alkoxides by the sol-gel method.

  7. Thin films by metal-organic precursor plasma spray

    International Nuclear Information System (INIS)

    Schulz, Douglas L.; Sailer, Robert A.; Payne, Scott; Leach, James; Molz, Ronald J.

    2009-01-01

    While most plasma spray routes to coatings utilize solids as the precursor feedstock, metal-organic precursor plasma spray (MOPPS) is an area that the authors have investigated recently as a novel route to thin film materials. Very thin films are possible via MOPPS and the technology offers the possibility of forming graded structures by metering the liquid feed. The current work employs metal-organic compounds that are liquids at standard temperature-pressure conditions. In addition, these complexes contain chemical functionality that allows straightforward thermolytic transformation to targeted phases of interest. Toward that end, aluminum 3,5-heptanedionate (Al(hd) 3 ), triethylsilane (HSi(C 2 H 5 ) 3 or HSiEt 3 ), and titanium tetrakisdiethylamide (Ti(N(C 2 H 5 ) 2 ) 4 or Ti(NEt 2 ) 4 ) were employed as precursors to aluminum oxide, silicon carbide, and titanium nitride, respectively. In all instances, the liquids contain metal-heteroatom bonds envisioned to provide atomic concentrations of the appropriate reagents at the film growth surface, thus promoting phase formation (e.g., Si-C bond in triethylsilane, Ti-N bond in titanium amide, etc.). Films were deposited using a Sulzer Metco TriplexPro-200 plasma spray system under various experimental conditions using design of experiment principles. Film compositions were analyzed by glazing incidence x-ray diffraction and elemental determination by x-ray spectroscopy. MOPPS films from HSiEt 3 showed the formation of SiC phase but Al(hd) 3 -derived films were amorphous. The Ti(NEt 2 ) 4 precursor gave MOPPS films that appear to consist of nanosized splats of TiOCN with spheres of TiO 2 anatase. While all films in this study suffered from poor adhesion, it is anticipated that the use of heated substrates will aid in the formation of dense, adherent films.

  8. Metal release behavior of surface oxidized stainless steels into flowing high temperature pure water

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Tomari, Haruo; Nakayama, Takenori; Shimogori, Kazutoshi; Ishigure, Kenkichi; Matsuura, Chihiro; Fujita, Norihiko; Ono, Shoichi.

    1987-01-01

    In order to clarify the effect of oxidation treatment of Type 304 SS on the inhibition of metal release into high temperature pure water, metal release rate of individual alloying element into flowing deionized water containing 50 ppb dissolved oxygen was measured as the function of exposure time on representative specimens oxidized in air and steam. The behavior of metal release was also discussed in relation to the structure of surface films. Among the alloying elements the amount of Fe ion, Cr ion and Fe crud in high temperature pure water tended to saturate with the exposure time and that of Ni ion and Co ion tended to increase monotonously with the exposure time for all specimens tested. And the treatment of steam-oxidation was the most effective to decrease the metal release of alloying elements and the treatment by air-oxidation also decreased the metal release. These tendencies were confirmed to correlate well with the structure of the surface films as it was in the results in the static autoclave test. (author)

  9. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    International Nuclear Information System (INIS)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T.

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  10. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  11. Deposition of PZT thin film onto copper-coated polymer films by mean of pulsed-DC and RF-reactive sputtering

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Labitzke, R.; Adolphi, B.; Jastrabík, Lubomír; Adámek, Petr; Drahokoupil, Jan; Hubička, Zdeněk; Kiselev, D.A.; Kholkin, A. L.; Gerlach, G.; Dejneka, Alexandr

    2011-01-01

    Roč. 205, č. 2 (2011), S241-S244 ISSN 0257-8972 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : pulsed DC reactive sputtering * RF reactive sputtering * complex oxide film deposition * polymer substrate Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.867, year: 2011

  12. Chemical potential pinning due to equilibrium electron transfer at metal/C{sub 60}-doped polymer interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heller, C.M.; Campbell, I.H.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C{sub 60}-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C{sub 60} molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C{sub 60}-doped poly[2-methoxy, 5-(2{sup {prime}}-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C{sub 60}-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C{sub 60} molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C{sub 60} and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C{sub 60} in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV. {copyright} {ital 1997 American Institute of Physics.}

  13. Experimental characterization of electrochemically polymerized polycarbazole film and study of its behavior with different metals contacts

    Science.gov (United States)

    Srivastava, Aditi; Chakrabarti, P.

    2017-12-01

    In this paper, we present the method of fabrication, experimental characterization, and comparison of electrical parameters of semiconducting polycarbazole film with different rectifying metals contacts. Electrochemical polymerization and deposition of organic semiconductor, i.e., polycarbazole on ITO-coated glass substrate, were performed using an electrochemical workstation. Experimental characterization of the prepared polymer film was done in respect of morphology, absorption, bandgap, and thickness. The stability and electro-activity of polycarbazole film were verified by the cyclic voltammetric method. Study of the behavior of prepared polycarbazole film with the different metals contacts such as Aluminum, Copper, Tungsten, and Tin has been done using semiconductor device analyzer. Various electrical parameters such as barrier height, ideality factor, and reverse saturation current have been extracted with different metal contacts, and the values were compared and contrasted. The nature of I- V characteristic of polycarbazole film in non-contact mode has also been analyzed using scanning tunneling microscope. The rectifying I- V characteristics obtained with different metals contacts have also been validated by the simulation on Deckbuild platform of the of ATLAS® software tool from Silvaco Inc.

  14. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  15. Influence of annealing on texture properties of cerium oxide thin films

    International Nuclear Information System (INIS)

    Arunkumar, P.; Suresh Babu, K.; Ramaseshan, R.; Dash, S.

    2013-01-01

    Future power demand needs an energy source with higher efficiency, better power density, clean energy and fuel flexibility. Solid oxide fuel cell (SOFC) is one of the potential sources for future needs. Though the polymer and direct methanol based electrolyte are much suitable, for versatile applications (portable devices) they are having major challenges such as design, platinum based catalyst, lower power density and fuel flexibility (free from hydrocarbons). However, in SOFC the high operating temperature is the only major issue. Operating temperature of SOFC could be reduced by proper selection of electrolyte material which should have minimum ionic conductivity of 0.1 Scm -1 at reduced activation energy. This can be achieved by thin film based doped cerium oxide electrolyte for SOFC, leads to Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC). In the present work, we focus on the synthesis of cerium oxide and 20 mol % samarium doped cerium oxide (SDC) nanoparticles by co-precipitation method and to synthesis thin films of the same. Pellets of those powders were heat treated at different temperatures and used as targets for e-beam evaporation to fabricate thin film based electrolyte. Stoichiometry of both powders and thin films were confirmed by XRF and EPMA. GIXRD profiles of ceria and SDC thin films are shown below and a preferred orientation effect is observed in SDC films. In SDC films the X-ray peaks have a shift towards lower angles, due to the difference in ionic radii of Ce 4+ and Sm 3+ . The band gap of CeO 2 (2.88 eV) from optical absorption technique indicates the presence of Ce 3+ with Ce 4+ , indirectly shows the concentration of oxygen vacancies which is required for the thin film electrolyte

  16. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle J. [Department; Glynos, Emmanouil [Department; Maroulas, Serafeim-Dionysios [Department; Narayanan, Suresh [Advanced; Sakellariou, Georgios [Department; Green, Peter F. [Department; National

    2017-09-07

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g., sensing, energy conversion) of these materials influences other properties. One challenge is to understand the effects of nanoparticles on the viscosity of nanoscale thick polymer films. A new mechanism that contributes to an enhancement of the viscosity of nanoscale thick polymer/nanoparticle films is identified. We show that while the viscosities of neat homopolymer poly(2-vinylpyridine) (P2VP) films as thin as 50 nm remained the same as the bulk, polymer/nanoparticle films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were comparable to the bulk values. These results - NP proximities and suppression of their dynamics - suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for nanoscale applications.

  17. Improving light harvesting in polymer photodetector devices through nanoindented metal mask films

    NARCIS (Netherlands)

    Macedo, A. G.; Zanetti, F.; Mikowski, A.; Hummelen, J. C.; Lepienski, C. M.; da Luz, M. G. E.; Roman, L. S.

    2008-01-01

    To enhance light harvesting in organic photovoltaic devices, we propose the incorporation of a metal (aluminum) mask film in the system's usual layout. We fabricate devices in a sandwich geometry, where the mask (nanoindented with a periodic array of holes of sizes d and spacing s) is added between

  18. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  19. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    OpenAIRE

    Ruijin Hong; Jialin Ji; Chunxian Tao; Daohua Zhang; Dawei Zhang

    2017-01-01

    Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO) and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD), optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B ...

  20. Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties

    KAUST Repository

    Mehra, Saahil

    2013-01-01

    Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω □-1, 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes. © 2013 The Royal Society of Chemistry.

  1. γ-irradiation effect on gas diffusion in polymer films. Part I : Hydrogen diffusion through mylar film

    International Nuclear Information System (INIS)

    Rao, K.A.; Pushpa, K.K.; Iyer, R.M.

    1980-01-01

    γ-irradiation of polymers results in further crosslinking in the polymer or breakdown of the polymer or a combination of both these phenomena depending on the type of polymer, the dose as well as the environment in which irradiation is carried out. The gas diffusion through polymer films is expected to vary depending on these changes. With a view to A evaluate the feasibility of effecting selective diffusion of specific gases and also to correlate the change in diffusion rates with the polymer characteristics these studies have been initiated. Hydrogen diffusion through mylar film γ-irradiated under varying conditions upto a dose of approximately 50 Mrads is reported in this paper. The results indicate negligible change in hydrogen diffusion rates on γ-irradiation. However, γ-irradiation induced crosslinking of acrylic acid on Mylar reduced the hydrogen diffusion rate. The hydrogen diffusion studies may also be useful in finding the glass transition temperature of polymer films as is apparent from the gas diffusion curves. (author)

  2. Technologies for deposition of transition metal oxide thin films: application as functional layers in “Smart windows” and photocatalytic systems

    Science.gov (United States)

    Gesheva, K.; Ivanova, T.; Bodurov, G.; Szilágyi, I. M.; Justh, N.; Kéri, O.; Boyadjiev, S.; Nagy, D.; Aleksandrova, M.

    2016-02-01

    “Smart windows” are envisaged for future low-energy, high-efficient architectural buildings, as well as for the car industry. By switching from coloured to fully bleached state, these windows regulate the energy of solar flux entering the interior. Functional layers in these devices are the transition metals oxides. The materials (transitional metal oxides) used in smart windows can be also applied as photoelectrodes in water splitting photocells for hydrogen production or as photocatalytic materials for self-cleaning surfaces, waste water treatment and pollution removal. Solar energy utilization is recently in the main scope of numerous world research laboratories and energy organizations, working on protection against conventional fuel exhaustion. The paper presents results from research on transition metal oxide thin films, fabricated by different methods - atomic layer deposition, atmospheric pressure chemical vapour deposition, physical vapour deposition, and wet chemical methods, suitable for flowthrough production process. The lower price of the chemical deposition processes is especially important when the method is related to large-scale glazing applications. Conclusions are derived about which processes are recently considered as most prospective, related to electrochromic materials and devices manufacturing.

  3. Technologies for deposition of transition metal oxide thin films: application as functional layers in “Smart windows” and photocatalytic systems

    International Nuclear Information System (INIS)

    Gesheva, K; Ivanova, T; Bodurov, G; Szilágyi, I M; Justh, N; Kéri, O; Boyadjiev, S; Nagy, D; Aleksandrova, M

    2016-01-01

    “Smart windows” are envisaged for future low-energy, high-efficient architectural buildings, as well as for the car industry. By switching from coloured to fully bleached state, these windows regulate the energy of solar flux entering the interior. Functional layers in these devices are the transition metals oxides. The materials (transitional metal oxides) used in smart windows can be also applied as photoelectrodes in water splitting photocells for hydrogen production or as photocatalytic materials for self-cleaning surfaces, waste water treatment and pollution removal. Solar energy utilization is recently in the main scope of numerous world research laboratories and energy organizations, working on protection against conventional fuel exhaustion. The paper presents results from research on transition metal oxide thin films, fabricated by different methods - atomic layer deposition, atmospheric pressure chemical vapour deposition, physical vapour deposition, and wet chemical methods, suitable for flowthrough production process. The lower price of the chemical deposition processes is especially important when the method is related to large-scale glazing applications. Conclusions are derived about which processes are recently considered as most prospective, related to electrochromic materials and devices manufacturing. (paper)

  4. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications

    OpenAIRE

    Fu, Yong Qing; Luo, Jack; Nguyen, Nam-Trung; Walton, Anthony; Flewitt, Andrew; Zu, Xiao-Tao; Li, Yifan; McHale, Glen; Matthews, Allan; Iborra, Enrique; Du, Hejun; Milne, William

    2017-01-01

    Recently, piezoelectric thin films including zinc oxide (ZnO) and aluminium nitride (AlN) have found a broad range of lab-on-chip applications such as biosensing, particle/cell concentrating, sorting/patterning, pumping, mixing, nebulisation and jetting. Integrated acoustic wave sensing/microfluidic devices have been fabricated by depositing these piezoelectric films onto a number of substrates such as silicon, ceramics, diamond, quartz, glass, and more recently also polymer, metallic foils a...

  5. Deformation limits of polymer coated metal sheets

    NARCIS (Netherlands)

    Van Den Bosch, M.J.W.J.P.; Schreurs, P.J.G; Geers, M.G.D.

    2005-01-01

    Polymer coated metals are increasingly used by the packaging and automotive industry. During industrial deformation processes (drawing, roll-forming, bending etc.) the polymer-metal laminate is highly deformed at high deformation rates. These forming conditions can affect the mechanical integrity

  6. Intrinsic charge trapping in amorphous oxide films: status and challenges

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection

  7. Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes

    International Nuclear Information System (INIS)

    Anand, S V; Arvind, K; Bharath, P; Roy Mahapatra, D

    2010-01-01

    In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)–metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-and nano-electro-mechanical systems (MEMS and NEMS) for biomedical, aerospace and oceanic applications

  8. Performance limitations of polymer electrolytes based on ethylene oxide polymers

    International Nuclear Information System (INIS)

    Buriez, Olivier; Han, Yong Bong; Hou, Jun; Kerr, John B.; Qiao, Jun; Sloop, Steven E.; Tian, Minmin; Wang, Shanger

    1999-01-01

    Studies of polymer electrolyte solutions for lithium-polymer batteries are described. Two different salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium trifluoromethanesulfonate (LiTf), were dissolved in a variety of polymers. The structures were all based upon the ethylene oxide unit for lithium ion solvation and both linear and comb-branch polymer architectures have been examined. Conductivity, salt diffusion coefficient and transference number measurements demonstrate the superior transport properties of the LiTFSI salt over LiTf. Data obtained on all of these polymers combined with LiTFSI salts suggest that there is a limit to the conductivity achievable at room temperature, at least for hosts containing ethylene oxide units. The apparent conductivity limit is 5 x 10-5 S/cm at 25 C. Providing that the polymer chain segment containing the ethylene oxide units is at least 5-6 units long there appears to be little influence of the polymer framework to which the solvating groups are attached. To provide adequate separator function, the mechanical properties may be disconnected from the transport properties by selection of an appropriate architecture combined with an adequately long ethylene oxide chain. For both bulk and interfacial transport of the lithium ions, conductivity data alone is insufficient to understand the processes that occur. Lithium ion transference numbers and salt diffusion coefficients also play a major role in the observed behavior and the transport properties of these polymer electrolyte solutions appear to be quite inadequate for ambient temperature performance. At present, this restricts the use of such systems to high temperature applications. Several suggestions are given to overcome these obstacles

  9. Comparative Study of Antibacterial Properties of Polystyrene Films with TiOx and Cu Nanoparticles Fabricated using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Popok, Vladimir; Jeppesen, Cesarino; Fojan, Peter

    2018-01-01

    Background: Antibacterial materials are of high importance for medicine, food production and conservation. Among these materials, polymer films with metals nanoparticles (NPs) are of considerable attention for many practical applications. Results: The paper describes a novel approach...... for the formation of bactericidal media which are represented by thin polymer films (polystyrene in the current case), produced by spin-coating, with Ti and Cu NPs deposited from cluster beams. Ti NPs are treated in three different ways in order to study different approaches for oxidation and, thus, efficiency...

  10. Electrocatalytic properties of monometallic and bimetallic nanoparticles-incorporated polypyrrole films for electro-oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, V.; Alagar, M. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India); Hamerton, I. [Chemistry Division, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-10-06

    Oxidative electrochemical polymerization of pyrrole at indium-doped tin oxide (ITO) is accomplished from a neat monomer solution with a supporting electrolyte (0.3M n-tetrabutyl ammonium tetrafluoroborate) by multiple-scan cyclic voltammetry. Polypyrrole (Ppy) films containing nanometer-sized platinum and Pt/Pd bimetallic particles are electro-synthesized on ITO glass plates by voltammetric cycling between -0.1 and +1V (versus Ag/AgCl/3M NaCl). The electrocatalytic oxidation of methanol on the nanoparticle-modified polypyrrole films is studied by means of electrochemical techniques. The modified electrode exhibits significant eletrocatalytic activity for methanol oxidation. The enhanced electrocatalytic activities may be due to the uniform dispersion of nanoparticles in the polypyrrole film and a synergistic effect of the highly-dispersed metal particles so that the polypyrrole film reduces electrode poisoning by adsorbed CO species. The monometallic (Pt) and bimetallic (Pt/Pd) nanoparticles are uniformly dispersed in polypyrrole matrixes, as confirmed by scanning electron microscopic and atomic force microscopic analysis. Energy dispersive X-ray analysis is used to characterize the composition of metal present in the nanoparticle-modified electrodes. (author)

  11. Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and Alloy 600

    Directory of Open Access Journals (Sweden)

    Ferreira M. G. S.

    2002-01-01

    Full Text Available The semiconducting properties of passive films formed on AISI 304 stainless steel and Alloy 600 in borate buffer solution were studied by capacitance (Mott-Schottky approach and photocurrent measurements. Oxide films formed on 304 stainless steel in air at 350 ºC have also been studied. The results obtained show that, in all cases the electronic structure of the films is comparable to that of a p-n heterojunction in which the space charges developed at the metal-film and film-electrolyte interfaces have also to be considered. This is in accordance with analytical results showing that the oxide films are in all cases composed of an inner region rich in chromium oxide and an outer region rich in iron oxide.

  12. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    International Nuclear Information System (INIS)

    Yeon Kwon, Jang; Kyeong Jeong, Jae

    2015-01-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed. (invited review)

  13. Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shaoyang; Pineda-Galvan, Yuliana; Maza, William A.; Epley, Charity C.; Zhu, Jie; Kessinger, Matthew C.; Pushkar, Yulia; Morris, Amanda J. (VP); (Purdue)

    2016-12-15

    Water oxidation, a key component in artificial photosynthesis, requires high overpotentials and exhibits slow reaction kinetics that necessitates the use of stable and efficient heterogeneous water-oxidation catalysts (WOCs). Here, we report the synthesis of UiO-67 metal–organic framework (MOF) thin films doped with [Ru(tpy)(dcbpy)OH2]2+ (tpy=2,2':6',2''-terpyridine, dcbpy=5,5'-dicarboxy-2,2'-bipyridine) on conducting surfaces and their propensity for electrochemical water oxidation. The electrocatalyst oxidized water with a turnover frequency (TOF) of (0.2±0.1) s-1 at 1.71 V versus the normal hydrogen electrode (NHE) in buffered solution (pH~7) and exhibited structural and electrochemical stability. The electroactive sites were distributed throughout the MOF thin film on the basis of scan-ratedependent voltammetry studies. This work demonstrates a promising way to immobilize large concentrations of electroactive WOCs into a highly robust MOF scaffold and paves the way for future photoelectrochemical water-splitting systems.

  14. Dual-Emitting UiO-66(Zr&Eu) Metal-Organic Framework Films for Ratiometric Temperature Sensing.

    Science.gov (United States)

    Feng, Ji-Fei; Liu, Tian-Fu; Shi, Jianlin; Gao, Shui-Ying; Cao, Rong

    2018-06-20

    A novel dual-emitting metal-organic framework based on Zr and Eu, named as UiO-66(Zr&Eu), was built using a clever strategy based on secondary building units. With the use of polymers, the obtained UiO-66(Zr&Eu) was subsequently deposited as thin films that can be utilized as smart thermometers. The UiO-66(Zr&Eu) polymer films can be used for the detection of temperature changes in the range of 237-337 K due to the energy transfer between the lanthanide ions (Eu in clusters) and the luminescent ligands, and the relative sensitivity reaches 4.26% K -1 at 337 K. Moreover, the sensitivity can be improved to 19.67% K -1 by changing the film thickness. In addition, the temperature-sensing performance of the films is superior to that of the powders, and the sensor can be reused 3 times without loss of performance.

  15. Autophobicity and layering behavior of thin liquid-crystalline polymer films.

    NARCIS (Netherlands)

    Wielen, van der M.W.J.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The stability against breaking-up of thin spin-coated films of liquid-crystalline polymers depends on the film thickness and annealing temperature. This study concerns side-chain liquid-crystalline polymers, based on alternating copolymers of maleic anhydride and mesogenic alkenes. The mesogenic

  16. Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, Venkatram; Ji Wei [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Goh, Bee Min; Loh, Kian Ping; Xu Qinghua, E-mail: chmxqh@nus.edu.sg, E-mail: phyjiwei@nus.edu.sg [Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore)

    2010-10-15

    A water soluble conjugated thiophene polymer, sodium salt of poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (TPP), and graphene oxide (GO) composite film (GO-TPP) device was prepared. Transient photoconductivity measurements were carried out on the GO-TPP composite film using 150 ns laser pulses of 527 nm wavelength. Highly efficient photocurrent generation was observed from the GO-TPP film. The relationships of the film photoconductivity, photocurrent decay time and electron decay times with the incident light intensity were investigated. The photoconductive gain of the film was determined to be greater than 40% and to be independent of the light intensity. Furthermore, the femtosecond nonlinear optical properties of the GO-TPP film were measured using 800 nm femtosecond laser pulses and the composite film exhibited high nonlinear absorption and nonlinear refraction coefficients.

  17. Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite

    International Nuclear Information System (INIS)

    Nalla, Venkatram; Ji Wei; Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Goh, Bee Min; Loh, Kian Ping; Xu Qinghua

    2010-01-01

    A water soluble conjugated thiophene polymer, sodium salt of poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (TPP), and graphene oxide (GO) composite film (GO-TPP) device was prepared. Transient photoconductivity measurements were carried out on the GO-TPP composite film using 150 ns laser pulses of 527 nm wavelength. Highly efficient photocurrent generation was observed from the GO-TPP film. The relationships of the film photoconductivity, photocurrent decay time and electron decay times with the incident light intensity were investigated. The photoconductive gain of the film was determined to be greater than 40% and to be independent of the light intensity. Furthermore, the femtosecond nonlinear optical properties of the GO-TPP film were measured using 800 nm femtosecond laser pulses and the composite film exhibited high nonlinear absorption and nonlinear refraction coefficients.

  18. Thermomechanical properties of polymer nanocomposites: Exploring a unified relationship with planar polymer films

    Science.gov (United States)

    Bansal, Amitabh

    The thermal and mechanical response of polymers, which provide limitations to their practical use, are greatly improved by the addition of a small fraction of an inorganic nanofiller. However, the resulting changes in polymer properties are poorly understood, primarily due to the non-uniform spatial distribution of nanoparticles. This research explores the properties of polystyrene filed with silica nanoparticles and illustrates for the first time that the thermodynamic properties of "polymer nanocomposites" are quantitatively equivalent to the well-understood case of planar polymer films with a uniform thickness. These ideas are quantified by drawing a direct analogy between thin film thickness and an appropriate average ligament thickness measured using electron microscopy. The change in polymer glass transition temperatures with decreasing ligament thickness were found to be quantitatively equivalent to the corresponding thin film data. In combination with viscoelastic properties of the nanocomposites that are in quantitative agreement with data from thin films, these conclusions provide a facile means of understanding and predicting the thermomechanical properties and, potentially, the engineering properties of practically relevant polymer nanocomposites. Grafting of high molecular weight polystyrene onto the silica nanoparticles greatly improves the dispersion quality of nanofillers and also provides a means to tailor the thermo-mechanical properties in nanocomposites. It is concluded that the grafted polystyrene is akin to polymer brushes on flat surfaces. The mobility and stiffness of these grafted chains are expected to be low as compared to the free polymer. In this context a mechanism for the increase in glass transition is proposed: (1) the stiff grafted chains will tend to decrease mobility and thus increase glass transition, (2) the extent of interdigitation of the grafted polystyrene into the matrix will determine the extent to which the nanocomposite

  19. Determination of photocarrier density under continuous photoirradiation using spectroscopic techniques as applied to polymer: Fullerene blend films

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Katsuichi, E-mail: kkane@sci.osaka-cu.ac.jp; Nakatani, Hitomi; Domoto, Shinya [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2014-10-28

    We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5 × 10{sup 16 }cm{sup −3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.

  20. Screen-printed Tin-doped indium oxide (ITO) films for NH3 gas sensing

    International Nuclear Information System (INIS)

    Mbarek, Hedia; Saadoun, Moncef; Bessais, Brahim

    2006-01-01

    Gas sensors using metal oxides have several advantageous features such as simplicity in device structure and low cost fabrication. In this work, Tin-doped indium oxide (ITO) films were prepared by the screen printing technique onto glass substrates. The granular and porous structure of screen-printed ITO are suitable for its use in gas sensing devices. The resistance of the ITO films was found to be strongly dependent on working temperatures and the nature and concentration of the ambient gases. We show that screen-printed ITO films have good sensing properties toward NH 3 vapours. The observed behaviors are explained basing on the oxidizing or the reducer nature of the gaseous species that react on the surface of the heated semi-conducting oxide

  1. The Properties Of And Transport Phenomena In Oxide Films On Iron, Nickel, Chromium And Their Alloys In Aqueous Environments

    International Nuclear Information System (INIS)

    Saario, T.; Laitinen, T.; Maekelae, K.; Bojinov, M.; Betova, I.

    1998-07-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown, pitting, stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more dense structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  2. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Huang, Mingju [Henan University, Key Lab of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Kaifeng (China); Zhang, Angran [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou (China)

    2017-03-15

    High-quality vanadium oxide (VO{sub 2}) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO{sub 2} has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO{sub 2} thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm. (orig.)

  3. Experimental study of the oxide film structural phase state in the E635 and E110 alloys

    International Nuclear Information System (INIS)

    Shevyakov, A. Yu.; Shishov, V. N.; Novikov, V. V.

    2013-01-01

    The microstructure, phase and element compositions of oxide films of E110 (Zr-1%Nb) and E635 (Zr-1%Nb-0,35%Fe-1,2%Sn) alloys after autoclave tests in pure water had been studied by the method of transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDS). TEM investigations of oxide film structure were carried on different oxide layers according to their thickness (near interface of “metal-oxide”, in central part of the oxide film and near outer surface) and in cross-section. The results of the tests show that oxide films of the alloys have different microstructure (grain size, fraction of tetragonal phase, content of defects, etc) and the phase compositions. The crystal structure of oxide films is mainly monoclinic, however, at the “metal-oxide” interface there are a significant fraction of the tetragonal phase. Researching of oxides on different stages of oxidation allow us to determine the kinetics of the second phase precipitate structure change: a) in E635 alloy at early oxidation stages of the amorphization process of the Laves phase precipitates begins with decreasing the content of iron and niobium; b) in E110 alloy the amorphization process of β-Nb precipitates begins at a later stage of oxidation. The influence of changes of the crystal structure and the chemical composition of the second phase precipitates on protective properties of the oxides had been determined. Researching of alloying element redistribution in E635 alloy oxide film shows that iron and niobium are concentrated in pores. Increased porosity of the E635 alloy oxide films at a later oxidation stage, in comparison with the E110 alloy, shows the influence of change composition and subsequent dissolution of the Laves phase particles on the pore formation in the oxide. (authors)

  4. Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties

    International Nuclear Information System (INIS)

    Kaeaeriaeinen, Tommi O.; Maydannik, Philipp; Cameron, David C.; Lahtinen, Kimmo; Johansson, Petri; Kuusipalo, Jurkka

    2011-01-01

    One of the most promising areas for the industrial application of atomic layer deposition (ALD) is for gas barrier layers on polymers. In this work, a packaging material system with improved diffusion barrier properties has been developed and studied by applying ALD on flexible polymer based packaging materials. Nanometer scale metal oxide films have been applied to polymer-coated papers and their diffusion barrier properties have been studied by means of water vapor and oxygen transmission rates. The materials for the study were constructed in two stages: the paper was firstly extrusion coated with polymer film, which was then followed by the ALD deposition of oxide layer. The polymers used as extrusion coatings were polypropylene, low and high density polyethylene, polylactide and polyethylene terephthalate. Water vapor transmission rates (WVTRs) were measured according to method SCAN-P 22:68 and oxygen transmission rates (O 2 TRs) according to a standard ASTM D 3985. According to the results a 10 nm oxide layer already decreased the oxygen transmission by a factor of 10 compared to uncoated material. WVTR with 40 nm ALD layer was better than the level currently required for most common dry flexible packaging applications. When the oxide layer thickness was increased to 100 nm and above, the measured WVTRs were limited by the measurement set up. Using an ALD layer allowed the polymer thickness on flexible packaging materials to be reduced. Once the ALD layer was 40 nm thick, WVTRs and O 2 TRs were no longer dependent on polymer layer thickness. Thus, nanometer scale ALD oxide layers have shown their feasibility as high quality diffusion barriers on flexible packaging materials.

  5. Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, Tommi O., E-mail: tommi.kaariainen@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Cameron, David C., E-mail: david.cameron@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Lahtinen, Kimmo, E-mail: kimmo.lahtinen@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Johansson, Petri, E-mail: petri.johansson@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland)

    2011-03-01

    One of the most promising areas for the industrial application of atomic layer deposition (ALD) is for gas barrier layers on polymers. In this work, a packaging material system with improved diffusion barrier properties has been developed and studied by applying ALD on flexible polymer based packaging materials. Nanometer scale metal oxide films have been applied to polymer-coated papers and their diffusion barrier properties have been studied by means of water vapor and oxygen transmission rates. The materials for the study were constructed in two stages: the paper was firstly extrusion coated with polymer film, which was then followed by the ALD deposition of oxide layer. The polymers used as extrusion coatings were polypropylene, low and high density polyethylene, polylactide and polyethylene terephthalate. Water vapor transmission rates (WVTRs) were measured according to method SCAN-P 22:68 and oxygen transmission rates (O{sub 2}TRs) according to a standard ASTM D 3985. According to the results a 10 nm oxide layer already decreased the oxygen transmission by a factor of 10 compared to uncoated material. WVTR with 40 nm ALD layer was better than the level currently required for most common dry flexible packaging applications. When the oxide layer thickness was increased to 100 nm and above, the measured WVTRs were limited by the measurement set up. Using an ALD layer allowed the polymer thickness on flexible packaging materials to be reduced. Once the ALD layer was 40 nm thick, WVTRs and O{sub 2}TRs were no longer dependent on polymer layer thickness. Thus, nanometer scale ALD oxide layers have shown their feasibility as high quality diffusion barriers on flexible packaging materials.

  6. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: susanamaria.fernandez@ciemat.es; Martinez-Steele, A.; Gandia, J.J. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala. Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2009-03-31

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 {sup o}C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 {sup o}C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10{sup -3} {omega} cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 {omega}{sup -1} cm{sup -1} vs 14,900 {omega}{sup -1} cm{sup -1}, respectively.

  7. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    International Nuclear Information System (INIS)

    Fernandez, S.; Martinez-Steele, A.; Gandia, J.J.; Naranjo, F.B.

    2009-01-01

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 o C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 o C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10 -3 Ω cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 Ω -1 cm -1 vs 14,900 Ω -1 cm -1 , respectively

  8. Metal-insulator transition in nanocomposite VO{sub x} films formed by anodic electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Lok-kun; Lu, Jiwei; Zangari, Giovanni, E-mail: gz3e@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Hildebrand, Helga; Schmuki, Patrik [Department for Materials Science LKO, University of Erlangen-Nuremberg, Martensstr. 7, D-91058 Erlangen (Germany)

    2013-11-11

    The ability to grow VO{sub 2} films by electrochemical methods would open a low-cost, easily scalable production route to a number of electronic devices. We have synthesized VO{sub x} films by anodic electrodeposition of V{sub 2}O{sub 5}, followed by partial reduction by annealing in Ar. The resulting films are heterogeneous, consisting of various metallic/oxide phases and including regions with VO{sub 2} stoichiometry. A gradual metal insulator transition with a nearly two order of magnitude change in film resistance is observed between room temperature and 140 °C. In addition, the films exhibit a temperature coefficient of resistance of ∼ −2.4%/ °C from 20 to 140 °C.

  9. Fluid Structure Interaction Analysis in Manufacturing Metal/Polymer Macro-Composites

    International Nuclear Information System (INIS)

    Baesso, R.; Lucchetta, G.

    2007-01-01

    Polymer Injection Forming (PIF) is a new manufacturing technology for sheet metal-polymer macro-composites, which results from the combination of injection moulding and sheet metal forming. This process consists on forming the sheet metal according to the boundary of the mould cavity by means of the injected polymer. After cooling, the polymer bonds permanently to the metal resulting in a sheet metal-polymer macro-composite product. Comparing this process to traditional ones (where the polymeric and metal parts are joined together after separate forming) the main advantages are both reduction of production costs and increase of part quality. This paper presents a multi-physics numerical simulation of the process performed in the Ansys/CFX environment

  10. Precursor polymer compositions comprising polybenzimidazole

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  11. Metal Oxide Thin Films Grafted on Silica Gel Surfaces: Recent Advances on the Analytical Application of these Materials

    Directory of Open Access Journals (Sweden)

    Gushikem Yoshitaka

    2001-01-01

    Full Text Available In the highly dispersed MxOy monolayer film on a porous SiO2 surface, denoted as SiO2/MxOy, the Si-O-M covalent bond formed on the SiO2 surface restricts the mobility of the attached oxide resulting in coordinatively unsaturated metal oxides (LAS in addition to the Brønsted acid sites (BAS. The BAS arise from the MOH and SiOH groups, the latter due to the unreacted silanol groups. As the attached oxides are strongly immobilized on the surface, they are also thermally very stable. The amphoteric character of most of the attached oxides allows the immobilization of various chemical species, acid or bases, resulting in a wide application of these surface modified materials. In this work many of the recent applications of these MxOy coated silica surfaces are described, such as selective adsorbents, in preconcentration processes, as new packing material for use in HPLC, support for immobilization of enzymes, amperometric electrodes, sensors and biosensors

  12. ITO films deposited by rf-PERTE on unheated polymer substrates--properties dependence on In-Sn alloy composition

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Lavareda, G.; Fortunato, E.; Vilarinho, P.; Amaral, A.

    2004-01-01

    The study of the influence of different tin concentrations in the In-Sn alloy on the properties of indium tin oxide (ITO) thin films deposited by radio frequency (rf) plasma enhanced reactive thermal evaporation (rf-PERTE) onto flexible polymer and window glass substrates at room temperature is presented. The polymer substrate used is polyethylene terephthalate (PET). The tin concentration in the source alloy varied in the range 5-20 wt.%. The average thickness of the ITO films is of about 90 nm. Results show that ITO thin films deposited on PET from the evaporation of a 85%In:15%Sn alloy exhibit the following characteristics: an average visible transmittance of 80% and an electrical resistivity of 1.6x10 -3 Ω cm. On glass the value of the average visible transmittance increases (85%) and the resistivity decreases to 7.6x10 -4 Ω cm. The electrical properties of ITO films on PET are largely affected by the low carrier mobility

  13. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  14. “Electro-Click” on Conducting Polymer Films

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    for their own functionalization with high spatial resolution. Interdigitated microelectrodes prepared from the azide-containing conducting polymer were selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials. “Electro-click” on conducting polymer films......An azide substituted 3,4-ethylenedioxythiophene monomer is polymerised to yield a PEDOT like polymer with available azide groups (Figure 1). The azide groups enable post polymerization functionalization of the conducting polymer using a 1,3 dipolar cycloaddition reaction – also denoted “click...

  15. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  16. Laser deposition rates of thin films of selected metals and alloys

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Canulescu, Stela; Schou, Jørgen

    Thin films of Cu, Zn and Sn as well as mixtures of these elements have been produced by Pulsed Laser Deposition (PLD). The deposition rate of single and multicomponent metallic targets was determined. The strength of PLD is that the stoichiometry of complex compounds, even of complicated alloys...... or metal oxides, can be preserved from target to film. We apply this technique to design films of a mixture of Cu, Zn and Sn, which are constituents of the chalcogenide CZTS, which has a composition close to Cu2ZnSnS4. This compound is expected to be an important candidate for absorbers in new solar cells...... for alloys of the different elements as well as compounds with S will be presented....

  17. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  18. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes.

    Science.gov (United States)

    Hou, Ye; Cheng, Yingwen; Hobson, Tyler; Liu, Jie

    2010-07-14

    For efficient use of metal oxides, such as MnO(2) and RuO(2), in pseudocapacitors and other electrochemical applications, the poor conductivity of the metal oxide is a major problem. To tackle the problem, we have designed a ternary nanocomposite film composed of metal oxide (MnO(2)), carbon nanotube (CNT), and conducting polymer (CP). Each component in the MnO(2)/CNT/CP film provides unique and critical function to achieve optimized electrochemical properties. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance (SC) of the ternary composite electrode can reach 427 F/g. Even at high mass loading and high concentration of MnO(2) (60%), the film still showed SC value as high as 200 F/g. The electrode also exhibited excellent charge/discharge rate and good cycling stability, retaining over 99% of its initial charge after 1000 cycles. The results demonstrated that MnO(2) is effectively utilized with assistance of other components (fFWNTs and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in the electrode. Such ternary composite is very promising for the next generation high performance electrochemical supercapacitors.

  19. Laser micromachining of indium tin oxide films on polymer substrates by laser-induced delamination

    International Nuclear Information System (INIS)

    Willis, David A; Dreier, Adam L

    2009-01-01

    A Q-switched neodymium : yttrium-aluminium-garnet (Nd : YAG) laser was used to ablate indium tin oxide (ITO) thin films from polyethylene terephthalate substrates. Film damage and partial removal with no evidence of a melt zone was observed above 1.7 J cm -2 . Above the film removal threshold (3.3 J cm -2 ) the entire film thickness was removed without substrate damage, suggesting that ablation was a result of delamination of the film in the solid phase. Measurements of ablated fragment velocities near the ablation threshold were consistent with calculations of velocities caused by stress-induced delamination of the ITO film, except for a high velocity component at higher fluences. Nanosecond time-resolved shadowgraph photography revealed that the high velocity component was a shock wave induced by the rapid compression of ambient air when the film delaminated.

  20. Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer.

    Science.gov (United States)

    Wei, Jinyu; Bai, Dongdong; Yang, Liying

    2015-01-01

    The effect of a new transition metal oxide, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc), the X-ray photoelectron spectroscopy (XPS) is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer.

  1. Transparent and conductive polyethylene oxide film by the introduction of individualized single-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Park, Ki Chul; Shimamoto, Daisuke; Kim, Jin Hee; Hayashi, Takuya; Song, Sung Moo; Kim, Yoong Ahm; Endo, Morinobu; Dresselhaus, Mildred S

    2009-12-16

    It is demonstrated that an optically transparent and electrically conductive polyethylene oxide (PEO) film is fabricated by the introduction of individualized single-walled carbon nanotubes (SWNTs). The incorporated SWNTs in the PEO film sustain their intrinsic electronic and optical properties and, in addition, the intrinsic properties of the polymer matrix are retained. The individualized SWNTs with smaller diameter provide high transmittance as well as good electrical conductivity in PEO films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 3D highly oriented nanoparticulate and microparticulate array of metal oxide materials

    International Nuclear Information System (INIS)

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2006-01-01

    Advanced nano and micro particulate thin films of 3d transition and post-transition metal oxides consisting of nanorods and microrods with parallel and perpendicular orientation with respect to the substrate normal, have been successfully grown onto various substrates by heteronucleation, without template and/or surfactant, from the aqueous condensation of solution of metal salts or metal complexes (aqueous chemical growth). Three-dimensional arrays of iron oxide nanorods and zinc oxide nanorods with parallel and perpendicular orientation are presented as well as the oxygen K-edge polarization dependent x-ray absorption spectroscopy (XAS) study of anisotropic perpendicularly oriented microrod array of ZnO performed at synchrotron radiation source facility

  3. Morphology of polymer-based films for organic photovoltaics

    OpenAIRE

    Ruderer, Matthias A.

    2012-01-01

    In this thesis, polymer-based films are examined for applications in organic photovoltaics. Polymer-fullerene, polymer-polymer and diblock copolymer systems are characterized as active layer materials. The focus is on experimental parameters influencing the morphology formation of the active layer in organic solar cells. Scattering and imaging techniques provide a complete understanding of the internal structure on different length scales which is compared to spectroscopic and photovoltaic pr...

  4. Remote plasma deposition of textured zinc oxide with focus on thin film solar cell applications : material properties, plasma processes and film growth

    NARCIS (Netherlands)

    Groenen, R.

    2005-01-01

    Simultaneously possessing transparency in the visible region, close to that of insulators, and electrical conductivity, close to that of metals, transparent conducting oxide (TCO) thin films form a highly attractive class of materials for a wide variety of applications like thin film solar cells,

  5. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    Science.gov (United States)

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  6. In-Ga-Zn-oxide thin-film transistors with Sb2TeOx gate insulators fabricated by reactive sputtering using a metallic Sb2Te target

    International Nuclear Information System (INIS)

    Cheong, Woo-Seok

    2011-01-01

    Using reactive sputtering, we made transparent amorphous Sb 2 TeO x thin films from a metallic Sb 2 Te target in an oxidizing atmosphere. In-Ga-Zn-oxide thin-film transistors (IGZO TFTs) with Sb 2 TeO x gate insulators deposited at room temperature showed a large hysteresis with a counter clockwise direction, which was caused by mobile charges in the gate insulators. The problems of the mobile charges was solved by using Sb 2 TeO x films formed at 250 .deg. C. After the IGZO TFT had been annealed at 200 .deg. C for 1 hour in an O 2 ambient, the mobility of the IGZO TFT was 22.41 cm 2 /Vs, and the drain current on-off ratio was ∼10 8 .

  7. PREPARATION OF A POLYMER ARTICLE FOR SELECTIVE METALLIZATION

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to the field of selective metallization, and in particular to preparing a polymer article for selective metallization by submerging the article in a first liquid, and while submergedirradiate the article by a laser beam the area of the article on which the metal...... is to be deposited. An activation step, prior to the selective metallization, comprises submerging the article in an activation liquid for depositing seedparticles in the selected area. The irradiation of the selected area is proportionate so as to cause a temporary meltingof the polymer in the surface...... of the selected area of the polymer article. The invention is advantageous in that the preparation may be performed with a relatively high scan rate across the polymer article, and in that a quite limited use of toxic chemicals....

  8. Crystal structure and thin film morphology of BBL ladder polymer

    Energy Technology Data Exchange (ETDEWEB)

    Song, H H [Department of Macromolecular Science, Han Nam University, Taejon (Korea, Republic of); Fratini, A V [Department of Chemistry, University of Dayton, Dayton, OH (United States); Chabinyc, M [Department of Chemistry, University of Dayton, Dayton, OH (United States); Price, G E [University of Dayton Research, Dayton, OH (United States); Agrawal, A K [Systran Corporation, Dayton, OH (United States); Wang, C S [University of Dayton Research, Dayton, OH (United States); Burkette, J [University of Dayton Research, Dayton, OH (United States); Dudis, D S [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States); Arnold, F E [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States)

    1995-03-01

    Crystal structure and morphology of poly[7-oxo-7H-benz(d,e)imidazo(4`,5`:5,6)-benzimidazo(2,1-a)isoquinoline-3,4:10,11-tetrayl-10-carbonyl] (BBL) ladder-like polymer were studied. The polymer forms a two-dimensional lattice of nematic liquid crystalline structure. An orthorhombic unit cell with cell parameters of a=7.87 b=3.37 c=11.97A was determined from the fiber diffraction pattern. In thin films, the rigid chains spontaneously form a layered structure across the film thickness, but in a very unusual manner, i.e. the very large molecular plane is standing perpendicularly to the film surface plane. The results are identical to our recent results of poly(p-phenylene benzobisthiazole) (PBT) film [7]. The polymer, however, lost its anisotropic order upon extrusion into a film and resulted in a fiber-like structure. (orig.)

  9. Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen; Nordskov, A.

    1999-01-01

    Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate temperatu......Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate...

  10. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko; Schroeder, Bob; Nielsen, Christian; Bronstein, Hugo; Fei, Zhuping; McCulloch, Iain; Heeney, Martin; Durrant, James

    2016-01-01

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact

  11. Investigation of structural, morphological and electrical properties of APCVD vanadium oxide thin films

    International Nuclear Information System (INIS)

    Papadimitropoulos, Georgios; Trantalidis, Stelios; Tsiatouras, Athanasios; Vasilopoulou, Maria; Davazoglou, Dimitrios; Kostis, Ioannis

    2015-01-01

    Vanadium oxide films were chemically vapor deposited (CVD) on oxidized Si substrates covered with CVD tungsten (W) thin films and on glass substrates covered with indium tin oxide (ITO) films, using vanadium(V) oxy-tri-isopropoxide (C 9 H 21 O 4 V) vapors. X-ray diffraction (XRD) measurements showed that the deposited films were composed of a mixture of vanadium oxides; the composition was determined mainly by the deposition temperature and less by the precursor temperature. At temperatures up to 450 C the films were mostly composed by monoclinic VO 2 . Other peaks corresponding to various vanadium oxides were also observed. X-ray microanalysis confirmed the composition of the films. The surface morphology was studied with atomic force microscopy (AFM) and scanning electron microscopy (SEM). These measurements revealed that the morphology strongly depends on the used substrate and the deposition conditions. The well-known metal-insulator transition was observed near 75 C for films mostly composed by monoclinic VO 2 . Films deposited at 450 C exhibited two transitions one near 50 C and the other near 60 C possibly related to the presence of other vanadium phases or of important stresses in them. Finally, the vanadium oxide thin films exhibited significant sensory capabilities decreasing their resistance in the presence of hydrogen gas with response times in the order of a few seconds and working temperature at 40 C. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  13. Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Anna R. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Rajagopalan, Ramakrishnan [Department of Engineering, The Pennsylvania State University, Dubois, PA 15801 (United States); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Carter, Joshua D. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States)

    2014-04-01

    The good stability, cyclability and high specific capacitance of manganese oxide (MnO{sub x}) has recently promoted a growing interest in utilizing MnO{sub x} in asymmetric supercapacitor electrodes. Several literature reports have indicated that thin film geometries of MnO{sub x} provide specific capacitances that are much higher than bulk MnO{sub x} powders. Plasma enhanced chemical vapor deposition (PECVD) is a versatile technique for the production of metal oxide thin films with high purity and controllable thickness. In this work, MnO{sub x} thin films deposited by PECVD from a methylcyclopentadienyl manganese tricarbonyl precursor are presented and the effect of processing conditions on the quality of MnO{sub x} films is described. The film purity and oxidation state of the MnO{sub x} films were studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Preliminary electrochemical testing of MnO{sub x} films deposited on carbon fiber electrodes in aqueous electrolytes indicates that the PECVD synthesized films are electrochemically active. - Highlights: • Plasma enhanced chemical vapor deposition of manganese oxide thin films. • Higher plasma power and chamber pressure increase deposition rate. • Manganese oxide thin films are electrochemically active. • Best electrochemical performance observed for pure film with low stress • Lower capacitance observed at higher scan rates despite thin film geometry.

  14. Preparation of titanium oxide and metal titanates as powders, thin films, and microspheres by complex sol-gel process

    International Nuclear Information System (INIS)

    Deptula, A.; Olczak, T.; Lada, W.; Chmielewski, A.G.; Jakubaszek, U.; Sartowska, B.; Goretta, K.C.; Alvani, C.; Casadio, S.; Contini, V.

    2006-01-01

    Titanium oxide, for many years an important pigment, has recently been applied widely as a photocatalyst or as supports for metallic catalysts, gas sensors, photovoltaic solar cells, and water and air purification devices. Titanium oxide (TiO 2 ) and titanates based on Ba, Sr and Ca were prepared from commercial solutions of TiCl 4 and HNO 3 . The main preparation steps for the sols consisted of elimination of Cl - by distillation with HNO 3 and addition of metal hydroxides for the titanates. Resulting sols were gelled and used to: (a) prepare irregularly shaped powders by evaporation; (b) produce by a dipping technique thin films on glass, Ag or Ti supports; (c) produce spherical powders (diameters <100 μm) by solvent extraction. Results of thermal and X-ray-diffraction analyses indicated that the temperatures required to form the various compounds were lower than those necessary to form the compounds by conventional solid-state reactions and comparable to those required with use of organometallic based sol-gel methods. Temperatures of formation could be further reduced by addition of ascorbic acid (ASC) to the sols

  15. Metal oxide multilayer hard mask system for 3D nanofabrication

    Science.gov (United States)

    Han, Zhongmei; Salmi, Emma; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko

    2018-02-01

    We demonstrate the preparation and exploitation of multilayer metal oxide hard masks for lithography and 3D nanofabrication. Atomic layer deposition (ALD) and focused ion beam (FIB) technologies are applied for mask deposition and mask patterning, respectively. A combination of ALD and FIB was used and a patterning procedure was developed to avoid the ion beam defects commonly met when using FIB alone for microfabrication. ALD grown Al2O3/Ta2O5/Al2O3 thin film stacks were FIB milled with 30 keV gallium ions and chemically etched in 5% tetramethylammonium hydroxide at 50 °C. With metal evaporation, multilayers consisting of amorphous oxides Al2O3 and Ta2O5 can be tailored for use in 2D lift-off processing, in preparation of embedded sub-100 nm metal lines and for multilevel electrical contacts. Good pattern transfer was achieved by lift-off process from the 2D hard mask for micro- and nano-scaled fabrication. As a demonstration of the applicability of this method to 3D structures, self-supporting 3D Ta2O5 masks were made from a film stack on gold particles. Finally, thin film resistors were fabricated by utilizing controlled stiction of suspended Ta2O5 structures.

  16. Plasma coatings of nitrogen polymers on metal prostheses of the circulatory system

    International Nuclear Information System (INIS)

    Gomez J, L. M.

    2016-01-01

    This work has a study about the synthesis of poly aniline, poly allylamine and poly pyrrole doped with iodine onto metallic surfaces similar to stents for the circulatory system. Ar, water and hydrogen peroxide plasmas were used for eroding, conditioning and synthesizing polymers that potentially reduce some rejection reactions when stents are implanted in the human body. Stents are small metallic meshes that applied inside collapsed arteries or veins enlarge the diameter and restore the blood flow, however the metallic surfaces usually cause rejection reactions that obstruct the veins again. To give solutions to this problem, in this work is studied the synthesis of biocompatible polymer coatings on the stents that resist the blood flow forming a biocompatible interface between metal and blood. The metallic substrates were eroded and chemically prepared with Ar, H_2O and/or H_2O_2 glow discharges on which the polymers were synthesized by plasma. The coatings were morphologically characterized by optical, scanning electron and atomic force microscopy, the chemical structure was studied by infrared and photoelectron X-ray spectroscopy. The hydrophilicity was studied measuring the advance static contact angle and the adhesion was evaluated indirectly with scanning electron microscopy after two months submerged in buffered phosphate solutions. The results indicate that the polymers grew following the superficial morphology; that the conditioning with Ar ions erode the substrates and that the conditioning with H_2O or H_2O_2 erodes and activates the surface generating oxygen bridges which help in the polymer-metal adhesion. The chemical structure of the polymeric coatings contain crosslinked structures that correspond to links between monomers with the participation of all atoms, states that suggest monomer fragmentation and oxidation and states that indicate oxygen bridges in the polymers. The coatings had contact angles close to 90 degrees where is located the line

  17. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    Science.gov (United States)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  18. The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wilbraham, Richard J., E-mail: r.wilbraham@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Boxall, Colin, E-mail: c.boxall@lancaster.ac.uk [The Lloyd’s Register Foundation Centre for Nuclear Engineering, Engineering Department, Lancaster University, Bailrigg, Lancashire LA1 4YR (United Kingdom); Goddard, David T., E-mail: dave.t.goddard@nnl.co.uk [National Nuclear Laboratory, Preston Laboratory, Springfields, Preston, Lancashire PR4 0XJ (United Kingdom); Taylor, Robin J., E-mail: robin.j.taylor@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom); Woodbury, Simon E., E-mail: simon.woodbury@nnl.co.uk [National Nuclear Laboratory, Central Laboratory, Seascale, Cumbria CA20 1PG (United Kingdom)

    2015-09-15

    Highlights: • The first report of the presence of both UO{sub 2} and polymeric UO{sub 2}{sup 2+} in the same electrodeposited U oxide sample. • The action of H{sub 2}O{sub 2} on electrodeposited U oxides is described using corrosion based concepts. • Electrodeposited U oxide freely dissolves at hydrogen peroxide concentrations <100 μmol dm{sup −3}. • At [H{sub 2}O{sub 2}] > 0.1 mmol dm{sup −3} dissolution is inhibited by formation of a studtite passivation layer. • At [H{sub 2}O{sub 2}] ⩾ 1 mol dm{sup −3} studtite formation competes with uranyl–peroxide complex formation. - Abstract: For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H{sub 2}O{sub 2}-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H{sub 2}O{sub 2}] ⩽ 100 μmol dm{sup −3} the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H{sub 2}O{sub 2} concentrations between 1 mmol dm{sup −3} and 0.1 mol dm{sup −3}, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H{sub 2}O{sub 2}] > 0.1 mol dm{sup −3} the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO{sub 2} films has not hitherto been observed or explored, either in terms

  19. Antimicrobial polymer films for food packaging

    Science.gov (United States)

    Concilio, S.; Piotto, S.; Sessa, L.; Iannelli, P.; Porta, A.; Calabrese, E. C.; Galdi, M. R.; Incarnato, L.

    2012-07-01

    New antimicrobial polymeric systems were realized introducing new antimicrobial azo compounds in PP and LDPE matrices. The polymeric materials containing different percentage of azo compounds were mold-casted and the obtained film were tested in vitro against Gram+ and Gram- bacteria and fungi. These results hold promise for the fabrication of bacteria-resistant polymer films by means of simple melt processing with antimicrobial azo-dyes.

  20. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.2–2.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  1. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    International Nuclear Information System (INIS)

    Zeng, Xiangbin; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-01-01

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B_2H_6 flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10"−"3 Ω cm, mobility of 16.5–25.5 cm"2/Vs, and carrier concentration of 2.2–2.7 × 10"2"0 cm"−"3 were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n"+-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm"2 and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm"2 and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  2. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices

    International Nuclear Information System (INIS)

    Jiang, X.; Wong, F.L.; Fung, M.K.; Lee, S.T.

    2003-01-01

    Highly transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films were deposited on glass substrates by midfrequency magnetron sputtering of metallic aluminum-doped zinc target. ZnO:Al films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions. Organic light-emitting diodes (OLEDs) were fabricated on these ZnO:Al films. A current efficiency of higher than 3.7 cd/A, was achieved. For comparison, 3.9 cd/A was achieved by the reference OLEDs fabricated on commercial indium-tin-oxide substrates

  3. Influence of substrate and film thickness on polymer LIPSS formation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jing; Nogales, Aurora; Ezquerra, Tiberio A. [Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, Madrid 28006 (Spain); Rebollar, Esther, E-mail: e.rebollar@csic.es [Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, Madrid 28006 (Spain)

    2017-02-01

    Highlights: • The estimation of temperature upon pulse accumulation shows that a small positive offset is caused by each individual pulse. • Number of pulses needed for LIPSS formation in PS thin films depends on polymer thickness. • Thermal conductivity and diffusivity of supporting substrate influence the onset for LIPSS formation and their quality. • Quality of LIPSS is affected by the substrate optical properties. - Abstract: Here we focus on the influence of both, substrate and film thickness on polymer Laser Induced Periodic Surface Structures (LIPSS) formation in polymer films. For this aim a morphological description of ripples structures generated on spin-coated polystyrene (PS) films by a linearly polarized laser beam with a wavelength of 266 nm is presented. The influence of different parameters on the quality and characteristics of the formed laser-induced periodic surface structures (LIPSS) was investigated. We found that well-ordered LIPSS are formed either on PS films thinner than 200 nm or thicker than 400 nm supported on silicon substrates as well as on thicker free standing films. However less-ordered ripples are formed on silicon supported films with intermediate thicknesses in the range of 200–380 nm. The effect of the thermal and optical properties of the substrate on the quality of LIPSS was analyzed. Differences observed in the fluence and number of pulses needed for the onset of surface morphological modifications is explained considering two main effects which are: (1) The temperature increase on polymer surface induced by the action of cumulative laser irradiation and (2) The differences in thermal conductivity between the polymer and the substrate which strongly affect the heat dissipation generated by irradiation.

  4. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes

    Directory of Open Access Journals (Sweden)

    Ali Ammar

    2016-03-01

    Full Text Available This paper expresses a short review of research on the effects of graphene oxide (GO as a nanocomposite element on polymer morphology and resulting property modifications including mechanical, barrier, and electrical conductivity. The effects on mechanical enhancement related to stress measurements in particular are a focus of this review. To first order, varying levels of aggregation of GO in different polymer matrices as a result of their weak inter-particle attractive interactions mainly affect the nanocomposite mechanical properties. The near surface dispersion of GO in polymer/GO nanocomposites can be investigated by studying the surface morphology of these nanocomposites using scanning probe microscopy such as atomic force microscope (AFM and scanning electron microscope (SEM. In the bulk, GO dispersion can be studied by wide-angle X-ray scattering (WAXD by analyzing the diffraction peaks corresponding to the undispersed GO fraction in the polymer matrix. In terms of an application, we review how the hydrophilicity of graphene oxide and its hydrogen bonding potential can enhance water flux of these nanocomposite materials in membrane applications. Likewise, the electrical conductivity of polymer films and bulk polymers can be advantageously enhanced via the percolative dispersion of GO nanoparticles, but this typically requires some additional chemical treatment of the GO nanoparticles to transform it to reduced GO.

  5. Microarray study of temperature-dependent sensitivity and selectivity of metal/oxide sensing interfaces

    Science.gov (United States)

    Tiffany, Jason; Cavicchi, Richard E.; Semancik, Stephen

    2001-02-01

    Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (20 Ê) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application.

  6. Degradability of polylactide films by commercial microbiological preparations for household composters

    Directory of Open Access Journals (Sweden)

    Morawska Magda

    2017-09-01

    Full Text Available Environmentally friendly polymers such as polylactide are increasingly becoming available for use in packaging applications. The main advantages of polylactide packaging are evident. Polylactide is based on renewable resources and can be degraded in compost or soil. The studies on degradability of polylactide (PLA films by commercial preparation of mixture of multi-active saprophytic soil microorganisms, bacteria, actinomycetes and fungi have been done. Unmodified PLA film, metalized co-extruded PLA film and modified by silicon oxide PLA film were incubated in the liquid nutritious medium (TSB prepared to support the growth of microorganisms. The degradability of polylactide films was examined by macro and microscopic observations of surface, changes of mass and crystallinity of polymer samples before and after incubation. The obtained results indicate that the degradation of polylactide was accelerated by the presence of a biological vaccine. It was found that PLA degradation in the inoculated TSB broth was a result of both: enzymatic and chemical hydrolysis.

  7. Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium

    International Nuclear Information System (INIS)

    M, Sandhyarani; T, Prasadrao; N, Rameshbabu

    2014-01-01

    Highlights: • Uniform oxide films were formed on zirconium by plasma electrolytic oxidation. • Silicate in electrolyte alter the growth of m-ZrO 2 from (1 ¯ 11) to (2 0 0) orientation. • Addition of KOH to electrolyte improved the corrosion resistance of oxide films. • Silicon incorporated oxide films showed higher surface roughness and wettability. • Human osteosarcoma cells were strongly adhered and spreaded on all the oxide films. - Abstract: Development of oxide films on metallic implants with a good combination of corrosion resistance, bioactivity and cell adhesion can greatly improve its biocompatibility and functionality. Thus, the present work is aimed to fabricate oxide films on metallic Zr by plasma electrolytic oxidation (PEO) in methodically varied concentrations of phosphate, silicate and KOH based electrolyte systems using a pulsed DC power source. The oxide films fabricated on Zr are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, corrosion resistance, apatite forming ability and osteoblast cell adhesion. Uniform films with thickness varying from 6 to 11 μm are formed. XRD patterns of all the PEO films showed the predominance of monoclinic zirconia phase. The film formed in phosphate + KOH electrolyte showed superior corrosion resistance, which can be ascribed to its pore free morphology. The films formed in silicate electrolyte showed higher apatite forming ability with good cell adhesion and spreading over its surface which is attributed to its superior surface roughness and wettability characteristics. Among the five different electrolyte systems employed in the present study, the PEO film formed in an electrolyte system with phosphate + silicate + KOH showed optimum corrosion resistance, apatite forming ability and biocompatibility

  8. Transparent conductive oxides and alternative transparent electrodes for organic photovoltaics and OLEDs; Transparente leitfaehige Elektroden. Oxide und alternative Materialien fuer die organische Photovoltaik und OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Meskamp, Lars; Sachse, Christoph; Kim, Yong Hyun; Furno, Mauro [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); May, Christian [Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany); Leo, Karl [Technische Univ. Dresden (DE). Inst. fuer Angewandte Photophysik (IAPP); Fraunhofer Institut fuer Photonische Mikrosysteme (IPMS), Dresden (Germany)

    2012-08-15

    Organic, photoactive devices, such as OLEDs or organic solar cells, currently use indium tin oxide (ITO) as transparent electrode. Whereas ITO is industry-proven for many years and shows very good electrical and optical properties, its application for low-cost and flexible devices might not be optimal. For such applications innovative technologies such as network-based metal nanowire or carbon nanotube electrodes, graphene, conductive polymers, metal thin-films and alternative transparent conductive oxides emerge. Although some of these technologies are rather experimental and far from application, some of them have the potential to replace ITO in selected applications. (orig.)

  9. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  10. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    Science.gov (United States)

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications

    International Nuclear Information System (INIS)

    Yoo, Jeong Eun; Park, Jiyoung; Cha, Gihoon; Choi, Jinsub

    2013-01-01

    The anodization of niobium in an aqueous mixture of H 3 PO 4 and HF in the potential range from 2.5 to 30 V for 2 h at 5 °C was performed, demonstrating that anodic porous niobium oxide film with a thickness of up to 2000 nm, including a surface dissolution layer, can be obtained by controlling the applied potential and composition of the electrolytes. Specifically, surface dissolution-free porous niobium oxide film with a thickness of 800 nm can be prepared in a low electrolyte concentration. The surface dissolution is observed when the concentration ratio of HF (wt.%):H 3 PO 4 (M) was more than 2:1. The discontinuous layers in the niobium oxide film were observed when the thickness was higher than 500 nm, which was ascribed to the large volume expansion of the niobium oxide grown from the niobium metal. The anodic porous niobium oxide film was used as the cathode for lithium-ion batteries in the potential range from 1.2 to 3.0 V at a current density of 7.28 × 10 − 6 A cm −2 . The first discharge capacity of ca. 53 μA h cm − 2 was obtained in 800 nm thick niobium oxide without a surface dissolution layer. - Highlights: ► Anodic porous niobium oxide film with a thickness of 2000 nm was obtained. ► Surface dissolution-free porous niobium oxide film was prepared. ► The niobium oxide film was used as the cathode for lithium-ion batteries

  12. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  13. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Chen Xinliang; Lin Quan; Ni Jian; Zhang Dekun; Sun Jian; Zhao Ying; Geng Xinhua

    2011-01-01

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density J SC = 10.62 mA/cm 2 , open-circuit voltage V OC = 0.93 V and fill factor = 64%).

  14. Effect of irradiation on the properties of some shrinking polymer films

    International Nuclear Information System (INIS)

    Varsanyi, E.

    1974-01-01

    Shrinking polymer films (polyethylene, polyvinylidene chloride, polyester) suitable for use in the food industry were studied with the intention to determine the effect of radurizing doses (800 krad and below) on changes in the proportion of crystalline parts in the polymer, and on the tensile strength, elongation at break and shrinkage of the film. Changes in the crystalline/amorphous ratio in the polymer were determined by means of infra-red spectrophotometry. Calculations based on spectral data showed no significant changes in the ratio of crystalline fraction of any of the films, as a function of radurizing doses. Tensile strength and elongation at break tests were carried out by means of standardized instruments and methods. It was found that the tensile strength of the polyethylene film decreased by about 25% as an effect of irradiation, while the same treatment caused no significant changes in the elongation at break. The tensile strength of the polyvinylidene chloride film suffered a decrease of roughly 15%, its elongation at break an about 30% decrease when irradiated. Radiation treatment caused a decrease if less than 10% in tensile strength of the polyester film and a more than 10% change in elongation at break. The tests indicated no significant changes in the shrinkage of radiation treated polymers. The results of the tests led to the conclusion that radurizing doses caused no such change which would affect the applicability of polymer films to the wrapping and packaging of foods subjected to irradiation or would make the films unsuitable for the protection of the goods. (F.J.)

  15. Applications of interface controlled pulsed-laser deposited polymer films in field-effect transistors

    Science.gov (United States)

    Adil, Danish; Ukah, Ndubuisi; Guha, Suchi; Gupta, Ram; Ghosh, Kartik

    2010-03-01

    Matrix assisted pulsed laser evaporation, a derivative of pulsed laser deposition (PLD), is an alternative method of depositing polymer and biomaterial films that allows homogeneous film coverage of high molecular weight organic materials for layer-by-layer growth without any laser induced damage. Polyfluorene (PF)-based conjugated polymers have attracted considerable attention in organic field-effect transistors (FETs). A co-polymer of PF (PFB) was deposited as a thin film using matrix assisted PLD employing a KrF excimer laser. Electrical characteristics of FETs fabricated using these PLD grown films were compared to those of FETs using spin-coated films. We show that threshold voltages, on/off ratios, and charge carrier motilities are significantly improved in PLD grown films. This is attributed to an improved dielectric-polymer interface.

  16. Metal-containing radiation-sensitive polymers

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1986-01-01

    The copolymers of methyl methacrylate with alkali metal salts (Na, K, and Cs) of methacrylic acid have been prepared by saponification K, and Cs) of methylacrylic acid have been prepared by saponification of the homopolymer poly(methyl methacrylate), PMMA. Low degrees of hydrolysis have been achieved by a heterogeneous system, and from the infrared spectra it has been confirmed that the ester groups of the methyl methacrylates are directly converted to the metal salts of methacrylic acid. These ionomers exhibit pseudo high molecular weights in gel permeation chromatogram, but no appreciable increase in intrinsic viscosities is observed in comparison to PMMA. The coordinated inorganic polymers poly[(dithio-2,2'-diacetato)bis(dimethylsulfoxide)dioxouranium(VI)] and poly[{methylenebis(thio)-2,2'-bis(acetato)}bis(dimethylsulfoxide)dioxouranium(VI)]have been synthesized in dimethyl sulfoxide solution with about 90% yield. The degree of polymerization and the number of average molecular weights of these polymers have been assessed by high resolution nuclear magnetic resonance, with which the acetato end group to the bridging ligand group ratios have been determined. The polymers bridging ligand group ratios have been determined. The polymers have been characterized by employing various techniques: infrared spectra, thermal gravimetric analysis, 13 C solid state nuclear magnetic resonance, and gel permeation chromatography. The prepared polymer samples have been subjected to various doses of 137 Cs gamma radiation under which the polymers predominantly undergo chain scission. The radiation sensitivities of the polymers are assessed by G values which are obtained from gel permeation chromatograms. These uranyl polymers exhibit unusually high G values

  17. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  18. Extracting metals directly from metal oxides

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of β-diketones, halogenated β-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs

  19. Thin metal bilayer for surface plasmon resonance sensors in a multimode plastic optical fiber: the case of palladium and gold metal films

    Science.gov (United States)

    Cennamo, Nunzio; Zuppella, Paola; Bacco, Davide; Corso, Alain J.; Pelizzo, Maria G.; Pesavento, Maria; Zeni, Luigi

    2016-05-01

    A novel sensing platform based on thin metal bilayer for surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) has been designed, implemented and tested. The experimental results are congruent with the numerical studies. This platform has been properly optimized to work in the 1.38 -1.42 refractive index range and it exhibits excellent sensitivity. This refractive index range is very interesting for bio-chemical applications, where the polymer layer are used as receptors (e.g. molecularly imprinted polymer) or to immobilize the bio-receptor on the metal surface. The proposed metallic bilayer is based on palladium and gold films and replaces the traditional gold by exhibiting higher performances. Furthermore, the deposition of the thin bilayer is a single process and no further manufacturing step is required. In fact, in this case the photoresist buffer layer between the POF core and the metal layer, usually required to increase the refractive index range, is no longer necessary.

  20. Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells

    KAUST Repository

    Haque, Mohammed

    2017-07-10

    Over the past few years, hybrid halide perovskites have emerged as a highly promising class of materials for photovoltaic technology, and the power conversion efficiency of perovskite solar cells (PSCs) has accelerated at an unprecedented pace, reaching a record value of over 22%. In the context of PSC research, wide-bandgap semiconducting metal oxides have been extensively studied because of their exceptional performance for injection and extraction of photo-generated carriers. In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment with halide perovskites, in the form of nanostructured layers and compact thin films, can not only assist with charge transport but also improve the stability of PSCs under ambient conditions. Strategies for the implementation of metal oxides with tailored compositions and structures, and for the engineering of their interfaces with perovskites will be critical for the future development and commercialization of PSCs.

  1. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  2. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  3. MISSE 6 Polymer Film Tensile Experiment

    Science.gov (United States)

    Miller, Sharon K. R.; Dever, Joyce A.; Banks, Bruce A.; Waters, Deborah L.; Sechkar, Edward; Kline, Sara

    2010-01-01

    The Polymer Film Tensile Experiment (PFTE) was flown as part of Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films to the low Earth orbital environment under both relaxed and tension conditions. The polymers selected are those commonly used for spacecraft thermal control and those under consideration for use in spacecraft applications such as sunshields, solar sails, and inflatable and deployable structures. The dog-bone shaped samples of polymers that were flown were exposed on both the side of the MISSE 6 Passive Experiment Container (PEC) that was facing into the ram direction (receiving atomic oxygen, ultraviolet (UV) radiation, ionizing radiation, and thermal cycling) and the wake facing side (which was supposed to have experienced predominantly the same environmental effects except for atomic oxygen which was present due to reorientation of the International Space Station). A few of the tensile samples were coated with vapor deposited aluminum on the back and wired to determine the point in the flight when the tensile sample broke as recorded by a change in voltage that was stored on battery powered data loggers for post flight retrieval and analysis. The data returned on the data loggers was not usable. However, post retrieval observation and analysis of the samples was performed. This paper describes the preliminary analysis and observations of the polymers exposed on the MISSE 6 PFTE.

  4. Polymer quenched prealloyed metal powder

    Science.gov (United States)

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  5. Poly(ethylene oxide) surfactant polymers.

    Science.gov (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  6. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  7. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    Science.gov (United States)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  8. Combined use of polymer composites and metals in engineering structures

    International Nuclear Information System (INIS)

    Hoa, S.V.

    2002-01-01

    Polymer matrix composites have found many applications in the construction of light weight structures such as those in aircrafts, automobiles, sports equipment etc. This is because these materials possess high stiffness, high strength and low densities. In applications of polymer matrix composites in the light weight structures, the polymer composites are however, not used by themselves alone in most cases. Usually the polymer composites are used in conjunction with some metal components. The metal components are used either to provide means for joining the composite components or the composites are used to repair the cracked metal structures. The synergistic effect of both metals and composites can provide excellent performance with good economy. This paper presents a few applications where polymer composites are used in conjunction with metals in engineering structures. (author)

  9. All-solution processed polymer light-emitting diodes with air stable metal-oxide electrodes

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2012-01-01

    We present an all-solution processed polymer light-emitting diode (PLED) using spincoated zinc oxide (ZnO) and vanadium pentoxide (V2O5) as electron and hole injecting contact, respectively. We compare the performance of these devices to the standard PLED design using PEDOT:PSS as anode and Ba/Al as

  10. Properties of a-C:H:O plasma polymer films deposited from acetone vapors

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M., E-mail: martin.drabik@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Celma, C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Kousal, J.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Hegemann, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland)

    2014-12-31

    To gain insight into the deposition and stability of oxygen-containing plasma polymer films, the properties of amorphous oxygenated hydrocarbon (a-C:H:O) plasma polymer coatings deposited from acetone vapors under various experimental conditions are investigated. Apart from the discharge power, the influence of the reactive carbon dioxide (CO{sub 2}) gas on the structure of the resulting films is studied. It is found by characterization using X-ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectroscopy that the experimental conditions particularly influence the amount of oxygen in the deposited a-C:H:O plasma polymer films. The O/C elemental ratio increases with increasing amount of CO{sub 2} in the working gas mixture (up to 0.2 for 24 sccm of CO{sub 2} at 30 W) and decreases with increasing RF discharge power (down to 0.17 for 50 W). Furthermore, the nature of bonds between the oxygen and carbon atoms has been examined. Only low amounts of double and triple bonded carbon are observed. This has a particular influence on the aging of the plasma polymer films which is studied both in ambient air and in distilled water for up to 4 months. Overall, stable a-C:H:O plasma polymer films are deposited comprising low amounts (up to about 5%) of ester/carboxyl groups. - Highlights: • Hydrocarbon plasma polymer films with variable oxygen content can be prepared. • Stable oxygenated hydrocarbon plasma polymers contain max 5% of ester/carboxyl groups. • Acetone-derived plasma polymer films can be used as permanent hydrophilic surfaces.

  11. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Nano-Materials Research Center, Korea Institute of Science and Technology, 39-1 Haweoulgog-dong, Sungbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: swkim@kist.re.kr; Yoon, Chong S. [Division of Advanced Materials Science, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2007-09-15

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.

  12. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    International Nuclear Information System (INIS)

    Kim, Sang Woo; Yoon, Chong S.

    2007-01-01

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization

  13. Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation.

    Science.gov (United States)

    Mao, Yiyin; Li, Junwei; Cao, Wei; Ying, Yulong; Sun, Luwei; Peng, Xinsheng

    2014-03-26

    The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages.

  14. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  15. In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films

    Science.gov (United States)

    Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek

    2017-12-01

    A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.

  16. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  17. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  18. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    Science.gov (United States)

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).

  19. An X-ray absorption near-edge structure (XANES) study of the Sn L_3 edge in zirconium alloy oxide films formed during autoclave corrosion

    International Nuclear Information System (INIS)

    Hulme, Helen; Baxter, Felicity; Babu, R. Prasath; Denecke, Melissa A.; Gass, Mhairi; Steuwer, Axel; Norén, Katarina; Carlson, Stefan; Preuss, Michael

    2016-01-01

    Highlights: • Characterisation of tin speciation in zirconium alloy metal and oxide films using Sn L_3-XANES. • Chemical environment of tin in Zircaloy-4 and ZIRLO™ oxide films shown to be similar. • Tin in the oxide films is present in both the di- and tetravalent states and oxidises progressively with oxide-layer growth. - Abstract: Application of Sn L_3-XANES to study the oxidation state of alloying additions of tin (1–1.2 wt%) in <2 μm oxide layers formed on nuclear grade zirconium alloy has been demonstrated. Data obtained for metallic and corroded ZIRLO™ (1 wt% Sn) and Zircaloy-4 (1.2 wt% Sn) indicate tin has a similar chemical speciation in both metal alloys but this differs in the oxidised surface layers. By recording XANES at various incident angles to vary the photon penetration depth and amount of the oxide layer probed in the measurement, the authors found evidence that the oxidation of tin progresses with increasing oxide thickness.

  20. Cryochemistry of Metal Nanoparticles

    International Nuclear Information System (INIS)

    Sergeev, Gleb B.

    2003-01-01

    The interaction of metal atoms, clusters and nanoparticles with different organic and inorganic substances were studied at low temperature (10-40K). Combination of matrix isolation technique and preparative cryochemistry was applied for the investigation of activity and selectivity of metal particles of different size. Encapsulation of metal nanoparticles in polymers was studied. The metal-polymer films thus obtained exhibited satisfactory sensitivity to ammonia