WorldWideScience

Sample records for film cooling modeling

  1. Validation of Supersonic Film Cooling Modeling for Liquid Rocket Engine Applications

    Science.gov (United States)

    Morris, Christopher I.; Ruf, Joseph H.

    2010-01-01

    Topics include: upper stage engine key requirements and design drivers; Calspan "stage 1" results, He slot injection into hypersonic flow (air); test articles for shock generator diagram, slot injector details, and instrumentation positions; test conditions; modeling approach; 2-d grid used for film cooling simulations of test article; heat flux profiles from 2-d flat plate simulations (run #4); heat flux profiles from 2-d backward facing step simulations (run #43); isometric sketch of single coolant nozzle, and x-z grid of half-nozzle domain; comparison of 2-d and 3-d simulations of coolant nozzles (run #45); flowfield properties along coolant nozzle centerline (run #45); comparison of 3-d CFD nozzle flow calculations with experimental data; nozzle exit plane reduced to linear profile for use in 2-d film-cooling simulations (run #45); synthetic Schlieren image of coolant injection region (run #45); axial velocity profiles from 2-d film-cooling simulation (run #45); coolant mass fraction profiles from 2-d film-cooling simulation (run #45); heat flux profiles from 2-d film cooling simulations (run #45); heat flux profiles from 2-d film cooling simulations (runs #47, #45, and #47); 3-d grid used for film cooling simulations of test article; heat flux contours from 3-d film-cooling simulation (run #45); and heat flux profiles from 3-d and 2-d film cooling simulations (runs #44, #46, and #47).

  2. A Film-Cooling CFD Bibliography: 1971–1996

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    1998-01-01

    Full Text Available After more than 25 years of three-dimensional film cooling experimental investigations, analytical correlations and modeling, film cooling utilizing computational fluid dynamics has emerged from a similar development-applications growth process into a near-attainable heat transfer engineering tool. Analytical applications include high temperature subsonic to hypersonic flow with complex wall-geometry coolant injection film performance analysis techniques spanning usage from gas turbines to rocket engines to scramjets. In recent years there has been significant development in increased computer power and modeling capacity, increasingly more complex and successful Navier-Stokes turbulence modeling techniques, innovative labor-saving meshing techniques, and more successful validation of experimental results. These combined innovations have continued to transition computational film cooling technology from the academic, government and commercial research and development environment to the industrial design-analysis environment. This bibliography is an openliterature reference resource whose papers collectively describe the continual emerging of numerical film cooling as a viable design tool for high temperature components.

  3. Modification and application of water film model in COCOSYS for PWR's passive containment cooling

    International Nuclear Information System (INIS)

    Huang, Xi; Cheng, Xu

    2014-01-01

    Highlights: • Water film model in COCOSYS has been modified by considering film breakup. • Shear stress on film surface created by countercurrent flow has been considered. • Formation and development of rivulets have been taken into account. • Modified model has been applied for passive containment cooling system. • The modified water film model has optimized the simulation results. - Abstract: In this paper the physical model describing water film behaviors in German containment code system COCOSYS has been modified by taking into consideration the film breakup and subsequent phenomena as well as the effect of film interfacial shear stress created by countercurrent air flow. The modified model has extended its capability to predict particular water film behaviors including breakup at a critical film thickness based on minimum total energy criterion, the formation of rivulets according to total energy equilibrium as well as subsequent performance of rivulets according to several assumptions and observations from experiments. Furthermore, the modification considers also the change of velocity distribution on the cross section of film/rivulets due to shear stress. Based on the geometry of AP1000 and Generic Containment, simulations predicting containment pressure variation during accidents with operation of passive containment cooling system have been carried out. With the new model, considerably larger peak pressures are observed by comparing with those predicted with original water film model within a certain range of water film flow rate. Sensitivity analyses also point out that contact angle between water rivulets and steel substrate plays a significant role in the film cooling

  4. Effects of surface deposition and droplet injection on film cooling

    International Nuclear Information System (INIS)

    Wang, Jin; Cui, Pei; Vujanović, Milan; Baleta, Jakov; Duić, Neven; Guzović, Zvonimir

    2016-01-01

    Highlights: • Cooling effectiveness is significantly affected by the deposition size. • Coverage area for model without mist is reduced by increasing the deposition height. • Wall temperature is decreased by 15% with 2% mist injection. • Cooling coverage is increased by more than three times with 2% mist injection. • Cooling effectiveness for mist models is improved by increasing deposition height. - Abstract: In the present research, the influence of the particle dispersion onto the continuous phase in film cooling application was analysed by means of numerical simulations. The interaction between the water droplets and the main stream plays an important role in the results. The prediction of two-phase flow is investigated by employing the discrete phase model (DPM). The results present heat transfer characteristics in the near-wall region under the influence of mist cooling. The local wall temperature distribution and film cooling effectiveness are obtained, and results show that the film cooling characteristics on the downstream wall are affected by different height of surface deposits. It is also found that smaller deposits without mist injection provide a lower wall temperature and a better cooling performance. With 2% mist injection, evaporation of water droplets improves film cooling effectiveness, and higher deposits cause lateral and downstream spread of water droplets. The results indicate that mist injection can significantly enhance film cooling performance.

  5. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    International Nuclear Information System (INIS)

    Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie

    2017-01-01

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  6. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  7. Film cooling adiabatic effectiveness measurements of pressure side trailing edge cooling configurations

    Directory of Open Access Journals (Sweden)

    R. Becchi

    2015-12-01

    Full Text Available Nowadays total inlet temperature of gas turbine is far above the permissible metal temperature; as a consequence, advanced cooling techniques must be applied to protect from thermal stresses, oxidation and corrosion the components located in the high pressure stages, such as the blade trailing edge. A suitable design of the cooling system for the trailing edge has to cope with geometric constraints and aerodynamic demands; state-of-the-art of cooling concepts often use film cooling on blade pressure side: the air taken from last compressor stages is ejected through discrete holes or slots to provide a cold layer between hot mainstream and the blade surface. With the goal of ensuring a satisfactory lifetime of blades, the design of efficient trailing edge film cooling schemes and, moreover, the possibility to check carefully their behavior, are hence necessary to guarantee an appropriate metal temperature distribution. For this purpose an experimental survey was carried out to investigate the film covering performance of different pressure side trailing edge cooling systems for turbine blades. The experimental test section consists of a scaled-up trailing edge model installed in an open loop suction type test rig. Measurements of adiabatic effectiveness distributions were carried out on three trailing edge cooling system configurations. The baseline geometry is composed by inclined slots separated by elongated pedestals; the second geometry shares the same cutback configuration, with an additional row of circular film cooling holes located upstream; the third model is equipped with three rows of in-line film cooling holes. Experiments have been performed at nearly ambient conditions imposing several blowing ratio values and using carbon dioxide as coolant in order to reproduce a density ratio close to the engine conditions (DR=1.52. To extend the validity of the survey a comparison between adiabatic effectiveness measurements and a prediction by

  8. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  9. Improving Durability of Turbine Components Through Trenched Film Cooling and Contoured Endwalls

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, David G. [Univ. of Texas, Austin, TX (United States); Thole, Karen A. [Pennsylvania State Univ., State College, PA (United States)

    2014-09-30

    The experimental and computational studies of the turbine endwall and vane models completed in this research program have provided a comprehensive understanding of turbine cooling with combined film cooling and TBC. To correctly simulate the cooling effects of TBC requires the use of matched Biot number models, a technique developed in our laboratories. This technique allows for the measurement of the overall cooling effectiveness which is a measure of the combined internal and external cooling for a turbine component. The overall cooling effectiveness provides an indication of the actual metal temperature that would occur at engine conditions, and is hence a more powerful performance indicator than the film effectiveness parameter that is commonly used for film cooling studies. Furthermore these studies include the effects of contaminant depositions which are expected to occur when gas turbines are operated with syngas fuels. Results from the endwall studies performed at Penn State University and the vane model studies performed at the University of Texas are the first direct measurements of the combined effects of film cooling and TBC. These results show that TBC has a dominating effect on the overall cooling effectiveness, which enhances the importance of the internal cooling mechanisms, and downplays the importance of the film cooling of the external surface. The TBC was found to increase overall cooling effectiveness by a factor of two to four. When combined with TBC, the primary cooling from film cooling holes was found to be due to the convective cooling within the holes, not from the film effectiveness on the surface of the TBC. Simulations of the deposition of contaminants on the endwall and vane surfaces showed that these depositions caused a large increase in surface roughness and significant degradation of film effectiveness. However, despite these negative factors, the depositions caused only a slight decrease in the overall cooling effectiveness on

  10. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  11. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  12. Study of Cooling Characteristic of The Containment APWR Model Using Laminar Subcooled Water Film

    International Nuclear Information System (INIS)

    Diah Hidayanti; Aryadi Suwono; Nathanael P Tandian; Ari Darmawan Pasek; Efrizon Umar

    2009-01-01

    One of mechanism utilized by the next-generation pressurized water reactor for cooling its containment passively is gravitationally falling water spray cooling. This paper focuses on the characteristic study using Fluent 5/6 program for the case of the containment outer wall cooling by laminar sub-cooled water film. The cooling system characteristics which will be discussed consist of water film thickness and temperature on all parts of the containment wall as well as the effect of water spray volume flow rate on the water film thickness and convection heat transfer capability from the containment wall to the film bulk. In addition, some kinds of non dimensional numbers involved in the film heat transfer correlation will be presented in this paper. (author)

  13. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  14. Experimental and computational studies of film cooling with compound angle injection

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.J.; Eckert, E.R.G.; Patankar, S.V. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1995-10-01

    The thermal efficiency of gas turbine systems depends largely on the turbine inlet temperature. Recent decades have seen a steady rise in the inlet temperature and a resulting reduction in fuel consumption. At the same time, it has been necessary to employ intensive cooling of the hot components. Among various cooling methods, film cooling has become a standard method for cooling of the turbine airfoils and combustion chamber walls. The University of Minnesota program is a combined experimental and computational study of various film-cooling configurations. Whereas a large number of parameters influence film cooling processes, this research focuses on compound angle injection through a single row and through two rows of holes. Later work will investigate the values of contoured hole designs. An appreciation of the advantages of compound angle injection has risen recently with the demand for more effective cooling and with improved understanding of the flow; this project should continue to further this understanding. Approaches being applied include: (1) a new measurement system that extends the mass/heat transfer analogy to obtain both local film cooling and local mass (heat) transfer results in a single system, (2) direct measurement of three-dimensional turbulent transport in a highly-disturbed flow, (3) the use of compound angle and shaped holes to optimize film cooling performance, and (4) an exploration of anisotropy corrections to turbulence modeling of film cooling jets.

  15. Numerical Analysis of Film Cooling at High Blowing Ratio

    Science.gov (United States)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  16. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  17. Review on film cooling of liquid rocket engines

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2018-03-01

    Full Text Available Film cooling in combination with regenerative cooling is presently considered as an efficient method to guarantee safe operation of liquid rocket engines having higher heat flux densities for long duration. This paper aims to bring all the research carried out in the field of liquid rocket engine film cooling since 1950. The analytical and numerical procedure followed, experimental facilities and measurements made and major inferences drawn are reviewed in detail, and compared where ever possible. Review has been made through a discussion of the analyses methodologies and the factors that influence film cooling performance. An effort has also been made to determine the status of the research, pointing out critical gaps, which are still to be explained and addressed by future generations. Keywords: Heat transfer, Liquid rocket thrust chamber, Film cooling, Cooling effectiveness

  18. Conjugate calculation of a film-cooled blade for improvement of the leading edge cooling configuration

    Directory of Open Access Journals (Sweden)

    Norbert Moritz

    2013-03-01

    Full Text Available Great efforts are still put into the design process of advanced film-cooling configurations. In particular, the vanes and blades of turbine front stages have to be cooled extensively for a safe operation. The conjugate calculation technique is used for the three-dimensional thermal load prediction of a film-cooled test blade of a modern gas turbine. Thus, it becomes possible to take into account the interaction of internal flows, external flow, and heat transfer without the prescription of heat transfer coefficients. The focus of the investigation is laid on the leading edge part of the blade. The numerical model consists of all internal flow passages and cooling hole rows at the leading edge. Furthermore, the radial gap flow is also part of the model. The comparison with thermal pyrometer measurements shows that with respect to regions with high thermal load a qualitatively and quantitatively good agreement of the conjugate results and the measurements can be found. In particular, the region in the vicinity of the mid-span section is exposed to a higher thermal load, which requires further improvement of the cooling arrangement. Altogether the achieved results demonstrate that the conjugate calculation technique is applicable for reasonable prediction of three-dimensional thermal load of complex cooling configurations for blades.

  19. Large Eddy Simulation of Film-Cooling Jets

    Science.gov (United States)

    Iourokina, Ioulia

    2005-11-01

    Large Eddy Simulation of inclined jets issuing into a turbulent boundary layer crossflow has been performed. The simulation models film-cooling experiments of Pietrzyk et al. (J. of. Turb., 1989), consisting of a large plenum feeding an array of jets inclined at 35° to the flat surface with a pitch 3D and L/D=3.5. The blowing ratio is 0.5 with unity density ratio. The numerical method used is a hybrid combining external compressible solver with a low-Mach number code for the plenum and film holes. Vorticity dynamics pertinent to jet-in-crossflow interactions is analyzed and three-dimensional vortical structures are revealed. Turbulence statistics are compared to the experimental data. The turbulence production due to shearing in the crossflow is compared to that within the jet hole. The influence of three-dimensional coherent structures on the wall heat transfer is investigated and strategies to increase film- cooling performance are discussed.

  20. Cooling Performance of Additively Manufactured Microchannels and Film Cooling Holes

    Science.gov (United States)

    Stimpson, Curtis K.

    flow and heat transfer measurements to generate a predictive model for flow through AM microchannels. The flow compressibility was also found to play a significant role in flow loss through these channels. Overall effectiveness of film cooling combined with the internal microchannel flow was examined in a conjugate experimental setup. The validity of the experimental conditions was established by matching important dimensionless parameters of the experimental setup to common values found in turbine engines. These results showed that the roughness in the film cooling holes produced higher in-hole convection than those made with current manufacturing methods. The roughness in the holes also repressed the film performance. However, high relative roughness was shown to minimize the impact of coolant feed direction on the film effectiveness of the AM holes.

  1. Numerical analysis of hypersonic turbulent film cooling flows

    Science.gov (United States)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  2. The effect of freestream turbulence on film cooling adiabatic effectiveness

    International Nuclear Information System (INIS)

    Mayhew, James E.; Baughn, James W.; Byerley, Aaron R.

    2003-01-01

    The film-cooling performance of a flat plate in the presence of low and high freestream turbulence is investigated using liquid crystal thermography. This paper contributes high-resolution color images that clearly show how the freestream turbulence spreads the cooling air around a larger area of the film-cooled surface. Distributions of the adiabatic effectiveness are determined over the film-cooled surface of the flat plate using the hue method and image processing. Three blowing rates are investigated for a model with three straight holes spaced three diameters apart, with density ratio near unity. High freestream turbulence is shown to increase the area-averaged effectiveness at high blowing rates, but decrease it at low blowing rates. At low blowing ratio, freestream turbulence clearly reduces the coverage area of the cooling air due to increased mixing with the main flow. However, at high blowing ratio, when much of the jet has lifted off in the low turbulence case, high freestream turbulence turns its increased mixing into an asset, entraining some of the coolant that penetrates into the main flow and mixing it with the air near the surface

  3. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    2000-01-01

    Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.

  4. Large Eddy simulation of flat plate film cooling at high blowing ratio using open FOAM

    Science.gov (United States)

    Baagherzadeh Hushmandi, Narmin

    2018-06-01

    In this work, numerical analysis was performed to predict the behaviour of high Reynolds number turbulent cross-flows used in film cooling applications. The geometry included one row of three discrete coolant holes inclined at 30 degrees to the main flow. In the computational model, the width of the channel was cut into one sixth and symmetry boundaries were applied in the centreline of the coolant hole and along the line of symmetry between two adjacent holes. One of the main factors that affect the performance of film cooling is the blowing ratio of coolant to the main flow. A blowing ratio equal to two was chosen in this study. Analysis showed that the common practice CFD models that employ RANS equations together with turbulence modelling under predict the film cooling effectiveness up to a factor of four. However, LES method showed better agreement of film cooling effectiveness both in tendency and absolute values compared with experimental results.

  5. Investigation of the cooling film distribution in liquid rocket engine

    Directory of Open Access Journals (Sweden)

    Luís Antonio Silva

    2011-05-01

    Full Text Available This study presents the results of the investigation of a cooling method widely used in the combustion chambers, which is called cooling film, and it is applied to a liquid rocket engine that uses as propellants liquid oxygen and kerosene. Starting from an engine cooling, whose film is formed through the fuel spray guns positioned on the periphery of the injection system, the film was experimentally examined, it is formed by liquid that seeped through the inner wall of the combustion chamber. The parameter used for validation and refinement of the theoretical penetration of the film was cooling, as this parameter is of paramount importance to obtain an efficient thermal protection inside the combustion chamber. Cold tests confirmed a penetrating cold enough cooling of the film for the length of the combustion chamber of the studied engine.

  6. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1993-01-01

    This report summarizes the findings on the NASA contract NAG8-212, Task No. 3. The overall project consists of three tasks, all of which have been successfully completed. In addition, some supporting supplemental work, not required by the contract, has been performed and is documented herein. Task 1 involved the modification of the wall functions in the code FDNS (Finite Difference Navier-Stokes) to use a Reynolds Analogy-based method. This task was completed in August, 1992. Task 2 involved the verification of the code against experimentally available data. The data chosen for comparison was from an experiment involving the injection of helium from a wall jet. Results obtained in completing this task also show the sensitivity of the FDNS code to unknown conditions at the injection slot. This task was completed in September, 1992. Task 3 required the computation of the flow of hot exhaust gases through the P&W 40K subscale nozzle. Computations were performed both with and without film coolant injection. This task was completed in July, 1993. The FDNS program tends to overpredict heat fluxes, but, with suitable modeling of backside cooling, may give reasonable wall temperature predictions. For film cooling in the P&W 40K calorimeter subscale nozzle, the average wall temperature is reduced from 1750R to about 1050R by the film cooling. The average wall heat flux is reduced by a factor of 3.

  7. A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane

    Science.gov (United States)

    Heidmann, James D.; Rigby, David L.; Ameri, Ali A.

    1999-01-01

    A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Glenn Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.

  8. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  9. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    Science.gov (United States)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  10. Mesoscale simulation of elastocaloric cooling in SMA films

    International Nuclear Information System (INIS)

    Wendler, Frank; Ossmer, Hinnerk; Chluba, Christoph; Quandt, Eckhard; Kohl, Manfred

    2017-01-01

    A model for the evolution of the mechanical and thermal properties of shape memory alloy (SMA) films during elastocaloric cycling is developed and compared with experiments. The focus is on Ti-Ni-Cu-Co films of 20 μm thickness showing ultra-low fatigue properties. The films undergo a highly localized pseudoelastic transformation under tensile load cycling featuring strain and temperature band patterns that depend on the loading conditions. The corresponding temperature change is of special interest for film-based elastocaloric cooling applications. Starting from a thermodynamics-based Gibbs free energy model comprising mechanical and chemical contributions, we include a martensite-austenite interface free energy term, for which formulations from a phase-field model are adapted. A 3D continuum mechanics description is modified to treat plane stress conditions appropriate for polycrystalline thin films. The nucleation mechanism of strain bands under dynamic loading is described by introducing a spatial random distribution of the transformation stress barriers reflecting the degree of material inhomogeneity. Heat transfer due to conduction and convection is taken into account. The simulations predict the correlated mechanical and thermal local response of the films including band formation and evolution, tilt angle as well as strain-rate dependence. Macroscopic stress-strain characteristics and thermal evolution curves well represent the experimental results.

  11. A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio

    Science.gov (United States)

    Heidmann, James D.

    2008-01-01

    A concept for mitigating the adverse effects of jet vorticity and liftoff at high blowing ratios for turbine film cooling flows has been developed and studied at NASA Glenn Research Center. This "anti-vortex" film cooling concept proposes the addition of two branched holes from each primary hole in order to produce a vorticity counter to the detrimental kidney vortices from the main jet. These vortices typically entrain hot freestream gas and are associated with jet separation from the turbine blade surface. The anti-vortex design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30deg angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A modification of the anti-vortex concept whereby the branched holes exit adjacent to the main hole has been studied computationally for blowing ratios of 1.0 and 2.0 and at density ratios of 1.0 and 2.0. This modified concept was selected because it has shown the most promise in recent experimental studies. The computational results show that the modified design improves the film cooling effectiveness relative to the round hole baseline and previous anti-vortex cases, in confirmation of the experimental studies.

  12. Numerical study of wave disturbance in liquid cooling film

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2013-06-01

    Full Text Available Transient numerical simulations are carried out to investigate the liquid-gas interface characteristics associated with liquid film cooling flows. A two-dimensional axisymmetric multi-phase numerical model using finite volume formulation is developed. The model has been validated against available experimental data for liquid-film cooling flows inside tubes. The model has been used to predict the interface characteristics for a variety of imposed parameters and momentum flux ratios under cold flow conditions wherein both the coolant and mainstream are maintained at the same temperature. Disturbance waves are observed at the liquid-gas interface for coolant flows above a critical value and after a finite distance from the inlet. The distance toward the wave inception point increased with the increase of momentum flux ratio. However, at higher momentum flux ratios, the properties of the disturbance waves did not vary significantly. The parameters related to the liquid-gas interface waves, namely, wave velocity, frequency, amplitude and wave length have been analyzed in detail. Analysis indicates that the liquid entrainment is due to the shearing of the disturbance wave crest.

  13. Numerical investigation of unsteady mixing mechanism in plate film cooling

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2016-09-01

    Full Text Available A large-scale large eddy simulation in high performance personal computer clusters is carried out to present unsteady mixing mechanism of film cooling and the development of films. Simulation cases include a single-hole plate with the inclined angle of 30° and blowing ratio of 0.5, and a single-row plate with hole-spacing of 1.5D and 2D (diameters of the hole. According to the massive simulation results, some new unsteady phenomena of gas films are found. The vortex system is changed in different position with the development of film cooling with the time marching the process of a single-row plate film cooling. Due to the mutual interference effects including mutual exclusion, a certain periodic sloshing and mutual fusion, and the structures of a variety of vortices change between parallel gas films. Macroscopic flow structures and heat transfer behaviors are obtained based on 20 million grids and Reynolds number of 28600.

  14. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  15. Optimized thin film coatings for passive radiative cooling applications

    Science.gov (United States)

    Naghshine, Babak B.; Saboonchi, Ahmad

    2018-03-01

    Passive radiative cooling is a very interesting method, which lays on low atmospheric downward radiation within 8-13 μm waveband at dry climates. Various thin film multilayer structures have been investigated in numerous experimental studies, in order to find better coatings to exploit the full potential of this method. However, theoretical works are handful and limited. In this paper, the Simulated Annealing and Genetic Algorithm are used to optimize a thin film multilayer structure for passive radiative cooling applications. Spectral radiative properties are calculated through the matrix formulation. Considering a wide range of materials, 30 high-potential convective shields are suggested. According to the calculations, cooling can be possible even under direct sunlight, using the introduced shields. Moreover, a few water-soluble materials are studied for the first time and the results show that, a KBr substrate coated by a thin CaF2 or polyethylene film can is very close to an ideal coating for passive radiative cooling at night.

  16. Modeling the methane hydrate formation in an aqueous film submitted to steady cooling

    Energy Technology Data Exchange (ETDEWEB)

    Avendano-Gomez, J.R. [ESIQIE, Laboratorio de Ingenieria Quimica Ambiental, Mexico (Mexico). Inst. Politecnico Nacional; Garcia-Sanchez, F. [Laboratorio de Termodinamica, Mexico (Mexico). Inst. Mexicano del Petroleo; Gurrola, D.V. [UPIBI, Laboratorio de Diseno de Plantas, Mexico (Mexico). Inst. Politecnico Nacional

    2008-07-01

    Gas hydrates, or clathrate hydrates, are ice-like compounds that results from the kinetic process of crystallization of an aqueous solution supersaturated with a dissolved gas. This paper presented a model that took into account two factors involved in the hydrate crystallization, notably the stochastic nature of crystallization that causes sub-cooling and the heat resulting from the exothermic enthalpy of hydrate formation. The purpose of this study was to model the thermal evolution inside a hydrate forming system which was submitted to an imposed steady cooling. The study system was a cylindrical thin film of aqueous solution at 19 Mpa. The study involved using methane as the hydrate forming molecule. It was assumed that methane was homogeneously dissolved in the aqueous phase. Ethane hydrate was formed through a kinetic process of nucleation and crystallization. In order to predict the onset time of nucleation, the induction time needed to be considered. This paper discussed the probability of nucleation as well as the estimation of the rate of nucleation. It also presented the mathematical model and boundary conditions. These included assumptions and derivation of the model; boundary conditions; initial conditions; and numerical solution of the model equation. It was concluded that the heat source must be considered when investigating crystallization effects. 34 refs., 2 tabs., 2 figs.

  17. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  18. Numerical study on film cooling and convective heat transfer characteristics in the cutback region of turbine blade trailing edge

    Directory of Open Access Journals (Sweden)

    Xie Yong-Hui

    2016-01-01

    Full Text Available Gas turbine blade trailing edge is easy to burn out under the exposure of high-temperature gas due to its thin shape. The cooling of this area is an important task in gas turbine blade design. The structure design and analysis of trailing edge is critical because of the complexity of geometry, arrangement of cooling channels, design requirement of strength, and the working condition of high heat flux. In the present paper, a 3-D model of the trailing edge cooling channel is constructed and both structures with and without land are numerically investigated at different blowing ratio. The distributions of film cooling effectiveness and convective heat transfer coefficient on cutback and land surface are analyzed, respectively. According to the results, it is obtained that the distributions of film cooling effectiveness and convective heat transfer coefficient both show the symmetrical characteristics as a result of the periodic structure of the trailing edge. The increase of blowing ratio significantly improves the film cooling effectiveness and convective heat transfer coefficient on the cutback surface, which is beneficial to the cooling of trailing edge. It is also found that the land structure is advantageous for enhancing the streamwise film cooling effectiveness of the trailing edge surface while the film cooling effectiveness on the land surface remains at a low level. Convective heat transfer coefficient exhibits a strong dependency with the blowing ratio, which suggests that film cooling effectiveness and convective heat transfer coefficient must be both considered and analyzed in the design of trailing edge cooling structure.

  19. The development of evaporative liquid film model for analysis of passive containment cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong June; Hwang, Young Dong; Kim, Hee Cheol; Kim, Young In; Chang, Moon Hee

    2000-07-01

    An analytical model was developed to simulate behavior of the liquid film formed on the outside surface of the steel containment vessel of PCCS including the ellipsoidal dome and the vertical wall. The model was coupled with CFX code using the user subroutines provided by the code, and a series of numerical calculations were performed to evaluate the evaporative heat transfer coefficient at the interface. Numerical results for Sherwood number and evaporative heat transfer coefficient were compared with the experimental data. The results were in good agreement with the experimental data. The calculated liquid film thickness showed good agreement with that of Sun except an upper portion of the channel. The model was applied to the full scale of PCCS to investigate the effects of dome and chimney on the evaporation rate. The results showed that the heat transfer coefficient in the dome region, where the flow cross-sectional area decreases and the swirling occurs, was lower than that of the vertical annulus region. The calculated evaporative heat transfer coefficient was about 20 times larger than that of the dry cooling. Sensitivity studies on the gap size and the wall temperature were also performed to figure out their effects on the heat transfer coefficient and inlet air average velocity. Through the analysis of the dryout point, the minimum liquid film flow rate to cover the entire surface of the vessel was estimated.

  20. The development of evaporative liquid film model for analysis of passive containment cooling system

    International Nuclear Information System (INIS)

    Park, Hong June; Hwang, Young Dong; Kim, Hee Cheol; Kim, Young In; Chang, Moon Hee

    2000-07-01

    An analytical model was developed to simulate behavior of the liquid film formed on the outside surface of the steel containment vessel of PCCS including the ellipsoidal dome and the vertical wall. The model was coupled with CFX code using the user subroutines provided by the code, and a series of numerical calculations were performed to evaluate the evaporative heat transfer coefficient at the interface. Numerical results for Sherwood number and evaporative heat transfer coefficient were compared with the experimental data. The results were in good agreement with the experimental data. The calculated liquid film thickness showed good agreement with that of Sun except an upper portion of the channel. The model was applied to the full scale of PCCS to investigate the effects of dome and chimney on the evaporation rate. The results showed that the heat transfer coefficient in the dome region, where the flow cross-sectional area decreases and the swirling occurs, was lower than that of the vertical annulus region. The calculated evaporative heat transfer coefficient was about 20 times larger than that of the dry cooling. Sensitivity studies on the gap size and the wall temperature were also performed to figure out their effects on the heat transfer coefficient and inlet air average velocity. Through the analysis of the dryout point, the minimum liquid film flow rate to cover the entire surface of the vessel was estimated

  1. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  2. Film Cooling Optimization Using Numerical Computation of the Compressible Viscous Flow Equations and Simplex Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elsayed

    2013-01-01

    Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.

  3. Effect of hole imperfection on adiabatic film cooling effectiveness

    International Nuclear Information System (INIS)

    Jovanovic, M.B.; Lange, H.C.; Steenhoven, A.A. van

    2008-01-01

    The influence of a discrete imperfection on film cooling is studied by means of thermochromic liquid crystals measurements of the adiabatic film cooling effectiveness. As a benchmark, the effect of a jet ejected through a perfect hole is used. The film cooling effectiveness achieved with an imperfect hole is compared to the benchmark. A half torus plays the role of the discrete imperfection. The influence of the presence of the imperfection, its position and the turbulence intensity of the free stream are analyzed. The measurement data are depicted as two-dimensional plots but also as integral values. It is found that the imperfection, placed one diameter from the hole leading edge, deteriorates the effectiveness at moderate velocity ratios. Under the same conditions, the same imperfection fixed at the hole exit improves the effectiveness. At the velocity ratio of 1.50, the exit imperfection improves the integral effectiveness relatively for more than two times. The turbulence intensity and imperfections placed deeper in the hole do not have a significant influence

  4. Experimental assessment of film cooling performance of short cylindrical holes on a flat surface

    Science.gov (United States)

    Singh, Kuldeep; Premachandran, B.; Ravi, M. R.

    2016-12-01

    The present study is an experimental investigation of film-cooling over a flat surface from the short cylindrical holes. The film cooling holes used in the combustion chamber and the afterburner liner of an aero engine has length-to-diameter (L/D) typically in the range 1-2, while the cooling holes used in turbine blades has L/D > 3. Based on the classification given in the literature, cooling holes with L/D ≤ 3 are named as short holes and cooling holes with L/D > 3 are named as long holes. Short film cooling holes cause jetting of the secondary fluid whereas the secondary fluid emerging from long holes has characteristics similar to fully developed turbulent flow in pipe. In order to understand the difference in the film cooling performance of long and short cooling holes, experimental study is carried out for five values of L/D in the range 1-5, five injection angles, α = 15°-90° and five mainstream Reynolds number 1.25 × 105-6.25 × 105 and two blowing ratios, M = 0.5-1.0. The surface temperature of the test plate is monitored using infrared thermography. The results obtained from the present study showed that the film-cooling effectiveness is higher for the longest holes (L/D = 5) investigated in the present work in comparison to that for the shorter holes. Short holes are found to give better effectiveness at the lowest investigated injection angle i.e. α = 15° in the near cooling hole region, whereas film cooling effectiveness obtained at injection angle, α = 45° is found to be better than other injection angles for longest investigated holes, i.e. L/D = 5.

  5. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    Science.gov (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  6. Effects of geometry on slot-jet film cooling performance

    Energy Technology Data Exchange (ETDEWEB)

    Hyams, D.G.; McGovern, K.T.; Leylek, J.H. [Clemson Univ., SC (United States)

    1995-10-01

    The physics of the film cooling process for shaped, inclined slot-jets with realistic slot-length-to-width ratios (L/s) is studied for a range of blowing ratio (M) and density ratio (DR) parameters typical of gas turbine operations. For the first time in the open literature, the effect of inlet and exit shaping of the slot-jet on both flow and thermal field characteristics is isolated, and the dominant mechanisms responsible for differences in these characteristics are documented. A previously documented computational methodology was applied for the study of four distinct configurations: (1) slot with straight edges and sharp corners (reference case); (2) slot with shaped inlet region; (3) slot with shaped exit region; and (4) slot with both shaped inlet and exit regions. Detailed field results as well as surface phenomena involving adiabatic film effectiveness ({eta}) and heat transfer coefficient (h) are presented. It is demonstrated that both {eta} and h results are vital in the proper assessment of film cooling performance. All simulations were carried out using a multi-block, unstructured/adaptive grid, fully explicit, time-marching solver with multi-grid, local time stepping, and residual smoothing type acceleration techniques. Special attention was paid to and full documentation provided for: (1) proper modeling of the physical phenomena; (2) exact geometry and high quality grid generation techniques; (3) discretization schemes; and (4) turbulence modeling issues. The key parameters M and DR were varied from 1.0 to 2.0 and 1.5 to 2.0, respectively, to show their influence. Simulations were repeated for slot length-to-width ratio (L/s) of 3.0 and 4.5 in order to explain the effects of this important parameter. Additionally, the performance of two popular turbulence models, standard k-F, and RNG k-E, were studied to establish their ability to handle highly elliptic jet/crossflow interaction type processes.

  7. A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

    Science.gov (United States)

    Ameri, A. A.; Rigby, D. L.

    1999-01-01

    A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.

  8. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface

    Science.gov (United States)

    Huang, Ying; Zhang, Jing-zhou; Wang, Chun-hua

    2018-06-01

    Single-objective optimization for improving adiabatic film cooling effectiveness is performed for single row of round-to-slot film cooling holes on a flat surface by using CFD analysis and surrogate approximation methods. Among the main geometric parameters, dimensionless hole-to-hole pitch ( P/ d) and slot length-to-diameter ( l/ d) are fixed as 2.4 and 2 respectively, and the other parameters (hole height-to-diameter ratio, slot width-to-diameter and inclination angle) are chosen as the design variables. Given a wide range of possible geometric variables, the geometric optimization of round-to-slot holes is carried out under two typical blowing ratios of M = 0.5 and M = 1.5 by selecting a spatially-averaged adiabatic film cooling effectiveness between x/ d = 2 and x/ d = 12 as the objective function to be maximized. Radial basis function neural network is applied for constructing the surrogate model and then the optimal design point is searched by a genetic algorithm. It is revealed that the optimal round-to-slot hole is of converging feature under a low blowing ratio but of diffusing feature under a high blowing ratio. Further, the influence principle of optimal round-to-slot geometry on film cooling performance is illustrated according to the detailed flow and thermal behaviors.

  9. Flat plate film cooling at the coolant supply into triangular and cylindrical craters

    Directory of Open Access Journals (Sweden)

    Khalatov Artem A.

    2017-01-01

    Full Text Available The results are given of the film cooling numerical simulation of three different schemes including single-array of the traditional round inclined holes, as well as inclined holes arranged in the cylindrical or triangular dimples (craters. The results of simulation showed that at the medium and high values of the blowing ratio (m > 1.0 the scheme with coolant supply into triangular craters improves the adiabatic film cooling efficiency by 1.5…2.7 times compared to the traditional array of inclined holes, or by 1.3…1.8 times compared to the scheme with coolant supply into cylindrical craters. The greater film cooling efficiency with the coolant supply into triangular craters is explained by decrease in the intensity of secondary vortex structures (“kidney” vortex. This is due to the partial destruction and transformation of the coolant jets structure interacting with front wall of the crater. Simultaneously, the film cooling uniformity is increased in the span-wise direction.

  10. Effect of an upstream bulge configuration on film cooling with and without mist injection.

    Science.gov (United States)

    Wang, Jin; Li, Qianqian; Sundén, Bengt; Ma, Ting; Cui, Pei

    2017-12-01

    To meet the economic requirements of power output, the increased inlet temperature of modern gas turbines is above the melting point of the material. Therefore, high-efficient cooling technology is needed to protect the blades from the hot mainstream. In this study, film cooling was investigated in a simplified channel. A bulge located upstream of the film hole was numerically investigated by analysis of the film cooling effectiveness distribution downstream of the wall. The flow distribution in the plate channel is first presented. Comparing with a case without bulge, different cases with bulge heights of 0.1d, 0.3d and 0.5d were examined with blowing ratios of 0.5 and 1.0. Cases with 1% mist injection were also included in order to obtain better cooling performance. Results show that the bulge configuration located upstream the film hole makes the cooling film more uniform, and enhanceslateral cooling effectiveness. Unlike other cases, the configuration with a 0.3d-height bulge shows a good balance in improving the downstream and lateral cooling effectiveness. Compared with the case without mist at M = 0.5, the 0.3d-height bulge with 1% mist injection increases lateral average effectiveness by 559% at x/d = 55. In addition, a reduction of the thermal stress concentration can be obtained by increasing the height of the bulge configuration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The effects of radiant cooling versus convective cooling on human eye tear film stability and blinking rate

    DEFF Research Database (Denmark)

    Nygaard, Linette; Uth, Simon C.; Bolashikov, Zhecho Dimitrov

    2014-01-01

    The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation. The subj......The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation....... The subjects participated in four two-hour experiments. The room air temperature was kept at 26 °C or 28 °C. Tear film samples were collected after 30 min of acclimatisation and at the end of the exposures. Eye blinking frequency was analysed for the first and last 15 min of each exposure. The tear film...... stability decreased as the temperature increased. The highest number of subjects with unchanged or improved tear film quality was observed with the localised chilled beam at 26 °C. A trend was found between subjects who reported eye irritation and had a bad tear film quality....

  12. Multidisciplinary design optimization of film-cooled gas turbine blades

    Directory of Open Access Journals (Sweden)

    Talya Shashishekara S.

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  13. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chyu, M.K. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:EU{sup 3+}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  14. Formation of VO{sub 2} by rapid thermal annealing and cooling of sputtered vanadium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ba, Cheikhou O. F., E-mail: cheikhou.ba.1@ulaval.ca; Fortin, Vincent; Bah, Souleymane T.; Vallée, Réal [Centre d' optique, photonique et laser (COPL), Université Laval, Québec G1V 0A6 (Canada); Pandurang, Ashrit [Thin Films and Photonics Research Group (GCMP), Department of Physics and Astronomy, Université de Moncton, Moncton, New Brunswick E1A 3E9 (Canada)

    2016-05-15

    Sputtered vanadium-rich films were subjected to rapid thermal annealing-cooling (RTAC) in air to produce vanadium dioxide (VO{sub 2}) thin films with thermochromic switching behavior. High heating and cooling rates in the thermal oxidation process provided an increased ability to control the film's microstructure. X-ray diffraction patterns of the films revealed less intense VO{sub 2} peaks compared to traditional polycrystalline samples fabricated with a standard (slower) cooling time. Such films also exhibit a high optical switching reflectance contrast, unlike the traditional polycrystalline VO{sub 2} thin films, which show a more pronounced transmittance switching. The authors find that the RTAC process stabilizes the VO{sub 2} (M2) metastable phase, enabling a rutile-semiconductor phase transition (R-M2), followed by a semiconductor–semiconductor phase transition (M2-M1).

  15. Lighting and cooling energy consumption in an open-plan office using solar film coating

    International Nuclear Information System (INIS)

    Li, Danny H.W.; Lam, Tony N.T.; Wong, S.L.; Tsang, Ernest K.W.

    2008-01-01

    In subtropical Hong Kong, solar heat gain via glazing contributes to a significant proportion of the building envelope cooling load. The principal fenestration design includes eliminating direct sunlight and reducing cooling requirements. Daylighting is an effective approach to allow a flexible building facade design strategy, and to enhance an energy-efficient and green building development. This paper studies the lighting and cooling energy performances for a fully air-conditioned open-plan office when solar control films together with daylight-linked lighting controls are being used. Measurements were undertaken at two stages including the electricity expenditures for the office using photoelectric dimming controls only (first stage) and together with the solar control film coatings on the windows (second stage). Electric lighting and cooling energy consumption, transmitted daylight illuminance and solar radiation were systematically recorded and analysed. The measured data were also used for conducting and validating the building energy simulations. The findings showed that the solar film coatings coupled with lighting dimming controls cut down 21.2% electric lighting and 6.9% cooling energy consumption for the open-plan office

  16. Aero-thermal optimization of film cooling flow parameters on the suction surface of a high pressure turbine blade

    Science.gov (United States)

    El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid

    2012-11-01

    This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.

  17. Flame-Sprayed Y2O3 Films with Metal-EDTA Complex Using Various Cooling Agents

    Science.gov (United States)

    Komatsu, Keiji; Toyama, Ayumu; Sekiya, Tetsuo; Shirai, Tomoyuki; Nakamura, Atsushi; Toda, Ikumi; Ohshio, Shigeo; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2017-01-01

    In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film's temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit's temperatures.

  18. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  19. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    Science.gov (United States)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  20. Mechanism of Film Cooling with One Inlet and Double Outlet Hole Injection at Various Turbulence Intensities

    Science.gov (United States)

    Li, Guangchao; Chen, Yukai; Kou, Zhihai; Zhang, Wei; Zhang, Guochen

    2018-03-01

    The trunk-branch hole was designed as a novel film cooling concept, which aims for improving film cooling performance by producing anti-vortex. The trunk-branch hole is easily manufactured in comparison with the expanded hole since it consists of two cylindrical holes. The effect of turbulence on the film cooling effectiveness with a trunk-branch hole injection was investigated at the blowing ratios of 0.5, 1.0, 1.5 and 2.0 by numerical simulation. The turbulence intensities from 0.4 % to 20 % were considered. The realizable graphic id="j_tjj-2016-0024_ingr_001" xlink.href="graphic/j_tjj-2016-0024_inline1.png" />k-ɛ k - ɛ turbulence model and the enhanced wall function were used. The more effective anti-vortex occurs at the low blowing ratio of 0.5 %. The high turbulence intensity causes the effectiveness evenly distributed in the spanwise direction. The increase of turbulence intensity leads to a slight decrease of the spanwise averaged effectiveness at the low blowing ratio of 0.5, but a significant increase at the high blowing ratios of 1.5 and 2.0. The optimal blowing ratio of the averaged surface effectiveness is improved from 1.0 to 1.5 when the turbulence intensity increases from 0.4 % to 20 %.

  1. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject D. Study on water film cooling for PWR's passive containment cooling system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xi

    2016-07-15

    In the present study, a new phenomenological model was developed, to describe the water film flow under conditions of a passive containment cooling system (PCCS). The new model takes two different flow regimes into consideration, i.e. continuous water film and rivulets. For water film flow, the traditional Nusselt's was modified, to consider orientation angle and surface sheer stress. The transition from water film to rivulet as well as the structure of the stable rivulet at its onset point was modeled by using the minimum energy principle (MEP) combined with conservation equations. In addition, two different contact angles, i.e. advancing angle and retreating angle, were applied to take the hysteresis effect into consideration. The models of individual processes were validated as far as possible based on experimental data selected from open literature and from collaboration partner as well. With the models a new program module was developed and implemented into the COCOSYS program. The extended COCOSYS program was applied to analyze the containment behavior of the European generic containment and the performance of the passive containment cooling system ofthe AP1000. The results indicate clearly the importance of the new model and provide information for the optimization of the PCCS of AP1000.

  2. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject D. Study on water film cooling for PWR's passive containment cooling system. Final report

    International Nuclear Information System (INIS)

    Huang, Xi

    2016-07-01

    In the present study, a new phenomenological model was developed, to describe the water film flow under conditions of a passive containment cooling system (PCCS). The new model takes two different flow regimes into consideration, i.e. continuous water film and rivulets. For water film flow, the traditional Nusselt's was modified, to consider orientation angle and surface sheer stress. The transition from water film to rivulet as well as the structure of the stable rivulet at its onset point was modeled by using the minimum energy principle (MEP) combined with conservation equations. In addition, two different contact angles, i.e. advancing angle and retreating angle, were applied to take the hysteresis effect into consideration. The models of individual processes were validated as far as possible based on experimental data selected from open literature and from collaboration partner as well. With the models a new program module was developed and implemented into the COCOSYS program. The extended COCOSYS program was applied to analyze the containment behavior of the European generic containment and the performance of the passive containment cooling system ofthe AP1000. The results indicate clearly the importance of the new model and provide information for the optimization of the PCCS of AP1000.

  3. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    Science.gov (United States)

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  4. Film-cooled turbine endwall in a transonic flow field; Filmgekuehlte Turbinenplattform in transsonischem Stroemungsfeld

    Energy Technology Data Exchange (ETDEWEB)

    Nicklas, M.

    2000-11-01

    Aero and thermodynamic measurements at the endwall of a turbine nozzle guide vane were carried out. These investigations are the first where the complete blade passage at the endwall in a transonic flow field is analysed for heat transfer and adiabatic film-cooling effectiveness. The aerodynamic measurements identify an intensive interaction between the coolant air and the secondary flow field. Similarly strong variations in heat transfer and film-cooling effectiveness were found. Analysis of the heat transfer measurements indicates that the heat transfer represents an indispensable tool for the evaluation of platform film-cooling design. On the basis of infrared temperature measurements, a procedure for accurate analysis of heat transfer and film-cooling effectiveness in a complex transonic flow field was developed. This measurement technique combines high accuracy with flexibility of application. These investigations have led to design improvements for film-cooling systems at the platform. (orig.) [German] Aero- und thermodynamische Messungen an einer Plattform eines Turbinenleitrads werden beschrieben. Erstmals wird in einem transsonischen Stroemungsfeld die komplette Seitenwand bezueglich des Waermeuebergangs und der adiabaten Filmkuehleffektivitaet untersucht. Die aerodynamischen Messungen zeigen eine intensive Wechselwirkung der Kuehlluft mit dem Sekundaerstroemungsfeld. Daraus resultierend treten starke Aenderungen des Waermeuebergangs und der Filmkuehleffektivitaet auf. Die Resultate der Waermeuebergangsmessungen zeigen, dass der Waermeuebergang eine wichtige Groesse fuer die Bewertung eines Filmkuehldesigns an einer Plattform darstellt. Ein Messverfahren auf der Grundlage von Infrarot-Temperaturmessungen fuer eine genaue Analyse des Waermeuebergangs und der Filmkuehleffektivitaet in den komplexen Verhaeltnissen einer transsonischen Stroemung wurde entwickelt. Mit der verwendeten Messtechnik wird eine hohe Genauigkeit bei der Ermittlung der quantitativen

  5. 2D and 3D Modeling Efforts in Fuel Film Cooling of Liquid Rocket Engines (Conference Paper with Briefing Charts)

    Science.gov (United States)

    2017-01-12

    to determine what parameters drive unsteadiness in fuel films, and how these parameters affect wall temperature profiles. Parametric studies performed...temperature profiles. Parametric studies performed in 2D suggest that a Helmholtz resonator exists for simple slot geometries. Frequencies in 3D were...effect on film cooling effectiveness. In general, the heat flux exhibits complex trends and did not scale well with chamber pressure. ∗Aerospace

  6. Effect of shocks on film cooling of a full scale turbojet exhaust nozzle having an external expansion surface

    Science.gov (United States)

    Straight, D. M.

    1979-01-01

    Cooling is one of the critical technologies for efficient design of exhaust nozzles, especially for the developing technology of nonaxisymmetric (2D) nozzles for future aircraft applications. Several promising 2D nozzle designs have external expansion surfaces which need to be cooled. Engine data are scarce, however, on nozzle cooling effectiveness in the supersonic flow environment (with shocks) that exists along external expansion surfaces. This paper will present experimental film cooling data obtained during exploratory testing with an axisymmetric plug nozzle having external expansion and installed on an afterburning turbojet engine in an altitude test facility. The data obtained shows that the shocks and local hot gas stream conditions have a marked effect on film cooling effectiveness. An existing film cooling correlation is adequate at some operating conditions but inadequate at other conditions such as in separated flow regions resulting from shock-boundary-layer interactions.

  7. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  8. Effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge

    International Nuclear Information System (INIS)

    Kim, S. M.; Kim, Youn J.; Cho, H. H.

    2001-01-01

    We used a cylindrical model which simulates turbine blade leading edge to investigate the effects of free-stream turbulence intensity and blowing ratio on film cooling of turbine blade leading edge. Tests are carried out in a low-speed wind tunnel on a cylindrical model with three rows of injection holes. Mainstream Reynolds number based on the cylinder diameter was 7.1x10 4 . Two types of turbulence grid are used to increase a free-stream turbulence intensity. The effect of coolant blowing ratio was studied for various blowing ratios. For each blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples installed inside the model. Results show that blowing ratios have small effect on spanwise-averaged film effectiveness at high free-stream turbulence intensity. However, an increase in free-stream turbulence intensity enhances significantly spanwise-averaged film effectiveness at low blowing ratio

  9. Effect of turbulence intensity on cross-injection film cooling at a stepped or smooth endwall of a gas turbine vane passage.

    Science.gov (United States)

    Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua

    2014-01-01

    This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  10. Effect of Turbulence Intensity on Cross-Injection Film Cooling at a Stepped or Smooth Endwall of a Gas Turbine Vane Passage

    Directory of Open Access Journals (Sweden)

    Pey-Shey Wu

    2014-01-01

    Full Text Available This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I.=1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20×104 , 1.24×105, and  1.50×105, three blowing ratios (0.5, 1.0, and 2.0, and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step. Thermochromic liquid crystal (TLC technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  11. Heat transfer from a plate cooled by a water film with countercurrent air flow

    International Nuclear Information System (INIS)

    Ambrosini, W.; Manfredini, A.; Mariotti, F.; Oriolo, F.; Vigni, P.

    1995-01-01

    An experimental program at the University of Pisa provides specific data for the evaluation of heat and mass transfer by falling film evaporation. The problem is addressed primarily because of its relevance to the study of the behavior of passive containment cooling systems in simplified pressurized water reactors. In these plants, after an accident that releases vapor from the primary circuit, the steel containment envelope is cooled either by an ascending stream of air in natural circulation or by the combination of air flow and falling film evaporation. To qualify models for the prediction of the heat transfer capabilities in postulated accident conditions, researchers have built an experimental facility consisting of a flat heated plate with water sprays and a fan to simulate a countercurrent air stream. The range of relevant parameters to be investigated has been determined on the basis of integral calculations performed for the AP600 reactor containment. The facility has enabled the collection of data that confirm the adequacy of the classical heat and mass transfer analogy in predicting evaporation phenomena. Further developments in the research are needed to confirm the first results and to extend the experimental database by considering more subtle aspects of the phenomenon such as the characteristics of surface waviness of the water film and its effect on heat transfer

  12. An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane with Slot Film Cooling

    Science.gov (United States)

    Alqefl, Mahmood Hasan

    In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense

  13. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    Science.gov (United States)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  14. Experimental study of film media used for evaporative pre-cooling of air

    International Nuclear Information System (INIS)

    He, Suoying; Guan, Zhiqiang; Gurgenci, Hal; Hooman, Kamel; Lu, Yuanshen; Alkhedhair, Abdullah M.

    2014-01-01

    Highlights: • Two film media were experimentally studied in a low-speed wind tunnel. • Correlations for heat transfer coefficient and pressure drop were developed. • Cellulose media provide higher cooling efficiency and pressure drop than PVC media. • Water entrainment of PVC media happens even at relatively low air velocities. - Abstract: An open-circuit low-speed wind tunnel was used to study the performance of evaporative cooling with cellulose and Polyvinyl Chloride (PVC) corrugated media. These two film media were selected as part of a broader investigation on pre-cooling the entering air of natural draft dry cooling towers. The heat and mass transfer and pressure drop across the two media with three thicknesses (i.e., 100, 200 and 300 mm) were experimentally studied in the wind tunnel. The test data were non-dimensionalized and curve fitted to yield a set of correlations. It was found that the pressure drop range of the cellulose media is 1.5–101.7 Pa while the pressure drops of the PVC media are much lower with the range of 0.9–49.2 Pa, depending on the medium thickness, air velocity and water flow rate. The cooling efficiencies of the cellulose media vary from 43% to 90% while the cooling efficiencies of the PVC media are 8% to 65%, depending on the medium thickness and air velocity. The water entrainment off the media was detected by water sensitive papers, and found that the cellulose media have negligible water entrainment under the studied conditions while care must be taken in the use of PVC media as water entrainment happens even at relatively low air velocities

  15. Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane

    National Research Council Canada - National Science Library

    Rutledge, James

    2004-01-01

    An experimental study was conducted in a simulated three vane linear cascade to determine the effects of surface roughness and film cooling on the heat transfer coefficient distribution in the region...

  16. Multidisciplinary design optimization of film-cooled gas turbine blades

    OpenAIRE

    Shashishekara S. Talya; J. N. Rajadas; A. Chattopadhyay

    1999-01-01

    Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with ...

  17. Validation of heat transfer models for gap cooling

    International Nuclear Information System (INIS)

    Okano, Yukimitsu; Nagae, Takashi; Murase, Michio

    2004-01-01

    For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)

  18. Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes

    Science.gov (United States)

    DeWitt, Kenneth; Garg Vijay; Ameri, Ali

    2005-01-01

    The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.

  19. Computational Study of Film Cooling Effectiveness for a Comparison of Cylindrical, Square and Triangular Holes of Equal Cross-Sectional Area

    Directory of Open Access Journals (Sweden)

    Fayyaz Hassan Asghar

    2010-10-01

    Full Text Available Film cooling effectiveness is studied computationally for a comparison of circular, square and two types of equilateral triangular holes with an inclination of 30o with streamwise direction. Reynolds number based on the freestream velocity and hole diameter is 10364. Length to diameter ratio of circular hole is 4, which is representative of gas turbine engines. The coolant to mainstream density ratio is 0.92. Main flow is supplied at the temperature of 293.15K and coolant is supplied at 318.15K. Centerline and laterally averaged effectiveness are presented for film cooling measurements. Current computational results for circular hole are compared with experimental results. Computational results are well in agreement with the experimental results even for high blowing ratios. Blowing ratios ranging from 0.33-2.0 have been investigated. It is observed that triangular hole having lateral straight edge on leeward side shows much higher effectiveness values than circular film cooling hole case in the near hole region and almost similar coolant jet height as that in case of circular film cooling. Also it is observed that triangular hole having lateral straight edge on windward side and converging corner on leeward side shows lesser coolant jet height and higher film cooling effectiveness in the region x/D>10, especially at blowing ratios greater than 1.0.

  20. Experimental assessment of an absorption cooling system utilizing a falling film absorber and generator

    International Nuclear Information System (INIS)

    Domínguez-Inzunza, L.A.; Hernández-Magallanes, J.A.; Soto, P.; Jiménez, C.; Gutiérrez-Urueta, G.; Rivera, W.

    2016-01-01

    Highlights: • A new prototype of an absorption cooling system using NH_3/LiNO_3 was developed. • Falling films shell and tubes heat exchangers were used as absorber and generator. • Evaporator temperatures as low as 4 °C were achieved. • The COP varied between 0.27 and 0.62 depending on the system temperatures. • A flow recirculation in the absorber was implemented showing an increase in COP. - Abstract: This study presents the results of the evaluation of an ammonia/lithium nitrate absorption cooling system. The generator and the absorber are shell and tubes falling film heat exchangers while the rest of the components are compact plate heat exchangers. A parametric study was carried out in order to determine the coefficients of performance and cooling capacities at different operating conditions. Also, an analysis was carried out to determine the influence of the absorber solution recirculation on the system performance. The generator temperatures varied between 80 °C and 100 °C, while the cooling water temperatures varied from 20 °C to 34 °C. Cooling capacities up to 4.5 kW and evaporator temperatures as low as 4 °C were achieved with the system. The internal coefficients of performance varied between 0.3 and 0.62 depending on the system operating temperatures. The system also showed good stability and repeatability.

  1. Active Control of Transverse Jets for Film Cooling Applications: A Limited Statement of Work

    National Research Council Canada - National Science Library

    Nikitopoulos, D. E

    2006-01-01

    .... A theoretical analysis was conducted and mechanisms that can play a defining role in film cooling control were identified on the basis of fundamental fluid-dynamics, prior experiments and preliminary...

  2. Research on heat and mass transfer model for passive containment cooling system

    International Nuclear Information System (INIS)

    Jiang Xiaowei; Yu Hongxing; Sun Yufa; Huang Daishun

    2013-01-01

    Different with the traditional dry style containment design without external cooling, the PCCS design increased the temperature difference between the wall and the containment atmosphere significantly, and also the absolute temperature of the containment surfaces will be lower, affecting properties relevant in the condensation process. A research on the heat and mass transfer model has been done in this paper, especially the improvement on the condensation and evaporation model in the presence of noncondensable gases. Firstly, the Peterson's diffusion layer model was proved to equivalent to the stagnant film model adopted by CONTAIN code using the Clausius-Clapeyron equation, then a factor which can be used to stagnant film model was derived from the comparison between the Y.Liao's generalized diffusion layer model and the Peterson's diffusion layer model. Finally, the model in CONTAIN code used to compute the condensation and evaporation mass flux was modified using the factor, and the Wisconsin condensation tests and Westinghouse film evaporation on heated plate tests were simulated which had proved the improved model can predict more closer value of the heat and mass transfer coefficient to experimental value than original model. (authors)

  3. Experimental convective heat transfer characterization of pulsating jet in cross flow: influence of Strouhal number excitation on film cooling effectiveness

    International Nuclear Information System (INIS)

    Lalizel, Gildas; Sultan, Qaiser; Fénot, Matthieu; Dorignac, Eva

    2012-01-01

    In actual gas turbine system, unsteadiness of the mainstream flow influences heat transfer and surface pressure distribution on the blade. In order to simulate these conditions, an experimental film cooling study with externally imposed pulsation is performed with purpose of characterizing both effects of turbine unsteadiness on film cooling (with frequency ranges typical to actual turbine), and also to figure out the range of Strouhal number pulsation under various blowing conditions, which could possibly deliver a performance improvement in film cooling. Influence of injection flow pulsation on adiabatic effectiveness and convective heat transfer coefficient are determined from IR-thermography of the wall for distances to the hole exit between 0 and 30 D.

  4. Highly c-axis-oriented monocrystalline Pb(Zr, Ti)O₃ thin films on si wafer prepared by fast cooling immediately after sputter deposition.

    Science.gov (United States)

    Yoshida, Shinya; Hanzawa, Hiroaki; Wasa, Kiyotaka; Esashi, Masayoshi; Tanaka, Shuji

    2014-09-01

    We successfully developed sputter deposition technology to obtain a highly c-axis-oriented monocrystalline Pb(Zr, Ti)O3 (PZT) thin film on a Si wafer by fast cooling (~-180°C/min) of the substrate after deposition. The c-axis orientation ratio of a fast-cooled film was about 90%, whereas that of a slow-cooled (~-40°C/min) film was only 10%. The c-axis-oriented monocrystalline Pb(Zr0.5, Ti0.5)O3 films showed reasonably large piezoelectric coefficients, e(31,f) = ~-11 C/m(2), with remarkably small dielectric constants, ϵ(r) = ~220. As a result, an excellent figure of merit (FOM) was obtained for piezoelectric microelectromechanical systems (MEMS) such as a piezoelectric gyroscope. This c-axis orientation technology on Si will extend industrial applications of PZT-based thin films and contribute further to the development of piezoelectric MEMS.

  5. Genetic Algorithm Optimization of a Film Cooling Array on a Modern Turbine Inlet Vane

    Science.gov (United States)

    2012-09-01

    downstream. Due to the symmetric nature of the cooling design, each set of lines for a given downstream location bears the same shape. The dramatic...Chandran, P. M. D., Halder, P., Panda , R. K., and Prasad, B. V. S. S. S., “A Comparative Study of Film Cooling Effectiveness on a Flat Plate with...Adiabatic and Conjugate Conditions for Different Hole Shapes,” Proceedings of the ASME Turbo Expo 2012, paper GT2012-69142. [58] Panda , R. K. and

  6. COMMIX analysis of AP-600 Passive Containment Cooling System

    International Nuclear Information System (INIS)

    Chang, J.F.C.; Chien, T.H.; Ding, J.; Sun, J.G.; Sha, W.T.

    1992-01-01

    COMMIX modeling and basic concepts that relate components, i.e., containment, water film cooling, and natural draft air flow systems. of the AP-600 Passive Containment Cooling System are discussed. The critical safety issues during a postulated accident have been identified as (1) maintaining the liquid film outside the steel containment vessel, (2) ensuring the natural convection in the air annulus. and (3) quantifying both heat and mass transfer accurately for the system. The lack of appropriate heat and mass transfer models in the present analysis is addressed. and additional assessment and validation of the proposed models is proposed

  7. Internal film cooling of permanent magnet external rotor machine using the example of a small wind power generator; Innenkuehlung permanentmagneterregter Aussenlaeufermaschinen am Beispiel eines Kleinwindenergiegenerators

    Energy Technology Data Exchange (ETDEWEB)

    Miersch, Soeren; Eckart, Martin; Michalke, Norbert [HTW Dresden (Germany)

    2011-07-01

    This article discusses the fluid flow and thermal cooling system design of a permanent magnet small wind power generator in external rotor construction. Analytical calculation attachment pieces and numerical simulations will be served as authoring tool. Calculation and simulation results will be exhibited in comparing with model and prototype measurements. With the help of stationary temperature allocation, the effectiveness of intensive internal film cooling will be shown. (orig.)

  8. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1992-01-01

    Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.

  9. Reynolds-Averaged Navier-Stokes Solutions to Flat Plate Film Cooling Scenarios

    Science.gov (United States)

    Johnson, Perry L.; Shyam, Vikram; Hah, Chunill

    2011-01-01

    The predictions of several Reynolds-Averaged Navier-Stokes solutions for a baseline film cooling geometry are analyzed and compared with experimental data. The Fluent finite volume code was used to perform the computations with the realizable k-epsilon turbulence model. The film hole was angled at 35 to the crossflow with a Reynolds number of 17,400. Multiple length-to-diameter ratios (1.75 and 3.5) as well as momentum flux ratios (0.125 and 0.5) were simulated with various domains, boundary conditions, and grid refinements. The coolant to mainstream density ratio was maintained at 2.0 for all scenarios. Computational domain and boundary condition variations show the ability to reduce the computational cost as compared to previous studies. A number of grid refinement and coarsening variations are compared for further insights into the reduction of computational cost. Liberal refinement in the near hole region is valuable, especially for higher momentum jets that tend to lift-off and create a recirculating flow. A lack of proper refinement in the near hole region can severely diminish the accuracy of the solution, even in the far region. The effects of momentum ratio and hole length-to-diameter ratio are also discussed.

  10. Long Hole Film Cooling Dataset for CFD Development . Part 1; Infrared Thermography and Thermocouple Surveys

    Science.gov (United States)

    Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James

    2013-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  11. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  12. Passive cooling in modern nuclear reactors

    International Nuclear Information System (INIS)

    Rouai, N. M.

    1998-01-01

    This paper presents some recent experimental results performed with the aim of understanding the mechanism of passive cooling. The AP 600 passive containment cooling system is simulated by an electrically heated vertical pipe, which is cooled by a naturally induced air flow and by a water film descending under gravity. The results demonstrate that although the presence of the water film improved the heat transfer significantly, the mode of heat transfer was very dependent on the experimental parameters. Preheating the water improved both film stability and overall cooling performance

  13. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  14. Implementation of wall film condensation model to two-fluid model in component thermal hydraulic analysis code CUPID - 15237

    International Nuclear Information System (INIS)

    Lee, J.H.; Park, G.C.; Cho, H.K.

    2015-01-01

    In the containment of a nuclear reactor, the wall condensation occurs when containment cooling system and structures remove the mass and energy release and this phenomenon is of great importance to ensure containment integrity. If the phenomenon occurs in the presence of non-condensable gases, their accumulation near the condensate film leads to significant reduction in heat transfer during the condensation. This study aims at simulating the wall film condensation in the presence of non-condensable gas using CUPID, a computational multi-fluid dynamics code, which is developed by the Korea Atomic Energy Research Institute (KAERI) for the analysis of transient two-phase flows in nuclear reactor components. In order to simulate the wall film condensation in containment, the code requires a proper wall condensation model and liquid film model applicable to the analysis of the large scale system. In the present study, the liquid film model and wall film condensation model were implemented in the two-fluid model of CUPID. For the condensation simulation, a wall function approach with heat and mass transfer analogy was applied in order to save computational time without considerable refinement for the boundary layer. This paper presents the implemented wall film condensation model and then, introduces the simulation result using CUPID with the model for a conceptual condensation problem in a large system. (authors)

  15. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems

    International Nuclear Information System (INIS)

    Islam, M.R.; Jahangeer, K.A.; Chua, K.J.

    2015-01-01

    The performance of an air-conditioning unit with evaporately-cooled condenser coil is studied experimentally and numerically. An experimental setup is fabricated by retrofitting a commercially available air-conditioning unit and installing comprehensive measuring sensors and controllers. Experimental result shows that the COP (Coefficient of Performance) of the evaporately-cooled air-conditioning unit increases by about 28% compared to the conventional air cooled air-conditioning unit. To analyze the heat and mass transfer processes involved in the evaporately-cooled condenser, a detailed theoretical model has been developed based on the fluid flow characteristics of the falling film and the thermodynamic aspect of the evaporation process. Simulated results agree well with experimental data. The numerical model provides new insights into the intrinsic links between operating variables and heat transfer characteristics of water film in evaluating the performance of evaporatively-cooled condenser system. Two heat transfer coefficients, namely, wall to bulk and bulk to interface are introduced and computed from the simulation results under different operating conditions. Finally, the overall heat transfer coefficient for the water film is computed and presented as a function of dimensionless variables which can conveniently be employed by engineers to design and analyze high performance evaporatively-cooled heat exchangers. - Highlights: • Performance of evaporatively-cooled condenser is investigated. • Local convective heat transfer coefficients of water film are determined. • Thermal resistance of water film is negligible. • Heat transfer with evaporated vapor plays significant role on performance. • Better condenser performance translates to an improvement in COP

  16. Experimental investigation of gas turbine airfoil aerodynamic performance without and with film cooling in an annular sector cascade

    Energy Technology Data Exchange (ETDEWEB)

    Wiers, S.H.

    2002-02-01

    The steady growing of industrialization, the densification of the anthroposphere, the increasing concern over the effects of gas turbine cruise emissions on the atmosphere threaten the growth of air transportation, and the perception about the possible climatic impact of CO{sub 2} emissions causes a public distinctive sense of responsibility. The conventional energy production techniques, which are based on fossil fuel, will keep its central importance within the global energy production. Forecasts about the increasing air transportation give duplication in the next 10-15 years. The optimization of the specific fuel consumption is necessary to decrease the running costs and the pollution emissions in the atmosphere, which makes an increased process efficiency of stationary turbines as well as of jet engines essential. This leads to the necessity of an increased thermodynamic efficiency of the overall process and the optimization of the aerodynamic components. Due to the necessity of more detailed three-dimensional data on the behavior of film cooled blades an annular sector cascade turbine test facility has gone into service. The annular sector cascade facility is a relative cost efficient solution compared to a full annular facility to investigate three-dimensional effects on a non cooled and cooled turbine blade. The aerodynamic investigations on the annular sector cascade facility are part of a broad perspective where experimental data from a hot annular sector cascade facility and the cold annular sector facility are used to verify, calibrate and understand the physics for both internal and external calculation methods for flow and heat transfer prediction. The objective of the present study is the design and validation of a cold flow annular sector cascade facility, which meets the flow conditions in a modem turbine as close as possible, with emphasis on achieving periodic flow conditions. The first part of this study gives the necessary background on this

  17. Radiotherapy film densitometry using a slow-scan, cooled, digital CCD imaging system

    International Nuclear Information System (INIS)

    Burch, S.E.

    1993-01-01

    A method of performing high-resolution two-dimensional film densitometry for full size radiographic film (35 x 43 cm) using a cooled CCD camera was proposed. Studies were performed to evaluate the physical characteristics of the camera system and recommendations were made to assure maximum accuracy of density measurement. Test films of various sizes and densities, as well as clinical dosimetry films, were measured with the CCD densitometer and the reference transmission densitometer. The measured densities agreed within the stated accuracy of the transmission densitometer for all films with maximum density less than or equal to 1.5 optical density units. The 0.2 mm spatial resolution with 4096 shades of gray made it possible to study dose distributions even for films containing areas of high dose gradients. Patient verification radiographs were used to study exit beam dose distributions to detect errors in beam placement, patient position, and proper placement of beam modifying devices such as wedges and compensators. For studying photon beam dose distributions within phantoms, a method was developed using lead foils placed lateral to the film plane to filter very low energy scattered photons. The error in measurement of central axis percentage depth dose from film for 4 MV x-rays, 25 x 25 cm field was decreased from 65% to 4%. The method requires only two calibration films for density to dose conversion and represents an important advance in the field of film densitometry for radiotherapy. The technique was applied to the study of dynamic wedge dose distribution from a 6 MV linear accelerator. The phantom modification decreased the error in percentage depth dose from 21% to 1% for the 15 x 15 cm beam with 60 degree wedge angle. Profile off-axis errors for the same beam were decreased from 8% to 3%. The film dosimetry system provides fast, high resolution film density data for use in radiotherapy imaging and quality assurance

  18. Cooling Requirements for the Ultra-Compact Combustor

    Science.gov (United States)

    2012-03-01

    are listed below. • Establish a baseline model and investigate where reactions will occur • Apply film-cooling technolgies and analyze cooling...REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 The public reporting burden for this collection of information is estimated to average 1...completing and reviewing the collection of information . Send comments regarding this burden estimate or any other aspect of this collection of information

  19. A review of thermoelectric cooling: Materials, modeling and applications

    International Nuclear Information System (INIS)

    Zhao, Dongliang; Tan, Gang

    2014-01-01

    This study reviews the recent advances of thermoelectric materials, modeling approaches, and applications. Thermoelectric cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes. In this study, historical development of thermoelectric cooling has been briefly introduced first. Next, the development of thermoelectric materials has been given and the achievements in past decade have been summarized. To improve thermoelectric cooling system's performance, the modeling techniques have been described for both the thermoelement modeling and thermoelectric cooler (TEC) modeling including standard simplified energy equilibrium model, one-dimensional and three-dimensional models, and numerical compact model. Finally, the thermoelectric cooling applications have been reviewed in aspects of domestic refrigeration, electronic cooling, scientific application, and automobile air conditioning and seat temperature control, with summaries for the commercially available thermoelectric modules and thermoelectric refrigerators. It is expected that this study will be beneficial to thermoelectric cooling system design, simulation, and analysis. - Highlights: •Thermoelectric cooling has great prospects with thermoelectric material's advances. •Modeling techniques for both thermoelement and TEC have been reviewed. •Principle thermoelectric cooling applications have been reviewed and summarized

  20. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  1. Film cooling effects on the tip flow characteristics of a gas turbine blade

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-03-01

    Full Text Available An experimental investigation of the tip flow characteristics between a gas turbine blade tip and the shroud was conducted by a pressure-test system and a particle image velocimetry (PIV system. A three-times scaled profile of the GE-E3 blade with five film cooling holes was used as specimen. The effects on flow characteristics by the rim width and the groove depth of the squealer tip were revealed. The rim widths were (a 0.9%, (b 2.1%, and (c 3.0% of the axial chord, and the groove depths were (a 2.8%, (b 4.8%, and (c 10% of the blade span. Several pressure taps on the top plate above the blades were connected to pressure gauges. By a CCD camera the PIV system recorded the velocity field around the leading edge zone including the five cooling holes. The flow distributions both in the tip clearance and in the passage were revealed, and the influence of the inlet velocity was determined. In this work, the tip flow characteristics with and without film cooling were investigated. The effects of different global blowing ratios of M=0.5, 1.0, 1.3 and 2.5 were established. It was found that decreasing the rim width resulted in a lower mass flow rate of the leakage flow, and the pressure distributions from the leading edge to the trailing edge showed a linearly increasing trend. It was also found that if the inlet velocity was less than 1.5 m/s, the flow field in the passage far away from the suction side appeared as a stagnation zone.

  2. Toward Cooling Uniformity: Investigation of Spiral, Sweeping Holes, and Unconventional Cooling Paradigms

    Science.gov (United States)

    Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.

    2018-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.

  3. A simplified model of Passive Containment Cooling System in a CFD code

    International Nuclear Information System (INIS)

    Jiang, X.W.; Studer, E.; Kudriakov, S.

    2013-01-01

    Highlights: ► We have built a condensing model using Navier–Stokes equations in CAST3M code. ► We have done a benchmark work on the condensing model using the COPAIN tests data. ► We have built an evaporating model according to Aiello's model in CAST3M code. ► We used Kang and Park's film evaporation tests data to validate the model. ► An integrated model was derived by coupling two individual models with a steel plate. -- Abstract: In this paper, we built up a simplified model of the Passive Containment Cooling System in a CFD code, including a steel plate, a condensing channel and an evaporating channel. In the inner side of the plate, the condensing channel is supposed to be the source of heat transfer into the steel plate. Along the outer side, an evaporating falling film is used to extract the heat from the steel plate. Upward flow of air is also considered along the evaporating film. In the condensing channel, a flow solver based on an asymptotic model of the Navier–Stokes equations at the low Mach number regime and two turbulence models (Buleev's model and Chien's k–ε model) are considered. The condensing channel model was used to model the COPAIN test, the computed heat flux and condensation rate were compared with the experimental data. In the evaporating channel, a simplified model developed by Aiello and Ciofalo (2009) was used, which considered the heat and mass balance between the falling film and the ascending air flow. The model was validated for two cases: a dry wall case and a completely wet wall case. In the former case, the results were compared with 2D predictions obtained by using the CFX-4 CFD code. In the latter case, the results were compared with experimental data obtained by Kang and Park. The comparison showed a satisfactory agreement on heat transfer rates, despite some overprediction depending on the air velocity. At the end, the condensing channel model and the evaporating channel model were coupled by the steel plate

  4. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  5. Development of the Glenn-HT Computer Code to Enable Time-Filtered Navier-Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    Science.gov (United States)

    Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Philip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations which are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminarturbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes which take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-HT code and applied to film cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30 holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and four blowing ratios of 0.5, 1.0, 1.5 and 2.0 are shown. Flow features under those conditions are also described.

  6. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  7. Effect of cooling rate on the structure and properties of thick films of YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Li, S.R.; Oleinikov, N.N.; Gas'kov, A.M.

    1993-01-01

    A problem associated with the production of quality films is chemical interaction of the HTSC material with the substrate. This leads to a considerable worsening or complete loss of the superconducting properties of a functional material. A second problem is selection of a substrate whose thermal expansion coefficient (TCE) is as close as possible to the TCE of the superconducting material. Omission of this condition leads to production of a HTSC material which is subject to perturbing mechanical stresses (compressive or tensile stress), and this is a potential cause of the reduction of the functional parameters of the material. The authors note that other substrate requirements should be considered only during production of thin films. Unfortunately, the production of quality thick films is apparently not worked out with resolution of the latter two problems. It is very important in production of HTSC materials to consider the rate of cooling at the moment of formation of the orthorhombic phase (in the following, the tetragonal-orthorhombic transition). Undesirable relaxation can be avoided if the cooling rate is lowered below some critical value. According to the computations, this problem is solved most successfully in HTSC materials of the composition YBa 2 Cu 3 O 7-x if their ceramic structure consists of crystallites whose size does not exceed 1-2 μm. The goal of this work is to elucidate the effect of the cooling rate of thick films of composition YBa 2 Cu 3 O 7-x in the temperature range corresponding to transition of the tetragonal to the orthorhombic phase on their structure and properties

  8. Measurements of 3D velocity and scalar field for a film-cooled airfoil trailing edge

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Michael J.; Elkins, Christopher J.; Eaton, John K. [Stanford University, Department of Mechanical Engineering, Stanford, CA (United States)

    2011-08-15

    The 3D velocity and concentration fields have been measured for flow in a pressure side cutback trailing edge film cooling geometry consisting of rectangular film cooling slots separated by tapered lands. The velocity field was measured using conventional magnetic resonance velocimetry, and the concentration distribution was measured with a refined magnetic resonance concentration technique that yields experimental uncertainties for the concentration between 5 and 6%. All experiments were performed in water. A separation bubble behind the slot lip entrains coolant and promotes rapid turbulent mixing at the upper edge of the coolant jet. Vortices from inside the slot feed channel and on the upper sides of the lands rapidly distort the initially rectangular shape of the coolant stream and sweep mainstream flow toward the airfoil surface. The vortices also prevent any coolant from reaching the upper surfaces of the land. At the trailing edge, a second separation region exists in the blunt trailing edge wake. The flow forms suction side streaks behind the land tips, as well as streaks behind the slot centers on the pressure side. The peak coolant concentrations in the streaks remain above 25% through the end of the measurement domain, over 30 slot heights downstream. (orig.)

  9. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  10. Study on dew point evaporative cooling system with counter-flow configuration

    International Nuclear Information System (INIS)

    Lin, J.; Thu, K.; Bui, T.D.; Wang, R.Z.; Ng, K.C.; Chua, K.J.

    2016-01-01

    Highlights: • Numerical model for a dew point evaporative cooler verified with experiments. • Saturation point of the working air is independent of the inlet air conditions. • The intensity of cooling capacity and water evaporation are studied. • The overall heat transfer coefficient for the working air is analyzed. • The conditions to achieve sub-wet bulb cooling are examined. - Abstract: Dew point evaporative cooling has great potential as a disruptive process for sensible cooling of air below its entering wet bulb temperature. This paper presents an improved mathematical model for a single-stage dew point evaporative cooler in a counter-flow configuration. Longitudinal heat conduction and mass diffusion of the air streams, channel plate and water film, as well as the temperature difference between the plate and water film, are accounted for in the model. Predictions of the product air temperature are validated using three sets of experimental data within a discrepancy of 4%. The cooler’s heat and mass transfer process is analyzed in terms of its cooling capacity intensity, water evaporation intensity, and overall heat transfer coefficient along the channel. Parametric studies are conducted at different geometric and operating conditions. For the conditions evaluated, the study reveals that (1) the saturation point of the working air occurs at a fixed point regardless of the inlet air conditions, and it is mainly influenced by the working air ratio and channel height; (2) the intensity of the water evaporation approaches a minimum at 0.2 to 0.3 m from the entrance; (3) the wet channel can be separated into two zones, and the overall heat transfer coefficient is above 100 W/(m"2·K) after the temperature of water film becomes higher than the working air temperature.

  11. Westinghouse-GOTHIC comparisons to AP600 passive containment cooling tests

    International Nuclear Information System (INIS)

    Kennedy, M.D.; Woodcock, J.; Gresham, J.A.

    1994-01-01

    Westinghouse-GOTHIC is a thermal-hydraulics code well suited to analyzing passively cooled containments which depend on heat removal primarily through the containment shell. The code includes boundary layer heat and mass transfer correlations. A liquid film convective energy transport model has been added to the Westinghouse-GOTHIC code to account for the sensible heat change of the applied exterior water. The objective of this paper is to compare the code's predictions of the AP600 large scale test facility with and without the liquid film convective energy transport model. The predicted vessel pressure and integrated heat rate with and without the film convective energy transport model will be compared to the measured data. (author)

  12. Convective Heat Transfer with and without Film Cooling in High Temperature, Fuel Rich and Lean Environments

    Science.gov (United States)

    2014-09-01

    Figure 3.2: Control panel used in experimental facility the controller throttles a solenoid valve until the desired flow rate is achieved. Finally...test objectives. Namely, quartz windows enabled visual spectrum images or laser diagnostics of reacting film cooling layers. Additionally, a sapphire...rate by a solenoid which throttled a valve restrict the flow appropriately. To measure the flow, the controllers pass the bulk flow through a

  13. Modeling conductive cooling for thermally stressed dairy cows.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin; Perano, K

    2016-02-01

    Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  15. Hydrodynamic stability of thermoviscous liquid film inside a rotating horizontal cylinder: Heating and cooling effects

    Science.gov (United States)

    Kumawat, Tara Chand; Tiwari, Naveen

    2018-03-01

    Steady two-dimensional solutions and their stability analysis are presented for thin film of a thermoviscous liquid flowing inside a cylinder rotating about its horizontal axis. The inner surface of the cylinder is either uniformly hotter or colder than the enveloping air. The mass, momentum, and energy equations are simplified using thin-film approximation. The analytically obtained film thickness evolution equation consists of various dimensionless parameters such as gravitational number, Bond number, Biot number, thermoviscosity number, and Marangoni number. The viscosity of the liquid is considered as an exponential function of temperature. The viscosity increases (decreases) within the film thickness away from the inner surface of the cylinder when the surface is uniformly hotter (colder) than the atmosphere. For hotter (colder) surface, the film thickness on the rising side decreases (increases) when convective heat transfer at the free surface is increased. The surface tension gradient at the free surface generates Marangoni stress that has a destabilizing (stabilizing) effect on the thin film flow in the case of a hotter (colder) cylinder. The thermoviscosity number stabilizes (destabilizes) the flow on a heating (cooling) surface and this effect increases with an increase in the heat transfer at the free surface. For a hotter surface and in the presence of Marangoni stress, the convective heat transfer at the interface has the destabilizing effect for small values of the Biot number and assumes a stabilizing role for larger values. Non-linear simulations show consistency with the linear stability analysis.

  16. Model-based energy monitoring and diagnosis of telecommunication cooling systems

    International Nuclear Information System (INIS)

    Sorrentino, Marco; Acconcia, Matteo; Panagrosso, Davide; Trifirò, Alena

    2016-01-01

    A methodology is proposed for on-line monitoring of cooling load supplied by Telecommunication (TLC) cooling systems. Sensible cooling load is estimated via a proportional integral controller-based input estimator, whereas a lumped parameters model was developed aiming at estimating air handling units (AHUs) latent heat load removal. The joint deployment of above estimators enables accurate prediction of total cooling load, as well as of related AHUs and free-coolers energy performance. The procedure was then proven effective when extended to cooling systems having a centralized chiller, through model-based estimation of a key performance metric, such as the energy efficiency ratio. The results and experimental validation presented throughout the paper confirm the suitability of the proposed procedure as a reliable and effective energy monitoring and diagnostic tool for TLC applications. Moreover, the proposed modeling approach, beyond its direct contribution towards smart use and conservation of energy, can be fruitfully deployed as a virtual sensor of removed heat load into a variety of residential and industrial applications. - Highlights: • Accurate cooling load prediction in telecommunication rooms. • Development of an input-estimator for sensible cooling load simulation. • Model-based estimation of latent cooling load. • Model-based prediction of centralized chiller energy performance in central offices. • Diagnosis-oriented application of proposed cooling load estimator.

  17. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  18. Film models for transport phenomena with fog formation: The classical film model

    NARCIS (Netherlands)

    Brouwers, Jos; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  19. Film models for transport phenomena with fog formation: the classical film model

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Chesters, A.K.

    1992-01-01

    In the present analysis the classical film model (or film theory) is reviewed and extended. First, on the basis of a thorough analysis, the governing equations of diffusion, energy and momentum of a stagnant film are derived and solved. Subsequently, the well-known correction factors for the effect

  20. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.

  1. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle

    International Nuclear Information System (INIS)

    Sanjay; Singh, Onkar; Prasad, B.N.

    2008-01-01

    A comparative study of the influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle power plant is presented. Seven schemes involving air and steam as coolants under open and closed loop cooling techniques have been studied. The open loop incorporates the internal convection, film and transpiration cooling techniques. Closed loop cooling includes only internal convection cooling. It has been found that closed loop steam cooling offers more specific work and consequently gives higher value of plant efficiency of about 60%, whereas open loop transpiration steam cooling, open loop steam internal convection cooling, transpiration air cooling, film steam cooling, film air, and internal convection air cooling have been found to yield lower values of plant efficiency in decreasing order as compared to closed loop steam cooling

  2. Development of the Glenn Heat-Transfer (Glenn-HT) Computer Code to Enable Time-Filtered Navier-Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    Science.gov (United States)

    Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.

  3. Development of the Glenn-Heat-Transfer (Glenn-HT) Computer Code to Enable Time-Filtered Navier Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    Science.gov (United States)

    Ameri, Ali A.; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.

  4. Study on dew point evaporative cooling system with counter-flow configuration

    KAUST Repository

    Lin, J.

    2015-12-18

    Dew point evaporative cooling has great potential as a disruptive process for sensible cooling of air below its entering wet bulb temperature. This paper presents an improved mathematical model for a single-stage dew point evaporative cooler in a counter-flow configuration. Longitudinal heat conduction and mass diffusion of the air streams, channel plate and water film, as well as the temperature difference between the plate and water film, are accounted for in the model. Predictions of the product air temperature are validated using three sets of experimental data within a discrepancy of 4%. The cooler’s heat and mass transfer process is analyzed in terms of its cooling capacity intensity, water evaporation intensity, and overall heat transfer coefficient along the channel. Parametric studies are conducted at different geometric and operating conditions. For the conditions evaluated, the study reveals that (1) the saturation point of the working air occurs at a fixed point regardless of the inlet air conditions, and it is mainly influenced by the working air ratio and channel height; (2) the intensity of the water evaporation approaches a minimum at 0.2 to 0.3m from the entrance; (3) the wet channel can be separated into two zones, and the overall heat transfer coefficient is above 100W/(m2·K) after the temperature of water film becomes higher than the working air temperature.

  5. Prediction of Film Cooling Effectiveness on a Gas Turbine Blade Leading Edge Using ANN and CFD

    Science.gov (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Huicochea, A.; De Santiago, O.

    2018-05-01

    In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.

  6. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    Science.gov (United States)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  7. A device for emergency cooling visualization

    International Nuclear Information System (INIS)

    Rezende, Hugo Cesar; Ladeira, Luiz Carlos Duarte

    1995-01-01

    A test facility for rewetting experiments, Emergency Cooling Visualization Device, has been erected at CDTN, with the objective of Emergency Cooling visualization device performing visual observations of basic phenomena that occur during the reflood phase of a Loss of Coolant Accident (LOCA), in a Pressurised Water Reactor (PWR), utilizing annular test sections. It permits to film or photograph the advance of a wetting front and the flow and heat transfer conditions. Then it is possible to observe the heat transfer regions and flow zones: steam convection, fog cooling, film boiling, nucleate boiling and fluid convection. Finally, this facility is the first test facility, in the Thermohydraulics Laboratory of CDTN, that uses a indirectly heated fuel rod simulator. (author). 3 refs, 5 figs

  8. Airfoil, platform, and cooling passage measurements on a rotating transonic high-pressure turbine

    Science.gov (United States)

    Nickol, Jeremy B.

    An experiment was performed at The Ohio State University Gas Turbine Laboratory for a film-cooled high-pressure turbine stage operating at design-corrected conditions, with variable rotor and aft purge cooling flow rates. Several distinct experimental programs are combined into one experiment and their results are presented. Pressure and temperature measurements in the internal cooling passages that feed the airfoil film cooling are used as boundary conditions in a model that calculates cooling flow rates and blowing ratio out of each individual film cooling hole. The cooling holes on the suction side choke at even the lowest levels of film cooling, ejecting more than twice the coolant as the holes on the pressure side. However, the blowing ratios are very close due to the freestream massflux on the suction side also being almost twice as great. The highest local blowing ratios actually occur close to the airfoil stagnation point as a result of the low freestream massflux conditions. The choking of suction side cooling holes also results in the majority of any additional coolant added to the blade flowing out through the leading edge and pressure side rows. A second focus of this dissertation is the heat transfer on the rotor airfoil, which features uncooled blades and blades with three different shapes of film cooling hole: cylindrical, diffusing fan shape, and a new advanced shape. Shaped cooling holes have previously shown immense promise on simpler geometries, but experimental results for a rotating turbine have not previously been published in the open literature. Significant improvement from the uncooled case is observed for all shapes of cooling holes, but the improvement from the round to more advanced shapes is seen to be relatively minor. The reduction in relative effectiveness is likely due to the engine-representative secondary flow field interfering with the cooling flow mechanics in the freestream, and may also be caused by shocks and other

  9. Magnetization Controlled Superconductivity in a Film with Magnetic Dots

    International Nuclear Information System (INIS)

    Lyuksyutov, I.F.; Pokrovsky, V.; Pokrovsky, V.

    1998-01-01

    We consider a superconducting film with a magnetic dots array (MDA) placed upon it. Magnetic moments of the dots are normal to the film and strong enough to create vortices in the superconducting film. Magnetic interaction between dots is negligible. Zero-field cooling leads to random magnetization of the MDA well above the superconducting temperature. With this cooling, the film is in a resistive state below the (expected) superconducting transition. Paradoxically, when field cooled, the film with MDA can be superconducting. copyright 1998 The American Physical Society

  10. A simplified model of dynamic interior cooling load evaluation for office buildings

    International Nuclear Information System (INIS)

    Ding, Yan; Zhang, Qiang; Wang, Zhaoxia; Liu, Min; He, Qing

    2016-01-01

    Highlights: • The core interior disturbance was determined by principle component analysis. • Influences of occupants on cooling load should be described using time series. • A simplified model was built to evaluate dynamic interior building cooling load. - Abstract: Predicted cooling load is a valuable tool for assessing the operation of air-conditioning systems. Compared with exterior cooling load, interior cooling load is more unpredictable. According to principle components analysis, occupancy was proved to be a typical factor influencing interior cooling loads in buildings. By exploring the regularity of interior disturbances in an office building, a simplified evaluation model for interior cooling load was established in this paper. The stochastic occupancy rate was represented by a Markov transition model. Equipment power, lighting power and fresh air were all related to occupancy rate based on time sequence. The superposition of different types of interior cooling loads was also considered in the evaluation model. The error between the evaluation results and measurement results was found to be lower than 10%. In reference to the cooling loads calculated by the traditional design method and area-based method in case study office rooms, the evaluated cooling loads were suitable for operation regulation.

  11. Evolution of the thickness of the aluminum oxide film due to the pH of the cooling water and surface temperature of the fuel elements clad of a nuclear reactor

    International Nuclear Information System (INIS)

    Babiche, Ivan

    2013-01-01

    This paper describes the mechanism of growth of a film of aluminum oxide on an alloy of the same material, which serves as a protective surface being the constituent material of the RP-10 nuclear reactor fuel elements clads. The most influential parameters on the growth of this film are: the pH of the cooling water and the clad surface temperature of the fuel element. For this study, a mathematical model relating the evolution of the aluminum oxide layer thickness over the time, according to the same oxide film using a power law is used. It is concluded that the time of irradiation, the heat flux at the surface of the aluminum material, the speed of the coolant, the thermal conductivity of the oxide, the initial thickness of the oxide layer and the solubility of the protective oxide are parameters affecting in the rate and film formation. (author).

  12. Transpiration and film cooling boundary layer computer program. Volume 1: Numerical solutions of the turbulent boundary layer equations with equilibrium chemistry

    Science.gov (United States)

    Levine, J. N.

    1971-01-01

    A finite difference turbulent boundary layer computer program has been developed. The program is primarily oriented towards the calculation of boundary layer performance losses in rocket engines; however, the solution is general, and has much broader applicability. The effects of transpiration and film cooling as well as the effect of equilibrium chemical reactions (currently restricted to the H2-O2 system) can be calculated. The turbulent transport terms are evaluated using the phenomenological mixing length - eddy viscosity concept. The equations of motion are solved using the Crank-Nicolson implicit finite difference technique. The analysis and computer program have been checked out by solving a series of both laminar and turbulent test cases and comparing the results to data or other solutions. These comparisons have shown that the program is capable of producing very satisfactory results for a wide range of flows. Further refinements to the analysis and program, especially as applied to film cooling solutions, would be aided by the acquisition of a firm data base.

  13. Influence of Stern Shaft Inclination on the Cooling Performance of Water-Lubricated Bearing

    Directory of Open Access Journals (Sweden)

    Zou Li

    2016-01-01

    Full Text Available The water film model of the marine water-lubricated stern bearing was established by FLUENT. The influence law of water flow rate on the cooling performance of water-lubricated bearing was studied in consideration of the stern shaft inclination. It will be helpful to improve the performance of marine water-lubricated stern bearing and both security and reliability of propulsion system. The simulation results show that the increase of cooling water flow rate in a certain range can effectively reduce bearing temperature. The bearing temperature rises sharply with thinning of water film thickness which is caused by the increase of inclination angle. Larger inclination angle can deteriorate the operating reliability of bearing.

  14. Concept of CFD model of natural draft wet-cooling tower flow

    Directory of Open Access Journals (Sweden)

    Hyhlík T.

    2014-03-01

    Full Text Available The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.

  15. Modeling of Direct Contact Wet Cooling Tower in ETRR-2

    International Nuclear Information System (INIS)

    El Khatib, H.H.; Ismail, A.L.; ElRefaie, M.E.

    2008-01-01

    The Egyptian Testing and Research Reactor no.2 (ETRR-2) was commissioned at 1997 with maximum power 22 MW for research purposes; an induced draft wet cooling tower (counter flow type) was putted in operation in 2003 instead of the first one. Investigations are achieved to evaluate cooling tower performance to guarantee that the cooling tower capable to dissipate heat generated in reactor core. Merkel and Poppe analysis was applied to simulate this cooling tower packing. Merkel analysis was applied to predict water outlet temperature from cooling tower and also to show the effect of ambient conditions on this temperature. Poppe analysis was applied to predict Merkel number which evaluate cooling tower. The Runge-Kutta numerical method was applied to solve the differential equations in this model and an engineering equation solver (EES) is the language used to model the cooling tower. This research illustrates that the cooling tower achieves good performance in various sever ambient condition at maximum operating condition of reactor power. The results show that at severe summer condition of wet bulb temperature equals 24 degree c and tower inlet temperature equals 37 degree c, the outlet water temperature equals 30.4 degree c from cooling tower, while the Merkel number is be found 1.253

  16. Scale Modelling of Nocturnal Cooling in Urban Parks

    Science.gov (United States)

    Spronken-Smith, R. A.; Oke, T. R.

    Scale modelling is used to determine the relative contribution of heat transfer processes to the nocturnal cooling of urban parks and the characteristic temporal and spatial variation of surface temperature. Validation is achieved using a hardware model-to-numerical model-to-field observation chain of comparisons. For the calm case, modelling shows that urban-park differences of sky view factor (s) and thermal admittance () are the relevant properties governing the park cool island (PCI) effect. Reduction in sky view factor by buildings and trees decreases the drain of longwave radiation from the surface to the sky. Thus park areas near the perimeter where there may be a line of buildings or trees, or even sites within a park containing tree clumps or individual trees, generally cool less than open areas. The edge effect applies within distances of about 2.2 to 3.5 times the height of the border obstruction, i.e., to have any part of the park cooling at the maximum rate a square park must be at least twice these dimensions in width. Although the central areas of parks larger than this will experience greater cooling they will accumulate a larger volume of cold air that may make it possible for them to initiate a thermal circulation and extend the influence of the park into the surrounding city. Given real world values of s and it seems likely that radiation and conduction play almost equal roles in nocturnal PCI development. Evaporation is not a significant cooling mechanism in the nocturnal calm case but by day it is probably critical in establishing a PCI by sunset. It is likely that conditions that favour PCI by day (tree shade, soil wetness) retard PCI growth at night. The present work, which only deals with PCI growth, cannot predict which type of park will be coolest at night. Complete specification of nocturnal PCI magnitude requires knowledge of the PCI at sunset, and this depends on daytime energetics.

  17. ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    D. V. Yevdulov

    2016-01-01

    Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient. 

  18. Statistical multi-model approach for performance assessment of cooling tower

    International Nuclear Information System (INIS)

    Pan, Tian-Hong; Shieh, Shyan-Shu; Jang, Shi-Shang; Tseng, Wen-Hung; Wu, Chan-Wei; Ou, Jenq-Jang

    2011-01-01

    This paper presents a data-driven model-based assessment strategy to investigate the performance of a cooling tower. In order to achieve this objective, the operations of a cooling tower are first characterized using a data-driven method, multiple models, which presents a set of local models in the format of linear equations. Satisfactory fuzzy c-mean clustering algorithm is used to classify operating data into several groups to build local models. The developed models are then applied to predict the performance of the system based on design input parameters provided by the manufacturer. The tower characteristics are also investigated using the proposed models via the effects of the water/air flow ratio. The predicted results tend to agree well with the calculated tower characteristics using actual measured operating data from an industrial plant. By comparison with the design characteristic curve provided by the manufacturer, the effectiveness of cooling tower can be obtained in the end. A case study conducted in a commercial plant demonstrates the validity of proposed approach. It should be noted that this is the first attempt to assess the cooling efficiency which is deviated from the original design value using operating data for an industrial scale process. Moreover, the evaluated process need not interrupt the normal operation of the cooling tower. This should be of particular interest in industrial applications.

  19. PIV and Rotational Raman-Based Temperature Measurements for CFD Validation in a Single Injector Cooling Flow

    Science.gov (United States)

    Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.

    2018-01-01

    Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.

  20. Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow

    International Nuclear Information System (INIS)

    Fu Jia; Yi Shi-He; Wang Xiao-Hu; He Lin; Ge Yong

    2014-01-01

    The experimental study focuses on the heat flux on a double cone blunt body in the presence of tangential-slot supersonic injection into hypersonic flow. The tests are conducted in a contoured axisymmetric nozzle with Mach numbers of 7.3 and 8.1, and the total temperature is about 900 K. The injection Mach number is 3.2, and total temperature is 300 K. A constant voltage circuit is developed to supply the temperature detectors instead of the normally used constant current circuit. The schlieren photographs are presented additionally to visualize the flow and help analyze the pressure relationship between the cooling flow and the main flow. The dependence of the film-cooling effectiveness on flow parameters, i.e. the blow ratio, the convective Mach number, and the attack angle, is determined. A semi-empirical formula is tested by the present data, and is improved for a better correlation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  2. Development of the interactive model between Component Cooling Water System and Containment Cooling System using GOTHIC

    International Nuclear Information System (INIS)

    Byun, Choong Sup; Song, Dong Soo; Jun, Hwang Yong

    2006-01-01

    In a design point of view, component cooling water (CCW) system is not full-interactively designed with its heat loads. Heat loads are calculated from the CCW design flow and temperature condition which is determined with conservatism. Then the CCW heat exchanger is sized by using total maximized heat loads from above calculation. This approach does not give the optimized performance results and the exact trends of CCW system and the loads during transient. Therefore a combined model for performance analysis of containment and the component cooling water(CCW) system is developed by using GOTHIC software code. The model is verified by using the design parameters of component cooling water heat exchanger and the heat loads during the recirculation mode of loss of coolant accident scenario. This model may be used for calculating the realistic containment response and CCW performance, and increasing the ultimate heat sink temperature limits

  3. Cooling methods for power plants

    International Nuclear Information System (INIS)

    Gaspersic, B.; Fabjan, L.; Petelin, S.

    1977-01-01

    There are some results of measurements carried out on the wet cooling tower 275 MWe at TE Sostanj and on the experimental cooling tower at Jozef Stefan Institute, as well. They are including: the measurements of the output air conditions, the measurements of the cross current of water film and vapour-air flowing through two plates, and the distribution of velocity in boundary layer measured by anemometer

  4. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  5. Nucleation behavior of melted Bi films at cooling rates from 101 to 104 K/s studied by combining scanning AC and DC nano-calorimetry techniques

    International Nuclear Information System (INIS)

    Xiao, Kechao; Vlassak, Joost J.

    2015-01-01

    Highlights: • We proposed a general data reduction scheme that combines scanning AC and DC calorimetry results for the study of reaction kinetics. • Calorimetry measurements at cooling rates ranging from 30 K/s to 20,000 K/s were achieved. • Upon initial melting, the Bi thin-film sample breaks up into thousands of isolated islands, and highly repeatable nucleation behavior is observed. • The nucleation rate of melted Bi is calculated, which can be well described by classical nucleation theory over a wide range of cooling rates. - Abstract: We study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 10 1 to 10 4 K/s using a combination of scanning DC and AC nano-calorimetry techniques. Upon initial melting, the Bi thin-film sample breaks up into silicon nitride-coated isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials

  6. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    Science.gov (United States)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  7. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  8. Peltier cooling and onsager reciprocity in ferromagnetic thin films.

    Science.gov (United States)

    Avery, A D; Zink, B L

    2013-09-20

    We present direct measurements of the Peltier effect as a function of temperature from 77 to 325 K in Ni, Ni(80)Fe(20), and Fe thin films made using a suspended Si-N membrane structure. Measurement of the Seebeck effect in the same films allows us to directly test predictions of Onsager reciprocity between the Peltier and Seebeck effects. The Peltier coefficient Π is negative for both Ni and Ni(80)Fe(20) films and positive for the Fe film. The Fe film also exhibits a peak associated with the magnon drag Peltier effect. The observation of magnon drag in the Fe film verifies that the coupling between the phonon, magnon, and electron systems in the film is the same whether driven by heat current or charge current. The excellent agreement between Π values predicted using the experimentally determined Seebeck coefficient for these films and measured values offers direct experimental confirmation of the Onsager reciprocity between these thermoelectric effects in ferromagnetic thin films near room temperature.

  9. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...... and CO2 emissions. The electricity consumption for auxiliaries in the DDC system is higher than in the chiller-based systems. The number of commercial-size DPC units required to cover the cooling load during the whole period is high: 8 in Copenhagen and 12 in Venice....

  10. Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Method and model development

    International Nuclear Information System (INIS)

    Yuan, Yanping; Gao, Xiangkui; Wu, Hongwei; Zhang, Zujin; Cao, Xiaoling; Sun, Liangliang; Yu, Nanyang

    2017-01-01

    The traditional cooling methods cannot meet the requirements of safety, stability, reliability and no-power at the same time under some special circumstances. In this study, a new coupled cooling method of Latent Heat Thermal Energy Storage (LHTES) combined with Pre-cooling of Envelope (PE) is proposed and the numerical model of the coupled cooling method is developed. In the current study, a refuge chamber is selected as a case study. A semi-analytical method is used to analyze the cold storage performance of the Surrounding Rock (SR). Afterwards, a numerical model of the coupled cooling system, which takes the heat source, SR, Phase Change Material (PCM) and air heat transfer into consideration, is further established. The study identified that the simplified semi-analytical calculation formula with the diagram of the cold storage quantity of SR are very helpful for engineering calculation. The influence of the Fourier and Biot number on the cold storage capacity of SR can be easily analyzed. In addition, the whole-field model of the coupled cooling system is completely developed based on the PCM unit. - Highlights: • A new coupled cooling method that combines LHTES with PE is proposed. • This method can be applicable to a high-temperature and no-power circumstance. • The simplified calculation formula of the cold storage quantity of SR is given. • An efficient simulation model of the coupled cooling system is established.

  11. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  12. The transfer function model for dynamic response of wet cooling coils

    International Nuclear Information System (INIS)

    Yao Ye; Liu Shiqing

    2008-01-01

    This paper mainly concerned about the dynamic response model of wet cooling coils that is developed by the Laplace transform method. The theoretic equations are firstly established based on the theory of energy conservation. Then, the transfer functions on the transient responses of wet cooling coils have been deduced using the method of Laplace transform. The transfer functions reveal the dynamic relationships between the inlet variables and the outlet ones of the cooling coils. Partial-fraction method and Newton-Raphson method are both used in the inversion of the transfer functions from the s-domain to τ-domain. To make the dynamic model of wet cooling coils more adaptive, RBFNN method is employed to determine the coefficients of heat and mass transfer. Experiments have been done and manifested that the coefficients of heat and mass transfer by RBFNN will be of great value to the validity of the transient response model of wet cooling coils in this study

  13. Modelling the performance parameters of a horizontal falling film absorber with aqueous (lithium, potassium, sodium) nitrate solution using artificial neural networks

    International Nuclear Information System (INIS)

    Álvarez, María E.; Hernández, José A.; Bourouis, Mahmoud

    2016-01-01

    An ANN (artificial neural network) model was developed to determine the efficiency parameters of a horizontal falling film absorber at operating conditions of interest for absorption cooling systems. The aqueous nitrate solution LiNO_3 + KNO_3 + NaNO_3 with salt mass percentages of 53%, 28% and 19%, respectively, was used as a working fluid. The authors created the ANN from the database they had compiled with the results of experiments that they had performed in a set-up designed and built for this purpose. The ANN structure consisted of 6 input variables: inlet solution and cooling water temperatures, cooling water and solution mass flow rates, absorber pressure and inlet solution concentration; 4 output variables which facilitated the assessment of the performance of the absorber: heat and mass transfer coefficients, absorption mass flux and the degree of subcooling of the solution leaving the absorber. The hidden layer contained 9 neurons which were determined by training and test procedures. The results showed that the deviation between the experimental data and the estimated values was well adjusted. This indicated that the ANN model was an effective tool for predicting the efficiency parameters of the absorber. The solution flow rate was also observed to be the most significant operating variable which affected the performance of the absorber. - Highlights: • An ANN was developed to predict the efficiency parameters of a falling film absorber. • The ANN was created using a database corresponding to a triple-effect absorption chiller. • The ANN predicts the efficiency parameters of falling film absorbers with r"2 > 0.95. • The solution flow rate is the variable that most affects the performance of the absorber.

  14. Dynamic thermo-hydraulic model of district cooling networks

    International Nuclear Information System (INIS)

    Oppelt, Thomas; Urbaneck, Thorsten; Gross, Ulrich; Platzer, Bernd

    2016-01-01

    Highlights: • A dynamic thermo-hydraulic model for district cooling networks is presented. • The thermal modelling is based on water segment tracking (Lagrangian approach). • Thus, numerical errors and balance inaccuracies are avoided. • Verification and validation studies proved the reliability of the model. - Abstract: In the present paper, the dynamic thermo-hydraulic model ISENA is presented which can be applied for answering different questions occurring in design and operation of district cooling networks—e.g. related to economic and energy efficiency. The network model consists of a quasistatic hydraulic model and a transient thermal model based on tracking water segments through the whole network (Lagrangian method). Applying this approach, numerical errors and balance inaccuracies can be avoided which leads to a higher quality of results compared to other network models. Verification and validation calculations are presented in order to show that ISENA provides reliable results and is suitable for practical application.

  15. Determining passive cooling limits in CPV using an analytical thermal model

    Science.gov (United States)

    Gualdi, Federico; Arenas, Osvaldo; Vossier, Alexis; Dollet, Alain; Aimez, Vincent; Arès, Richard

    2013-09-01

    We propose an original thermal analytical model aiming to predict the practical limits of passive cooling systems for high concentration photovoltaic modules. The analytical model is described and validated by comparison with a commercial 3D finite element model. The limiting performances of flat plate cooling systems in natural convection are then derived and discussed.

  16. Mathematical modeling of wiped-film evaporators

    International Nuclear Information System (INIS)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes

  17. Four foot septifoil cooling experiment unrestricted inlet/outlet case

    International Nuclear Information System (INIS)

    Foti, D.J.; Randolph, H.W.; Geiger, G.T.; Verebelyi, D.T.; Wooten, L.A.

    1992-02-01

    The ability to predict the behavior of reactor components to varying coolant flow scenarios constitutes a necessary skill for assessing reactor safety. One tool for performing these calculations is the Transient Reactor Analysis Code (TRAC). In order to benchmark the code, the Safety Analysis Group of SRL requested the Equipment Engineering Section (EES) of SRL to conduct a series of experiments to provide measurements of cooling parameters in a well defined physical system utilizing SRS reactor components. The configuration selected consisted of a short length of septifoil with both top and bottom fittings containing five simulated control rods in an open-quotes unseatedclose quotes configuration. Varying power levels were to be supplied to the rods with 3.5 kilowatts per foot the value targeted for modelling during the computer runs. The septifoil segment was to be operated with no forced flow in order to evaluate thermal-hydraulic cooling. Parameters to be measured for comparison with code predictions were basic cooling phenomena, incidence of film boiling, water flow rate, pressure rise, and ratio of heat transfer through the wall of the assembly vs. heat transfer to axial water flow through the assembly. This report documents testing done with unimpeded flow into and out of the septifoil in order to assess basic cooling phenomena, incidence of film boiling and pressure rise. Previous tests have evaluated water flow rate and the ratio of axial to azimuthal heat transfer

  18. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  19. Two-dimensional modeling of water spray cooling in superheated steam

    Directory of Open Access Journals (Sweden)

    Ebrahimian Vahid

    2008-01-01

    Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .

  20. Evolution of film temperature during magnetron sputtering

    International Nuclear Information System (INIS)

    Shaginyan, L.R.; Han, J.G.; Shaginyan, V.R.; Musil, J.

    2006-01-01

    We report on the results of measurements of the temperature T F surf which developed on the surface of films deposited by magnetron sputtering of chromium and copper targets on cooling and non-cooling silicon substrates. The T F surf and substrate temperature (T s ) were simultaneously measured using high-resolution IR camera and thermocouple, respectively. We revealed that the T F surf steeply grows, keeps constant when it achieves saturation level, and rapidly drops to the value of the T s after stopping the deposition. At the same time, the T s either does not change for the case of cooling substrate or increases to a certain level for noncooling substrate. However, in both cases the T s remains several times lower than the T F surf . The T F surf is proportional to the flux of energy delivered to the growth surface by sputtered atoms and other fast particles, weakly depends on the depositing metal and can achieve several hundreds of deg. C. This phenomenon is explained by a model assuming formation of a hot thin surface layer (HTSL) on the top of the growing film, which exists only during film deposition and exhibits extremely low thermal conductivity. Due to this unique property the temperature T F surf of HTSL is several times higher than the T s . Variations in the T F surf fairly correlate with structure changes of Cr films along thickness investigated in detail previously

  1. MODELING OF HEAT TRANSFER IN A POROUS TURBINE BEARING COOLING SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Genbach

    2017-01-01

    Full Text Available A new porous cooling system in which the coolant supply is produced by the combined action of capillary and gravitational forces is proposed and studied for various technical devices and systems developed by the authors. The cooling surface is made of stainless steel, brass, copper, bronze, nickel, glass and alundum. The wall thickness is (0.05–2.00 ∙ 10⁻³m. Visual observations were carried out by using high-speed camera filming with the use of SCS-1M. Experiments were carried out with water at pressures ranging between 0.01–10.00 MPa, under-heating to 0–20 K, excess liquid of 1–14 of steam flow, thermal load of (1–60 ∙ 104  W/m², temperature pressure of 1–60 K and the system orientation of ±(0–90 degrees. Studies carried out on a model plant has identified two areas of the process of vaporization of the liquid and an influence of operating and design characteristics. The optimal coolant flow and the most effective form of reticulated porous structure are identified. Visual observations have made it possible to describe the physical picture of the processes and to generalize experimental data on the removed heat flows with an accuracy of ±20 % depending on the thermophysical properties of the fluid, wall, temperature difference, excess fluid, porous structures and heat exchange interface.

  2. The Design of Cooling System Model on The AP1000 Containment

    International Nuclear Information System (INIS)

    Daddy Setyawan; Yerri Noer Kartiko; Aryadi Suwono; Ari Darmawan Pasek; Nathanael P Tandian; Efrizon Umar

    2009-01-01

    The policy of national energy leads to the utilization of new energy as nuclear energy, and also contains some efforts to increase reactor safety and optimizing in the design of safety system component such as passive cooling system on reactor containment tank. Because of this, the assessment of safety level to passive safety system needs to be made. To increase the understanding it, the design of cooling system model on containment tank should be done to get safety level on cooling system in the AP1000 containment. To reach the similar model with reality and inexpensive cost, we should make assessment about similarity and dimensionless number. While the heat transfer of air natural circulation and water spray cooling system are a result of gravity approach, we can calculate Grashof modification number and Reynolds number respectively. By this approach, we have a factor of forty for laboratory model. From this model, we hope that we get characteristic correlation to heat transfer on the containment of AP1000 for both air natural circulation and water spray result from gravity. Finally, we can assess the safety level of passive cooling system on the AP1000 containment. (author)

  3. Operational cooling tower model (CTTOOL V1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); LocalDomainServers, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garrett, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translate the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).

  4. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  5. Cooling tower plume - model and experiment

    Science.gov (United States)

    Cizek, Jan; Gemperle, Jiri; Strob, Miroslav; Nozicka, Jiri

    The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  6. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  7. Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method

    International Nuclear Information System (INIS)

    Queiroz, João A.; Rodrigues, Vitor M.S.; Matos, Henrique A.; Martins, F.G.

    2012-01-01

    Highlights: ► Simulation of cooling tower performance under different operating conditions. ► Cooling tower performance is simulated using ASPEN PLUS. ► Levenberg–Marquardt method used to adjust model parameters. ► Air and water outlet temperatures are in good accordance with experimental data. - Abstract: Simulation of cooling tower performance considering operating conditions away from design is typically based on the geometrical parameters provided by the cooling tower vendor, which are often unavailable or outdated. In this paper a different approach for cooling tower modeling based on equilibrium stages and Murphree efficiencies to describe heat and mass transfer is presented. This approach is validated with published data and with data collected from an industrial application. Cooling tower performance is simulated using ASPEN PLUS. Murphree stage efficiency values for the process simulator model were optimized by minimizing the squared difference between the experimental and calculated data using the Levenberg–Marquardt method. The minimization algorithm was implemented in Microsoft Excel with Visual Basic for Applications, integrated with the process simulator (ASPEN PLUS) using Aspen Simulation Workbook. The simulated cooling tower air and water outlet temperatures are in good accordance with experimental data when applying only the outlet water temperature to calibrate the model. The methodology is accurate for simulating cooling towers at different operational conditions.

  8. A photoionization model for the optical line emission from cooling flows

    Science.gov (United States)

    Donahue, Megan; Voit, G. M.

    1991-01-01

    The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.

  9. An analytical model on thermal performance evaluation of counter flow wet cooling tower

    Directory of Open Access Journals (Sweden)

    Wang Qian

    2017-01-01

    Full Text Available This paper proposes an analytical model for simultaneous heat and mass transfer processes in a counter flow wet cooling tower, with the assumption that the enthalpy of the saturated air is a linear function of the water surface temperature. The performance of the proposed analytical model is validated in some typical cases. The validation reveals that, when cooling range is in a certain interval, the proposed model is not only comparable with the accurate model, but also can reduce computational complexity. In addition, with the proposed analytical model, the thermal performance of the counter flow wet cooling towers in power plants is calculated. The results show that the proposed analytical model can be applied to evaluate and predict the thermal performance of counter flow wet cooling towers.

  10. Updating of a finite element model of the Cruas 2 cooling tower

    International Nuclear Information System (INIS)

    Billet, L.

    1994-03-01

    A method based on modal analysis and inversion of a dynamic FEM model is used to detect changes in the dynamic behavior of nuclear plant cooling towers. Prior to detection, it is necessary to build a representative model of the structure. In this paper are given details about the CRUAS N. 2 cooling tower modelling and the updating procedure used to match the model to on-site measurements. First, were reviewed previous numerical and experimental studies on cooling towers vibrations. We found that the first eigenfrequencies of cooling towers are very sensitive to boundary conditions at the top and the bottom of the structure. Then, we built a beam and plate FEM model of the CRUAS N. 2 cooling tower. The first calculated modes were located in the proper frequency band (0.9 Hz - 1.30 Hz) but not distributed according to the experimental order. We decided to update the numerical model with MADMACS, an updating model software. It was necessary to: - decrease the shell stiffness by 30%; - increase the top ring stiffness by 300%; - modify the boundary conditions at the bottom by taking into account the soil impedance. In order to obtain a difference between the measured and the corresponding calculated frequencies less than 1%. The model was then judged to be realistic enough. (author). 23 figs., 13 refs., 1 annex

  11. Cooling tower plume - model and experiment

    Directory of Open Access Journals (Sweden)

    Cizek Jan

    2017-01-01

    Full Text Available The paper discusses the description of the simple model of the, so-called, steam plume, which in many cases forms during the operation of the evaporative cooling systems of the power plants, or large technological units. The model is based on semi-empirical equations that describe the behaviour of a mixture of two gases in case of the free jet stream. In the conclusion of the paper, a simple experiment is presented through which the results of the designed model shall be validated in the subsequent period.

  12. Validation of CFD modeling for VGM loss-of-forced-cooling accidents

    International Nuclear Information System (INIS)

    Wysocki, Aaron; Ahmed, Bobby; Charmeau, Anne; Anghaie, Samim

    2009-01-01

    Heat transfer and fluid flow in the VGM reactor cavity cooling system (RCCS) was modeled using Computational Fluid Dynamics (CFD). The VGM is a Russian modular-type high temperature helium-cooled reactor. In the reactor cavity, heat is removed from the pressure vessel wall through natural convection and radiative heat transfer to water-cooled vertical pipes lining the outer cavity concrete. The RCCS heat removal capability under normal operation and accident scenarios needs to be assessed. The purpose of the present study is to validate the use of CFD to model heat transfer in the VGM RCCS. Calculations were based on a benchmark problem which defines a two-dimensional temperature distribution on the pressure vessel outer wall for both Depressurized and Pressurized Loss-of-Forced Cooling events. A two-dimensional axisymmetric model was developed to determine the best numerical modeling approach. A grid sensitivity study for the air region showed that a 20 mm mesh size with a boundary layer giving a maximum y+ of 2.0 was optimal. Sensitivity analyses determined that the discrete ordinates radiative model, the k-omega turbulence model, and the ideal gas law gave the best combination for capturing radiation and natural circulation in the air cavity. A maximum RCCS pipe wall temperature of 62degC located 6 m from the top of the cavity was predicted. The model showed good agreement with previous results for both Pressurized and Depressurized Loss-of-Forced-Cooling accidents based on RCCS coolant outlet temperature, relative contributions of radiative and convective heat transfer, and RCCS heat load profiles. (author)

  13. Kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    The results of applying a kinetic model to the chlorination data supplied by Commonwealth Edison on the once-through cooling system at the Quad Cities Nuclear Station provide a validation of the model. The two examples given demonstrate that the model may be applied to either once-through cooling systems or to cooling systems involving cooling towers

  14. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  15. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.

    Science.gov (United States)

    Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J

    2000-01-01

    We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.

  16. Modeling growth of Clostridium perfringens in pea soup during cooling

    NARCIS (Netherlands)

    Jong, de A.E.I.; Beumer, R.R.; Zwietering, M.H.

    2005-01-01

    Clostridium perfringens is a pathogen that mainly causes food poisoning outbreaks when large quantities of food are prepared. Therefore, a model was developed to predict the effect of different cooling procedures on the growth of this pathogen during cooling of food: Dutch pea soup. First, a growth

  17. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes...

  18. Testing Numerical Models of Cool Core Galaxy Cluster Formation with X-Ray Observations

    Science.gov (United States)

    Henning, Jason W.; Gantner, Brennan; Burns, Jack O.; Hallman, Eric J.

    2009-12-01

    Using archival Chandra and ROSAT data along with numerical simulations, we compare the properties of cool core and non-cool core galaxy clusters, paying particular attention to the region beyond the cluster cores. With the use of single and double β-models, we demonstrate a statistically significant difference in the slopes of observed cluster surface brightness profiles while the cluster cores remain indistinguishable between the two cluster types. Additionally, through the use of hardness ratio profiles, we find evidence suggesting cool core clusters are cooler beyond their cores than non-cool core clusters of comparable mass and temperature, both in observed and simulated clusters. The similarities between real and simulated clusters supports a model presented in earlier work by the authors describing differing merger histories between cool core and non-cool core clusters. Discrepancies between real and simulated clusters will inform upcoming numerical models and simulations as to new ways to incorporate feedback in these systems.

  19. A simplified model of a mechanical cooling tower with both a fill pack and a coil

    Science.gov (United States)

    Van Riet, Freek; Steenackers, Gunther; Verhaert, Ivan

    2017-11-01

    Cooling accounts for a large amount of the global primary energy consumption in buildings and industrial processes. A substantial part of this cooling demand is produced by mechanical cooling towers. Simulations benefit the sizing and integration of cooling towers in overall cooling networks. However, for these simulations fast-to-calculate and easy-to-parametrize models are required. In this paper, a new model is developed for a mechanical draught cooling tower with both a cooling coil and a fill pack. The model needs manufacturers' performance data at only three operational states (at varying air and water flow rates) to be parametrized. The model predicts the cooled, outgoing water temperature. These predictions were compared with experimental data for a wide range of operational states. The model was able to predict the temperature with a maximum absolute error of 0.59°C. The relative error of cooling capacity was mostly between ±5%.

  20. Structure and oxygen incorporation in low pressure sputtered YBCO films

    International Nuclear Information System (INIS)

    Chaudhary, S.; Pandya, D. K.; Kashyap, S. C.

    2002-01-01

    Thin films of YBa 2 Cu 3 O 7- δ (YBCO) have been successfully grown by reactive RF-magnetron sputtering technique at low pressure. The oxygen partial pressure of 0.95 mTorr, a total pressure (argon and oxygen) of 1.9 mTorr, and a substrate temperature of 775 grad C resulted in good quality films with T C (R=0) = 85.3 K and J Cmag (4.2 K) ≅ 2x10 7 A/cm 2 . The incorporation of oxygen in the as-grown films has been controlled by using different ambient - oxygen, air or argon during in-situ cooling. The superconducting behaviour of the films was studied using resistance-temperature and low field ac-susceptibility measurements and correlated with their structure. All the films exhibited metallic conduction in the normal state. The oxygen- and air- cooled films were superconducting, possessing the usual orthorhombic structure. The argon-cooled films were non-superconducting possessing the tetragonal structure, thus implying that the structure of the film during deposition is tetragonal which transforms to either of the oxygen rich orthorhombic-I or -II phases depending upon the oxygen/air ambient. The 'δ' values of 0.14, 0.32 and 0.70 and higher 'c'-parameters of 1.1785, 1.180 and 1.183 nm have been obtained for oxygen, air and argon cooled films respectively. (Authors)

  1. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  2. Temperature Field Accurate Modeling and Cooling Performance Evaluation of Direct-Drive Outer-Rotor Air-Cooling In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Feng Chai

    2016-10-01

    Full Text Available High power density outer-rotor motors commonly use water or oil cooling. A reasonable thermal design for outer-rotor air-cooling motors can effectively enhance the power density without the fluid circulating device. Research on the heat dissipation mechanism of an outer-rotor air-cooling motor can provide guidelines for the selection of the suitable cooling mode and the design of the cooling structure. This study investigates the temperature field of the motor through computational fluid dynamics (CFD and presents a method to overcome the difficulties in building an accurate temperature field model. The proposed method mainly includes two aspects: a new method for calculating the equivalent thermal conductivity (ETC of the air-gap in the laminar state and an equivalent treatment to the thermal circuit that comprises a hub, shaft, and bearings. Using an outer-rotor air-cooling in-wheel motor as an example, the temperature field of this motor is calculated numerically using the proposed method; the results are experimentally verified. The heat transfer rate (HTR of each cooling path is obtained using the numerical results and analytic formulas. The influences of the structural parameters on temperature increases and the HTR of each cooling path are analyzed. Thereafter, the overload capability of the motor is analyzed in various overload conditions.

  3. Performance assessment of adding Cu-ultrafine particles into falling film desiccant

    International Nuclear Information System (INIS)

    Al-Mulla Ali, A.

    2006-01-01

    The concept of dehumidification between air and liquid desiccant for the improvement of the efficiency of heating and cooling fluids in industrial applications was discussed. The use of solid/liquid desiccants has received much attention in recent years because liquid desiccants can take moisture from surrounding air at low temperature and then release the moisture at high temperature to provide a continuous process of dehumidification of air and regeneration of liquid desiccant. This process can be used with conventional vapor compression cycles. This paper presented a comparative numerical study between parallel and counter flow configurations that examined the effects of various parameters on heat and mass transfer for the dehumidification and cooling processes of air and regeneration rate of liquid desiccant. Ultrafine particles were added to the falling film desiccant to investigate heat and mass transfer enhancement for both parallel and counter flow channels. The Cu-volume fraction in the falling film desiccant and dispersion effect were the important parameters. A mathematical model was therefore developed to account for the addition of Cu-ultrafine particles into the film desiccant. The dehumidification and cooling rate processes were found to improve with an increase in the Cu-ultrafine particles and dispersion effect. The new hybrid AC system was shown to improve indoor air quality, reduce energy consumption, and be environmentally safe. It was concluded that although the volume fraction and dispersion factor improve the dehumidification and cooling processes of the air, the improvements are not significant due to the small thickness of the falling-film desiccant. The regeneration process did not improve for either controlling parameter because of the small thickness of the film desiccant. 14 refs., 10 figs

  4. Mathematical Model for Direct Evaporative Space Cooling Systems ...

    African Journals Online (AJOL)

    This paper deals with the development of a simple mathematical model for experimental validation of the performance of a small evaporative cooling system in a tropical climate. It also presents the coefficient of convective heat transfer of wide range of temperatures based on existing model. Extensive experiments have ...

  5. Optical modelling of photoluminescence emitted by thin doped films

    International Nuclear Information System (INIS)

    Pigeat, P.; Easwarakhanthan, T.; Briancon, J.L.; Rinnert, H.

    2011-01-01

    Photoluminescence (PL) spectra emitted by doped films are deformed owing to film thickness-dependent wave interference. This hampers knowing well their PL generating mechanisms as well as designing photonic devices with suitable geometries that improve their PL efficiency. We develop in this paper an energy model for PL emitted by doped films considering the interaction between the wavelength-differing incident standing and emitted waves, their energy transfer in-between, and the interferences undergone by both. The film optical constants are estimated fitting the model to the measured PL. This simple model has thus allowed us to interpret the evolution of PL emitted by Er-doped AlN films prepared on Si substrates by reactive magnetron sputtering. The shapes, the amplitudes, and the illusive sub-spectral features of the PL spectra depend essentially on the film thickness. The model further predicts high sensitivity for PL emitted by non-homogenously doped stacked-films to incident light wavelengths and film-thickness variations. This property has potential applications in tracking wavelength variations and in measuring physical quantities producing thickness variations. This model may be used to optimise PL efficiency of photonic devices through different film geometries and optical properties.

  6. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  7. Humidity detection using chitosan film based sensor

    Science.gov (United States)

    Nasution, T. I.; Nainggolan, I.; Dalimunthe, D.; Balyan, M.; Cuana, R.; Khanifah, S.

    2018-02-01

    A humidity sensor made of the natural polymer chitosan has been successfully fabricated in the film form by a solution casting method. Humidity testing was performed by placing a chitosan film sensor in a cooling machine room, model KT-2000 Ahu. The testing results showed that the output voltage values of chitosan film sensor increased with the increase in humidity percentage. For the increase in humidity percentage from 30 to 90% showed that the output voltage of chitosan film sensor increased from 32.19 to 138.75 mV. It was also found that the sensor evidenced good repeatability and stability during the testing. Therefore, chitosan has a great potential to be used as new sensing material for the humidity detection of which was cheaper and environmentally friendly.

  8. Cooling as a method of finding topological dislocations in lattice models

    International Nuclear Information System (INIS)

    Gomberoff, K.

    1989-01-01

    It is well known that the O(3) two-dimensional model has configurations with topological charge Q=1 and action S/sub min/=6.69. Since the exponent characterizing the renormalization-group behavior of this model is 4π such configurations invalidate the standard scaling behavior of the topological susceptibility. The analog exponent for the four-dimensional lattice SU(2) gauge model is 10.77. If there would exist configurations with Q=1 and S<10.77 in this model, they would invalidate the standard scaling behavior of its topological susceptibility. Kremer et al. have calculated the action of different configurations during cooling runs. They report that they do not find any configuration with S<12.7 and Q=1. I show that in the O(3) two-dimensional model cooling runs fail to uncover the well-known configurations with S<8. We conclude that the cooling method is not effective in uncovering the smallest action configurations in the Q=1 sector

  9. Computational Analysis of Droplet Mass and Size Effect on Mist/Air Impingement Cooling Performance

    Directory of Open Access Journals (Sweden)

    Zhenglei Yu

    2013-01-01

    Full Text Available Impingement cooling has been widely employed to cool gas turbine hot components such as combustor liners, combustor transition pieces, turbine vanes, and blades. A promising technology is proposed to enhance impingement cooling with water droplets injection. However, previous studies were conducted on blade shower head film cooling, and less attention was given to the transition piece cooling. As a continuous effort to develop a realistic mist impingement cooling scheme, this paper focuses on simulating mist impingement cooling under typical gas turbine operating conditions of high temperature and pressure in a double chamber model. Furthermore, the paper presents the effect of cooling effectiveness by changing the mass and size of the droplets. Based on the heat-mass transfer analogy, the results of these experiments prove that the mass of 3E – 3 kg/s droplets with diameters of 5–35 μm could enhance 90% cooling effectiveness and reduce 122 K of wall temperature. The results of this paper can provide guidance for corresponding experiments and serve as the qualification reference for future more complicated studies with convex surface cooling.

  10. Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems. Task 8: Cooling Flow/heat Transfer Analysis

    Science.gov (United States)

    Hall, Edward J.; Topp, David A.; Heidegger, Nathan J.; Delaney, Robert A.

    1994-01-01

    The focus of this task was to validate the ADPAC code for heat transfer calculations. To accomplish this goal, the ADPAC code was modified to allow for a Cartesian coordinate system capability and to add boundary conditions to handle spanwise periodicity and transpiration boundaries. The primary validation case was the film cooled C3X vane. The cooling hole modeling included both a porous region and grid in each discrete hold. Predictions for these models as well as smooth wall compared well with the experimental data.

  11. Numerical modelling of series-parallel cooling systems in power plant

    Directory of Open Access Journals (Sweden)

    Regucki Paweł

    2017-01-01

    Full Text Available The paper presents a mathematical model allowing one to study series-parallel hydraulic systems like, e.g., the cooling system of a power boiler's auxiliary devices or a closed cooling system including condensers and cooling towers. The analytical approach is based on a set of non-linear algebraic equations solved using numerical techniques. As a result of the iterative process, a set of volumetric flow rates of water through all the branches of the investigated hydraulic system is obtained. The calculations indicate the influence of changes in the pipeline's geometrical parameters on the total cooling water flow rate in the analysed installation. Such an approach makes it possible to analyse different variants of the modernization of the studied systems, as well as allowing for the indication of its critical elements. Basing on these results, an investor can choose the optimal variant of the reconstruction of the installation from the economic point of view. As examples of such a calculation, two hydraulic installations are described. One is a boiler auxiliary cooling installation including two screw ash coolers. The other is a closed cooling system consisting of cooling towers and condensers.

  12. Recirculating cooling water solute depletion models

    International Nuclear Information System (INIS)

    Price, W.T.

    1990-01-01

    Chromates have been used for years to inhibit copper corrosion in the plant Recirculating Cooling Water (RCW) system. However, chromates have become an environmental problem in recent years both in the chromate removal plant (X-616) operation and from cooling tower drift. In response to this concern, PORTS is replacing chromates with Betz Dianodic II, a combination of phosphates, BZT, and a dispersant. This changeover started with the X-326 system in 1989. In order to control chemical concentrations in X-326 and in systems linked to it, we needed to be able to predict solute concentrations in advance of the changeover. Failure to predict and control these concentrations can result in wasted chemicals, equipment fouling, or increased corrosion. Consequently, Systems Analysis developed two solute concentration models. The first simulation represents the X-326 RCW system by itself; and models the depletion of a solute once the feed has stopped. The second simulation represents the X-326, X-330, and the X-333 systems linked together by blowdown. This second simulation represents the concentration of a solute in all three systems simultaneously. 4 figs

  13. Test results of the SMES model coil. Cool-down and thermal characteristics

    International Nuclear Information System (INIS)

    Hamada, Kazuya; Kato, Takashi; Kawano, Katsumi

    1998-01-01

    A model coil of a superconducting magnetic energy storage (SMES) device, which is a forced-cooled Nb-Ti coil, has been fabricated and a performance test at cryogenic temperatures has been carried out. The SMES model coil is composed of 4 dual pancakes and its total weight is 4.5 t. The applied conductors are cable-in-conduit conductors cooled by supercritical helium (SHe) at 4.5 K and 0.7 MPa. SHe is supplied to the SMES model coil and the structure by a reciprocating bellows pump. The test facility is located at the International Thermonuclear Experimental Reactor (ITER) common test facility, was constructed for the testing of an ITER central solenoid model coil. In the experiments, cool-down was finished within 10 days under controlled temperature differences in the SMES model coil. During cool-down and 4.5 K operation, pressure drop characteristics of the conductor were measured and the friction factor estimated. The pressure drop characteristics of the SMES model coil were in good agreement with those of the previous cable-in-conduit conductor. During static operation without current, the heat load and refrigerator operation conditions were measured. The heat load of the SMES model coil is 7.5 W, which is within the expected value. (author)

  14. Experimental Study of the Cooling of Electrical Components Using Water Film Evaporation

    Directory of Open Access Journals (Sweden)

    S. Harmand

    2012-01-01

    Full Text Available Heat and mass transfer, which occur in the evaporation of a falling film of water, are studied experimentally. This evaporation allows the dissipation of the heat flux produced by twelve resistors, which simulate electrical components on the back side of an aluminium plate. On the front side of the plate, a falling film of water flows by the action of gravity. An inverse heat conduction model, associated with a spatial regularisation, was developed and produces the local heat fluxes on the plate using the measured temperatures. The efficiency of this evaporative process has been studied with respect to several parameters: imposed heat flux, inlet mass flow rate, and geometry. A comparison of the latent and sensible fluxes used to dissipate the imposed heat flux was studied in the case of a plexiglass sheet in front of the falling film at different distances from the aluminium plate.

  15. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    International Nuclear Information System (INIS)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J.

    2007-01-01

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use

  16. Modelling of flow and heat transfer in PV cooling channels

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.

  17. Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling

    CERN Document Server

    Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P

    2005-01-01

    The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...

  18. modelling room cooling capacity with fuzzy logic procedure

    African Journals Online (AJOL)

    The primary aim of this study is to develop a model for estimation of the cooling requirement of residential rooms. Fuzzy logic was employed to model four input variables (window area (m2), roof area (m2), external wall area (m2) and internal load (Watt). The algorithm of the inference engine applied sets of 81 linguistic ...

  19. A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems

    International Nuclear Information System (INIS)

    Jin, Guang-Yu; Cai, Wen-Jian; Lu Lu; Lee, Eng Lock; Chiang, Andrew

    2007-01-01

    This paper proposes a new, simple, yet accurate mechanical cooling tower model for the purpose of energy conservation and management. On the basis of Merkel's theory and effectiveness-NTU method, the model is developed by energy balance and heat, mass transfer analysis. Commissioning information is then used to identified, only three model parameters by Levenberg-Marquardt method. Compared with the existing models, the proposed model has simple characteristic parameters to be determined and without requiring iterative computation when the operating point changes. The model is validated by real operating data from the cooling towers of a heating, ventilating and air conditioning (HVAC) system of a commercial hotel. The testing results show that the performance of the cooling tower varies from time to time due to different operating conditions and the proposed model is able to reflect these changes by tuning its parameters. With this feature, the proposed model can be simply used and accurately predict the performance of the real-time operating cooling tower

  20. Modeling of Cooling Channels of Injection Mould using Functionally Graded Material

    International Nuclear Information System (INIS)

    Shin, Ki Hoon

    2011-01-01

    The cycle time in injection moulding greatly depends on the cooling time of the plastic part that is controlled by cooling channels. Cooling channels are required to facilitate the heat transfer rate from the die to the coolant without reducing the strength of the die. Employing layered manufacturing techniques (LMT), a die embedding conformal cooling channels can be fabricated directly while conventional cooling channels are usually made of straight drilled hole. Meanwhile, H13 tool steel is widely used as the die material because of its high thermal resistance and dimensional stability. However, H13 with a low thermal conductivity is not efficient for certain part geometries. In this context, the use of functionally graded materials (FGMs) between H13 and copper may circumvent a tradeoff between the strength and the heat transfer rate. This paper presents a method for modeling of conformal cooling channels made of FGMs

  1. Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jordal, Kristin

    1999-02-01

    Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency

  2. Film grain noise modeling in advanced video coding

    Science.gov (United States)

    Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin

    2007-01-01

    A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.

  3. MATHEMATICAL MODELING OF HEATING AND COOLING OF SAUSAGES

    Directory of Open Access Journals (Sweden)

    A. V. Zhuchkov

    2013-01-01

    Full Text Available In the article the mathematical modeling of the processes of heating and cooling of sausage products in order to define reference characteristics of the processes was carried out. Basic regularities of the processes are graphically shown.

  4. Coupling model and solving approach for performance evaluation of natural draft counter-flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available When searching for the optimum condenser cooling water flow in a thermal power plant with natural draft cooling towers, it is essential to evaluate the outlet water temperature of cooling towers when the cooling water flow and inlet water temperature change. However, the air outlet temperature and tower draft or inlet air velocity are strongly coupled for natural draft cooling towers. Traditional methods, such as trial and error method, graphic method and iterative methods are not simple and efficient enough to be used for plant practice. In this paper, we combine Merkel equation with draft equation, and develop the coupled description for performance evaluation of natural draft cooling towers. This model contains two inputs: the cooling water flow, the inlet cooling water temperature and two outputs: the outlet water temperature, the inlet air velocity, equivalent to tower draft. In this model, we furthermore put forward a soft-sensing algorithm to calculate the total drag coefficient instead of empirical correlations. Finally, we design an iterative approach to solve this coupling model, and illustrate three cases to prove that the coupling model and solving approach proposed in our paper are effective for cooling tower performance evaluation.

  5. Improvement of a wall thinning rate model for liquid droplet impingement erosion. Implementation of liquid film thickness model with consideration of film behavior

    International Nuclear Information System (INIS)

    Morita, Ryo

    2014-01-01

    Liquid droplet impingement erosion (LDI) is defined as an erosion phenomenon caused by high-speed droplet attack in a steam flow. Pipe wall thinning by LDI is sometimes observed in a steam piping system of a power plant. As LDI usually occurs very locally and is difficult to detect, predicting LDI location is required for safe operation of power plant systems. Therefore, we have involved in the research program to develop prediction tools that will be used easily in actual power plants. Our previous researches developed a thinning rate evaluation model due to LDI (LDI model) and the evaluation system of the thinning rate and the thinning shape within a practically acceptable time (LDI evaluation system). Though the LDI model can include a cushioning effect of liquid film which is generated on the material surface by droplet impingement as an empirical equation with fluid parameter, the liquid film thickness is not clarified due to complex flow condition. In this study, to improve the LDI model and the LDI evaluation system, an analytical model of the liquid film thickness was proposed with consideration of the liquid film flow behavior on the material surface. The mass balance of the liquid film was considered, and the results of CFD calculations and existing researches were applied to obtain the liquid film thickness in this model. As a result of the LDI evaluation of the new LDI model with liquid film model, improvement of the LDI model was achieved. (author)

  6. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it [University of Genoa, Dept. of Chemistry and Industrial Chemistry, Via Dodecaneso 31, 16146 Genoa (Italy); Portale, Giuseppe [ESRF, Dubble CRG, Netherlands Organization of Scientific Research (NWO), 38043 Grenoble (France); Androsch, René [Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, D-06099 Halle/S. (Germany)

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  7. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  8. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  9. Towards new generation spectroscopic models of cool stars

    Science.gov (United States)

    Bergemann, Maria

    2018-06-01

    Abstract: Spectroscopy is a unique tool to determine the physical parameters of stars. Knowledge of stellar chemical abundances, masses, and ages is the key to understanding the evolution of their host populations. I will focus on the current outstanding problems in spectroscopy of cool stars, which are the most useful objects in studies of our local Galactic neighborhood but also very distant systems, like faint dwarf Spheroidal galaxies. Among the most debated issues is to what extent can we trust the techniques, which rely on the classical assumptions of local thermodynamic equilibrium and hydrostatic balance. I will summarise the ongoing efforts to improve the models of cool stars, with the emphasis on NLTE and 3D modelling. I will then discuss how these exciting observations impact our knowledge of abundances in the Milky Way and in dSph systems, and present outlook for the future studies.

  10. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    Science.gov (United States)

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  11. SALLY, Dynamic Behaviour of Reactor Cooling Channel by Point Model

    International Nuclear Information System (INIS)

    Reiche, Chr.; Ziegenbein, D.

    1981-01-01

    1 - Nature of the physical problem solved: The dynamical behaviour of a cooling channel is calculated. Starting from an equilibrium state a perturbation is introduced into the system. That may be an outer reactivity perturbation or a change in the coolant velocity or in the coolant temperature. The neutron kinetics is treated in the framework of the one-point model. The cooling channel consists of a cladded and cooled fuel rod. The temperature distribution is taken into account as an array above a mesh of radial zones and axial layers. Heat transfer is considered in radial direction only, the thermodynamical coupling of the different layers is obtained by the coolant flow. The thermal material parameters are considered to be temperature independent. Reactivity feedback is introduced by means of reactivity coefficients for fuel, canning, and coolant. Doppler broadening is included. The first cooling cycle can be taken into account by a simple model. 2 - Method of solution: The integration of the point kinetics equations is done numerically by the P11 scheme. The system of temperature equations with constant heat resistance coefficients is solved by the method of factorization. 3 - Restrictions on the complexity of the problem: Given limits are: 10 radial fuel zones, 25 axial layers, 6 groups of delayed neutrons

  12. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  13. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  14. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun

    2015-01-01

    Thermal modeling is the key issue in thermal management of lithium-ion battery system, and cooling strategies need to be carefully investigated to guarantee the temperature of batteries in operation within a narrow optimal range as well as provide cost effective and energy saving solutions for cooling system. This article reviews and summarizes the past cooling methods especially forced air cooling and introduces an empirical heat source model which can be widely applied in the battery module/pack thermal modeling. In the development of empirical heat source model, three-dimensional computational fluid dynamics (CFD) method is employed, and thermal insulation experiments are conducted to provide the key parameters. A transient thermal model of 5 × 5 battery module with forced air cooling is then developed based on the empirical heat source model. Thermal behaviors of battery module under different air cooling conditions, discharge rates and ambient temperatures are characterized and summarized. Varies cooling strategies are simulated and compared in order to obtain an optimal cooling method. Besides, the battery fault conditions are predicted from transient simulation scenarios. The temperature distributions and variations during discharge process are quantitatively described, and it is found that the upper limit of ambient temperature for forced air cooling is 35 °C, and when ambient temperature is lower than 20 °C, forced air-cooling is not necessary. - Highlights: • An empirical heat source model is developed for battery thermal modeling. • Different air-cooling strategies on module thermal characteristics are investigated. • Impact of different discharge rates on module thermal responses are investigated. • Impact of ambient temperatures on module thermal behaviors are investigated. • Locations of maximum temperatures under different operation conditions are studied.

  15. Modeling and Simulation of Truck Engine Cooling System for Onboard Diagnosis

    Institute of Scientific and Technical Information of China (English)

    朱正礼; 张建武; 包继华

    2004-01-01

    A cooling system model of a selected internal combustion engine has been built for onboard diagnosis. The model uses driving cycle data available within the production Engine Control Module (ECM): vehicle speed, engine speed, and fuel flow rate for the given ambient temperature and pressure, etc. Based on the conservation laws for heat transfer and mass flow process, the mathematical descriptions for the components involved in the cooling circuit are obtained and all the components are integrated into a model on Matlab/Simulink platform. The model can simulate the characteristics of thermostat (e.g. time-lag, hysteresis effect).The changes of coolant temperature, heat transfer flow rate, and pressure at individual component site are also shown.

  16. Spray pyrolysis process for preparing superconductive films

    International Nuclear Information System (INIS)

    Hsu, H.M.; Yee, I.Y.

    1991-01-01

    This paper describes a spray pyrolysis method for preparing thin superconductive film. It comprises: preparing a spray pyrolysis solution comprising Bi,Sr,Ca and Cu metals in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature of about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate to a third temperature of about 870 degrees-890 degrees C to melt the film; once the film and substrate reach the third temperature, further heat treating the film and substrate; cooling the film and substrate to ambient temperature. This patent also describes a spray pyrolysis method for preparing thin superconductive films. It comprises: preparing a spray pyrolysis solution comprising Bi, Ca and Cu metals and fluxing agent in a solvent; heating a substrate to a first temperature; spraying the solution onto the heated substrate to form a film thereon; heating the film and substrate to a second temperature about 700 degrees-825 degrees C, the second temperature being higher than the first temperature; heating the film and substrate at a third temperature about 840 degrees-860 degrees C; and cooling the film and substrate to ambient temperature

  17. Numerical Study of the Effects of Thermal Barrier Coating and Turbulence Intensity on Cooling Performances of a Nozzle Guide Vane

    Directory of Open Access Journals (Sweden)

    Prasert Prapamonthon

    2017-03-01

    Full Text Available This work presents a numerical investigation of the combined effects of thermal barrier coating (TBC with mainstream turbulence intensity (Tu on a modified vane of the real film-cooled nozzle guide vane (NGV reported by Timko (NASA CR-168289. Using a 3D conjugate heat transfer (CHT analysis, the NGVs with and without TBC are simulated at three Tus (Tu = 3.3%, 10% and 20%. The overall cooling effectiveness, TBC effectiveness and heat transfer coefficient are analyzed and discussed. The results indicate the following three interesting phenomena: (1 TBC on the pressure side (PS is more effective than that on the suction side (SS due to a fewer number of film holes on the SS; (2 for all three Tus, the variation trends of the overall cooling effectiveness are similar, and TBC plays the positive and negative roles in heat flux at the same time, and significantly increases the overall cooling effectiveness in regions cooled ineffectively by cooling air; (3 when Tu increases, the TBC effect is more significant, for example, at the highest Tu (Tu = 20% the overall cooling effectiveness can increase as much as 24% in the film cooling ineffective regions, but near the trailing edge (TE and the exits and downstream of film holes on the SS, this phenomenon is slight.

  18. A mathematical model of endovascular heat transfer for human brain cooling

    Science.gov (United States)

    Salsac, Anne-Virginie; Lasheras, Juan Carlos; Yon, Steven; Magers, Mike; Dobak, John

    2000-11-01

    Selective cooling of the brain has been shown to exhibit protective effects in cerebral ischemia, trauma, and spinal injury/ischemia. A multi-compartment, unsteady thermal model of the response of the human brain to endovascular cooling is discussed and its results compared to recent experimental data conducted with sheep and other mammals. The model formulation is based on the extension of the bioheat equation, originally proposed by Pennes(1) and later modified by Wissler(2), Stolwijk(3) and Werner and Webb(4). The temporal response of the brain temperature and that of the various body compartments to the cooling of the blood flowing through the common carotid artery is calculated under various scenarios. The effect of the boundary conditions as well as the closure assumptions used in the model, i.e. perfusion rate, metabolism heat production, etc. on the cooling rate of the brain are systematically investigated. (1) Pennes H. H., “Analysis of tissue and arterial blood temperature in the resting forearm.” J. Appl. Physiol. 1: 93-122, 1948. (2) Wissler E. H., “Steady-state temperature distribution in man”, J. Appl. Physiol., 16: 764-740, 1961. (3) Stolwick J. A. J., “Mathematical model of thermoregulation” in “Physiological and behavioral temperature regulation”, edited by J. D. Hardy, A. P. Gagge and A. J. Stolwijk, Charles C. Thomas Publisher, Springfiels, Ill., 703-721, 1971. (4) Werner J., Webb P., “A six-cylinder model of human thermoregulation for general use on personal computers”, Ann. Physiol. Anthrop., 12(3): 123-134, 1993.

  19. Effect of closed loop cooling water transit time on containment cooling

    International Nuclear Information System (INIS)

    Smith, R.P.; Vossahlik, J.E.; Goodwin, E.F.

    1996-01-01

    Long term containment cooling analyses in nuclear plant systems are usually conducted assuming a quasi steady-state process, that is, a steady state evaluation of the cooling system is completed for each calculational step. In reality, fluid transport in the system, and heat addition to system components may affect the heat removal rate of the system. Transient effects occurring during system startup may affect the maximum temperatures experienced in the system. It is important to ensure that such transient effects do not affect operation of the system (e.g., cause a high temperature trip). To evaluate the effect of fluid transit delays, a closed loop cooling water system model has been developed that incorporates the fluid transport times when determining the closed loop cooling system performance. This paper describes the closed loop cooling system model as implemented in the CONTEMPT-LT/028 code. The evaluation of the transient temperature response of the closed loop cooling system using the model is described. The paper also describes the effect of fluid transit time on the overall containment cooling performance

  20. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  1. Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue

    International Nuclear Information System (INIS)

    Singh, Rupesh; Das, Koushik; Okajima, Junnosuke; Maruyama, Shigenao; Mishra, Subhash C.

    2015-01-01

    This article deals with the spatial and the temporal evolution of tissue temperature during skin surface cooled laser induced hyperthermia. Three different skin surface cooling methodologies viz., optical window contact cooling, cryogenic spray cooling and cryogen cooled optical window contact cooling are considered. Sapphire, yttrium aluminum garnet, lithium tantalate, and magnesium oxide doped lithium niobate are the considered optical windows. The cryogens considered are liquid CO_2 and R1234yf. Heat transfer in the multilayer skin tissue embedded with thermally significant blood vessels pairs is modeled using the Pennes and Weinbaum–Jiji bioheat equations. Weinbaum–Jiji bioheat equation is used for the vascularized tissue. Laser transport in the tissue is modeled using the radiative transfer equation. Axial and radial (skin surface) temperature distributions for different combinations of optical windows and cryogens are analyzed. Liquid CO_2 cooled yttrium aluminum garnet is found to be the best surface cooling mechanism. - Highlights: • Skin surface cooled laser induced hyperthermia is studied. • A multi-layer 2-D cylindrical tissue geometry is considered. • Both Pennes and Weinbaum–Jiji bioheat models are considered. • Laser transport in the tissue is modeled using discrete ordinate method. • Results for 4 optical windows and 2 cryogens for skin cooling are presented.

  2. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  3. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish

    2013-10-15

    A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Motion of flux transfer events: a test of the Cooling model

    Directory of Open Access Journals (Sweden)

    R. C. Fear

    2007-07-01

    Full Text Available The simple model of reconnected field line motion developed by Cooling et al. (2001 has been used in several recent case studies to explain the motion of flux transfer events across the magnetopause. We examine 213 FTEs observed by all four Cluster spacecraft under a variety of IMF conditions between November 2002 and June 2003, when the spacecraft tetrahedron separation was ~5000 km. Observed velocities were calculated from multi-spacecraft timing analysis, and compared with the velocities predicted by the Cooling model in order to check the validity of the model. After excluding three categories of FTEs (events with poorly defined velocities, a significant velocity component out of the magnetopause surface, or a scale size of less than 5000 km, we were left with a sample of 118 events. 78% of these events were consistent in both direction of motion and speed with one of the two model de Hoffmann-Teller (dHT velocities calculated from the Cooling model (to within 30° and a factor of two in the speed. We also examined the plasma signatures of several magnetosheath FTEs; the electron signatures confirm the hemisphere of connection indicated by the model in most cases. This indicates that although the model is a simple one, it is a useful tool for identifying the source regions of FTEs.

  5. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  6. Models of steady state cooling flows in elliptical galaxies

    International Nuclear Information System (INIS)

    Vedder, P.W.; Trester, J.J.; Canizares, C.R.

    1988-01-01

    A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount. 37 references

  7. Modeling and characteristics analysis of hybrid cooling-tower-solar-chimney system

    International Nuclear Information System (INIS)

    Zou, Zheng; He, Suoying

    2015-01-01

    Highlights: • A 3-D model for hybrid cooling-tower-solar-chimney system is developed. • The inclusion of heat exchangers into solar chimney boosts the power output. • The huge jump in power output is at the expense of heat dissipation capacity. • The heat exchanger as second heat source has greater impact on system performance. - Abstract: The hybrid cooling-tower-solar-chimney system (HCTSC), combining solar chimney with natural draft dry cooling tower, generates electricity and dissipates waste heat for the coupled geothermal power plant simultaneously. Based on a developed 3-D model, performance comparisons between the HCTSC system, solar chimney and natural draft dry cooling tower were performed in terms of power output of turbine and heat dissipation capacity. Results show that compared to the traditional solar chimney with similar geometric dimensions, HCTSC system can achieve over 20 times increase in the power output of turbine. However, this huge jump in power output is at the expense of heat dissipation capacity, which may lead to the malfunction of the coupled thermal power plant. By increasing the heat transfer area of the heat exchanger, the HCTSC system can manage to recover its heat dissipation capacity

  8. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...

  9. Model-based fault detection for generator cooling system in wind turbines using SCADA data

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Kinnaert, Michel

    2016-01-01

    In this work, an early fault detection system for the generator cooling of wind turbines is presented and tested. It relies on a hybrid model of the cooling system. The parameters of the generator model are estimated by an extended Kalman filter. The estimated parameters are then processed by an ...

  10. The generalized spherical model of ferromagnetic films

    International Nuclear Information System (INIS)

    Costache, G.

    1977-12-01

    The D→ infinity of the D-vectorial model of a ferromagnetic film with free surfaces is exactly solved. The mathematical mechanism responsible for the onset of a phase transition in the system is a generalized sticking phenomenon. It is shown that the temperature at which the sticking appears, the transition temperature of the model is monotonously increasing with increasing the number of layers of the film, contrary to what happens in the spherical model with overall constraint. Certain correlation inequalities of Griffiths type are shown to hold. (author)

  11. The kinetics of low-temperature electron-phonon relaxation in a metallic film following instantaneous heating of the electrons

    International Nuclear Information System (INIS)

    Bezuglyi, A.I.; Shklovskii, V.A.

    1997-01-01

    The theoretical analysis of experiments on pulsed laser irradiation of metallic films sputtered on insulating supports is usually based on semiphenomenological dynamical equations for the electron and phonon temperatures, an approach that ignores the nonuniformity and the nonthermal nature of the phonon distribution function. In this paper we discuss a microscopic model that describes the dynamics of the electron-phonon system in terms of kinetic equations for the electron and phonon distribution functions. Such a model provides a microscopic picture of the nonlinear energy relaxation of the electron-phonon system of a rapidly heated film. We find that in a relatively thick film the energy relaxation of electrons consists of three stages: the emission of nonequilibrium phonons by 'hot' electrons, the thermalization of electrons and phonons due to phonon reabsorption, and finally the cooling of the thermalized electron-phonon system as a result of phonon exchange between film and substrate. In thin films, where there is no reabsorption of nonequilibrium phonons, the energy relaxation consists of only one stage, the first. The relaxation dynamics of an experimentally observable quantity, the phonon contribution to the electrical conductivity of the cooling film, is directly related to the dynamics of the electron temperature, which makes it possible to use the data of experiments on the relaxation of voltage across films to establish the electron-phonon and phonon-electron collision times and the average time of phonon escape from film to substrate

  12. Modeling and Optimization of a CoolingTower-Assisted Heat Pump System

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wei

    2017-05-01

    Full Text Available To minimize the total energy consumption of a cooling tower-assisted heat pump (CTAHP system in cooling mode, a model-based control strategy with hybrid optimization algorithm for the system is presented in this paper. An existing experimental device, which mainly contains a closed wet cooling tower with counter flow construction, a condenser water loop and a water-to-water heat pump unit, is selected as the study object. Theoretical and empirical models of the related components and their interactions are developed. The four variables, viz. desired cooling load, ambient wet-bulb temperature, temperature and flow rate of chilled water at the inlet of evaporator, are set to independent variables. The system power consumption can be minimized by optimizing input powers of cooling tower fan, spray water pump, condenser water pump and compressor. The optimal input power of spray water pump is determined experimentally. Implemented on MATLAB, a hybrid optimization algorithm, which combines the Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS algorithm with the greedy diffusion search (GDS algorithm, is incorporated to solve the minimization problem of energy consumption and predict the system’s optimal set-points under quasi-steady-state conditions. The integrated simulation tool is validated against experimental data. The results obtained demonstrate the proposed operation strategy is reliable, and can save energy by 20.8% as compared to an uncontrolled system under certain testing conditions.

  13. A model system to mimic environmentally active surface film roughness and hydrophobicity.

    Science.gov (United States)

    Grant, Jacob S; Shaw, Scott K

    2017-10-01

    This work presents the development and initial assessment of a laboratory platform to allow quantitative studies on model urban films. The platform consists of stearic acid and eicosane mixtures that are solution deposited from hexanes onto smooth, solid substrates. We show that this model has distinctive capabilities to better mimic a naturally occurring film's morphology and hydrophobicity, two important parameters that have not previously been incorporated into model film systems. The physical and chemical properties of the model films are assessed using a variety of analytical instruments. The film thickness and roughness are probed via atomic force microscopy while the film composition, wettability, and water uptake are analyzed by Fourier transform infrared spectroscopy, contact angle goniometry, and quartz crystal microbalance, respectively. Simulated environmental maturation is achieved by exposing the film to regulated amounts of UV/ozone. Ultimately, oxidation of the film is monitored by the analytical techniques mentioned above and proceeds as expected to produce a utile model film system. Including variable roughness and tunable surface coverage results in several key advantages over prior model systems, and will more accurately represent native urban film behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  15. Theoretical Models for the Cooling Power and Base Temperature of Dilution Refrigerators

    CERN Document Server

    Wikus, Patrick

    2010-01-01

    He-3/He-4 dilution refrigerators are widely used for applications requiring continuous cooling at temperatures below approximately 300 mK. Despite of the popularity of these devices in low temperature physics, the thermodynamic relations underlying the cooling mechanism of He-3/He-4 refrigerators are very often incorrectly used. Several thermodynamic models of dilution refrigeration have been published in the past, sometimes contradicting each other. These models are reviewed and compared with each other over a range of different He-3 flow rates. In addition, a new numerical method for the calculation of a dilution refrigerator's cooling power at arbitrary flow rates is presented. This method has been developed at CERN's Central Cryogenic Laboratory. It can be extended to include many effects that cannot easily be accounted for by any of the other models, including the degradation of heat exchanger performance due to the limited number of step heat exchanger elements, which can be considerable for some design...

  16. Film traffic queueing model for the DUMC radiology department

    International Nuclear Information System (INIS)

    Humphrey, L.M.; Ravin, C.E.

    1988-01-01

    This paper discusses the radiology department traffic model for Duke University Medical Center (DUMC) which simulates the flow of film through the department, and then incorporates the effect of introducing a PACS-type system into present operations. Each Radiology Section is considered separately for queuing of two types of film: old film (from previous exams) and new film (from the present exam). The amount of film in each queue at any time is controlled by controlling hours of operation, service times, delay, and arrival rates. The model also takes into account the use of film in each major radiology area. This gives some idea of the load on a device in that area as well as the amount of storage needed to adequately handle its daily load is local storage at the display device is desired

  17. Modeling of metal thin film growth: Linking angstrom-scale molecular dynamics results to micron-scale film topographies

    Science.gov (United States)

    Hansen, U.; Rodgers, S.; Jensen, K. F.

    2000-07-01

    A general method for modeling ionized physical vapor deposition is presented. As an example, the method is applied to growth of an aluminum film in the presence of an ionized argon flux. Molecular dynamics techniques are used to examine the surface adsorption, reflection, and sputter reactions taking place during ionized physical vapor deposition. We predict their relative probabilities and discuss their dependence on energy and incident angle. Subsequently, we combine the information obtained from molecular dynamics with a line of sight transport model in a two-dimensional feature, incorporating all effects of reemission and resputtering. This provides a complete growth rate model that allows inclusion of energy- and angular-dependent reaction rates. Finally, a level-set approach is used to describe the morphology of the growing film. We thus arrive at a computationally highly efficient and accurate scheme to model the growth of thin films. We demonstrate the capabilities of the model predicting the major differences on Al film topographies between conventional and ionized sputter deposition techniques studying thin film growth under ionized physical vapor deposition conditions with different Ar fluxes.

  18. Model Lung Surfactant Films: Why Composition Matters

    Energy Technology Data Exchange (ETDEWEB)

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf; DeWolf, Christine E.

    2016-10-18

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phase but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.

  19. Development and validation of a full-range performance analysis model for a three-spool gas turbine with turbine cooling

    International Nuclear Information System (INIS)

    Song, Yin; Gu, Chun-wei; Ji, Xing-xing

    2015-01-01

    The performance analysis of a gas turbine is important for both its design and its operation. For modern gas turbines, the cooling flow introduces a noteworthy thermodynamic loss; thus, the determination of the cooling flow rate will clearly influence the accuracy of performance calculations. In this paper, a full-range performance analysis model is established for a three-spool gas turbine with an open-circuit convective blade cooling system. A hybrid turbine cooling model is embedded in the analysis to predict the amount of cooling air accurately and thus to remove the errors induced by the relatively arbitrary value of cooling air requirements in the previous research. The model is subsequently used to calculate the gas turbine performance; the calculation results are validated with detailed test data. Furthermore, multistage conjugate heat transfer analysis is performed for the turbine section. The results indicate that with the same coolant condition and flow rate as those in the performance analysis, the blade metal has been effectively cooled; in addition, the maximum temperature predicted by conjugate heat transfer analysis is close to the corresponding value in the cooling model. Hence, the present model provides an effective tool for analyzing the performance of a gas turbine with cooling. - Highlights: • We established a performance model for a gas turbine with convective cooling. • A hybrid turbine cooling model is embedded in the performance analysis. • The accuracy of the model is validated with detailed test data of the gas turbine. • Conjugate heat transfer analysis is performed for the turbine for verification

  20. Analysis of BF Hearth Reasonable Cooling System Based on the Water Dynamic Characteristics

    Science.gov (United States)

    Zuo, Haibin; Jiao, Kexin; Zhang, Jianliang; Li, Qian; Wang, Cui

    A rational cooling water system is the assurance for long campaign life of blast furnace. In the paper, the heat transfer of different furnace period and different furnace condition based on the water quality characteristics were analysed, and the reason of the heat flux over the normal from the hydrodynamics was analysed. The results showed that, the vapour-film and scale existence significantly influenced the hearth heat transfer, which accelerated the brick lining erosion. The water dynamic characteristics of the parallel inner pipe or among the pipes were the main reason for the abnormal heat flux and film boiling. As to the reasonable cooling water flow, the gas film and the scale should be controlled and the energy saving should be considered.

  1. Comparison of the CATHENA model of Gentilly-2 end shield cooling system predictions to station data

    Energy Technology Data Exchange (ETDEWEB)

    Zagre, G.; Sabourin, G. [Candu Energy Inc., Montreal, Quebec (Canada); Chapados, S. [Hydro-Quebec, Montreal, Quebec (Canada)

    2012-07-01

    As part of the Gentilly-2 Refurbishment Project, Hydro-Quebec has elected to perform the End Shield Cooling Safety Analysis. A CATHENA model of Gentilly-2 End Shield Cooling System was developed for this purpose. This model includes new elements compared to other CANDU6 End Shield Cooling models such as a detailed heat exchanger and control logic model. In order to test the model robustness and accuracy, the model predictions were compared with plant measurements.This paper summarizes this comparison between the model predictions and the station measurements. It is shown that the CATHENA model is flexible and accurate enough to predict station measurements for critical parameters, and the detailed heat exchanger model allows reproducing station transients. (author)

  2. Studies of electronic and magnetic properties of LaVO3 thin film

    Science.gov (United States)

    Jana, Anupam; Karwal, Sharad; Choudhary, R. J.; Phase, D. M.

    2018-04-01

    We have investigated the electronic and magnetic properties of pulsed laser deposited Mott insulator LaVO3 (LVO) thin film. Structural characterization revels the single phase [00l] oriented LVO thin film. Enhancement of out of plane lattice parameter indicates the compressively strained LVO film. Electron spectroscopic studies demonstrate that vanadium is present in V3+ state. An energy dispersive X-ray spectroscopic study ensures the stoichiometric growth of the film. Very smooth surface is observed in scanning electron micrograph. Colour mapping for elemental distribution reflect the homogeneity of LVO film. The bifurcation between zero-field-cooled and Field-cooled curves clearly points towards the weak ferromagnetic phase presence in compressively strained LVO thin film. A finite value of coercivity at 300 K reflects the possibility of room temperature ferromagnetism of LVO thin film.

  3. Photoconductivity in BiFeO3 thin films

    Science.gov (United States)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  4. From drop impact physics to spray cooling models: a critical review

    Science.gov (United States)

    Breitenbach, Jan; Roisman, Ilia V.; Tropea, Cameron

    2018-03-01

    Spray-wall interaction is an important process encountered in a large number of existing and emerging technologies and is the underlying phenomenon associated with spray cooling. Spray cooling is a very efficient technology, surpassing all other conventional cooling methods, especially those not involving phase change and not exploiting the latent heat of vaporization. However, the effectiveness of spray cooling is dependent on a large number of parameters, including spray characteristics like drop size, velocity and number density, the surface morphology, but also on the temperature range and thermal properties of the materials involved. Indeed, the temperature of the substrate can have significant influence on the hydrodynamics of drop and spray impact, an aspect which is seldom considered in model formulation. This process is extremely complex, thus most design rules to date are highly empirical in nature. On the other hand, significant theoretical progress has been made in recent years about the interaction of single drops with heated walls and improvements to the fundamentals of spray cooling can now be anticipated. The present review has the objective of summarizing some of these recent advances and to establish a framework for future development of more reliable and universal physics-based correlations to describe quantities involved in spray cooling.

  5. Characterization of superconducting thin films deposited by laser ablation. Caracterisation de films minces supraconducteurs deposes par ablation laser

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, M; Delaporte, P [I.M.F.M., 13 - Marseille (FR); Gerri, M; Marine, W [Aix-Marseille-2 Univ., 13-Marseille (FR). Centre Universitaire de Luminy

    1991-05-01

    Thin films of YBa{sub 2}Cu{sub 3}O{sub 7} are deposited by laser ablation on MgO and YSZ substrates. Deposits by infrared (I.R.) Nd: YAG are non stoechiometric. The films having the best superconductor qualities are deposited by ablation with an excimer U.V. laser ({lambda} = 308 nm). These films are epitaxiated with the c axis perpendicular to the substrate. The film quality depends on the substrate temperature, oxygen pressure and cooling speed.

  6. Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression

    International Nuclear Information System (INIS)

    Guo, Yin; Nazarian, Ehsan; Ko, Jeonghan; Rajurkar, Kamlakar

    2014-01-01

    Highlights: • Developed hourly-indexed ARX models for robust cooling-load forecasting. • Proposed a two-stage weighted least-squares regression approach. • Considered the effect of outliers as well as trend of cooling load and weather patterns. • Included higher order terms and day type patterns in the forecasting models. • Demonstrated better accuracy compared with some ARX and ANN models. - Abstract: This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting periods. The two-stage weighted least-squares regression approach in this study is robust to outliers and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale central cooling system in an academic institution. The numerical case studies show the proposed prediction method performs better than some ANN and ARX forecasting models for the given test data set

  7. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    Science.gov (United States)

    Hyhlík, Tomáš

    2018-06-01

    The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  8. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2018-01-01

    Full Text Available The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  9. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  10. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  11. Nuclear demagnetisation cooling of a nanoelectronic device

    Science.gov (United States)

    Jones, Alex; Bradley, Ian; Guénault, Tony; Gunnarsson, David; Haley, Richard; Holt, Stephen; Pashkin, Yuri; Penttilä, Jari; Prance, Jonathan; Prunnila, Mika; Roschier, Leif

    We present a new technique for on-chip cooling of electrons in a nanostructure: nuclear demagnetisation of on-chip, thin-film copper refrigerant. We are motivated by the potential improvement in the operation of nanoelectronic devices below 10 mK . At these temperatures, weak electron-phonon coupling hinders traditional cooling, yet here gives the advantage of thermal isolation between the environment and the on-chip electrons, enabling cooling significantly below the base temperature of the host lattice. To demonstrate this we electroplate copper onto the metallic islands of a Coulomb blockade thermometer (CBT), and hence provide a direct thermal link between the cooled copper nuclei and the device electrons. The CBT provides primary thermometry of its internal electron temperature, and we use this to monitor the cooling. Using an optimised demagnetisation profile we observe the electrons being cooled from 9 mK to 4 . 5 mK , and remaining below 5 mK for an experimentally useful time of 1200 seconds. We also suggest how this technique can be used to achieve sub- 1 mK electron temperatures without the use of elaborate bulk demagnetisation stages.

  12. Modeling of heat transfer in wall-cooled tubular reactors

    NARCIS (Netherlands)

    Koning, G.W.; Westerterp, K.R.

    1999-01-01

    In a pilot scale wall-cooled tubular reactor, temperature profiles have been measured with and without reaction. As a model reaction oxidation of carbon monoxide in air over a copper chromite catalyst has been used. The kinetics of this reaction have been determined separately in two kinetic

  13. Statistics Analysis Measures Painting of Cooling Tower

    Directory of Open Access Journals (Sweden)

    A. Zacharopoulou

    2013-01-01

    Full Text Available This study refers to the cooling tower of Megalopolis (construction 1975 and protection from corrosive environment. The maintenance of the cooling tower took place in 2008. The cooling tower was badly damaged from corrosion of reinforcement. The parabolic cooling towers (factory of electrical power are a typical example of construction, which has a special aggressive environment. The protection of cooling towers is usually achieved through organic coatings. Because of the different environmental impacts on the internal and external side of the cooling tower, a different system of paint application is required. The present study refers to the damages caused by corrosion process. The corrosive environments, the application of this painting, the quality control process, the measures and statistics analysis, and the results were discussed in this study. In the process of quality control the following measurements were taken into consideration: (1 examination of the adhesion with the cross-cut test, (2 examination of the film thickness, and (3 controlling of the pull-off resistance for concrete substrates and paintings. Finally, this study refers to the correlations of measurements, analysis of failures in relation to the quality of repair, and rehabilitation of the cooling tower. Also this study made a first attempt to apply the specific corrosion inhibitors in such a large structure.

  14. Thermodynamic-behaviour model for air-cooled screw chillers with a variable set-point condensing temperature

    International Nuclear Information System (INIS)

    Chan, K.T.; Yu, F.W.

    2006-01-01

    This paper presents a thermodynamic model to evaluate the coefficient of performance (COP) of an air-cooled screw chiller under various operating conditions. The model accounts for the real process phenomena, including the capacity control of screw compressors and variations in the heat-transfer coefficients of an evaporator and a condenser at part load. It also contains an algorithm to determine how the condenser fans are staged in response to a set-point condensing temperature. The model parameters are identified, based on the performance data of chiller specifications. The chiller model is validated using a wide range of operating data of an air-cooled screw chiller. The difference between the measured and modelled COPs is within ±10% for 86% of the data points. The chiller's COP can increase by up to 115% when the set-point condensing temperature is adjusted, based on any given outdoor temperature. Having identified the variation in the chiller's COP, a suitable strategy is proposed for air-cooled screw chillers to operate at maximum efficiency as much as possible when they have to satisfy a building's cooling-load

  15. Direct Evaporatrive Coolers of Gases and Liquids with Lowered Limit of Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-12-01

    Full Text Available We have developed main technical solutions solution of indirect evaporative water and air coolers with reduced cooling limit. Packed part of heat-mass transfer devices is made of the film type based monoblock compositions of polymer materials. A mathematical model describing the processes of joint heat and mass transfer in evaporative coolers is executed. A comparative analysis of the possibilities of coolers designed based on experimental data on the efficiency of processes of heat and mass transfer.

  16. Review of the Technical Status on the Debris Bed Cooling Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum

    2007-09-15

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris0.

  17. Review of the Technical Status on the Debris Bed Cooling Model

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum

    2007-09-01

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris

  18. Linear Dynamics Model for Steam Cooled Fast Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-04-15

    A linear analytical dynamic model is developed for steam cooled fast power reactors. All main components of such a plant are investigated on a general though relatively simple basis. The model is distributed in those parts concerning the core but lumped as to the external plant components. Coolant is considered as compressible and treated by the actual steam law. Combined use of analogue and digital computer seems most attractive.

  19. Magnetoresistance of drop-cast film of cobalt-substituted magnetite nanocrystals.

    Science.gov (United States)

    Kohiki, Shigemi; Nara, Koichiro; Mitome, Masanori; Tsuya, Daiju

    2014-10-22

    An oleic acid-coated Fe2.7Co0.3O4 nanocrystal (NC) self-assembled film was fabricated via drop casting of colloidal particles onto a three-terminal electrode/MgO substrate. The film exhibited a large coercivity (1620 Oe) and bifurcation of the zero-field-cooled and field-cooled magnetizations at 300 K. At 10 K, the film exhibited both a Coulomb blockade due to single electron charging as well as a magnetoresistance of ∼-80% due to spin-dependent electron tunneling. At 300 K, the film also showed a magnetoresistance of ∼-80% due to hopping of spin-polarized electrons. Enhanced magnetic coupling between adjacent NCs and the large coercivity resulted in a large spin-polarized current flow even at 300 K.

  20. Cooling Performance of ALIP according to the Air or Sodium Cooling Type

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Huee-Youl; Yoon, Jung; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    ALIP pumps the liquid sodium by Lorentz force produced by the interaction of induced current in the liquid metal and their associated magnetic field. Even though the efficiency of the ALIP is very low compared to conventional mechanical pumps, it is very useful due to the absence of moving parts, low noise and vibration level, simplicity of flow rate regulation and maintenance, and high temperature operation capability. Problems in utilization of ALIP concern a countermeasure for elevation of internal temperature of the coil due to joule heating and how to increase magnetic flux density of Na channel gap. The conventional ALIP usually used cooling methods by circulating the air or water. On the other hand, GE-Toshiba developed a double stator pump adopting the sodium-immersed self-cooled type, and it recovered the heat loss in sodium. Therefore, the station load factor of the plant could be reduced. In this study, the cooling performance with cooling types of ALIP is analyzed. We developed thermal analysis models to evaluate the cooling performance of air or sodium cooling type of ALIP. The cooling performance is analyzed for operating parameters and evaluated with cooling type. 1-D and 3-D thermal analysis model for IHTS ALIP was developed, and the cooling performance was analyzed for air or sodium cooling type. The cooling performance for air cooling type was better than sodium cooling type at higher air velocity than 0.2 m/s. Also, the air temperature of below 270 .deg. demonstrated the better cooling performance as compared to sodium.

  1. A simplified simulation model for a HPDC die with conformal cooling channels

    Science.gov (United States)

    Frings, Markus; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    In general, the cooling phase of the high-pressure die casting process is based on complex physical phenomena: so-lidification of molten material; heat exchange between cast part, die and cooling fluid; turbulent flow inside the cooling channels that needs to be considered when computing the heat flux; interdependency of properties and temperature of the cooling liquid. Intuitively understanding and analyzing all of these effects when designing HPDC dies is not feasible. A remedy that has become available is numerical design, based for example on shape optimization methods. However, current computing power is not sufficient to perform optimization while at the same time fully resolving all physical phenomena. But since in HPDC suitable objective functions very often lead to integral values, e.g., average die temperature, this paper identifies possible simplifications in the modeling of the cooling phase. As a consequence, the computational effort is reduced to an acceptable level. A further aspect that arises in the context of shape optimization is the evaluation of shape gradients. The challenge here is to allow for large shape deformations without remeshing. In our approach, the cooling channels are described by their center lines. The flow profile of the cooling fluid is then estimated based on experimental data found in literature for turbulent pipe flows. In combination, the heat flux throughout cavity, die, and cooling channel can be described by one single advection-diffusion equation on a fixed mesh. The parameters in the equation are adjusted based on the position of cavity and cooling channel. Both results contribute towards a computationally efficient, yet accurate method, which can be employed within the frame of shape optimization of cooling channels in HPDC dies.

  2. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  3. Preliminary tests of a model of cooling-pond thermal performance

    International Nuclear Information System (INIS)

    Hicks, B.B.; Wesely, M.L.; Wilczek, J.

    1975-01-01

    Experiments performed during recent years at the cooling pond complex at the Dresden nuclear power station have been designed to improve our understanding of the fundamental properties of thermal exchange at a warm-water surface. To a considerable extent, the field studies have been successful in that they have shown that modern micrometeorological techniques can be successfully applied to the demanding circumstances of an industrial cooling lake at temperature of at least 40 0 C. The intent of these studies has been to create a set of parameterization schemes good enough to allow simulation of the performance of the Dresden cooling lake without adjustment of numerical constants. An obvious extension of these studies, and one of the goals of the cooling-pond research program as presently stated, is to obtain an accurate numerical simulation of thermal performance of ponds with use of the improved formulations that have resulted from the experimental work at the Dresden lake. The computer model is divided into two sections and can be used to test the sensitivity of predicted performance to variations in procedures for determining the thermal transfer from the surface

  4. Experimental investigations and modeling of a loop thermosyphon for cooling with zero electrical consumption

    International Nuclear Information System (INIS)

    Chehade, Ali; Louahlia-Gualous, Hasna; Le Masson, Stéphane; Lépinasse, Eric

    2015-01-01

    This paper presents an analytical model for a thermosyphon loop developed for cooling air inside a telecommunication cabinet. The proposed model is based on the combination of thermal and hydraulic management of two-phase flow in the loop. Experimental tests on a closed thermosyphon loop are conducted with different working fluids that could be used for electronic cooling. Correlations for condensation and evaporation heat transfer in the thermosyphon loop are proposed. They are used in the model to calculate condenser and evaporator thermal resistances in order to predict the cabinet operating temperature, the loop's mass flow rate and pressure drops. Furthermore, various figures of merit proposed in the previous works are evaluated in order to be used for selection of the best loop's working fluid. The comparative studies show that the present model well predicts the experimental data. The mean deviation between the predictions of the theoretical model with the measurements for operating temperature is about 6%. Besides, the model is used to define an optimal liquid and vapor lines diameters and the effect of the ambient temperature on the fluid's mass flow rate and pressure drop. - Highlights: • Modeling of thermosyphon loop for cooling telecommunication cabinet. • The cooling system operates with zero electrical consumption. • The new correlations are proposed for condensation and evaporation heat transfer. • FOM equation is defined for selecting the best working fluid. • The proposed model well predicts the experimental data and operating temperature

  5. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  6. Continuous cooling transformation behavior and impact toughness in heat-affected zone of Nb-containing fire-resistant steel

    Science.gov (United States)

    Wang, Hong Hong; Qin, Zhan Peng; Wan, Xiang Liang; Wei, Ran; Wu, Kai Ming; Misra, Devesh

    2017-09-01

    Simulated heat-affected zone continuous cooling transformation diagram was developed for advanced fireresistant steel. Over a wide range of cooling rates, corresponding to t8/5 from 6 s to 150 s, granular bainite was the dominant transformation constituent, while the morphology of less dominant martensite-austenite (M-A) constituent changed from film-like to block-type constituent; but the hardness remained similar to the average value of 190-205 HV (0.2). The start and finish transformation temperature was high at 700 °C and 500 °C, and is different from the conventional high strength low alloy steels. It is believed that the high-content (0.09 wt%) of Nb may promote bainite transformation at relatively high temperatures. Martenistic matrix was not observed at high cooling rate and the film-like M-A constituent and blocky M-A constituent with thin film of retained austenite and lath martensite were observed on slow cooling. Excellent impact toughness was obtained in the heat-affected zone with 15-75 kJ/cm welding heat input.

  7. CEGB research on the effects of fouling of plastic packings on natural draught cooling tower performance

    International Nuclear Information System (INIS)

    Winter, R.J.

    1989-01-01

    Plastic film packings were first used in CEGB natural draught cooling towers in 1985. Since then, cooling towers at seven power stations have been repacked using various commercial designs of plastic packing, with generally satisfactory results in economic terms. However, fouling of all the packings has occurred to some extent, ranging from very thin films on the surface of the sheets, which actually enhances performance, to heavy and voluminous formations which severely constrict the inter-sheet passages, causing performance loss and threatening the structural integrity of the whole fill. At CERL, methods have been developed to relate the degree of fouling to the thermal performance loss. This information is enabling accurate calculations to be made of the economics of repacking. Samples of fouled packing from operation towers are tested using the Experimental Cooling Tower at the Central Electricity Research Laboratories at Leatherhead. A systematic investigation is also underway of the changes in pressure drop and mass transfer coefficients which take place as fouling develops, using progressively-fouled packing samples from a purpose-built Packing Fouling Facility located at one of the power stations. The performance data obtained is fed-back into models by which the effect of high fouling loadings on various packings is calculated, enabling packing economic life to be predicted

  8. Comparative Modelling of the Spectra of Cool Giants

    Science.gov (United States)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  9. Verification of Thermal Models of Internally Cooled Gas Turbine Blades

    Directory of Open Access Journals (Sweden)

    Igor Shevchenko

    2018-01-01

    Full Text Available Numerical simulation of temperature field of cooled turbine blades is a required element of gas turbine engine design process. The verification is usually performed on the basis of results of test of full-size blade prototype on a gas-dynamic test bench. A method of calorimetric measurement in a molten metal thermostat for verification of a thermal model of cooled blade is proposed in this paper. The method allows obtaining local values of heat flux in each point of blade surface within a single experiment. The error of determination of local heat transfer coefficients using this method does not exceed 8% for blades with radial channels. An important feature of the method is that the heat load remains unchanged during the experiment and the blade outer surface temperature equals zinc melting point. The verification of thermal-hydraulic model of high-pressure turbine blade with cooling allowing asymmetrical heat removal from pressure and suction sides was carried out using the developed method. An analysis of heat transfer coefficients confirmed the high level of heat transfer in the leading edge, whose value is comparable with jet impingement heat transfer. The maximum of the heat transfer coefficients is shifted from the critical point of the leading edge to the pressure side.

  10. Modeling the cool down of the primary heat transport system using shut down cooling system in normal operation and after events such as LOCA

    International Nuclear Information System (INIS)

    Icleanu, D.L.; Prisecaru, I.

    2015-01-01

    This paper aims at modeling the cooling of the primary heat transport system using shutdown cooling system (SDCS), for a CANDU 6 NPP in all operating modes, normal and abnormal (particularly in case of LOCA accident), using the Flowmaster calculation code. The modelling of heavy water flow through the shutdown cooling system and primary heat transport system was performed to determine the distribution of flows, pressure in various areas of the hydraulic circuit and the pressure loss corresponding to the components but also for the heat calculation of the heat exchangers related to the system. The results of the thermo-hydraulic analysis show that in all cases analyzed, normal operation and for LOCA accident regime, the performance requirements are confirmed by analysis

  11. Validation of film dryout model in a three-fluid code FIDAS

    International Nuclear Information System (INIS)

    Sugawara, Satoru

    1989-11-01

    Analytical prediction model of critical heat flux (CHF) has been developed on the basis of film dryout criterion due to droplets deposition and entrainment in annular mist flow. CHF in round tubes were analyzed by the Film Dryout Analysis Code in Subchannels, FIDAS, which is based on the three-fluid, three-field and newly developed film dryout model. Predictions by FIDAS were compared with the world-wide experimental data on CHF obtained in water and Freon for uniformly and non-uniformly heated tubes under vertical upward flow condition. Furthermore, CHF prediction capability of FIDAS was compared with those of other film dryout models for annular flow and Katto's CHF correlation. The predictions of FIDAS are in sufficient agreement with the experimental CHF data, and indicate better agreement than the other film dryout models and empirical correlation of Katto. (author)

  12. Development of precipitator of fluid film type

    International Nuclear Information System (INIS)

    Liu Yupu

    1987-01-01

    The precipitator of fluid film type is developed for the determination of fuel element cladding failure of water-cooled reactor. It integrates the scrubber, precipitator and detector. The jet of element cooling water automatically circulates carrier gas and the flow water film transfers precipitates onto the surface of centre electrode. Three different types are designed. On the special test loop, the uranium sample pellets of simulating cladding failure is measured. The sensitivity of precipitators, saturated precipitation voltage, incremental speed of signal, speed of driving out precipitates and the contents of the precipitates are determined. The test shows that the precipitators are highly sensitive, reliable, cheap and easy to operate

  13. A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films

    KAUST Repository

    Kwiatkowski, Joe J.; Jimison, Leslie H.; Salleo, Alberto; Spakowitz, Andrew J.

    2011-01-01

    We present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.

  14. 3D Measurements of coupled freestream turbulence and secondary flow effects on film cooling

    Science.gov (United States)

    Ching, David S.; Xu, Haosen H. A.; Elkins, Christopher J.; Eaton, John K.

    2018-06-01

    The effect of freestream turbulence on a single round film cooling hole is examined at two turbulence levels of 5 and 8% and compared to a baseline low freestream turbulence case. The hole is inclined at 30° and has length to diameter ratio L/D=4 and unity blowing ratio. Turbulence is generated with grid upstream of the hole in the main channel. The three-dimensional, three-component mean velocity field is acquired with magnetic resonance velocimetry (MRV) and the three-dimensional temperature field is acquired with magnetic resonance thermometry (MRT). The 8% turbulence grid produces weak mean secondary flows in the mainstream (peak crossflow velocities are 7% of U_bulk) which push the jet close to the wall and significantly change the adiabatic effectiveness distribution. By contrast, the 5% grid has a simpler structure and does not produce a measurable secondary flow structure. The grid turbulence causes little change to the temperature field, indicating that the turbulence generated in the shear layers around the jet dominates the freestream turbulence. The results suggest that secondary flows induced by complex turbulence generators may have caused some of the contradictory results in previous works.

  15. Self-Poling of BiFeO3 Thick Films.

    Science.gov (United States)

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-03

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

  16. Modeling and performance of the MHTGR [Modular High-Temperature Gas-Cooled Reactor] reactor cavity cooling system

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1990-04-01

    The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab

  17. Reactor coolant pump seal response to loss of cooling

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Burchett, P.

    2000-01-01

    This paper describes the results of a test done to determine the performance of a reactor coolant pump seal for a water cooled nuclear reactor under loss of all cooling conditions. Under these conditions, seal faces can lose their liquid lubricating film and elastomers can rapidly degrade. Temperatures in the seal-cartridge tester reached 230 o C in three hours, at which time the tester was stopped and the temperature increased to 265 o C for a further five hours before cooling was restored. Seal leakage was 'normal' throughout the test. Parts sustained minor damage with no effect on seal integrity. Plant operators were shown to have ample margin beyond their 15 minute allowable reaction time. (author)

  18. Investigations of combined used of cooling ponds with cooling towers or spraying systems

    International Nuclear Information System (INIS)

    Farforovsky, V.B.

    1990-01-01

    Based on a brief analysis of the methods of investigating cooling ponds, spraying systems and cooling towers, a conclusion is made that the direct modelling of the combined use of cooling systems listed cannot be realized. An approach to scale modelling of cooling ponds is proposed enabling all problems posed by the combined use of coolers to be solved. Emphasized is the importance of a proper choice of a scheme of including a cooler in a general water circulation system of thermal and nuclear power plants. A sequence of selecting a cooling tower of the type and spraying system of the size ensuring the specified temperature regime in a water circulation system is exemplified by the water system of the Ghorasal thermal power plant in Bangladesh

  19. The choice between cooled tubular reactor models: analysis of the hot spot

    NARCIS (Netherlands)

    Westerink, E.J.; Koster, N.; Westerterp, K.R.

    1990-01-01

    The applicability of the one-dimensional pseudo-homogeneous model of the cooled tubular reactor is studied. Using the two-dimensional model as the more accurate one we compared both models by studying the influence of the design and operating variables on the conditions in the hot spot of the

  20. Nanoscale modeling for ultrathin liquid films: Spreading and coupled layering

    Science.gov (United States)

    Phillips, David Michael

    liquid PFPE. The experimental analogue of replenishment is the one-dimensional spreading analysis. PFPEs with functional endgroups demonstrated coupled molecular layering and dewetting phenomena during the spreading analysis, while PFPEs with nonfunctional endgroups did not. All of the PFPE thin films spread via a diffusive process and had diffusion coefficients that depended on the local film thickness. A theoretical analysis is presented here for both the governing equation and the disjoining pressure driving force for the PFPE thin film spreading. For PFPEs with non-functional endgroups, a reasonable analysis is performed on the diffusion coefficient for two classes of film: submonolayer and multilayer. The diffusion coefficient of PFPEs with functional endgroups are qualitatively linked to the gradient of the film disjoining pressure. To augment this theory, both lattice-based and off-lattice Monte Carlo simulations are conducted for PFPE film models. The lattice-based model shows the existence of a critical functional endgroup interaction strength. It is also used to study the break-up of molecular layers for a spreading film via a fractal analysis. The off-lattice model is used to calculate the anisotropic pressure tensor for the model PFPE thin film and subsequently the film disjoining pressure. The model also qualitatively analyzes of the self diffusion in the film.

  1. Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach

    International Nuclear Information System (INIS)

    De Rosa, Mattia; Bianco, Vincenzo; Scarpa, Federico; Tagliafico, Luca A.

    2014-01-01

    Highlights: • A dynamic model to estimate the energy performance of buildings is presented. • The model is validated against leading software packages, TRNSYS and Energy Plus. • Modified degree days are introduced to account for solar irradiation effects. - Abstract: Degree days represent a versatile climatic indicator which is commonly used in building energy performance analysis. In this context, the present paper proposes a simple dynamic model to simulate heating/cooling energy consumption in buildings. The model consists of several transient energy balance equations for external walls and internal air according to a lumped-capacitance approach and it has been implemented utilizing the Matlab/Simulink® platform. Results are validated by comparison to the outcomes of leading software packages, TRNSYS and Energy Plus. By using the above mentioned model, energy consumption for heating/cooling is analyzed in different locations, showing that for low degree days the inertia effect assumes a paramount importance, affecting the common linear behavior of the building consumption against the standard degree days, especially for cooling energy demand. Cooling energy demand at low cooling degree days (CDDs) is deeply analyzed, highlighting that in this situation other factors, such as solar irradiation, have an important role. To take into account these effects, a correction to CDD is proposed, demonstrating that by considering all the contributions the linear relationship between energy consumption and degree days is maintained

  2. SMA foil-based elastocaloric cooling: from material behavior to device engineering

    Science.gov (United States)

    Bruederlin, F.; Ossmer, H.; Wendler, F.; Miyazaki, S.; Kohl, M.

    2017-10-01

    The elastocaloric effect associated with the stress-induced first order phase transformation in pseudoelastic shape memory alloy (SMA) films and foils is of special interest for cooling applications on a miniature scale enabling fast heat transfer and high cycling frequencies as well as tunable transformation temperatures. The focus is on TiNi-based materials having the potential to meet the various challenges associated with elastocaloric cooling including large adiabatic temperature change and ultra-low fatigue. The evolution of strain and temperature bands during tensile load cycling is investigated with respect to strain and strain-rate by in situ digital image correlation and infrared thermography with a spatial resolution in the order of 25 µm. Major design issues and challenges in fabrication of SMA film-based elastocaloric cooling devices are discussed including the efficiency of heat transfer as well as force recovery to enhance the coefficient of performance (COP) on the system level. Advanced demonstrators show a temperature span of 13 °C after 30 s, while the COP of the overall device reaches almost 10% of Carnot efficiency.

  3. Model-Based Fault Detection and Isolation of a Liquid-Cooled Frequency Converter on a Wind Turbine

    DEFF Research Database (Denmark)

    Li, Peng; Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    advanced fault detection and isolation schemes. In this paper, an observer-based fault detection and isolation method for the cooling system in a liquid-cooled frequency converter on a wind turbine which is built up in a scalar version in the laboratory is presented. A dynamic model of the scale cooling...... system is derived based on energy balance equation. A fault analysis is conducted to determine the severity and occurrence rate of possible component faults and their end effects in the cooling system. A method using unknown input observer is developed in order to detect and isolate the faults based...... on the developed dynamical model. The designed fault detection and isolation algorithm is applied on a set of measured experiment data in which different faults are artificially introduced to the scaled cooling system. The experimental results conclude that the different faults are successfully detected...

  4. Building Modelling Methodologies for Virtual District Heating and Cooling Networks

    Energy Technology Data Exchange (ETDEWEB)

    Saurav, Kumar; Choudhury, Anamitra R.; Chandan, Vikas; Lingman, Peter; Linder, Nicklas

    2017-10-26

    District heating and cooling systems (DHC) are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increase the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components interacting with each other. In this paper we present two building methodologies to model the consumer buildings. These models will be further integrated with network model and the control system layer to create a virtual test bed for the entire DHC system. The model is validated using data collected from a real life DHC system located at Lulea, a city on the coast of northern Sweden. The test bed will be then used for simulating various test cases such as peak energy reduction, overall demand reduction etc.

  5. The Effect of Lead Intensification Screens on Film: Modeling and Experiment

    International Nuclear Information System (INIS)

    Wendt, S.; Gray, J.; Zhou, C.

    2004-01-01

    A physics-based, intensification screen model, using lead as an example, has been developed. Comparisons to experimental results are shown. The dominant effect in producing the intensification is from photoelectrons ejected from a 24 - 40 micron layer of lead near the film with Compton electrons and the lead fluorescence x-rays contributing less than 10% to the intensification for settings below 300 kvp. The thickness of lead screen for optimal intensification is between 15 and 70 microns depending upon the energy of the photon. This is less than the traditional practice of a 130 microns front screen and 260 microns back screen. The model computes the intensifying effect of lead screens placed in front or in back of a sheet of radiographic film and accounts for the strong energy dependent effects contributing to the intensification. The lead screen model is independent of film type, so the user can select any type of film and any combination of lead thickness for the front and back screens. The model uses energy dependent x-ray photon absorption cross-sections to compute the production of electrons in the lead. A Monte Carlo calculation was used to determine energy dependent electron penetration in the lead and the film. The model calculates electron attenuation in the film emulsion, the film substrate and both front and back lead screens and determines the intensification effect as a function of the energy deposited in the film. For model validation, lead screen intensification was studied with x-ray generator settings ranging from 75 to 320 kvp and using various thicknesses of aluminum and iron attenuators to filter the x-ray beam. A high precision motion control system coupled with a high purity germanium detector was used to study the energy spectra

  6. Parametric study of sodium aerosols in the cover-gas space of sodium-cooled reactors

    International Nuclear Information System (INIS)

    Sheth, A.

    1975-03-01

    A mathematical model has been developed to describe the behavior of sodium aerosols in the cover-gas space of a sodium-cooled reactor. A review of the literature was first made to examine methods of aerosol generation, mathematical expressions representing aerosol behavior, and pertinent experimental investigations of sodium aerosols. In the development of the model, some terms were derived from basic principles and other terms were estimated from available correlations. The model was simulated on a computer, and important parameters were studied to determine their effects on the overall behavior of sodium aerosols. The parameters studied were sodium pool temperature, source and initial size of particles, film thickness at the sodium pool/cover gas interface, wall plating parameters, cover-gas flow rate, and type of cover gas (argon and helium). The model satisfactorily describes the behavior of sodium aerosol in argon, but not in helium. Possible reasons are given for the failure of the model with helium, and further experimental work is recommended. The mathematical model, with appropriate modifications to describe the behavior of sodium aerosols in helium, would be very useful in designing traps to remove aerosols from the cover gas of sodium-cooled reactors. (U.S.)

  7. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    Directory of Open Access Journals (Sweden)

    Robert J. Lovelett

    2016-04-01

    Full Text Available Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstrate the modeling approach with the example of chalcopyrite Cu(InGa(SeS2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa(SeS2 thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.

  8. A statistical-thermodynamic model for ordering phenomena in thin film intermetallic structures

    International Nuclear Information System (INIS)

    Semenova, Olga; Krachler, Regina

    2008-01-01

    Ordering phenomena in bcc (110) binary thin film intermetallics are studied by a statistical-thermodynamic model. The system is modeled by an Ising approach that includes only nearest-neighbor chemical interactions and is solved in a mean-field approximation. Vacancies and anti-structure atoms are considered on both sublattices. The model describes long-range ordering and simultaneously short-range ordering in the thin film. It is applied to NiAl thin films with B2 structure. Vacancy concentrations, thermodynamic activity profiles and the virtual critical temperature of order-disorder as a function of film composition and thickness are presented. The results point to an important role of vacancies in near-stoichiometric and Ni-rich NiAl thin films

  9. A computational model for doctoring fluid films in gravure printing

    Energy Technology Data Exchange (ETDEWEB)

    Hariprasad, Daniel S., E-mail: dshari@unm.edu [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Grau, Gerd [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720-1770 (United States); Schunk, P. Randall [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87185-0826 (United States); Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Tjiptowidjojo, Kristianto [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States)

    2016-04-07

    The wiping, or doctoring, process in gravure printing presents a fundamental barrier to resolving the micron-sized features desired in printed electronics applications. This barrier starts with the residual fluid film left behind after wiping, and its importance grows as feature sizes are reduced, especially as the feature size approaches the thickness of the residual fluid film. In this work, various mechanical complexities are considered in a computational model developed to predict the residual fluid film thickness. Lubrication models alone are inadequate, and deformation of the doctor blade body together with elastohydrodynamic lubrication must be considered to make the model predictive of experimental trends. Moreover, model results demonstrate that the particular form of the wetted region of the blade has a significant impact on the model's ability to reproduce experimental measurements.

  10. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    Science.gov (United States)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  11. Radiative cooling for storage of vegetables in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin, A; Wilujeng, T; Mahendra, M S

    2000-07-01

    Radiative cooling in combination with packed bed cooling tower may be applicable in establishing low cost and environmentally friendly pre-cooling and temporary storage facility in vegetable growing areas in Indonesia. To test the possibility of such a system, an experiment using a prototype storage system had been conducted in Candikuning village in Bali, Indonesia. From this test it was recorded that the attainable storage temperature was between 18 and 22{sup o}C. Under this environment tomatoes and potatoes, packed with stretch film could be stored respectively, for 16 days with weight loss of 1.7% and for 21 days with weight loss of 0.4%. After 4 days of storage, broccoli with 4 hours precooling, the recorded minimum weight loss was 4.9%. (author)

  12. A novel methodology to model the cooling processes of packed horticultural produce using 3D shape models

    Science.gov (United States)

    Gruyters, Willem; Verboven, Pieter; Rogge, Seppe; Vanmaercke, Simon; Ramon, Herman; Nicolai, Bart

    2017-10-01

    Freshly harvested horticultural produce require a proper temperature management to maintain their high economic value. Towards this end, low temperature storage is of crucial importance to maintain a high product quality. Optimizing both the package design of packed produce and the different steps in the postharvest cold chain can be achieved by numerical modelling of the relevant transport phenomena. This work presents a novel methodology to accurately model both the random filling of produce in a package and the subsequent cooling process. First, a cultivar-specific database of more than 100 realistic CAD models of apple and pear fruit is built with a validated geometrical 3D shape model generator. To have an accurate representation of a realistic picking season, the model generator also takes into account the biological variability of the produce shape. Next, a discrete element model (DEM) randomly chooses surface meshed bodies from the database to simulate the gravitational filling process of produce in a box or bin, using actual mechanical properties of the fruit. A computational fluid dynamics (CFD) model is then developed with the final stacking arrangement of the produce to study the cooling efficiency of packages under several conditions and configurations. Here, a typical precooling operation is simulated to demonstrate the large differences between using actual 3D shapes of the fruit and an equivalent spheres approach that simplifies the problem drastically. From this study, it is concluded that using a simplified representation of the actual fruit shape may lead to a severe overestimation of the cooling behaviour.

  13. Real-Time Closed Loop Modulated Turbine Cooling

    Science.gov (United States)

    Shyam, Vikram; Culley, Dennis E.; Eldridge, Jeffrey; Jones, Scott; Woike, Mark; Cuy, Michael

    2014-01-01

    It has been noted by industry that in addition to dramatic variations of temperature over a given blade surface, blade-to-blade variations also exist despite identical design. These variations result from manufacturing variations, uneven wear and deposition over the life of the part as well as limitations in the uniformity of coolant distribution in the baseline cooling design. It is proposed to combine recent advances in optical sensing, actuation, and film cooling concepts to develop a workable active, closed-loop modulated turbine cooling system to improve by 10 to 20 the turbine thermal state over the flight mission, to improve engine life and to dramatically reduce turbine cooling air usage and aircraft fuel burn. A reduction in oxides of nitrogen (NOx) can also be achieved by using the excess coolant to improve mixing in the combustor especially for rotorcraft engines. Recent patents filed by industry and universities relate to modulating endwall cooling using valves. These schemes are complex, add weight and are limited to the endwalls. The novelty of the proposed approach is twofold 1) Fluidic diverters that have no moving parts are used to modulate cooling and can operate under a wide range of conditions and environments. 2) Real-time optical sensing to map the thermal state of the turbine has never been attempted in realistic engine conditions.

  14. Significant questions in thin liquid film heat transfer

    International Nuclear Information System (INIS)

    Bankoff, S.G.

    1994-01-01

    Thin liquid films appear in many contexts, such as the cooling of gas turbine blade tips, rocket engines, microelectronics arrays, and hot fuel element surfaces in hypothetical nuclear reactor accidents. Apart from these direct cooling applications of thin liquid layers, thin films form a crucial element in determining the allowable heat flux limits in boiling. This is because the last stages of dryout almost invariably involve the rupture of a residual liquid film, either as a microlayer underneath the bubbles, or a thin annular layer in a high-quality burnout scenario. The destabilization of these thin films under the combined actions of shear stress, evaporation, and thermocapillary effects is quite complex. The later stages of actual rupture to form dry regions, which then expand, resulting in possible overheating, are even more complex and less well understood. However, significant progress has been made in understanding the behavior of these thin films, which are subject to competing instabilities prior to actual rupture. This will be reviewed briefly. Recent work on the advance, or recession, of contact lines will also be described briefly, and significant questions that still remain to be answered will be discussed. 68 refs., 7 figs

  15. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  16. Development of a model to describe organic films on aerosol particles and cloud droplets. Final report; Entwicklung eines Modells zur Beschreibung organischer Filme auf Aerosolteilchen und Wolkentropfen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Forkel, R. (ed.); Seidl, W.

    2000-12-01

    Organic substances with polar groups are enriched on water surfaces and can form monomolecular surface films which can reduce the surface tension. A new model to describe surface films is presented, which describes in detail the film forming properties of fatty acids with up to 22 carbon atoms. The model is applied to measured concentrations of fatty acids (from the literature) in rain water and on aerosol particles and cloud droplets. An investigation of the sources of fatty acids has shown, that abrasion of the wax layer on leaves and needles is the main sources for surface film material in the western USA. Anthropogenic sources in urban areas are meat preparation and cigarette smoke. The agreement between model results and measurements when the model was applied to rain water confirms the original assumption that fatty acids are a main compound of surface films in rain water. For humid aerosol particles the application of the model on measured concentrations of fatty acids only showed strongly diluted films. Only for remote forest areas in western USA concentrated films were found, with the surface tension reduced by 20 to 30%. On cloud droplets the surface films is still more diluted than on aerosol particles. For all investigated cases the films was too much diluted to have an effect on the activation process of cloud droplets. (orig.) [German] Organische Substanzen mit polaren Gruppen reichern sich an der Wasseroberflaeche an und koennen monomolekulare Oberflaechenfilme bilden, die zu einer Verringerung der Oberflaechenspannung fuehren. Es wird ein neues Modell zur Beschreibung eines Oberflaechenfilms beschrieben, das detailliert die filmbildenden Eigenschaften der Fettsaeuren mit bis zu 22 Kohlenstoffatomen erfasst. Dieses Modell ist auf gemessene Konzentrationen von Fettsaeuren (Literaturdaten) in Regenwasser und auf atmosphaerischen Aerosolteilchen und Wolkentropfen angewandt worden. Eine Betrachtung der Quellen der Fettsaeuren zeigte, dass der Abrieb der

  17. A new approach to the modeling of ultimate heat sink cooling ponds

    International Nuclear Information System (INIS)

    Policastro, A.J.; Wastag, M.; Paul, J.; Carhart, R.A.

    1996-01-01

    Ultimate heat sink (UHS) cooling pond thermal performance is analyzed by a new method in which zero, one, and three-dimensional models are used in combination. A typical UHS pond has an irregular shape covering 20 hectares at an average depth of 4 m with a heavy thermal load of 40 MWt (megawatts thermal) per hectare. The resulting flow field can be one, two or three dimensional. A three-dimensional numerical model (Paul 1983) is modified and used to determine the effective dimensionality of the pond under accident conditions. The model's surface heat transfer formulas and its predictions of thermal hydraulics are verified using laboratory and field data. The Paul model shows that, unlike normal cooling ponds, a typical UHS pond is vertically-mixed with only a longitudinal temperature variation. Buoyancy-driven circulations, strong discharge-to-intake flow, and rapid surface heat removal break down the usual vertical stratification. Predictions of the one-dimensional MITEMP model are shown to agree with Paul model predictions for a typical UHS pond at the Catawba Nuclear Power Plant

  18. Process Modeling With Inhomogeneous Thin Films

    Science.gov (United States)

    Machorro, R.; Macleod, H. A.; Jacobson, M. R.

    1986-12-01

    Designers of optical multilayer coatings commonly assume that the individual layers will be ideally homogeneous and isotropic. In practice, it is very difficult to control the conditions involved in the complex evaporation process sufficiently to produce such ideal films. Clearly, changes in process parameters, such as evaporation rate, chamber pressure, and substrate temperature, affect the microstructure of the growing film, frequently producing inhomogeneity in structure or composition. In many cases, these effects are interdependent, further complicating the situation. However, this process can be simulated on powerful, interactive, and accessible microcomputers. In this work, we present such a model and apply it to estimate the influence of an inhomogeneous layer on multilayer performance. Presently, the program simulates film growth, thermal expansion and contraction, and thickness monitoring procedures, and includes the effects of uncertainty in these parameters or noise. Although the model is being developed to cover very general cases, we restrict the present discussion to isotropic and nondispersive quarterwave layers to understand the particular effects of inhomogeneity. We studied several coating designs and related results and tolerances to variations in evaporation conditions. The model is composed of several modular subprograms, is written in Fortran, and is executed on an IBM-PC with 640 K of memory. The results can be presented in graphic form on a monochrome monitor. We are currently installing and implementing color capability to improve the clarity of the multidimensional output.

  19. A model for radiative cooling of a semitransparent molten glass jet

    International Nuclear Information System (INIS)

    Song, M.; Ball, K.S.; Bergman, T.L.

    1998-01-01

    Transfer of molten glass from location to location typically involves a pouring process, during which a stream of glass is driven by gravity and cooled by combined convective and radiative heat transfer. This study of the thermal and fluid mechanics aspects of glass pouring is motivated by the glass casting of vitrified, surplus weapons-grade plutonium. Here, a mathematical model for the radiative cooling of a semitransparent molten glass jet with temperature-dependent viscosity has been developed and is implemented numerically. The axial velocity and jet diameter variations along the length of the jet, the axial bulk mean temperature distributions, and the centerline-to-surface glass temperature distributions are determined for different processing conditions. Comparisons are also made between the semitransparent predictions, which are based on a spectral discrete ordinates model, and predictions for an opaque medium

  20. Oxidation films morphology

    International Nuclear Information System (INIS)

    Paidassi, J.

    1960-01-01

    After studying the oxidation of several pure polyvalent metals (Fe, Cu, Mn, Ni, U) and of their oxides at high temperature and atmospheric pressure, the author suggests how to modify the usual representation of the oxide film (a piling of different oxide layers, homogeneous on a micrographic scale with a equi-axial crystallisation, free of mechanical tensions, with flat boundary surfaces) to have it nearer to reality. In this first part, the author exposes the study of the real micrographic structure of the oxidation film and gives examples of precipitation in the oxides during the cooling of the oxidised sample. (author) [fr

  1. Two-dimensional models for the optical response of thin films

    Science.gov (United States)

    Li, Yilei; Heinz, Tony F.

    2018-04-01

    In this work, we present a systematic study of 2D optical models for the response of thin layers of material under excitation by normally incident light. The treatment, within the framework of classical optics, analyzes a thin film supported by a semi-infinite substrate, with both the thin layer and the substrate assumed to exhibit local, isotropic linear response. Starting from the conventional three-dimensional (3D) slab model of the system, we derive a two-dimensional (2D) sheet model for the thin film in which the optical response is described by a sheet optical conductivity. We develop criteria for the applicability of this 2D sheet model for a layer with an optical thickness far smaller than the wavelength of the light. We examine in detail atomically thin semi-metallic and semiconductor van-der-Waals layers and ultrathin metal films as representative examples. Excellent agreement of the 2D sheet model with the 3D slab model is demonstrated over a broad spectral range from the radio frequency limit to the near ultraviolet. A linearized version of system response for the 2D model is also presented for the case where the influence of the optically thin layer is sufficiently weak. Analytical expressions for the applicability and accuracy of the different optical models are derived, and the appropriateness of the linearized treatment for the materials is considered. We discuss the advantages, as well as limitations, of these models for the purpose of deducing the optical response function of the thin layer from experiment. We generalize the theory to take into account in-plane anisotropy, layered thin film structures, and more general substrates. Implications of the 2D model for the transmission of light by the thin film and for the implementation of half- and totally absorbing layers are discussed.

  2. Marginally fast cooling synchrotron models for prompt GRBs

    Science.gov (United States)

    Beniamini, Paz; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2018-05-01

    Previous studies have considered synchrotron as the emission mechanism for prompt gamma-ray bursts (GRBs). These works have shown that the electrons must cool on a time-scale comparable to the dynamic time at the source in order to satisfy spectral constraints while maintaining high radiative efficiency. We focus on conditions where synchrotron cooling is balanced by a continuous source of heating, and in which these constraints are naturally satisfied. Assuming that a majority of the electrons in the emitting region are contributing to the observed peak, we find that the energy per electron has to be E ≳ 20 GeV and that the Lorentz factor of the emitting material has to be very large 103 ≲ Γem ≲ 104, well in excess of the bulk Lorentz factor of the jet inferred from GRB afterglows. A number of independent constraints then indicate that the emitters must be moving relativistically, with Γ΄ ≈ 10, relative to the bulk frame of the jet and that the jet must be highly magnetized upstream of the emission region, σup ≳ 30. The emission radius is also strongly constrained in this model to R ≳ 1016 cm. These values are consistent with magnetic jet models where the dissipation is driven by magnetic reconnection that takes place far away from the base of the jet.

  3. Hydroaerothermal investigations conducted in the USSR to justify the construction of large cooling towers

    International Nuclear Information System (INIS)

    Goncharov, V.V.

    1989-01-01

    The multi-purpose task of improving water cooling systems of thermal and nuclear power plants is aimed at the development of efficient designs of cooling towers and other types of industrial coolers which call for comprehensive scientific justification. Cooling towers of 60-70 thou m 3 /h capacity with a chimney height of 130 m and those of 80-100 thou m 3 /h capacity with a chimney height of 150 m were developed. For circulating water systems of large power plants the design of a counterflow chimney cooling tower of 180 thou m 3 /h capacity has been recently developed. At present the work is being conducted on developing a new three-cell cooling tower featuring high reliability, operational flexibility and cost-effectiveness of the design. This cooling tower, besides having higher operating reliability than the conventional one of circular shape, can ensure the commissioning, current repairs and overhauls of water cooling arrangements in a cell-wise sequence, i.e. without shutting down the power generating units. Laboratory and field investigations of the spray-type cooling towers having no packing (fill), studies on heat and mass exchanges processes, aerodynamics of droplet flows and new designs of sprayers made it possible to come to a conclusion that their cooling capacity can be substantially increased and brought up to the level of the cooling towers with film packings. The pilot cooling towers were designed according to the counterflow, crossflow and cross-counterflow schemes. The basic investigation method remains to be the experimental one. On the test rigs and aerodynamic models the heat and mass transfer and aerodynamic resistance coefficients are determined. These studies and subsequent calculations are based on the heat balance equation

  4. Analysis of large scale tests for AP-600 passive containment cooling system

    International Nuclear Information System (INIS)

    Sha, W.T.; Chien, T.H.; Sun, J.G.; Chao, B.T.

    1997-01-01

    One unique feature of the AP-600 is its passive containment cooling system (PCCS), which is designed to maintain containment pressure below the design limit for 72 hours without action by the reactor operator. During a design-basis accident, i.e., either a loss-of-coolant or a main steam-line break accident, steam escapes and comes in contact with the much cooler containment vessel wall. Heat is transferred to the inside surface of the steel containment wall by convection and condensation of steam and through the containment steel wall by conduction. Heat is then transferred from the outside of the containment surface by heating and evaporation of a thin liquid film that is formed by applying water at the top of the containment vessel dome. Air in the annual space is heated by both convection and injection of steam from the evaporating liquid film. The heated air and vapor rise as a result of natural circulation and exit the shield building through the outlets above the containment shell. All of the analytical models that are developed for and used in the COMMIX-ID code for predicting performance of the PCCS will be described. These models cover governing conservation equations for multicomponents single phase flow, transport equations for the κ-ε two-equation turbulence model, auxiliary equations, liquid-film tracking model for both inside (condensate) and outside (evaporating liquid film) surfaces of the containment vessel wall, thermal coupling between flow domains inside and outside the containment vessel, and heat and mass transfer models. Various key parameters of the COMMIX-ID results and corresponding AP-600 PCCS experimental data are compared and the agreement is good. Significant findings from this study are summarized

  5. Development and validation of the shutdown cooling system CATHENA model for Gentilly-2

    International Nuclear Information System (INIS)

    Lecuyer, H.; Hasnaoui, C.; Sabourin, G.; Chapados, S.

    2008-01-01

    A CATHENA representation of the Gentilly-2 Shutdown Cooling system has been developed for Hydro-Quebec. The model includes the SDCS circuit piping, valves, pumps and heat exchangers. The model is integrated in the G2 CATHENA overall plant model and coupled with the plant control software simulator TROLG2 to allow the simulation of various plant operational modes using the SDCS. Results have been obtained for normal cooling of the primary heat transport system following a planned shut down (transition from full power to shutdown) and for two special SDCS configurations that were used on September 14 and 15, 2006 at Gentilly-2. The results show close match with values measured at Gentilly-2 during either steady or transient states. (author)

  6. Development and validation of the shutdown cooling system CATHENA model for Gentilly-2

    Energy Technology Data Exchange (ETDEWEB)

    Lecuyer, H.; Hasnaoui, C. [Nucleonex Inc., Westmount, Quebec (Canada); Sabourin, G. [Atomic Energy of Canada Limited, Montreal, Quebec (Canada); Chapados, S. [Hydro-Quebec, Unite Analyse et Fiabilite, Montreal, Quebec (Canada)

    2008-07-01

    A CATHENA representation of the Gentilly-2 Shutdown Cooling system has been developed for Hydro-Quebec. The model includes the SDCS circuit piping, valves, pumps and heat exchangers. The model is integrated in the G2 CATHENA overall plant model and coupled with the plant control software simulator TROLG2 to allow the simulation of various plant operational modes using the SDCS. Results have been obtained for normal cooling of the primary heat transport system following a planned shut down (transition from full power to shutdown) and for two special SDCS configurations that were used on September 14 and 15, 2006 at Gentilly-2. The results show close match with values measured at Gentilly-2 during either steady or transient states. (author)

  7. Ice films follow structure zone model morphologies

    International Nuclear Information System (INIS)

    Cartwright, Julyan H.E.; Escribano, Bruno; Sainz-Diaz, C. Ignacio

    2010-01-01

    Ice films deposited at temperatures of 6-220 K and at low pressures in situ in a cryo-environmental scanning electron microscope show pronounced morphologies at the mesoscale consistent with the structure zone model of film growth. Water vapour was injected directly inside the chamber at ambient pressures ranging from 10 -4 Pa to 10 2 Pa. Several different substrates were used to exclude the influence of their morphology on the grown films. At the lowest temperatures the ice, which under these conditions is amorphous on the molecular scale, shows the mesoscale morphologies typical of the low-temperature zones of the structure zone model (SZM), including cauliflower, transition, spongelike and matchstick morphologies. Our experiments confirm that the SZM is independent of the chemical nature of the adsorbate, although the intermolecular interactions in water (hydrogen bonds) are different to those in ceramics or metals. At higher temperatures, on the other hand, where the ice is hexagonal crystalline on the molecular scale, it displays a complex palmlike morphology on the mesoscale.

  8. Ice films follow structure zone model morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E. [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain); Escribano, Bruno, E-mail: bruno.escribano.salazar@gmail.co [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain); Sainz-Diaz, C. Ignacio [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain)

    2010-04-02

    Ice films deposited at temperatures of 6-220 K and at low pressures in situ in a cryo-environmental scanning electron microscope show pronounced morphologies at the mesoscale consistent with the structure zone model of film growth. Water vapour was injected directly inside the chamber at ambient pressures ranging from 10{sup -4} Pa to 10{sup 2} Pa. Several different substrates were used to exclude the influence of their morphology on the grown films. At the lowest temperatures the ice, which under these conditions is amorphous on the molecular scale, shows the mesoscale morphologies typical of the low-temperature zones of the structure zone model (SZM), including cauliflower, transition, spongelike and matchstick morphologies. Our experiments confirm that the SZM is independent of the chemical nature of the adsorbate, although the intermolecular interactions in water (hydrogen bonds) are different to those in ceramics or metals. At higher temperatures, on the other hand, where the ice is hexagonal crystalline on the molecular scale, it displays a complex palmlike morphology on the mesoscale.

  9. Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies

    International Nuclear Information System (INIS)

    Wei, Zhongbao; Zhao, Jiyun; Xiong, Binyu

    2014-01-01

    Highlights: • A dynamic electro-thermal model is proposed for VRB with forced cooling. • The Foster network is adopted to model the battery cooling process. • Both the electrolyte temperature and terminal voltage can be accurately predicted. • The flow rate of electrolyte and coolant significantly impact battery performance. - Abstract: The present study focuses on the dynamic electro-thermal modeling for the all-vanadium redox flow battery (VRB) with forced cooling strategies. The Foster network is adopted to dynamically model the heat dissipation of VRB with heat exchangers. The parameters of Foster network are extracted by fitting the step response of it to the results of linearized CFD model. Then a complete electro-thermal model is proposed by coupling the heat generation model, Foster network and electrical model. Results show that the established model has nearly the same accuracy with the nonlinear CFD model in electrolyte temperature prediction but drastically improves the computational efficiency. The modeled terminal voltage is also benchmarked with the experimental data under different current densities. The electrolyte temperature is found to be significantly influenced by the flow rate of coolant. As compared, although the electrolyte flow rate has unremarkable impact on electrolyte temperature, its effect on system pressure drop and battery efficiency is significant. Increasing the electrolyte flow rate improves the coulombic efficiency, voltage efficiency and energy efficiency simultaneously but at the expense of higher pump power demanded. An optimal flow rate exists for each operating condition to maximize the system efficiency

  10. Model approach for simulating the thermodynamic behavior of the MFTF cryogenic cooling systems - a status report

    International Nuclear Information System (INIS)

    Sutton, S.B.; Stein, W.; Reitter, T.A.; Hindmarsh, A.C.

    1983-01-01

    A numerical model for calculating the thermodynamic behavior of the MFTF-B cryogenic cooling system is described. Nine component types are discussed with governing equations given. The algorithm for solving the coupled set of algebraic and ordinary differential equations is described. The model and its application to the MFTF-B cryogenic cooling system has not been possible due to lack of funding

  11. Improved lumped models for transient combined convective and radiative cooling of multi-layer composite slabs

    International Nuclear Information System (INIS)

    An Chen; Su Jian

    2011-01-01

    Improved lumped parameter models were developed for the transient heat conduction in multi-layer composite slabs subjected to combined convective and radiative cooling. The improved lumped models were obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of three-layer composite slabs was analyzed to illustrate the applicability of the proposed lumped models, with respect to different values of the Biot numbers, the radiation-conduction parameter, the dimensionless thermal contact resistances, the dimensionless thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the higher order lumped model (H 1,1 /H 0,0 approximation) yielded significant improvement of average temperature prediction over the classical lumped model. In addition, the higher order (H 1,1 /H 0,0 ) model was applied to analyze the transient heat conduction problem of steel-concrete-steel sandwich plates. - Highlights: → Improved lumped models for convective-radiative cooling of multi-layer slabs were developed. → Two-point Hermite approximations for integrals were employed. → Significant improvement over classical lumped model was achieved. → The model can be applied to high Biot number and high radiation-conduction parameter. → Transient heat conduction in steel-concrete-steel sandwich pipes was analyzed as an example.

  12. Assessing the Cooling Benefits of Tree Shade by an Outdoor Urban Physical Scale Model at Tempe, AZ

    Directory of Open Access Journals (Sweden)

    Qunshan Zhao

    2018-01-01

    Full Text Available Urban green infrastructure, especially shade trees, offers benefits to the urban residential environment by mitigating direct incoming solar radiation on building facades, particularly in hot settings. Understanding the impact of different tree locations and arrangements around residential properties has the potential to maximize cooling and can ultimately guide urban planners, designers, and homeowners on how to create the most sustainable urban environment. This research measures the cooling effect of tree shade on building facades through an outdoor urban physical scale model. The physical scale model is a simulated neighborhood consisting of an array of concrete cubes to represent houses with identical artificial trees. We tested and compared 10 different tree densities, locations, and arrangement scenarios in the physical scale model. The experimental results show that a single tree located at the southeast of the building can provide up to 2.3 °C hourly cooling benefits to east facade of the building. A two-tree cluster arrangement provides more cooling benefits (up to 6.6 °C hourly cooling benefits to the central facade when trees are located near the south and southeast sides of the building. The research results confirm the cooling benefits of tree shade and the importance of wisely designing tree locations and arrangements in the built environment.

  13. Description of spin reorientation transition in Au/Co/Au sandwich with Co film thickness within a simple phenomenological model of ferromagnetic film

    International Nuclear Information System (INIS)

    Popov, A.P.

    2012-01-01

    Simple phenomenological model of ferromagnetic film characterized by equal energies of surface anisotropies at two sides of a film (symmetric film) is considered. The model is used to describe a two-step spin reorientation transition (SRT) in Au/Co/Au sandwich with Co film thickness: the SRT from perpendicular to canted noncollinear (CNC) state at N ⊥ =6.3 atomic layers and the subsequent SRT from CNC to in-plane state at N ∥ =10.05 atomic layers. Analytic expressions for the stability criterion of collinear perpendicular and in-plane states of a film are derived with account of discrete location of atomic layers. The dependence of borders that separate regions corresponding to various magnetic states of a film in the (k B ,k S )-diagram on film thickness N is established. k S (k B ) is surface (bulk) reduced anisotropy constant. The comparison of theory with experiment related to Au/Co/Au sandwich shows that there is a whole region in the (k B ,k S )-diagram corresponding to experimentally determined values of threshold film thicknesses N ⊥ =6.3 and N ∥ =10.05. The comparison of this region with similar region determined earlier for a bare Co/Au film within the same model of asymmetric film and characterized by N ⊥ =3.5, N ∥ =5.5 shows that the intersection of these regions is not empty. Hence, both the SRT in Au/Co/Au sandwich and in bare Co/Au film with Co film thickness can be described within the same model using the same magnitudes of model parameters k S , k B . Based on this result we conclude that the energy of Neel surface anisotropy at free Co surface is negligible compared to the energy of Co–Au interface anisotropy. It is demonstrated that the destabilization of collinear states in symmetric film leads to occurrence of the ground CNC state and two novel metastable CNC states. These three CNC states exhibit different kinds of symmetry. In case of asymmetric film only ground CNC state occurs on destabilization of collinear states of a film

  14. Performance modelling and simulation of an absorption solar cooling system for Malaysia

    International Nuclear Information System (INIS)

    Assilzadeh, F.; Ali, Y.; Kamaruzzaman Sopian

    2006-01-01

    Solar radiation contains huge amounts of energy and is required for almost all the natural processes on earth. Solar-powered air-conditioning has many advantages when compared to normal electricity system. This paper presents a solar cooling system that has been designed for Malaysia and other tropical regions using evacuated tube solar collector and LiBr absorption system. A modelling and simulation of absorption solar cooling system is modeled in Transient System Simulation (TRNSYS) environment. The typical meteorological year file containing the weather parameters is used to simulate the system. Then a system optimization is carried out in order to select the appropriate type of collector, the optimum size of storage tank, the optimum collector slope and area and the optimum thermostat setting of the auxiliary boiler

  15. Cooling Simulation and Thermal Abuse Modeling of Lithium-Ion Batteries Using the Newman, Tiedemann, Gu, and Kim (NTGK) Model

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    This paper gives insight into the cooling simulation and thermal abuse modeling of lithium-ion batteries by ANSYS FLUENT. Cooling strategies are important issues in the thermal management of lithium-ion battery systems, and it is essential to investigate them attentively in order to maintain...... the functioning temperature of batteries within an optimum range. The high temperature is able not only to decrease the efficiency of batteries but also may lead to the thermal runaway. To comprehend further, the thermal abuse behavior of lithium-ion batteries based on The Newman, Tiedemann, Gu, and Kim (NTGK......) model has been implemented in ANSYS FLUENT software. The results show that to achieve an optimum energy consumption for battery cooling, a minimum value of average heat transfer coefficient can be selected in order to keep the functioning temperature of batteries within an optimum range....

  16. Can Coolness Predict Technology Adoption? Effects of Perceived Coolness on User Acceptance of Smartphones with Curved Screens.

    Science.gov (United States)

    Kim, Ki Joon; Shin, Dong-Hee; Park, Eunil

    2015-09-01

    This study proposes an acceptance model for curved-screen smartphones, and explores how the sense of coolness induced by attractiveness, originality, subcultural appeal, and the utility of the curved screen promotes smartphone adoption. The results of structural equation modeling analyses (N = 246) show that these components of coolness (except utility) increase the acceptance of the technology by enhancing the smartphones' affectively driven qualities rather than their utilitarian ones. The proposed coolness model is then compared with the original technology acceptance model to validate that the coolness factors are indeed equally effective determinants of usage intention, as are the extensively studied usability factors such as perceived ease of use and usefulness.

  17. On synthesis and optimization of cooling water systems with multiple cooling towers

    CSIR Research Space (South Africa)

    Gololo, KV

    2011-01-01

    Full Text Available -1 On Synthesis and Optimization of Cooling Water Systems with Multiple Cooling Towers Khunedi Vincent Gololo?? and Thokozani Majozi*? ? Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa ? Modelling...

  18. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application

    Directory of Open Access Journals (Sweden)

    Yu Han-Young

    2010-01-01

    Full Text Available Abstract We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850–1,000°C and 2–8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

  19. Consistent three-equation model for thin films

    Science.gov (United States)

    Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul

    2017-11-01

    Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.

  20. Modeling of the corium cooling and loading factor analysis for containment during severe accidents

    International Nuclear Information System (INIS)

    Konoval, A.V.; Kalvand, Ali.; Kazachkov, I.V.

    2013-01-01

    The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS) against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks' distributions considered and the results of their work in the corium cooling pool are compared to the data of other PPS's conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents

  1. Modeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectors

    International Nuclear Information System (INIS)

    Marc, Olivier; Praene, Jean-Philippe; Bastide, Alain; Lucas, Franck

    2011-01-01

    Solar cooling applied to buildings is without a doubt an interesting alternative for reducing energy consumption in traditional mechanical steam compression air conditioning systems. The study of these systems should have a closely purely fundamental approach including the development of numerical models in order to predict the overall installation performance. The final objective is to estimate cooling capacity, power consumption, and overall installation performance with relation to outside factors (solar irradiation, outside temperature...). The first stage in this work consists of estimating the primary energy produced by the solar collector field. The estimation of this primary energy is crucial to ensure the evaluation of the cooling capacity and therefore the cooling distribution and thermal comfort in the building. Indeed, the absorption chiller performance is directly related to its heat source. This study presents dynamic models for double glazing solar collectors and compares the results of the simulation with experimental results taken from our test bench (two collectors). In the second part, we present an extensive collector field model (36 collectors) from our solar cooling installation at The University Institute of Technology in St Pierre, Reunion Island as well as our stratified tank storage model. A comparison of the simulation results with real scale solar experimental data taken from our installation enables validation of the double glazing solar collector and stratified tank dynamic models.

  2. Validation of the kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    The purpose of this report is to present a validation of a previously described kinetic model which was developed to predict the composition of chlorinated fresh water discharged from power plant cooling systems. The model was programmed in two versions: as a stand-alone program and as a part of a unified transport model developed from consistent mathematical models to simulate the dispersion of heated water and radioisotopic and chemical effluents from power plant discharges. The results of testing the model using analytical data taken during operation of the once-through cooling system of the Quad Cities Nuclear Station are described. Calculations are also presented on the Three Mile Island Nuclear Station which uses cooling towers

  3. Cooled CCDs for recording data from electron microscopes

    CERN Document Server

    Faruqi, A R

    2000-01-01

    A cooled-CCD camera based on a low-noise scientific grade device is described in this paper used for recording images in a 120 kV electron microscope. The primary use of the camera is for recording electron diffraction patterns from two-dimensionally ordered arrays of proteins at liquid-nitrogen temperatures leading to structure determination at atomic or near-atomic resolution. The traditional method for recording data in the microscope is with electron sensitive film but electronic detection methods offer the following advantages over film methods: the data is immediately available in a digital format which can be displayed on a monitor screen for visual inspection whereas a film record needs to be developed and digitised, a lengthy process taking at least several hours, prior to inspection; the dynamic range of CCD detectors is about two orders of magnitude greater with better linearity. The accuracy of measurements is also higher for CCDs, particularly for weak signals due to inherent fog levels in film. ...

  4. Comparison of Software Models for Energy Savings from Cool Roofs

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  5. A dynamic model of an innovative high-temperature solar heating and cooling system

    Directory of Open Access Journals (Sweden)

    Buonomano Annamaria

    2016-01-01

    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  6. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    Science.gov (United States)

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  7. Condensation on a cooled plane upright wall

    International Nuclear Information System (INIS)

    Fortier, Andre.

    1975-01-01

    The vapor condensation along a cooled upright plane wall was studied. The theoretical and experimental results obtained in the simple case, give the essential characteristics of the phenomenon of condensation along a cold wall that keeps the vapor apart from the coolant inside a surface condenser. The phenomenon presents two different appearances according as the wall is wetted or not by the liquid. In the first case a continuous liquid film runs down the wall and a conventional Nusselt calculation gives the film thickness and the heat exchange coefficient between a pure saturated vapor and the cold wall. The calculation is developed in detail and the effect of a vapor flow along the film is discussed as well as that of the presence of a noncondensable gas inside the vapor. In the second case, separated liquid drops are formed on the wall, the phenomenon is called ''dropwise condensation'' and the heat exchange coefficients obtained are much higher than with film condensation. The theoretical aspects of the problem are discussed with some experimental results [fr

  8. Loss of spent fuel pool cooling PRA: Model and results

    International Nuclear Information System (INIS)

    Siu, N.; Khericha, S.; Conroy, S.; Beck, S.; Blackman, H.

    1996-09-01

    This letter report documents models for quantifying the likelihood of loss of spent fuel pool cooling; models for identifying post-boiling scenarios that lead to core damage; qualitative and quantitative results generated for a selected plant that account for plant design and operational practices; a comparison of these results and those generated from earlier studies; and a review of available data on spent fuel pool accidents. The results of this study show that for a representative two-unit boiling water reactor, the annual probability of spent fuel pool boiling is 5 x 10 -5 and the annual probability of flooding associated with loss of spent fuel pool cooling scenarios is 1 x 10 -3 . Qualitative arguments are provided to show that the likelihood of core damage due to spent fuel pool boiling accidents is low for most US commercial nuclear power plants. It is also shown that, depending on the design characteristics of a given plant, the likelihood of either: (a) core damage due to spent fuel pool-associated flooding, or (b) spent fuel damage due to pool dryout, may not be negligible

  9. Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions

    International Nuclear Information System (INIS)

    Thiele, U; Vancea, I; Archer, A J; Robbins, M J; Frastia, L; Stannard, A; Pauliac-Vaujour, E; Martin, C P; Blunt, M O; Moriarty, P J

    2009-01-01

    We review recent experiments on dewetting thin films of evaporating colloidal nanoparticle suspensions (nanofluids) and discuss several theoretical approaches to describe the ongoing processes including coupled transport and phase changes. These approaches range from microscopic discrete stochastic theories to mesoscopic continuous deterministic descriptions. In particular, we describe (i) a microscopic kinetic Monte Carlo model, (ii) a dynamical density functional theory and (iii) a hydrodynamic thin film model. Models (i) and (ii) are employed to discuss the formation of polygonal networks, spinodal and branched structures resulting from the dewetting of an ultrathin 'postcursor film' that remains behind a mesoscopic dewetting front. We highlight, in particular, the presence of a transverse instability in the evaporative dewetting front, which results in highly branched fingering structures. The subtle interplay of decomposition in the film and contact line motion is discussed. Finally, we discuss a simple thin film model (iii) of the hydrodynamics on the mesoscale. We employ coupled evolution equations for the film thickness profile and mean particle concentration. The model is used to discuss the self-pinning and depinning of a contact line related to the 'coffee-stain' effect. In the course of the review we discuss the advantages and limitations of the different theories, as well as possible future developments and extensions.

  10. Effect of Cooling Methods on Methane Conversion via Dielectric-Barrier Discharges

    International Nuclear Information System (INIS)

    Wang Baowei; Yang Kuanhui; Xu Genhui

    2008-01-01

    Effects of cooling methods on stability and methane conversion rate using dielectric-barrier discharges (DBD) were systematically investigated in this article. The results showed that the methane conversion rate was as high as 44.43% in a pure methane system at a flow rate of 100 mL ± min -1 and an input power of 234.2 W with air cooling. A dark greenish and soft film-like carbon was deposited on the outer surface of quartz tube when the outer electrode was water-cooled, which decreased the methane conversion. With air cooling of inner electrode the selectivity of C 2 hydrocarbons was higher than that with other cooling methods, while the C 3 hydrocarbons had higher selectivity with flowing water cooling. Cooling the inner electrode could restrain the carbon deposition, but would decrease the methane conversion rate. The stability of both reaction and plasma operation can be improved through cooling the reactor. From thermodynamic analysis, it was found that the effective collisions frequency among the reactant molecules and free electrons (e - ) increased with temperature, which in turn led to a higher methane conversion rate and a change in the distribution of products.

  11. Comparison of Austenite Decomposition Models During Finite Element Simulation of Water Quenching and Air Cooling of AISI 4140 Steel

    Science.gov (United States)

    Babu, K.; Prasanna Kumar, T. S.

    2014-08-01

    An indigenous, non-linear, and coupled finite element (FE) program has been developed to predict the temperature field and phase evolution during heat treatment of steels. The diffusional transformations during continuous cooling of steels were modeled using Johnson-Mehl-Avrami-Komogorov equation, and the non-diffusion transformation was modeled using Koistinen-Marburger equation. Cylindrical quench probes made of AISI 4140 steel of 20-mm diameter and 50-mm long were heated to 1123 K (850 °C), quenched in water, and cooled in air. The temperature history during continuous cooling was recorded at the selected interior locations of the quench probes. The probes were then sectioned at the mid plane and resultant microstructures were observed. The process of water quenching and air cooling of AISI 4140 steel probes was simulated with the heat flux boundary condition in the FE program. The heat flux for air cooling process was calculated through the inverse heat conduction method using the cooling curve measured during air cooling of a stainless steel 304L probe as an input. The heat flux for the water quenching process was calculated from a surface heat flux model proposed for quenching simulations. The isothermal transformation start and finish times of different phases were taken from the published TTT data and were also calculated using Kirkaldy model and Li model and used in the FE program. The simulated cooling curves and phases using the published TTT data had a good agreement with the experimentally measured values. The computation results revealed that the use of published TTT data was more reliable in predicting the phase transformation during heat treatment of low alloy steels than the use of the Kirkaldy or Li model.

  12. Annular dispersed flow analysis model by Lagrangian method and liquid film cell method

    International Nuclear Information System (INIS)

    Matsuura, K.; Kuchinishi, M.; Kataoka, I.; Serizawa, A.

    2003-01-01

    A new annular dispersed flow analysis model was developed. In this model, both droplet behavior and liquid film behavior were simultaneously analyzed. Droplet behavior in turbulent flow was analyzed by the Lagrangian method with refined stochastic model. On the other hand, liquid film behavior was simulated by the boundary condition of moving rough wall and liquid film cell model, which was used to estimate liquid film flow rate. The height of moving rough wall was estimated by disturbance wave height correlation. In each liquid film cell, liquid film flow rate was calculated by considering droplet deposition and entrainment flow rate. Droplet deposition flow rate was calculated by Lagrangian method and entrainment flow rate was calculated by entrainment correlation. For the verification of moving rough wall model, turbulent flow analysis results under the annular flow condition were compared with the experimental data. Agreement between analysis results and experimental results were fairly good. Furthermore annular dispersed flow experiments were analyzed, in order to verify droplet behavior model and the liquid film cell model. The experimental results of radial distribution of droplet mass flux were compared with analysis results. The agreement was good under low liquid flow rate condition and poor under high liquid flow rate condition. But by modifying entrainment rate correlation, the agreement become good even under high liquid flow rate. This means that basic analysis method of droplet and liquid film behavior was right. In future work, verification calculation should be carried out under different experimental condition and entrainment ratio correlation also should be corrected

  13. Diamond film growth with modification properties of adhesion between substrate and diamond film

    Directory of Open Access Journals (Sweden)

    Setasuwon P.

    2004-03-01

    Full Text Available Diamond film growth was studied using chemical vapor deposition (CVD. A special equipment was build in-house, employing a welding torch, and substrate holder with a water-cooling system. Acetylene and oxygen were used as combustion gases and the substrate was tungsten carbide cobalt. It was found that surface treatments, such as diamond powder scratching or acid etching, increase the adhesion and prevent the film peel-off. Diamond powder scratching and combined diamond powder scratching with acid etching gave the similar diamond film structure with small grain and slightly rough surface. The diamond film obtained with both treatments has high adhesion and can withstand internal stress better than ones obtained by untreated surface or acid etching alone. It was also found that higher substrate temperature produced smoother surface and more uniform diamond grain.

  14. IMPROVEMENT OF SYSTEMS OF TECHNICAL WATER SUPPLY WITH COOLING TOWERS FOR STEAM POWER PLANTS TECHNICAL AND ECONOMIC INDICATORS PERFECTION. Part 1

    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Olpinskiy

    2016-01-01

    Full Text Available In order to reduce the temperature of cooling water and increase the efficiency of use of power resources the main directions of modernization of systems of technical water supply with cooling towers at steam power plants are presented. The problems of operation of irrigation systems and water distribution systems of cooling towers are reviewed. The design of heat and mass transfer devices, their shortcomings and the impact on the cooling ability of the cooling tower are also under analysis. The use of droplet heat and mass transfer device based on the lattice polypropylene virtually eliminates the shortcomings of the film and droplet-film heat and mass transfer devices of the cooling tower, increasing lifetime, and improving the reliability and efficiency of the operation of the main equipment of thermal power plants. The design of the water distribution devices of cooling towers is also considered. It is noted that the most effective are water-spattering low-pressure nozzles made of polypropylene that provides uniform dispersion of water and are of a high reliability and durability.

  15. Influencing Factors and Simplified Model of Film Hole Irrigation

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2017-07-01

    Full Text Available Film hole irrigation is an advanced low-cost and high-efficiency irrigation method, which can improve water conservation and water use efficiency. Given its various advantages and potential applications, we conducted a laboratory study to investigate the effects of soil texture, bulk density, initial soil moisture, irrigation depth, opening ratio (ρ, film hole diameter (D, and spacing on cumulative infiltration using SWMS-2D. We then proposed a simplified model based on the Kostiakov model for infiltration estimation. Error analyses indicated SWMS-2D to be suitable for infiltration simulation of film hole irrigation. Additional SWMS-2D-based investigations indicated that, for a certain soil, initial soil moisture and irrigation depth had the weakest effects on cumulative infiltration, whereas ρ and D had the strongest effects on cumulative infiltration. A simplified model with ρ and D was further established, and its use was then expanded to different soils. Verification based on seven soil types indicated that the established simplified double-factor model effectively estimates cumulative infiltration for film hole irrigation, with a small mean average error of 0.141–2.299 mm, a root mean square error of 0.177–2.722 mm, a percent bias of −2.131–1.479%, and a large Nash–Sutcliffe coefficient that is close to 1.0.

  16. Numerical simulation and experimental results of horizontal tube falling film generator working in a NH3-LiNO3 absorption refrigeration system

    International Nuclear Information System (INIS)

    Herrera, J.V.; Garcia-Valladares, O.; Gomez, V.H.; Best, R.

    2010-01-01

    This paper describes the work made at the Centro de Investigacion en Energia in the development of an absorption refrigeration system for cooling and refrigeration applications with a capacity of 10 kW. The single effect unit utilizes ammonia-lithium nitrate as working pair and it is air cooled. The generator is a falling film type with horizontal tubes where the heating oil flows inside the tube bank and the ammonia-lithium nitrate solution flows as a falling film on the tube outside, where it is heated and ammonia vapor is generated. The generator consists of tree columns and four rows per column of horizontal tubes. The system was tested at controlled conditions with heating oil obtained from an electric resistance heating loop. A numerical model of the horizontal falling film generator was developed that divided the system into three different thermal elements: the flow inside the tube, the heat conduction in the tube wall and the falling film solution flow. The mathematical model was tested and validated with experimental data and a study of the influence of the heat transfer coefficient for ammonia-lithium nitrate solution in the numerical model was carried out. A comparison between experimental and numerical data for the heat flux in the system and the temperature profiles in the oil and solution flows shown a good degree of correlation.

  17. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  18. Fluoride Thin Films: from Exchange Bias to Multferroicity

    Science.gov (United States)

    Johnson, Trent A.

    This dissertation concerns research into the growth and characterization fluoride thin films by molecular beam epitaxy. After a discussion of relevant background material and experimental procedures in the first two chapters, we study exchange bias in magnetic multilayers incorporating the uniaxial antiferromagnet FeF2, grown to varying thicknesses, sandwiched between ferromagnetic Co layers with fixed thicknesses of 5 and 20 nm. Several bilayers with only the 20 nm thick Co layer were grown for comparative study. The samples were grown on Al2O3 (112¯0) substrates at room temperature. In-situ RHEED and x-ray diffraction indicated the films were polycrystalline. The films were determined to have low surface and interlayer roughness, as determined by AFM and x-ray reflectivity. After field-cooling to below the Neel temperature of FeF2 in a magnetic field of 1 kOe, magnetic hysteresis loops were measured as a function of temperature. We found that both layers had a negative exchange bias, with the exchange bias of the thinner layer larger than that of the thicker layer. In addition, the coercivity below the blocking temperature TB of the thinner layer was significantly larger than that of the thick layer, even though the coercivity of the two layers was the same for T > TB. The exchange bias effect, manifested by a shift in these hysteresis loops, showed a strong dependence on the thickness of the antiferromagnet. Anisotropic magnetoresistance measurements provided additional insight into the magnetization reversal mechanism within the ferromagnets. The thickness dependent exchange anisotropy of trilayer and bilayer samples is explained by adapting a random field model to the antiferromagnet/ferromagnet interface. Finally, We investigate the temperature dependent growth, as well as the magnetic and ferroelectric properties of thin films of the multiferroic compounds BaMF4, where M = Fe, Co, Ni. The films were grown to thicknesses of 50 or 100 nm on single crystal Al2

  19. Properties of MoO3 thin film polymorphs

    International Nuclear Information System (INIS)

    McCarron, E.M.; Carcia, P.F.

    1987-01-01

    Thin film polymorphs of molybdenum trioxide have been synthesized by RF sputtering. Films deposited on thermally floating substrates are polycrystalline and exhibit preferred orientation. Depending upon the oxygen partial pressure maintained during sputtering, the films can be made to crystallize in either the thermodynamically stable orthorhombic α MoO 3 form (unique 2D-layered structure) or the metastable monoclinic β MoO 3 phase (3D ReO 3 -related structure). Metastable β films can be converted thermally to the α phase and the transformation appears topotactic. Films deposited on the cooled substrates are amorphous. A correlation between the particular phase formed and adatom mobility is noted

  20. Graphene synthesis from graphite/Ni composite films grown by sputtering

    International Nuclear Information System (INIS)

    Shin, Dong Hee; Yang, Seung Bum; Shin, Dong Yeol; Kim, Chang Oh; Kim, Sung; Choi, Suk Ho; Paek, Sang Hyon

    2012-01-01

    Graphite/Ni composite films have been deposited on SiO 2 /Si (100) wafers by varying their graphite concentration (n G ) and thickness (t) from 2 to 12 wt% and 40 to 400 nm, respectively, in a RF sputtering system, subsequently annealed at 900 .deg. C for 4 min, and then slowly cooled to room temperature to form graphene layers on Ni surfaces. Several structural-analysis techniques reveal the optimum nG (∼8 wt%) and t (∼160 nm) of the composite films for the synthesis of fewest-layer, defect-minimized graphene. At the annealing temperature, carbon atoms diffuse out from the composite film, followed by their precipitation as graphene on the Ni layer as the carbon solubility limit in Ni is reached during the cooling period. Based on this mechanism, the optimum conditions are explained. Our approach provides an advantage in that the number of layers can be simply tuned by varying n G and t of the composite films.

  1. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    Science.gov (United States)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  2. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film

    International Nuclear Information System (INIS)

    Yu-Jia, Tao; Xiu-Lan, Huai; Zhi-Gang, Li

    2009-01-01

    A mathematical model is developed to investigate the dynamics of vapor bubble growth in a thin liquid film, movement of the interface between two fluids and the surface heat transfer characteristics. The model takes into account the effects of phase change between the vapor and liquid, gravity, surface tension and viscosity. The details of the multiphase now and heat transfer are discussed for two cases: (1) when a water micro-droplet impacts a thin liquid film with a vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without the droplet impacting. The development trend of the interface between the vapor and liquid is coincident qualitatively with the available literature, mostly at the first stage. We also provide an important method to better understand the mechanism of nucleate spray cooling. (fundamental areas of phenomenology (including applications))

  3. Modeling axisymmetric flows dynamics of films, jets, and drops

    CERN Document Server

    Middleman, Stanley

    1995-01-01

    This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...

  4. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  5. Modeling of the corium cooling and loading factor analysis for containment during severe accidents

    Directory of Open Access Journals (Sweden)

    O. V. Konoval

    2013-09-01

    Full Text Available The paper is devoted to the development and study of the mathematical model for corium melt interaction with low-temperature melting blocks in the passive protection systems (PPS against severe accidents at the NPP, and learning the peculiarities of construction and operation of the PPS. The configurations of cooling blocks’ distributions considered and the results of their work in the corium cooling pool are compared to the data of oth-er PPS’s conceptions. The conclusion is made that the models developed and the results obtained may be useful for constructing the PPS against severe accidents.

  6. Modelling of film condensation in presence of non condensable gases

    International Nuclear Information System (INIS)

    Genevieve Geffraye; Dominique Bestion; Vladimir Kalitvianski

    2005-01-01

    Full text of publication follows: This paper presents recent developments in the modelling of the condensation due to heat removal from a wall with a possible presence of hydrogen, nitrogen, or air. This work is mainly concerned with nuclear reactor safety with particular reference to situations related to new reactor design, cold shutdown state and severe accident analysis. Film condensation of steam in presence of nitrogen and helium in a tube has been investigated in the COTURNE experiment in a rather large range of parameters, pressure (from 0.1 to 7 Mpa), heat flux (0.1 to 6 W/cm 2 ), mass fraction of noncondensable gas (0 to 1) and also in presence of superheated steam. The experiment represents a Steam Generator tube of a Pressurised Water Reactor and can simulate both co-current or countercurrent flow of steam and water.The models are implemented in the CATHARE code used for nuclear reactor thermal-hydraulics. The code uses two mass balance equations for liquid and gas, two momentum balance equations for liquid and gas and two energy balance equations for liquid and gas. Additional mass transport equations can be added for each non condensable gas. Heat transfers from wall to liquid film, from liquid to interface and gas to interface are modelled. The liquid film heat transfer coefficient is first investigated in pure saturated steam conditions in the pressure range from 0.1 to 7 Mpa. The CATHARE film condensation model in pure steam conditions is derived from Chen's correlation. Chen proposes a general correlation for the film condensation, covering the wavy-laminar and the turbulent film regimes and taking into account the interfacial friction effect. A large data base of laminar film regime was used including COTURNE data other available data found in the literature. The analysis of these data base suggests an influence of the liquid Reynolds number, according to the Nusselt theory, and also of the Eoetvoes number, with surface tension effects. A

  7. Probing-models for interdigitated electrode systems with ferroelectric thin films

    Science.gov (United States)

    Nguyen, Cuong H.; Nigon, Robin; Raeder, Trygve M.; Hanke, Ulrik; Halvorsen, Einar; Muralt, Paul

    2018-05-01

    In this paper, a new method to characterize ferroelectric thin films with interdigitated electrodes is presented. To obtain accurate properties, all parasitic contributions should be subtracted from the measurement results and accurate models for the ferroelectric film are required. Hence, we introduce a phenomenological model for the parasitic capacitance. Moreover, two common analytical models based on conformal transformations are compared and used to calculate the capacitance and the electric field. With a thin film approximation, new simplified electric field and capacitance formulas are derived. By using these formulas, more consistent CV, PV and stress-field loops for samples with different geometries are obtained. In addition, an inhomogeneous distribution of the permittivity due to the non-uniform electric field is modelled by finite element simulation in an iterative way. We observed that this inhomogeneous distribution can be treated as a homogeneous one with an effective value of the permittivity.

  8. Effect of forming temperature conditions on the properties of radiation laced polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Trizno, M S; Gasparyan, K A; Arutyunyan, G V; Borovko, V N

    1978-11-01

    The effect of radiation lace on the thermomechanical properties of polyethylene films depending on the radiation dose and temperature conditions of their formation was studied. The samples were produced at 160 deg under the pressure of 150 kN/m/sup 2/ with the following cooling in two temperature conditions: 1) cooling of the sample just after pressing in the icy water, and 2) slow cooling of the sample in a press. Films obtained using above conditions were subjected to the radiation lace in the argon medium using ..gamma..-radiation of /sup 60/Co at the exposure dose of 0.8x10/sup 6/ rad/hr. The total radiation dose was from 30 to 200 Mrad. It is shown that the films, obtained under the first cooling conditions have a lower degree of crystallinity. Investigations of gel-fraction content, density, elastic modulus, deformability, modulus of high elasticity, breaking stress, and relative elongation for rupture depending on radiation doze and the degree of crystallinity have shown that minimum degree of crystallinity of initial films provided most uniform adn compact net structure in the laced polyethylene(LP). In this case the material working capacity increases at high temperatures. In order to improve the mechanical properties of LP when exploiting it in the amorphous crystalline state it is recommended to irradiate material with maximum degree of crystallinity.

  9. Modeling Atmospheric Activity of Cool Stars

    Science.gov (United States)

    Schrijver, C. J.

    2003-10-01

    This review discusses a set of simple models for cool-star activity with which we compute (1) photospheric field patterns on stars of different activity levels, (2) the associated outer-atmospheric field configurations, and (3) the soft X-ray emission that is expected to result from the ensemble of loop atmospheres in the coronae of these stars. The model is based on empirically-determined properties of solar activity. It allows us to extrapolate to stars of significantly higher and lower activity than seen on the present-day Sun through its cycle. With it, we can, for example, gain insight into stellar field patterns (including a possible formation mechanism for polar starspots), as well as in the properties of coronal heating (helpful in the identification of the quiescent coronal heating mechanism). Lacking comprehensive theoretical understanding, the model's reliance on empirical solar data means that the multitude of processes involved are approximated to be independent of rotation rate, activity level, and fundamental stellar parameters, or -- where unavoidably necessary -- assumed to simply scale with activity. An evaluation of the most important processes involved guides a discussion of the limits of the model, of the limitations in our knowledge, and of future needs. "I propose to adopt such rules as will ensure the testability of scientific statements; which is to say, their falsifiability." Karl Popper (1902-1994)

  10. Technical Note: Response time evolution of XR-QA2 GafChromic™ film models.

    Science.gov (United States)

    Aldelaijan, Saad; Tomic, Nada; Papaconstadopoulos, Pavlos; Schneider, James; Seuntjens, Jan; Shih, Shelley; Lewis, David; Devic, Slobodan

    2018-01-01

    To evaluate the response of the newest XR-QA2 GafChromic™ film model in terms of postexposure signal growth and energy response in comparison with the older XR-QA (Version 2) model. Pieces of film were irradiated to air kerma in air values up to 12 cGy with several beam qualities (5.3-8.25 mm Al) commonly used for CT scanning. Film response was scored in terms of net reflectance from scanned film images at various points in time postirradiation ranging from 1 to 7 days and 5 months postexposure. To reconstruct the measurement signal changes with postirradiation delay, we irradiated one film piece and then scanned it at different point times starting from 2" min and up to 3 days postexposure. For all beam qualities and dose range investigated, it appears that the XR-QA2 film signal completely saturated after 15 h. Compared to 15 h postirradiation scanning time, the observed variation in net reflectance were 3%, 2%, and 1% for film scanned 2" min, 20 min, and 3 h after exposure, respectively, which is well within the measurement uncertainty of the XR-QA2 based reference radiochromic film dosimetry system. A comparison between the XR-QA (Version 2) and the XR-QA2 film response after several months (relative to their responses after 24 h) show differences in up to 8% and 1% for each film model respectively. The replacement of cesium bromide in the older XR-QA (Version 2) film model with bismuth oxide in the newer XR-QA2 film, while keeping the same single sensitive layer structure, lead to a significantly more stable postexposure response. © 2017 American Association of Physicists in Medicine.

  11. Numerical-Model Investigation of the Hydrothermal Regime of a Straight-Through Shallow Cooling Pond

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, A. S. [JSC ' VNIIG im. B. E. Vedeneeva' (Russian Federation)

    2013-11-15

    A mathematic model based on solution of hydrodynamics and heat-transfer equations by the finite-element method is constructed to predict the hydrothermal regime of a straight-through shallow cooling pond, which provides cooling circulating water to a repository of spent nuclear fuel. Numerical experiments made it possible to evaluate the influence exerted by wind conditions and flow rate of water in the river on the temperature of the circulating water.

  12. Comparison of wet and dry heat transfer and pressure drop tests of smooth and rough corrugated PVC packing in cooling towers

    International Nuclear Information System (INIS)

    Goshayeshi, H.R.; Missenden, J.F.

    1998-01-01

    This paper presents the results of an experimental investigation of the performance of a cooling tower with PVC packing. The following were examined; the effect of surface roughness, the effect of the angle of roughness and the effect of packing spacing. The investigation was divided into two parts: comparison of film heat transfer with air pressure drop, without water circulation and comparison of enthalpy change and pressure drop in the model cooling tower, with circulation of water. Seven commercial packing were investigated, covering a size range of 1.1< P/D<1.70 and 1≤p/e≤5 and a discussion of the dimensionless correlation resulting is given

  13. Spin ice Thin Film: Surface Ordering, Emergent Square ice, and Strain Effects

    Science.gov (United States)

    Jaubert, L. D. C.; Lin, T.; Opel, T. S.; Holdsworth, P. C. W.; Gingras, M. J. P.

    2017-05-01

    Motivated by recent realizations of Dy2 Ti2 O7 and Ho2 Ti2 O7 spin ice thin films, and more generally by the physics of confined gauge fields, we study a model spin ice thin film with surfaces perpendicular to the [001] cubic axis. The resulting open boundaries make half of the bonds on the interfaces inequivalent. By tuning the strength of these inequivalent "orphan" bonds, dipolar interactions induce a surface ordering equivalent to a two-dimensional crystallization of magnetic surface charges. This surface ordering may also be expected on the surfaces of bulk crystals. For ultrathin films made of one cubic unit cell, once the surfaces have ordered, a square ice phase is stabilized over a finite temperature window. The square ice degeneracy is lifted at lower temperature and the system orders in analogy with the well-known F transition of the 6-vertex model. To conclude, we consider the addition of strain effects, a possible consequence of interface mismatches at the film-substrate interface. Our simulations qualitatively confirm that strain can lead to a smooth loss of Pauling entropy upon cooling, as observed in recent experiments on Dy2 Ti2 O7 films.

  14. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing the proper......M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing......-consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...

  15. A Coupled Model for Work Roll Thermal Contour with Subsectional Cooling in Aluminum Strip Cold Rolling

    Directory of Open Access Journals (Sweden)

    Shao Jian

    2014-10-01

    Full Text Available Little attention had been given to the evaluation of subsectional cooling control ability under complicated working conditions. In this paper, heat generation was calculated by using finite difference method. Strip hardening, work roll elastic deformation and elastic recovery of strip were taken into account. The mean coefficient of convective heat transfer on work roll surface was simulated by FLUENT. Calculation model had used the alternative finite difference scheme, which improved the model stability and computing speed. The simulation result shows that subsectional cooling control ability is different between different rolling passes. Positive and negative control abilities are roughly the same in the same pass. The increase of rolled length, working pressure of header and friction coefficient has positive effect on subsectional cooling control ability, and the rolling speed is on the contrary. On the beginning of the pass, when work roll surface has not reached the stable temperature, control ability of subsectional cooling is mainly affected by rolled length. The effect of mean coefficient of convective heat transfer and coefficient of friction is linear. When rolling speed is over 500 m/min, control ability of subsectional cooling becomes stable.

  16. Decision-making models in the analysis of portal films: a clinical pilot study

    International Nuclear Information System (INIS)

    See, A.; Johansen, J.; Hamilton, C.; Bydder, S.A.; Hawkins, J.; Roff, M.; Denham, J.; Kron, T.

    2000-01-01

    Portal films continue to play an important role in the verification of radiotherapy treatment. There is still some discussion, however, as to what action should be taken after a port film has shown a radiation field deviation from the prescribed volume. It was the aim of the present pilot study to investigate the performance of three decision-making models ('Amsterdam', 'Quebec' and 'Newcastle') and an expert panel basing their decision on intuition rather than formal rules after portal film acquisition in a clinical setting. Portal films were acquired on every day during the first week of treatment for five head and neck and five prostate cancer patients (diagnostic phase). If required, the field position was modified according to our normal practice following the recommendation of the expert panel. In order to analyse the results of the models, however, additional port films were taken in the following 3 treatment weeks with the patient moved as required by the different models (intervention phase). The portal films were taken over 4 consecutive days, positioning the patient according to each of the different models on one day each. None of the models diagnosed a field misplacement in the head and neck patients, while the 'Amsterdam' and 'Quebec' models predicted a move in one prostate patient. The 'Newcastle' model, which is based on Hotelling's T 2 statistic, proved to be more sensitive and diagnosed a systematic displacement for three prostate patients. The intervention phase confirmed the diagnosis of the model, even if the three portal films taken with the patient position adjusted as required by the model proved to be insufficient to demonstrate an improvement. The 'Newcastle' model does not rely on assumptions about the random movement of patients and requires five portal films before a decision can be reached. This approach lends itself well to incorporation into electronic portal imaging 'packages', where repeated image acquisitions present no logistical

  17. Calculation of viscoelastic properties of edible films: application of three models

    Directory of Open Access Journals (Sweden)

    CHANDRA Prabir K.

    2000-01-01

    Full Text Available The viscoelastic properties of edible films can provide information at the structural level of the biopolymers used. The objective of this work was to test three simple models of linear viscoelastic theory (Maxwell, Generalized Maxwell with two units in parallel, and Burgers using the results of stress relaxation tests in edible films of myofibrillar proteins of Nile Tilapia. The films were elaborated according to a casting technique and pre-conditioned at 58% relative humidity and 22ºC for 4 days. The testing sample (15mm x 118mm was submitted to tests of stress relaxation in an equipment of physical measurements, TA.XT2i. The deformation, imposed to the sample, was 1%, guaranteeing the permanency in the domain of the linear viscoelasticity. The models were fitted to experimental data (stress x time by nonlinear regression. The Generalized Maxwell model with two units in parallel and the Burgers model represented the relaxation curves of stress satisfactorily. The viscoelastic properties varied in a way that they were less dependent on the thickness of the films.

  18. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  19. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

    Science.gov (United States)

    Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan

    2018-05-01

    Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P  film group significantly decreased skin irritation, infection integral value ( P  film significantly reduced film rabbits' scalded skin crusting time ( P  film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.

  20. Numerical study of heat and mass transfer during evaporation of a thin liquid film

    Directory of Open Access Journals (Sweden)

    Oubella M’hand

    2015-01-01

    Full Text Available A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.

  1. Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.

    Science.gov (United States)

    Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V

    2018-05-30

    Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.

  2. Modeling glass transition and aging processes in nanocomposites and polymer thin films

    Science.gov (United States)

    Pryamitsyn, Victor; Ganesan, Venkat

    2010-03-01

    We use a lattice kinetic model of glass transition to study the role of confinement and the presence of nano-inclusions. We have studied freely suspended films of glass-formers and its nanocomposites with ``plastifying'' and ``hardening'' nanoparticles. Using our model we determine the thickness and nanoparticle load dependencies of the Kauzmann temperature T0 and the fragility parameter. We found the glass transition temperature increases with the thickness of the film and the volume fraction of ``hardening'' nanoparticles , while Tg decreases with increase in the loading of ``plastifying'' nanoparticles. We found that the isothermal free volume relaxation rate of the nanocomposite thin film, usually referred as an aging, correlates with the glass transition temperature shift. We also studied the relations between our lattice model and Curro's, Kovacs and Struik's phenomenological models of free volume reduction to deduce physical insights into the mechanisms governing aging processes in thin films and nanocomposites.

  3. Modeling flux pinning in thin undoped and BazRo3-doped YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Irjala, M.; Huhtinen, H.

    2009-01-01

    A simple model based on distributions of twin boundaries, dislocations, and BaZrO3 nanorods is presented to describe the Jc properties of undoped and BaZrO3 (BZO)-doped YBa2Cu3Ox thin films. The model accurately describes the shape of Jc(B,T) curves of the films, when the pinning site distributions...... are taken from distributions of twin spacings and BZO nanorods from transmission electron microscope images. Thus, assuming that the model can be used for prediction of the Jc properties, we conclude that for enhancement of undoped films more crystalline defects are needed and for doped films a dopant...

  4. Formation of hydrated layers in PMMA thin films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Akers, Peter W. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); Nelson, Andrew R.J. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia); Williams, David E. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand); McGillivray, Duncan J., E-mail: d.mcgillivray@auckland.ac.nz [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2015-10-30

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  5. Formation of hydrated layers in PMMA thin films in aqueous solution

    International Nuclear Information System (INIS)

    Akers, Peter W.; Nelson, Andrew R.J.; Williams, David E.; McGillivray, Duncan J.

    2015-01-01

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  6. Modeling and simulation of an activated carbon–CO2 four bed based adsorption cooling system

    International Nuclear Information System (INIS)

    Jribi, Skander; Saha, Bidyut Baran; Koyama, Shigeru; Bentaher, Hatem

    2014-01-01

    Highlights: • A transient mathematical model of a 4-bed adsorption chiller is proposed. • The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. • The desorption pressure has a big influence in the performances. • With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1. - Abstract: In this study, a transient mathematical model of a 4-bed adsorption chiller using Maxsorb III as the adsorbent and CO 2 as the refrigerant has been analyzed. The performances of the cyclic-steady-state system are presented for different heating and cooling water inlet temperatures. It is found that the desorption pressure has a big influence in the performances due to the low critical point of CO 2 (T c = 31 °C). With 80 kg of Maxsorb III, the CO 2 based adsorption chiller produces 2 kW of cooling power and presents a COP of 0.1, at driving heat source temperature of 95 °C along with a cooling temperature of 27 °C and at optimum desorption pressure of 79 bar. The present thermal compression air-conditioning system could be driven with solar energy or waste heat from internal combustion engines and therefore is suitable for both residential and mobile air-conditioning applications

  7. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    Science.gov (United States)

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  8. Reducing water consumption of an industrial plant cooling unit using hybrid cooling tower

    International Nuclear Information System (INIS)

    Rezaei, Ebrahim; Shafiei, Sirous; Abdollahnezhad, Aydin

    2010-01-01

    Water consumption is an important problem in dry zones and poor water supply areas. For these areas use of a combination of wet and dry cooling towers (hybrid cooling) has been suggested in order to reduce water consumption. In this work, wet and dry sections of a hybrid cooling tower for the estimation of water loss was modeled. A computer code was also written to simulate such hybrid cooling tower. To test the result of this simulation, a pilot hybrid tower containing a wet tower and 12 compact air cooled heat exchangers was designed and constructed. Pilot data were compared with simulation data and a correction factor was added to the simulation. Ensuring that the simulation represents the actual data, it was applied to a real industrial case and the effect of using a dry tower on water loss reduction of this plant cooling unit was investigated. Finally feasibility study was carried out to choose the best operating conditions for the hybrid cooling tower configuration proposed for this cooling unit.

  9. Residential Pre-Cooling: Mechanical Cooling and Air-Side Economizers:

    OpenAIRE

    Turner, William J.N; Walker, Iain S.; Roux, Jordan

    2012-01-01

    This study used an advanced airflow, energy and humidity modeling tool to evaluate residential air-side economizers and mechanical pre-cooling strategies using the air conditioner, in all US DOE Climate Zones for a typical new home with ASHRAE Standard 62.2 compliant ventilation. A residential air-side economizer is a large supply fan used for night ventilation. Mechanical pre-cooling used the building air conditioner operating at lower than usual set before the peak demand period. The simula...

  10. An experimental study of high heat flux removal by shear-driven liquid films

    Directory of Open Access Journals (Sweden)

    Zaitsev Dmitry

    2017-01-01

    Full Text Available Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films, are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems.

  11. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  12. What makes gambling cool? Images of agency and self-control in fiction films.

    Science.gov (United States)

    Egerer, Michael; Rantala, Varpu

    2015-03-01

    The study is a qualitative film analysis. It seeks to determine the semiotic and cinematic structures that make gambling appealing in films based on analysis of 72 film scenes from 28 narrative fiction films made from 1922 to 2003 about gambling in North American and West European mainstream cinema. The main game types include card games, casino games, and slot machines. The theme of self-control and competence was identified as being central to gambling's appeal. These images are strongly defined by gender. The study was funded by ELOMEDIA, financed by the Finnish Ministry of Education and Culture as well as the Finnish Foundation for Alcohol Studies. The limitations of the study are noted.

  13. Difficulties in modeling dispersed-flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    Dispersed Flow Film Boiling (DFFB) is characterized by important departures from thermal and velocity equilibrium that make it suitable for modeling with two-fluid models. The fundamental limitations and difficulties imposed by the one-dimensional nature of these models are extensively discussed. The validity of the assumptions and empirical laws used to close the system of conservation equations is critically reviewed, in light of the multidimensional aspects of the problem. Modifications that could improve the physics of the models are identified. (orig.) [de

  14. RESEARCH OF INFLUENCE OF THE RODS CONSTRUCTION ON THEIR COOLING ABILITY AT FROSTING OF SILUMINS BY METHOD OF NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko

    2012-01-01

    Full Text Available Numerical modeling of heat transfer coefficient on the surface of the water-cooled rod with a slotted and jet cooling was made.  calculations were carried out in a free, open  source  CFD software package OpenFOAM. it is shown that jet cooling is more uniform and intense compared to the slotted cooling

  15. Measurement of cooling coil film heat transfer coefficient with polymer reaction proceeding in a stirred batch reactor; Jugo sonai ni okeru hanno shinko ni tomonau reikyaku coil no kyomaku netsudentatsu keisu no keiji henka

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K [Soken Chemical and Engineering Co. Ltd., Saitama (Japan); Nishi, K; Kaminoyama, M; Kamiwano, M [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1996-09-10

    In radical additional solution polymerization, the viscosity increases with reaction progress. It is important to evaluate beforehand the cooling capacity of the reactor, which worsens with the process. In this study, a stirred batch reactor with both a paddle and a helical screw impeller were studied, and measurements were made for the dynamic changes of the film heat transfer coefficient of the cooling coil with progress of the polymer reaction. We found the change could be evaluated by the calculating heat balance of the generated heat, the viscous dissipation energy and the sensible heat change under conditions of monomer conversion and changing viscosity. 11 refs., 7 figs.

  16. Cool : karvased hipid ja sürrid hobusepead / Maris Meiesaar, Tiiu Laks

    Index Scriptorium Estoniae

    Meiessaar,Maris

    2008-01-01

    !". PÖFFi filme programmist "Crazy Cool: Põhja-Ameerika indie-filmid" - USA mängufilm "Humboldti maa" ("Humboldt Country"), režissöörid Darren Grodsky, Danny Jacobs, Kanada dokumentaalfantaasia "Minu Winnipeg" ("My Winnipeg"), režissöör Guy Maddin

  17. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    Science.gov (United States)

    Bedekar, M. M.; Safari, A.; Wilber, W.

    1992-11-01

    Superconducting thin films of Bi-Sr-Ca-Cu-O have been deposited by KrF excimer laser ablation. The best in situ films showed a Tc onset of 110 K and a Tc(0) of 76 K. A study of the laser plume revealed the presence of two distinct regimes. The forward directed component increased with fluence and the film composition was stoichiometric in this region. This is in agreement with the results on the 123 system by Venkatesan et al. [1]. The film properties were found to be critically dependent on the substrate temperature and temperatures close to melting gave rise to 2212 and 2223 phases. At lower temperatures, 2201 and amorphous phases were obtained. The film morphology and superconducting properties were a function of the target to substrate distance and the oxygen pressure during deposition and cooling. An increase in the target to substrate distance led to a deterioration of the properties due to the energy consideration for the formation of 2212 and 2223 phases. The best films were obtained using cooling pressures of 700 Torr. The microwave surface resistance of the films measured at 35 GHz dropped below that of copper at 30 K. Film growth was studied using X-ray diffraction and STM/AFM. This work is a discussion of the role of the different variables on the film properties.

  18. A directly cooled grating substrate for ALS [Advanced Light Source] undulator beam lines

    International Nuclear Information System (INIS)

    DiGennaro, R.; Swain, T.

    1989-08-01

    Design analyses using finite element methods are presented for thermal distortion of water-cooled diffraction grating substrates for a potential application at the LBL Advanced Light Source, demonstrating that refinements in cooling channel configuration and heat flux distribution can significantly reduce optical surface distortion with high heat loads. Using an existing grating substrate design, sensitivity of tangential slope errors due to thermal distortion is evaluated for a variety of thermal boundary conditions, including coolant flow rate and heat transfer film coefficients, surface illumination area and heat distribution profile, and location of the convection cooling surfaces adjacent to the heated region. 1 ref., 5 figs., 2 tabs

  19. A p-version embedded model for simulation of concrete temperature fields with cooling pipes

    Directory of Open Access Journals (Sweden)

    Sheng Qiang

    2015-07-01

    Full Text Available Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.

  20. Quantitative analysis of tear film fluorescence and discomfort during tear film instability and thinning.

    Science.gov (United States)

    Begley, Carolyn; Simpson, Trefford; Liu, Haixia; Salvo, Eliza; Wu, Ziwei; Bradley, Arthur; Situ, Ping

    2013-04-12

    The purpose of this study was to test the association between tear film fluorescence changes during tear break-up (TBU) or thinning and the concurrent ocular sensory response. Sixteen subjects kept one eye open as long as possible (MBI), indicated their discomfort level continuously, and rated ocular sensations of irritation, stinging, burning, pricking, and cooling using visual analog scales (VAS). Fluorescence of the tear film was quantified by a pixel-based analysis of the median pixel intensity (PI), TBU, and percentage of dark pixels (DarkPix) over time. A cutoff of 5% TBU was used to divide subjects into either break-up (BU) or minimal break-up (BUmin) groups. Tear film fluorescence decreased (median PI) and the percentage of TBU and DarkPix increased in all trials, with the rate significantly greater in the BU than the BUmin group (Mann-Whitney U test, P film thinning best explains decreasing tear film fluorescence during trials. This was highly correlated with increasing ocular discomfort, suggesting that both tear film thinning and TBU stimulate underlying corneal nerves, although TBU produced more rapid stimulation. Slow increases in tear film hyperosmolarity may cause the gradual increase in discomfort during slow tear film thinning, whereas the sharp increases in discomfort during TBU suggest a more complex stimulus.

  1. AC-600 passive containment cooling system performance research

    International Nuclear Information System (INIS)

    Jia Baoshan; Yu Jiyang; Shi Junying

    1997-01-01

    a code named PCCSAC which is able to predict both the evaporating film on the outside surface of the vessel and the condensed film on its inside is developed successfully. It is a special software tool to analyze the passive containment cooling system (PCCS) performance in the design of AC-600. The author includes the establishment of physical models, selection of numerical methods, debugging and verification of the code and application of the code in the AC-600 PCCS. In physical models, the fundamental conservation equations about various areas and heat conduction equations are established. In order to make the equations to meet the closed form of solution, a lot of structure formulae are complemented. After repeated selection and demonstration of the numerical methods, the backward difference method Gear which is generally used for stiff problem is chosen for the solution of ordinary differential equations derived from the physical models. The results of standard example calculated by the PCCSAC code and the COMMIX code which is used to analyze westinghouse AP-600 are same in the main. The reliability and validity are verified from the calculations. The PCCSAC code is applied in the calculations of two important LOCA used in the containment safety analyses. The sensitivity of main parameters in the system based on LOCA are studied. All the results are reasonable and in agreement with the theoretical analyses. It can be concluded that the PCCSAC code is able to be used for the analyses of AC-600 PCCS performance

  2. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes

    Science.gov (United States)

    Boyle, Robert

    2014-01-01

    This project demonstrated that higher temperature capabilities of ceramic matrix composites (CMCs) can be used to reduce emissions and improve fuel consumption in gas turbine engines. The work involved closely coupling aerothermal and structural analyses for the first-stage vane of a high-pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have structural and thermal properties different from conventional metals used for the first-stage HPT vane. This project identified vane configurations that satisfy CMC structural strength and life constraints while maintaining vane aerodynamic efficiency and reducing vane cooling to improve engine performance and reduce emissions. The project examined modifications to vane internal configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both were analyzed using an ANSYS® structural analysis. Three-dimensional fluid and heat transfer analyses were used to determine vane aerodynamic performance and heat load distributions.

  3. Cooling System Design Options for a Fusion Reactor

    Science.gov (United States)

    Natalizio, Antonio; Collén, Jan; Vieider, Gottfried

    1997-06-01

    The objective of a fusion power reactor is to produce electricity safely and reliably. Accordingly, the design, objective of the heat transport system is to optimize power production, safety, and reliability. Such an optimization process, however, is constrained by many factors, including, among others: public safety, worker safety, steam cycle efficiency, reliability, and cost. As these factors impose conflicting requirements, there is a need to find an optimum design solution, i.e., one that satisfies all requirements, but not necessarily each requirement optimally. The SEAFP reactor study developed helium-cooled and water-cooled models for assessment purposes. Among other things, the current study demonstrates that neither model offers an optimum solution. Helium cooling offers a high steam cycle efficiency but poor reliability for the cooling of high heat flux components (divertor and first wall). Alternatively, water cooling offers a low steam cycle efficiency, but reasonable reliability for the cooling of such components. It is concluded that an optimum solution includes helium cooling of low heat flux components and water cooling of high heat flux components. Relative to the SEAFP helium model, this hybrid system enhances safety and reliability, while retaining the high steam cycle efficiency of that model.

  4. Improved lumped models for transient combined convective and radiative cooling of a two-layer spherical fuel element

    International Nuclear Information System (INIS)

    Silva, Alice Cunha da; Su, Jian

    2013-01-01

    The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)

  5. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Shreyes, Amrita Ravi

    2017-06-07

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other.

  6. Power-Cooling-Mismatch Test Series Test PCM-7. Experiment operating specifications

    International Nuclear Information System (INIS)

    Sparks, D.T.; Smith, R.H.; Stanley, C.J.

    1979-02-01

    The experiment operating specifications for the Power-Cooling-Mismatch (PCM) Test PCM-7 to be conducted in the Power Burst Facility are described. The PCM Test Series was designed on the basis of a parametric evaluation of fuel behavior response with cladding temperature, rod internal pressure, time in film boiling, and test rod power being the variable parameters. The test matrix, defined in the PCM Experiment Requirements Document (ERD), encompasses a wide range of situations extending from pre-CHF (critical heat flux) PCMs to long duration operation in stable film boiling leading to rod failure

  7. Cooling the vertical surface by conditionally single pulses

    Science.gov (United States)

    Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor

    2017-10-01

    You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.

  8. Spontaneous phase transitions in magnetic films with a modulated structure

    International Nuclear Information System (INIS)

    Arzamastseva, G. V.; Evtikhov, M. G.; Lisovskii, F. V.; Mansvetova, E. G.

    2011-01-01

    The influence of monoperiodic and biperiodic bias fields on the nucleation of domain structures in quasi-uniaxial magnetic films near the Curie point has been studied experimentally. The main types of observed nonuniform magnetic moment distributions have been established and chains of a devil’s staircase phase transitions are shown to be realized when the films are slowly cooled.

  9. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  10. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  11. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham.

    Science.gov (United States)

    Amézquita, A; Weller, C L; Wang, L; Thippareddi, H; Burson, D E

    2005-05-25

    Numerous small meat processors in the United States have difficulties complying with the stabilization performance standards for preventing growth of Clostridium perfringens by 1 log10 cycle during cooling of ready-to-eat (RTE) products. These standards were established by the Food Safety and Inspection Service (FSIS) of the US Department of Agriculture in 1999. In recent years, several attempts have been made to develop predictive models for growth of C. perfringens within the range of cooling temperatures included in the FSIS standards. Those studies mainly focused on microbiological aspects, using hypothesized cooling rates. Conversely, studies dealing with heat transfer models to predict cooling rates in meat products do not address microbial growth. Integration of heat transfer relationships with C. perfringens growth relationships during cooling of meat products has been very limited. Therefore, a computer simulation scheme was developed to analyze heat transfer phenomena and temperature-dependent C. perfringens growth during cooling of cooked boneless cured ham. The temperature history of ham was predicted using a finite element heat diffusion model. Validation of heat transfer predictions used experimental data collected in commercial meat-processing facilities. For C. perfringens growth, a dynamic model was developed using Baranyi's nonautonomous differential equation. The bacterium's growth model was integrated into the computer program using predicted temperature histories as input values. For cooling cooked hams from 66.6 degrees C to 4.4 degrees C using forced air, the maximum deviation between predicted and experimental core temperature data was 2.54 degrees C. Predicted C. perfringens growth curves obtained from dynamic modeling showed good agreement with validated results for three different cooling scenarios. Mean absolute values of relative errors were below 6%, and deviations between predicted and experimental cell counts were within 0.37 log10

  12. A dynamic film model of the pulsating heat pipe

    International Nuclear Information System (INIS)

    Nikolayev, Vadim S.

    2011-01-01

    This article deals with the numerical modeling of the pulsating heat pipe (PHP) and is based on the film evaporation/condensation model recently applied to the single-bubble PHP (Das et al., 2010, 'Thermally Induced Two-Phase Oscillating Flow Inside a Capillary Tube', Int. J. Heat Mass Transfer, 53(19-20), pp. 3905-3913). The described numerical code can treat the PHP of an arbitrary number of bubbles and branches. Several phenomena that occur inside the PHP are taken into account: coalescence of liquid plugs, film junction or rupture, etc. The model reproduces some of the experimentally observed regimes of functioning of the PHP such as chaotic or intermittent oscillations of large amplitudes. Some results on the PHP heat transfer are discussed. (author)

  13. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    International Nuclear Information System (INIS)

    Cho, N. H.; Jeong, W. Y.; Park, S. H.

    2008-01-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C

  14. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N. H.; Jeong, W. Y.; Park, S. H. [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2008-07-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C.

  15. Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades

    Science.gov (United States)

    Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.

    1999-01-01

    A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.

  16. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    International Nuclear Information System (INIS)

    Yasakau, K.A.; Giner, I.; Vree, C.; Ozcan, O.; Grothe, R.; Oliveira, A.; Grundmeier, G.; Ferreira, M.G.S.; Zheludkevich, M.L.

    2016-01-01

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn_2 phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N_2) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N_2 contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  17. Modeling of flow conditions in down draft gasifiers using tin film models

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Gøbel, Benny; Henriksen, Ulrik Birk

    2003-01-01

    In order to examine how an inhomogeneous char bed affects the gas flow through the bed, a dynamic model have been developed to describe the flow distribution in a down draft gasifier. The gas flow distribution through the bed was determined using a thin film model approach. The temperatures...

  18. Incorporation of cooling-induced crystallisation into a 2-dimensional axisymmetric conduit heat flow model

    Science.gov (United States)

    Heptinstall, D. A.; Neuberg, J. W.; Bouvet de Maisonneuve, C.; Collinson, A.; Taisne, B.; Morgan, D. J.

    2015-12-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic systems. We shall investigate the thermal processes and timescales in a crystallizing, static magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/°C (runs 1 & 3) and 0.2MPa/°C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69e5 J/kg*K, 9.32e5 J/kg*K, and 9.49e5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the center of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10 m depth, it takes 4.1-9.2 years for the magma column to cool over 108-130oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and dominant latent heat producing crystallizing phases (Quartz), where run 1 cools fastest and run 3 cools slowest. Surface cooling by comparison has the strongest influence on the upper tens of meters in all

  19. Modelling of a condenser-fan control for an air-cooled centrifugal chiller

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2007-01-01

    There is a lack of detailed experimental and simulation studies on air-cooled centrifugal chillers. This paper investigates how to optimize the control of condenser fans within the chillers to maximize their coefficients of performance (COPs). A thermodynamic model for the chillers was developed and used to analyse the steady-state COP under various load and ambient conditions. An algorithm is introduced to compute the number of staged condenser fans based on settings of the condensing pressure and outdoor temperature. The model was validated using the experimental data and performance data of an existing chiller running under various operating conditions. It is found that the best strategy for switching condenser fans is to vary their rotating speed by the use of a set point of the condensing temperature, which is adjusted in response to the chiller load and condenser air-inlet temperature. The results of this paper provide an important insight into how to increase the COPs of air-cooled chillers

  20. Modelling of a condenser-fan control for an air-cooled centrifugal chiller

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F.W.; Chan, K.T. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2007-11-15

    There is a lack of detailed experimental and simulation studies on air-cooled centrifugal chillers. This paper investigates how to optimize the control of condenser fans within the chillers to maximize their coefficients of performance (COPs). A thermodynamic model for the chillers was developed and used to analyse the steady-state COP under various load and ambient conditions. An algorithm is introduced to compute the number of staged condenser fans based on settings of the condensing pressure and outdoor temperature. The model was validated using the experimental data and performance data of an existing chiller running under various operating conditions. It is found that the best strategy for switching condenser fans is to vary their rotating speed by the use of a set point of the condensing temperature, which is adjusted in response to the chiller load and condenser air-inlet temperature. The results of this paper provide an important insight into how to increase the COPs of air-cooled chillers. (author)

  1. EXPERIMENTAL VERIFICATION OF COMPUTER MODEL OF COOLING SYSTEM FOR POWERFUL SEMI- CONDUCTOR DEVICE

    Directory of Open Access Journals (Sweden)

    I. A. Khorunzhii

    2007-01-01

    Full Text Available A cooling system for powerful semi-conductor device (power -1 kW consisting of a pin-type radiator and a body is considered in the paper. Cooling is carried out by forced convection of a coolant. Calculated values of temperatures on the radiator surface and experimentally measured values of temperatures in the same surface points have been compared in the paper. It has been shown that the difference between calculated and experimentally measured temperatures does not exceed 0,1-0,2 °C and it is comparable with experimental error value. The given results confirm correctness of a computer model.

  2. Stability of sputter deposited ZnO:Cr films against acids

    International Nuclear Information System (INIS)

    Shinoda, Makoto; Nishide, Toshikazu; Sawada, Yutaka; Hosaka, Masato; Matsumoto, Toshihiko.

    1993-01-01

    ZnO:Cr films were deposited on water-cooled soda-lime glass substrates at room temperature in an Ar atmosphere by rf magnetron sputtering of a ZnO target on which Cr chips were placed. The films exhibited extraordinary stability against acids such as HCl or HNO 3 , and also high resistivities similar to those of ZnO films. The addition of Cr suppressed the growth of ZnO grains which resulted in the formation of a dense film with a smooth surface. The stability and high resistivity displayed by the ZnO:Cr films can be attributed to the formation of a chromium-oxide-rich grain boundary. (author)

  3. A comparison of charged coupled devices and film sensitivities

    International Nuclear Information System (INIS)

    Wallick, W.O.; Kenyon, R.G.; Lubatti, H.J.

    1977-01-01

    The response of a charged coupled device (Fairchild CCD-202) to a Ne light source is studied and compared to the Kodak SO-143 film commonly used for streamer chamber applications. It is found that the CCD-202 cooled to - 10 0 C is considerebly more sensitive than the film. The advantages of using a CCD camera system for streamer chamber and other applications is discussed. (Auth.)

  4. Modelling of thermohydraulic emergency core cooling phenomena

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.; Lewis, M.J.

    1990-10-01

    The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs

  5. A variational model of disjoining pressure: Liquid film on a nonplanar surface

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Virnovsky, G.

    2009-06-01

    Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this paper, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmgoltz free energy functional depends both on the disjoining pressure isotherm and the shape of the solid surface. The augmented Young-Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy the Jacobi's condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space and the curvature is positive.

  6. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  7. ATHENA calculation model for the ITER-FEAT divertor cooling system. Final report with updates

    International Nuclear Information System (INIS)

    Eriksson, John; Sjoeberg, A.; Sponton, L.L.

    2001-05-01

    An ATHENA model of the ITER-FEAT divertor cooling system has been developed for the purpose of calculating and evaluating consequences of different thermal-hydraulic accidents as specified in the Accident Analysis Specifications for the ITER-FEAT Generic Site Safety Report. The model is able to assess situations for a variety of conceivable operational transients from small flow disturbances to more critical conditions such as total blackout caused by a loss of offsite and emergency power. The main objective for analyzing this type of scenarios is to determine margins against jeopardizing the integrity of the divertor cooling system components and pipings. The model of the divertor primary heat transport system encompasses the divertor cassettes, the port limiter systems, the pressurizer, the heat exchanger and all feed and return pipes of these components. The development was pursued according to practices and procedures outlined in the ATHENA code manuals using available modelling components such as volumes, junctions, heat structures and process controls

  8. Control of droplet size in rain-zone in wet cooling tower

    Directory of Open Access Journals (Sweden)

    Vitkovicova Rut

    2018-01-01

    Full Text Available The performance of the wet cooling tower is significantly affected by the droplet size occurring in the rain zone. In order to effectively manage the size of these droplets, it was necessary to experimentally determine the effect of the fills of the cooling towers on droplets. Five types of cooling fillers were used for experimental measurements: 3 film fills and 2 splash fills - trickle and grid. Drop size measurements were performed using the LIF method. Histograms of droplets size were obtained from measured droplet sizes under each fill, and for each fill, the Sauter droplet diameter was then calculated. According to a theoretical analysis of a breakdown of droplets, the combinations of some fills and the effect of their surface treatment on the droplet diameter were then measured for comparison.

  9. Stabilization of iron and molybdenum amorphous state with interstitials under high rates of cooling

    International Nuclear Information System (INIS)

    Barmin, Yu.V.; Vavilova, V.V.; Verevkin, A.G.; Gertsen, A.T.; Kovneristyj, Yu.K.; Kotyurgin, E.A.; Mirkin, B.V.; Palij, N.A.

    1993-01-01

    Amorphous solidification of iron and molybdenum is investigated in thin films and on surface laser irradiated on air at 10 12 and 10 8 /Ks cooling rates correspondingly. Amorphous solidification occurs during ion plasma spraying in thin films of 50 nm at saturation of carbon and oxygen atoms in the ratio of C:0=2.3, but amorphous state is absent at room temperature. Metastable fcc phase, among bcc, is formed by crystallization

  10. Modeling of Rocket Fuel Heating and Cooling Processes in the Interior Receptacle Space of Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    K. I. Denisova

    2016-01-01

    Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as

  11. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    Directory of Open Access Journals (Sweden)

    Qian Haoliang

    2015-11-01

    Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  12. Performance characteristics of a shower cooling tower

    International Nuclear Information System (INIS)

    Qi Xiaoni; Liu Zhenyan; Li Dandan

    2007-01-01

    This study was prompted by the need to design towers for applications in which, due to salt deposition on the packing and subsequent blockage, the use of tower packing is not practical. In contrast to conventional cooling towers, the cooling tower analyzed in this study is void of fill. By means of efficient atomization nozzles, a shower cooling tower (SCT) is possible to be applied in industry, which, in terms of water cooling, energy saving and equipment investing, is better than conventional packed cooling towers. However, no systematic thermodynamic numerical method could be found in the literature up to now. Based on the kinetic model and mass and heat transfer model, this paper has developed a one dimensional model for studying the motional process and evaporative cooling process occurring at the water droplet level in the SCT. The finite difference approach is used for three motional processes to obtain relative parameters in each different stage, and the possibility of the droplets being entrained outside the tower is fully analyzed. The accuracy of this model is checked by practical operational results from a full scale prototype in real conditions, and some exclusive factors that affect the cooling characteristics for the SCT are analyzed in detail. This study provides the theoretical foundation for practical application of the SCT in industry

  13. Response of unirradiated and irradiated PWR fuel rods tested under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Quapp, W.J.; Martinson, Z.R.; McCardell, R.K.; Mehner, A.S.

    1978-01-01

    This report summarizes the results from the single-rod power-cooling-mismatch (PCM) and irradiation effects (IE) tests conducted to date in the Power Burst Facility (PBF) at the U.S. DOE Idaho National Engineering Laboratory. This work was performed for the U.S. NRC under contact to the Department of Energy. These tests are part of the NRC Fuel Behavior Program, which is designed to provide data for the development and verification of analytical fuel behavior models that are used to predict fuel response to abnormal or postulated accident conditions in commercial LWRs. The mechanical, chemical and thermal response of both previously unirradiated and previously irradiated LWR-type fuel rods tested under power-cooling-mismatch condition is discussed. A brief description of the test designs is presented. The results of the PCM thermal-hydraulic studies are summarized. Primary emphasis is placed on the behavior of the fuel and cladding during and after stable film boiling. (orig.) [de

  14. A Preliminary Heat Flow Model for Cooling a Batholith near Ica, Peru

    Science.gov (United States)

    Gonzalez, L. U.; Clausen, B. L.; Molano, J. C.; Martinez, A. M.; Poma, O.

    2014-12-01

    This research models the cooling of a suite in the Linga Super-unit located at the north end of the Arequipa segment in the Cretaceous Peruvian Coastal Batholith. The monzogabbro to granite Linga suite is approximately 50 km long and 15 km wide, with an estimated vertical extent of about 5 km originally intruded to a depth of 3 km. The emplacement was in andesitic volcanics on the west and the Pampahuasi diorite Super-unit on the east and has incorporated earlier gabbroic bodies. The Linga suite is thought to be the result of a sequence of three pulses: an elongate unit to the west then two elliptical units to the northeast and southeast. The data for modeling comes from field observations on internal and external contacts, some well-defined magma chamber walls and roof, pendant and stoped blocks, magma chamber zoning, the nature and distribution of enclaves and xenoliths, magmatic fabric, evidences of magma mingling, rock porosity, mineralogical associations in metamorphic aureoles, extensive mineralization and brecciated conduits, and the types of hydrothermal alteration varying with distance from contacts. More than forty hand samples, thin sections, and geochemical analyses were used to estimate water content, magma and country rock temperature, liquid density, and viscosity. Further data will come from: zircon U-Pb ages for country rock and magma batch timeframes, fluid inclusions for magma pressure and temperature, and δ18O data for source of hydrothermal fluids. Simple heat conduction calculations using MATLAB and HEAT 3D for a single tabular intrusion estimated a cooling time to solidus of about 300 k.y. More complex modeling includes magma convection and multiple intrusions. Extensive veining and pervasive alteration suggested the use of HYDROTHERM to model possible additional heat flow effects from hydrothermal fluids. Extensive propylitic and significant potassic alteration were observed and, with TerraSpec infrared spectroscopy to identify

  15. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    International Nuclear Information System (INIS)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking

  16. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  17. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  18. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  19. Passive Cooling of Body Armor

    Science.gov (United States)

    Holtz, Ronald; Matic, Peter; Mott, David

    2013-03-01

    Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.

  20. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  1. Investigation of structure and magnetoresistance in Co/ZnO films

    International Nuclear Information System (INIS)

    Quan Zhiyong; Xu Xiaohong; Li Xiaoli; Feng, Q.; Gehring, G. A.

    2010-01-01

    Co/ZnO films were deposited on glass substrates by magnetron sputtering at room temperature. The structure of the as-deposited films is studied by means of x-ray diffraction, x-ray photoelectron spectroscopy, and the zero-field-cooled and field-cooled magnetization curves. It is shown that the as-deposited samples consist of a mixture of regions of metallic Co and semiconducting ZnO. Large negative magnetoresistance of 26% and 11.9% are observed in the as-deposited Co/ZnO film with Co concentration of 50.7 at. % at 10 K and room temperature, respectively. Structural analysis, the temperature dependence of the conductivity and magnetoresistance reveal that the magnetoresistance is induced by spin-dependent tunneling between regions of conducting magnetic Co through the ZnO semiconducting barriers. The enhanced magnetoresistance in the low temperature regime may be related to the existence of higher-order tunneling processes between large Co regions mediated by small Co particles.

  2. A probabilistic model of the electron transport in films of nanocrystals arranged in a cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Ilka [Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova (Italy); Scotognella, Francesco, E-mail: francesco.scotognella@polimi.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milan (Italy)

    2016-08-01

    The fabrication of nanocrystal (NC) films, starting from colloidal dispersion, is a very attractive topic in condensed matter physics community. NC films can be employed for transistors, light emitting diodes, lasers, and solar cells. For this reason the understanding of the film conductivity is of major importance. In this paper we describe a probabilistic model that allows the prediction of the conductivity of NC films, in this case of a cubic lattice of Lead Selenide or Cadmium Selenide NCs. The model is based on the hopping probability between NCs. The results are compared to experimental data reported in literature. - Highlights: • Colloidal nanocrystal (NC) film conductivity is a topic of major importance. • We present a probabilistic model to predict the electron conductivity in NC films. • The model is based on the hopping probability between NCs. • We found a good agreement between the model and data reported in literature.

  3. An innovative model of integrated mentorship in film production

    Directory of Open Access Journals (Sweden)

    Boštjan Miha Jambrek

    2016-11-01

    Full Text Available In this article, the author focuses on an innovative approach towards mentoring in film production. Emphasis is placed on a model of integrated mentorship in which the mentor becomes a part of the creative process. The mentor operates from within the creative process and works on an equal basis with the mentee in areas such as production, brainstorming, and problem-solving. This kind of approach assumes reciprocal learning and uses an adult education methodology in a formal pedagogical process. Our research was conducted as a participatory research observation, with participation in several short film productions at the Ljubljana High School for Media and Graphic Technology and the Artes Liberales Film Academy.

  4. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    International Nuclear Information System (INIS)

    Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-01-01

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  5. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  6. Thermoelectric air-cooling module for electronic devices

    International Nuclear Information System (INIS)

    Chang, Yu-Wei; Chang, Chih-Chung; Ke, Ming-Tsun; Chen, Sih-Li

    2009-01-01

    This article investigates the thermoelectric air-cooling module for electronic devices. The effects of heat load of heater and input current to thermoelectric cooler are experimentally determined. A theoretical model of thermal analogy network is developed to predict the thermal performance of the thermoelectric air-cooling module. The result shows that the prediction by the model agrees with the experimental data. At a specific heat load, the thermoelectric air-cooling module reaches the best cooling performance at an optimum input current. In this study, the optimum input currents are from 6 A to 7 A at the heat loads from 20 W to 100 W. The result also demonstrates that the thermoelectric air-cooling module performs better performance at a lower heat load. The lowest total temperature difference-heat load ratio is experimentally estimated as -0.54 W K -1 at the low heat load of 20 W, while it is 0.664 W K -1 at the high heat load of 100 W. In some conditions, the thermoelectric air-cooling module performs worse than the air-cooling heat sink only. This article shows the effective operating range in which the cooling performance of the thermoelectric air-cooling module excels that of the air-cooling heat sink only.

  7. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a ;segmented; thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed ;segmented; model shows more precise than the ;non-segmented; model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the ;segmented; model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  8. Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models

    Energy Technology Data Exchange (ETDEWEB)

    Min, June Kee [Pusan National University, Busan (Korea, Republic of); Park, Il Seouk [Kyungpook National University, Daegu (Korea, Republic of)

    2014-05-15

    Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.

  9. Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models

    International Nuclear Information System (INIS)

    Min, June Kee; Park, Il Seouk

    2014-01-01

    Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors

  10. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  11. Cooling the vertical surface by conditionally single pulses

    Directory of Open Access Journals (Sweden)

    Karpov Pavel

    2017-01-01

    Full Text Available You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of “island” film cooling.

  12. Analysis and Modeling of Heat Generation in Overcharged Li-Ion Battery with Passive Cooling

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    This paper presents a dynamic model for simulating the heat generation in Lithium batteries and an investigation of the heat transfer as well as the capacity of Phase Change Materials (PCM’s) to store energy inside a battery cell module when the battery is overcharged. The study is performed...... by coupling a one-dimensional model of the electrochemical processes with a two-dimensional model for the heat transfer in a cross section of a battery pack. The heat generation and subsequent temperature rise is analyzed for different charging currents for the two cases where the cell is air......-cooled and passively cooled using a PCM, respectively. As expected, the results show that for high currents, the heat generation and implicitly the temperature increases. However, using a PCM the temperature increase is found to be limited allowing the battery to be overcharged to a certain degree. It is found...

  13. Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor.

    Science.gov (United States)

    Chen, Weiqi; Pinho, Bruno; Hartman, Ryan L

    2017-09-12

    The crystallization kinetics of methane (sI) hydrate were investigated in a thermoelectrically-cooled microreactor with in situ Raman spectroscopy. Step-wise and precise control of the temperature allowed acquisition of reproducible data within minutes, while the nucleation of methane hydrates can take up to 24 h in traditional batch reactors. The propagation rates of methane hydrate (from 3.1-196.3 μm s -1 ) at the gas-liquid interface were measured for different Reynolds' numbers (0.7-68.9), pressures (30.0-80.9 bar), and sub-cooling temperatures (1.0-4.0 K). The precise measurement of the propagation rates and their subsequent analyses revealed a transition from mixed heat-transfer-crystallization-rate-limited to mixed heat-transfer-mass-transfer-crystallization-rate-limited kinetics. A theoretical model, based on heat transfer, mass transfer, and intrinsic crystallization kinetics, was derived for the first time to understand the non-linear relationship between the propagation rate and sub-cooling temperature. The molecular diffusivity of methane within a stagnant film (ahead of the propagation front) was discovered to follow Stokes-Einstein, while calculated Hatta (0.50-0.68), Lewis (128-207), and beta (0.79-116) numbers also confirmed that the diffusive flux influences crystal growth. Understanding methane hydrate crystal growth is important to the atmospheric, oceanic, and planetary sciences and to energy production, storage, and transportation. Our discoveries could someday advance the science of other multiphase, high-pressure, and sub-cooled crystallizations.

  14. Warming rays in cluster cool cores

    Science.gov (United States)

    Colafrancesco, S.; Marchegiani, P.

    2008-06-01

    Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters

  15. Mathematical model of drift deposition from a bifurcated cooling tower plume

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Jung, L.

    1978-01-01

    Cooling tower drift deposition modeling has been extended by including centrifugal force induced through plume bifurcation in a crosswind as a mechanism for drift droplet removal from the plume. The model, in its current state of development, is capable of predicting the trajectory of a single droplet from the stage of strong interaction with the vortex field soon after droplet emission at the tower top through the stage of droplet evaporation in an unsaturated atmosphere after droplet breakaway from the plume. The computer program developed from the mathematical formulation has been used to explore the dependency of the droplet trajectory on droplet size, vortex strength, point of droplet emission, drag coefficient, droplet efflux speed, and ambient conditions. A specific application to drift from a mechanical-draft cooling tower (for a wind speed twice the efflux speed, a relative humidity of 70 per cent, and an initial droplet radius of 100 μm) showed the droplet to follow a helical trajectory within the plume, with breakaway occurring at 2.5 tower diameters downwind and ground impact of the droplet (reduced through evaporation to 55 μm radius) at 11 tower diameters

  16. Application of a film flow model to predicting burnout under transient conditions

    International Nuclear Information System (INIS)

    Leslie, D.C.; Kirby, G.J.

    1967-08-01

    The film flow model developed previously has been generalised to transient situations by assuming that only convection is changed by the transient; evaporation, deposition and entrainment are assumed to be unaffected. A computer code TRABUT computes the time behaviour of the mass velocity and the quality by the method of characteristics, and then integrates the film flow equations along the same characteristics until the point of burn-out or zero film flow is reached. The time delay between the onset of a transient and burn-out has been computed both for flux and flow transients. These computations have been compared with those made using the standard local conditions hypothesis. The film flow model gives shorter delays in almost all cases, but the difference would not be detectable with present experimental techniques. (author)

  17. Low-energy x-ray response of photographic films. I. Mathematical models

    International Nuclear Information System (INIS)

    Henke, B.L.; Kwok, S.L.; Uejio, J.Y.; Yamada, H.T.; Young, G.C.

    1984-01-01

    Relatively simple mathematical models are developed to determine the optical density as a function of the x-ray intensity, its angle of incidence, and its photon energy in the 100--10,000-eV region for monolayer and emulsion types of photographic films. Semiempirical relations are applied to characterize a monolayer film (Kodak 101-07) and an emilsion-type film (Kodak RAR 2497); these relations fit calibration data at nine photon energies well within typical experimental error

  18. A predictive model to evaluate the impact of the cooling profile on growth of psychrotrophic bacteria in raw milk from conventional and robotic milking.

    Science.gov (United States)

    Christiansson, Anders

    2017-08-01

    This Research Communication explores the usefulness of predictive modelling to explain bacterial behaviour during cooling. A simple dynamic lag phase model was developed and validated. The model takes into account the effect of the cooling profile on the lag phase and growth in bulk tank milk. The time before the start of cooling was the most critical and should not exceed 1 h. The cooling rate between 30 and approximately 10 °C was the second most critical period. Cooling from 30 to 10 °C within 2 h ensured minimal growth of psychrotrophic bacteria in the milk. The cooling rate between 10 and 4 °C (the slowest phase of cooling) was of surprisingly little importance. Given a normal cooling profile to 10 °C, several hours of prolonged cooling time made practically no difference in psychrotrophic counts. This behaviour can be explained by the time/temperature dependence of the work needed by the bacteria to complete the lag phase at low temperature. For milk quality advisors, it is important to know that slow cooling below 10 °C does not result in high total counts of bacteria. In practice, slow cooling is occasionally found at farms with robotic milking. However, when comparing psychrotrophic growth in bulk milk tanks designed for robotic milking or conventional milking, the model predicted less growth for robotic milking for identical cooling profiles. It is proposed that due to the different rates of milk entering the tank, fewer bacteria will exit the lag phase during robotic milking and they will be more diluted than in conventional milking systems. At present, there is no international standard that specifies the cooling profile in robotic systems. The information on the insignificant effect of the cooling rate below 10 °C may be useful in the development of a standard.

  19. Superconducting thin films of Bi-Sr-Ca-Cu-O by laser ablation

    International Nuclear Information System (INIS)

    Bedekar, M.M.

    1992-01-01

    The discovery of a new class of copper oxide superconductors has led to the development of three major systems that exhibit superconducting properties. The Bi-Sr-Ca-Cu-O superconductors offer intrinsic advantages due to the high T c , chemical inertness and tolerance for a range of compositions. However, thin film research on these materials has progressed more slowly than the other cuprate systems. This dissertation examines the film growth, by laser ablation, of the Bi-Sr-Ca-Cu-O superconductors and the effect of the deposition parameters such as the laser target interaction, substrate temperature, target to substrate distance, deposition and cooling pressure, target type and processing and the substrate type. CO 2 laser ablation was shown to give rise to a non-stoichiometric material transfer due to the low fluences and long pulse lengths. In situ superconducting thin films with T c(0) 's of 76 K could be deposited using the KrF laser at substrate temperatures of 5 degrees C to 20 degrees C below phases. Lower temperatures gave rise to a mixture of 2201 and glassy phases. An increase in the target to substrate distance led to a deterioration of the electrical and structural properties of the films due to a decrease in the energy for film formation. A maximum in T c(0) was observed at 450 mtorr as the deposition pressure was varied between 200 to 700 mtorr. Optimum oxygen incorporation could be achieved by cooling the films in high oxygen pressures and the best films were obtained with 700 torr cooling pressure. The oxygen deficiency of the hot pressed targets led to inferior properties compared to the conventionally sintered targets. The microwave surface resistance of the films measured at 35 GHz showed an onset at 80 K and dropped below that of copper at 30 K. The study of the laser ablation process in this system revealed the presence of a stoichiometric forward directed component and a diffuse evaporation component

  20. Analytical prediction of CHF by FIDAS code based on three-fluid and film-dryout model

    International Nuclear Information System (INIS)

    Sugawara, Satoru

    1990-01-01

    Analytical prediction model of critical heat flux (CHF) has been developed on the basis of film dryout criterion due to droplets deposition and entrainment in annular mist flow. Critical heat flux in round tubes were analyzed by the Film Dryout Analysis Code in Subchannels (FIDAS) which is based on the three-fluid, three-field and newly developed film dryout model. Predictions by FIDAS were compared with the world-wide experimental data on CHF obtained in water and Freon for uniformly and non-uniformly heated tubes under vertical upward flow condition. Furthermore, CHF prediction capability of FIDAS was compared with those of other film dryout models for annular flow and Katto's CHF correlation. The predictions of FIDAS are in sufficient agreement with the experimental CHF data, and indicate better agreement than the other film dryout models and empirical correlation of Katto. (author)

  1. Deuterium- and 18O-content in the cooling water of power station cooling towers

    International Nuclear Information System (INIS)

    Heimbach, H.; Dongmann, G.

    1976-09-01

    The 0-18/0-16 and D/H isotope ratios of water from two different cooling towers were determined by mass spectrometry. The observed isotope fractionation corresponds to that known from natural evaporation or transpiration processes: cooling tower I: delta(D) = 46.8 per thousand, delta( 18 O) = 7.6 per thousand cooling tower II: delta(D) = 33.9 per thousand delta( 18 O) = 5.7 per thousand Evaluation of simple compartment models of a cooling tower and a distillation device suggests that there exists some isotope discrimination within the open trickling unit of a cooling tower analogous to that in a rectification column. In a real cooling tower, however, this effect is compensated largely by the recycling of the cooling water, resulting only in a small enrichment of the heavy isotopes. This can be understood as the result of three partial effects: 1) a fractionation in the vapor pressure equilibrium, 2) a kinetic effect due to diffusion of the water vapor into a turbulent atmosphere, and 3) an exchange effect which is proportional to relative humidity. This low enrichment of the heavy isotope excludes the technical use of cooling towers as isotope separation devices. (orig.) [de

  2. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    Science.gov (United States)

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  3. A Mathematical Model of a Thermally Activated Roof (TAR Cooling System Using a Simplified RC-Thermal Model with Time Dependent Supply Water Temperature

    Directory of Open Access Journals (Sweden)

    Khalid Ahmed Joudi

    2017-01-01

    Full Text Available This paper presents a computer simulation model of a thermally activated roof (TAR to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time dependent with the variation of the ambient wet bulb temperature. Results from RC-thermal modeling were compared with experimental measurements for a second story room measuring 5.5 m x 4 m x 3 m at Amarah city/ Iraq (31.865 ˚N, 47.128 ˚E for 21 July, 2013. The roof was constructed of 200 mm concrete slab, 150 mm turf and 50 mm insulation. Galvanized 13 mm steel pipe coils were buried in the roof slab with a pipe occupation ratio of 0.12. The walls were constructed of 240 mm common brick with 10mm cement plaster on the inside and outside surfaces and 20 mm Styrofoam insulation on the inside surface and covered with PVC panel. Thermistors were used to measure the indoor and outdoor temperatures, TAR system water inlet and outlet temperatures and temperature distribution inside the concrete slab. The effect of pipe spacing and water mass flow rate were evaluated. Agreement was good between the experimental and RC-thermal model. Concrete core temperature reaches the supply water temperature faster for lower pipe spacing. Heat extracted from the space increased with water mass flow rate to an optimum of 0.0088 kg/s.m².

  4. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    Directory of Open Access Journals (Sweden)

    Peng Xi

    2018-05-01

    Full Text Available Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Result: Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits’ scalded skin crusting time (P < 0.01, significantly shortened the rabbit skin burns from the scab time (P < 0.01, and significantly improved the treatment of skin diseases in rabbits scald model change (P < 0.01, P < 0.05. Conclusion: The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing. Keywords: Nano-silver hydrogel coating film, Deep degree burns, Topical, Rabbits

  5. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    International Nuclear Information System (INIS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-01-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO 2 ). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh o o is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface deformation. Hence, surface deformation caused by liquid

  6. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  7. 3-D modeling of parietal liquid films in internal combustion engines; Modelisation tridimensionnelle des films liquides parietaux dans les moteurs a combustion interne

    Energy Technology Data Exchange (ETDEWEB)

    Foucart, H

    1998-12-11

    To simulate the air-fuel mixing in the intake ports and cylinder of an internal combustion engines, a wall fuel liquid film model has been developed for integration in 3D CFD codes. Phenomena taken into account include wall film formation by an impinging spray without splashing effect, film transport such as governed by mass and momentum equations with hot wall effects, and evaporation considering energy equation with an analytical mass transfer formulation developed here. A continuous-fluid method is used to describe the wall film over a three dimensional complex surface. The basic approximation is that of a laminar incompressible boundary layer; the liquid film equations are written in an integral form and solved by a first-order ALE finite volume scheme; the equation system is closed without coefficient fitting requirements. The model has been implemented in a Multi-Block version of KIVA-II (KMB) and tested against problems having theoretical solutions. Then in a first step, it has been compared to the measurements obtained in a cylindrical pipe reproducing the main characteristics of SI engine intake pipe flow and in a second step, it has been compared to the Xiong experiment concerning the film evaporation on a hot wall. The film behaviour is satisfactory reproduced by the computations for a set of operating conditions. Finally, engine calculations were conducted showing the importance of including a liquid film model for the simulations. (author) 54 refs.

  8. Predictive modeling of nanoscale domain morphology in solution-processed organic thin films

    Science.gov (United States)

    Schaaf, Cyrus; Jenkins, Michael; Morehouse, Robell; Stanfield, Dane; McDowall, Stephen; Johnson, Brad L.; Patrick, David L.

    2017-09-01

    The electronic and optoelectronic properties of molecular semiconductor thin films are directly linked to their extrinsic nanoscale structural characteristics such as domain size and spatial distributions. In films prepared by common solution-phase deposition techniques such as spin casting and solvent-based printing, morphology is governed by a complex interrelated set of thermodynamic and kinetic factors that classical models fail to adequately capture, leaving them unable to provide much insight, let alone predictive design guidance for tailoring films with specific nanostructural characteristics. Here we introduce a comprehensive treatment of solution-based film formation enabling quantitative prediction of domain formation rates, coverage, and spacing statistics based on a small number of experimentally measureable parameters. The model combines a mean-field rate equation treatment of monomer aggregation kinetics with classical nucleation theory and a supersaturation-dependent critical nucleus size to solve for the quasi-two-dimensional temporally and spatially varying monomer concentration, nucleation rate, and other properties. Excellent agreement is observed with measured nucleation densities and interdomain radial distribution functions in polycrystalline tetracene films. Numerical solutions lead to a set of general design rules enabling predictive morphological control in solution-processed molecular crystalline films.

  9. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Quiping [The Ohio State Univ., Columbus, OH (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Chtistensen, Richard [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Yoder, Graydon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  10. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    International Nuclear Information System (INIS)

    Lv, Quiping; Sun, Xiaodong; Chtistensen, Richard; Blue, Thomas; Yoder, Graydon; Wilson, Dane

    2015-01-01

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  11. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  12. Incorporation of cooling-induced crystallization into a 2-dimensional axisymmetric conduit heat flow model

    Science.gov (United States)

    Heptinstall, David; Bouvet de Maisonneuve, Caroline; Neuberg, Jurgen; Taisne, Benoit; Collinson, Amy

    2016-04-01

    Heat flow models can bring new insights into the thermal and rheological evolution of volcanic 3 systems. We shall investigate the thermal processes and timescales in a crystallizing, static 4 magma column, with a heat flow model of Soufriere Hills Volcano (SHV), Montserrat. The latent heat of crystallization is initially computed with MELTS, as a function of pressure and temperature for an andesitic melt (SHV groundmass starting composition). Three fractional crystallization simulations are performed; two with initial pressures of 34MPa (runs 1 & 2) and one of 25MPa (run 3). Decompression rate was varied between 0.1MPa/° C (runs 1 & 3) and 0.2MPa/° C (run 2). Natural and experimental matrix glass compositions are accurately reproduced by all MELTS runs. The cumulative latent heat released for runs 1, 2 and 3 differs by less than 9% (8.69E5 J/kg*K, 9.32E5 J/kg*K, and 9.49E5 J/kg*K respectively). The 2D axisymmetric conductive cooling simulations consider a 30m-diameter conduit that extends from the surface to a depth of 1500m (34MPa). The temporal evolution of temperature is closely tracked at depths of 10m, 750m and 1400m in the centre of the conduit, at the conduit walls, and 20m from the walls into the host rock. Following initial cooling by 7-15oC at 10m depth inside the conduit, the magma temperature rebounds through latent heat release by 32-35oC over 85-123 days to a maximum temperature of 1002-1005oC. At 10m depth, it takes 4.1-9.2 years for the magma column to cool by 108-131oC and crystallize to 75wt%, at which point it cannot be easily remobilized. It takes 11-31.5 years to reach the same crystallinity at 750-1400m depth. We find a wide range in cooling timescales, particularly at depths of 750m or greater, attributed to the initial run pressure and the dominant latent heat producing crystallizing phase, Albite-rich Plagioclase Feldspar. Run 1 is shown to cool fastest and run 3 cool the slowest, with surface emissivity having the strongest cooling

  13. Numerical modeling for the retrofit of the hydraulic cooling subsystems in operating power plant

    Science.gov (United States)

    AlSaqoor, S.; Alahmer, A.; Al Quran, F.; Andruszkiewicz, A.; Kubas, K.; Regucki, P.; Wędrychowicz, W.

    2017-08-01

    This paper presents the possibility of using the numerical methods to analyze the work of hydraulic systems on the example of a cooling system of a power boiler auxiliary devices. The variety of conditions at which hydraulic system that operated in specific engineering subsystems requires an individualized approach to the model solutions that have been developed for these systems modernizing. A mathematical model of a series-parallel propagation for the cooling water was derived and iterative methods were used to solve the system of nonlinear equations. The results of numerical calculations made it possible to analyze different variants of a modernization of the studied system and to indicate its critical elements. An economic analysis of different options allows an investor to choose an optimal variant of a reconstruction of the installation.

  14. Growth model of Au films on Ru(001)

    International Nuclear Information System (INIS)

    Canessa, E.; Calmetta, A.

    1992-06-01

    In an attempt to find generic features on the fractal growth of Au films deposited on Ru(001), a simple simulation model based on irreversible diffusion-limited aggregation (DLA) is discussed. Highly irregular two-dimensional dentritic islands of Au particles that gradually grow on a larger host lattice of Ru particles and have fractal dimension d f approx. 1.70 each, are generated via a multiple had-hoc version of the DLA algorithm for single aggregates. Annealing effects on the islands morphology are reproduced assuming different sticking probabilities at nearest-neighbour lattice sites of Au films on Ru(001). Using simulation data, islands growth are described in analogy to diffusion-limited, precipitate growth with soft impingement of precipities. This leads to analyse thin film island growth kinetics in such fractal systems and to predict a main peak in scattering intensity patterns due to interisland interference. (author). 12 refs, 4 figs

  15. Elastocaloric cooling device: Materials and modeling

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Pryds, Nini

    2015-01-01

    In the last decade we have witnessed the development of alternative solid-state cooling technologies based on so-called ferroic (caloric) effects. A large effort nowadays is devoted to investigating solid-state refrigeration using the magnetocaloric effect (change of temperature upon application ...

  16. Measuring and overcoming limits of the Saffman-Delbrück model for soap film viscosities.

    Science.gov (United States)

    Vivek, Skanda; Weeks, Eric R

    2015-01-01

    We observe tracer particles diffusing in soap films to measure the two-dimensional (2D) viscous properties of the films. Saffman-Delbrück type models relate the single-particle diffusivity to parameters of the film (such as thickness h) for thin films, but the relation breaks down for thicker films. Notably, the diffusivity is faster than expected for thicker films, with the crossover at h/d = 5.2 ± 0.9 using the tracer particle diameter d. This indicates a crossover from purely 2D diffusion to diffusion that is more three-dimensional. We demonstrate that measuring the correlations of particle pairs as a function of their separation overcomes the limitations of the Saffman-Delbrück model and allows one to measure the viscosity of a soap film for any thickness.

  17. Establishment of Approximate Analytical Model of Oil Film Force for Finite Length Tilting Pad Journal Bearings

    Directory of Open Access Journals (Sweden)

    Yongliang Wang

    2015-01-01

    Full Text Available Tilting pad bearings offer unique dynamic stability enabling successful deployment of high-speed rotating machinery. The model of dynamic stiffness, damping, and added mass coefficients is often used for rotordynamic analyses, and this method does not suffice to describe the dynamic behaviour due to the nonlinear effects of oil film force under larger shaft vibration or vertical rotor conditions. The objective of this paper is to present a nonlinear oil force model for finite length tilting pad journal bearings. An approximate analytic oil film force model was established by analysing the dynamic characteristic of oil film of a single pad journal bearing using variable separation method under the dynamic π oil film boundary condition. And an oil film force model of a four-tilting-pad journal bearing was established by using the pad assembly technique and considering pad tilting angle. The validity of the model established was proved by analyzing the distribution of oil film pressure and the locus of journal centre for tilting pad journal bearings and by comparing the model established in this paper with the model established using finite difference method.

  18. Modelling the evaporation of a tear film over a contact lens.

    Science.gov (United States)

    Talbott, Kevin; Xu, Amber; Anderson, Daniel M; Seshaiyer, Padmanabhan

    2015-06-01

    A contact lens (CL) separates the tear film into a pre-lens tear film (PrLTF), the fluid layer between the CL and the outside environment, and a post-lens tear film (PoLTF), the fluid layer between the CL and the cornea. We examine a model for evaporation of a PrLTF on a modern permeable CL allowing fluid transfer between the PrLTF and the PoLTF. Evaporation depletes the PrLTF, and continued evaporation causes depletion of the PoLTF via fluid loss through the CL. Governing equations include Navier-Stokes, heat and Darcy's equations for the fluid flow and heat transfer in the PrLTF and porous layer. The PoLTF is modelled by a fixed pressure condition on the posterior surface of the CL. The original model is simplified using lubrication theory for the PrLTF and CL applied to a sagittal plane through the eye. We obtain a partial differential equation (PDE) for the PrLTF thickness that is first-order in time and fourth-order in space. This model incorporates evaporation, conjoining pressure effects in the PrLTF, capillarity and heat transfer. For a planar film, we find that this PDE can be reduced to an ordinary differential equation (ODE) that can be solved analytically or numerically. This reduced model allows for interpretation of the various system parameters and captures most of the basic physics contained in the model. Comparisons of ODE and PDE models, including estimates for the loss of fluid through the lens due to evaporation, are given. © The Authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  19. Numerical modeling of a nuclear production reactor cooling lake

    International Nuclear Information System (INIS)

    Hamm, L.L.; Pepper, D.W.

    1987-01-01

    A finite element model has been developed which predicts flow and temperature distributions within a nuclear reactor cooling lake at the Savannah River Plant near Aiken, South Carolina. Numerical results agree with values obtained from a 3-D EPA numerical lake model and actual measurements obtained from the lake. Because the effluent water from the reactor heat exchangers discharges directly into the lake, downstream temperatures at mid-lake could exceed the South Carolina DHEC guidelines for thermal exchanges during the summer months. Therefore, reactor power was reduced to maintain temperature compliance at mid-lake. Thermal mitigation measures were studied that included placing a 6.1 m deep fabric curtain across mid-lake and moving the reactor outfall upstream. These measurements were calculated to permit about an 8% improvement in reactor power during summer operation

  20. Numerical modeling of annular laminar film condensation in circular and non-circular micro-channels under normal and micro-gravity

    International Nuclear Information System (INIS)

    Nebuloni, S.

    2010-03-01

    A theoretical and numerical model to predict film condensation heat transfer in mini, micro and ultra micro-channels of different internal shapes is presented in this thesis. The model is based on a finite volume formulation of the Navier-Stokes and energy equations and it includes the contributions of the unsteady terms, surface tension, axial shear stresses, gravitational forces and wall thermal conduction. Notably, interphase mass transfer and near-to-wall effects (disjoining pressure) are also included. This model has been validated versus various benchmark cases and versus published experimental results from three different laboratories, predicting micro-channel heat transfer data with an average error of 20 % or better. The conjugate heat transfer problem arising from the coupling between the thin film fluid dynamics, the heat transfer in the condensing fluid and the heat conduction in the channel wall has been studied and analyzed. The work has focused on the effects of three external wall boundary conditions: a uniform wall temperature, a non uniform wall heat flux and single-phase convective cooling. The thermal axial and peripheral conduction occurring in the wall of the channel can affect the behavior of the condensate film, not only because it redistributes the heat, but also because the annular laminar film condensation process is dependent on the local saturation to wall temperature difference. When moving from mini to micro and ultra-micro channels, the results shows that the axial conduction effects can become very important in the prediction of the wall temperature profile and they can not be ignored. Under these conditions, the overall performances of the heat exchanger become dependent not only on the fluid properties and the operative conditions but also on the geometry and wall material. Results obtained for steady state conditions are presented for circular, elliptical and flattened shape cross sections for R-134a and ammonia, for hydraulic

  1. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  2. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Conklin, J.; Reich, W.J.

    1994-04-01

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS`s heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis.

  3. Influence of stripping and cooling atmospheres on surface properties and corrosion of zinc galvanizing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yasakau, K.A., E-mail: kyasakau@ua.pt [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Giner, I. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Vree, C. [Salzgitter Mannesmann Forschung, GmbH Division Surface Technology, Eisenhüttenstrasse 99, 38239 Salzgitter (Germany); Ozcan, O.; Grothe, R. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Oliveira, A. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Grundmeier, G. [Universität Paderborn, Fakultät NW—Department Chemie, Technische und Makromolekulare Chemie, Warburger Strasse 100, D-33098 Paderborn (Germany); Ferreira, M.G.S. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Zheludkevich, M.L. [Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Department of Corrosion and Surface Technology, Institute of Materials Research Helmholtz-Zentrum Geesthacht, Max-Planck Str. 1, 21502 Geesthacht (Germany)

    2016-12-15

    Highlights: • Stripping/cooling atmosphere affects surfaces chemical composition of Zn and Zn-Al-Mg galvanized coatings. • Higher peel forces of model adhesive films were obtained on zinc alloys samples prepared under nitrogen atmosphere. • Localized corrosion attack originates at grain boundaries on Zn galvanized coating. • Visible dissolution of MgZn{sub 2} phase was observed by in situ AFM only at binary eutectics and not at ternary ones. - Abstract: In this work the influence of stripping/cooling atmospheres used after withdrawal of steel sheet from Zn or Zn-alloy melt on surface properties of Zn (Z) and Zn-Al-Mg (ZM) hot-dip galvanizing coatings has been studied. The aim was to understand how the atmosphere (composed by nitrogen (N{sub 2}) or air) affects adhesion strength to model adhesive and corrosive behaviour of the galvanized substrates. It was shown that the surface chemical composition and Volta potential of the galvanizing coatings prepared under the air or nitrogen atmosphere are strongly influenced by the atmosphere. The surface chemistry Z and ZM surfaces prepared under N{sub 2} contained a higher content of metal atoms and a richer hydroxide density than the specimens prepared under air atmosphere as assessed by X-ray photoelectron spectroscopy (XPS). The induced differences on the microstructure of the galvanized coatings played a key role on the local corrosion induced defects as observed by means of in situ Atomic force microscopy (AFM). Peel force tests performed on the substrates coated by model adhesive films indicate a higher adhesive strength to the surfaces prepared under nitrogen atmosphere. The obtained results have been discussed in terms of the microstructure and surface chemical composition of the galvanizing coatings.

  4. Large Eddy Simulation of a Film Cooling Flow Injected from an Inclined Discrete Cylindrical Hole into a Crossflow with Zero-Pressure Gradient Turbulent Boundary Layer

    Science.gov (United States)

    Johnson, Perry L.; Shyam, Vikram

    2012-01-01

    A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics

  5. Electrode cooling for long pulse high current ion sources

    International Nuclear Information System (INIS)

    McKenzie-Wilson, R.B.

    1979-01-01

    The need for cooling of electrode surface in ion sources for neutral beam line applications is summarized. The properties of possible cooling fluids are discussed and the decision to use water as a cooling fluid of choice is explained. The influence of source geometry on the design of a cooling canal is examined and two possible designs are presented. The need for model testing and the results of the tests on a model cathode are also discussed. Some remarks are also made on a method of predicting burnout failure of a cooled electrode

  6. Epitaxially influenced boundary layer model for size effect in thin metallic films

    International Nuclear Information System (INIS)

    Bazant, Zdenek P.; Guo Zaoyang; Espinosa, Horacio D.; Zhu Yong; Peng Bei

    2005-01-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films

  7. Epitaxially influenced boundary layer model for size effect in thin metallic films

    Science.gov (United States)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  8. Analysis and Modeling of Heat Generation in Overcharged Li-Ion Battery with Passive Cooling

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    This paper presents a dynamic model for simulating the heat generation in Lithium batteries and an investigation of the heat transfer as well as the capacity of Phase Change Materials (PCM’s) to store energy inside a battery cell module when the battery is overcharged. The study is performed......-cooled and passively cooled using a PCM, respectively. As expected, the results show that for high currents, the heat generation and implicitly the temperature increases. However, using a PCM the temperature increase is found to be limited allowing the battery to be overcharged to a certain degree. It is found...

  9. Model validation using CFD-grade experimental database for NGNP Reactor Cavity Cooling Systems with water and air

    Energy Technology Data Exchange (ETDEWEB)

    Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Petrov, Victor [Univ. of Michigan, Ann Arbor, MI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Tompkins, Casey [Univ. of Wisconsin, Madison, WI (United States); Nunez, Daniel [Univ. of Michigan, Ann Arbor, MI (United States)

    2018-02-13

    This project has been focused on the experimental and numerical investigations of the water-cooled and air-cooled Reactor Cavity Cooling System (RCCS) designs. At this aim, we have leveraged an existing experimental facility at the University of Wisconsin-Madison (UW), and we have designed and built a separate effect test facility at the University of Michigan. The experimental facility at UW has underwent several upgrades, including the installation of advanced instrumentation (i.e. wire-mesh sensors) built at the University of Michigan. These provides highresolution time-resolved measurements of the void-fraction distribution in the risers of the water-cooled RCCS facility. A phenomenological model has been developed to assess the water cooled RCCS system stability and determine the root cause behind the oscillatory behavior that occurs under normal two-phase operation. Testing under various perturbations to the water-cooled RCCS facility have resulted in changes in the stability of the integral system. In particular, the effects on stability of inlet orifices, water tank volume have and system pressure been investigated. MELCOR was used as a predictive tool when performing inlet orificing tests and was able to capture the Density Wave Oscillations (DWOs) that occurred upon reaching saturation in the risers. The experimental and numerical results have then been used to provide RCCS design recommendations. The experimental facility built at the University of Michigan was aimed at the investigation of mixing in the upper plenum of the air-cooled RCCS design. The facility has been equipped with state-of-theart high-resolution instrumentation to achieve so-called CFD grade experiments, that can be used for the validation of Computational Fluid Dynanmics (CFD) models, both RANS (Reynold-Averaged) and LES (Large Eddy Simulations). The effect of risers penetration in the upper plenum has been investigated as well.

  10. Squid measurement of the Verwey transition on epitaxial (1 0 0) magnetite thin films

    International Nuclear Information System (INIS)

    Dediu, V.; Arisi, E.; Bergenti, I.; Riminucci, A.; Solzi, M.; Pernechele, C.; Natali, M.

    2007-01-01

    We report results on epitaxial magnetite (Fe 3 O 4 ) thin films grown by electron beam ablation on (1 0 0) MgAl 2 O 4 substrates. At 120 K magnetite undergoes a structural and electronic transition, the so-called Verwey transition, at which magnetic and conducting properties of the material change. We observed the Verwey transition on epitaxial films with a thickness of 50 nm by comparing zero-field cooling (ZFC) and field cooling (FC) curves measured with a superconducting quantum interference device (SQUID) magnetometer. Observation of the Verwey transition by SQUID measurements in the films is sign of their high crystalline quality. Room temperature ferromagnetism has also been found by magneto-optical Kerr rotation (MOKE) and confirmed by SQUID measurements, with a hysteresis loop showing a coercive field of hundreds of Oe

  11. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    International Nuclear Information System (INIS)

    He, Y.Y.; Zhang, G.F.; Zhao, Y.; Liu, D.D.; Cong, Y.; Buck, V.

    2015-01-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect

  12. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  13. Study of sodium film-boiling heat transfer from a high-temperature sphere

    International Nuclear Information System (INIS)

    Le-Belguet, A.

    2013-01-01

    During a severe accident in a sodium-cooled fast reactor, molten fuel may come into contact with the surrounding liquid sodium, resulting in a so-called Fuel-Coolant Interaction. This work aims at providing a better understanding and knowledge of the associated heat transfer, likely to be in the film-boiling regime and required to study the risks related to a vapor explosion. Scarce literature has been found on sodium film boiling, both from an experimental and a theoretical point of view. Only one experiment has been conducted to investigate sodium pool film-boiling heat transfer. In our analysis of the experiment, two film-boiling regimes have been identified: a stable film boiling regime, without liquid-solid contact, and an unstable film-boiling regime, with contacts. Besides, the only theoretical model dedicated to sodium film boiling has shown some weaknesses. First, a scaling analysis of the problem has been proposed for free and forced convection, considering the two extreme cases of saturated and highly subcooled liquid. This simplified approach, which shows a good agreement with the experimental data, provides the dimensionless numbers which should be used to build correlations. A theoretical model has been developed to describe sodium film-boiling heat transfer from a hot sphere in free and forced convection, whatever the liquid subcooling. It is based on a two-phase laminar boundary layer integral method and includes the inertial and convective terms in the vapor momentum and energy equations, usually neglected. The radiation has been taken into account in the interfacial energy balance and contributes directly to produce vapor. This model enables to predict the heat lost from a hot body within an acceptable error compared to the tests results especially when the experimental uncertainties are considered. The heat partition between liquid heating and vaporization, essential to study the vapor explosion phenomenon, is also estimated. The influence of

  14. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    OpenAIRE

    Yu. A. Rounov; O. G. Shirokov; D. I. Zalizny; D. M. Los

    2004-01-01

    The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  15. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    Science.gov (United States)

    Cho, Kyu-Gong

    2000-12-01

    In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be

  16. Film boiling heat transfer and vapour film collapse for various geometries

    International Nuclear Information System (INIS)

    Jouhara, H.I.; Axcell, B.P.

    2005-01-01

    Full text of publication follows: Film boiling heat transfer has application to the safe operation of water-cooled nuclear reactors under fault conditions and it has been studied using nickel-plated copper specimens in transient and steady state experiments. In the transient tests the specimens were held in a water flow; in the steady state investigation a specimen was mounted in an essentially quiescent pool of water. The transient investigation was conducted on two spheres with different diameters, two cylindrical specimens of different lengths in parallel flow, a short cylinder in cross flow and two flat plates with different lengths. The heat transfer coefficient, vapour film thickness (which was estimated from the heat transfer coefficient) and heat flux followed a similar behaviour with changing experimental conditions for all specimens studied. The heat transfer coefficient increased and the vapour film thickness and heat flux decreased as the specimen temperature decreased. As the water subcooling increased the heat transfer coefficient and the heat flux increased while the vapour film thickness decreased. The water velocity was found to have little influence on the film boiling heat transfer results except for the short cylinder in cross flow. The sphere diameter was found to affect the heat transfer results; the heat transfer coefficient and the heat flux were larger, for the larger sphere. No significant effect of the cylinder length on the heat transfer data was observed. However, the heat transfer coefficient was higher (and the average vapour film thinner) for the longer plate than for the shorter plate. Three vapour/liquid interface types were observed namely: 'smooth', 'rippled' and 'turbulent' depending largely on specimen and water temperatures. For all specimens, the maximum heat transfer coefficient, minimum heat flux and minimum film boiling temperature, occurring just before vapour film collapse, were found to increase as the water subcooling

  17. A mathematical model of vapour film destabilisation

    International Nuclear Information System (INIS)

    Knowles, J.B.

    1985-04-01

    In a hypothetical reactor accident, destabilisation of an intervening vapour film between the molten fuel and liquid coolant by a weak shock wave (trigger), is considered likely to initiate the molten fuel-coolant interaction. The one-dimensional model presented here is part of a larger programme of fundamental research aimed at improved reactor safety. (U.K.)

  18. Shivering heat production and body fat protect the core from cooling during body immersion, but not during head submersion: a structural equation model.

    Science.gov (United States)

    Pretorius, Thea; Lix, Lisa; Giesbrecht, Gordon

    2011-03-01

    Previous studies showed that core cooling rates are similar when only the head or only the body is cooled. Structural equation modeling was used on data from two cold water studies involving body-only, or whole body (including head) cooling. Exposure of both the body and head increased core cooling, while only body cooling elicited shivering. Body fat attenuates shivering and core cooling. It is postulated that this protection occurs mainly during body cooling where fat acts as insulation against cold. This explains why head cooling increases surface heat loss with only 11% while increasing core cooling by 39%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  20. Effect mechanism of air deflectors on the cooling performance of dry cooling tower with vertical delta radiators under crosswind

    International Nuclear Information System (INIS)

    Zhao, Yuanbin; Long, Guoqing; Sun, Fengzhong; Li, Yan; Zhang, Cuijiao; Liu, Jiabin

    2015-01-01

    Highlights: • A 3D numerical model was set for NDDCTV to study the effect of air deflectors. • The air deflectors improve the tower performance by 1.375 °C at u c = 6 m/s for a case. • The air deflectors reduce the air inflow deviation angle θ d at most delta entries. • The reduced θ d can improve the cooling performance of former deteriorated columns. • Both the radial inflow air velocity and θ d impact the cooling performance of delta. - Abstract: To study the effect mechanism of air deflectors on dry cooling tower, a three dimensional numerical model was established, with full consideration of the delta structure. The accuracy and credibility of dry cooling tower numerical model were validated. By numerical model, the average air static pressure and the average radial inflow air velocity were computed and analyzed at delta air entry, sector air entry and exit faces. By the air inflow deviation angle θ d , the effect of air deflectors on the aerodynamic field around tower was analyzed. The water exit temperatures of θ −1 columns, θ +2 columns and cooling sectors were also presented to clarify the effect of air deflectors. It was found that the air deflectors improved the aerodynamic field around cooling columns. The reduced air inflow deviation degree at delta entry improved the cooling performance of deteriorated columns. Referring to the radial inflow air velocity u ra and the air inflow deviation degree at delta entry, the effect mechanism of air deflectors are clarified under crosswind

  1. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    International Nuclear Information System (INIS)

    Stillwell, Ashlynn S; Clayton, Mary E; Webber, Michael E

    2011-01-01

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m 3 -enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  2. Kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems

    International Nuclear Information System (INIS)

    Lietzke, M.H.

    1977-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plant cooling systems has been developed. The model incorporates the most important chemical reactions that are known to occur when chlorine is added to natural fresh waters. The simultaneous differential equations, which describe the rates of these chemical reactions, are solved numerically to give the composition of the water as a function of time. A listing of the computer program is included, along with a description of the input variables. A worked-out example illustrates the application of the program to an actual cooling system. An appendix contains a compilation of the known equilibrium and kinetic data for many of the chemical reactions that might be encountered in chlorinating natural fresh waters

  3. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    Science.gov (United States)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  4. Note on the hydrodynamic description of thin nematic films: Strong anchoring model

    KAUST Repository

    Lin, Te-Sheng; Cummings, Linda J.; Archer, Andrew J.; Kondic, Lou; Thiele, Uwe

    2013-01-01

    We discuss the long-wave hydrodynamic model for a thin film of nematic liquid crystal in the limit of strong anchoring at the free surface and at the substrate. We rigorously clarify how the elastic energy enters the evolution equation for the film thickness in order to provide a solid basis for further investigation: several conflicting models exist in the literature that predict qualitatively different behaviour. We consolidate the various approaches and show that the long-wave model derived through an asymptotic expansion of the full nemato-hydrodynamic equations with consistent boundary conditions agrees with the model one obtains by employing a thermodynamically motivated gradient dynamics formulation based on an underlying free energy functional. As a result, we find that in the case of strong anchoring the elastic distortion energy is always stabilising. To support the discussion in the main part of the paper, an appendix gives the full derivation of the evolution equation for the film thickness via asymptotic expansion. © 2013 AIP Publishing LLC.

  5. Reliability analysis of nuclear component cooling water system using semi-Markov process model

    International Nuclear Information System (INIS)

    Veeramany, Arun; Pandey, Mahesh D.

    2011-01-01

    Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.

  6. Visualization modeling of thin film growth in photodeposition processes

    International Nuclear Information System (INIS)

    Mirchin, N.; Sidi, M.; Muchnik, Y.; Peled, A.

    2003-01-01

    A computer visualization technique, which analyzes and predicts the spatio-temporal evolution of thin film deposition and growth processes is given. It relies on microscopy sampled or computer generated synthetic micrographs of particles. These are then simulated for deposition, aggregation and coagulation during thin film growth by frequency domain transform techniques. Particle sources and diffusion operators on surfaces are used to predict with high temporal resolution, unattained by real world microscopy the surface structure evolution as time samples and time movies. The simulation program was used to investigate deposition and diffusive profiles in photodeposition experiments, starting from initial synthetic micrographs based on real world scanning electron microscopy (SEM) images. The surface microstructure time 'tracking' scheme described here relies on transforming the original image of the deposited particles into a Fourier spatial frequency domain image. The physical models used are that of a material random deposition source and subsequent surface redistribution due to diffusion and other coalescence material surface flow mechanisms. The 2-D inverse Fourier transform (IFT) is finally used to obtain back the real space-time images representing the surface spatio-temporal films morphology changes. False color representation of the images allows for a better discrimination of the films growing details especially during the fast pre-compact thin film layer formation on the substrate

  7. X-RAY BURST OSCILLATIONS: FROM FLAME SPREADING TO THE COOLING WAKE

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodifar, Simin; Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-10

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars (NSs) in low mass X-ray binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. To date there have not been any quantitative studies that consistently track the oscillation amplitude both during the rise and decay (cooling tail) of bursts. Here we compute the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. We present results for several such “cooling wake” models, a “canonical” cooling model where each patch on the NS surface heats and cools identically, or with a latitude-dependent cooling timescale set by the local effective gravity, and an “asymmetric” model where parts of the star cool at significantly different rates. We show that while the canonical cooling models can generate oscillations in the tails of bursts, they cannot easily produce the highest observed modulation amplitudes. Alternatively, a simple phenomenological model with asymmetric cooling can achieve higher amplitudes consistent with the observations.

  8. Coulomb-gas scaling, superfluid films, and the XY model

    International Nuclear Information System (INIS)

    Minnhagen, P.; Nylen, M.

    1985-01-01

    Coulomb-gas-scaling ideas are invoked as a link between the superfluid density of two-dimensional 4 He films and the XY model; the Coulomb-gas-scaling function epsilon(X) is extracted from experiments and is compared with Monte Carlo simulations of the XY model. The agreement is found to be excellent

  9. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment

    Science.gov (United States)

    Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart

    2002-09-01

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  10. Global existence of solutions to a tear film model with locally elevated evaporation rates

    Science.gov (United States)

    Gao, Yuan; Ji, Hangjie; Liu, Jian-Guo; Witelski, Thomas P.

    2017-07-01

    Motivated by a model proposed by Peng et al. (2014) for break-up of tear films on human eyes, we study the dynamics of a generalized thin film model. The governing equations form a fourth-order coupled system of nonlinear parabolic PDEs for the film thickness and salt concentration subject to non-conservative effects representing evaporation. We analytically prove the global existence of solutions to this model with mobility exponents in several different ranges and present numerical simulations that are in agreement with the analytic results. We also numerically capture other interesting dynamics of the model, including finite-time rupture-shock phenomenon due to the instabilities caused by locally elevated evaporation rates, convergence to equilibrium and infinite-time thinning.

  11. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    Science.gov (United States)

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.

    2015-12-01

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction

  12. Modeling and analysis of film composition on mechanical properties of maize starch based edible films.

    Science.gov (United States)

    Prakash Maran, J; Sivakumar, V; Thirugnanasambandham, K; Kandasamy, S

    2013-11-01

    The present study investigates the influence of composition (content of maize starch (1-3 g), sorbitol (0.5-1.0 ml), agar (0.5-1.0 g) and tween-80 (0.1-0.5 ml)) on the mechanical properties (tensile strength, elongation, Young's modulus, puncture force and puncture deformation) of the maize starch based edible films using four factors with three level Box-Behnken design. The edible films were obtained by casting method. The results showed that, tween-80 increases the permeation of sorbitol in to the polymer matrix. Increasing concentration of sorbitol (hydrophilic nature and plasticizing effect of sorbitol) decreases the tensile strength, Young's modulus and puncture force of the films. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were obtained for all responses with high R(2) values (R(2)>0.95). 3D response surface plots were constructed to study the relationship between process variables and the responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Mathematical Model and Program for the Sizing of Counter-flow Natural Draft Wet Cooling Towers

    Directory of Open Access Journals (Sweden)

    Victor-Eduard Cenușă

    2017-08-01

    Full Text Available Assuring the necessary temperature and mass flow rate of the cooling water to the condenser represents an essential condition for the efficient operation of a steam power plant. The paper presents equations which describe the physical phenomena and the mathematical model for the design of counter-flow natural draft wet cooling towers. Following is given the flow-chart of the associated computer program. A case study is made to show the results of the computer program and emphasize the interdependence between the main design parameters.

  14. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    International Nuclear Information System (INIS)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang

    2014-01-01

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  15. The effect of cooling conditions on convective heat transfer and flow in a steam-cooled ribbed duct

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Linqi; Gao, Jianmin; Shi, Xiaojun; Liu, Jiazeng; Xu, Liang [Xi' an Jiaotong University, Xi' an (China)

    2014-01-15

    This work presents a numerical and experimental investigation on the heat transfer and turbulent flow of cooling steam in a rectangular duct with 90 .deg. ribs and studies the effect of cooling conditions on the heat transfer augmentation of steam. In the calculation, the variation range of Reynolds is from 10,000 to 190,000, the inlet temperature varies from 300 .deg. C to 500 .deg. C and the outlet pressure is from 0.5MPa to 6MPa. The aforementioned wide ranges of flow parameters cover the actual operating condition of coolant used in the gas turbine blades. The computations are carried with four turbulence models (the standard k-ε, the renormalized group (RNG) k-ε, the Launder-Reece-Rodi (LRR) and the Speziale-Sarkar-Gatski (SSG) turbulence models). The comparison of numerical and experimental results reveals that the SSG turbulence model is suitable for steam flow in the ribbed duct. Therefore, adopting the conjugate calculation technique, further study on the steam heat transfer and flow characteristics is performed with SSG turbulence model. The results show that the variation of cooling condition strongly impacts the forced convection heat transfer of steam in the ribbed duct. The cooling supply condition of a relative low temperature and medium pressure could bring a considerable advantage on steam thermal enhancement. In addition, comparing the heat transfer level between steam flow and air flow, the performance advantage of using steam is also influenced by the cooling supply condition. Changing Reynolds number has little effect on the performance superiority of steam cooling. Increasing pressure would strengthen the advantage, but increasing temperature gives an opposite result.

  16. Account of External Cooling Medium Temperature while Modeling Thermal Processes in Power Oil-Immersed Transformers

    Directory of Open Access Journals (Sweden)

    Yu. A. Rounov

    2004-01-01

    Full Text Available The paper proposes a thermal model of a power oil-immersed transformer as a system of four homogeneous bodies: winding, oil, core and cooling medium. On the basis of experimental data it is shown that such model describes more precisely actual thermal processes taking place in a transformer than the thermal model accepted in GOST 14209-85.

  17. Modelling secondary instability of co-current a thin gas-sheared film

    Energy Technology Data Exchange (ETDEWEB)

    Vozhakov, I S; Cherdantsev, A V; Arkhipov, D G, E-mail: vozhakov@gmail.com [Kutateladze Institute of Thermophysics, Novosibirsk (Russian Federation)

    2016-12-15

    Recent experimental works found the existence of two types of waves on the surface of gas-sheared thin films. Slower short-living ‘secondary waves’ appear due to the instability of the rear slopes of faster long-living ‘primary waves’. In this paper, modelling of spatiotemporal evolution of liquid film in such kind of flows is performed using relatively simple theoretical models. The modelling results are directly compared with the experimental data. It is found that the phenomenon of secondary waves generation at the rear slopes of the primary waves is reproduced by the model. This allows us to reduce the number of hypotheses which explain the mechanism responsible for such instability. Recommendations for future theoretical investigations are proposed. (paper)

  18. Modelling secondary instability of co-current a thin gas-sheared film

    International Nuclear Information System (INIS)

    Vozhakov, I S; Cherdantsev, A V; Arkhipov, D G

    2016-01-01

    Recent experimental works found the existence of two types of waves on the surface of gas-sheared thin films. Slower short-living ‘secondary waves’ appear due to the instability of the rear slopes of faster long-living ‘primary waves’. In this paper, modelling of spatiotemporal evolution of liquid film in such kind of flows is performed using relatively simple theoretical models. The modelling results are directly compared with the experimental data. It is found that the phenomenon of secondary waves generation at the rear slopes of the primary waves is reproduced by the model. This allows us to reduce the number of hypotheses which explain the mechanism responsible for such instability. Recommendations for future theoretical investigations are proposed. (paper)

  19. Low-energy x-ray response of photographic films. Part I. Mathematical models

    International Nuclear Information System (INIS)

    Henke, B.L.; Kwok, S.L.; Uejio, J.Y.; Yamada, H.T.; Young, G.C.

    1984-01-01

    Relatively simple mathematical models are developed for optical density as a function of the x-ray intensity, its angle of incidence and photon energy in the 100 to 10,000 eV region for monolayer and emulsion types of photographic films. Semi-empirical relations have been applied to characterize a monolayer film, Kodak 101-07, and an emulsion type film, Kodak RAR 2497, which fit calibration data at nine photon energies well within typical experimental error

  20. Experimental study of condensate subcooling with the use of a model of an air-cooled condenser

    Science.gov (United States)

    Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.

    2016-01-01

    Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.