WorldWideScience

Sample records for film cooling modeling

  1. Mathematical model and calculation of water-cooling efficiency in a film-filled cooling tower

    Science.gov (United States)

    Laptev, A. G.; Lapteva, E. A.

    2016-10-01

    Different approaches to simulation of momentum, mass, and energy transfer in packed beds are considered. The mathematical model of heat and mass transfer in a wetted packed bed for turbulent gas flow and laminar wave counter flow of the fluid film in sprinkler units of a water-cooling tower is presented. The packed bed is represented as the set of equivalent channels with correction to twisting. The idea put forward by P. Kapitsa on representation of waves on the interphase film surface as elements of the surface roughness in interaction with the gas flow is used. The temperature and moisture content profiles are found from the solution of differential equations of heat and mass transfer written for the equivalent channel with the volume heat and mass source. The equations for calculation of the average coefficients of heat emission and mass exchange in regular and irregular beds with different contact elements, as well as the expression for calculation of the average turbulent exchange coefficient are presented. The given formulas determine these coefficients for the known hydraulic resistance of the packed bed element. The results of solution of the system of equations are presented, and the water temperature profiles are shown for different sprinkler units in industrial water-cooling towers. The comparison with experimental data on thermal efficiency of the cooling tower is made; this allows one to determine the temperature of the cooled water at the output. The technical solutions on increasing the cooling tower performance by equalization of the air velocity profile at the input and creation of an additional phase contact region using irregular elements "Inzhekhim" are considered.

  2. Modeling of Fuel Film Cooling Using Steady State RANS and Unsteady DES Approaches

    Science.gov (United States)

    2016-07-27

    Briefing Charts 3. DATES COVERED (From - To) 21 July 2016 – 31 August 2016 4. TITLE AND SUBTITLE Modeling of Fuel Film Cooling Using Steady State RANS...Prescribed by ANSI Std. 239.18 1 Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16391. Modeling of  Fuel  Film Cooling Using...Distribution Unlimited. PA# 16391. 3 Introduction • Fuel  film cooling is critical for high performing boost engines  using the Oxygen Rich Staged

  3. Numerical Modeling and Analysis of Grooved Surface Applied to Film Cooling

    Institute of Scientific and Technical Information of China (English)

    L. Guo; Z. C. Liu; Y.Y.Yan; Z.W.Han

    2011-01-01

    In order to improve the efficiency of film cooling,numerical investigation was carried out to study the effects of different film-cooled plates on surface heat transfer.Both grooved and non-grooved surfaces were concerned.The modeling was performed using Fluent software with the adoption of Shear-Stress Transport (SST) k-co model as the turbulence closure.The coolant was supplied by a single film cooling hole with an inclination angle of 30°.The Mach numbers for the coolant flow and the mainstream flow were fixed at 0 and 0.6,respectively.At three blowing ratios of 0.5,1.0 and 1.5,the aerodynamic behaviour of the mixing process as well as the heat transfer performance of the film cooling were presented.The numerical results were validated using experimental data extracted from a benchmark test.Good agreements between numerical results and the experimental data were observed.For the film cooling efficiency,it shows that both local and laterally averaged cooling effectiveness can be improved by the non-smooth surface at different blowing ratios.Using the grooved surface,the turbulence intensity upon the plate can be reduced notably,and the mixing between the two flows is weakened due to the reduced turbulence level.The results indicate that the cooling effectiveness of film cooling can be enhanced by applying the grooved surface.

  4. Heat Transfer on a Film-Cooled Rotating Blade Using a Two-Equation Turbulence Model

    OpenAIRE

    Vijay K Garg

    1998-01-01

    A three-dimensional Navier–Stokes code has been used to compare the heat transfer coefficient on a film-cooled, rotating turbine blade. The blade chosen is the ACE rotor with five rows containing 93 film cooling holes covering the entire span. This is the only filmcooled rotating blade over which experimental data is available for comparison. Over 2.278 million grid points are used to compute the flow over the blade including the tip clearance region, using Coakley's q-ω turbulence model. Res...

  5. Jet model for slot film cooling with effect of free-stream and coolant turbulence

    Science.gov (United States)

    Simon, Frederick F.

    1986-01-01

    An analysis was performed utilizing the model of a wall jet for obtaining equations that will predict slot film-cooling efficiency under conditions of variable turbulence intensity, flow, and temperature. The analysis, in addition to assessing the effects of the above variables, makes a distinction between an initial region and a fully developed region. Such a distinction is important in determining the role that the turbulence intensity of the coolant plays in effecting film-cooling effectiveness in the area of the slot exit. The results of the analysis were used in the correlation of the results of a well-designed film-cooling experiment. The result of the analysis and experiment was equations that predicted film-cooling efficiency within + or - 4% average deviation for lateral free-stream turbulence intensities up to 24% and blowing rates up to 1.9. These equations should be useful in determining the optimum quantity of cooling air requried for protecting the wall of a combustor.

  6. Heat Transfer on a Film-Cooled Rotating Blade Using Different Turbulence Models

    Science.gov (United States)

    Garg, Vijay K.

    1999-01-01

    A three-dimensional Navier Stokes code has been used to compute the heat transfer coefficient on a film-cooled, rotating turbine blade. The blade chosen is the ACE rotor with five rows containing 93 film cooling holes covering the entire span. This is the only film-cooled rotating blade over which experimental data is available for comparison. Over 2.278 million grid points are used to compute the flow over the blade including the tip clearance region. using Wilcox's k-omega model, Coakley's q-omega model, and the zero-equation Baldwin-Lomax (B-L) model. A reasonably good comparison with the experimental data is obtained on the suction surface for all the turbulence models. At the leading edge, the B-L model yields a better comparison than tile two-equation models. On the pressure surface however the comparison between the experimental data and the prediction from the k-omega model is much better than from the other two models. Overall, the k-omega model provides the best comparison with the experimental data. However, the two-equation models require at least 40% more computational resources than the B-L model.

  7. Heat Transfer on a Film-Cooled Rotating Blade Using a Two Equation Turbulence Model

    Science.gov (United States)

    Garg, Vijay K.

    1998-01-01

    A three-dimensional Navier-Stokes code has been used to compare the heat transfer coefficient on a film-cooled, rotating turbine blade. The blade chosen is the ACE rotor with five rows containing 93 film cooling holes covering the entire span. This is the only film-cooled rotating blade over which experimental data is available for comparison. Over 2.278 million grid points are used to compute the flow over the blade including the tip clearance region, using Coakley's q-omega turbulence model. Results are also compared with those obtained by Garg and Abhari (1997) using the zero-equation Baldwin-Lomax (B-L) model. A reasonably good comparison with the experimental data is obtained on the suction surface for both the turbulence models. At the leading edge, the B-L model yields a better comparison than the q-omega model. On the pressure surface, however, the comparison between the experimental data and the prediction from either turbulence model is poor. A potential reason for the discrepancy on the pressure surface could be the presence of unsteady effects due to stator-rotor interaction in the experiments which are not modeled in the present computations. Prediction using the two-equation model is in general poorer than that using the zero-equation model, while the former requires at least 40% more computational resources.

  8. The development of evaporative liquid film model for analysis of passive containment cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong June; Hwang, Young Dong; Kim, Hee Cheol; Kim, Young In; Chang, Moon Hee

    2000-07-01

    An analytical model was developed to simulate behavior of the liquid film formed on the outside surface of the steel containment vessel of PCCS including the ellipsoidal dome and the vertical wall. The model was coupled with CFX code using the user subroutines provided by the code, and a series of numerical calculations were performed to evaluate the evaporative heat transfer coefficient at the interface. Numerical results for Sherwood number and evaporative heat transfer coefficient were compared with the experimental data. The results were in good agreement with the experimental data. The calculated liquid film thickness showed good agreement with that of Sun except an upper portion of the channel. The model was applied to the full scale of PCCS to investigate the effects of dome and chimney on the evaporation rate. The results showed that the heat transfer coefficient in the dome region, where the flow cross-sectional area decreases and the swirling occurs, was lower than that of the vertical annulus region. The calculated evaporative heat transfer coefficient was about 20 times larger than that of the dry cooling. Sensitivity studies on the gap size and the wall temperature were also performed to figure out their effects on the heat transfer coefficient and inlet air average velocity. Through the analysis of the dryout point, the minimum liquid film flow rate to cover the entire surface of the vessel was estimated.

  9. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  10. Modeling the methane hydrate formation in an aqueous film submitted to steady cooling

    Energy Technology Data Exchange (ETDEWEB)

    Avendano-Gomez, J.R. [ESIQIE, Laboratorio de Ingenieria Quimica Ambiental, Mexico (Mexico). Inst. Politecnico Nacional; Garcia-Sanchez, F. [Laboratorio de Termodinamica, Mexico (Mexico). Inst. Mexicano del Petroleo; Gurrola, D.V. [UPIBI, Laboratorio de Diseno de Plantas, Mexico (Mexico). Inst. Politecnico Nacional

    2008-07-01

    Gas hydrates, or clathrate hydrates, are ice-like compounds that results from the kinetic process of crystallization of an aqueous solution supersaturated with a dissolved gas. This paper presented a model that took into account two factors involved in the hydrate crystallization, notably the stochastic nature of crystallization that causes sub-cooling and the heat resulting from the exothermic enthalpy of hydrate formation. The purpose of this study was to model the thermal evolution inside a hydrate forming system which was submitted to an imposed steady cooling. The study system was a cylindrical thin film of aqueous solution at 19 Mpa. The study involved using methane as the hydrate forming molecule. It was assumed that methane was homogeneously dissolved in the aqueous phase. Ethane hydrate was formed through a kinetic process of nucleation and crystallization. In order to predict the onset time of nucleation, the induction time needed to be considered. This paper discussed the probability of nucleation as well as the estimation of the rate of nucleation. It also presented the mathematical model and boundary conditions. These included assumptions and derivation of the model; boundary conditions; initial conditions; and numerical solution of the model equation. It was concluded that the heat source must be considered when investigating crystallization effects. 34 refs., 2 tabs., 2 figs.

  11. Research on Cooling Effectiveness in Stepped Slot Film Cooling Vane

    Institute of Scientific and Technical Information of China (English)

    LI Yulong; WU Hong; ZHOU Feng; RONG Chengjun

    2016-01-01

    As one of the most important developments in air cooling technology for hot parts of the aero-engine,film cooling technology has been widely used.Film cooling hole structure exists mainly in areas that have high temperature,uneven cooling effectiveness issues when in actual use.The first stage turbine vanes of the aero-engine consume the largest portion of cooling air,thereby the research on reducing the amount of cooling air has the greatest potential.A new stepped slot film cooling vane with a high cooling effectiveness and a high cooling uniformity was researched initially.Through numerical methods,the affecting factors of the cooling effectiveness of a vane with the stepped slot film cooling structure were researched.This paper focuses on the cooling effectiveness and the pressure loss in different blowing ratio conditions,then the most reasonable and scientific structure parameter can be obtained by analyzing the results.The results show that 1.0 mm is the optimum slot width and 10.0 is the most reasonable blowing ratio.Under this condition,the vane achieved the best cooling result and the highest cooling effectiveness,and also retained a low pressure loss.

  12. Comparison of Two-Equation Turbulence Models for Prediction of Heat Transfer on Film-Cooled Turbine Blades

    Science.gov (United States)

    Garg, Vijay K.; Ameri, Ali A.

    1997-01-01

    A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely, the VKI rotor with six rows of cooling holes, including three rows on the shower head and the C3X vane with nine rows of holes, including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence model specifically, Coakley's q-omega model, Chien's k-epsilon model and Wilcox's k-omega model with Menter's modifications, have been compared with the experimental data of Camci and Arts for the VKI rotor, and of Hylton et al. for the C3X vane along with predictions using the Baldwin-Lomar (B-L) model taken from Garg and Gaugler. It is found that for the cases considered here the two equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooled holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-omega and k-epsilon models need 40% more computer time than the B-L model the k-omega model requires at least 65% more time because of the slower rate of convergence. It is found that the heat transfer coefficient exhibit a strong spanwise as well as streamwise variation for both blades and all turbulence models.

  13. Enhancing the efectiveness of film cooling

    Institute of Scientific and Technical Information of China (English)

    Tom I-P.Shih; Sangkwon Na

    2007-01-01

    Advanced gas turbine stages are designed to operate at increasingly higher inlet temperatures to increase thermal efficiency and specific power output.To maintain durability and reasonable life,film cooling is needed in addition to internal cooling,especially for the first stage.Film cooling lowers material temperature by forced convection inside film-cooling holes and by forming a layer of coolant about component surfaces to insulate them from the hot gases.Unfortunately,each cooling jet forms a pair of counter-rotating vortices that entrains hot gas and causes the film-cooling jet to lift off from the surface that it is intended to protect.This paper gives an overview of efforts to enhance the effectiveness of film-cooling.This paper also describes two new design concepts.One design concept seeks to minimize the entrainment of hot gases underneath of film-cooling jets by using flow-aligned blockers.The other design concept shifts the interaction between the approaching hot gas and the cooling jet to occur further above the surface by using an upstream ramp.For both design concepts,computational fluid dynamics results are presented to examine their usefulness in enhancing film-cooling effectiveness.

  14. Numerical modelling of lawsonite thin film as radiative cooling minerals for dew harvesting

    Science.gov (United States)

    Benlattar, M.; Laatioui, S.; Oualim, E. M.; Mazroui, M.; Mouhsen, A.; Harmouchi, M.

    Harvesting dew can be used as a renewable complementary source of water both for drinking and agriculture in specific arid or semi-arid water-stressed areas. Condensation of water vapor by nighttime radiative cooling is the phenomenon that can be explained the dew formation on plants or surfaces. In this paper, we propose the lawsonite mineral, as a potential radiative cooling material, for exploiting this natural phenomenon. Furthermore, a computer model that includes meteorological parameters, obtained from the coastal region of Southern Morrocco (Mirleft-South of Agadir), is used to determine the thermal balance and fit to dew mass evolution. In order to form global estimates of dew formation potential via our dew formation model, we combined different meteorological data with radiative properties of natural lawsonite condenser (CaAl2Si2O7(OH)2·H2O) to enhance the modelled dew yield. The daily modelled yields show that significant amounts of dew water can be calculated as a function of the condenser temperature, the thickness condenser as well as the wind speed.

  15. Recent Development in Turbine Blade Film Cooling

    Directory of Open Access Journals (Sweden)

    Je-Chin Han

    2001-01-01

    Full Text Available Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT. The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.

  16. Computational investigation of film cooling from cylindrical and row trenched cooling holes near the combustor endwall

    Directory of Open Access Journals (Sweden)

    Ehsan Kianpour

    2014-11-01

    Full Text Available This study was performed to investigate the effects of cylindrical and row trenched cooling holes with alignment angles of 0° and 90° at blowing ratio of 3.18 on the film cooling performance adjacent to the endwall surface of a combustor simulator. In this research a three-dimensional representation of Pratt and Whitney gas turbine engine was simulated and analyzed with a commercial finite volume package FLUENT 6.2. The analysis has been carried out with Reynolds-Averaged Navier–Stokes turbulence model (RANS on internal cooling passages. This combustor simulator was combined with the interaction of two rows of dilution jets, which were staggered in the streamwise direction and aligned in the spanwise direction. Film cooling was placed along the combustor liner walls. In comparison with the baseline case of cooling holes, the application of a row trenched hole near the endwall surface doubled the performance of film cooling effectiveness.

  17. Heat and mass transfer problems for film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Leontiev, A.I.

    1999-07-01

    An advance in many branches of engineering is connected with using of more and more high working temperatures, perfection of cooling systems of power installations and further development of the theory of heat transfer. One of the most promising methods of thermal protection of heating surfaces is using of the gas film cooling. Despite intensive development of numerical methods of calculation of film cooling problems, simple and reliable correlations, which are based on clear physical models, that make it possible to generalize experimental data for complex boundary conditions, are necessary for complex engineering calculations. It is well known, that an increase in an initial gas temperature of the gas at the turbine inlet is the basic method to advance technical and economical parameters of the gas turbine units and engines. Modern gas turbine engines are designed to operate at inlet temperatures of 1,800--2,000 K, which are far above the allowable temperatures of the metal. Under these conditions, the turbine blades should be cooled in order to ensure a reasonable lifetime. In the paper the review of calculation methods and of experimental results on heat transfer under film cooling is presented. The effect of an arrangement of film cooling, longitudinal gradient of pressure, nonisothermality and compressibility of gas, swirling of flow, and turbulent pulsations of the main gas flow on effectiveness of the gas film cooling is considered. A method of calculation of combined cooling (film, porous or transpiration and convective) is proposed.

  18. Slot film cooling: A comprehensive experimental characterization

    Science.gov (United States)

    Raffan, Fernando

    When components of a propulsion system are exposed to elevated flow temperatures there is a risk for catastrophic failure if the components are not properly protected from the thermal loads. Among several strategies, slot film cooling is one of the most commonly used, yet poorly understood active cooling techniques. Tangential injection of a relatively cool fluid layer protects the surface(s) in question, but the turbulent mixing between the hot mainstream and cooler film along with the presence of the wall presents an inherently complex problem where kinematics, thermal transport and multimodal heat transfer are coupled. Furthermore, new propulsion designs rely heavily on CFD analysis to verify their viability. These CFD models require validation of their results, and the current literature does not provide a comprehensive data set for film cooling that meets all the demands for proper validation, namely a comprehensive (kinematic, thermal and boundary condition data) data set obtained over a wide range of conditions. This body of work aims at solving the fundamental issue of validation by providing high quality comprehensive film cooling data (kinematics, thermal mixing, heat transfer). 3 distinct velocity ratios (VR=u c/uinfinity) are examined corresponding to wall-wake (VR˜0.5), min-shear (VR ˜ 1.0), and wall-jet (VR˜2.0) type flows at injection, while the temperature ratio TR= Tinfinity/Tc is approximately 1.5 for all cases. Turbulence intensities at injection are 2-4% for the mainstream (urms/uinfinity, vrms/uinfinity,), and on the order of 8-10% for the coolant (urms/uc, vrms/uc,). A special emphasis is placed on inlet characterization, since inlet data in the literature is often incomplete or is of relatively low quality for CFD development. The data reveals that min-shear injection provides the best performance, followed by the wall-jet. The wall-wake case is comparably poor in performance. The comprehensive data suggests that this relative performance

  19. 2D and 3D Modeling Efforts in Fuel Film Cooling of Liquid Rocket Engines (Conference Paper with Briefing Charts)

    Science.gov (United States)

    2017-01-12

    to determine what parameters drive unsteadiness in fuel films, and how these parameters affect wall temperature profiles. Parametric studies performed...temperature profiles. Parametric studies performed in 2D suggest that a Helmholtz resonator exists for simple slot geometries. Frequencies in 3D were...effect on film cooling effectiveness. In general, the heat flux exhibits complex trends and did not scale well with chamber pressure. ∗Aerospace

  20. Numerical analysis of microholes film/effusion cooling effectiveness

    Science.gov (United States)

    Ochrymiuk, Tomasz

    2017-10-01

    Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three-dimensional discrete hole film cooling RSM-AKN turbulent heat transfer models based on variable turbulent Prandtl number approaches were considered. Obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two-equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models. The RSM-AKN turbulent model was used in micoholes case too. The main target of simulations was maintain the same level of cooling efficiency ratio in both cases and confirm that is possible significantly reduce mass flows of the coolant in microholes case.

  1. Film cooling enhancement with surface restructure

    Science.gov (United States)

    Chen, Shuping

    Discrete-hole film cooling is used extensively in turbine components. In past decades, many research works concerning this technique have been published. Recently, efforts have been directed at seeking technologies that would increase film cooling effectiveness. Particularly, surface reshaping through protective coatings, such as a thermal barrier coating (TBC), is very attractive to turbine designers because extra machining work is not needed for its application. In the present work, film cooling enhancement with surface restructure is experimentally studied using an infrared (IR) imaging technique. The first surface structure studied is the surface with flow-aligned blockers. The studied configurations include single-hole and three-hole-row structures. The single-hole case is used for studying the effects of blocker design parameters, which include blocker height (0.2D, 0.4D, and 0.6D), distance between two neighboring blockers (0.8D, D, and 1.2D), blocker length (2", 4", and 6"), and blowing ratio M (0.43 and 0.93). The design with the best performance is chosen for the three-hole-row cases. The second surface shape studied, is the so-called upstream ramp, which is placed in front of a row of film cooling holes. Investigated geometrical parameters include upstream ramp angles (8.5°, 15°, and 24°) and blowing ratio M (0.29, 0.43, 0.57, 0.93, and 1.36). Detailed local film cooling effectiveness and heat transfer coefficient are measured using an IR imaging technique. The third film cooling concept is the so-called trenched film cooling holes, i.e., film cooling holes sitting in a transverse groove. The film cooling structure for this experimental test consists of a three-hole row embedded in a trench 0.5D in depth and 2D in width, where D is the diameter of the holes. Five blowing ratios (0.29, 0.43, 0.57, 0.93, and 1.36) are tested. Based on the tested results, the three film cooling schemes are also compared. To implement the experimental work, a test system

  2. Dependence of Film Cooling Effectiveness on 3D Printed Cooling Holes

    Science.gov (United States)

    Aghasi, Paul

    To investigate the viability of using additive manufacturing technology for flat plate film cooling experiments a new experiential facility was constructed using gas analysis and oxygen sensitive paint as a method of measuring and characterizing film cooling effectiveness for various additive manufacturing technologies as well as aluminum. The ultimate objective of this work is to assess whether these technologies can be a replacement for traditional aluminum CNC machining. Film Cooling Effectiveness is closely dependent on the geometry of the hole emitting the cooling film. These holes are sometimes quite expensive to machine by traditional methods so 3D printed test pieces have the potential to greatly reduce the cost of film cooling tests. What is unknown is the degree to which parameters like layer resolution and the choice of 3D printing technologies influence the results of a film cooling test. A new flat-plate film cooling facility employing the mass transfer analogy (introduction of foreign gas as coolant, not to be confused with the sublimation method) and measurements both by gas sample analysis and oxygen-sensitive paint is first validated using gas analysis and oxygen sensitive paint cross correlation. The same facility is then used to characterize the film cooling effectiveness of a diffuser shaped film cooling hole geometry. These diffuser holes (film hole diameter, D of 0.1 inches) are then produced by a variety of different manufacturing technologies, including traditional machined aluminum, Fused Deposition Modeling (FDM), Stereo Lithography Apparatus (SLA) and PolyJet with layer thicknesses from 0.001D (25 microm) to 0.12D (300 microm). Tests are carried out at mainstream flow Mach number of 0.30 and blowing ratios from 1.0 to 3.5. The coolant gas used is CO2 yielding a density ratio of 1.5. Surface quality is characterized by an Optical Microscope that calculates surface roughness. Test coupons with rougher surface topology generally showed

  3. Modeling gasodynamic vortex cooling

    Science.gov (United States)

    Allahverdyan, A. E.; Fauve, S.

    2017-08-01

    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  4. Effect of RANS-Type Turbulence Models on Adiabatic Film Cooling Effectiveness over a Scaled Up Gas Turbine Blade Leading Edge Surface

    Science.gov (United States)

    Yepuri, Giridhara Babu; Talanki Puttarangasetty, Ashok Babu; Kolke, Deepak Kumar; Jesuraj, Felix

    2016-06-01

    Increasing the gas turbine inlet temperature is one of the key technologies in raising gas turbine engine power output. Film cooling is one of the efficient cooling techniques to cool the hot section components of a gas turbine engines in turn the turbine inlet temperature can be increased. This study aims at investigating the effect of RANS-type turbulence models on adiabatic film cooling effectiveness over a scaled up gas turbine blade leading edge surfaces. For the evaluation, five different two equation RANS-type turbulent models have been taken in consideration, which are available in the ANSYS-Fluent. For this analysis, the gas turbine blade leading edge configuration is generated using Solid Works. The meshing is done using ANSYS-Workbench Mesh and ANSYS-Fluent is used as a solver to solve the flow field. The considered gas turbine blade leading edge model is having five rows of film cooling circular holes, one at stagnation line and the two each on either side of stagnation line at 30° and 60° respectively. Each row has the five holes with the hole diameter of 4 mm, pitch of 21 mm arranged in staggered manner and has the hole injection angle of 30° in span wise direction. The experiments are carried in a subsonic cascade tunnel facility at heat transfer lab of CSIR-National Aerospace Laboratory with a Reynolds number of 1,00,000 based on leading edge diameter. From the Computational Fluid Dynamics (CFD) evaluation it is found that K-ɛ Realizable model gives more acceptable results with the experimental values, compared to the other considered turbulence models for this type of geometries. Further the CFD evaluated results, using K-ɛ Realizable model at different blowing ratios are compared with the experimental results.

  5. Numerical and experimental investigation of turbine blade film cooling

    Science.gov (United States)

    Berkache, Amar; Dizene, Rabah

    2017-06-01

    The blades in a gas turbine engine are exposed to extreme temperature levels that exceed the melting temperature of the material. Therefore, efficient cooling is a requirement for high performance of the gas turbine engine. The present study investigates film cooling by means of 3D numerical simulations using a commercial code: Fluent. Three numerical models, namely k-ɛ, RSM and SST turbulence models; are applied and then prediction results are compared to experimental measurements conducted by PIV technique. The experimental model realized in the ENSEMA laboratory uses a flat plate with several rows of staggered holes. The performance of the injected flow into the mainstream is analyzed. The comparison shows that the RANS closure models improve the over-predictions of center-line film cooling velocities that is caused by the limitations of the RANS method due to its isotropy eddy diffusivity.

  6. Hypersonic aerospace vehicle leading edge cooling using heat pipe, transpiration and film cooling techniques

    Science.gov (United States)

    Modlin, James Michael

    An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.

  7. Heat Transfer on a Film-Cooled Rotating Blade

    Science.gov (United States)

    Garg, Vijay K.

    1999-01-01

    A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox's k-omega model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and omega distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.

  8. Prediction of Film Cooling on Gas Turbine Airfoils

    Science.gov (United States)

    Garg, Vijay K.; Gaugler, Raymond E.

    1994-01-01

    A three-dimensional Navier-Stokes analysis tool has been developed in order to study the effect of film cooling on the flow and heat transfer characteristics of actual turbine airfoils. An existing code (Arnone et al., 1991) has been modified for the purpose. The code is an explicit, multigrid, cell-centered, finite volume code with an algebraic turbulence model. Eigenvalue scaled artificial dissipation and variable-coefficient implicit residual smoothing are used with a full-multigrid technique. Moreover, Mayle's transition criterion (Mayle, 1991) is used. The effects of film cooling have been incorporated into the code in the form of appropriate boundary conditions at the hole locations on the airfoil surface. Each hole exit is represented by several control volumes, thus providing an ability to study the effect of hole shape on the film-cooling characteristics. Comparison is fair with near mid-span experimental data for four and nine rows of cooling holes, five on the shower head, and two rows each on the pressure and suction surfaces. The computations, however, show a strong spanwise variation of the heat transfer coefficient on the airfoil surface, specially with shower-head cooling.

  9. EXPERIMENTAL MEASUREMENT AND NUMERICAL SIMULATION FOR FLOW FIELD AND FILM COOLING EFFECTIVENESS IN FILM-COOLED TURBINE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Numerical simulation of three-dimensional flow field and film cooling effectiveness in film-cooled turbine rotor and stationary turbine cascade were carried out by using the κ-ε turbulence model, and the predictions of the three-dimensional velocities were compared with the measured results by Laser-Doppler Velocimetry (LDV). Results reveal the secondary flow near the blade surface in the wake region behind the jet hole. Compared with the stationary cascade, there are the centrifugal force and Coriolis force existing in the flow field of the turbine rotor, and these forces make the three-dimensional flow field change in the turbine rotor, especially for the radial velocity. The effect of rotation on the flow field and the film cooling effectiveness on the pressure side is more apparent than that on the suction side as is shown in the computational and measured results, and the low film cooling effectiveness appears on the pressure surface of the turbine rotor blade compared with that of the stationary cascade.

  10. Measurement of the heat transfer and the film cooling effectiveness at a film-cooled leading edge of a turbine blade and derivation of a local model. Pt. C: derivation of a local model. Final report; Messung von Waermeuebergang und Filmkuehleffektivitaet im Bereich der filmgekuehlten Vorderkante eines Turbinenschaufelprofils und Ableitung lokaler Modelle. T. C: Ableitung lokaler Modelle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, H.P.; Biba, S.

    1998-03-31

    Today, the heat transfer on a film-cooled leading edge of a high pressure turbine blade is calculated either by simple but inaccurate correlations or highly complex 3-D-simulations of the entire blade flow. The aim of the project was to derive an improved local model of the heat transfer at the leading edge in order to develop new, more precise correlations. This was done in order to minimize the cooling mass flow requirements and therefore to improve the efficiency of gas turbines. A new simple model of the near wall flow at the film cooled leading edge was derived. The model is based on the modification of the well-known turbulent boundary layer flow at a flat plate. This leads to semi-empirical correlations for the prediction of the adiabatic film cooling effectiveness and the heat transfer coefficient. The parameters of these correlations are matched to measurements at a film cooled leading edge model. By applying the correlations, the heat transfer at the leading edge can be predicted sufficiently accurate in dependence on the downstream distance, the blowing ratio and the Reynolds-number. The correlations can be implemented in existing 2-D-methods for the design of a blade cooling configuration. (orig.) [Deutsch] Der Waermeeintrag an einer filmgekuehlten Vorderkante einer Hochdruckturbinenschaufel wird derzeit mittels einfacher, nicht hinreichend genauer Korrelationen oder durch komplexe 3-D-Simulationen der Stroemung berechnet. Ziel des Vorhabens ist es, zur Minimierung des Kuehlungsmassenstroms und damit zur Wirkungsgradverbesserung der Gasturbine ein verbessertes lokales Modell des Waermeuebergangs und genauere Korrelationen herzuleiten. Im Vorhaben wurde ein Modell fuer die wandnahe Stroemung an einer filmgekuehlten Vorderkante entwickelt. Das Modell beruht auf der Modifikation der bekannten turbulenten Grenzschicht an einer ebenen Platte. Die Modellierung fuehrt zu halb-empirischen Korrelationen fuer die adiabate Filmkuehleffektivitaet und dem

  11. Experimental and computational studies of film cooling with compound angle injection

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.J.; Eckert, E.R.G.; Patankar, S.V.; Simon, T.W. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Mechanical Engineering

    1995-12-31

    The thermal efficiency of gas turbine systems depends largely on the turbine inlet temperature. Recent decades have seen a steady rise in the inlet temperature and a resulting reduction in fuel consumption. At the same time, it has been necessary to employ intensive cooling of the hot components. Among various cooling methods, film cooling has become a standard method for cooling of the turbine airfoils and combustion chamber walls. The University of Minnesota program is a combined experimental and computational study of various film-cooling configurations. Whereas a large number of parameters influence film cooling processes, this research focuses on compound angle injection through a single row and through two rows of holes. Later work will investigate the values of contoured hole designs. An appreciation of the advantages of compound angle injection has risen recently with the demand for more effective cooling and with improved understanding of the flow; this project should continue to further this understanding. Approaches being applied include: (1) a new measurement system that extends the mass/heat transfer analogy to obtain both local film cooling and local mass (heat) transfer results in a single system, (2) direct measurement of three-dimensional turbulent transport in a highly-disturbed flow, (3) the use of compound angle and shaped holes to optimize film cooling performance, and (4) an exploration of anisotropy corrections to turbulence modeling of film cooling jets.

  12. Experimental and computational studies of film cooling with compound angle injection

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.J.; Eckert, E.R.G.; Patankar, S.V. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1995-10-01

    The thermal efficiency of gas turbine systems depends largely on the turbine inlet temperature. Recent decades have seen a steady rise in the inlet temperature and a resulting reduction in fuel consumption. At the same time, it has been necessary to employ intensive cooling of the hot components. Among various cooling methods, film cooling has become a standard method for cooling of the turbine airfoils and combustion chamber walls. The University of Minnesota program is a combined experimental and computational study of various film-cooling configurations. Whereas a large number of parameters influence film cooling processes, this research focuses on compound angle injection through a single row and through two rows of holes. Later work will investigate the values of contoured hole designs. An appreciation of the advantages of compound angle injection has risen recently with the demand for more effective cooling and with improved understanding of the flow; this project should continue to further this understanding. Approaches being applied include: (1) a new measurement system that extends the mass/heat transfer analogy to obtain both local film cooling and local mass (heat) transfer results in a single system, (2) direct measurement of three-dimensional turbulent transport in a highly-disturbed flow, (3) the use of compound angle and shaped holes to optimize film cooling performance, and (4) an exploration of anisotropy corrections to turbulence modeling of film cooling jets.

  13. Investigation of the cooling film distribution in liquid rocket engine

    Directory of Open Access Journals (Sweden)

    Luís Antonio Silva

    2011-05-01

    Full Text Available This study presents the results of the investigation of a cooling method widely used in the combustion chambers, which is called cooling film, and it is applied to a liquid rocket engine that uses as propellants liquid oxygen and kerosene. Starting from an engine cooling, whose film is formed through the fuel spray guns positioned on the periphery of the injection system, the film was experimentally examined, it is formed by liquid that seeped through the inner wall of the combustion chamber. The parameter used for validation and refinement of the theoretical penetration of the film was cooling, as this parameter is of paramount importance to obtain an efficient thermal protection inside the combustion chamber. Cold tests confirmed a penetrating cold enough cooling of the film for the length of the combustion chamber of the studied engine.

  14. Improving Durability of Turbine Components Through Trenched Film Cooling and Contoured Endwalls

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, David G. [Univ. of Texas, Austin, TX (United States); Thole, Karen A. [Pennsylvania State Univ., State College, PA (United States)

    2014-09-30

    The experimental and computational studies of the turbine endwall and vane models completed in this research program have provided a comprehensive understanding of turbine cooling with combined film cooling and TBC. To correctly simulate the cooling effects of TBC requires the use of matched Biot number models, a technique developed in our laboratories. This technique allows for the measurement of the overall cooling effectiveness which is a measure of the combined internal and external cooling for a turbine component. The overall cooling effectiveness provides an indication of the actual metal temperature that would occur at engine conditions, and is hence a more powerful performance indicator than the film effectiveness parameter that is commonly used for film cooling studies. Furthermore these studies include the effects of contaminant depositions which are expected to occur when gas turbines are operated with syngas fuels. Results from the endwall studies performed at Penn State University and the vane model studies performed at the University of Texas are the first direct measurements of the combined effects of film cooling and TBC. These results show that TBC has a dominating effect on the overall cooling effectiveness, which enhances the importance of the internal cooling mechanisms, and downplays the importance of the film cooling of the external surface. The TBC was found to increase overall cooling effectiveness by a factor of two to four. When combined with TBC, the primary cooling from film cooling holes was found to be due to the convective cooling within the holes, not from the film effectiveness on the surface of the TBC. Simulations of the deposition of contaminants on the endwall and vane surfaces showed that these depositions caused a large increase in surface roughness and significant degradation of film effectiveness. However, despite these negative factors, the depositions caused only a slight decrease in the overall cooling effectiveness on

  15. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    2000-01-01

    Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.

  16. Effect of injector configuration in rocket nozzle film cooling

    Science.gov (United States)

    Kumar, A. Lakshya; Pisharady, J. C.; Shine, S. R.

    2016-04-01

    Experimental and numerical investigations are carried out to analyze the effect of coolant injector configuration on overall film cooling performance in a divergent section of a rocket nozzle. Two different injector orientations are investigated: (1) shaped slots with a divergence angle of 15° (semi-divergent injector) (2) fully divergent slot (fully divergent injector). A 2-dimensional, axis-symmetric, multispecies computational model using finite volume formulation has been developed and validated against the experimental data. The experiments provided a consistent set of measurements for cooling effectiveness for different blowing ratios ranging from 3.7 to 6. Results show that the semi divergent configuration leads to higher effectiveness compared to fully divergent slot at all blowing ratios. The spatially averaged effectiveness results show that the difference between the two configurations is significant at higher blowing ratios. The increase in effectiveness was around 2 % at BR = 3.7 whereas it was around 12 % in the case of BR = 6. Numerical results show the presence of secondary flow recirculation zones near the jet exit for both the injectors. An additional recirculation zone present in the case of fully divergent injector caused an increase in mixing of the coolant and mainstream, and a reduction in film cooling performance.

  17. Effect of free-stream turbulence on film cooling

    Science.gov (United States)

    Marek, C. J.; Tacina, R. R.

    1975-01-01

    Film-cooling experiments were conducted at four levels of free-stream turbulence to test the hypothesis that the film-cooling effectiveness is inversely related to the free-stream turbulence level. The hot-gas operating conditions were held constant at a temperature of 590 K, a pressure of 1 atmosphere, and a velocity of 62 m/sec. The film-cooling air was at ambient inlet temperature, and the film-cooling flow rates were 2.5, 5.0, 7.5, and 10.0 percent of the total airflow. Blockage plates with blockage areas of 0, 52, 72, and 90 percent were placed upstream of the film-cooling slot and produced axial turbulence intensities of 7, 14, 23, and 35 percent, respectively. The film-cooling effectiveness decreased as much as 50 percent as the freestream turbulence intensity was increased from 7 to 35 percent. The value of the turbulent mixing coefficient used in previous work was compared with the axial turbulence intensity. The turbulent mixing coefficient was found to be 10 to 40 percent of the axial turbulence intensity.

  18. Effects of geometry on slot-jet film cooling performance

    Energy Technology Data Exchange (ETDEWEB)

    Hyams, D.G.; McGovern, K.T.; Leylek, J.H. [Clemson Univ., SC (United States)

    1995-10-01

    The physics of the film cooling process for shaped, inclined slot-jets with realistic slot-length-to-width ratios (L/s) is studied for a range of blowing ratio (M) and density ratio (DR) parameters typical of gas turbine operations. For the first time in the open literature, the effect of inlet and exit shaping of the slot-jet on both flow and thermal field characteristics is isolated, and the dominant mechanisms responsible for differences in these characteristics are documented. A previously documented computational methodology was applied for the study of four distinct configurations: (1) slot with straight edges and sharp corners (reference case); (2) slot with shaped inlet region; (3) slot with shaped exit region; and (4) slot with both shaped inlet and exit regions. Detailed field results as well as surface phenomena involving adiabatic film effectiveness ({eta}) and heat transfer coefficient (h) are presented. It is demonstrated that both {eta} and h results are vital in the proper assessment of film cooling performance. All simulations were carried out using a multi-block, unstructured/adaptive grid, fully explicit, time-marching solver with multi-grid, local time stepping, and residual smoothing type acceleration techniques. Special attention was paid to and full documentation provided for: (1) proper modeling of the physical phenomena; (2) exact geometry and high quality grid generation techniques; (3) discretization schemes; and (4) turbulence modeling issues. The key parameters M and DR were varied from 1.0 to 2.0 and 1.5 to 2.0, respectively, to show their influence. Simulations were repeated for slot length-to-width ratio (L/s) of 3.0 and 4.5 in order to explain the effects of this important parameter. Additionally, the performance of two popular turbulence models, standard k-F, and RNG k-E, were studied to establish their ability to handle highly elliptic jet/crossflow interaction type processes.

  19. Correlation of liquid-film cooling mass transfer data.

    Science.gov (United States)

    Gater, R. A.; L'Ecuyer, M. R.

    1972-01-01

    An empirical correlation proposed by Gater and Ecuyer (1970) for liquid-film cooling mass transfer, accounting for film roughness and entrainment effects, is extended to include liquid films of arbitrary length. A favorable comparison between the predicted results and the experimental data of Kinney et al. (1952) and Emmons and Warner (1964) shows the utility of the mass transfer correlation for predictions over a wide range of experimental parameters.

  20. Numerical optimization of a multi-jet cooling system for the blown film extrusion

    Science.gov (United States)

    Janas, M.; Wortberg, J.

    2015-05-01

    The limiting factor for every extrusion process is the cooling. For the blown film process, this task is usually done by means of a single or dual lip air ring. Prior work has shown that two major effects are responsible for a bad heat transfer. The first one is the interaction between the jet and the ambient air. It reduces the velocity of the jet and enlarges the straight flow. The other one is the formation of a laminar boundary layer on the film surface due to the fast flowing cooling air. In this case, the boundary layer isolates the film and prevents an efficient heat transfer. To improve the heat exchange, a novel cooling approach is developed, called Multi-Jet. The new cooling system uses several slit nozzles over the whole tube formation zone for cooling the film. In contrast to a conventional system, the cooling air is guided vertically on the film surface in different heights to penetrate the boundary sublayer. Simultaneously, a housing of the tube formation zone is practically obtained to reduce the interaction with the ambient air. For the numerical optimization of the Multi-Jet system, a new procedure is developed. First, a prediction model identifies a worth considering cooling configuration. Therefore, the prediction model computes a film curve using the formulation from Zatloukal-Vlcek and the energy balance for the film temperature. Thereafter, the optimized cooling geometry is investigated in detail using a process model for the blown film extrusion that is able to compute a realistic bubble behavior depending on the cooling situation. In this paper, the Multi-Jet cooling system is numerically optimized for several different process states, like mass throughputs and blow-up ratios using one slit nozzle setting. For each process condition, the best cooling result has to be achieved. Therefore, the height of any nozzle over the tube formation zone is adjustable. The other geometrical parameters of the cooling system like the nozzle diameter or the

  1. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang

    2014-02-01

    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  2. Computational and experimental study on supersonic film cooling for liquid rocket nozzle applications

    Directory of Open Access Journals (Sweden)

    Vijayakumar Vishnu

    2015-01-01

    Full Text Available An experimental and computational investigation of supersonic film cooling (SFC was conducted on a subscale model of a rocket engine nozzle. A computational model of a convergent-divergent nozzle was generated, incorporating a secondary injection module for film cooling in the divergent section. Computational Fluid Dynamic (CFD simulations were run on the model and different injection configurations were analyzed. The CFD simulations also analyzed the parameters that influence film cooling effectiveness. Subsequent to the CFD analysis and literature survey an angled injection configuration was found to be more effective, therefore the hardware was fabricated for the same. The fabricated nozzle was later fixed to an Air-Kerosene combustor and numerous sets of experiments were conducted in order to ascertain the effect on film cooling on the nozzle wall. The film coolant employed was gaseous Nitrogen. The results showed substantial cooling along the walls and a considerable reduction in heat transfer from the combustion gas to the wall of the nozzle. Finally the computational model was validated using the experimental results. There was fairly good agreement between the predicted nozzle wall temperature and the value obtained through experiments.

  3. Microwave Cooled Microbolometers Based on Cermet Si-Cr Films

    Science.gov (United States)

    Vdovichev, S. N.; Vdovin, V. F.; Klimov, A. Yu.; Mukhin, A. S.; Nozdrin, Yu. N.; Rogov, V. V.; Udalov, O. G.

    2017-01-01

    We present the results of creating a cooled microbolometer based on the cermet films of the silicon and chromium mixture. This material is used for manufacturing the freely hanging high-resistive microbolometers for the first time. The details of fabricating such microbolometers and the prospects for using cermet films to construct microbolometers are discussed. The first estimates of sensitivity of the fabricated microbolometers are given.

  4. Numerical investigation of unsteady mixing mechanism in plate film cooling

    Directory of Open Access Journals (Sweden)

    Shuai Li

    2016-09-01

    Full Text Available A large-scale large eddy simulation in high performance personal computer clusters is carried out to present unsteady mixing mechanism of film cooling and the development of films. Simulation cases include a single-hole plate with the inclined angle of 30° and blowing ratio of 0.5, and a single-row plate with hole-spacing of 1.5D and 2D (diameters of the hole. According to the massive simulation results, some new unsteady phenomena of gas films are found. The vortex system is changed in different position with the development of film cooling with the time marching the process of a single-row plate film cooling. Due to the mutual interference effects including mutual exclusion, a certain periodic sloshing and mutual fusion, and the structures of a variety of vortices change between parallel gas films. Macroscopic flow structures and heat transfer behaviors are obtained based on 20 million grids and Reynolds number of 28600.

  5. Film Cooling in Fuel Rich Environments

    Science.gov (United States)

    2013-03-27

    12 2.3 Hydrocarbon Combustion Hydrocarbon combustion is a chemical reaction globally following equation 2.8 in air. The heat release from this reaction ...following reaction completion in the WSR at the measured ”stack” temperature, and second for an adiabatic flame temperature and enthalpy rise for the...schemes for hot section turbine blades involve injecting cool, oxygen-rich air adjacent to the surface, the potential arises for reaction with the

  6. Turbine endwall film cooling with combustor-turbine interface gap leakage flow: Effect of incidence angle

    Science.gov (United States)

    Zhang, Yang; Yuan, Xin

    2013-04-01

    This paper is focused on the film cooling performance of combustor-turbine leakage flow at off-design condition. The influence of incidence angle on film cooling effectiveness on first-stage vane endwall with combustor-turbine interface slot is studied. A baseline slot configuration is tested in a low speed four-blade cascade comprising a large-scale model of the GE-E3Nozzle Guide Vane (NGV). The slot has a forward expansion angle of 30 deg. to the endwall surface. The Reynolds number based on the axial chord and inlet velocity of the free-stream flow is 3.5 × 105 and the testing is done in a four-blade cascade with low Mach number condition (0.1 at the inlet). The blowing ratio of the coolant through the interface gap varies from M = 0.1 to M = 0.3, while the blowing ratio varies from M = 0.7 to M = 1.3 for the endwall film cooling holes. The film-cooling effectiveness distributions are obtained using the pressure sensitive paint (PSP) technique. The results show that with an increasing blowing ratio the film-cooling effectiveness increases on the endwall. As the incidence angle varies from i = +10 deg. to i = -10 deg., at low blowing ratio, the averaged film-cooling effectiveness changes slightly near the leading edge suction side area. The case of i = +10 deg. has better film-cooling performance at the downstream part of this region where the axial chord is between 0.15 and 0.25. However, the disadvantage of positive incidence appears when the blowing ratio increases, especially at the upstream part of near suction side region where the axial chord is between 0 and 0.15. On the main passage endwall surface, as the incidence angle changes from i = +10 deg. to i = -10 deg., the averaged film-cooling effectiveness changes slightly and the negative incidence appears to be more effective for the downstream part film cooling of the endwall surface where the axial chord is between 0.6 and 0.8.

  7. Hot Strip Laminar Cooling Control Model

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; WANG Guo-dong; LIU Xiang-hua

    2004-01-01

    The control model of laminar cooling system for hot strip, including air-cooling model, water-cooling model, temperature distribution model along thickness direction, feedforward control model, feedback control model and self-learning model, was introduced. PID arithmetic and Smith predictor controller were applied to feedback control. The sample of model parameter classification was given. The calculation process was shown by flow chart. The model has been proved to be simple, effective and of high precision.

  8. Heat Transfer Measurements for a Film Cooled Turbine Vane Cascade

    Science.gov (United States)

    Poinsatte, Philip E.; Heidmann, James D.; Thurman, Douglas R.

    2008-01-01

    Experimental heat transfer and pressure measurements were obtained on a large scale film cooled turbine vane cascade. The objective was to investigate heat transfer on a commercial high pressure first stage turbine vane at near engine Mach and Reynolds number conditions. Additionally blowing ratios and coolant density were also matched. Numerical computations were made with the Glenn-HT code of the same geometry and compared with the experimental results. A transient thermochromic liquid crystal technique was used to obtain steady state heat transfer data on the mid-span geometry of an instrumented vane with 12 rows of circular and shaped film cooling holes. A mixture of SF6 and Argon gases was used for film coolant to match the coolant-to-gas density ratio of a real engine. The exit Mach number and Reynolds number were 0.725 and 2.7 million respectively. Trends from the experimental heat transfer data matched well with the computational prediction, particularly for the film cooled case.

  9. Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique

    Science.gov (United States)

    Han, J. C.; Ekkad, S. V.; Du, H.; Teng, S.

    2000-01-01

    Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model.

  10. Film cooling in a pulsating stream

    Energy Technology Data Exchange (ETDEWEB)

    Fasel, H.; Ortega, A.; Wygnanski, I.J. [Univ. of Arizona, Tucson, AZ (United States)

    1997-12-31

    The mean flow and stability characteristics of a plane, laminar wall jet were investigated experimentally, theoretically, and numerically for a constant wall temperature boundary condition. The streamwise mean velocity and temperature profiles and the downstream development of the hydrodynamic and thermal boundary layer thicknesses were obtained through simultaneous hot and cold wire measurements. Even at relatively low temperature differences, heating or cooling of the surface sufficiently altered the mean velocity profile in the inner region to produce significant effects on the jet stability. Selective forcing of the flow at the most amplified frequencies produced profound effects on the velocity and temperature fields and hence the time-averaged shear stress and heat transfer. Large amplitude excitation of the flow at high frequencies resulted in a reduction in the maximum skin friction by as much as 65% with an increase in the maximum wall heat flux as high as 45%. The skin friction and wall heat flux were much less susceptible to low frequency excitation.

  11. Analyzing the structure of the optical path difference of the supersonic film cooling

    Science.gov (United States)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    While high-speed aircraft are flying in the atmosphere, its optical-hood is subjected to severe aerodynamic heating. Supersonic film cooling method can effectively isolate external heating, but the flow structures formed by the supersonic film cooling can cause the beam degradation and affect the imaging quality. To research the aero-optics of supersonic film cooling, an experimental model was adopted in this paper, its mainstream Mach number 3.4, designed jet Mach number 2.5, measured jet Mach number 2.45. High-resolution images of flow were acquired by the nano-based planar laser scattering (NPLS) technique, by reconstructing the density field of supersonic film cooling, and then, the optical path difference (OPD) were acquired by the ray-tracing method. Depending on the comparison between K-H vortex and OPD distribution, the valleys of OPD correspond to the vortex `rollers' and the peaks to the `braids'. However, the corresponding relationship becomes quite irregular for the flow field with developed vortices, and cannot be summarized in this manner. And then, the OPD were analyzed by correlation function and structure function, show that, there is a relationship between the shape of OPD correlation function and the vortex structure, the correlation function type changed with the development of the vortex. The correctness that the mixing layer makes a main contribution to the aero-optics of supersonic film cooling was verified, and the structure function of aero-optical distortion has a power relationship that is similar to that of atmospheric optics. At last, the power spectrum corresponding to the typical region of supersonic film cooling were acquired by improved periodgram.

  12. Large Eddy Simulation of the Effects of Plasma Actuation Strength on Film Cooling Efficiency

    Science.gov (United States)

    Li, Guozhan; Chen, Fu; Li, Linxi; Song, Yanping

    2016-11-01

    In this article, numerical investigation of the effects of different plasma actuation strengths on the film cooling flow characteristics has been conducted using large eddy simulation (LES). For this numerical research, the plasma actuator is placed downstream of the trailing edge of the film cooling hole and a phenomenological model is employed to provide the electric field generated by it, resulting in the body forces. Our results show that as the plasma actuation strength grows larger, under the downward effect of the plasma actuation, the jet trajectory near the cooling hole stays closer to the wall and the recirculation region observably reduces in size. Meanwhile, the momentum injection effect of the plasma actuation also actively alters the distributions of the velocity components downstream of the cooling hole. Consequently, the influence of the plasma actuation strength on the Reynolds stress downstream of the cooling hole is remarkable. Furthermore, the plasma actuation weakens the strength of the kidney shaped vortex and prevents the jet from lifting off the wall. Therefore, with the increase of the strength of the plasma actuation, the coolant core stays closer to the wall and tends to split into two distinct regions. So the centerline film cooling efficiency is enhanced, and it is increased by 55% at most when the plasma actuation strength is 10.

  13. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    Science.gov (United States)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  14. Combined Effects of Wakes and Jet Pulsing on Film Cooling

    Science.gov (United States)

    2008-10-01

    water as a refer- ence. Constant current cold- wire and constant temperature hot - wire anemometry were used to measure flow temperature and velocity...Temperature measurements were made using an infrared camera, thermocouples, and constant current (cold wire ) anemometry . The local film cooling effectiveness...and heat transfer coefficient were de- termined from the measured temperatures. Phase locked flow temperature fields were determined from cold- wire

  15. Measurements in Film Cooling Flows with Periodic Wakes

    Science.gov (United States)

    2008-10-01

    camera, thermocouples, and constant current (cold- wire ) anemometry . Hot - wire anemometry was used for velocity measurements. The local film cooling...and constant temperature hot - wire anemometry were used to measure flow temperature and velocity, respectively. Boundary layer probes with 1.27 m...jet velocity and temperature were documented by Coulthard et al. 26 by traversing the constant current and hot - wire probes over the hole exit plane

  16. Thin-Film Evaporative Cooling for Side-Pumped Laser

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2010-01-01

    A system and method are provided for cooling a crystal rod of a side-pumped laser. A transparent housing receives the crystal rod therethrough so that an annular gap is defined between the housing and the radial surface of the crystal rod. A fluid coolant is injected into the annular gap such the annular gap is partially filled with the fluid coolant while the radial surface of the crystal rod is wetted as a thin film all along the axial length thereof.

  17. Multidisciplinary design optimization of film-cooled gas turbine blades

    Directory of Open Access Journals (Sweden)

    Talya Shashishekara S.

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  18. Numerical study on film cooling and convective heat transfer characteristics in the cutback region of turbine blade trailing edge

    Directory of Open Access Journals (Sweden)

    Xie Yong-Hui

    2016-01-01

    Full Text Available Gas turbine blade trailing edge is easy to burn out under the exposure of high-temperature gas due to its thin shape. The cooling of this area is an important task in gas turbine blade design. The structure design and analysis of trailing edge is critical because of the complexity of geometry, arrangement of cooling channels, design requirement of strength, and the working condition of high heat flux. In the present paper, a 3-D model of the trailing edge cooling channel is constructed and both structures with and without land are numerically investigated at different blowing ratio. The distributions of film cooling effectiveness and convective heat transfer coefficient on cutback and land surface are analyzed, respectively. According to the results, it is obtained that the distributions of film cooling effectiveness and convective heat transfer coefficient both show the symmetrical characteristics as a result of the periodic structure of the trailing edge. The increase of blowing ratio significantly improves the film cooling effectiveness and convective heat transfer coefficient on the cutback surface, which is beneficial to the cooling of trailing edge. It is also found that the land structure is advantageous for enhancing the streamwise film cooling effectiveness of the trailing edge surface while the film cooling effectiveness on the land surface remains at a low level. Convective heat transfer coefficient exhibits a strong dependency with the blowing ratio, which suggests that film cooling effectiveness and convective heat transfer coefficient must be both considered and analyzed in the design of trailing edge cooling structure.

  19. Effect of external turbulence on the efficiency of film cooling with coolant injection into a transverse trench

    Science.gov (United States)

    Khalatov, A. A.; Panchenko, N. A.; Severin, S. D.

    2017-09-01

    Film cooling is among the basic methods used for thermal protection of blades in modern high-temperature gas turbines. Results of computer simulation of film cooling with coolant injection via a row of conventional inclined holes or a row of holes in a trench are presented in this paper. The ANSYS CFX 14 commercial software package was used for CFD-modeling. The effect is studied of the mainstream turbulence on the film cooling efficiency for the blowing ratio range between 0.6 and 2.3 and three different turbulence intensities of 1, 5, and 10%. The mainstream velocity was 150 and 400 m/s, while the temperatures of the mainstream and the injected coolant were 1100 and 500°C, respectively. It is demonstrated that, for the coolant injection via one row of trenched holes, an increase in the mainstream turbulence intensity reduces the film cooling efficiency in the entire investigated range of blowing ratios. It was revealed that freestream turbulence had varied effects on the film cooling efficiency depending on the blowing ratio and mainstream velocity in a blade channel. Thus, an increase in the mainstream turbulence intensity from 1 to 10% decreases the surface-averaged film cooling efficiency by 3-10% at a high mainstream velocity (400 m/s) in the blade channel and by 12-23% at a moderate velocity (of 150 m/s). Here, lower film cooling efficiencies correspond to higher blowing ratios. The effect of mainstream turbulence intensity on the film cooling efficiency decreases with increasing the mainstream velocity in the modeled channel for both investigated configurations.

  20. Effect of velocity and temperature distribution at the hole exit on film cooling of turbine blades

    Science.gov (United States)

    Garg, Vijay K.; Gaugler, Raymond E.

    1995-01-01

    An existing three-dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of coolant velocity and temperature distribution at the hole exit on the heat transfer coefficient on three-film-cooled turbine blades, namely, the C3X vane, the VKI rotor, and the ACE rotor. Results are also compared with the experimental data for all the blades. Moreover, Mayle's transition criterion, Forest's model for augmentation of leading edge heat transfer due to freestream turbulence, and Crawford's model for augmentation of eddy viscosity due to film cooling are used. Use of Mayle's and Forest's models is relevant only for the ACE rotor due to the absence of showerhead cooling on this rotor. It is found that, in some cases, the effect of distribution of coolant velocity and temperature at the hole exit can be as much as 60% on the heat transfer coefficient at the blade suction surface, and 50% at the pressure surface. Also, different effects are observed on the pressure and suction surface depending upon the blade as well as upon the hole shape, conical or cylindrical.

  1. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  2. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    Energy Technology Data Exchange (ETDEWEB)

    Chyu, M.K. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:EU{sup 3+}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  3. Minimization of the Effects of Secondary Reactions on Turbine Film Cooling in a Fuel Rich Environment

    Science.gov (United States)

    2014-06-02

    cooling as [1] (2.2) where hf is the heat transfer coefficient with film cooling and Tf is the temperature of the film. 7...the rig. The Hastelloy-X block was cooled with water, nitrogen, or a Mokon oil temperature control system through welded cooling loops and channels...block. To hold the thermocouples in place, three groves were cut out and bands were welded on top of the thermocouples. To hold the lower

  4. An Experimental Investigation Studying the Influence of Dimples on a Film Cooled Turbine Blade Leading Edge

    Science.gov (United States)

    2009-03-01

    Room Temperature Vulcanizing (RTV) silicone sealant was used to attach the heat flux plate to the surface of the model while carefully aligning...was negligible. 4.2 RECOMMENDATIONS FOR FUTURE RESEARCH This scientific investigation was able to demonstrate that dimples placed upstream of a film...Education Limited. Harlow, England, 2001. 3. Han, J.-C. “Turbine Blade Cooling Studies at Texas A&M University: 1980-2004,” Journal of

  5. Leading edge film cooling effects on turbine blade heat transfer

    Science.gov (United States)

    Garg, Vijay K.; Gaugler, Raymond E.

    1995-01-01

    An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.

  6. LES of film cooling for different jet fluids

    Institute of Scientific and Technical Information of China (English)

    P.Renze; W.Schr(o)der; M.Meinke

    2007-01-01

    The present paper investigates the impact of the velocity and density ratio on the turbulent mixing process in gas turbine blade film cooling.A cooling fluid is injected from an inclined pipe at α=30° into a turbulent boundary layer profile at a freestream Reynolds number of Re∞=400000.This jet-in-a-crossflow(JICF) problem is investigated using large-eddy simulations(LES).The governing equations comprise the Navier-Stokes equations plus additional transport equations for several species to simulate a non-reacting gas mixture.A variation of the density ratio is simulated by the heat-mass transfer analogy,i.e.,gases of different density are effused into an an air crossflow at a constant temperature.An efficient large-eddy simulation method for low subsonic flows based on an implicit dual time-stepping scheme combined with low Mach number preconditioning is applied.The numerical results and experimental velocity data measured using two-component particle-image velocimetry (PIV) are in excellent agreement.The results show the dynamics of the flow field in the vicinity of the jet hole,i.e.,the recirculation region and the inclination of the shear layers,to be mainly determined by the velocity ratio.However,evaluating the cooling efficiency downstream of the jet hole the mass flux ratio proves to be the dominant similarity parameter,i.e.,the density ratio between the fluids and the velocity ratio have to be considered.

  7. Numerical prediction of film cooling effectiveness over flat plate using variable turbulent prandtl number closures

    Science.gov (United States)

    Ochrymiuk, Tomasz

    2016-06-01

    Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensional discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of the holes, i.e. diameter D, length L and pitch S/D were studied. Different turbulent heat transfer models based on constant and variable turbulent Prandtl number approaches were considered. The variability of the turbulent Prandtl number Pr t in the energy equation was assumed using an algebraic relation proposed by Kays and Crawford, or employing the Abe, Kondoh and Nagano eddy heat diffusivity closure with two differential transport equations for the temperature variance k θ and its destruction rate ɛ θ . The obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two- equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models.

  8. An experimental comparison between a novel and a conventional cooling system for the blown film process

    Science.gov (United States)

    Janas, M.; Andretzky, M.; Neubert, B.; Kracht, F.; Wortberg, J.

    2016-03-01

    The blown film extrusion is a significant manufacturing process of plastic films. Compared to other extrusion processes, the productivity is limited by the cooling of the extrudate. A conventional cooling system for the blown film application provides the cooling air tangentially, homogeneous over the whole circumference of the bubble, using a single or dual lip cooling ring. In prior works, major effects could be identified that are responsible for a bad heat transfer. Besides the formation of a boundary sublayer on the film surface due to the fast flowing cooling air, there is the interaction between the cooling jet and the ambient air. In order to intensify the cooling of a tubular film, a new cooling approach was developed, called Multi-Jet. This system guides the air vertically on the film surface, using several slit nozzles over the whole tube formation zone. Hence, the jets penetrate the sublayer. To avoid the interaction with the ambient air, the bubble expansion zone is surrounded by a housing. By means of a numeric investigation, the novel cooling approach and the efficiency of the cooling system could be proved. Thereby, a four times higher local heat transfer coefficient is achieved compared to a conventional cooling device. In this paper, the Multi-Jet cooling system is experimentally tested for several different process conditions. To identify a worth considering cooling configuration of the novel cooling system for the experiment, a simulation tool presets the optimal process parameters. The comparison between the results of the new and a conventional system shows that the novel cooling method is able to gain the same frost line height using a 40% lower cooling air volume flow. Due to the housing of the tube formation zone, a heat recovery can be achieved.

  9. Increased output of blown film extrusion lines by using a cooling sleeve

    Science.gov (United States)

    Hopmann, Christian; Windeck, Christian; Hennigs, Marco

    2014-05-01

    Production efficiency is one of the most important demands in blown film production. In many cases, the cooling power is the limiting factor for an increased output. A possible solution for a better cooling is the use of a cooling sleeve right after the outlet of the die in addition to the conventional air rings and internal bubble cooling (IBC). At the Institute of Plastics Processing (IKV), first tests were conducted to investigate the advantages of the use of a cooling sleeve. Therefore, the influence of several geometries of the cooling sleeve surface and different cooling sleeve temperatures on the process stability and the mechanical and optical film properties is investigated. The cooling sleeve surfaces differ in the tapping between inlet and outlet diameter from 0 % (cylindric) to 10 % (conical). The tests show that a high amount of tapping as well as too high resp. low cooling sleeve temperatures cause process instabilities and an uneven thickness profile of the film. While the mechanical film properties (E-modulus, elongation at break, tensile strength) of the films produced by the use of a cooling sleeve (cs-films) do not significantly differ from the values of the reference films, the haze of the cs-films was higher and therefore worse. A measurement of the bubble temperatures above the air ring shows that the use of a cooling sleeve can significant lower the bubble temperature at this point. Because of this and because of the results of the mechanical tests, the principle of a contact cooling is generally applicable. Further research and development on the geometry of the cooling sleeve surface has to be done to improve the process stability and the haze for a possible industrial application.

  10. Large eddy simulations of turbulent flows on graphics processing units: Application to film-cooling flows

    Science.gov (United States)

    Shinn, Aaron F.

    Computational Fluid Dynamics (CFD) simulations can be very computationally expensive, especially for Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of turbulent ows. In LES the large, energy containing eddies are resolved by the computational mesh, but the smaller (sub-grid) scales are modeled. In DNS, all scales of turbulence are resolved, including the smallest dissipative (Kolmogorov) scales. Clusters of CPUs have been the standard approach for such simulations, but an emerging approach is the use of Graphics Processing Units (GPUs), which deliver impressive computing performance compared to CPUs. Recently there has been great interest in the scientific computing community to use GPUs for general-purpose computation (such as the numerical solution of PDEs) rather than graphics rendering. To explore the use of GPUs for CFD simulations, an incompressible Navier-Stokes solver was developed for a GPU. This solver is capable of simulating unsteady laminar flows or performing a LES or DNS of turbulent ows. The Navier-Stokes equations are solved via a fractional-step method and are spatially discretized using the finite volume method on a Cartesian mesh. An immersed boundary method based on a ghost cell treatment was developed to handle flow past complex geometries. The implementation of these numerical methods had to suit the architecture of the GPU, which is designed for massive multithreading. The details of this implementation will be described, along with strategies for performance optimization. Validation of the GPU-based solver was performed for fundamental bench-mark problems, and a performance assessment indicated that the solver was over an order-of-magnitude faster compared to a CPU. The GPU-based Navier-Stokes solver was used to study film-cooling flows via Large Eddy Simulation. In modern gas turbine engines, the film-cooling method is used to protect turbine blades from hot combustion gases. Therefore, understanding the physics of

  11. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.

  12. Modeling and Exergy Analysis of District Cooling

    DEFF Research Database (Denmark)

    Nguyen, Chan

    . As a principle example, the CO2 emission for each of the cooling and heating consumer is found. The conclusion is analogue to the exergy costing method, i.e. the exergoenvironmmental method can be used as motivation for reducing CO2 emission. One of the main obstacles with district cooling in a traditional water......In this thesis energy, exergy and exergoeconomic analysis has been carried out on a different number of co-generation energy systems involving cooling. The models and methods developed can be used as a frame work to improve the district heating and cooling system thermodynamically and...... in a district heating system based on combined heat and power plants (CHP). A theoretical comparison of trigeneration (cooling, heating and electricity) systems, a traditional system and a recovery system is carried out. The comparison is based on the systems overall exergy efficiency. The traditional system...

  13. The Impact of Heat Release in Turbine Film Cooling

    Science.gov (United States)

    2008-06-01

    Film Gauge ITB = Inter-Turbine Burner PFR = Plug Flow Reactor PSR = Perfectly Stirred Reactor SLPM = Standard Liters Per Minute TFG = Thin Film...Plug Flow Reactors ( PFRs ), a mixer, and a final PFR . The gas inlets of the PSR were the mass flow rates of air and propane to model the = 0.6, 0.8...0.95, 1.5, and 1.7 conditions. The exhaust flow then moved through a PFR representing the ceramic chimney of the actual rig. The heat loss in this

  14. Film Cooling Optimization Using Numerical Computation of the Compressible Viscous Flow Equations and Simplex Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elsayed

    2013-01-01

    Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.

  15. Simple model of a cooling tower plume

    Science.gov (United States)

    Jan, Cizek; Jiri, Nozicka

    2016-06-01

    This article discusses the possibilities in the area of modeling of the so called cooling tower plume emergent at operating evaporating cooling systems. As opposed to recent publication, this text focuses on the possibilities of a simplified analytic description of the whole problem where this description shall - in the future - form the base of a calculation algorithms enabling to simulate the efficiency of systems reducing this cooling tower plume. The procedure is based on the application of basic formula for the calculation of the velocity and concentration fields in the area above the cooling tower. These calculation is then used to determine the form and the total volume of the plume. Although this approach does not offer more exact results, it can provide a basic understanding of the impact of individual quantities relating to this problem.

  16. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    Science.gov (United States)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  17. Modeling Burns for Pre-Cooled Skin Flame Exposure

    Directory of Open Access Journals (Sweden)

    Torgrim Log

    2017-09-01

    Full Text Available On a television show, a pre-cooled bare-skinned person (TV host passed through engulfing kerosene flames. The assumption was that a water film should protect him during 0.74 s flame exposure in an environment of 86 kW/m2 heat flux. The TV host got light burn inflammation on the back, arms and legs. The present work studies skin temperatures and burn damage integral of such dangerous flame exposure. The skin temperature distribution during water spray pre-cooling, transport to the flames, flame exposure, transport to the water pool, and final water pool cooling is modelled numerically. Details of the temperature development of the skin layers are presented, as well as the associated damage integral. It is shown that 5 °C water spray applied for a 30 s period pre-cooled the skin sufficiently to prevent severe skin injury. Soot marks indicate that the water layer evaporated completely in some areas resulting in skin flame contact. This exposed dry skin directly to the flames contributing significantly to the damage integral. It is further analyzed how higher water temperature, shorter pre-cooling period or longer flame exposure influence the damage integral. It is evident that minor changes in conditions could lead to severe burns and that high heat flux levels at the end of the exposure period are especially dangerous. This flame stunt should never be repeated.

  18. Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling

    Science.gov (United States)

    Braman, K. E.; Ruf, J. H.

    2015-01-01

    Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated using RANS and URANS for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and for four approximations of the supersonic film injection geometry, each of which was created with a different simplification of the test article geometry. The results show that although a reasonable match to experiment can be obtained with varying levels of geometric fidelity, the modeling choices made do not fully represent the physics of flow separation in a TIC nozzle with film cooling.

  19. Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling

    Science.gov (United States)

    Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong

    2015-01-01

    Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of

  20. Influences of Hole Shape on Film Cooling Characteristics with CO2 Injection

    Institute of Scientific and Technical Information of China (English)

    Li Guangchao; Zhu Huiren; Fan Huiming

    2008-01-01

    This article presents the data about heat transfer coefficient ratios, film cooling effectiveness and heat loads for the injection through cylindrical holes, 3-in-1 holes and fanned holes in order to characterize the film cooling performance downstream of a row of holes with 45° inclination and 3 hole spacing apart. The trip wire is placed upstream at a distance of 10 times diameter of the cooling hole from the hole center to keep mainstream fully turbulent. Both inlet and outlet of 3-in-1 holes have a 15° lateral expansion. The outlet of faaned holes has a lateral expansion. CO2 is applied for secondary injection to obtain a density ratio of 1.5. Momentum flux ratio varies from 1 to 4. The results indicate that the increased momentum flux ratio significantly inoreases heat transfer coefficient and slightly improve film cooling effectiveness for the injection through cylindrical holes. A weak dependence of heat transfer coefficient and film cooling effectiveness, respectively, on momentum flux ratio has been identified for the injection through 3-in-1 holes. The increase of the momentum flux ratio decreases heat transfer coefficient and significantly increases film cooling effectiveness for the injection through fanned holes. In terms of the film cooling performance, the fanned holes are the best while the cylindrical holes are the worst among the three hole shapes under study.

  1. Experimental assessment of film cooling performance of short cylindrical holes on a flat surface

    Science.gov (United States)

    Singh, Kuldeep; Premachandran, B.; Ravi, M. R.

    2016-12-01

    The present study is an experimental investigation of film-cooling over a flat surface from the short cylindrical holes. The film cooling holes used in the combustion chamber and the afterburner liner of an aero engine has length-to-diameter (L/D) typically in the range 1-2, while the cooling holes used in turbine blades has L/D > 3. Based on the classification given in the literature, cooling holes with L/D ≤ 3 are named as short holes and cooling holes with L/D > 3 are named as long holes. Short film cooling holes cause jetting of the secondary fluid whereas the secondary fluid emerging from long holes has characteristics similar to fully developed turbulent flow in pipe. In order to understand the difference in the film cooling performance of long and short cooling holes, experimental study is carried out for five values of L/D in the range 1-5, five injection angles, α = 15°-90° and five mainstream Reynolds number 1.25 × 105-6.25 × 105 and two blowing ratios, M = 0.5-1.0. The surface temperature of the test plate is monitored using infrared thermography. The results obtained from the present study showed that the film-cooling effectiveness is higher for the longest holes (L/D = 5) investigated in the present work in comparison to that for the shorter holes. Short holes are found to give better effectiveness at the lowest investigated injection angle i.e. α = 15° in the near cooling hole region, whereas film cooling effectiveness obtained at injection angle, α = 45° is found to be better than other injection angles for longest investigated holes, i.e. L/D = 5.

  2. Experimental assessment of film cooling performance of short cylindrical holes on a flat surface

    Science.gov (United States)

    Singh, Kuldeep; Premachandran, B.; Ravi, M. R.

    2016-03-01

    The present study is an experimental investigation of film-cooling over a flat surface from the short cylindrical holes. The film cooling holes used in the combustion chamber and the afterburner liner of an aero engine has length-to-diameter (L/D) typically in the range 1-2, while the cooling holes used in turbine blades has L/D > 3. Based on the classification given in the literature, cooling holes with L/D ≤ 3 are named as short holes and cooling holes with L/D > 3 are named as long holes. Short film cooling holes cause jetting of the secondary fluid whereas the secondary fluid emerging from long holes has characteristics similar to fully developed turbulent flow in pipe. In order to understand the difference in the film cooling performance of long and short cooling holes, experimental study is carried out for five values of L/D in the range 1-5, five injection angles, α = 15°-90° and five mainstream Reynolds number 1.25 × 105-6.25 × 105 and two blowing ratios, M = 0.5-1.0. The surface temperature of the test plate is monitored using infrared thermography. The results obtained from the present study showed that the film-cooling effectiveness is higher for the longest holes (L/D = 5) investigated in the present work in comparison to that for the shorter holes. Short holes are found to give better effectiveness at the lowest investigated injection angle i.e. α = 15° in the near cooling hole region, whereas film cooling effectiveness obtained at injection angle, α = 45° is found to be better than other injection angles for longest investigated holes, i.e. L/D = 5.

  3. Flow visualisation of the external flow from a converging slot-hole film-cooling geometry

    Science.gov (United States)

    Sargison, J. E.; Oldfield, M. L. G.; Guo, S. M.; Lock, G. D.; Rawlinson, A. J.

    2005-03-01

    This paper presents flow visualisation experiments for a novel film-cooling hole, the converging slot-hole or console for short. Previously published experimental results have demonstrated that the console improved both the heat transfer and the aerodynamic performance of turbine vane and rotor blade cooling systems. Flow visualisation data for a row of consoles were compared with that of cylindrical and fan-shaped holes and a slot at the same inclination angle of 35° to the surface, on a large-scale, flat-plate model at engine-representative Reynolds numbers in a low speed tunnel with ambient temperature mainstream flow. In the first set of experiments, the flow was visualised by using a fine nylon mesh covered with thermochromic liquid crystals, allowing the measurement of gas temperature contours in planes perpendicular to the flow. This data demonstrated that the console film was similar to a slot film, and remained thin and attached to the surface for the coolant-to-mainstream momentum flux ratios of 1.1 to 40 and for a case with no crossflow (infinite momentum flux ratio). A second set of flow visualisation experiments using water/dry-ice fog have confirmed these results and have shown that the flow through all coolant geometries is unsteady.

  4. Influence of cooling rate on optical properties and electrical properties of nanorod ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Meizhen, E-mail: gaomz@lzu.edu.c [Key Lab for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China); Liu, Jing; Sun, Huina; Wu, Xiaonan; Xue, Desheng [Key Lab for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000 (China)

    2010-06-25

    ZnO films are prepared on Ag-coated glass substrates by wet chemical method at low temperature using Zn(NO{sub 3}).6H{sub 2}O and dimethylamine borane complex (DMAB). The structural, electrical and optical properties of ZnO films are investigated by X-ray diffraction, scanning electron microscope, four-point probe method and photoluminescence, respectively. The ZnO film deposited at 90 {sup o}C is the most compact films with a c-axis preferred orientation. The cooling rate affects the optical and electrical properties of ZnO films dramatically. The ZnO films cooled at -15 {sup o}C exhibit the lowest electrical resistivity of 0.525 {Omega} cm and the strongest photoluminescence in visible light. The increase of the conductivity and the enhancement of the photoluminescence are attributed to the increase of oxygen vacancies in the films.

  5. Method for analysis of showerhead film cooling experiments on highly curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.; Schneider, E.; Ott, P. [Laboratoire de Thermique Appliquee et de Turbomachines (LTT), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); von Wolfersdorf, J.; Weigand, B. [Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart, D-70569 Stuttgart (Germany)

    2007-02-15

    The transient liquid crystal technique has been extensively used for measuring the heat transfer characteristics in gas turbine applications. Thereby, the time evolution of the surface temperature is usually evaluated using the model of a semi-infinite flat plate. For experiments on cylinders, Wagner et al. [G. Wagner, M. Kotulla, P. Ott, B. Weigand, J. von Wolfersdorf, The transient liquid crystal technique: influence of surface curvature and finite wall thickness, ASME Paper GT2004-53553, 2004] showed, that curvature and finite thickness effects can have an influence on the obtained heat transfer coefficients. The aim of this study is to develop a time effective data reduction method that accounts for curvature and that is applicable to film cooling experiments with time varying adiabatic wall temperatures. To verify this method, transient liquid crystal experiments have been carried out on a blunt body model with showerhead film cooling. The experimental data was evaluated with the traditional semi-infinite flat plate approach and with the curvature correction using regression analysis. (author)

  6. Peltier cooling and onsager reciprocity in ferromagnetic thin films.

    Science.gov (United States)

    Avery, A D; Zink, B L

    2013-09-20

    We present direct measurements of the Peltier effect as a function of temperature from 77 to 325 K in Ni, Ni(80)Fe(20), and Fe thin films made using a suspended Si-N membrane structure. Measurement of the Seebeck effect in the same films allows us to directly test predictions of Onsager reciprocity between the Peltier and Seebeck effects. The Peltier coefficient Π is negative for both Ni and Ni(80)Fe(20) films and positive for the Fe film. The Fe film also exhibits a peak associated with the magnon drag Peltier effect. The observation of magnon drag in the Fe film verifies that the coupling between the phonon, magnon, and electron systems in the film is the same whether driven by heat current or charge current. The excellent agreement between Π values predicted using the experimentally determined Seebeck coefficient for these films and measured values offers direct experimental confirmation of the Onsager reciprocity between these thermoelectric effects in ferromagnetic thin films near room temperature.

  7. Peltier Cooling and Onsager Reciprocity in Ferromagnetic Thin Films

    Science.gov (United States)

    Avery, A. D.; Zink, B. L.

    2013-09-01

    We present direct measurements of the Peltier effect as a function of temperature from 77 to 325 K in Ni, Ni80Fe20, and Fe thin films made using a suspended Si-N membrane structure. Measurement of the Seebeck effect in the same films allows us to directly test predictions of Onsager reciprocity between the Peltier and Seebeck effects. The Peltier coefficient Π is negative for both Ni and Ni80Fe20 films and positive for the Fe film. The Fe film also exhibits a peak associated with the magnon drag Peltier effect. The observation of magnon drag in the Fe film verifies that the coupling between the phonon, magnon, and electron systems in the film is the same whether driven by heat current or charge current. The excellent agreement between Π values predicted using the experimentally determined Seebeck coefficient for these films and measured values offers direct experimental confirmation of the Onsager reciprocity between these thermoelectric effects in ferromagnetic thin films near room temperature.

  8. Long Hole Film Cooling Dataset for CFD Development . Part 1; Infrared Thermography and Thermocouple Surveys

    Science.gov (United States)

    Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James

    2013-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  9. Heat transfer and film-cooling for the endwall of a first stage turbine vane

    Energy Technology Data Exchange (ETDEWEB)

    Thole, Karen A.; Knost, Daniel G. [Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 (United States)

    2005-12-01

    Secondary flows that result in turbomachines from inherent pressure gradients in airfoil passages, are the main contributors to aerodynamic losses and high heat transfer to the airfoil endwalls. The endwalls present a challenge to durability engineers in maintaining the integrity of the airfoils. One means of preventing degradation in the turbine is to film-cool components whereby coolant is extracted from the compressor and injected through small cooling holes in the airfoil surfaces. In addition to film-cooling, leakage flows from component interfaces, such as the combustor and turbine, can provide cooling in localized areas but also provide a change to the inlet boundary condition to the passage. This paper presents measurements relevant to the endwall region of a vane, which indicate the importance of considering the inlet flow condition. (author)

  10. NUMERICAL STUDIES ON HYDROGEN COMBUSTION IN A FILM COOLED CRYOGENIC ROCKET ENGINE

    Directory of Open Access Journals (Sweden)

    ARSHAD A.

    2012-07-01

    Full Text Available Liquid rocket engines have variety of propellant combinations which produces very high specific impulses. It is due to this fact; very high heat fluxes are incident on the combustion chamber and the nozzle walls. In order to deal with these heat fluxes, a wide range of cooling techniques have been employed, out of which a combination of film cooling and regenerative cooling promises to be the most effective one. The present study involves the numerical analysis of combustion in a typical film cooled cryogenic rocket engine thrust chamber considering the combustion of the fuel, heat transfer through the chamber walls and the fluid flow simultaneously. Analysis was done for a typical rocket engine thrust chamber with a single coaxial injector which uses gaseous hydrogen as the fuel and liquid oxygen as the oxidizer.

  11. mathematical model for direct evaporative space cooling systems

    African Journals Online (AJOL)

    eobe

    MATHEMATICAL MODEL FOR DIRECT EVAPORATIVE SPACE COOLING. SYSTEMS ... Water is the working fluid in evaporative cooling thus it is ..... co o lin g efficien cy (%. ) Time (hrs) predicted experimental. 0. 10. 20. 30. 40. 50. 60. 70. 80.

  12. Numerical and experimental investigation of the methane film cooling in subscale combustion chamber

    Science.gov (United States)

    Daimon, Y.; Negishi, H.; Koshi, M.; Suslov, D.

    2016-07-01

    The characteristics of film cooling in a CH4/O2 subscale chamber with multiinjector elements and two kinds of film cooling slot dimensions are investigated using a calorimeter chamber in experiments and simulations, in which the finite rate chemistry with a reduced CH4/O2 reaction mechanism is taken into account. The computed wall heat flux and pressure distributions are compared to the experimental results, which overall show good agreement. A large slot dimension is shown to induce mixing with core flow. This mixing causes a low heat-flux distribution near face plate along with high combustion efficiency.

  13. Overall Effectiveness Measurement at Engine Temperatures with Reactive Film Cooling and Surface Curvature

    Science.gov (United States)

    2015-03-26

    Da = Damkohler number ( ℎ ) DR = density ratio F = Fahrenheit FCR = film cooling rig H* = non-dimensional fuel enthalpy h...the objective of a film layer is to remain 2 attached to the blade surface, any flame produced by a reaction between the coolant and the...making reactions likely Figure 2-5 shows the predicted temperature profile on a portion of a hybrid vane. The combustion occurs in the cavity on the top

  14. Genetic Algorithm Optimization of a Film Cooling Array on a Modern Turbine Inlet Vane

    Science.gov (United States)

    2012-09-01

    Taw, does not escape some level of empiricism . Heat transfer coefficient is found from turbulent boundary layer Nu relations, originally from flat...of empiricism in heat transfer design practice and to develop truly predictive capabilities for film cooling [34]. The goals of this work are not to

  15. Film-cooled turbine endwall in a transonic flow field; Filmgekuehlte Turbinenplattform in transsonischem Stroemungsfeld

    Energy Technology Data Exchange (ETDEWEB)

    Nicklas, M.

    2000-11-01

    Aero and thermodynamic measurements at the endwall of a turbine nozzle guide vane were carried out. These investigations are the first where the complete blade passage at the endwall in a transonic flow field is analysed for heat transfer and adiabatic film-cooling effectiveness. The aerodynamic measurements identify an intensive interaction between the coolant air and the secondary flow field. Similarly strong variations in heat transfer and film-cooling effectiveness were found. Analysis of the heat transfer measurements indicates that the heat transfer represents an indispensable tool for the evaluation of platform film-cooling design. On the basis of infrared temperature measurements, a procedure for accurate analysis of heat transfer and film-cooling effectiveness in a complex transonic flow field was developed. This measurement technique combines high accuracy with flexibility of application. These investigations have led to design improvements for film-cooling systems at the platform. (orig.) [German] Aero- und thermodynamische Messungen an einer Plattform eines Turbinenleitrads werden beschrieben. Erstmals wird in einem transsonischen Stroemungsfeld die komplette Seitenwand bezueglich des Waermeuebergangs und der adiabaten Filmkuehleffektivitaet untersucht. Die aerodynamischen Messungen zeigen eine intensive Wechselwirkung der Kuehlluft mit dem Sekundaerstroemungsfeld. Daraus resultierend treten starke Aenderungen des Waermeuebergangs und der Filmkuehleffektivitaet auf. Die Resultate der Waermeuebergangsmessungen zeigen, dass der Waermeuebergang eine wichtige Groesse fuer die Bewertung eines Filmkuehldesigns an einer Plattform darstellt. Ein Messverfahren auf der Grundlage von Infrarot-Temperaturmessungen fuer eine genaue Analyse des Waermeuebergangs und der Filmkuehleffektivitaet in den komplexen Verhaeltnissen einer transsonischen Stroemung wurde entwickelt. Mit der verwendeten Messtechnik wird eine hohe Genauigkeit bei der Ermittlung der quantitativen

  16. Thermoelastic stress analysis of multilayered films in a micro-thermoelectric cooling device

    Institute of Scientific and Technical Information of China (English)

    Yu-Mei Yang; Xing-Zhe Wang; Wen-Jie Zhang

    2012-01-01

    This paper presents an analytical solution for the thermoelastic stress in a typical in-plane's thin-film microthermoelectric cooling device under different operating conditions.The distributions of the permissible temperature fields in multilayered thin-films are analytically obtained,and the characteristics,including maximum temperature difference and maximum refrigerating output of the thermoelectric device,are discussed for two operating conditions.Analytical expressions of the thermoelastic stresses in the layered thermoelectric thin-films induced by the temperature difference are formulated based on the theory of multilayer system.The results demonstrate that,the geometric dimension is a significant factor which remarkably affects the thermoelastic stresses.The stress distributions in layers of semiconductor thermoelements,insulating and supporting membrane show distinctly different features.The present work may profitably guide the optimization design of highefficiency micro-thermoelectric cooling devices.

  17. Modeling Atmospheric Activity of Cool Stars

    Science.gov (United States)

    Schrijver, C. J.

    2003-10-01

    This review discusses a set of simple models for cool-star activity with which we compute (1) photospheric field patterns on stars of different activity levels, (2) the associated outer-atmospheric field configurations, and (3) the soft X-ray emission that is expected to result from the ensemble of loop atmospheres in the coronae of these stars. The model is based on empirically-determined properties of solar activity. It allows us to extrapolate to stars of significantly higher and lower activity than seen on the present-day Sun through its cycle. With it, we can, for example, gain insight into stellar field patterns (including a possible formation mechanism for polar starspots), as well as in the properties of coronal heating (helpful in the identification of the quiescent coronal heating mechanism). Lacking comprehensive theoretical understanding, the model's reliance on empirical solar data means that the multitude of processes involved are approximated to be independent of rotation rate, activity level, and fundamental stellar parameters, or -- where unavoidably necessary -- assumed to simply scale with activity. An evaluation of the most important processes involved guides a discussion of the limits of the model, of the limitations in our knowledge, and of future needs. "I propose to adopt such rules as will ensure the testability of scientific statements; which is to say, their falsifiability." Karl Popper (1902-1994)

  18. MHD Turbulent Mixing Layers: Equilibrium Cooling Models

    CERN Document Server

    Esquivel, A; Cho, J; Lazarian, A; Leitner, S N

    2006-01-01

    We present models of turbulent mixing at the boundaries between hot (T~10^{6-7} K) and warm material (T~10^4 K) in the interstellar medium, using a three-dimensional magnetohydrodynamical code, with radiative cooling. The source of turbulence in our simulations is a Kelvin-Helmholtz instability, produced by shear between the two media. We found, that because the growth rate of the large scale modes in the instability is rather slow, it takes a significant amount of time (~1 Myr) for turbulence to produce effective mixing. We find that the total column densities of the highly ionized species (C IV, N V, and O VI) per interface (assuming ionization equilibrium) are similar to previous steady-state non-equilibrium ionization models, but grow slowly from log N ~10^{11} to a few 10^{12} cm^{-2} as the interface evolves. However, the column density ratios can differ significantly from previous estimates, with an order of magnitude variation in N(C IV)/N(O VI) as the mixing develops.

  19. Mathematic modeling on flexible cooling system in hot strip mill

    Institute of Scientific and Technical Information of China (English)

    彭良贵; 刘相华; 赵宪明; 吴迪

    2014-01-01

    A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated. Based on the different cooling mechanisms, a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers. Model parameters were validated by measured data. Heat transfer models including air convection model, heat radiation model and water cooling capacity model were detailedly introduced. In addition, effects on cooling capacity by water temperature and different valve patterns were also presented. Finally, the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm. Since online application of the sophisticated CTC process control system based on these models, run-out table cooling control system has been running stably and reliably to produce resource-saving, low-cost steels with smaller grain size.

  20. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  1. Stagnation region gas film cooling: Spanwise angled injection from multiple rows of holes. [gas turbine engines

    Science.gov (United States)

    Luckey, D. W.; Lecuyer, M. R.

    1981-01-01

    The stagnation region of a cylinder in a cross flow was used in experiments conducted with both a single row and multiple rows of spanwise angled (25 deg) coolant holes for a range of the coolant blowing ratio with a freestream to wall temperature ratio approximately equal to 1.7 and R(eD) = 90,000. Data from local heat flux measurements are presented for injection from a single row located at 5 deg, 22.9 deg, 40.8 deg, 58.7 deg from stagnation using a hole spacing ratio of S/d(o) = 5 and 10. Three multiple row configurations were also investigated. Data are presented for a uniform blowing distribution and for a nonuniform blowing distribution simulating a plenum supply. The data for local Stanton Number reduction demonstrated a lack of lateral spreading by the coolant jets. Heat flux levels larger than those without film cooling were observed directly behind the coolant holes as the blowing ratio exceeded a particular value. The data were spanwise averaged to illustrate the influence of injection location, blowing ratio and hole spacing. The large values of blowing ratio for the blowing distribution simulating a plenum supply resulted in heat flux levels behind the holes in excess of the values without film cooling. An increase in freestream turbulence intensity from 4.4 to 9.5 percent had a negligible effect on the film cooling performance.

  2. Heat Transfer on a Film-Cooled Blade - Effect of Hole Physics

    Science.gov (United States)

    Garg, Vijay K.; Rigby, David L.

    1998-01-01

    A multi-block, three-dimensional Navier-Stokes code has been used to study the within-hole and near-hole physics in relation to heat transfer on a film-cooled blade. The flow domain consists of the coolant flow through the plenum and hole-pipes for the three staggered rows of shower-head holes on the VK1 rotor, and the main flow over the blade. A multi-block grid is generated that is nearly orthogonal to the various surfaces. It may be noted that for the VK1 rotor the shower-head holes are inclined at 30 deg. to the spanwise direction, and are normal to the streamwise direction on the blade. Wilcox's k-omega turbulence model is used. The present study provides a much better comparison for the heat transfer coefficient at the blade mid-span with the experimental data than an earlier analysis wherein coolant velocity and temperature distributions were specified at the hole exits rather than extending the computational domain into the hole-pipe and plenum. Details of the distributions of coolant velocity, temperature, k and omega at the hole exits are also presented.

  3. Heat Transfer on a Film-Cooled Blade: Effect of Hole Physics

    Science.gov (United States)

    Garg, Vijay K.; Rigby, David L.

    1999-01-01

    A multiblock, three-dimensional Navier Stokes code has been used to study the within-hole and near-hole physics in relation to heat transfer on a film-cooled blade. The flow domain consists of the coolant flow through the plenum and hole-pipes for the three staggered rows of shower-head holes on the VKI rotor, and the main flow over the blade. A multiblock grid is generated that is nearly orthogonal to the various surfaces. It may be noted that for the VKI rotor the shower-head holes are inclined at 30 deg to the spanwise direction, and are normal to the streamwise direction on the blade. Wilcox's k-omega turbulence model is used. The present study provides a much better comparison for the span-averaged heat transfer coefficient on the blade surface with the experimental data than an earlier analysis wherein coolant velocity and temperature distributions were specified at the hole exits rather than extending the computational domain into the hole-pipe and plenum. Details of the distributions of coolant velocity, temperature, k and omega at the hole exits are also presented.

  4. Integrated Lifing Analysis of a Film-Cooled Turbine Blade

    Science.gov (United States)

    2003-02-01

    not available, and data for an isotropic superalloy were used. Obviously the inaccuracy of the FE calculations will be larger when an inaccurate...complex problem as a first stage turbine blade analysis to demonstrate your modelling tool. Have you considered applying the tool to lifing a disc

  5. A heat dissipating model for water cooling garments

    Directory of Open Access Journals (Sweden)

    Yang Kai

    2013-01-01

    Full Text Available A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.

  6. Elastocaloric cooling device: Materials and modeling

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Pryds, Nini;

    2015-01-01

    In the last decade we have witnessed the development of alternative solid-state cooling technologies based on so-called ferroic (caloric) effects. A large effort nowadays is devoted to investigating solid-state refrigeration using the magnetocaloric effect (change of temperature upon application ...

  7. Elastocaloric cooling device: Materials and modeling

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Pryds, Nini

    2015-01-01

    In the last decade we have witnessed the development of alternative solid-state cooling technologies based on so-called ferroic (caloric) effects. A large effort nowadays is devoted to investigating solid-state refrigeration using the magnetocaloric effect (change of temperature upon application...

  8. Experimental Investigation on the Effects of DBD Plasma on the Film Cooling Effectiveness of a 30-Degree Slot

    Directory of Open Access Journals (Sweden)

    Ye Jee Kim

    2017-06-01

    Full Text Available The effects of dielectric barrier discharge (DBD plasma on the film cooling effectiveness of a 30-degree slot was experimentally investigated in a low-speed wind tunnel. The pressure sensitive paint (PSP technique was used to measure the film cooling effectiveness, and two blowing ratios (0.5 and 1.0 were tested. A sinusoidal waveform with a 1-kHz frequency was supplied to the exposed electrode. Two input voltages (6 and 7 kV and two exposed electrode locations were considered. The results showed that the film cooling effectiveness of the slot was higher for the blowing ratio of the 1.0 case than that for the blowing ratio of the 0.5 case regardless of plasma operation. The higher input voltage case (7 kV showed higher film cooling effectiveness than the lower input voltage case (6 kV. The improvement in film cooling effectiveness facilitated by the DBD plasma was more significant when the coolant had less momentum. The maximum improvement of the area averaged film cooling effectiveness was 2.3% for the case with the exposed electrode located at the slot exit and a blowing ratio of 0.5.

  9. Effect of Turbulence Intensity on Cross-Injection Film Cooling at a Stepped or Smooth Endwall of a Gas Turbine Vane Passage

    Directory of Open Access Journals (Sweden)

    Pey-Shey Wu

    2014-01-01

    Full Text Available This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I.=1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20×104 , 1.24×105, and  1.50×105, three blowing ratios (0.5, 1.0, and 2.0, and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step. Thermochromic liquid crystal (TLC technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  10. Effect of turbulence intensity on cross-injection film cooling at a stepped or smooth endwall of a gas turbine vane passage.

    Science.gov (United States)

    Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua

    2014-01-01

    This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  11. Passive radiative cooling design with broadband optical thin-film filters

    Science.gov (United States)

    Kecebas, Muhammed Ali; Menguc, M. Pinar; Kosar, Ali; Sendur, Kursat

    2017-09-01

    The operation of most electronic semiconductor devices suffers from the self-generated heat. In the case of photovoltaic or thermos-photovoltaic cells, their exposure to sun or high temperature sources make them get warm beyond the desired operating conditions. In both incidences, the solution strategy requires effective radiative cooling process, i.e., by selective absorption and emission in predetermined spectral windows. In this study, we outline two approaches for alternative 2D thin film coatings, which can enhance the passive thermal management for application to electronic equipment. Most traditional techniques use a metallic (silver) layer because of their high reflectivity, although they display strong absorption in the visible and near-infrared spectrums. We show that strong absorption in the visible and near-infrared spectrums due to a metallic layer can be avoided by repetitive high index-low index periodic layers and broadband reflection in visible and near-infrared spectrums can still be achieved. These modifications increase the average reflectance in the visible and near-infrared spectrums by 3-4%, which increases the cooling power by at least 35 W/m2. We also show that the performance of radiative cooling can be enhanced by inserting an Al2O3 film (which has strong absorption in the 8-13 μm spectrum, and does not absorb in the visible and near-infrared) within conventional coating structures. These two approaches enhance the cooling power of passive radiative cooling systems from the typical reported values of 40 W/m2-100 W/m2 and 65 W/m2 levels respectively.

  12. The Formation of Counter-Rotating Vortex Pair and the Nature of Liftoff-Reattachment in Film-Cooling Flow

    Directory of Open Access Journals (Sweden)

    Hao Ming Li

    2016-12-01

    Full Text Available Traditionally, the formation of the Counter-Rotating Vortex Pair (CRVP has been attributed to three main sources: the jet-mainstream shear layer where the jet meets with the mainstream flow right outside the pipe, the in-tube boundary layer developing along the pipe wall, and the in-tube vortices associated with the tube inlet vorticity; whereas the liftoff-reattachment phenomenon occurring in the main flow along the plate right downstream of the jet has been associated with the jet flow trajectory. The jet-mainstream shear layer has also been demonstrated to be the dominant source of CRVP formation, whereby the shear layer disintegrates into vortex rings that deform as the jet convects downstream, becoming a pair of CRVPs flowing within the jet and eventually turning into the main flow direction. These traditional findings are assessed qualitatively and quantitatively for film-cooling flow in gas turbines by simulating numerically the flow and evaluating the extent to which the traditional flow phenomena are taking place particularly for CRVP and for flow liftoff-reattachment. To this end, three flow simulation cases are used; they are referred to as 1—the baseline case; 2—the free-slip in-tube wall case (FSIT; and 3—the unsteady flow case. The baseline case is a typical film-cooling case. The FSIT case is used to assess the in-tube boundary layer. Cases 1 and 2 are simulated using the Reynolds-averaged Navier-Stokes equations (RANS, whereas Case 3 solves a Detached Eddy Simulation (DES model. It is concluded that decreasing the strength of the CRVP, which is the case for e.g., shaped holes, provides high cooling performance, and the liftoff-reattachment phenomenon was thus found to be strongly influenced by the entrainment caused by the CRVP, rather than the jet flow trajectory. These interpretations of the flow physics that are more relevant to gas turbine cooling flow are new and provide a physics-based guideline for designing new film-cooling

  13. An Approximate Model of Microchannel Cooling

    Institute of Scientific and Technical Information of China (English)

    ShipingYu; MingdaoXin

    1994-01-01

    Forced convective heat transfer in micro-rectangular channels can be described by a group of two-dimensional differential equations.These equations take the conduction in microchannel wall along the direction of flow of coolants into account,which are more generalized than those which neglect the conduction.For the same reason,they are suitable particularly for gases-cooled microchannels.With only numerical solution to the equations till today,an approximate analytic solution is derived here,From this solution,a rather simple formula can be introduced further,by which the differences between considering the conduction and neglecting it are easily found.In addition,the reasonableness of the classical fin method is also discussed.An experimental example of air-cooled microchannels is illustrated.

  14. Model development and validation of a solar cooling plant

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano, Darine; Garcia-Gabin, Winston [Escuela de Ingenieria Electrica, Facultad de Ingenieria, Universidad de Los Andes, La Hechicera, Merida 5101 (Venezuela); Bordons, Carlos; Camacho, Eduardo F. [Departamento de Ingenieria de Sistemas y Automatica, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de Los Descubrimientos s/n, Sevilla 41092 (Spain)

    2008-03-15

    This paper describes the dynamic model of a solar cooling plant that has been built for demonstration purposes using market-available technology and has been successfully operational since 2001. The plant uses hot water coming from a field of solar flat collectors which feed a single-effect absorption chiller of 35 kW nominal cooling capacity. The work includes model development based on first principles and model validation with a set of experiments carried out on the real plant. The simulation model has been done in a modular way, and can be adapted to other solar cooling-plants since the main modules (solar field, absorption machine, accumulators and auxiliary heater) can be easily replaced. This simulator is a powerful tool for solar cooling systems both during the design phase, when it can be used for component selection, and also for the development and testing of control strategies. (author)

  15. How to get cool in the heat: comparing analytic models of halo gas cooling with EAGLE

    CERN Document Server

    Stevens, Adam R H; Contreras, Sergio; Croton, Darren J; Padilla, Nelson D; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-01-01

    We use the hydrodynamic, cosmological EAGLE simulations to investigate how hot gas in haloes condenses to form and grow galaxies. We select haloes from the simulations that are actively cooling and study the temperature, distribution, and metallicity of their hot, cold, and transitioning `cooling' gas, placing these in context of semi-analytic models. Our selection criteria lead us to focus on Milky Way-like haloes. We find the hot-gas density profiles of the haloes form a progressively stronger core over time, the nature of which can be captured by a beta profile that has a simple dependence on redshift. In contrast, the hot gas that actually cools is broadly consistent with a singular isothermal sphere. We find that cooling gas carries a few times the specific angular momentum of the halo and is offset in spin direction from the rest of the hot gas. The gas loses ~60% of its specific angular momentum during the cooling process, generally remaining greater than that of the halo, and is better aligned with th...

  16. Modeling AGN Feedback in Cool-Core Clusters: The Balance between Heating and Cooling

    CERN Document Server

    Li, Yuan

    2014-01-01

    We study the long-term evolution of an idealized cool-core galaxy cluster under the influence of momentum-driven AGN feedback using three-dimensional high-resolution (60 pc) adaptive mesh refinement (AMR) simulations. The momentum-driven AGN feedback is modeled with a pair of (small-angle) precessing jets, and the jet power is calculated based on the accretion rate of the cold gas in the vicinity of the Supermassive Black Hole (SMBH). The ICM first cools into clumps along the propagation direction of the AGN jets. As the jet power increases, gas condensation occurs isotropically, forming spatially extended (up to a few tens kpc) structures that resemble the observed $\\rm H\\alpha$ filaments in Perseus and many other cool-core cluster. Jet heating elevates the gas entropy and cooling time, halting clump formation. The cold gas that is not accreted onto the SMBH settles into a rotating disk of $\\sim 10^{11}$ M$_{\\odot}$. The hot gas cools directly onto the cold disk while the SMBH accretes from the innermost reg...

  17. Conjugate Heat Transfer Study of Combined Impingement and Showerhead Film Cooling Near NGV Leading Edge

    Directory of Open Access Journals (Sweden)

    Dileep Chandran

    2015-01-01

    Full Text Available A computational and experimental study is carried out on the leading edge region of a typical gas turbine NGV, cooled by a combination of impingement and showerhead film cooling. A detailed flow and conjugate heat transfer study has revealed the complex flow structure owing to the coolant-mainstream interaction and the influence of vane material thermal conductivity. The local effectiveness values obtained by the computations agreed well with the experimental data from IR thermography. The effect of blowing ratio on the overall effectiveness is found to be strongly dependent on the vane material conductivity. The effect of blowing ratio is also found to be different towards the pressure and suction sides of the stagnation region. However, the overall effectiveness is found to decrease by about 12% and 6% for low and high conducting materials, respectively, with an increase in mainstream Reynolds number from Re=4.8×105 to 14.4×105.

  18. Full Coverage Shaped Hole Film Cooling in an Accelerating Boundary Layer with High Free-Stream Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest E. [University of North Dakota; Kingery, Joseph E. [University of North Dakota

    2015-06-17

    Full coverage shaped-hole film cooling and downstream heat transfer measurements have been acquired in the accelerating flows over a large cylindrical leading edge test surface. The shaped holes had an 8° lateral expansion angled at 30° to the surface with spanwise and streamwise spacings of 3 diameters. Measurements were conducted at four blowing ratios, two Reynolds numbers and six well documented turbulence conditions. Film cooling measurements were acquired over a four to one range in blowing ratio at the lower Reynolds number and at the two lower blowing ratios for the higher Reynolds number. The film cooling measurements were acquired at a coolant to free-stream density ratio of approximately 1.04. The flows were subjected to a low turbulence condition (Tu = 0.7%), two levels of turbulence for a smaller sized grid (Tu = 3.5%, and 7.9%), one turbulence level for a larger grid (8.1%), and two levels of turbulence generated using a mock aero-combustor (Tu = 9.3% and 13.7%). Turbulence level is shown to have a significant influence in mixing away film cooling coverage progressively as the flow develops in the streamwise direction. Effectiveness levels for the aero-combustor turbulence condition are reduced to as low as 20% of low turbulence values by the furthest downstream region. The film cooling discharge is located close to the leading edge with very thin and accelerating upstream boundary layers. Film cooling data at the lower Reynolds number, show that transitional flows have significantly improved effectiveness levels compared with turbulent flows. Downstream effectiveness levels are very similar to slot film cooling data taken at the same coolant flow rates over the same cylindrical test surface. However, slots perform significantly better in the near discharge region. These data are expected to be very useful in grounding computational predictions of full coverage shaped hole film cooling with elevated turbulence levels and acceleration. IR

  19. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  20. Adiabatic Effectiveness and Heat Transfer Coefficient on a Film-Cooled Rotating Blade

    Science.gov (United States)

    Garg, Vijay K.

    1997-01-01

    three-dimensional Navier-Stokes code has been used to compute the adiabatic effectiveness and heat transfer coefficient on a rotating film-cooled turbine blade. The blade chosen is the United Technologies Research Center(UTRC) rotor with five film-cooling rows containing 83 holes, including three rows on the shower head with 49 holes, covering about 86% of the blade span. The mainstream is akin to that under real engine conditions with stagnation temperature 1900 K and stagnation pressure 3 MPa. The blade speed is taken to be 5200 rpm. The adiabatic effectiveness is higher for a rotating blade as compared to that for a stationary blade. Also, the direction of coolant injection from the shower-head holes considerably affects the effectiveness and heat transfer coefficient values on both the pressure and suction surfaces. In all cases the heat transfer coefficient and adiabatic effectiveness are highly three-dimensional in the vicinity of holes but tend to become two-dimensional far downstream.

  1. Film Cooling from Two Staggered Rows of Compound Angle Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of two staggered rows of film-cooling holes with compound angle orientations at high blowing ratios. These film cooling configurations are important because they are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 3d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 0.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes which becomes more pronounced as blowing ratio increases.

  2. Modelling of temperature and perfusion during scalp cooling

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, F E M; Leeuwen, G M J van; Steenhoven, A A van [Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2005-09-07

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 deg. C to 18.3 deg. C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q{sub 10} and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 deg. C to 21.8 deg. C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  3. Modelling of temperature and perfusion during scalp cooling

    Science.gov (United States)

    Janssen, F. E. M.; Van Leeuwen, G. M. J.; Van Steenhoven, A. A.

    2005-09-01

    Hair loss is a feared side effect of chemotherapy treatment. It may be prevented by cooling the scalp during administration of cytostatics. The supposed mechanism is that by cooling the scalp, both temperature and perfusion are diminished, affecting drug supply and drug uptake in the hair follicle. However, the effect of scalp cooling varies strongly. To gain more insight into the effect of cooling, a computer model has been developed that describes heat transfer in the human head during scalp cooling. Of main interest in this study are the mutual influences of scalp temperature and perfusion during cooling. Results of the standard head model show that the temperature of the scalp skin is reduced from 34.4 °C to 18.3 °C, reducing tissue blood flow to 25%. Based upon variations in both thermal properties and head anatomies found in the literature, a parameter study was performed. The results of this parameter study show that the most important parameters affecting both temperature and perfusion are the perfusion coefficient Q10 and the thermal resistances of both the fat and the hair layer. The variations in the parameter study led to skin temperature ranging from 10.1 °C to 21.8 °C, which in turn reduced relative perfusion to 13% and 33%, respectively.

  4. Hydrogen film cooling with incident and swept-shock interactions in a Mach 6.4 nitrogen free stream

    Science.gov (United States)

    Olsen, George C.; Nowak, Robert J.

    1995-01-01

    The effectiveness of slot film cooling of a flat plate in a Mach 6.4 flow with and without incident and swept oblique shock interactions was experimentally investigated. Hydrogen was the primary coolant gas, although some tests were conducted using helium as the coolant. Tests were conducted in the Calspan 48-Inch Shock Tunnel with a nitrogen flow field to preclude combustion of the hydrogen coolant gas. A two-dimensional highly instrumented model developed in a previous test series was used. Parameters investigated included coolant mass flow rate, coolant gas, local free-stream Reynolds number, incident oblique shock strength, and a swept oblique shock. Both gases were highly effective coolants in undisturbed flow; however, both incident and swept shocks degraded that effectiveness.

  5. Film cooling on a convex wall: Heat transfer and hydrodynamic measurements for full and partial coverage

    Science.gov (United States)

    Furuhama, K.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1985-08-01

    Turbine-blade cooling is an important issue for high-efficiency turbine engines, and discrete-hole injection is widely used as a cooling method. In the present study, detailed measurements were made of the heat transfer and hydrodynamics of a film-cooled flow on a convex wall, both for full and partial coverage. Two important parameters were altered: the blowing ratio, m, and the number of rows of injection holes. Three values of m were tested: m = 0.2, 0.4, and 0.6. In the blown region, m = 0.4 results in the lowest Stanton numbers of the three blowing ratios tested. This indicates that the value of m = 0.4 is near optimum on the convex wall from the point of view of cooling effect by injection. In the recovery region, Stanton numbers gradually approach the no injection values. Although the heat-transfer behavior during recovery from injection looks relatively complicated, the behavior of Stanton number can be explained in terms of two mechanisms: recovery from the thermal effect of injection and recovery from the turbulence augmentation. This interpretation of the data is supported by the hydrodynamic and temperture-profile measurements. For partial blowing cases, the data follow the full-coverage values inside the blown region. In the unblown region, both in the curved and in the flat plate, the effect of the number of blown rows is clearly seen. Hydrodynamic boundary-layer profiles were measured with the aid of a triple hot-water probe. Three mean-velocity components and six turbulence quantities were simultaneously measured, and inside the blown region strong three-dimensionality was observed.

  6. Abrupt cooling over the North Atlantic in modern climate models

    Science.gov (United States)

    Sgubin, Giovanni; Swingedouw, Didier; Drijfhout, Sybren; Mary, Yannick; Bennabi, Amine

    2017-02-01

    Observations over the 20th century evidence no long-term warming in the subpolar North Atlantic (SPG). This region even experienced a rapid cooling around 1970, raising a debate over its potential reoccurrence. Here we assess the risk of future abrupt SPG cooling in 40 climate models from the fifth Coupled Model Intercomparison Project (CMIP5). Contrary to the long-term SPG warming trend evidenced by most of the models, 17.5% of the models (7/40) project a rapid SPG cooling, consistent with a collapse of the local deep-ocean convection. Uncertainty in projections is associated with the models' varying capability in simulating the present-day SPG stratification, whose realistic reproduction appears a necessary condition for the onset of a convection collapse. This event occurs in 45.5% of the 11 models best able to simulate the observed SPG stratification. Thus, due to systematic model biases, the CMIP5 ensemble as a whole underestimates the chance of future abrupt SPG cooling, entailing crucial implications for observation and adaptation policy.

  7. Computational Film Cooling Effectiveness of Dual Trench Configuration on Flat Plate at Moderate Blowing Ratios

    Institute of Scientific and Technical Information of China (English)

    Antar M.M.Abdala; Qun Zheng; Fifi N.M.Elwekeel; Ping Dong

    2013-01-01

    In the present work,computational simulations was made using ANSYS CFX to predict the improvements in film cooling performance with dual trench.Dual-trench configuration consists of two trenches together,one wider trench and the other is narrow trench that extruded from the wider one.Several blowing ratios in the range (0.5∶5) were investigated.The pitch-to-diameter ratio of 2.775 is used.By using the dual trench configuration,the coolant jet impacted the trench wall two times allowing increasing the spreading of coolant laterally in the trench,reducing jet velocity and jet completely covered on the surface.The results indicate that this configuration increased adiabatic effectiveness as blowing ratio increased.The spatially averaged adiabatic effectiveness reached 57.6% for at M=2.No observed film blow-offat all blowing ratios.The adiabatic film effectiveness of dual trench case outperformed the narrow trench case,laidback fan-shaped hole,fan-shaped hole and cylinder hole at different blowing ratios.

  8. Operational cooling tower model (CTTOOL V1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); LocalDomainServers, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garrett, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Mechanical draft cooling towers (MDCT’s) are widely used to remove waste heat from industrial processes, including suspected proliferators of weapons of mass destruction (WMD). The temperature of the air being exhausted from the MDCT is proportional to the amount of thermal energy being removed from the process cooling water, although ambient weather conditions and cooling water flow rate must be known or estimated to calculate the rate of thermal energy dissipation (Q). It is theoretically possible to derive MDCT air exhaust temperatures from thermal images taken from a remote sensor. A numerical model of a MDCT is required to translate the air exhaust temperature to a Q. This report describes the MDCT model developed by the Problem Centered Integrated Analysis (PCIA) program that was designed to perform those computational tasks. The PCIA program is a collaborative effort between the Savannah River National Laboratory (SRNL), the Northrop-Grumman Corporation (NG) and the Aerospace Corporation (AERO).

  9. Flame-Sprayed Y2O3 Films with Metal-EDTA Complex Using Various Cooling Agents

    Science.gov (United States)

    Komatsu, Keiji; Toyama, Ayumu; Sekiya, Tetsuo; Shirai, Tomoyuki; Nakamura, Atsushi; Toda, Ikumi; Ohshio, Shigeo; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2017-01-01

    In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film's temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit's temperatures.

  10. Effect of Vortex Circulation on Injectant from a Single Film-Cooling Hole and a Row of Film-Cooling Holes in a Turbulent Boundary Layer. Part 1. Injection Beneath the Vortex Downwash

    Science.gov (United States)

    1989-06-01

    distribution is unlimited ~ PERFORMING ORGAN IZATION REPORT NUMBER(S) 5 MONITORING ORGANIZ ATION REPORT NUMBER(S) )a NAM E OF PERF ORMING ORGANIZATION 6b...California, March, 1987. Ort1::, A., "The Thermal Behavoir of Film Cooled Turbulent Boundary Layers as Affected by Long1tudinal Vort1ces", M.E

  11. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  12. Forming chondrules in impact splashes. I. Radiative cooling model

    Energy Technology Data Exchange (ETDEWEB)

    Dullemond, Cornelis Petrus; Stammler, Sebastian Markus [Institute for Theoretical Astrophysics, Heidelberg University, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Johansen, Anders [Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, SE-22100 Lund (Sweden)

    2014-10-10

    The formation of chondrules is one of the oldest unsolved mysteries in meteoritics and planet formation. Recently an old idea has been revived: the idea that chondrules form as a result of collisions between planetesimals in which the ejected molten material forms small droplets that solidify to become chondrules. Pre-melting of the planetesimals by radioactive decay of {sup 26}Al would help produce sprays of melt even at relatively low impact velocity. In this paper we study the radiative cooling of a ballistically expanding spherical cloud of chondrule droplets ejected from the impact site. We present results from numerical radiative transfer models as well as analytic approximate solutions. We find that the temperature after the start of the expansion of the cloud remains constant for a time t {sub cool} and then drops with time t approximately as T ≅ T {sub 0}[(3/5)t/t {sub cool} + 2/5]{sup –5/3} for t > t {sub cool}. The time at which this temperature drop starts t {sub cool} depends via an analytical formula on the mass of the cloud, the expansion velocity, and the size of the chondrule. During the early isothermal expansion phase the density is still so high that we expect the vapor of volatile elements to saturate so that no large volatile losses are expected.

  13. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.

  14. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    Science.gov (United States)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  15. Investigation of Minimum Film boiling Phenomena on Fuel Rods Under Blowdown Cooling Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stephen M. Bajorek; Michael Gawron; Timothy Etzel; Lucas Peterson

    2003-06-30

    Blowdon cooling heat transfer is an important process that occurs early in a hypothetical large break loss-of-coolant accident (LOCA) in a pressurized water reactor. During blowdown, the flow through the hot assembly is a post-critical heat flux dispersed droplet flow. The heat transfer mechanisms that occur in blowdown cooling are complex and depend on droplet and heated surface interaction. In a safety analysis, it is of considerable importance to determine the thermal-hydraulic conditions leading to the minimum film boiling temperature, Tmin. A flow boiling rig for measurement of blowdown cooling heat transfer and quench phenomena on a nuclear fuel rod simulator was designed and constructed for operation at up to 12.4 MPa. The test section consisted of a concentric annulus, with a 9.5 mm OD nuclear fuel rod simulator at the center. The rod was contained within a 0.85 mm thick, 19 mm OD 316 stainless steel tube, forming the flow channel. Two types of rods were tested; one type was sheathed with Inconel 600 while the other was clad with Zircaloy-2. Water was injected into the test section at the top of the heated length through an injection header. This header was an annular sign that fit around the fuel rod simulator and within the stainless steel tube. Small spacers aligned the injection header and prevented contract with either the heater rod or the tube. A series of small diameter holes at the bottom of the header caused the formation of droplets that became entrained with the steam flow. The test section design was such that quench would take place on the rod, and not along the channel outer annulus.

  16. Modeling sympathetic cooling of molecules by ultracold atoms

    CERN Document Server

    Lim, Jongseok; Hutson, Jeremy M; Tarbutt, M R

    2015-01-01

    We model sympathetic cooling of ground-state CaF molecules by ultracold Li and Rb atoms. The molecules are moving in a microwave trap, while the atoms are trapped magnetically. We calculate the differential elastic cross sections for CaF-Li and CaF-Rb collisions, using model Lennard-Jones potentials adjusted to give typical values for the s-wave scattering length. Together with trajectory calculations, these differential cross sections are used to simulate the cooling of the molecules, the heating of the atoms, and the loss of atoms from the trap. We show that a hard-sphere collision model based on an energy-dependent momentum transport cross section accurately predicts the molecule cooling rate but underestimates the rates of atom heating and loss. Our simulations suggest that Rb is a more effective coolant than Li for ground-state molecules, and that the cooling dynamics are less sensitive to the exact value of the s-wave scattering length when Rb is used. Using realistic experimental parameters, we find th...

  17. Numerical Model for Conduction-Cooled Current Lead Heat Loads

    CERN Document Server

    White, M J; Brueck, H D; 10.1063/1.4706965

    2012-01-01

    Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world, however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. The XFEL (X-Ray Free Electron Laser) magnets are operated at 2 K, which makes vapor-cooled current leads impractical due to the sub-atmospheric bath pressure. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal inte...

  18. Experimental Study of the Cooling of Electrical Components Using Water Film Evaporation

    Directory of Open Access Journals (Sweden)

    S. Harmand

    2012-01-01

    Full Text Available Heat and mass transfer, which occur in the evaporation of a falling film of water, are studied experimentally. This evaporation allows the dissipation of the heat flux produced by twelve resistors, which simulate electrical components on the back side of an aluminium plate. On the front side of the plate, a falling film of water flows by the action of gravity. An inverse heat conduction model, associated with a spatial regularisation, was developed and produces the local heat fluxes on the plate using the measured temperatures. The efficiency of this evaporative process has been studied with respect to several parameters: imposed heat flux, inlet mass flow rate, and geometry. A comparison of the latent and sensible fluxes used to dissipate the imposed heat flux was studied in the case of a plexiglass sheet in front of the falling film at different distances from the aluminium plate.

  19. Modeling and energy simulation of the variable refrigerant flow air conditioning system with water-cooled condenser under cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueming; Wu, Jingyi [Shanghai Jiao Tong University, Institute of Refrigeration and Cryogenics (China); Shiochi, Sumio [Daikin Industries Ltd. (Japan)

    2009-09-15

    As a new system, variable refrigerant flow system with water-cooled condenser (water-cooled VRF) can offer several interesting characteristics for potential users. However, at present, its dynamic simulation simultaneously in association with building and other equipments is not yet included in the energy simulation programs. Based on the EnergyPlus's codes, and using manufacturer's performance parameters and data, the special simulation module for water-cooled VRF is developed and embedded in the software of EnergyPlus. After modeling and testing the new module, on the basis of a typical office building in Shanghai with water-cooled VRF system, the monthly and seasonal cooling energy consumption and the breakdown of the total power consumption are analyzed. The simulation results show that, during the whole cooling period, the fan-coil plus fresh air (FPFA) system consumes about 20% more power than the water-cooled VRF system does. The power comparison between the water-cooled VRF system and the air-cooled VRF system is performed too. All of these can provide designers some ideas to analyze the energy features of this new system and then to determine a better scheme of the air conditioning system. (author)

  20. Cooling nozzles characteristics for numerical models of continuous casting

    Directory of Open Access Journals (Sweden)

    R. Pyszko

    2013-10-01

    Full Text Available Modelling the temperature field of a continuously cast strand is an important tool for the process diagnostics. The main preconditions for numerical simulation of the temperature field of the solidifying strand are correct boundary conditions, especially the surface condition in the secondary zone of the caster. The paper deals with techniques of determining the surface condition under cooling nozzles as well as their approximation and implementation into the model algorithm. Techniques used for laboratory measurements of both cold and hot spraying characteristics of water or water-air cooling nozzles are described. The relationship between the cold and hot characteristics was found. Implementation of such a dependence into the model algorithm reduces the duration and cost of laboratory measurements.

  1. Models of steady state cooling flows in elliptical galaxies

    Science.gov (United States)

    Vedder, Peter W.; Trester, Jeffrey J.; Canizares, Claude R.

    1988-01-01

    A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount.

  2. CFD MODELING ANALYSIS OF MECHANICAL DRAFT COOLING TOWER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

    2008-03-03

    Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has a MDCT consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to conduct a parametric study for cooling tower performance under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model to achieve the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of the modeling calculations was performed to investigate the impact of ambient and operating conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was benchmarked against the literature data and the SRS test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be presented here.

  3. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  4. Progress on Analytical Modeling of Coherent Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.; Blaskiewicz, M.; Litvinenko, V.; Webb, S.

    2010-05-23

    We report recent progresses on analytical studies of Coherent Electron Cooling. The phase space electron beam distribution obtained from the 1D FEL amplifier is applied to an infinite electron plasma model and the electron density evolution inside the kicker is derived. We also investigate the velocity modulation in the modulator and obtain a closed form solution for the current density evolution for infinite homogeneous electron plasma.

  5. Comparison of Software Models for Energy Savings from Cool Roofs

    Energy Technology Data Exchange (ETDEWEB)

    New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Yu (Joe) [White Box Technologies; Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  6. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  7. Modeling Tear Film Evaporation and Breakup with Duplex Films

    Science.gov (United States)

    Stapf, Michael; Braun, Richard; Begley, Carolyn; Driscoll, Tobin; King-Smith, Peter Ewen

    2015-11-01

    Tear film thinning, hyperosmolarity, and breakup can irritate and damage the ocular surface. Recent research hypothesizes deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. We consider a model for team film evolution incorporating two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of salt concentration, osmosis, evaporation as modified by the lipid layer, and the polar portion of the lipid layer. Numerically solving the resulting model, we explore the conditions for tear film breakup and analyze the response of the system to changes in our parameters. Our studies indicate sufficiently fast peak values or sufficiently wide areas of evaporation promote TBU, as does diffusion of solutes. In addition, the Marangoni effect representing polar lipids dominates viscous dissipation from the non-polar lipid layer in the model. This work was supported in part by NSF grant 1412085 and NIH grant 1R01EY021794.

  8. Transient air cooling thermal modeling of a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Adzakpa, K.P.; Ramousse, J.; Dube, Y.; Akremi, H.; Agbossou, K. [Hydrogen Research Institute and Departement de genie electrique, Universite du Quebec a Trois-Rivieres, CP 500, Trois-Rivieres (QC) (Canada); Dostie, M.; Poulin, A.; Fournier, M. [LTE-Hydro-Quebec, 600 av. de la Montagne, Shawinigan (QC) (Canada)

    2008-04-15

    Fuel cell utilization for automobile and residential applications is a promising option in order to help reduce environmental concerns such as pollution. However, fuel cell development requires addressing their dynamic behavior to improve their performances and their life cycle. Since the temperature distribution in the cell is known to be an important factor to the fuel cell's efficiency, a cooling device is often added to homogenize the temperature in the cell and to ensure temperature control. A 3D dynamic thermal model of a single fuel cell is presented in this work in order to study the temperature distribution in a fuel cell cooled from the bottom to the top with air. The model is governed by the thermal energy balance, taking into account the inlet gas humidity. The model is developed with the finite difference method and is implemented in the Matlab/Simulink environment. The validation is based on the performances of the ''NEXA'' fuel cell produced by Ballard Power Systems. The efficiency analysis of that air cooling device reveals that the cell temperature is directly linked to the current density and to the gas humidity - varying from 30 C at 5A to 80 C at 35A at low humidity. Moreover, the temperature non-uniformity in the stack is shown to be very high. As a result, temperatures are higher at the top part of the cell than at the bottom part, with a difference of up to a 5 C. Moreover the non-uniformity of the air cooling between the cells of the stack leads to large temperature variations, up to 8 C, from one cell to another. These temperature variations result in large voltage disparities between the cells, which reduce the total electrical power of the entire stack. (author)

  9. Experimental investigation of gas turbine airfoil aerodynamic performance without and with film cooling in an annular sector cascade

    Energy Technology Data Exchange (ETDEWEB)

    Wiers, S.H.

    2002-02-01

    The steady growing of industrialization, the densification of the anthroposphere, the increasing concern over the effects of gas turbine cruise emissions on the atmosphere threaten the growth of air transportation, and the perception about the possible climatic impact of CO{sub 2} emissions causes a public distinctive sense of responsibility. The conventional energy production techniques, which are based on fossil fuel, will keep its central importance within the global energy production. Forecasts about the increasing air transportation give duplication in the next 10-15 years. The optimization of the specific fuel consumption is necessary to decrease the running costs and the pollution emissions in the atmosphere, which makes an increased process efficiency of stationary turbines as well as of jet engines essential. This leads to the necessity of an increased thermodynamic efficiency of the overall process and the optimization of the aerodynamic components. Due to the necessity of more detailed three-dimensional data on the behavior of film cooled blades an annular sector cascade turbine test facility has gone into service. The annular sector cascade facility is a relative cost efficient solution compared to a full annular facility to investigate three-dimensional effects on a non cooled and cooled turbine blade. The aerodynamic investigations on the annular sector cascade facility are part of a broad perspective where experimental data from a hot annular sector cascade facility and the cold annular sector facility are used to verify, calibrate and understand the physics for both internal and external calculation methods for flow and heat transfer prediction. The objective of the present study is the design and validation of a cold flow annular sector cascade facility, which meets the flow conditions in a modem turbine as close as possible, with emphasis on achieving periodic flow conditions. The first part of this study gives the necessary background on this

  10. Effect of internal coolant crossflow orientation on the discharge coefficient of shaped film-cooling holes

    Energy Technology Data Exchange (ETDEWEB)

    Gritsch, M.; Saumweber, C.; Schulz, A.; Wittig, S.; Sharp, E.

    2000-01-01

    Discharge coefficients of three film-cooling hole geometries are presented over a wide range of engine like conditions. The hole geometries comprise a cylindrical hole and two holes with a diffuser-shaped exit portion (a fanshaped and a laidback fanshaped hole). For all three hole geometries the hole axis was inclined 30 deg with respect to the direction of the external (hot gas) flow. The flow conditions considered were the hot gas crossflow Mach number (up to 0.6), the coolant crossflow Mach number (up to 0.6) and the pressure ratio across the hole (up to 2). The effect of internal crossflow approach direction, perpendicular or parallel to the main flow direction, is particularly addressed in the present study. Comparison is made of the results for a parallel and perpendicular orientation, showing that the coolant crossflow orientation has a strong impact on the discharge behavior of the different hole geometries. The discharge coefficients were found to strongly depend on both hole geometry and crossflow conditions. Furthermore, the effects of internal and external crossflow on the discharge coefficients were described by means of correlations used to derive a predicting scheme for discharge coefficients. A comparison between predictions and measurements reveals the capability of the method proposed.

  11. HOT WIRE MEASUREMENT OF TURBULENT BOUNDARY LAYER ON A FILM COOLING PLATE WITH DIFFUSION HOLES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This study experimentally investigated the film cooling flowfield of a single row of diffusion holes, from which the secondary air flow was injected into a turbulent boundary layer with zero pressure gradient on a flat plate. Circular-shaped holes were also tested as a basis for comparison. All the holes were inclined downstream at 35° with respect to the surface and the lateral spacing between the holes was 3 diameters of the hole. The mainstream velocity was maintained at 17 m/s and the Reynolds number based on the injection hole diameter was almost 11000. The density ratio of the jet to mainstream was 1.0, and the jet-to-mainstream velocity ratios M were 0.5 and 1.5. Normal-type and X-type hot wire anemometries were used to measure the streamwise mean velocity and its components, the normal and shear turbulent Reynolds stress components at the locations from the backward edge of the injection hole to 25 diameters downstream.

  12. Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jordal, Kristin

    1999-02-01

    Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency

  13. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    ”, it is shown that the part of the proposed model relating to the thermodynamics is dynamically accurate and with relatively small steady state deviations. The same is shown for a linear version of the part of the model governing the hydraulics of the cooling system. On the subject of control, the main focus...... in this work is on the development of a nonlinear robust control design. The design is based on principles from feedback. linearization to compensate for nonlinearities as well as transport delays by including a delay estimate in the feedback law. To deal with the uncertainties that emerged from the feedback...

  14. Model Predictive Control for the Operation of Building Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yudong; Borrelli, Francesco; Hencey, Brandon; Coffey, Brian; Bengea, Sorin; Haves, Philip

    2010-06-29

    A model-based predictive control (MPC) is designed for optimal thermal energy storage in building cooling systems. We focus on buildings equipped with a water tank used for actively storing cold water produced by a series of chillers. Typically the chillers are operated at night to recharge the storage tank in order to meet the building demands on the following day. In this paper, we build on our previous work, improve the building load model, and present experimental results. The experiments show that MPC can achieve reduction in the central plant electricity cost and improvement of its efficiency.

  15. Dimensionless Model of a Thermoelectric Cooling Device Operating at Real Heat Transfer Conditions: Maximum Cooling Capacity Mode

    Science.gov (United States)

    Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.

    2016-09-01

    Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.

  16. Taguchi Based Regression Analysis of End-Wall Film Cooling in a Gas Turbine Cascade with Single Row of Holes

    Science.gov (United States)

    Ravi, D.; Parammasivam, K. M.

    2016-09-01

    Numerical investigations were conducted on a turbine cascade, with end-wall cooling by a single row of cylindrical holes, inclined at 30°. The mainstream fluid was hot air and the coolant was CO2 gas. Based on the Reynolds number, the flow was turbulent at the inlet. The film hole row position, its pitch and blowing ratio was varied with five different values. Taguchi approach was used in designing a L25 orthogonal array (OA) for these parameters. The end-wall averaged film cooling effectiveness (bar η) was chosen as the quality characteristic. CFD analyses were carried out using Ansys Fluent on computational domains designed with inputs from OA. Experiments were conducted for one chosen OA configuration and the computational results were found to correlate well with experimental measurements. The responses from the CFD analyses were fed to the statistical tool to develop a correlation for bar η using regression analysis.

  17. Effect of plenum crossflow on heat (mass) transfer near and within the entrance of film cooling holes

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.J. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Mechanical Engineering; Cho, H.H. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Mechanical Engineering; Jabbari, M.Y. [Saginaw Valley State Univ., University Center, MI (United States). Dept. of Mechanical Engineering

    1997-10-01

    Convective heat/mass transfer near and within the entrance region of film cooling holes supplied with air from an internal duct (plenum) behind the cooling holes has been measured using a naphthalene sublimation technique. The experiments are conducted for duct Reynolds number, based on the duct inlet flow condition, of 1,800 to 13,500, which results in a range of hole Reynolds numbers of 8000 to 30,000, close to actual engine operating conditions. The flow entering the hole can be considered a combination of flow along a 90 deg tube bend and a sudden contraction duct flow. The flow separates at the inner corner and a secondary flow is induced by the centrifugal force associated with the streamline curvature. The mass transfer coefficient for the duct wall (surface of film-cooled plate) with a cooling hole is three to five times higher than for a fully developed duct flow. With a smaller duct, the overall transfer coefficient on the hole entrance surface increases due to the higher duct Reynolds numbers, but the flow has less secondary flow effects within the smaller space. Generally, transfer coefficients on the hole entrance surface are largely unaffected by the duct end presence, but the transfer coefficient is larger downstream for a short distance from the center of the last hole to the duct end. In tests with multiple film cooling holes, the flow at the first hole is more of a curved duct flow (strong secondary flow) and the flow at the last hole is more of a sink-like flow. At the middle hole, the flow is a combination of both flows. The mass transfer rates on the inner hole surfaces are found to be the same for holes with corresponding positions relative to the duct end, although the total number of open holes is different.

  18. Anisotropic Heisenberg model in thin film geometry

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit

    2014-01-01

    The effect of the anisotropy in the exchange interaction on the phase diagrams and magnetization behavior of the Heisenberg thin film has been investigated with effective field formulation in a two spin cluster using the decoupling approximation. Phase diagrams and magnetization behaviors have been obtained for several different cases, by grouping the systems in accordance with, whether the surfaces/interior of the film has anisotropic exchange interaction or not. - Highlights: • Phase diagrams of the anisotropic Heisenberg model on the thin film obtained • Dependence of the critical properties on the film thickness obtained • Effect of the anisotropy on the magnetic properties obtained.

  19. Model selection for radiochromic film dosimetry

    CERN Document Server

    Méndez, Ignasi

    2015-01-01

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to...

  20. Numerical investigation of impact of relative humidity on droplet accumulation and film cooling on compressor blades

    Science.gov (United States)

    Bugarin, Luz Irene

    During the summer, high inlet temperatures affect the power output of gas turbine systems. Evaporative coolers have gained popularity as an inlet cooling method for these systems. Wet compression has been one of the common evaporative cooling methods implemented to increase power output of gas turbine systems due to its simple installation and low cost. This process involves injection of water droplets into the continuous phase of compressor to reduce the temperature of the flow entering the compressor and in turn increase the power output of the whole gas turbine system. This study focused on a single stage rotor-stator compressor model with varying inlet temperature between 300K and 320K, as well as relative humidity between 0% and 100%. The simulations are carried out using the commercial CFD tool ANSYS: FLUENT. The study modeled the interaction between the two phases including mass and heat transfer, given different inlet relative humidity (RH) and temperature conditions. The Reynolds Averaged Navier-Stokes (RANS) equations with k-epsilon turbulence model were applied as well as the droplet coalescence and droplet breakup model considered in the simulation. Sliding mesh theory was implemented to simulate the compressor movement in 2-D. The interaction between the blade and droplets were modeled to address all possible interactions; which include: stick spread, splash, or rebound and compared to an interaction of only reflect. The goal of this study is to quantify the relation between RH, inlet temperature, overall heat transfer coefficient, and the heat transferred from the droplets to the blades surface. The result of this study lead to further proof that wet compression yields higher pressure ratios and lower temperatures in the domain under all of the cases. Additionally, droplet-wall interaction has an interesting effect on the heat transfer coefficient at the compressor blades.

  1. MELCOR Model Development of High Temperature Gas-cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Changyong; Huh, Changwook [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    The High Temperature Gas-cooled Reactor is one of the major challenging issues on the development of licensing technology for HTGR. The safety evaluation tools of HTGR can be developed in two ways - development of new HTGR-specific codes or revision of existing codes. The KINS is considering using existing analytic tools to the extent feasible, with appropriate modifications for the intended purpose. The system-level MELCOR code is traditionally used for LWR safety analysis, which is capable of performing thermal-fluid and accident analysis, including fission-product transport and release. Recently, this code is being modified for the NGNP HTGR by the NRC. In this study, the MELCOR input model for HTGR with Reactor Cavity Cooling System (RCCS) was developed and the steady state performance was analyzed to evaluate the applicability in HTGR. HTGR model with design characteristics of GT-MHR was developed using MELCOR 2.1 code to validate the applicability of MELCOR code to HTGR. In addition, the steady state of GT-MHR was analyzed with the developed model. It was evaluated to predict well the design parameters of GT-MHR. The developed model can be used as the basis for accident analysis of HTGR with further update of packages such as Radio Nuclide (RN) package.

  2. EXPERIMENTAL INVESTIGATION FOR THE EFFECT OF ROTATION ON THREE-DIMENSIONAL FLOW FIELD IN FILM-COOLED TURBINE

    Institute of Scientific and Technical Information of China (English)

    YUAN Feng; ZHU Xiaocheng; DU Zhaohui

    2007-01-01

    An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotation on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.

  3. Optimization and Model of Laminar Cooling Control System for Hot Strip Mills

    Institute of Scientific and Technical Information of China (English)

    XIE Hai-bo; LIU Xiang-hua; WANG Guo-dong; ZHANG Zhong-ping

    2006-01-01

    The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15 ℃.

  4. Comparative Modelling of the Spectra of Cool Giants

    Science.gov (United States)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  5. Highly c-axis-oriented monocrystalline Pb(Zr, Ti)O₃ thin films on si wafer prepared by fast cooling immediately after sputter deposition.

    Science.gov (United States)

    Yoshida, Shinya; Hanzawa, Hiroaki; Wasa, Kiyotaka; Esashi, Masayoshi; Tanaka, Shuji

    2014-09-01

    We successfully developed sputter deposition technology to obtain a highly c-axis-oriented monocrystalline Pb(Zr, Ti)O3 (PZT) thin film on a Si wafer by fast cooling (~-180°C/min) of the substrate after deposition. The c-axis orientation ratio of a fast-cooled film was about 90%, whereas that of a slow-cooled (~-40°C/min) film was only 10%. The c-axis-oriented monocrystalline Pb(Zr0.5, Ti0.5)O3 films showed reasonably large piezoelectric coefficients, e(31,f) = ~-11 C/m(2), with remarkably small dielectric constants, ϵ(r) = ~220. As a result, an excellent figure of merit (FOM) was obtained for piezoelectric microelectromechanical systems (MEMS) such as a piezoelectric gyroscope. This c-axis orientation technology on Si will extend industrial applications of PZT-based thin films and contribute further to the development of piezoelectric MEMS.

  6. Application of computational fluid dynamics to the design of the film cooled STME subscale nozzle for the National Launch System

    Science.gov (United States)

    Garrett, Joseph L.

    1992-01-01

    The status of computational fluid dynamics (CFD) calculations for the Space Transportation Main Engine (STME) film/dump cooled nozzle design is presented, with an emphasis on the timely impact of CFD on the design of the sub-scale nozzle coolant system. The following aspects of the sub-scale coolant delivery system were analyzed with CFD: 1) a design trade study of a mechanical flow splitting device for uniform distribution of the subsonic cavity flow, 2) a design trade study of the subsonic cavity lip to achieve film integrity, and 3) an analysis of the primary flow interaction with the core/secondary coolant streams. All design calculations were performed with the Generalized Aerodynamic Simulation Program (GASP), a 3-D, multi-block, generalized Navier-Stokes code capable of solving with frozen, finite-rate or equilibrium chemical kinetics. The initial design of the subsonic cavity flow used square posts to distribute the sonic orifice jets into a uniform flow. Calculations for this design indicated that an unacceptable mal-distribution of film occurred. Design modifications involving curved and slotted posts were computed in an effort to uniformly distribute the secondary coolant flow. Analysis of these configurations showed that although the flowfield improved in uniformity, it was still unacceptable, especially at higher feed pressures. Results from these studies were then incorporated into a design that resulted in the insertion of a porous metal ring into the subsonic cavity. Subsequent water flow model studies showed that this concept was successful in uniformly distributing flow exiting the cavity. In addition to the design of the subsonic cavity, CFD was also used to analyze the secondary coolant lip and the primary flow interaction with the core/secondary coolant streams. A series of calculations were first performed to modify the subsonic cavity lip contour. The flow over the modified lip was then computed simultaneously with the primary injectors to

  7. Atomic collision processes for modelling cool star spectra

    Science.gov (United States)

    Barklem, Paul

    2015-05-01

    The abundances of chemical elements in cool stars are very important in many problems in modern astrophysics. They provide unique insight into the chemical and dynamical evolution of the Galaxy, stellar processes such as mixing and gravitational settling, the Sun and its place in the Galaxy, and planet formation, to name a just few examples. Modern telescopes and spectrographs measure stellar spectral lines with precision of order 1 per cent, and planned surveys will provide such spectra for millions of stars. However, systematic errors in the interpretation of observed spectral lines leads to abundances with uncertainties greater than 20 per cent. Greater precision in the interpreted abundances should reasonably be expected to lead to significant discoveries, and improvements in atomic data used in stellar atmosphere models play a key role in achieving such advances in precision. In particular, departures from the classical assumption of local thermodynamic equilibrium (LTE) represent a significant uncertainty in the modelling of stellar spectra and thus derived chemical abundances. Non-LTE modelling requires large amounts of radiative and collisional data for the atomic species of interest. I will focus on inelastic collision processes due to electron and hydrogen atom impacts, the important perturbers in cool stars, and the progress that has been made. I will discuss the impact on non-LTE modelling, and what the modelling tells us about the types of collision processes that are important and the accuracy required. More specifically, processes of fundamentally quantum mechanical nature such as spin-changing collisions and charge transfer have been found to be very important in the non-LTE modelling of spectral lines of lithium, oxygen, sodium and magnesium.

  8. A Computational Study for the Utilization of Jet Pulsations in Gas Turbine Film Cooling and Flow Control

    Science.gov (United States)

    Kartuzova, Olga V.

    2012-01-01

    This report is the second part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part is NASA/CR-2012-217415. The third part is NASA/CR-2012-217417. Jets have been utilized in various turbomachinery applications in order to improve gas turbines performance. Jet pulsation is a promising technique because of the reduction in the amount of air removed from compressor. In this work two areas of pulsed jets applications were computationally investigated using the commercial code Fluent (ANSYS, Inc.); the first one is film cooling of High Pressure Turbine (HPT) blades and second one is flow separation control over Low Pressure Turbine (LPT) airfoil using Vortex Generator Jets (VGJ). Using pulsed jets for film cooling purposes can help to improve the effectiveness and thus allow higher turbine inlet temperature. Effects of the film hole geometry, blowing ratio and density ratio of the jet, pulsation frequency and duty cycle of blowing on the film cooling effectiveness were investigated. As for the low-pressure turbine (LPT) stages, the boundary layer separation on the suction side of airfoils can occur due to strong adverse pressure gradients. The problem is exacerbated as airfoil loading is increased. Active flow control could provide a means for minimizing separation under conditions where it is most severe (low Reynolds number), without causing additional losses under other conditions (high Reynolds number). The effects of the jet geometry, blowing ratio, density ratio, pulsation frequency and duty cycle on the size of the separated region were examined in this work. The results from Reynolds Averaged Navier-Stokes and Large Eddy Simulation computational approaches were compared with the experimental data.

  9. Absorption spectroscopy of EBT model GAFCHROMIC film.

    Science.gov (United States)

    Devic, Slobodan; Tomic, Nada; Pang, Zhiyu; Seuntjens, Jan; Podgorsak, Ervin B; Soares, Christopher G

    2007-01-01

    The introduction of radiochromic films has solved some of the problems associated with conventional 2D radiation detectors. Their high spatial resolution, low energy dependence, and near-tissue equivalence make them ideal for measurement of dose distributions in radiation fields with high dose gradients. Precise knowledge of the absorption spectra of these detectors can help to develop more suitable optical densitometers and potentially extend the use of these films to other areas such as the measurement of the radiation beam spectral information. The goal of this study is to present results of absorption spectra measurements for the new GAFCHROMIC film, EBT type, exposed to 6 MV photon beam in the dose range from 0 to 6 Gy. Spectroscopic analysis reveals that in addition to the two main absorption peaks, centered at around 583 and 635 nm, the absorption spectrum in the spectral range from 350 to 800 nm contains six more absorption bands. Comparison of the absorption spectra reveals that previous HD-810, MD-55, as well as HS GAFCHROMIC film models, have nearly the same sensitive layer base material, whereas the new EBT model, GAFCHROMIC film has a different composition of its sensitive layer. We have found that the two most prominent absorption bands in EBT model radiochromic film do not change their central wavelength position with change in a dose deposited to the film samples.

  10. Investigation of film cooling on the leading edge of turbine blade based on detached eddy simulation

    Institute of Scientific and Technical Information of China (English)

    LIANG JunYu; KANG Shun

    2012-01-01

    In order to assess the influences of curved hole passage on cooling effectiveness and flow structure of turbine blade leading edge,the detached eddy simulation is applied to numerically investigate the AGTB turbine cascade under the condition of global blowing ratio M=0.7.The straight or curved cooling holes are located at either the pressure or suction side near the leading edge.The analysis and discussion focus on the local turbulence structure; influence of pressure gradient on the structure,and distribution of cooling effectiveness on the blade surface.The numerical results show that cooling hole with curved passage could bring positive impact on the increase of the local cooling effectiveness.On the suction side,the increased cooling effectiveness could be about 82% and about 77% on the pressure side,compared to the conventional straight hole.

  11. Film cooling research on the endwall of a turbine nozzle guide vane in a short duration annular cascade. II - Analysis and correlation of results

    Science.gov (United States)

    Harasgama, S. P.; Burton, C. D.

    1991-06-01

    Measurements of the heat transfer characteristics of the film cooled endwall (platform) of a turbine nozzle guide vane in an annular cascade at engine representative conditions are analyzed. The experimental results are well represented by the superposition theory of film cooling. It is shown that high cooling effectiveness can be achieved when the data are corrected for axial pressure gradients. The data are correlated against both the slot-wall jet parameter and the discrete hole injection function for flat-plate, zero pressure gradient cases. The pressure gradient correction brings the data to within +/- 11 percent of the discrete hole correlation.

  12. Mathematical model of an integrated circuit cooling through cylindrical rods

    Directory of Open Access Journals (Sweden)

    Beltrán-Prieto Luis Antonio

    2017-01-01

    Full Text Available One of the main challenges in integrated circuits development is to propose alternatives to handle the extreme heat generated by high frequency of electrons moving in a reduced space that cause overheating and reduce the lifespan of the device. The use of cooling fins offers an alternative to enhance the heat transfer using combined a conduction-convection systems. Mathematical model of such process is important for parametric design and also to gain information about temperature distribution along the surface of the transistor. In this paper, we aim to obtain the equations for heat transfer along the chip and the fin by performing energy balance and heat transfer by conduction from the chip to the rod, followed by dissipation to the surrounding by convection. Newton's law of cooling and Fourier law were used to obtain the equations that describe the profile temperature in the rod and the surface of the chip. Ordinary differential equations were obtained and the respective analytical solutions were derived after consideration of boundary conditions. The temperature along the rod decreased considerably from the initial temperature (in contatct with the chip surface. This indicates the benefit of using a cilindrical rod to distribute the heat generated in the chip.

  13. Experimental study and modeling of cooling ceiling systems using steady-state analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca Diaz, Nestor [Thermodynamic Laboratory, University of Liege Belgium, Campus du Sart Tilman, Bat: B49 - P33, B-4000 Liege (Belgium); Universidad Tecnologica de Pereira, Facultad de Ingenieria Mecuanica, AA. 97 Pereira (Colombia); Lebrun, Jean [Thermodynamic Laboratory, University of Liege Belgium, Campus du Sart Tilman, Bat: B49 - P33, B-4000 Liege (Belgium); Andre, Philippe [Departement Sciences et Gestion de l' Environnement, University of Liege Belgium, 185, Avenue de Longwy, B-6700 Arlon (Belgium)

    2010-06-15

    This article presents the results of an experimental study performed to develop a computational model of cooling ceiling systems. The model considers the cooling ceiling as a fin. Only the dry regime is considered. From ceiling and room dimensions, material description of the cooling ceiling and measurement of supply water mass flow rate and air and water temperatures, the model calculates the cooling ceiling capacity, ceiling surface average temperature and water exhaust temperature. Fin efficiency, mixed convection close to the cooling ceiling (generated by the ventilation system) and panel perforations influence are studied. The theoretical approach gives to the user an appropriate tool for preliminary calculation, design and diagnosis in commissioning processes in order to determine the main operating conditions of the system in cooling mode. A series of experimental results got on four types of cooling ceilings are used in order to validate the model. (author)

  14. Fabrication and Optimization of Brush-Printed n-type Bi2Te3 Thick Films for Thermoelectric Cooling Devices

    Science.gov (United States)

    Liu, Xing; Zhao, Wen-yu; Zhou, Hong-yu; Mu, Xin; He, Dan-qi; Zhu, Wan-ting; Wei, Ping; Wu, Han; Zhang, Qing-jie

    2016-03-01

    A simple, efficient and rapid brush-printing method has been developed for preparation of n-type Bi2Te2.7Se0.3 films approximately 100-150 μm thick. X-ray diffraction, scanning electron microscopy, electron probe microanalysis, and four-point probe measurements were used to characterize the crystal structure, composition, microstructure, and electrical properties of the films. The results showed that all the n-type Bi2Te2.7Se0.3 thick films were composed of single-phase Bi2Te2.7Se0.3; the grains in the films were randomly distributed in the low-temperature-annealed samples and predominantly oriented along the (00 l) plane in samples annealed at temperatures >673 K. σ and the absolute value of α first increased substantially with increasing the annealing temperature in the range 573-673 K then decreased when the annealing temperature was increased further. The dependence of σ and α on annealing temperature may be reasonably explained on the basis of the change in the microstructure induced by annealing. The performance of a prototype cooling device containing n-type Bi2Te2.7Se0.3 thick films was evaluated for temperature differences produced by use of different DC currents.

  15. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-07-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  16. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...... is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally...

  17. Impact of cooling condition on the crystal structure and surface quality of preferred c-axis-oriented AIN films for SAW devices

    Institute of Scientific and Technical Information of China (English)

    ZHANG Geng-yu; YANG Bao-he; ZHAO Jian; LI Cui-ping; LI Ming-ji

    2011-01-01

    AIN films with preferred c-axis orientation are deposited on Si substrates using the radio frequency (RF) magnetron sputtering method. The post-processing is carried out under the cooling conditions including high vacuum, low vacuum under deposition gas ambient and low vacuum under dynamic N2 ambient. Structures and morphologies of the films are analyzed by X-ray diffraction (XRD) and atomic force microscopy (AFM). The hardness and Young's modulus are investigated by the nanoindenter. The experimental results indicate that the (100) and (110) peak intensities decrease in the XRD spectra and the root-mean-square of roughness (Rrms) of the film decreases gradually with the increase of the cooling rate. The maximum values of the hardness and Young's modulus are obtained by cooling in low vacuum under deposition gas ambient. The reason for orientation variation of the films is explained from the perspective of the Al-N bond formation.

  18. Modeling of Fuel Film Cooling on Chamber Hot Wall

    Science.gov (United States)

    2014-07-01

    wall-normal Cartesian coordinate y+ = dimensionless y-spacing at wall CEA = Chemical Equilibrium with Applications (computer program) CFD ...Introduction The walls of liquid rocket engine chambers and nozzles must contain large pressures while being exposed to very high temperature gases, and...The physical and chemical phenomena involved in hydrocarbon FFC is notionally represented in Fig. 1. Hydrocarbon fuel at the fuel tank temperature

  19. Cooling tower and plume modeling for satellite remote sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Powers, B.J.

    1995-05-01

    It is often useful in nonproliferation studies to be able to remotely estimate the power generated by a power plant. Such information is indirectly available through an examination of the power dissipated by the plant. Power dissipation is generally accomplished either by transferring the excess heat generated into the atmosphere or into bodies of water. It is the former method with which we are exclusively concerned in this report. We discuss in this report the difficulties associated with such a task. In particular, we primarily address the remote detection of the temperature associated with the condensed water plume emitted from the cooling tower. We find that the effective emissivity of the plume is of fundamental importance for this task. Having examined the dependence of the plume emissivity in several IR bands and with varying liquid water content and droplet size distributions, we conclude that the plume emissivity, and consequently the plume brightness temperature, is dependent upon not only the liquid water content and band, but also upon the droplet size distribution. Finally, we discuss models dependent upon a detailed point-by-point description of the hydrodynamics and thermodynamics of the plume dynamics and those based upon spatially integrated models. We describe in detail a new integral model, the LANL Plume Model, which accounts for the evolution of the droplet size distribution. Some typical results obtained from this model are discussed.

  20. Atmospheric Modeling and Retrieval of Cool Y Dwarfs

    Science.gov (United States)

    Zalesky, Joseph; Line, Michael R.; Schneider, Adam

    2017-06-01

    Brown dwarfs' near-infrared spectra contain a wealth of information which can reveal the physical and chemical processes that occur in their atmospheres. Using a recently developed atmospheric retrieval model, we are able to constrain various molecular abundances, along with photometric radius, gravity, cloud optical depths, and temperature profiles for a set of ultral-cool (T8-Y1) dwarfs observed with the Hubble Space Telescope Wide Field Camera 3. From these spectra, we are able to constrain the abundances of water, methane, ammonia, CO, CO_2, H_2S, and Na+K. Using the retrieved abundances of water and methane, we are able to determine the atmospheric carbon-to-oxygen ratio and metallicity for these objects. We also identify a continuing trend of alkali metal depletion towards cooler effective temperatures likely due to the formation of optically thin Na2S and KCl clouds.

  1. Heat Transfer Coefficient and Film Cooling Effectiveness on a Full-Film Cooling Vane%全气膜冷却叶片表面换热系数和冷却效率研究

    Institute of Scientific and Technical Information of China (English)

    张宗卫; 朱惠人; 刘聪; 孟庆昆

    2012-01-01

    The high-resolution heat transfer coefficient and the film effectiveness measurements on a full-film cooling nozzle guide vane with compound and axial angle holes were obtained using a transient liquid crystal technique. The tests were performed in a scaled-up, two-passage cascade at an inlet Reynolds number of 1.0×105. There are eight rows of compound angle cylinder film holes around the leading edge, 21 rows of axial angle cylinder holes on the pressure side, and 24 rows of axial angle cylinder holes on the suction side. The holes are fed from two internal plenum with a mass flow ratio of 4. 56% in the first plenum and 4. 67% in the second plenum. The results show that the film cover region shrinks on the suction side and expands on the pressure side due to the influence of passage vortex. The heat transfer coefficient and the film cooling effectiveness are higher in the near hole region. The heat transfer coefficient is higher and the film cooling effectiveness is lower near the leading edge. The film cooling effectiveness is about 0. 4 on the suction side and about 0. 35 on the pressure side, respectively.%为了研究全气膜冷却涡轮导叶叶片的换热特性,采用瞬态液晶技术获得了叶片全表面的高分辨率换热系数和冷却效率.实验在三叶片两通道放大模型中完成,叶栅进口雷诺数是1.0×105. 叶片前缘有8排复合角孔,压力面有21排轴向角孔,吸力面有24排轴向角孔.气膜孔排由2个供气腔供气,前腔二次流与主流的质量流量比为4.56%,后腔为4.67%.结果表明:受叶栅通道涡作用,气膜出流在吸力面呈聚敛状,在压力面则呈发散状.气膜出流受气膜孔角度影响,气膜孔下游的换热系数和冷却效率都较高.叶片前缘受到冲击,换热强,冷却效率低;叶片吸力面冷却效率维持在0.4左右,压力面维持在0.35左右.该全气膜冷却叶片气膜覆盖效果较好,冷却效率和换热系数分布均匀,是一种较好的冷却结构.

  2. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    Science.gov (United States)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  3. Modelling Alkali Line Absorption and Molecular Bands in Cool DAZs

    CERN Document Server

    Homeier, D; Allard, F; Hauschildt, P H; Schweitzer, A; Stancil, P C; Weck, P F; Homeier, Derek; Allard, Nicole F.; Allard, France; Hauschildt, Peter H.; Schweitzer, Andreas; Stancil, Phillip C.; Weck, Philippe F.

    2005-01-01

    Two peculiar stars showing an apparent extremely broadened and strong NaI D absorption have been discovered in surveys for cool white dwarfs by Oppenheimer et al. (2001) and Harris et al. (SDSS, 2003). We discuss the nature of these objects using PHOENIX atmosphere models for metal-poor brown dwarfs/very low mass stars, and new white dwarf LTE and NLTE models for hydrogen- and helium-dominated atmospheres with metals. These include complete molecular formation in chemical equilibrium and a model for the alkali resonance line broadening based on the damping profiles of Allard et al. (2003), as well as new molecular line opacities for metal hydrides. First results of our calculations indicate good agreement with a hydrogen-dominated WD atmosphere with a Na abundance roughly consistent with a state of high accretion. We analyse deviations of the abundances of Na, K, Mg and Ca from the cosmic pattern and comment on implications of these results for standard accretion scenarios.

  4. Assessing the performance of Clostridium perfringens cooling models for cooked, uncured meat and poultry products

    Science.gov (United States)

    Heat-resistant spores of C. perfringens may germinate and multiply in cooked meat and poultry products if the rate and extent of cooling does not occur in a timely manner. Therefore, six cooling models (PMP 7.0 broth model; PMIP Uncured Beef, Chicken, and Pork Models; Smith-Schaffner (version 3); a...

  5. Thermal modeling in an engine cooling system to control coolant flow for fuel consumption improvement

    Science.gov (United States)

    Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung

    2016-09-01

    The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.

  6. Unveiling the irreversible performance degradation of organo-inorganic halide perovskite films and solar cells during heating and cooling processes.

    Science.gov (United States)

    Mamun, Abdullah Al; Ava, Tanzila Tasnim; Byun, Hye Ryung; Jeong, Hyeon Jun; Jeong, Mun Seok; Nguyen, Loi; Gausin, Christine; Namkoong, Gon

    2017-07-26

    While organo-inorganic halide perovskite solar cells show great potential to meet future energy needs, their thermal instability raises serious questions about their commercialization viability. At present, the stability of perovskite solar cells has been studied under various environmental conditions including humidity and temperature. Nonetheless, understanding of the performance of CH3NH3PbI3-xClx perovskite solar cells is limited. This study reports the irreversible performance degradation of CH3NH3PbI3-xClx perovskite solar cells during the heating and cooling processes under AM 1.5 and unveils what triggers the irreversible performance degradation of solar cells. Particularly, the primary cause of the irreversible performance degradation of CH3NH3PbI3-xClx is quantitatively analyzed by monitoring in real time the development of deteriorated crystallinity, charge trapping/detrapping, trap depth, and the PbI2 phase, namely a critical signal of perovskite degradation while varying the temperature of the perovskite films and solar cells. Most surprisingly, it is revealed that the degradation of both perovskite films and solar cells was triggered at ∼70 °C. Remarkably, even after the device temperature cooled down to room temperature, the degraded performance of the solar cells persisted with increasing charge trapping and further development of the PbI2 phase. Identification of the irreversible performance degradation of perovskite solar cells provides guidance for future development of more stable perovskite solar cells.

  7. Influence of Postdeposition Cooling Atmosphere on Thermoelectric Properties of 2% Al-Doped ZnO Thin Films Grown by Pulsed Laser Deposition

    Science.gov (United States)

    Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Luna, L. Molina; Hopkins, P. E.

    2015-06-01

    We have investigated the thermoelectric properties of 2% Al-doped ZnO (AZO) thin films depending on the postdeposition cooling atmosphere [in oxygen pressure (AZO-O) or vacuum (AZO-V)]. Thin films were grown by pulsed laser deposition on sapphire () substrates at various deposition temperatures ( to ). All films were c-axis oriented. The electrical conductivity of AZO-V thin films was higher than that of AZO-O thin films across the whole temperature range from 300 K to 600 K, due to the optimal carrier concentration () of AZO-V samples. Furthermore, the thermoelectric performance of AZO-V films increased with the deposition temperature; for instance, the highest power factor of and dimensionless figure of merit of 0.07 at 600 K were found for AZO-V thin film deposited at.

  8. Model Lung Surfactant Films: Why Composition Matters

    Energy Technology Data Exchange (ETDEWEB)

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf; DeWolf, Christine E.

    2016-10-18

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phase but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.

  9. The Multisensory Film Experience: A Cognitive Model of Experiential Film Aesthetics

    OpenAIRE

    Rocha Antunes, Luis

    2017-01-01

    This thesis introduces the concept of the multisensory film experience through a cognitive model of experiential film aesthetics in which we argue in favour of the idea that spectators can have perceptual experiences of film in the realm of thermoception, nociception and the vestibular sense-all of which are senses outside of the classic senses of sight and hearing examined in the context of film studies. We examine each of these senses in relation to the work of three contemporary film direc...

  10. CoolSim: using industrial modeling techniques to examine the impact of selective head cooling in a model of perinatal regionalization.

    Science.gov (United States)

    Gray, James; Geva, Alon; Zheng, Zheng; Zupancic, John A F

    2008-01-01

    A selective head-cooling device for the treatment of moderate to severe hypoxic-ischemic encephalopathy has been approved by the Food and Drug Administration for use in the United States. To reflect the complexity of health care delivery at the systems level, we used the industrial modeling technique of discrete event simulation to analyze the impact of various deployment strategies for selective head cooling and its partner technology, amplitude-integrated electroencephalography. We modeled the course through the perinatal system of all births in Massachusetts over a 1-year period. Cohort and care characteristics were drawn from existing databases. Results of a recently published trial were used to estimate the effects of selective head cooling. One thousand cohort replications were conducted to assess uncertainty. Several policy alternatives were examined, including no use of selective head cooling and scenarios that altered the number and placement of selective head-cooling and amplitude-integrated electroencephalography units throughout the state. Patient-level outcome and cost data were assessed. For all scenarios tested, the use of amplitude-integrated electroencephalography/selective head cooling resulted in better outcomes at lower cost. However, substantial differences in transfer rates, failure-to-cool rates, and total costs were seen across scenarios. Optimal decision-making regarding the number and placement of devices led to a 16% improvement in cost savings and a 10-fold decrease in failure-to-cool rates, compared with other deployment scenarios. These results were insensitive to significant changes in model inputs. On the basis of currently available data, the package of amplitude-integrated electroencephalography and selective head cooling seems to be an economically desirable intervention. Quantifiable techniques to assess system-wide technology performance provide a powerful approach to informing decisions regarding the structure and function of

  11. Modelling the Cooling of Coffee: Insights from a Preliminary Study in Indonesia

    Science.gov (United States)

    Widjaja, Wanty

    2010-01-01

    This paper discusses an attempt to examine pre-service teachers' mathematical modelling skills. A modelling project investigating relationships between temperature and time in the process of cooling of coffee was chosen. The analysis was based on group written reports of the cooling of coffee project and observation of classroom discussion.…

  12. Model-based fault detection for generator cooling system in wind turbines using SCADA data

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Kinnaert, Michel

    2016-01-01

    In this work, an early fault detection system for the generator cooling of wind turbines is presented and tested. It relies on a hybrid model of the cooling system. The parameters of the generator model are estimated by an extended Kalman filter. The estimated parameters are then processed by an ...

  13. What makes gambling cool? Images of agency and self-control in fiction films.

    Science.gov (United States)

    Egerer, Michael; Rantala, Varpu

    2015-03-01

    The study is a qualitative film analysis. It seeks to determine the semiotic and cinematic structures that make gambling appealing in films based on analysis of 72 film scenes from 28 narrative fiction films made from 1922 to 2003 about gambling in North American and West European mainstream cinema. The main game types include card games, casino games, and slot machines. The theme of self-control and competence was identified as being central to gambling's appeal. These images are strongly defined by gender. The study was funded by ELOMEDIA, financed by the Finnish Ministry of Education and Culture as well as the Finnish Foundation for Alcohol Studies. The limitations of the study are noted.

  14. Modelling of jet-impingement cooling for power electronics

    OpenAIRE

    Rizvi, M.J.; Skuriat, R.; Tilford, Tim; Bailey, Christopher; Johnson, C. Mark; Lu, Hua

    2009-01-01

    The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce ...

  15. Model Algorithm Research on Cooling Path Control of Hot-rolled Dual-phase Steel

    Institute of Scientific and Technical Information of China (English)

    Xiao-qing XU; Xiao-dong HAO; Shi-guang ZHOU; Chang-sheng LIU; Qi-fu ZHANG

    2016-01-01

    With the development of advanced high strength steel,especially for dual-phase steel,the model algorithm for cooling control after hot rolling has to achieve the targeted coiling temperature control at the location of downcoiler whilst maintaining the cooling path control based on strip microstructure along the whole cooling section.A cooling path control algorithm was proposed for the laminar cooling process as a solution to practical difficulties associated with the realization of the thermal cycle during cooling process.The heat conduction equation coupled with the carbon diffusion equation with moving boundary was employed in order to simulate temperature change and phase transfor-mation kinetics,making it possible to observe the temperature field and the phase fraction of the strip in real time. On this basis,an optimization method was utilized for valve settings to ensure the minimum deviations between the predicted and actual cooling path of the strip,taking into account the constraints of the cooling equipment′s specific capacity,cooling line length,etc.Results showed that the model algorithm was able to achieve the online cooling path control for dual-phase steel.

  16. Behavior of cooling jet in the lateral injection in film cooling. 1st Report. ; Time-averaged velocity and temperature field. Span hoko ni fukidasu makureikyaku ni okeru reikyaku kuki no kyodo. 1. ; Jikan heikin sokudoba to ondoba

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, A. (Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)); Yamamoto, M. (Toyota Motor Corp., Aichi (Japan)); Shizawa, T.; Honami, S. (Science University of Tokyo, Tokyo (Japan). Faculty of Engineering)

    1994-02-25

    In order to improve the gas turbine blade film cooling technology, this paper elucidates flow field and temperature field of secondary air blown out into a span direction; derives the temperature distribution on the wall face; and describes cooling air behavior in film cooling. The wall face temperature distribution measured with a temperature measuring system using liquid crystal has shown relatively good correspondence with the temperature distribution in the vicinity of the wall face as measured by a two-wire probe. Film cooling by blowing air into the span direction has shown good attachment of the secondary air onto the wall face in the secondary air blowing direction. However, in the opposite direction to the air blowing direction, air has attached to the wall face only poorly because of vortex movements of the primary air due to being dragged in. The secondary air has departed from the wall face as the blow-out ratio has been increased, resulting in drop in the cooling efficiency. A 'Z' direction position that the temperature of the secondary air shows a maximum value differs from a 'Z' direction position having a peak in the wall face cooling efficiency, the difference having become more noticeable with increasing blow-out ratio. A region with lower cooling efficiency due to rolling-in of the primary air exists near the blow-out hole, where rolling-in of the primary air is recognized prominently as the blow-out ratio has been increased. 8 refs., 6 figs.

  17. Investigating Cooling Rates of a Controlled Lava Flow using Infrared Imaging and Three Heat Diffusion Models

    Science.gov (United States)

    Tarlow, S.; Lev, E.; Zappa, C. J.; Karson, J.; Wysocki, B.

    2011-12-01

    Observation and investigation of surface cooling rates of active lava flows can help constrain thermal parameters necessary for creating of more precise lava flow models. To understand how the lava cools, temperature data was collected using an infrared video camera. We explored three models of the release of heat from lava stream; one based on heat conduction, another based on crust thickness and radiation, and a third model based on radiative cooling and variable crust thickness. The lava flow, part of the Syracuse University Lava Project (http://lavaproject.syr.edu), was made by pouring molten basalt at 1300 Celsius from a furnace into a narrow trench of sand. Hanging roughly 2 m over the trench, the infrared camera, records the lava's surface temperature for the duration of the flow. We determine the average surface temperature of the lava flow at a fixed location downstream as the mean of the lateral cross section of each frame of the IR imagery. From the recorded IR frames, we calculate the mean cross-channel temperature for each downstream distance. We then examine how this mean temperature evolves over time, and plot cooling curves for selected down-stream positions. We then compared the observed cooling behavior to that predicted by three cooling models: a conductive cooling model, a radiative cooling model with constant crust thickness, and a radiative cooling model with variable crust thickness. All three models are solutions to the one-dimensional heat equation. To create the best fit for the conductive model, we constrained thermal diffusivity and to create the best fit for the radiative model, we constrained crust thickness. From the comparison of our data to the models we can conclude that the lava flow's cooling is primarily driven by radiation.

  18. Steady state cooling flow models with gas loss for normal elliptical galaxies

    Science.gov (United States)

    Sarazin, Craig L.; Ashe, Gregory A.

    1989-01-01

    A grid of cooling flow models for the hot gas in normal elliptical galaxies is calculated, including the loss of gas due to inhomogeneous cooling. The loss process is modeled as a distributed sink for the gas with the rate of loss being proportional to the local cooling rate. The cooling flow models with gas loss have smaller sonic radii, smaller inflow rates in their central regions, lower densities, and higher temperatures than homogeneous models. The reduction in the amount of hot gas flowing into the center of the models brings the models into much better agreement with the observed X-ray surface brightness profiles of elliptical galaxies. However, there is a large dispersion in the observed X-ray luminosities of ellipticals, and this cannot be explained by variations in the efficiency of gas loss. The gas-loss models have X-ray surface brightness profiles which are much less centrally peaked than the no-gas-loss models.

  19. Cooling Performance of an Impingement Cooling Device Combined with Pins

    Institute of Scientific and Technical Information of China (English)

    Dongliang QUAN; Songling LIU; Jianghai LI; Gaowen LIU

    2005-01-01

    Experimental study and one dimensional model analysis were conducted to investigate cooling performance of an integrated impingement and pin fin cooling device. A typical configuration specimen was made and tested in a large scale low speed closed-looped wind tunnel. Detailed two-dimensional contour maps of the temperature and cooling effectiveness were obtained for different pressure ratios and therefore different coolant flow-rates through the tested specimen. The experimental results showed that very high cooling effectiveness can be achieved by this cooling device with relatively small amount of coolant flow. Based on the theory of transpiration cooling in porous material, a one dimensional heat transfer model was established to analyze the effect of various parameters on cooling effectiveness. It was found from this model that the variation of heat transfer on the gas side, including heat transfer coefficient and film cooling effectiveness, of the specimen created much more effect on its cooling effectiveness than that of the coolant side. The predictions of the one-dimensional mode were compared and agreed well with the experimental data.

  20. Convective Heat Transfer with and without Film Cooling in High Temperature, Fuel Rich and Lean Environments

    Science.gov (United States)

    2014-09-01

    the test section, a metal sleeve was placed around the entire ceramic transition as seen at the bottom left of Fig. 3.4. Despite the structural...Wade, W. R. Measurements of Total Hemispherical Emissivity of Several Stably Oxidized Metals and Some Refractory Oxide Coatings. Technical report...materials. Ceramics are capable of withstanding the high Taw condition but crack after repeated heating and cooling cycles. Thus, ceramics not viable in

  1. Fan and Pad Evaporative Cooling System for Greenhouses: Evaluation of a Numerical and Analytical Model

    NARCIS (Netherlands)

    Sapounas, A.; Nikita-Martzopoulou, Ch.; Bartzanas, T.; Kittas, C.

    2008-01-01

    An experimental greenhouse equipped with fan and pad evaporative cooling is analysed using two different models. The first one consists of a numerical simulation approach applying a commercial CFD code. The main aspects of evaporative cooling systems, in terms of heat and mass transfer and both the

  2. Early Results from a Multi-Thermal Model for the Cooling of Post-Flare Loops

    Science.gov (United States)

    Reeves, K. K.; Warren, H. P.

    2002-01-01

    We have developed a multi-thermal model for the cooling of post-flare loops. The model consists of an arcade of many nested loops that reconnect and begin cooling at slightly different times, and have different cooling profiles because of the different loop lengths across the arcade. Cooling due to both conductive and radiative processes is taken into account. The free parameters in the model include initial temperature and density in the loop, loop width and the initial loop length. The results from the model are then compared to TRACE and SXT observations. Our many-loop model does a much better job of predicting the SXT and TRACE light curves than a similar model with only one loop.

  3. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  4. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.;

    This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme and determ......This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...... and determines the steady state working conditions for the component. A sensitivity analysis of the DPC performance is carried out based on the air inlet conditions, air flow rate and recirculation fraction. A recirculation fraction around 0.3 maximizes the DPC net cooling capacity. The supply temperature...

  5. Experimental and computational study of the effect of shocks on film cooling effectiveness in scramjet combustors

    Science.gov (United States)

    Kamath, Pradeep S.; Holden, Michael S.; Mcclinton, Charles R.

    1990-01-01

    This paper presents results from a study conducted to investigate the effect of incident oblique shocks on the effectiveness of a coolant film at Mach numbers, typical of those expected in a scramjet combustor at Mach 15 to 20 flight. Computations with a parabolic code are in good agreement with the measured pressures and heat fluxes, after accounting for the influence of the shock upstream of its point of impingement on the plate, and the expansion from the trailing edge of the shock generator. The test data shows that, for the blowing rates tested, the film is rendered largely ineffective by the shock. Computations show that coolant blowing rates five to ten times those tested are required to protect against shock-induced heating. The implications of the results to scramjet combustor design are discussed.

  6. Model tests on cooling of gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Hosenfeld, H.G.; von Schwerdtner, O.A. (Kraftwerk Union A.G., Muelheim an der Ruhr (Germany, F.R.). Versuchswesen)

    1979-01-01

    The experimental handling of the blade cooling problems requires test facilities suited to each particular problem in order to obtain an independent variation of influence values. To carry out investigations with the high temperatures of the actual machine, however, would necessitate expenditure of time and money. Consideration of the Law of Similarity results in a reduction in temperature and pressure. A test arrangement is shown and typical results are explained by means of examples.

  7. Simplified model evaluation of cooling rates for glass-containing lunar compositions

    Science.gov (United States)

    Uhlmann, D. R.; Yinnon, H.; Fang, C.-Y.

    1982-01-01

    The simplified model of glass formation and the development of partial crystallinity in cooled bodies has been applied to lunar compositions 10060, 15028, 15086, 15101, 15286, 15301, 15498, 15499, 60255, 65016, 77017, Apollo 15 green glass and LUNA 24 highland basalt. The critical cooling rates for glass formation predicted by the simplified model are found to be in good agreement (to within an order of magnitude) with those predicted by the exact treatment of crystallization statistics. These predicted critical cooling rates are in even better agreement (a factor of 2) with measured values of the rates required to form glasses of the materials.

  8. Zero-field-cooled/field-cooled magnetization study of Dendrimer model

    Science.gov (United States)

    Arejdal, M.; Bahmad, L.; Benyoussef, A.

    2017-01-01

    Being motivated by Dendrimer model with mixed spins σ=3 and S=7/2, we investigated the magnetic nanoparticle system in this study. We analyzed and discussed the ground-state phase diagrams and the stable phases. Then, we elaborated and explained the magnetic properties of the system by using Monte Carlo Simulations (MCS) in the framework of the Ising model. In this way, we determined the blocking temperature, which is deduced through studying the partial-total magnetization and susceptibility as a function of the temperature, and we established the effects of both the exchange coupling interaction and the crystal field on the hysteresis loop.

  9. Case-Based Reasoning(CBR) Model for Ultra-Fast Cooling in Plate Mill

    Institute of Scientific and Technical Information of China (English)

    HU Xiao,WANG Zhaodong,; WANG Guodong

    2014-01-01

    New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex because of optimizing the temperature control error generated by heat transfer mathematical model and process parameters. In order to simplify the system and improve the temperature control precision in ultra-fast cooling process, several existing models of case-based reasoning(CBR) model are reviewed. Combining with ultra-fast cooling process, a developed R5 CBR model is proposed, which mainly improves the case representation, similarity relation and retrieval module. Certainty factor is defined in semantics memory unit of plate case which provides not only internal data reliability but also product performance reliability. Similarity relation is improved by defined power index similarity membership function. Retrieval process is simplified and retrieval efficiency is improved apparently by windmill retrieval algorithm. The proposed CBR model is used for predicting the case of cooling strategy and its capability is superior to traditional process model. In order to perform comprehensive investigations on ultra-fast cooling process, different steel plates are considered for the experiment. The validation experiment and industrial production of proposed CBR model are carried out, which demonstrated that finish cooling temperature(FCT) error is controlled within±25℃ and quality rate of product is more than 97%. The proposed CBR model can simplify ultra-fast cooling system and give quality performance for steel product.

  10. Case-based reasoning(CBR) model for ultra-fast cooling in plate mill

    Science.gov (United States)

    Hu, Xiao; Wang, Zhaodong; Wang, Guodong

    2014-11-01

    New generation thermo-mechanical control process(TMCP) based on ultra-fast cooling is being widely adopted in plate mill to product high-performance steel material at low cost. Ultra-fast cooling system is complex because of optimizing the temperature control error generated by heat transfer mathematical model and process parameters. In order to simplify the system and improve the temperature control precision in ultra-fast cooling process, several existing models of case-based reasoning(CBR) model are reviewed. Combining with ultra-fast cooling process, a developed R5 CBR model is proposed, which mainly improves the case representation, similarity relation and retrieval module. Certainty factor is defined in semantics memory unit of plate case which provides not only internal data reliability but also product performance reliability. Similarity relation is improved by defined power index similarity membership function. Retrieval process is simplified and retrieval efficiency is improved apparently by windmill retrieval algorithm. The proposed CBR model is used for predicting the case of cooling strategy and its capability is superior to traditional process model. In order to perform comprehensive investigations on ultra-fast cooling process, different steel plates are considered for the experiment. The validation experiment and industrial production of proposed CBR model are carried out, which demonstrated that finish cooling temperature(FCT) error is controlled within ±25°C and quality rate of product is more than 97%. The proposed CBR model can simplify ultra-fast cooling system and give quality performance for steel product.

  11. Fabrication and Characterization of Brush-Printed p-Type Bi0.5Sb1.5Te3 Thick Films for Thermoelectric Cooling Devices

    Science.gov (United States)

    Wu, Han; Liu, Xing; Wei, Ping; Zhou, Hong-Yu; Mu, Xin; He, Dan-Qi; Zhu, Wan-Ting; Nie, Xiao-Lei; Zhao, Wen-Yu; Zhang, Qing-Jie

    2016-11-01

    Bismuth telluride alloys are promising thermoelectric materials used for portable and wearable cooling devices due to their excellent thermoelectric properties near the ambient temperature. Here, a simple and cost-effective brush-printing technique, together with a subsequent annealing treatment, has been used to prepare Bi2Te3-based thick films and prototype devices. The composition, microstructure, and electrical properties of the brush-printed p-type Bi0.5Sb1.5Te3 thick films at different annealing temperatures are investigated. It is found that annealing temperature plays an important role in promoting densification and preventing the film from cracking, hence improving the electrical transport properties. The maximum power factor of the brush-printed thick films is 0.15 mW K-2 m-1 when annealed at 673 K for 4 h. A prototype thermoelectric device is manufactured by connecting the brush-printed p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thick films with Cu thick-film electrodes on an Al2O3 substrate. The cooling performance of the thermoelectric device is evaluated by measuring the temperature difference produced under applied currents.

  12. Modelling of phenomena in solid state for the steel casting cooled by liquid

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2011-04-01

    Full Text Available In this paper a mathematical model of cooling process for steel castings is presented. Effect of convective motion of the coolant onmaterial structure after cooling process is investigated. Mathematical and numerical model based on Generalized Difference Method for axysimmertric elements is used. To solve the Navier-Stokes equation the characteristic based split scheme (CBS has been applied. The solution of the heat transport equation with the convective term has been obtained by a stabilized meshless method. To determine of the phase transformation the macroscopic model built on the basis of Time Temperature Transformation diagrams for continuous cooling of medium-carbon steel has been used. The temporary temperature fields, the phase transformation, thermal and structural strains for the cooled element and the fields of temperature and velocity for the coolant have been determined.

  13. Modeling of gap cooling phenomena in LAVA-4 test using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Park, S.Y.; Kim, S.D.; Song, Y.M.; Kim, D.H. [Korea Atomic Energy Research Inst., Daeduk (Korea)

    2000-07-01

    During the severe accident, the coolability of hot debris in the hemispherical lower vessel head has been an important issue concerning the plant safety. KAERI has launched the 'SONATA' experimental program and series of LAVA test have been performed to examine the existence of initial gap and its effect on the cooling of hot debris. A gap-cooling phenomenon was modeled and implemented into the lower plenum model in MELCOR. The calculation with considering the gap cooling phenomena shows a good prediction of the rapid cool clown of the vessel wall and the debris. But this model needs more refinement and evaluation against the experimental results before application to the plant. (author)

  14. Modeling Film-Coolant Flow Characteristics at the Exit of Shower-Head Holes

    Science.gov (United States)

    Garg, Vijay K.; Gaugler, R. E. (Technical Monitor)

    2000-01-01

    The coolant flow characteristics at the hole exits of a film-cooled blade are derived from an earlier analysis where the hole pipes and coolant plenum were also discretized. The blade chosen is the VKI rotor with three staggered rows of shower-head holes. The present analysis applies these flow characteristics at the shower-head hole exits. A multi-block three-dimensional Navier-Stokes code with Wilcox's k-omega model is used to compute the heat transfer coefficient on the film-cooled turbine blade. A reasonably good comparison with the experimental data as well as with the more complete earlier analysis where the hole pipes and coolant plenum were also gridded is obtained. If the 1/7th power law is assumed for the coolant flow characteristics at the hole exits, considerable differences in the heat transfer coefficient on the blade surface, specially in the leading-edge region, are observed even though the span-averaged values of h (heat transfer coefficient based on T(sub o)-T(sub w)) match well with the experimental data. This calls for span-resolved experimental data near film-cooling holes on a blade for better validation of the code.

  15. Entropy generation analysis for film boiling: A simple model of quenching

    Science.gov (United States)

    Lotfi, Ali; Lakzian, Esmail

    2016-04-01

    In this paper, quenching in high-temperature materials processing is modeled as a superheated isothermal flat plate. In these phenomena, a liquid flows over the highly superheated surfaces for cooling. So the surface and the liquid are separated by the vapor layer that is formed because of the liquid which is in contact with the superheated surface. This is named forced film boiling. As an objective, the distribution of the entropy generation in the laminar forced film boiling is obtained by similarity solution for the first time in the quenching processes. The PDE governing differential equations of the laminar film boiling including continuity, momentum, and energy are reduced to ODE ones, and a dimensionless equation for entropy generation inside the liquid boundary and vapor layer is obtained. Then the ODEs are solved by applying the 4th-order Runge-Kutta method with a shooting procedure. Moreover, the Bejan number is used as a design criterion parameter for a qualitative study about the rate of cooling and the effects of plate speed are studied in the quenching processes. It is observed that for high speed of the plate the rate of cooling (heat transfer) is more.

  16. Model of Flux Trapping in Cooling Down Process

    CERN Document Server

    Kubo, Takayuki

    2015-01-01

    The flux trapping that occurs in the process of cooling down of the superconducting cavity is studied. The critical fields $B_{c2}$ and $B_{c1}$ depend on a position when a material temperature is not uniform. In a region with $T\\simeq T_c$, $B_{c2}$ and $B_{c1}$ are strongly suppressed and can be smaller than the ambient magnetic field, $B_a$. A region with $B_{c2}\\le B_a$ is normal conducting, that with $B_{c1}\\le B_a B_a$ is in the Meissner state. As a material is cooled down, these three domains including the vortex state domain sweep and pass through the material. In this process, vortices contained in the vortex state domain are trapped by pinning centers distributing in the material. A number of trapped fluxes can be evaluated by using the analogy with the beam-target collision event, where beams and a target correspond to pinning centers and the vortex state domain, respectively. We find a number of trapped fluxes and thus the residual resistance are proportional to the ambient magnetic field and the...

  17. Heat transfer and turbulence measurements of a film-cooled flow over a convexly curved surface

    Science.gov (United States)

    Furuhama, K.; Moffat, R. J.; Frota, M. N.

    1984-01-01

    Heat transfer and hydrodynamic boundary layer measurements were made in a turbulent boundary layer on a convex surface with 13 rows of injection. Both full- and partial-coverage cases were tested for three blowing ratios: 0.2, 0.4, and 0.6. Heat transfer results are discussed in terms of Stanton number with injection air temperature equal to wall temperature. In the blown region, for both m (blowing ratio) = 0.2 and 0.4, the local response of the boundary layer is dominated by curvature, and m = 0.4 shows higher cooling effects than m = 0.2 or 0.6, as expected, based on flat-plate results. Hydrodynamic measurements with a triple-hot-wire suggest the existence of two streamwise lanes. Lanes containing injection holes are highly affected by injection and show a definite streamwise evolution. Lanes which do not contain holes are not affected much by injection and show little change in the streamwise direction.

  18. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices.

    Science.gov (United States)

    Zhang, Guang; Jiang, Shaohui; Yao, Wei; Liu, Changhong

    2016-11-16

    Owing to the outstanding properties of thermal conduction, lightweight, and chemical durability, carbon nanotubes (CNTs) have revealed promising applications in thermal management materials. Meanwhile, the increasingly popular portable electronics and the rapid development of space technology need lighter weight, smaller size, and more effective thermal management devices. Here, a novel kind of heat dissipation devices based on the superaligned CNT films and underlying microchannels is proposed, and the heat dissipation properties are measured at the natural condition. Distinctive from previous studies, by combining the advantages of microchannels and CNTs, such a novel heat dissipation device enables superior natural convection heat transfer properties. Our findings prove that the novel CNT-based devices could show an 86.6% larger total natural heat dissipation properties than bare copper plate. Further calculations of the radiation and natural convection heat transfer properties demonstrate that the excellent passive cooling properties of these CNT-based devices are primarily caused by the reinforcement of the natural convection heat transfer properties. Furthermore, the heat dissipation mechanisms are briefly discussed, and we propose that the very high heat transfer coefficients and the porous structures of superaligned CNT films play critical roles in reinforcing the natural convection. The novel CNT-based heat dissipation devices also have advantages of energy-saving, free-noise, and without additional accessories. So we believe that the CNT-based heat dissipation devices would replace the traditional metal-finned heat dissipation devices and have promising applications in electronic devices, such as photovoltaic devices, portable electronic devices, and electronic displays.

  19. Temperature Field Accurate Modeling and Cooling Performance Evaluation of Direct-Drive Outer-Rotor Air-Cooling In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Feng Chai

    2016-10-01

    Full Text Available High power density outer-rotor motors commonly use water or oil cooling. A reasonable thermal design for outer-rotor air-cooling motors can effectively enhance the power density without the fluid circulating device. Research on the heat dissipation mechanism of an outer-rotor air-cooling motor can provide guidelines for the selection of the suitable cooling mode and the design of the cooling structure. This study investigates the temperature field of the motor through computational fluid dynamics (CFD and presents a method to overcome the difficulties in building an accurate temperature field model. The proposed method mainly includes two aspects: a new method for calculating the equivalent thermal conductivity (ETC of the air-gap in the laminar state and an equivalent treatment to the thermal circuit that comprises a hub, shaft, and bearings. Using an outer-rotor air-cooling in-wheel motor as an example, the temperature field of this motor is calculated numerically using the proposed method; the results are experimentally verified. The heat transfer rate (HTR of each cooling path is obtained using the numerical results and analytic formulas. The influences of the structural parameters on temperature increases and the HTR of each cooling path are analyzed. Thereafter, the overload capability of the motor is analyzed in various overload conditions.

  20. Numerical-Model Investigation of the Hydrothermal Regime of a Straight-Through Shallow Cooling Pond

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, A. S. [JSC ' VNIIG im. B. E. Vedeneeva' (Russian Federation)

    2013-11-15

    A mathematic model based on solution of hydrodynamics and heat-transfer equations by the finite-element method is constructed to predict the hydrothermal regime of a straight-through shallow cooling pond, which provides cooling circulating water to a repository of spent nuclear fuel. Numerical experiments made it possible to evaluate the influence exerted by wind conditions and flow rate of water in the river on the temperature of the circulating water.

  1. A dynamic model of an innovative high-temperature solar heating and cooling system

    OpenAIRE

    Buonomano Annamaria; Calise Francesco; Vicidomini Maria

    2016-01-01

    In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the ...

  2. Modeling and Simulation of the MIDREX Shaft Furnace: Reduction, Transition and Cooling Zones

    Science.gov (United States)

    Shams, Alireza; Moazeni, Faegheh

    2015-11-01

    Metallic iron used in steel industries is mostly obtained from a direct reduction process. The focus of this study is to simulate the furnace of the MIDREX technology. MIDREX technology which is the most important gas-based direct reduced iron (DRI) process in the world, includes reduction, transition and cooling zones. The reduction zone considered as a counter current gas-solid reactor produces sponge iron from iron ore pellets. The transition zone has sufficient height to isolate the reduction zone and cooling zone from each other and the cooling zone cools the solid product down to around 50°C. Each zone has a system of reactions. Simultaneous mass and energy balances along the reduction zone lead to a set of ordinary differential equations with two points of boundary conditions. The transitions and cooling zone are investigated at the equilibrium condition leading to a set of algebraic equations. By solving these systems of equations, we determined the materials concentration, temperature, and pressure along the furnace. Our results are in a good agreement with data reported by Parisi and Laborde (2004) for a real MIDREX plant. Using this model, the effect of reactor length and cooling gas flow on the metallization and the effect of cooling gas flow on the outlet temperature of the solid phase have been studied. These new findings can be used to minimize the consumed energy.

  3. CFD MODELING AND ANALYSIS FOR A-AREA AND H-AREA COOLING TOWERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Garrett, A.; Bollinger, J.

    2009-09-02

    Mechanical draft cooling towers are designed to cool process water via sensible and latent heat transfer to air. Heat and mass transfer take place simultaneously. Heat is transferred as sensible heat due to the temperature difference between liquid and gas phases, and as the latent heat of the water as it evaporates. Mass of water vapor is transferred due to the difference between the vapor pressure at the air-liquid interface and the partial pressure of water vapor in the bulk of the air. Equations to govern these phenomena are discussed here. The governing equations are solved by taking a computational fluid dynamics (CFD) approach. The purpose of the work is to develop a three-dimensional CFD model to evaluate the flow patterns inside the cooling tower cell driven by cooling fan and wind, considering the cooling fans to be on or off. Two types of the cooling towers are considered here. One is cross-flow type cooling tower located in A-Area, and the other is counterflow type cooling tower located in H-Area. The cooling tower located in A-Area is mechanical draft cooling tower (MDCT) consisting of four compartment cells as shown in Fig. 1. It is 13.7m wide, 36.8m long, and 9.4m high. Each cell has its own cooling fan and shroud without any flow communications between two adjacent cells. There are water distribution decks on both sides of the fan shroud. The deck floor has an array of about 25mm size holes through which water droplet falls into the cell region cooled by the ambient air driven by fan and wind, and it is eventually collected in basin area. As shown in Fig. 1, about 0.15-m thick drift eliminator allows ambient air to be humidified through the evaporative cooling process without entrainment of water droplets into the shroud exit. The H-Area cooling tower is about 7.3 m wide, 29.3 m long, and 9.0 m high. Each cell has its own cooling fan and shroud, but each of two corner cells has two panels to shield wind at the bottom of the cells. There is some

  4. A cooling change-point model of community-aggregate electrical load

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Muhammad Tauha; Mokhtar, Marwan; Chiesa, Matteo; Armstrong, Peter [Mechanical Engineering Program, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi (United Arab Emirates)

    2011-01-15

    Estimates of daily electrical cooling load for a city of 800,000 are developed based on the relationship between weather variables and daily-average electricity consumption over 1 year. The relationship is found to be nearly linear above a threshold temperature. Temperature and humidity were found to be the largest, at 59%, and second largest, at 21%, contributors to electrical cooling load. Direct normal irradiation intercepted by a vertical cylinder, DNI sin {theta}, was found to be a useful explanatory variable when modeling aggregates of buildings without a known or dominant orientation. The best study case model used DNI sin {theta} and diffuse horizontal irradiation (DHI) as distinct explanatory variables with annual electrical cooling load contributions of 9% and 11% respectively. Although the seasonal variation in electrical cooling load is large - on peak summer days more than 1.5 times the winter base load - the combined direct and diffuse solar contribution is essentially flat through the year, a condition at odds with the common assumption that solar cooling always provides a good match between supply and demand. The final model gives an electrical cooling load estimate for Abu Dhabi Island that corresponds to 40% of the total annual electrical load and 61% on the peak day. (author)

  5. Investigation the positive moments on the M-T curve of YBCO films measured by using zero-field cooling

    Institute of Scientific and Technical Information of China (English)

    郭树权; 王凤林; 周岳亮; 赵柏儒; 高炬

    2002-01-01

    The superconducting transition of a YBCO film was measured by a MPMS-5 superconducting quantum interference device magnetometer, using a zero-field cooling process. The experimental results have shown that there are positive magnetic moment and positive peak on the M-T curve. We have proven that these anomalous behaviours are due to measurement error, but not phase transition. We have proposed a simple formula to explain and to calculate quantitatively these anomalous behaviours. It was found that, provided dH > 0.59Hp (dH is the inhomogeneous field of the remnant field, Hp is the fully penetrated field of the measured sample), the experimental results will be positive,not negative.If dH ≥ 2Hp, the experimental results will be symmetrical to their real negative values. From the M-T curve, which h as positive moment and positive peak below Tc (superconducting transition temperature), we found a new possible method to obtain Hp of the measured sample.

  6. AGN Feedback and Cooling Flows: The Failure of Simple Hydrodynamical Models

    CERN Document Server

    Vernaleo, J C; Vernaleo, John C.; Reynolds, Christopher S.

    2005-01-01

    In recent years it has become increasingly clear that Active Galactic Nuclei, and radio-galaxies in particular, have an impact on large scale structure and galaxy formation. In principle, radio-galaxies are energetic enough to halt the cooling in the inner regions clusters, solving the cooling flow problem and explaining the high-mass truncation of the galaxy luminosity function. We explore this process through a series of high resolution, three dimensional hydrodynamic simulations of jetted active galaxies which act in response to cooling-mediated accretion of an ICM atmosphere. We find that such models are incapable of producing a long term balance of heating and cooling; catastrophic cooling can be delayed by the jet action but inevitably takes hold. At the heart of the failure of these models is the formation of a low density channel through which the jet can freely flow, carrying its energy out of the cooling core. While this obviously highlights the need to include physics beyond the ideal hydrodynamics...

  7. Concept of CFD model of natural draft wet-cooling tower flow

    Directory of Open Access Journals (Sweden)

    Hyhlík T.

    2014-03-01

    Full Text Available The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.

  8. RESEARCH OF INFLUENCE OF THE RODS CONSTRUCTION ON THEIR COOLING ABILITY AT FROSTING OF SILUMINS BY METHOD OF NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko

    2012-01-01

    Full Text Available Numerical modeling of heat transfer coefficient on the surface of the water-cooled rod with a slotted and jet cooling was made.  calculations were carried out in a free, open  source  CFD software package OpenFOAM. it is shown that jet cooling is more uniform and intense compared to the slotted cooling

  9. Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling

    CERN Document Server

    Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P

    2005-01-01

    The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...

  10. Development of the Glenn-Heat-Transfer (Glenn-HT) Computer Code to Enable Time-Filtered Navier Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    Science.gov (United States)

    Ameri, Ali A.; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.

  11. Development of the Glenn Heat-Transfer (Glenn-HT) Computer Code to Enable Time-Filtered Navier-Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    Science.gov (United States)

    Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.

  12. Development of the Glenn-HT Computer Code to Enable Time-Filtered Navier-Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    Science.gov (United States)

    Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Philip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations which are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminarturbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes which take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-HT code and applied to film cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30 holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and four blowing ratios of 0.5, 1.0, 1.5 and 2.0 are shown. Flow features under those conditions are also described.

  13. Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model

    Science.gov (United States)

    Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.

    2016-12-01

    Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air

  14. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    Science.gov (United States)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean

  15. Modeling the buckling and delamination of thin films

    Science.gov (United States)

    Jagla, E. A.

    2007-02-01

    I study numerically the problem of delamination of a thin film elastically attached to a rigid substrate. A nominally flat elastic thin film is modeled using a two-dimensional triangular mesh. Both compression and bending rigidities are included to simulate compression and bending of the film. The film can buckle (i.e., abandon its flat configuration) when enough compressive strain is applied. The buckled configurations of a piece of film with stripe geometry are investigated as a function of the compressive strain. It is found that the stable configuration depends strongly on the applied strain and the Poisson ratio of the film. Next, the film is considered to be attached to a rigid substrate by springs that can break when the detaching force exceeds a threshold value, producing partial delamination of the film. Delamination is induced by a mismatch of the relaxed configurations of film and substrate. The morphology of the delaminated film can be followed and compared with available experimental results as a function of model parameters. “Telephone-cord,” polygonal, and “brainlike” patterns qualitatively similar to experimentally observed configurations are obtained in different parameter regions. The main control parameters that select the different patterns are the strain mismatch between film and substrate and the degree of in-plane relaxation within the unbuckled regions.

  16. Why CO2 cools the middle atmosphere - a consolidating model perspective

    Science.gov (United States)

    Goessling, Helge F.; Bathiany, Sebastian

    2016-08-01

    Complex models of the atmosphere show that increased carbon dioxide (CO2) concentrations, while warming the surface and troposphere, lead to lower temperatures in the stratosphere and mesosphere. This cooling, which is often referred to as "stratospheric cooling", is evident also in observations and considered to be one of the fingerprints of anthropogenic global warming. Although the responsible mechanisms have been identified, they have mostly been discussed heuristically, incompletely, or in combination with other effects such as ozone depletion, leaving the subject prone to misconceptions. Here we use a one-dimensional window-grey radiation model of the atmosphere to illustrate the physical essence of the mechanisms by which CO2 cools the stratosphere and mesosphere: (i) the blocking effect, associated with a cooling due to the fact that CO2 absorbs radiation at wavelengths where the atmosphere is already relatively opaque, and (ii) the indirect solar effect, associated with a cooling in places where an additional (solar) heating term is present (which on Earth is particularly the case in the upper parts of the ozone layer). By contrast, in the grey model without solar heating within the atmosphere, the cooling aloft is only a transient blocking phenomenon that is completely compensated as the surface attains its warmer equilibrium. Moreover, we quantify the relative contribution of these effects by simulating the response to an abrupt increase in CO2 (and chlorofluorocarbon) concentrations with an atmospheric general circulation model. We find that the two permanent effects contribute roughly equally to the CO2-induced cooling, with the indirect solar effect dominating around the stratopause and the blocking effect dominating otherwise.

  17. Numerical and analytical modelling of battery thermal management using passive cooling systems

    OpenAIRE

    Greco, Angelo

    2016-01-01

    This thesis presents the battery thermal management systems (BTMS) modelling of Li-ions batteries and investigates the design and modelling of different passive cooling management solutions from single battery to module level. A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on varia...

  18. modelling room cooling capacity with fuzzy logic procedure

    African Journals Online (AJOL)

    user

    Modelling with fuzzy logic is an approach to forming ... the way humans think and make judgments [10]. ... artificial intelligence and expert systems [17, 18] to .... from selected cases, human professional computation and the Model predictions.

  19. Numerical Simulation of 3—D Temperature Distribution of the Flame Tube of the Combustion Chamber with Air Film COoling

    Institute of Scientific and Technical Information of China (English)

    ChangHaiping; HuangTaiping; 等

    1996-01-01

    The wall temperature distribution of the flame tube of the combustion chamber is strongly affected by the combustion,radiation and flow.The interaction of these influential factors froms a coupling system.In this paper,a new method,which is different from the previous methods,has been developed for calcuating the temperature distribution of the flame tube wall together with the flow field inside and outside the flame tube,In the calculation.the combustion,heat radiation,cooling air film and injection stream mixing inside the flame tube as well as the secondary air flowing outside the flame tube have been simulated.The calculation,in this paper,uses the SIMPLE algorithm,the κ-εturbulence model and the auto-adjustable damping method .By using this method ,the 3-D temperature distribution of the floame tube wall of the combustion chamber of an aeroengine has been simulated successfully.The calculation results are compared to the experimetal data.The error of wall temperature is less than 10%.

  20. Integration of Generic Multi-dimensional Model and Operational Policies for Batch Cooling Crystallization

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    2011-01-01

    A generic multi-dimensional modeling framework for studying batch cooling crystallization processes under generated operational policies is presented. The generic nature of the modeling allows the study of a wide range of chemical systems under different operational scenarios, enabling thereby, t...

  1. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  2. Numerical Simulation of Injection Molding Cooling Process Based on 3D Surface Model

    Institute of Scientific and Technical Information of China (English)

    CUIShu-biao; ZHOUHua-min; LIDe-qun

    2004-01-01

    The design of the coohng system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed.

  3. Modeling for Formation of Proeutectoid Ferrite in Steel during Continuous Cooling

    Institute of Scientific and Technical Information of China (English)

    YE Jian-song; CHANG Hong-bing; T Y Hsu(XU Zu-yao)

    2004-01-01

    A novel model of the evolution of microstructure during continuous cooling with the formation of proeutectoid ferrite in steel was proposed from a Voronoi construction for the austenite grains, based on the Rappaz′s integral nucleation model and the assumption that the ferrite nucleates at the edges of the original austenite grains and the successive growth of the ferrite grain is radial. The model can be used to calculate the fraction of ferrite as a function of time or temperature during continuous cooling, and to determine the microstructure of ferrite. The calculated results are in agreement with experimental results investigated in 0.38C-0.28Si-0.55Mn-0.92Cr-0.20Mo steel under continuous cooling using a Gleeble 1500 thermomechanical simulator.

  4. Theoretical Models for the Cooling Power and Base Temperature of Dilution Refrigerators

    CERN Document Server

    Wikus, Patrick

    2010-01-01

    He-3/He-4 dilution refrigerators are widely used for applications requiring continuous cooling at temperatures below approximately 300 mK. Despite of the popularity of these devices in low temperature physics, the thermodynamic relations underlying the cooling mechanism of He-3/He-4 refrigerators are very often incorrectly used. Several thermodynamic models of dilution refrigeration have been published in the past, sometimes contradicting each other. These models are reviewed and compared with each other over a range of different He-3 flow rates. In addition, a new numerical method for the calculation of a dilution refrigerator's cooling power at arbitrary flow rates is presented. This method has been developed at CERN's Central Cryogenic Laboratory. It can be extended to include many effects that cannot easily be accounted for by any of the other models, including the degradation of heat exchanger performance due to the limited number of step heat exchanger elements, which can be considerable for some design...

  5. 基于BP神经网络的多参数气膜冷却效率研究%Prediction of the Adiabatic Film Cooling Effectiveness Influnenced by Multi Parameters Based on BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    秦晏旻; 李雪英; 任静; 蒋洪德

    2011-01-01

    Film cooling is necessary for modern gas turbine.Its cooling effectiveness is sophisticated influenced by multi parameters.The BP neural network is applied to predict the adiabatic film cooling effectiveness of the cooling system with multi geometry and flow parameters.The input parameters of neural network are chosen as blowing ratio,density ratio,free stream turbulence intensity,area ratio and length ratio.A database covering the real operation range is build up.Prediction from the neural network trained by Bayesian Regulation backpropagation is compared to an existing correlation.The result shows a good accuracy and wide application range of the neural network model.It implicates that the developed model is promising to be applied on the film cooling system.%气膜冷却作为当代燃机高温透平中必需的冷却手段,其冷却性能在多种参数的影响下表现复杂。采用BP神经网络模型对多种几何、流动参数变化下的气膜冷却系统的绝热气膜冷却效率进行预测。选择气膜冷却系统的吹风比、密度比、主流湍流度、面积比和长径比作为神经网络的输入参数,以燃气轮机透平叶片气膜冷却的实际运行工况为范围建立数据库。计算结果表明,采用贝叶斯归一化法训练后建立的气膜冷却神经网络模型在预测精度上要优于经验公式法,而且参数适用范围更广,具有良好的发展应用前景。

  6. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for

  7. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    Science.gov (United States)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  8. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    Science.gov (United States)

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  9. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    of container ships. The purpose of the model is to describe the important dynamics of the system, such as nonlinearities, transport delays and closed circuit flow dynamics to enable the model to be used for control design and simulation. The control challenge is related to the highly non-standard type of step...

  10. Characteristics of model polyelectrolyte multilayer films containing laponite clay nanoparticles.

    Science.gov (United States)

    Elzbieciak, M; Wodka, D; Zapotoczny, S; Nowak, P; Warszynski, P

    2010-01-05

    Polyelectrolyte films structure formed by the "layer-by-layer" (LbL) technique can be enriched by addition of charged nanoparticles like carbon nanotubes and silver or hydroxyapatite nanoparticles, which can improve properties of the polyelectrolyte films or modify their functionality. In our paper we examined the formation and properties of model polyelectrolyte multilayers containing a synthetic layered silicate, Laponite. The Laponite nanoparticles were incorporated into multilayer films, which were formed from weak, branched polycation PEI and strong polyanion PSS. Since charge of PEI is pH-dependent, we build up multilayer films in two deposition conditions: pH = 6 when PEI was strongly charged and pH = 10.5 when charge density of PEI was low. Thicknesses of the films constructed with various numbers of Laponite layers were measured by single wavelength ellipsometry. We also determined the differences in permeability for selected electroactive molecules using cyclic voltamperometry. Properties of the films containing clay nanoparticles were compared with model polyelectrolyte multilayer films PEI/PSS formed at the same conditions. We found that Laponite nanoparticles strongly influenced PEI/PSS multilayer film properties. Replacement of PSS by Laponite eliminated the oscillations of the film thickness in the case when PEI was weakly charged. PSS layer adsorbed on top of PEI/Laponite bilayers increased the thickness of multilayer films and improved their barrier properties so synergistic effects between these properties for polyelectrolytes and Laponite nanoparticles could be observed.

  11. Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization

    Science.gov (United States)

    Zhang, Fangkun; Liu, Tao; Wang, Xue Z.; Liu, Jingxiang; Jiang, Xiaobin

    2017-02-01

    In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process.

  12. A statistical mechanics model of carbon nanotube macro-films

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Carbon nanotube macro-films are two-dimensional films with micrometer thickness and centimeter by centimeter in-plane dimension.These carbon nanotube macroscopic assemblies have attracted significant attention from the material and mechanics communities recently because they can be easily handled and tailored to meet specific engineering needs.This paper reports the experimental methods on the preparation and characterization of single-walled carbon nanotube macro-films,and a statistical mechanics model on ...

  13. A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations

    Science.gov (United States)

    Blouin, S.; Dufour, P.; Kowalski, P. M.

    2017-03-01

    Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H2-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H2-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm3.

  14. A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations

    CERN Document Server

    Blouin, Simon; Kowalski, Piotr M

    2016-01-01

    Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H$_2$-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H$_2$-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm$^3$.

  15. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    Energy Technology Data Exchange (ETDEWEB)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J. [Refrigerating Processes Research Unit, CEMAGEF, Parc de Tourvoie, BP 44, 92163 Antony Cedex (France)

    2007-07-15

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use. (author)

  16. Summer cooling potential of urban vegetation—a modeling study for Melbourne, Australia

    Directory of Open Access Journals (Sweden)

    Dong Chen

    2015-06-01

    Full Text Available The summer cooling potential of urban vegetation is investigated using an urban climate model for the current and future climates in the Melbourne central business district (CBD area with various urban forms and vegetation schemes. Simulation results suggest that the average seasonal summer temperatures can be reduced in the range of around 0.5 and 2°C if the Melbourne CBD were replaced by vegetated suburbs and planted parklands, respectively, benefiting a reduction in the number of hot days. It was also found that despite the projected warming in the future and variations in the climate projections among different climate models, the average seasonal cooling potential due to various urban vegetation schemes may not change significantly in comparison with those predicted for the current climate, indicating little dependency on climate change. This finding suggests that the average seasonal cooling potential as a result of urban vegetation in future climates may be empirically quantified in similar amounts to those under the current climate. When urban climate models are used, the cooling potential of urban vegetation in future climates may be quantified by modeling several selected years with one or a few climate models.

  17. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  18. Thermal models of buildings. Determination of temperatures, heating and cooling loads. Theories, models and computer programs

    Energy Technology Data Exchange (ETDEWEB)

    Kaellblad, K.

    1998-05-01

    The need to estimate indoor temperatures, heating or cooling load and energy requirements for buildings arises in many stages of a buildings life cycle, e.g. at the early layout stage, during the design of a building and for energy retrofitting planning. Other purposes are to meet the authorities requirements given in building codes. All these situations require good calculation methods. The main purpose of this report is to present the authors work with problems related to thermal models and calculation methods for determination of temperatures and heating or cooling loads in buildings. Thus the major part of the report deals with treatment of solar radiation in glazing systems, shading of solar and sky radiation and the computer program JULOTTA used to simulate the thermal behavior of rooms and buildings. Other parts of thermal models of buildings are more briefly discussed and included in order to give an overview of existing problems and available solutions. A brief presentation of how thermal models can be built up is also given and it is a hope that the report can be useful as an introduction to this part of building physics as well as during development of calculation methods and computer programs. The report may also serve as a help for the users of energy related programs. Independent of which method or program a user choose to work with it is his or her own responsibility to understand the limits of the tool, else wrong conclusions may be drawn from the results 52 refs, 22 figs, 4 tabs

  19. Cold, warm, and composite (cool) cosmic string models

    CERN Document Server

    Carter, B

    1994-01-01

    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension $T$ below the constant value $T=m^2$ say that characterizes the simple, longitudinally Lorentz invariant, Goto Nambu string model in terms of a fixed mass scale $m$ whose magnitude depends on that of the Higgs field responsible for the existence of the string. Such a reduction occurs in the standard "hot" cosmic string model in which the effect of thermal perturbations of a simple Goto Nambu model is expressed by the formula $T^2=m^2(m^2-2\\pi\\Theta^2/3)$, where $\\Theta$ is the string temperature. A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in "cold" conducting cosmic string models where the role of the temperature is played by an effective chemical potential $\\mu$ that is constructed as the magnitude of the phase $\\phi$ of a bosonic condensate of the kind whose existence was first proposed by Witten. The present article describes the construction...

  20. Body cooling, modelling & risk assessment - Immersion Hypothermia Chapter

    NARCIS (Netherlands)

    Tikuisis, P; Daanen, H.A.M.

    2014-01-01

    This chapter describes a model that can be used to predict hypothermia during cold water immersion. Drowning in cold water might precede the onset of hypothermia due to cold shock, injury or incapacitation. As pointed out in Chap. 129, there are three phases of increasing incapacitation leading to l

  1. Body cooling, modelling & risk assessment - Immersion Hypothermia Chapter

    NARCIS (Netherlands)

    Tikuisis, P; Daanen, H.A.M.

    2014-01-01

    This chapter describes a model that can be used to predict hypothermia during cold water immersion. Drowning in cold water might precede the onset of hypothermia due to cold shock, injury or incapacitation. As pointed out in Chap. 129, there are three phases of increasing incapacitation leading to

  2. Experimental Methods for Investigation of Shape Memory Based Elastocaloric Cooling Processes and Model Validation.

    Science.gov (United States)

    Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Eggeler, Gunther; Schütze, Andreas; Seelecke, Stefan

    2016-05-02

    Shape Memory Alloys (SMA) using elastocaloric cooling processes have the potential to be an environmentally friendly alternative to the conventional vapor compression based cooling process. Nickel-Titanium (Ni-Ti) based alloy systems, especially, show large elastocaloric effects. Furthermore, exhibit large latent heats which is a necessary material property for the development of an efficient solid-state based cooling process. A scientific test rig has been designed to investigate these processes and the elastocaloric effects in SMAs. The realized test rig enables independent control of an SMA's mechanical loading and unloading cycles, as well as conductive heat transfer between SMA cooling elements and a heat source/sink. The test rig is equipped with a comprehensive monitoring system capable of synchronized measurements of mechanical and thermal parameters. In addition to determining the process-dependent mechanical work, the system also enables measurement of thermal caloric aspects of the elastocaloric cooling effect through use of a high-performance infrared camera. This combination is of particular interest, because it allows illustrations of localization and rate effects - both important for efficient heat transfer from the medium to be cooled. The work presented describes an experimental method to identify elastocaloric material properties in different materials and sample geometries. Furthermore, the test rig is used to investigate different cooling process variations. The introduced analysis methods enable a differentiated consideration of material, process and related boundary condition influences on the process efficiency. The comparison of the experimental data with the simulation results (of a thermomechanically coupled finite element model) allows for better understanding of the underlying physics of the elastocaloric effect. In addition, the experimental results, as well as the findings based on the simulation results, are used to improve the

  3. Post-deposition cooling in oxygen is critical for YBa sub 2 Cu sub 3 O sub 7 sub - sub d films deposited by eclipse pulsed laser deposition method

    CERN Document Server

    Ohmukai, M; Ohno, T

    2001-01-01

    YBa sub 2 Cu sub 3 O sub 7 sub - sub d thin films were deposited on MgO single crystals by means of an eclipse pulsed laser deposition method. Deposited films are cooled down in situ under an oxygen atmosphere at a given oxygen pressure. The relationship between critical temperature and oxygen deficiency was investigated by means of electrical resistance R(T) and X-ray diffraction measurements. Post- deposition cooling is critical and the high pressure of oxygen during cooling is favorable.

  4. A model for asymmetric magnetoimpedance effect in multilayered bimagnetic films

    Science.gov (United States)

    Buznikov, N. A.; Antonov, A. S.

    2016-12-01

    The magnetoimpedance in three-layered bimagnetic film structure is studied theoretically. The structure consists of the soft and hard magnetic films separated by highly conductive non-magnetic layer. A model to describe the magnetoimpedance effect in the film structure based on a simultaneous solution of linearized Maxwell equations and Landau-Lifshitz equation is proposed. It is shown that magnetostatic coupling between the magnetic layers results in the asymmetry in the field dependence of the film impedance. The magnetostatic coupling is described in terms of an effective bias field appearing in the soft magnetic layer. The calculated field and frequency dependences of the film impedance are shown to be in a qualitative agreement with previous results of experimental studies of the asymmetric magnetoimpedance in NiFe/Cu/Co film structures. The results obtained may be useful for development of weak magnetic-field sensors.

  5. Numerical modelling rock deformation subject to nitrogen cooling to study permeability evolution

    Institute of Scientific and Technical Information of China (English)

    Chunhui Zhang; Laigui Wang; Jianhua Du; Yinghui Tian

    2015-01-01

    How to model the permeability evolution of rock subjected to liquid nitrogen cooling is a key issue. This paper proposes a simple but practical method to study the permeability evolution of rocks subject to liquid nitrogen cooling. FLAC with FISH function was employed to numerically model the rock behavior under cooling. The enhanced perme-ability of the volumetric strain was defined, and the permeability was directly evaluated based on element’s volumetric strain. Detailed procedures for implementing the evolution model of permeability in this paper were presented. A case study was carried out to simulate a coal bed where liquid nitrogen was injected in the bore hole. And a semi-submerged test of liquid nitrogen was performed. The method to model the permeability evolution of rocks subject to liquid nitrogen shock in this paper was proved to be right by the test results. This simulation results are discussed with the hope to provide some insight into understanding the nitrogen cooling practice.

  6. Modeling the cooling performance of vortex tube using a genetic algorithm-based artificial neural network

    Directory of Open Access Journals (Sweden)

    Pouraria Hassan

    2016-01-01

    Full Text Available In this study, artificial neural networks (ANNs have been used to model the effects of four important parameters consist of the ratio of the length to diameter(L/D, the ratio of the cold outlet diameter to the tube diameter(d/D, inlet pressure(P, and cold mass fraction (Y on the cooling performance of counter flow vortex tube. In this approach, experimental data have been used to train and validate the neural network model with MATLAB software. Also, genetic algorithm (GA has been used to find the optimal network architecture. In this model, temperature drop at the cold outlet has been considered as the cooling performance of the vortex tube. Based on experimental data, cooling performance of the vortex tube has been predicted by four inlet parameters (L/D, d/D, P, Y. The results of this study indicate that the genetic algorithm-based artificial neural network model is capable of predicting the cooling performance of vortex tube in a wide operating range and with satisfactory precision.

  7. Ab initio Stellar Astrophysics: Reliable Modeling of Cool White Dwarf Atmospheres

    CERN Document Server

    Kowalski, Piotr M

    2010-01-01

    Over the last decade {\\it ab initio} modeling of material properties has become widespread in diverse fields of research. It has proved to be a powerful tool for predicting various properties of matter under extreme conditions. We apply modern computational chemistry and materials science methods, including density functional theory (DFT), to solve lingering problems in the modeling of the dense atmospheres of cool white dwarfs ($T_{\\rm eff}\\rm <7000 \\, K$). Our work on the revision and improvements of the absorption mechanisms in the hydrogen and helium dominated atmospheres resulted in a new set of atmosphere models. By inclusion of the Ly-$\\rm \\alpha$ red wing opacity we successfully fitted the entire spectral energy distributions of known cool DA stars. In the subsequent work we fitted the majority of the coolest stars with hydrogen-rich models. This finding challenges our understanding of the spectral evolution of cool white dwarfs. We discuss a few examples, including the cool companion to the pulsar...

  8. A hysteresis model for an orthogonal thin-film magnetometer

    NARCIS (Netherlands)

    Ridder, de René M.; Fluitman, Jan H.

    1990-01-01

    The operation of a ferromagnetic thin-film magnetometer using the anisotropic magnetoresistance effect in a permalloy film is discussed. Measurements showed the presence of a hysteresis effect not predicted by available models. It is shown that the sensitivity of the magnetometer is predicted by app

  9. Fingering convection and cloudless models for cool brown dwarf atmospheres

    CERN Document Server

    Tremblin, P; Mourier, P; Baraffe, I; Chabrier, G; Drummond, B; Homeier, D; Venot, O

    2015-01-01

    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless mode...

  10. Permeability evolution model and numerical analysis of coupled coal deformation, failure and liquid nitrogen cooling

    Directory of Open Access Journals (Sweden)

    Chunhui ZHANG

    Full Text Available How to quantitatively evaluate the permeability change of coalbed subjected to liquid nitrogen cooling is a key issue of enhanced-permeability technology of coalbed. To analyze the evolution process of permeability of coupled coal deformation, failure and liquid introgen cooling, the coal is supposed as elastic, brittle and plastic material. Its deformation process includes elastic deformation stage, brittle strength degradation stage and residual plastic flow stage. Combined with strength degradation index, dilatancy index of the element and Mohr-Column strength criterion, the element scale constitutive model with the effects of confining pressure on peak-post mechanical behaviors is built. Based on the deformation process of coal rock, there exist two stages of permeability evolution of the element including decrease of permeability due to elastic contraction and increase due to coal rock element's failure. The relationships between the permeability and elastic deformation, shear failure and tension failure for coal are studied. The permeability will be influenced by the change of pore space due to elastic contraction or tension of element. Conjugate shear zones appear during the shear failure of the element, in which the flow follows so-called cubic law between smooth parallel plates. The calculation formulas of the permeability and the aperture of the fractures are given out based on the volumetric strain. When tension failure criterion is satisfied with the rock element fails and two orthogonal fractures appear. The calculation formulas of the permeability and the width of the fractures are given out based on the volumetric strain. Further, combined with the thermal conduction theory the permeability evolution model of coupled coal deformation, failure and liquid nitrogen cooling is presented. Then Fish function method in FLAC is employed to perform the model. The permeability's evolution process for coal bed cryogenically stimulated

  11. Cooling of the Martian thermosphere by CO$_2$ radiation and gravity waves: An intercomparison study with two general circulation models

    CERN Document Server

    Medvedev, Alexander S; Yiğit, Erdal; Feofilov, Artem G; Forget, François; Hartogh, Paul

    2015-01-01

    Observations show that the lower thermosphere of Mars ($\\sim$100--140 km) is up to 40 K colder than the current general circulation models (GCMs) can reproduce. Possible candidates for physical processes missing in the models are larger abundances of atomic oxygen facilitating stronger CO$_2$ radiative cooling, and thermal effects of gravity waves. Using two state-of-the-art Martian GCMs, the Laboratoire de M\\'et\\'eorologie Dynamique and Max Planck Institute models that self-consistently cover the atmosphere from the surface to the thermosphere, these physical mechanisms are investigated. Simulations demonstrate that the CO$_2$ radiative cooling with a sufficiently large atomic oxygen abundance, and the gravity wave-induced cooling can alone result in up to 40 K colder temperature in the lower thermosphere. Accounting for both mechanisms produce stronger cooling at high latitudes. However, radiative cooling effects peak above the mesopause, while gravity wave cooling rates continuously increase with height. A...

  12. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Yasin [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  13. Motion of flux transfer events: a test of the Cooling model

    Directory of Open Access Journals (Sweden)

    R. C. Fear

    2007-07-01

    Full Text Available The simple model of reconnected field line motion developed by Cooling et al. (2001 has been used in several recent case studies to explain the motion of flux transfer events across the magnetopause. We examine 213 FTEs observed by all four Cluster spacecraft under a variety of IMF conditions between November 2002 and June 2003, when the spacecraft tetrahedron separation was ~5000 km. Observed velocities were calculated from multi-spacecraft timing analysis, and compared with the velocities predicted by the Cooling model in order to check the validity of the model. After excluding three categories of FTEs (events with poorly defined velocities, a significant velocity component out of the magnetopause surface, or a scale size of less than 5000 km, we were left with a sample of 118 events. 78% of these events were consistent in both direction of motion and speed with one of the two model de Hoffmann-Teller (dHT velocities calculated from the Cooling model (to within 30° and a factor of two in the speed. We also examined the plasma signatures of several magnetosheath FTEs; the electron signatures confirm the hemisphere of connection indicated by the model in most cases. This indicates that although the model is a simple one, it is a useful tool for identifying the source regions of FTEs.

  14. Modeling and Simulation of Truck Engine Cooling System for Onboard Diagnosis

    Institute of Scientific and Technical Information of China (English)

    朱正礼; 张建武; 包继华

    2004-01-01

    A cooling system model of a selected internal combustion engine has been built for onboard diagnosis. The model uses driving cycle data available within the production Engine Control Module (ECM): vehicle speed, engine speed, and fuel flow rate for the given ambient temperature and pressure, etc. Based on the conservation laws for heat transfer and mass flow process, the mathematical descriptions for the components involved in the cooling circuit are obtained and all the components are integrated into a model on Matlab/Simulink platform. The model can simulate the characteristics of thermostat (e.g. time-lag, hysteresis effect).The changes of coolant temperature, heat transfer flow rate, and pressure at individual component site are also shown.

  15. How to get cool in the heat: comparing analytic models of hot, cold, and cooling gas in haloes and galaxies with EAGLE

    Science.gov (United States)

    Stevens, Adam R. H.; del P. Lagos, Claudia; Contreras, Sergio; Croton, Darren J.; Padilla, Nelson D.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-01-01

    We use the hydrodynamic, cosmological EAGLE simulations to investigate how hot gas in haloes condenses to form and grow galaxies. We select haloes from the simulations that are actively cooling and study the temperature, distribution, and metallicity of their hot, cold, and transitioning `cooling' gas, placing these in context of semi-analytic models. Our selection criteria lead us to focus on Milky Way-like haloes. We find the hot-gas density profiles of the haloes form a progressively stronger core over time, the nature of which can be captured by a β profile that has a simple dependence on redshift. In contrast, the hot gas that will cool over a time-step is broadly consistent with a singular isothermal sphere. We find that cooling gas carries a few times the specific angular momentum of the halo and is offset in spin direction from the rest of the hot gas. The gas loses ˜60% of its specific angular momentum during the cooling process, generally remaining greater than that of the halo, and it precesses to become aligned with the cold gas already in the disc. We find tentative evidence that angular-momentum losses are slightly larger when gas cools onto dispersion-supported galaxies. We show that an exponential surface density profile for gas arriving on a disc remains a reasonable approximation, but a cusp containing ˜20% of the mass is always present, and disc scale radii are larger than predicted by a vanilla Fall & Efstathiou model. These scale radii are still closely correlated with the halo spin parameter, for which we suggest an updated prescription for galaxy formation models.

  16. A Mathematical Model for Forecasting Distortion of Workpieces with Phase Transformation on Cooling Process

    Institute of Scientific and Technical Information of China (English)

    Jiansong YE; Yikang LIU; Yuanjun ZHOU

    2003-01-01

    A temperature phase transformation stress coupled 3D nonlinear mathematical model has been proposed for forecasting distortion of workpieces on the cooling processes in this paper. Moreover, a series of subroutines were developed on the MARC (analysis research corporation) software platform and the simulation result is basically identical with the experimental one that measured on the workpiece shape with LEITZ equipment. This verifies that the mathematical model and method are feasible.

  17. Coupling model and solving approach for performance evaluation of natural draft counter-flow wet cooling towers

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available When searching for the optimum condenser cooling water flow in a thermal power plant with natural draft cooling towers, it is essential to evaluate the outlet water temperature of cooling towers when the cooling water flow and inlet water temperature change. However, the air outlet temperature and tower draft or inlet air velocity are strongly coupled for natural draft cooling towers. Traditional methods, such as trial and error method, graphic method and iterative methods are not simple and efficient enough to be used for plant practice. In this paper, we combine Merkel equation with draft equation, and develop the coupled description for performance evaluation of natural draft cooling towers. This model contains two inputs: the cooling water flow, the inlet cooling water temperature and two outputs: the outlet water temperature, the inlet air velocity, equivalent to tower draft. In this model, we furthermore put forward a soft-sensing algorithm to calculate the total drag coefficient instead of empirical correlations. Finally, we design an iterative approach to solve this coupling model, and illustrate three cases to prove that the coupling model and solving approach proposed in our paper are effective for cooling tower performance evaluation.

  18. Neural Network Model Of The PXIE RFQ Cooling System and Resonant Frequency Response

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, Auralee [Fermilab; Biedron, Sandra [Colorado State U., Fort Collins; Bowring, Daniel [Fermilab; Chase, Brian [Fermilab; Edelen, Jonathan [Fermilab; Milton, Stephen [Colorado State U., Fort Collins; Steimel, Jim [Fermilab

    2016-06-01

    As part of the PIP-II Injector Experiment (PXIE) accel-erator, a four-vane radio frequency quadrupole (RFQ) accelerates a 30-keV, 1-mA to 10-mA H' ion beam to 2.1 MeV. It is designed to operate at a frequency of 162.5 MHz with arbitrary duty factor, including continuous wave (CW) mode. The resonant frequency is controlled solely by a water-cooling system. We present an initial neural network model of the RFQ frequency response to changes in the cooling system and RF power conditions during pulsed operation. A neural network model will be used in a model predictive control scheme to regulate the resonant frequency of the RFQ.

  19. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    Science.gov (United States)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a "segmented" thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed "segmented" model shows more precise than the "non-segmented" model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the "segmented" model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  20. A dynamic model of an innovative high-temperature solar heating and cooling system

    Directory of Open Access Journals (Sweden)

    Buonomano Annamaria

    2016-01-01

    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  1. Modeling plasmonic scattering combined with thin-film optics.

    Science.gov (United States)

    Schmid, M; Klenk, R; Lux-Steiner, M Ch; Topic, M; Krc, J

    2011-01-14

    Plasmonic scattering from metal nanostructures presents a promising concept for improving the conversion efficiency of solar cells. The determination of optimal nanostructures and their position within the solar cell is crucial to boost the efficiency. Therefore we established a one-dimensional optical model combining plasmonic scattering and thin-film optics to simulate optical properties of thin-film solar cells including metal nanoparticles. Scattering models based on dipole oscillations and Mie theory are presented and their integration in thin-film semi-coherent optical descriptions is explained. A plasmonic layer is introduced in the thin-film structure to simulate scattering properties as well as parasitic absorption in the metal nanoparticles. A proof of modeling concept is given for the case of metal-island grown silver nanoparticles on glass and ZnO:Al/glass substrates. Using simulations a promising application of the nanoparticle integration is shown for the case of CuGaSe(2) solar cells.

  2. Mathematical model for the thermal process of controlled cooling of wires and its numerical simulation

    Institute of Scientific and Technical Information of China (English)

    Hongxiang Zhu; Xiaohong Hao; Zhi Wen; Yaogen Zhang; Huqiu Chen

    2004-01-01

    The mathematical model for the thermal process of billets rolling has been established, including transporting in air and temperature-holding cover, descaling with high-pressure water, and the process of rolling and cooling in water box. The calculated data by the model have been compared with the measured data and the results show that the model is right and creditable. Based on the model, the main thermal characters of rolling line have been simulated and the influence of all the parameters on the temperature of rolling has been analyzed.

  3. Review of the Technical Status on the Debris Bed Cooling Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum

    2007-09-15

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris0.

  4. Optical Thin Film Modeling: Using FTG's FilmStar Software

    Science.gov (United States)

    Freese, Scott

    2009-01-01

    Every material has basic optical properties that define its interaction with light: The index of refraction (n) and extinction coefficient (k) vary for the material as a function of the wavelength of the incident light. Also significant are the phase velocity and polarization of the incident light These inherent properties allow for the accurate modeling of light s behavior upon contact with a surface: Reflectance, Transmittance, Absorptance.

  5. A mathematical model of endovascular heat transfer for human brain cooling

    Science.gov (United States)

    Salsac, Anne-Virginie; Lasheras, Juan Carlos; Yon, Steven; Magers, Mike; Dobak, John

    2000-11-01

    Selective cooling of the brain has been shown to exhibit protective effects in cerebral ischemia, trauma, and spinal injury/ischemia. A multi-compartment, unsteady thermal model of the response of the human brain to endovascular cooling is discussed and its results compared to recent experimental data conducted with sheep and other mammals. The model formulation is based on the extension of the bioheat equation, originally proposed by Pennes(1) and later modified by Wissler(2), Stolwijk(3) and Werner and Webb(4). The temporal response of the brain temperature and that of the various body compartments to the cooling of the blood flowing through the common carotid artery is calculated under various scenarios. The effect of the boundary conditions as well as the closure assumptions used in the model, i.e. perfusion rate, metabolism heat production, etc. on the cooling rate of the brain are systematically investigated. (1) Pennes H. H., “Analysis of tissue and arterial blood temperature in the resting forearm.” J. Appl. Physiol. 1: 93-122, 1948. (2) Wissler E. H., “Steady-state temperature distribution in man”, J. Appl. Physiol., 16: 764-740, 1961. (3) Stolwick J. A. J., “Mathematical model of thermoregulation” in “Physiological and behavioral temperature regulation”, edited by J. D. Hardy, A. P. Gagge and A. J. Stolwijk, Charles C. Thomas Publisher, Springfiels, Ill., 703-721, 1971. (4) Werner J., Webb P., “A six-cylinder model of human thermoregulation for general use on personal computers”, Ann. Physiol. Anthrop., 12(3): 123-134, 1993.

  6. Turbine Endwall Film Cooling With Combustor-Turbine Interface Gap Leakage Flow: Effect of Incidence Angle%攻角对端壁缝隙泄漏流气膜冷却的影响

    Institute of Scientific and Technical Information of China (English)

    张扬; 袁新

    2012-01-01

    The influence of incidence angle on film cooling effectiveness is studied on first-stage vane endwall with combustor-turbine interface slot. A baseline slot configuration is tested in a low speed four-blade cascade consisting of large scale model of the GE-E3 Nozzle Guide Vane (NGV). The slot has a forward expansion angle of 30° to the endwall surface. The Reynolds number based on the axial chord and inlet velocity of the free-stream flow is 3.5×10^5, and the testing is done in a four-blade cascade with low Mach number condition (0.1 at the inlet) while the mass flow ratio of the coolant through the interface gap varies from 0.5% to 2.0%. The film-cooling effectiveness distributions are obtained using the PSP (pressure sensitive paint) technique. The results show that with blowing ratio increasing, the film cooling effectiveness increases on the endwall. As the incidence angle varies from i=+10°to i=-10°, at low blowing ratio the film cooling effectiveness decreases near the leading edge suction side. As for the main passage endwall, with the incidence angle changing form i = +10° to i = -10° the averaged film cooling effectiveness changes slightly, while this trend will be eliminated by increasing the blowing ratio.%本文中的实验在高压涡轮进口导叶平面叶栅中完成,叶栅端壁前缘开有模拟燃烧室涡轮连接处的缝隙。实验中采用GE-E^3高压涡轮进口导叶作为研究对象,缝隙与端壁表面夹角为30°。进口雷诺数(基于叶片轴向弦长和进口气流速度)为3.5×10^5,进口马赫数为0.1,泄漏流流量比为0.5%和2,0%。气膜有效度通过压力敏感漆(Pressure Sensitive Paint,PSP)进行测量。实验结果表明随泄漏流流量比的增加,端壁表面的平均气膜有效度有所增加;当来流攻角从i=+10。变化至i=-10°时,叶片前缘吸力面附近的端壁气膜有效度降低,但在整个端壁表面气膜有效度对攻角变化并不敏感。

  7. Mathematical modeling of wiped-film evaporators. [MAIN codes

    Energy Technology Data Exchange (ETDEWEB)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes.

  8. Modeling of steady-state convective cooling of cylindrical Li-ion cells

    Science.gov (United States)

    Shah, K.; Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2014-07-01

    While Lithium-ion batteries have the potential to serve as an excellent means of energy storage, they suffer from several operational safety concerns. Temperature excursion beyond a specified limit for a Lithium-ion battery triggers a sequence of decomposition and release, which can preclude thermal runaway events and catastrophic failure. To optimize liquid or air-based convective cooling approaches, it is important to accurately model the thermal response of Lithium-ion cells to convective cooling, particularly in high-rate discharge applications where significant heat generation is expected. This paper presents closed-form analytical solutions for the steady-state temperature profile in a convectively cooled cylindrical Lithium-ion cell. These models account for the strongly anisotropic thermal conductivity of cylindrical Lithium-ion batteries due to the spirally wound electrode assembly. Model results are in excellent agreement with experimentally measured temperature rise in a thermal test cell. Results indicate that improvements in radial thermal conductivity and axial convective heat transfer coefficient may result in significant peak temperature reduction. Battery sizing optimization using the analytical model is discussed, indicating the dependence of thermal performance of the cell on its size and aspect ratio. Results presented in this paper may aid in accurate thermal design and thermal management of Lithium-ion batteries.

  9. Testing the cooling flow model in the intermediate polar EX Hydrae

    CERN Document Server

    Luna, G J M; Brickhouse, N S; Mauche, C W; Suleimanov, V; .,

    2015-01-01

    We use the best available X-ray data from the intermediate polar EX Hydrae to study the cooling-flow model often applied to interpret the X-ray spectra of these accreting magnetic white dwarf binaries. First, we resolve a long-standing discrepancy between the X-ray and optical determinations of the mass of the white dwarf in EX Hya by applying new models of the inner disk truncation radius. Our fits to the X-ray spectrum now agree with the white dwarf mass of 0.79 M$_{\\odot}$sun determined using dynamical methods through spectroscopic observations of the secondary. We use a simple isobaric cooling flow model to derive the emission line fluxes, emission measure distribution, and H-like to He-like line ratios for comparison with the 496 ks Chandra High Energy Transmission Grating observation of EX Hydrae. We find that the H/He ratios are not well reproduced by this simple isobaric cooling flow model and show that while H-like line fluxes can be accurately predicted, fluxes of lower-Z He-like lines are significa...

  10. Numerical modeling for the retrofit of the hydraulic cooling subsystems in operating power plant

    Science.gov (United States)

    AlSaqoor, S.; Alahmer, A.; Al Quran, F.; Andruszkiewicz, A.; Kubas, K.; Regucki, P.; Wędrychowicz, W.

    2017-08-01

    This paper presents the possibility of using the numerical methods to analyze the work of hydraulic systems on the example of a cooling system of a power boiler auxiliary devices. The variety of conditions at which hydraulic system that operated in specific engineering subsystems requires an individualized approach to the model solutions that have been developed for these systems modernizing. A mathematical model of a series-parallel propagation for the cooling water was derived and iterative methods were used to solve the system of nonlinear equations. The results of numerical calculations made it possible to analyze different variants of a modernization of the studied system and to indicate its critical elements. An economic analysis of different options allows an investor to choose an optimal variant of a reconstruction of the installation.

  11. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Quiping [The Ohio State Univ., Columbus, OH (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Chtistensen, Richard [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States); Yoder, Graydon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  12. Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation

    CERN Document Server

    Dittkrist, K -M; Klahr, H; Alibert, Y; Henning, T

    2014-01-01

    Context: Several recent studies have found that planet migration in adiabatic discs differs significantly from migration in isothermal discs. Depending on the thermodynamic conditions, i.e., the effectiveness of radiative cooling, and the radial surface density profile, planets migrate inward or outward. Clearly, this will influence the semimajor axis - mass distribution of planets as predicted by population synthesis simulations. Aims: Our goal is to study the global effects of radiative cooling, viscous torque desaturation and gap opening as well as stellar irradiation on the tidal migration of a synthetic planet population. Methods: We combine results from several analytical studies and 3D hydrodynamic simulations in a new semi-analytical migration model for the application in our planet population synthesis calculations. Results: We find a good agreement of our model with torques obtained in a 3D radiative hydrodynamic simulations. We find three convergence zones in a typical disc, towards which planets m...

  13. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  14. Numerical simulation of heat transfer physics of film cooling under rotating conditions%旋转状态气膜换热机理的数值研究

    Institute of Scientific and Technical Information of China (English)

    刘宁; 孙纪宁

    2011-01-01

    Large eddy simulation was used to investigate the effect of rotation on film cooling over flat plate with single hole. The Reynolds number at the jet exit was 2 600, and the blowing ratio was 0. 5. The flow and heat transfer without rotation and with rotating number of 0. 02 were calculated, and the heat transfer mechanics under rotating condition was analyzed through the evolvement of turbulence structure. It was found that hairpin structure determined the heat transfer of film cooling, and the shape and trajectory of hairpin structure was mainly affected by Coriolis force under rotating condition. The film was driven towards high radius side by spanwise Coriolis force, resulting in less mixing between main flow and jet and maintaining low temperature of the film. The Coriolis force normal to the wall reinforced the film attachment and reduced the strength of counter rotating vortex pair, leading to less entrainment of mainflow and better coverage of film.%大涡模拟研究了旋转对单孔平板气膜冷却的影响,气膜出流的雷诺数为2600,吹风比为0.5,计算了静止和旋转数为0.02两种状态的流动和换热,从湍流结构演化的角度讨论了旋转状态气膜换热的机理.结果表明:①发卡涡是决定气膜换热的主要湍流结构,旋转状态发卡涡的形状和运动规律主要受哥氏力的影响;②气膜在哥氏力作用下向高半径方向偏移,弱化了射流前缘与主流的剪切和掺混,使气膜保持较低温度;③气膜的侧向速度诱发垂直向下的哥氏力,压制射流贴附壁面,并降低对转涡对的强度,减少了对主流的卷吸,增强了气膜的保护效果.

  15. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    Directory of Open Access Journals (Sweden)

    Qian Haoliang

    2015-11-01

    Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  16. Optimization of Cooling Process of Iron Ore Pellets Based on Mathematical Model and Data Mining

    Institute of Scientific and Technical Information of China (English)

    Gui-ming YANG; Xiao-hui FAN; Xu-ling CHEN; Xiao-xian HUANG; Xi LI

    2015-01-01

    Cooling process of iron ore pellets in a circular cooler has great impacts on the pellet quality and systematic energy exploitation. However, multi-variables and non-visualization of this gray system is unfavorable to efifcient production. Thus, the cooling process of iron ore pellets was optimized using mathematical model and data mining techniques. A mathematical model was established and validated by steady-state production data, and the results show that the calculated values coincide very well with the measured values. Based on the proposed model, effects of important process parameters on gas-pellet temperature proifles within the circular cooler were analyzed to better understand the entire cooling process. Two data mining techniques—Associa-tion Rules Induction and Clustering were also applied on the steady-state production data to obtain expertise operating rules and optimized targets. Finally, an optimized control strategy for the circular cooler was proposed and an operation guidance system was developed. The system could realize the visualization of thermal process at steady state and provide operation guidance to optimize the circular cooler.

  17. TWO-LAYER MODEL DESCRIPTION OF POLYMER THIN FILM DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    Dong-dong Peng; Ran-xing Nancy Li; Chi-hang Lam; Ophelia K.C.Tsui

    2013-01-01

    Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca.100 nm.It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk.In this paper,we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining,bulk-like layer in the film.Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide,where divergent thickness dependences are observed.

  18. Finite element modeling of cooled-tip probe radiofrequency ablation processes in liver tissue.

    Science.gov (United States)

    Barauskas, Rimantas; Gulbinas, Antanas; Vanagas, Tomas; Barauskas, Giedrius

    2008-06-01

    Finite element model of radiofrequency ablation (RFA) with cooled-tip probe in liver has been developed by employing COMSOL Multiphysics software. It describes coupled electric, thermal and sodium chloride solution infiltration flow phenomena taking place during ablation processes. Features of hydraulic capacity, saturation of the tissue by infiltration, and dependency of electrical conductivity on the damage integral of the tissue have been supplied to the model. RFA experiments have validated the model. Physical parameters describing hydraulic capacity and hydraulic conductivity in the tissue, as well as, the relation of electrical conductivity against the value of damage integral have been determined.

  19. Local heat transfer measurements on a rotating flat blade model with a single film hole

    Institute of Scientific and Technical Information of China (English)

    Guoqiang Xu; Bin Yang; Zhi Tao; Zhenming Zhao; Hongwei Wu

    2009-01-01

    An experimental study was performed to measure the heat transfer coefficient distributions on a flat blade model under rotating oper-ating conditions.A steady-state thermochromic liquid crystal technique was employed to measure the surface temperature,and all the signals from the rotating reference frame were collected by the telemetering instrument via a wireless connection.Both air and CO2 were used as coolant. Results show that the rotational effect has a significant influence on the heat transfer coefficient distributions.The pro-files of hg/ho,which is the ratio of heat transfer coefficient with film cooling to that without film cooling,deflect towards the high-radius locations on both the pressure surface and suction surface as the rotation number(Rt)increases,and the deflective tendency is more evident on the suction surface.The variations in mainstream Reynolds number(ReD)and blowing ratio(M)present different distribu-tions of hg/ho on the pressure and suction surfaces,respectively.Furthermore,the coolant used for CO2 injection is prone to result in lower heat transfer coefficients.

  20. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.

  1. A computational model for doctoring fluid films in gravure printing

    Science.gov (United States)

    Hariprasad, Daniel S.; Grau, Gerd; Schunk, P. Randall; Tjiptowidjojo, Kristianto

    2016-04-01

    The wiping, or doctoring, process in gravure printing presents a fundamental barrier to resolving the micron-sized features desired in printed electronics applications. This barrier starts with the residual fluid film left behind after wiping, and its importance grows as feature sizes are reduced, especially as the feature size approaches the thickness of the residual fluid film. In this work, various mechanical complexities are considered in a computational model developed to predict the residual fluid film thickness. Lubrication models alone are inadequate, and deformation of the doctor blade body together with elastohydrodynamic lubrication must be considered to make the model predictive of experimental trends. Moreover, model results demonstrate that the particular form of the wetted region of the blade has a significant impact on the model's ability to reproduce experimental measurements.

  2. Equivalent-Circuit Model for the Thickness-Shear Mode Resonator with a Viscoelastic Film Near Film Resonance

    Energy Technology Data Exchange (ETDEWEB)

    BANDEY, HELEN L.; BROWN, MARK J.; CERNOSEK, RICHARD W.; HILLMAN, A. ROBERT; MARTIN, STEPHEN J.

    1999-09-16

    We derive a lumped-element, equivalent-circuit model for the thickness shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of {pi}/2 radians. This model predicts accurately the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. The elements of the model are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and the Sauerbrey models.

  3. An improved thermoregulatory model for cooling garment applications with transient metabolic rates

    Science.gov (United States)

    Westin, Johan K.

    Current state-of-the-art thermoregulatory models do not predict body temperatures with the accuracies that are required for the development of automatic cooling control in liquid cooling garment (LCG) systems. Automatic cooling control would be beneficial in a variety of space, aviation, military, and industrial environments for optimizing cooling efficiency, for making LCGs as portable and practical as possible, for alleviating the individual from manual cooling control, and for improving thermal comfort and cognitive performance. In this study, we adopt the Fiala thermoregulatory model, which has previously demonstrated state-of-the-art predictive abilities in air environments, for use in LCG environments. We validate the numerical formulation with analytical solutions to the bioheat equation, and find our model to be accurate and stable with a variety of different grid configurations. We then compare the thermoregulatory model's tissue temperature predictions with experimental data where individuals, equipped with an LCG, exercise according to a 700 W rectangular type activity schedule. The root mean square (RMS) deviation between the model response and the mean experimental group response is 0.16°C for the rectal temperature and 0.70°C for the mean skin temperature, which is within state-of-the-art variations. However, with a mean absolute body heat storage error 3¯ BHS of 9.7 W˙h, the model fails to satisfy the +/-6.5 W˙h accuracy that is required for the automatic LCG cooling control development. In order to improve model predictions, we modify the blood flow dynamics of the thermoregulatory model. Instead of using step responses to changing requirements, we introduce exponential responses to the muscle blood flow and the vasoconstriction command. We find that such modifications have an insignificant effect on temperature predictions. However, a new vasoconstriction dependency, i.e. the rate of change of hypothalamus temperature weighted by the

  4. Computational modeling of muscular thin films for cardiac repair

    Science.gov (United States)

    Böl, Markus; Reese, Stefanie; Parker, Kevin Kit; Kuhl, Ellen

    2009-03-01

    Motivated by recent success in growing biohybrid material from engineered tissues on synthetic polymer films, we derive a computational simulation tool for muscular thin films in cardiac repair. In this model, the polydimethylsiloxane base layer is simulated in terms of microscopically motivated tetrahedral elements. Their behavior is characterized through a volumetric contribution and a chain contribution that explicitly accounts for the polymeric microstructure of networks of long chain molecules. Neonatal rat ventricular cardiomyocytes cultured on these polymeric films are modeled with actively contracting truss elements located on top of the sheet. The force stretch response of these trusses is motivated by the cardiomyocyte force generated during active contraction as suggested by the filament sliding theory. In contrast to existing phenomenological models, all material parameters of this novel model have a clear biophyisical interpretation. The predictive features of the model will be demonstrated through the simulation of muscular thin films. First, the set of parameters will be fitted for one particular experiment documented in the literature. This parameter set is then used to validate the model for various different experiments. Last, we give an outlook of how the proposed simulation tool could be used to virtually predict the response of multi-layered muscular thin films. These three-dimensional constructs show a tremendous regenerative potential in repair of damaged cardiac tissue. The ability to understand, tune and optimize their structural response is thus of great interest in cardiovascular tissue engineering.

  5. A model for liquid film in steam turbine

    Science.gov (United States)

    Simon, Amelie; Marcelet, Meryem; Herard, Jean-Marc; Dorey, Jean-Marc; Lance, Michel

    2015-11-01

    Wetness in steam turbines induces losses and erosion. Drops are created due to the fast expansion of the steam (homogeneous nucleation) and the impurities in the steam (heterogeneous nucleation). The droplets grow and some among them settle on the blade leading to a thin liquid film. This film may then be atomized into coarse water drops which crash on the following blades. The liquid film configuration is a thin film on a curved surface, created by the drop deposit and under high steam friction. In steam turbines, the liquid film is subject to high rotational effect (rotor) and/or to negative gravity. Moreover, due to interfacial instabilities, some drops are torn off from the film. The retained approach is an integral formulation of the Navier-Stokes equation (or shallow water equation) with specific terms. The derivation of these equations requires some closure laws for the convection contributions, the Coriolis terms and for terms related to the additional mass coming from the drops deposit. Once chosen, mathematical and mechanical analyses are performed (hyperbolicity, entropy, galilean and rotational invariance). A two-dimensional code has been developed based on finite volume method to simulate numerically this liquid film model for steam turbines.

  6. Analytic estimation and numerical modeling of actively cooled thermal protection systems with nickel alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Xinzhi; He Yurong; Zheng Yan; Ma Junju; H. Inaki Schlaberg

    2014-01-01

    Actively cooled thermal protection system has great influence on the engine of a hyper-sonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and numerical modeling are performed in this paper to investigate the behavior of an actively cooled thermal protection system. The analytic estimation is based on the electric analogy method and finite element analysis (FEA) is applied to the numerical simulation. Temper-ature and stress distributions are obtained for the actively cooled channel walls with three kinds of nickel alloys with or with no thermal barrier coating (TBC). The temperature of the channel wall with coating has no obvious difference from the one with no coating, but the stress with coating on the channel wall is much smaller than that with no coating. Inconel X-750 has the best charac-teristics among the three Ni-based materials due to its higher thermal conductivity, lower elasticity module and greater allowable stress. Analytic estimation and numerical modeling results are com-pared with each other and a reasonable agreement is obtained.

  7. Analytic estimation and numerical modeling of actively cooled thermal protection systems with nickel alloys

    Directory of Open Access Journals (Sweden)

    Wang Xinzhi

    2014-12-01

    Full Text Available Actively cooled thermal protection system has great influence on the engine of a hypersonic vehicle, and it is significant to obtain the thermal and stress distribution in the system. So an analytic estimation and numerical modeling are performed in this paper to investigate the behavior of an actively cooled thermal protection system. The analytic estimation is based on the electric analogy method and finite element analysis (FEA is applied to the numerical simulation. Temperature and stress distributions are obtained for the actively cooled channel walls with three kinds of nickel alloys with or with no thermal barrier coating (TBC. The temperature of the channel wall with coating has no obvious difference from the one with no coating, but the stress with coating on the channel wall is much smaller than that with no coating. Inconel X-750 has the best characteristics among the three Ni-based materials due to its higher thermal conductivity, lower elasticity module and greater allowable stress. Analytic estimation and numerical modeling results are compared with each other and a reasonable agreement is obtained.

  8. Study on blast furnace cooling stave for various refractory linings based on numerical modeling

    Science.gov (United States)

    Mohanty, T. R.; Sahoo, S. K.; Moharana, M. K.

    2016-02-01

    Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement.

  9. A dynamic rheological model for thin-film lubrication

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiang-Jun; Huang Ying; Guo Yan-Bao; Tian Yu; Meng Yong-Gang

    2013-01-01

    In this study,the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated.The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region,which is desired for its lower energy dissipation.A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation.This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film,as well as their dependences on the lubricant film thickness.The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing.Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number.The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0,indicating a liquid-to-solid transition of the confined lubricant film.Furthermore,the two proposed parameters in the dynamic rheological model,namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ0,were found to determine the minimum COF and the width of the low-COF region,both of which were required to optimize the shape of the Stribeck curve.The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime.

  10. Experimental Investigation and Modelling for the Optimisation of Conduction Cooled HTS Hybrid Current Leads for SMES

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It′s important that HTS tapes have lower thermal conductivity and higher transversal resistivity in order to reduce the heat leaks conducted along the tapes and AC losses in the high temperature superconducting system conduction-cooled by GM coolers. This paper presents an experimental investigation into the effects of pure Ag and AgAu alloys sheath materials on the properties of Bi(2223) multifilamentary tapes and the optimisation of conduction-cooled hybrid current leads made from copper and Bi(2223)/Ag or Bi(2223)/AgAu tapes. The thermal conductivity of the tapes were measured by cryogenic steady heat flux method and the resistance was measured by using standard DC four-probe method at low temperature. The results showed that the reduction of thermal conductivity by the addition of Au into the sheath material of Bi(2223) tapes was 650%, 750% and 850% lower than that of pure Ag sheathed Bi(2223) tapes and the increase of resistivity was 4.9, 10 and 19.4 times higher than that of pure Ag for the addition of 2.20%, 5.70% and 10.70%Au(atom ratio) respectively. And the study also attempts to optimise thermodynamically the conduction-cooled hybrid current lead by using a developed model, which took the irreversibility of commercial GM coolers, the contact resistance and thermal conductance into account. Predictions from the model showed that AgAu alloys were suitable candidate materials to replace Ag as sheath material of Bi(2223) tapes applied in HTS current leads. In addition, Bi(2223)/AgAu was a suitable material to be applied as the HTS section of hybrid current leads in conduction-cooled superconducting electric systems.

  11. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured beef.

    Science.gov (United States)

    Juneja, Vijay K; Marks, Harry; Thippareddi, Harshavardhan

    2008-02-01

    This paper considers growth models including one based on Baranyi's equations for growth and the other based on the logistic function. Using a common approach for constructing dynamic models for predicting Clostridium perfringens growth in ready-to-eat uncured beef during cooling, there was no appreciable difference between the models' predictions when the population of cells was within the lag or exponential phases of growth. The developed models can be used for designing safe cooling processes; however, the discrepancies between predicted and observed growths obtained in this study, together with discrepancies reported in other papers using the same, or similar methodology as used in this paper, point to a possible inadequacy of the derived models. In particular, the appropriateness of the methodology depends on the appropriateness of using estimated growth kinetics obtained from experiments conducted in isothermal environments for determining coefficients of differential equations that are used for predicting growth in constantly changing (dynamic) environments. The coefficients are interpreted as instantaneous specific rates of change that are independent of prior history. However, there is no known scientific reason that would imply the truth of this assumption. Incorporating a different, less restrictive assumption, allowing for a dependency on the prior history of cells for these kinetic parameters, might lead to models that provide more accurate estimates of growth. For example, a cooling scenario of 54.4-27 degrees C in 1.5h, the average predicted and observed log(10) relative growths were 1.1log(10) and 0.66log(10), respectively, a difference of 0.44log(10,) whereas, when assuming a particular dependency of history, the predicted value was 0.8log(10). More research is needed to characterize the behavior of growth kinetic parameters relative to prior history in dynamic environments.

  12. Impacts of Upper Tropospheric Cooling upon the Late Spring Drought in East Asia Simulated by a Regional Climate Model

    Institute of Scientific and Technical Information of China (English)

    XIN Xiaoge; Zhaoxin LI; YU Rucong; ZHOU Tianjun

    2008-01-01

    Responses of late spring (21 April-20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de Météorologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981-2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades.

  13. An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling

    Directory of Open Access Journals (Sweden)

    T. Canty

    2013-04-01

    Full Text Available Observed reductions in Earth's surface temperature following explosive volcanic eruptions have been used as a proxy for geoengineering of climate by the artificial enhancement of stratospheric sulfate. Earth cools following major eruptions due to an increase in the reflection of sunlight caused by a dramatic enhancement of the stratospheric sulfate aerosol burden. Significant global cooling has been observed following the four major eruptions since 1900: Santa María, Mount Agung, El Chichón and Mt. Pinatubo, leading IPCC (2007 to state "major volcanic eruptions can, thus, cause a drop in global mean surface temperature of about half a degree Celsius that can last for months and even years". We use a multiple linear regression model applied to the global surface temperature anomaly to suggest that exchange of heat between the atmosphere and ocean, driven by variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC, has been a factor in the decline of global temperature following these eruptions. The veracity of this suggestion depends on whether sea surface temperature (SST in the North Atlantic, sometimes called the Atlantic Multidecadal Oscillation, but here referred to as Atlantic Multidecadal Variability (AMV, truly represents a proxy for the strength of the AMOC. Also, precise quantification of global cooling due to volcanoes depends on how the AMV index is detrended. If the AMV index is detrended using anthropogenic radiative forcing of climate, we find that surface cooling attributed to Mt. Pinatubo, using the Hadley Centre/University of East Anglia surface temperature record, maximises at 0.14 °C globally and 0.32 °C over land. These values are about a factor of 2 less than found when the AMV index is neglected in the model and quite a bit lower than the canonical 0.5 °C cooling usually attributed to Pinatubo. This result is driven by the high amplitude, low frequency component of the AMV index

  14. Mathematical modeling of the thermal and hydrodynamic structure of the cooling reservoir

    Science.gov (United States)

    Saminskiy, G.; Debolskaya, E.

    2012-04-01

    Hydrothermal conditions of the cooling reservoir is determined by the heat and mass transfer from the water surface to the atmosphere and the processes of heat transfer directly in the water mass of the reservoir. As the capacity of power plants, the corresponding increase in the volume of heated water and the use of deep lakes and reservoirs as coolers there is a need to develop new, more accurate, and the application of existing methods for the numerical simulation. In calculating the hydrothermal regime it must take into account the effect of wind, density (buoyancy) forces, and other data of the cooling reservoir. In addition to solving practical problems it is important to know not only the magnitude of the average temperature, but also its area and depth distribution. A successful solution can be achieved through mathematical modeling of general systems of equations of transport processes and the correct formulation of the problem, based on appropriate initial data. The purpose of the work is application of software package GETM for simulating the hydrothermal regime of cooling reservoir with an estimate of three-dimensional structure of transfer processes, the effects of wind, the friction of the water surface. Three-dimensional models are rarely applied, especially for far-field problems. If such models are required, experts in the field must develop and apply them. Primary physical processes included are surface heat transfer, short-wave and long-wave radiation and penetration, convective mixing, wind and flow induced mixing, entrainment of ambient water by pumped-storage inflows, inflow density stratification as impacted by temperature and dissolved and suspended solids. The model forcing data consists of the system bathymetry developed into the model grid; the boundary condition flow and temperature; the tributary and flow and temperature; and the system meteorology. Ivankovskoe reservoir belongs to the reservoirs of valley type (Tver region, Russia). It

  15. Thermal Model for a Mars Instrument with Thermo-electric Cooled Focal Plane

    Science.gov (United States)

    Ladner, D. R.; Martin, J. P.

    2006-04-01

    Two thermal models have been developed for a low mass (1.5 kg) Mars rover arm candidate instrument that employs a thermoelectric cooler (TEC) to cool a CCD focal plane. The Mineral Identification and Composition Analyzer (MICA) is a miniature instrument that employs X-ray scattering and visual imaging to determine nondestructively the mineralogy of a rock sample in-situ. Both thermal models incorporate the key components of MICA's CCD subsystem - CCD, heat sink, and lower radiator. The System Model includes the instrument's internal heat sources, including electronics, X-ray source, TEC dissipation, and the extreme diurnal temperature excursions of the ambient Martian atmosphere (~175 K to 255 K) and sky (~130 K to 200 K), convection (wind), and solar / IR radiation. The CCD Subsystem Model includes a passive thermal switch that provides heat sink cool-down by night and isolation by day. With or without the heat switch, TEC operation provides extended life for data collection at the upper end of the CCD operating range, ~ 208 K. Model parameter variation allows the instrument designer to optimize thermal capacities, thermal resistances, and internal heater power to hold critical electronics and mechanical components within their temperature operating limits. The charting feature of either model provides mechanical design guidance to ensure acceptable conditions for data collection over the experiment timeline.

  16. Microtextured Surfaces for Turbine Blade Impingement Cooling

    Science.gov (United States)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  17. A model for pressurized hydrogen induced thin film blisters

    NARCIS (Netherlands)

    van den Bos, R.A.J.M.; Reshetniak, V.; Lee, Christopher James; Benschop, Jozef Petrus Henricus; Bijkerk, Frederik

    2016-01-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required

  18. A model for pressurized hydrogen induced thin film blisters

    NARCIS (Netherlands)

    Bos, van den R.A.J.M.; Reshetniak, V.; Lee, C.J.; Benschop, J.P.H.; Bijkerk, F.

    2016-01-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required fo

  19. A scattering model for surface-textured thin films

    NARCIS (Netherlands)

    Jäger, K.; Zeman, M.

    2009-01-01

    We present a mathematical model that relates the surface morphology of randomly surface-textured thin films with the intensity distribution of scattered light. The model is based on the first order Born approximation [see e.g., M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University

  20. A scattering model for surface-textured thin films

    NARCIS (Netherlands)

    Jäger, K.; Zeman, M.

    2009-01-01

    We present a mathematical model that relates the surface morphology of randomly surface-textured thin films with the intensity distribution of scattered light. The model is based on the first order Born approximation [see e.g., M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University

  1. Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells

    Institute of Scientific and Technical Information of China (English)

    Cui Min; Chen Nuo-Fu; Deng Jin-Xiang

    2012-01-01

    A metal plate cooling model for 400× single concentrator solar cells was established.The effects of the thickness and the radius of the metal plate,and the air environment on the temperature of the solar cells were analyzed in detail.It is shown that the temperature of the solar cells decreased sharply at the beginning,with the increase in the thickness of the metal plate,and then changed more smoothly.When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker,the temperature of the solar cell basically stabilized at about 53 ℃.Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably.The effects of A1 and Cu as the metal plate material on cooling were analyzed contrastively,and demonstrated the superiority of Al material for the cooling system.Furthermore,considering cost reduction,space holding and the stress of the system,we optimized the structural design of the metal plate.The simulated results can be referred to the design of the structure for the metal plate.Finally,a method to devise the structure of the metal plate for single concentrator solar cells was given.

  2. Outflow dynamics of dust-driven wind models and implications for cool envelopes of PNe

    CERN Document Server

    Verbena, J L; Wachter, A

    2011-01-01

    The density profiles of cool envelopes of young Planetary Nebulae (PNe) are reminiscent of the final AGB outflow history of the central star, so far as these have not yet been transformed by the hot wind and radiation of the central star. Obviously, the evolution of the mass loss rate of that dust-driven, cool wind of the former giant in its final AGB stages must have shaped these envelopes to some extent. Less clear is the impact of changes in the outflow velocity. Certainly, larger and fast changes would lead to significant complications in the reconstruction of the mass-loss history from a cool envelope's density profile. Here, we analyse the outflow velocity v_{\\rm exp} in a consistent set of over 50 carbon-rich, dust-driven and well "saturated" wind models, and how it depends on basic stellar parameters. We find a relation of the kind of v_{\\rm exp} \\propto (L/M)^{0.6}. By contrast to the vast changes of the mass-loss rate in the final outflow phase, this relation suggest only very modest variations in t...

  3. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  4. Ex vivo investigations of laser auricular cartilage reshaping with carbon dioxide spray cooling in a rabbit model.

    Science.gov (United States)

    Wu, Edward C; Sun, Victor; Manuel, Cyrus T; Protsenko, Dmitriy E; Jia, Wangcun; Nelson, J Stuart; Wong, Brian J F

    2013-11-01

    Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-μm wavelength diode laser (fluence 12-14 J/cm(2) per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33-85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50-70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress.

  5. Renormalization-group theory for cooling first-order phase transitions in Potts models.

    Science.gov (United States)

    Liang, Ning; Zhong, Fan

    2017-03-01

    We develop a dynamic field-theoretic renormalization-group (RG) theory for cooling first-order phase transitions in the Potts model. It is suggested that the well-known imaginary fixed points of the q-state Potts model for q>10/3 in the RG theory are the origin of the dynamic scaling found recently from numerical simulations, apart from logarithmic corrections. This indicates that the real and imaginary fixed points of the Potts model are both physical and control the scalings of the continuous and discontinuous phase transitions, respectively, of the model. Our one-loop results for the scaling exponents are already not far away from the numerical results. Further, the scaling exponents depend on q only slightly, consistent with the numerical results. Therefore, the theory is believed to provide a natural explanation of the dynamic scaling including the scaling exponents and their scaling laws for various observables in the cooling first-order phase transition of the Potts model.

  6. Renormalization-group theory for cooling first-order phase transitions in Potts models

    Science.gov (United States)

    Liang, Ning; Zhong, Fan

    2017-03-01

    We develop a dynamic field-theoretic renormalization-group (RG) theory for cooling first-order phase transitions in the Potts model. It is suggested that the well-known imaginary fixed points of the q -state Potts model for q >10 /3 in the RG theory are the origin of the dynamic scaling found recently from numerical simulations, apart from logarithmic corrections. This indicates that the real and imaginary fixed points of the Potts model are both physical and control the scalings of the continuous and discontinuous phase transitions, respectively, of the model. Our one-loop results for the scaling exponents are already not far away from the numerical results. Further, the scaling exponents depend on q only slightly, consistent with the numerical results. Therefore, the theory is believed to provide a natural explanation of the dynamic scaling including the scaling exponents and their scaling laws for various observables in the cooling first-order phase transition of the Potts model.

  7. A p-version embedded model for simulation of concrete temperature fields with cooling pipes

    Directory of Open Access Journals (Sweden)

    Sheng Qiang

    2015-07-01

    Full Text Available Pipe cooling is an effective method of mass concrete temperature control, but its accurate and convenient numerical simulation is still a cumbersome problem. An improved embedded model, considering the water temperature variation along the pipe, was proposed for simulating the temperature field of early-age concrete structures containing cooling pipes. The improved model was verified with an engineering example. Then, the p-version self-adaption algorithm for the improved embedded model was deduced, and the initial values and boundary conditions were examined. Comparison of some numerical samples shows that the proposed model can provide satisfying precision and a higher efficiency. The analysis efficiency can be doubled at the same precision, even for a large-scale element. The p-version algorithm can fit grids of different sizes for the temperature field simulation. The convenience of the proposed algorithm lies in the possibility of locating more pipe segments in one element without the need of so regular a shape as in the explicit model.

  8. Gradient dynamics models for liquid films with soluble surfactant

    CERN Document Server

    Thiele, Uwe; Pismen, Len M

    2016-01-01

    In this paper we propose equations of motion for the dynamics of liquid films of surfactant suspensions that consist of a general gradient dynamics framework based on an underlying energy functional. This extends the gradient dynamics approach to dissipative non-equilibrium thin film systems with several variables, and casts their dynamic equations into a form that reproduces Onsager's reciprocity relations. We first discuss the general form of gradient dynamics models for an arbitrary number of fields and discuss simple well-known examples with one or two fields. Next, we develop the gradient dynamics (three field) model for a thin liquid film covered by soluble surfactant and discuss how it automatically results in consistent convective (driven by pressure gradients, Marangoni forces and Korteweg stresses), diffusive, adsorption/desorption, and evaporation fluxes. We then show that in the dilute limit, the model reduces to the well-known hydrodynamic form that includes Marangoni fluxes due to a linear equat...

  9. Core cooling by subsolidus mantle convection. [thermal evolution model of earth

    Science.gov (United States)

    Schubert, G.; Cassen, P.; Young, R. E.

    1979-01-01

    Although vigorous mantle convection early in the thermal history of the earth is shown to be capable of removing several times the latent heat content of the core, a thermal evolution model of the earth in which the core does not solidify can be constructed. The large amount of energy removed from the model earth's core by mantle convection is supplied by the internal energy of the core which is assumed to cool from an initial high temperature given by the silicate melting temperature at the core-mantle boundary. For the smaller terrestrial planets, the iron and silicate melting temperatures at the core-mantle boundaries are more comparable than for the earth; the models incorporate temperature-dependent mantle viscosity and radiogenic heat sources in the mantle. The earth models are constrained by the present surface heat flux and mantle viscosity and internal heat sources produce only about 55% of the earth model's present surface heat flow.

  10. A dynamic model of a passively cooled small modular reactor for controller design purposes

    Energy Technology Data Exchange (ETDEWEB)

    Arda, Samet E., E-mail: s.e.arda@asu.edu; Holbert, Keith E., E-mail: holbert@asu.edu

    2015-08-15

    Highlights: • A mathematical dynamic model is developed for a passively cooled small modular reactor. • Reactor response associated single-phase natural circulation is analyzed. • A moving boundary model for a helical-coil steam generator is analyzed. • Dynamic responses of the overall model to representative perturbations are evaluated. • This compact model can be utilized for control system design. - Abstract: An analytical dynamic model for a passively cooled small modular reactor (SMR) is developed using a state-variable lumped parameter approach. Reactor power is represented by the generation time formulation of the point kinetics equations with a single combined neutron precursor group. The heat transfer process in the core is described via an overall heat transfer coefficient by defining two coolant lumps paired to a single fuel lump. In addition, a thermal–hydraulics model for single-phase natural circulation is incorporated. For the helical-coil steam generator, a moving-boundary model including subcooled, two-phase, and superheated regions is utilized. Finally, the hot leg riser and downcomer regions are expressed by first-order lags. The performance of the overall system described by ordinary differential equations (ODEs) is evaluated by the Simulink dynamic environment and directly using a MATLAB ODE solver recommended for stiff systems. Simulation results based on NuScale SMR design data show that the initial steady-state values for 100% power are within range of the design data and the model can predict the system dynamics due to typical perturbations, e.g., control rod movement and change in feedwater mass flow rate and temperature. The model developed in this work can be utilized as a foundation for designing and testing a suitable control algorithm for reactor thermal power.

  11. Analysis of Regen Cooling in Rocket Combustors

    Science.gov (United States)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Li, D.; Sankaran, V.

    2004-01-01

    The use of detailed CFD modeling for the description of cooling in rocket chambers is discussed. The overall analysis includes a complete three-dimensional analysis of the flow in the regenerative cooling passages, conjugate heat transfer in the combustor walls, and the effects of film cooling on the inside chamber. The results in the present paper omit the effects of film cooling and include only regen cooling and the companion conjugate heat transfer. The hot combustion gases are replaced by a constant temperature wall boundary condition. Load balancing for parallel cluster computations is ensured by using single-block unstructured grids for both fluids and solids, and by using a 'multiple physical zones' to account for differences in the number of equations. Validation of the method is achieved by comparing simple two-dimensional solutions with analytical results. Representative results for cooling passages are presents showing the effects of heat conduction in the copper walls with tube aspect ratios of 1.5:l.

  12. Large Eddy Simulation of a Film Cooling Flow Injected from an Inclined Discrete Cylindrical Hole into a Crossflow with Zero-Pressure Gradient Turbulent Boundary Layer

    Science.gov (United States)

    Johnson, Perry L.; Shyam, Vikram

    2012-01-01

    A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics

  13. Model document for code officials on solar heating and cooling of buildings. Second draft

    Energy Technology Data Exchange (ETDEWEB)

    Trant, B. S.

    1979-09-01

    Guidelines and codes for the construction, alteration, moving, demolition, repair and use of solar energy systems and parts thereof used for space heating and cooling, for water heating and for processing purposes in, on, or adjacent to buildings and appurtenant structures are presented. The necessary references are included wherever these provisions affect or are affected by the requirments of nationally recognized standards or model codes. The purpose of this document is to safeguard life and limb, health, property and public welfare by regulating and controlling the design, construction, quality of materials, location and maintenance of solar energy systems in, on, or adjacent to buildings and appurtenant structures.

  14. Lagrangian and Control Volume Models for Prediction of Cooling Lake Performance at SRP

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.

    2001-06-26

    The model validation described in this document indicates that the methods described here and by Cooper (1984) for predicting the performance of the proposed L-Area cooling lake are reliable. Extensive observations from the Par Pond system show that lake surface temperatures exceeding 32.2 degrees C (90 degrees F) are attained occasionally in the summer in areas where there is little or no heating from the P-Area Reactor. Regulations which restrict lake surface temperatures to less than 32.2 degrees C should be structured to allow for these naturally-occurring thermal excursions.

  15. Modelling the Effect of Variable Viscosity on Unsteady Couette Flow of Nanofluids with Convective Cooling

    Directory of Open Access Journals (Sweden)

    Ahmada Omar Ali

    2015-01-01

    Full Text Available This paper investigates numerically the effects of variable viscosity on unsteady generalized Couette flow of a water base nanofluid with convective cooling at the moving surface. The Buongiorno model utilized for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The nonlinear governing equations of continuity, momentum, energy and nanoparticles concentration are tackled numerically using a semi discretization finite difference method together with Runge-Kutta Fehlberg integration scheme. Numerical results for velocity, temperature, and nanoparticles concentration profiles together with skin friction and Nusselt number are obtained graphically and discussed quantitatively.

  16. A multiscale model for thin film AMR sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bartok, Andras [Laboratoire de Genie Electrique de Paris, CNRS (UMR 8507)/SUPELEC/UPMC/Univ Paris-Sud, 11 rue Joliot Curie, 91192 Gif sur Yvette (France); Daniel, Laurent, E-mail: laurent.daniel@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris, CNRS (UMR 8507)/SUPELEC/UPMC/Univ Paris-Sud, 11 rue Joliot Curie, 91192 Gif sur Yvette (France); Materials Science Centre, University of Manchester, M1 7HS Manchester (United Kingdom); Razek, Adel [Laboratoire de Genie Electrique de Paris, CNRS (UMR 8507)/SUPELEC/UPMC/Univ Paris-Sud, 11 rue Joliot Curie, 91192 Gif sur Yvette (France)

    2013-01-15

    AMR sensors are among the most widely deployed magnetic field sensors. In contrast to other technologies it has a simple structure and a low production cost. In this paper a multiscale modeling strategy is proposed to describe the performance of these sensors taking their specific features into account. The prediction of the behavior of a typical AMR thin film sensor has been studied and the results are compared to experimental measurements from the literature. The proposed micro-macro model offers an opportunity to investigate optimal material composition, crystallographic texture, film thickness or bias field level for specific applications. - Highlights: Black-Right-Pointing-Pointer A multiscale strategy for the modeling of thin film AMR sensors is proposed. Black-Right-Pointing-Pointer The approach is based on the changes under external loading of the free energy at the magnetic domains scale. Black-Right-Pointing-Pointer Small thickness and crystallographic texture effects are introduced in the modeling. Black-Right-Pointing-Pointer The behavior of commercial AMR sensors is satisfactorily modeled. Black-Right-Pointing-Pointer The role of the bias field and of the film thickness is discussed.

  17. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model.

    Science.gov (United States)

    Bridge, L J; Franklin, K A; Homer, M E

    2013-08-01

    Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity.

  18. Modeling drop impacts on inclined flowing soap films

    Science.gov (United States)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, Mahesh

    2015-11-01

    Small drops impinging on soap films flowing at an angle primarily exhibit three fundamental regimes of post-impact dynamics: (a) the drop bounces off the film surface, (b) it coalesces with the downstream flow, and (c) it pierces through the film. During impact, the drop deforms along with a simultaneous, almost elastic deformation of the film transverse to the stream direction. Hence, the governing dynamics for this interaction present the rare opportunity to explore the in-tandem effects of elasticity and hydrodynamics alike. In this talk, we outline the analytical framework to study the drop impact dynamics. The model assumes a deformable drop and a deformable three-dimensional soap film and invokes a parametric study to qualify the three mentioned impact types. The physical parameters include the impact angle, drop impact speed, and the diameters of the drop prior to and during impact when it deforms and spreads out. Our model system offers a path towards optimization of interactions between a spray and a flowing liquid.

  19. A model for pressurized hydrogen induced thin film blisters

    OpenAIRE

    Bos, R. A. J. M. van den; Reshetniak, V.; Lee, C. J.; Benschop1, J; Bijkerk, F

    2016-01-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required for a stable blister is calculated. From this model, the adhesion energy of the blister cap, the internal pressure and the critical H-dose for blister formation can be calculated. In the second part,...

  20. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  1. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    Science.gov (United States)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  2. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    Science.gov (United States)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  3. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  4. Evolutionary Models of Super-Earths and Mini-Neptunes Incorporating Cooling and Mass Loss

    CERN Document Server

    Howe, Alex R

    2015-01-01

    We construct models of the structural evolution of super-Earth- and mini-Neptune-type exoplanets with hydrogen-helium envelopes, incorporating radiative cooling and XUV-driven mass loss. We conduct a parameter study of these models, focusing on initial mass, radius, and envelope mass fractions, as well as orbital distance, metallicity, and the specific prescription for mass loss. From these calculations, we investigate how the observed masses and radii of exoplanets today relate to the distribution of their initial conditions. Orbital distance and initial envelope mass fraction are the most important factors determining planetary evolution, particular radius evolution. Initial mass also becomes important below a "turnoff mass," which varies with orbital distance, with mass-radius curves being approximately flat for higher masses. Initial radius is the least important parameter we study, with very little difference between the hot start and cold start limits after an age of 100 Myr. Model sets with no mass los...

  5. Gas cooling in semi-analytic models and SPH simulations: are results consistent?

    CERN Document Server

    Saro, A; Borgani, S; Dolag, K

    2010-01-01

    We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical SPH simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: a) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; b) while all stars associated with the BCG were formed in its progenitors i...

  6. Degradation of thermal barrier coatings on an Integrated Gasification Combined Cycle (IGCC) simulated film-cooled turbine vane pressure surface due to particulate fly ash deposition

    Science.gov (United States)

    Luo, Kevin

    Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to

  7. Film rupture in the diffuse interface model coupled to hydrodynamics.

    Science.gov (United States)

    Thiele, U; Velarde, M G; Neuffer, K; Pomeau, Y

    2001-09-01

    The process of dewetting of a thin liquid film is usually described using a long-wave approximation yielding a single evolution equation for the film thickness. This equation incorporates an additional pressure term-the disjoining pressure-accounting for the molecular forces. Recently a disjoining pressure was derived coupling hydrodynamics to the diffuse interface model [L. M. Pismen and Y. Pomeau, Phys. Rev. E 62, 2480 (2000)]. Using the resulting evolution equation as a generic example for the evolution of unstable thin films, we examine the thickness ranges for linear instability and metastability for flat films, the families of stationary periodic and localized solutions, and their linear stability. The results are compared to simulations of the nonlinear time evolution. From this we conclude that, within the linearly unstable thickness range, there exists a well defined subrange where finite perturbations are crucial for the time evolution and the resulting structures. In the remainder of the linearly unstable thickness range the resulting structures are controlled by the fastest flat film mode assumed up to now for the entire linearly unstable thickness range. Finally, the implications for other forms of disjoining pressure in dewetting and for spinodal decomposition are discussed.

  8. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  9. A Preliminary Heat Flow Model for Cooling a Batholith near Ica, Peru

    Science.gov (United States)

    Gonzalez, L. U.; Clausen, B. L.; Molano, J. C.; Martinez, A. M.; Poma, O.

    2014-12-01

    This research models the cooling of a suite in the Linga Super-unit located at the north end of the Arequipa segment in the Cretaceous Peruvian Coastal Batholith. The monzogabbro to granite Linga suite is approximately 50 km long and 15 km wide, with an estimated vertical extent of about 5 km originally intruded to a depth of 3 km. The emplacement was in andesitic volcanics on the west and the Pampahuasi diorite Super-unit on the east and has incorporated earlier gabbroic bodies. The Linga suite is thought to be the result of a sequence of three pulses: an elongate unit to the west then two elliptical units to the northeast and southeast. The data for modeling comes from field observations on internal and external contacts, some well-defined magma chamber walls and roof, pendant and stoped blocks, magma chamber zoning, the nature and distribution of enclaves and xenoliths, magmatic fabric, evidences of magma mingling, rock porosity, mineralogical associations in metamorphic aureoles, extensive mineralization and brecciated conduits, and the types of hydrothermal alteration varying with distance from contacts. More than forty hand samples, thin sections, and geochemical analyses were used to estimate water content, magma and country rock temperature, liquid density, and viscosity. Further data will come from: zircon U-Pb ages for country rock and magma batch timeframes, fluid inclusions for magma pressure and temperature, and δ18O data for source of hydrothermal fluids. Simple heat conduction calculations using MATLAB and HEAT 3D for a single tabular intrusion estimated a cooling time to solidus of about 300 k.y. More complex modeling includes magma convection and multiple intrusions. Extensive veining and pervasive alteration suggested the use of HYDROTHERM to model possible additional heat flow effects from hydrothermal fluids. Extensive propylitic and significant potassic alteration were observed and, with TerraSpec infrared spectroscopy to identify

  10. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Borum, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chaleff, Ethan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogerson, Doug W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J. [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation, Canton, MI (United States)

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  11. 液体火箭发动机液膜冷却研究综述%Review of Research on Liquid Film Cooling for Liquid-propellant Rocket Engine

    Institute of Scientific and Technical Information of China (English)

    周红玲; 杨成虎; 刘犇

    2012-01-01

    液膜冷却对降低燃烧室和喷注器头部温度有显著作用,而且通道结构比较简单,因此在载人航天液体推进系统用姿轨控发动机中得到了广泛应用。液膜冷却的传热过程主要包括对流传热和沸腾传热两种形式,传质过程主要包括液膜的蒸发和中心主气流对液膜的携带。对液膜冷却过程的研究工作进行了综述,讨论了液膜冷却的异常升温现象和发生机理。%Liquid film cooling is widely used in attitude and ahitude liquid rocket engine for manned spaceflight propulsion sys- tem. With a comparatively simple channel structure, it is an effective method to protect the combustor and injector from high temperature. The two main heat transfer patterns in liquid film cooling are convection transfer and boiling heat transfer, while the process of mass transfer mainly includes liquid film evaporating and the carrying of the film by main flow. Research on the heat and mass transfer during liquid film cooling is reviewed, and the phenomenon and mecha- nism of abnormal temperature rise of liquid film cooling are discussed.

  12. Nonlinearity of ocean heat uptake during warming and cooling in the FAMOUS climate model

    Science.gov (United States)

    Bouttes, N.; Good, P.; Gregory, J. M.; Lowe, J. A.

    2015-04-01

    Atmospheric CO2 concentration is expected to continue rising in the coming decades, but natural or artificial processes may eventually reduce it. We show that, in the FAMOUS atmosphere-ocean general circulation model, the reduction of ocean heat content as radiative forcing decreases is greater than would be expected from a linear model simulation of the response to the applied forcings. We relate this effect to the behavior of the Atlantic meridional overturning circulation (AMOC): the ocean cools more efficiently with a strong AMOC. The AMOC weakens as CO2 rises, then strengthens as CO2 declines, but temporarily overshoots its original strength. This nonlinearity comes mainly from the accumulated advection of salt into the North Atlantic, which gives the system a longer memory. This implies that changes observed in response to different CO2 scenarios or from different initial states, such as from past changes, may not be a reliable basis for making projections.

  13. Experimental investigation of weir instability in main vessel cooling system of 1/4 FBR model

    Energy Technology Data Exchange (ETDEWEB)

    Thirumalai, M., E-mail: mtl@igcar.gov.i [Fast Reactor Technology Group, Department of Atomic Energy, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Anandaraj, M.; Kumar, P. Anup [Fast Reactor Technology Group, Department of Atomic Energy, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Prakash, V., E-mail: prakash@igcar.gov.i [Fast Reactor Technology Group, Department of Atomic Energy, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India); Anandbabu, C.; Kalyanasundaram, P.; Vaidyanathan, G. [Fast Reactor Technology Group, Department of Atomic Energy, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    2010-01-15

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam, India. The main vessel of this pool type reactor acts as the primary containment in the reactor assembly. In order to keep the main vessel temperature below creep range and to reduce high temperature embrittlement and also to ensure its healthiness for 40 years of reactor life, a small fraction of core flow (0.5 m{sup 3}/s) is sent through an annular space formed between the main vessel and a cylindrical baffle (primary thermal baffle) to cool the vessel. The sodium after cooling the main vessel overflows the primary baffle (weir shell) and falls into another concentric pool of sodium separated from the cold pool by the secondary thermal baffle and then returned to cold pool. The weir shell, where the overflow of liquid sodium takes place, is a thin shell prone to flow induced vibrations due to instability caused by sloshing and fluid-structure interaction. A similar vibration phenomenon was first observed during the commissioning of Super-Phenix reactor. In order to understand the phenomenon and provide necessary experimental back up to validate the analytical models, weir instability experiments were conducted in a 1:4 scale stainless steel (SS) model installed in a water loop. The experiments were conducted with flow rate and fall height as the varying parameters. The experimental results showed that the instability of the weir shell was caused due to fluid structure interaction. This paper discusses the details of the model, the modeling laws, similitude criteria adopted, analytical prediction, the experimental results and conclusion.

  14. Model-Based Fault Detection and Isolation of a Liquid-Cooled Frequency Converter on a Wind Turbine

    DEFF Research Database (Denmark)

    Li, Peng; Odgaard, Peter Fogh; Stoustrup, Jakob

    2012-01-01

    system is derived based on energy balance equation. A fault analysis is conducted to determine the severity and occurrence rate of possible component faults and their end effects in the cooling system. A method using unknown input observer is developed in order to detect and isolate the faults based......With the rapid development of wind energy technologies and growth of installed wind turbine capacity in the world, the reliability of the wind turbine becomes an important issue for wind turbine manufactures, owners, and operators. The reliability of the wind turbine can be improved by implementing...... advanced fault detection and isolation schemes. In this paper, an observer-based fault detection and isolation method for the cooling system in a liquid-cooled frequency converter on a wind turbine which is built up in a scalar version in the laboratory is presented. A dynamic model of the scale cooling...

  15. On the Cool Side: Modeling the Atmospheres of Brown Dwarfs and Giant Planets

    Science.gov (United States)

    Marley, M. S.; Robinson, T. D.

    2015-08-01

    The atmosphere of a brown dwarf or extrasolar giant planet controls the spectrum of radiation emitted by the object and regulates its cooling over time. Although the study of these atmospheres has been informed by decades of experience modeling stellar and planetary atmospheres, the distinctive characteristics of these objects present unique challenges to forward modeling. In particular, complex chemistry arising from molecule-rich atmospheres, molecular opacity line lists (sometimes running to 10 billion absorption lines or more), multiple cloud-forming condensates, and disequilibrium chemical processes all combine to create a challenging task for any modeling effort. This review describes the process of incorporating these complexities into one-dimensional radiative-convective equilibrium models of substellar objects. We discuss the underlying mathematics as well as the techniques used to model the physics, chemistry, radiative transfer, and other processes relevant to understanding these atmospheres. The review focuses on methods for creating atmosphere models and briefly presents some comparisons of model predictions to data. Current challenges in the field and some comments on the future conclude the review.

  16. Nonlinear Dynamic Modeling and Simulation of a Passively Cooled Small Modular Reactor

    Science.gov (United States)

    Arda, Samet Egemen

    A nonlinear dynamic model for a passively cooled small modular reactor (SMR) is developed. The nuclear steam supply system (NSSS) model includes representations for reactor core, steam generator, pressurizer, hot leg riser and downcomer. The reactor core is modeled with the combination of: (1) neutronics, using point kinetics equations for reactor power and a single combined neutron group, and (2) thermal-hydraulics, describing the heat transfer from fuel to coolant by an overall heat transfer resistance and single-phase natural circulation. For the helical-coil once-through steam generator, a single tube depiction with time-varying boundaries and three regions, i.e., subcooled, boiling, and superheated, is adopted. The pressurizer model is developed based upon the conservation of fluid mass, volume, and energy. Hot leg riser and downcomer are treated as first-order lags. The NSSS model is incorporated with a turbine model which permits observing the power with given steam flow, pressure, and enthalpy as input. The overall nonlinear system is implemented in the Simulink dynamic environment. Simulations for typical perturbations, e.g., control rod withdrawal and increase in steam demand, are run. A detailed analysis of the results show that the steady-state values for full power are in good agreement with design data and the model is capable of predicting the dynamics of the SMR. Finally, steady-state control programs for reactor power and pressurizer pressure are also implemented and their effect on the important system variables are discussed.

  17. A Detailed Model Atmosphere Analysis of Cool White Dwarfs in the Sloan Digital Sky Survey

    CERN Document Server

    Kilic, Mukremin; Tremblay, P -E; von Hippel, Ted; Bergeron, P; Harris, Hugh C; Munn, Jeffrey A; Williams, Kurtis A; Gates, Evalyn; Farihi, J

    2010-01-01

    We present optical spectroscopy and near-infrared photometry of 126 cool white dwarfs in the Sloan Digital Sky Survey (SDSS). Our sample includes high proper motion targets selected using the SDSS and USNO-B astrometry and a dozen previously known ultracool white dwarf candidates. Our optical spectroscopic observations demonstrate that a clean selection of large samples of cool white dwarfs in the SDSS (and the SkyMapper, Pan-STARRS, and the Large Synoptic Survey Telescope datasets) is possible using a reduced proper motion diagram and a tangential velocity cut-off (depending on the proper motion accuracy) of 30 km/s. Our near-infrared observations reveal eight new stars with significant absorption. We use the optical and near-infrared photometry to perform a detailed model atmosphere analysis. More than 80% of the stars in our sample are consistent with either pure hydrogen or pure helium atmospheres. However, the eight stars with significant infrared absorption and the majority of the previously known ultra...

  18. Lake isotope records of the 8200-year cooling event in western Ireland: Comparison with model simulations

    Science.gov (United States)

    Holmes, Jonathan A.; Tindall, Julia; Roberts, Neil; Marshall, William; Marshall, Jim D.; Bingham, Ann; Feeser, Ingo; O'Connell, Michael; Atkinson, Tim; Jourdan, Anne-Lise; March, Anna; Fisher, Elizabeth H.

    2016-01-01

    The early Holocene cooling, which occurred around 8200 calendar years before present, was a prominent abrupt event around the north Atlantic region. Here, we investigate the timing, duration, magnitude and regional coherence of the event as expressed in carbonate oxygen-isotope records from three lakes on northwest Europe's Atlantic margin in western Ireland, namely Loch Avolla, Loch Gealáin and Lough Corrib. An abrupt negative oxygen-isotope excursion lasted about 200 years. Comparison of records from three sites suggests that the excursion was primarily the result of a reduction of the oxygen-isotope values of precipitation, which was likely caused by lowered air temperatures, possibly coupled with a change in atmospheric circulation. Comparison of records from two of the lakes (Loch Avolla and Loch Gealáin), which have differing bathymetries, further suggests a reduction in evaporative loss of lake water during the cooling episode. Comparison of climate model experiments with lake-sediment isotope data indicates that effective moisture may have increased along this part of the northeast Atlantic seaboard during the 8200-year climatic event, as lower evaporation compensated for reduced precipitation.

  19. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  20. Modeling of Cooling and Solidification of TNT based Cast High Explosive Charges

    Directory of Open Access Journals (Sweden)

    A. Srinivas Kumar

    2014-07-01

    Full Text Available Cast trinitrotoluene (TNT based high explosive charges suffer from different defects such as cracks, voids, etc. One of the quality control measures is to cool the castings gradually, so that the entire charge solidifies without a large temperature gradient from core to the periphery of the cast charge. The fact that the solidification of high explosive casting starts from the periphery (cooler side and travels towards the center enables us to predict the solidification profile of TNT based explosive castings. Growth of solidification thickness and cooling temperature profiles of TNT based cast high explosive charges are predicted as functions of time and space using unsteady state heat transfer principles, associated with heat balance at solid to liquid interface as a moving boundary of solidification. This will enable adoption of proper quality control during solidification of the molten TNT to eliminate inherent drawbacks of cast high explosive charges. The solidification profiles of TNT based cast charges under controlled and natural conditions are predicted and the model is validated against 145 mm diameter TNT cast charge which is found to be in broad agreement with experiments.Defence Science Journal, Vol. 64, No. 4, July 2014, pp.339-343, DOI:http://dx.doi.org/10.14429/dsj.64.4673

  1. Model estimate of NO{sub x} production during the cooling of a lightning flash

    Energy Technology Data Exchange (ETDEWEB)

    Berton, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    Since discrepancies of two orders of magnitude are detected in current estimations, the question of NO{sub x} production by lightning has been addressed, and a new theoretical estimate is proposed. The new model deals with a unit length of an evanescent cooling branch of lightning supposed to be cylindrical and axisymmetrical, 1 mm in radius. The kinetics of five chemical species (N, O, N{sub 2}, O{sub 2}, NO) has been coupled to the full set of hydrodynamic equations expressing the conservation of momentum and energy together with an equation of state. This highly nonlinear system is completed by suitable boundary conditions in subsonic regime and then time-integrated by finite differences. It appears that the amount of NO produced in a cross section of channel reaches a maximum at 4,6.10{sup -7} mol/m after 50 {mu}s cooling. At that moment the average temperature is about 3000 K, at which NO is most easily formed. The net yield of NO is found to be 10{sup 16} molecules per Joule, which is one order of magnitude smaller than other theoretical results. (author) 4 refs.

  2. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  3. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  4. 质量流量比对全气膜冷却叶片冷却特性影响的实验研究%Experimental Study of Effects of Mass Flow Ratio on Film Cooling Effectiveness on Full Surface Cooling Vane

    Institute of Scientific and Technical Information of China (English)

    孟庆昆; 朱惠人; 张宗卫; 刘聪

    2012-01-01

    High-resolution heat transfer coefficient and film effectiveness measurements on a full-film cooling nozzle guide vane with compound and axial angle holes are obtained using a transient liquid crystal technique. Tests were performed in a scaled-up, two-passage cascade at an inlet Reynolds number of 1. 0 X 10 . There are 8 rows of compound angle cylinder film holes around the leading edge, 21 rows of axial angle cylinder holes on the pressure side, and 24 rows of axial angle cylinder holes on the suction side. The holes are fed from one of two internal cavities with a mass flow ratio of 4. 56% in the first plenum and 4. 67% in the second plenum. Results show that the film cover region shrinks on the suction side and expands on the pressure side as the influence of passage vortex. As for the three mass flow ratios, the mean effectiveness of film cooling stay the same. The results show that MFR has a little influence film cooling effectiveness, and as MFR increases, the heat transfer coefficient and film cooling effectiveness increase at the same time. On the leading edge of the blade,film cooling effectiveness has a better improvement.%采用瞬态液晶技术获得了全气膜冷却涡轮导向叶片全表面的高分辨率气膜冷却效率分布云图.实验在放大模型中完成,叶栅构成为三叶片两通道,叶栅进口雷诺数是1.0 × 105.叶片前缘有8排扩张型孔,压力面有21排轴向角孔,吸力面有24排轴向角孔.气膜孔排由2个供气腔供气,前腔二次流与主流的质量流量比为4.56%,后腔为4.67%.结果表明:受叶栅通道涡作用,气膜出流在吸力面呈聚敛状,在压力面则呈发散状.在三种质量流量比情况下,叶片平均冷却效率分布大体一致.随质量流量比的提升,叶片平均冷却效率提高,叶片前缘区域,气膜冷却效率提升更加明显.

  5. Application of evolutionary algorithms to optimize the model parameters of casting cooling process

    Directory of Open Access Journals (Sweden)

    S. Kluska-Nawarecka

    2010-10-01

    Full Text Available One of the most commonly used methods of numerical simulation is the finite element method (FEM. Its popularity is reflected in thenumber of tools supporting the preparation of simulation models. However, despite its usefulness, FEM is often very troublesome in use;the problem is the selection of the finite element mesh or shape function. In addition, MES assumes a complete knowledge of thesimulated process and of the parameters describing the investigated phenomena, including model geometry, boundary conditions, physicalparameters, and mathematical model describing these phenomena. A comparison of the data obtained from physical experiments andsimulations indicates an inaccuracy, which may result from the incorrectly chosen shape of element or geometry of the grid. Theapplication of computational intelligence methods, combined with knowledge of the manufacturing technology of metal products, shouldallow an efficient selection of parameters of the mathematical models and, as a consequence, more precise control of the process of thecasting solidification and cooling to ensure the required quality. The designed system has been integrated with the existing simulationenvironment, which will significantly facilitate the preparation and implementation of calculations of this type. Moreover, the use of adistributed model will significantly reduce the time complexity of calculations, requiring multiple repetition of complex simulations toestimate the quality of the different sets of parameters.

  6. Modeling of skin cooling, blood flow, and optical properties in wounds created by electrical shock

    Science.gov (United States)

    Nguyen, Thu T. A.; Shupp, Jeffrey W.; Moffatt, Lauren T.; Jordan, Marion H.; Jeng, James C.; Ramella-Roman, Jessica C.

    2012-02-01

    High voltage electrical injuries may lead to irreversible tissue damage or even death. Research on tissue injury following high voltage shock is needed and may yield stage-appropriate therapy to reduce amputation rate. One of the mechanisms by which electricity damages tissue is through Joule heating, with subsequent protein denaturation. Previous studies have shown that blood flow had a significant effect on the cooling rate of heated subcutaneous tissue. To assess the thermal damage in tissue, this study focused on monitoring changes of temperature and optical properties of skin next to high voltage wounds. The burns were created between left fore limb and right hind limb extremities of adult male Sprague-Dawley rats by a 1000VDC delivery shock system. A thermal camera was utilized to record temperature variation during the exposure. The experimental results were then validated using a thermal-electric finite element model (FEM).

  7. Quench Induced Pressure Rise in the Cooling Pipes of the Atlas Barrel Toroid Model

    CERN Document Server

    Haug, F; Broggi, F; Junker, S

    2004-01-01

    The ATLAS superconducting magnet system consists of a Barrel Toroid, two End-Cap Toroids and a Solenoid. Eight individual racetrack coils will be assembled to form the Barrel Toroid with overall dimensions of 26 m length and 20 m diameter. In order to verify the design concept a 9 m long short version of a single Barrel Toroid coil was built. A test program was conducted at the CERN cryogenic test facility which included the evaluation of the pressure rise in the helium cooling channels during quenches of the coil. A specific experimental set-up with cold pressure transducers and capillaries was installed for online measurement of the pressure signals. In addition a computer model was used to simulate these events. The data obtained are presented.

  8. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  9. Nucleation behavior of melted Bi films at cooling rates from 10{sup 1} to 10{sup 4} K/s studied by combining scanning AC and DC nano-calorimetry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Kechao; Vlassak, Joost J., E-mail: vlassak@esag.harvard.edu

    2015-03-10

    Highlights: • We proposed a general data reduction scheme that combines scanning AC and DC calorimetry results for the study of reaction kinetics. • Calorimetry measurements at cooling rates ranging from 30 K/s to 20,000 K/s were achieved. • Upon initial melting, the Bi thin-film sample breaks up into thousands of isolated islands, and highly repeatable nucleation behavior is observed. • The nucleation rate of melted Bi is calculated, which can be well described by classical nucleation theory over a wide range of cooling rates. - Abstract: We study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 10{sup 1} to 10{sup 4} K/s using a combination of scanning DC and AC nano-calorimetry techniques. Upon initial melting, the Bi thin-film sample breaks up into silicon nitride-coated isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials.

  10. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stillwell, Ashlynn S [Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 1 University Station C1786, Austin, TX 78712 (United States); Clayton, Mary E; Webber, Michael E, E-mail: ashlynn.stillwell@mail.utexas.edu, E-mail: mclayton34@mail.utexas.edu, E-mail: webber@mail.utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

    2011-07-15

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m{sup 3}-enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  11. High frequency model of stacked film capacitors

    Science.gov (United States)

    Talbert, T.; Joubert, C.; Daude, N.; Glaize, C.

    2001-11-01

    Polypropylene metallized capacitors are of general use in power electronics because of their reliability, their self-healing capabilities, and their low price. Though the behavior of metallized coiled capacitors has been discussed, no work has been carried out on stacked and flattened metallized capacitors. The purpose of this article is to suggest an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors. We first solve the equation of propagation of the magnetic potential vector (A) in the dielectric of an homogeneous material. Then, we suggest an original method of resolution, like the one used for resonant cavities, in order to present an analytical solution of the problem. Finally, we give some experimental results proving that the physical knowledge of the parameters of the capacitor (dimension of the component, and material constants), enables us to calculate an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors.

  12. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2008-02-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  13. Modeling surface imperfections in thin films and nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansen, Poul-Erik; Madsen, J. S.; Jensen, S. A.

    2017-01-01

    Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection on the surf......Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection...... classes of imperfections are examined. The imperfections are introduced as periodic structures with a super cell periods ten times larger than the simple grating period. Two classes of imperfections concern the grating and one class concern the substrate. It is shown that imperfections of a few nanometers...

  14. Heat pipe and surface mass transfer cooling of hypersonic vehicle structures

    Science.gov (United States)

    Colwell, Gene T.; Modlin, James M.

    1992-01-01

    The problem of determining the feasibility of cooling hypersonic vehicle leading-edge structures exposed to severe aerodynamic surface heating using heat pipe and mass transfer cooling techniques is addressed. A description is presented of a numerical finite-difference-based hypersonic leading-edge cooling model incorporating poststartup liquid metal heat pipe cooling with surface transpiration and film cooling to predict the transient structural temperature distributions and maximum surface temperatures of hypersonic vehicle leading edge. An application of this model to the transient cooling of a typical aerospace plane wing leading-edge section. The results of this application indicated that liquid metal heat pipe cooling alone is insufficient to maintain surface temperatures below an assumed maximum level of 1800 K for about one-third of a typical aerospace plane ascent trajectory through the earth's atmosphere.

  15. Growth Model for Pulsed-Laser Deposited Perovskite Oxide Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xu; FEI Yi-Yan; ZHU Xiang-Dong; Lu Hui-Bin; YANG Guo-Zhen

    2008-01-01

    We present a multi-level growth model that yields some of the key features of perovskite oxide film growth as observed in the reflection high energy electron diffraction(RHEED)and ellipsometry studies.The model describes the effect of deposition,temperature,intra-layer transport,interlayer transport and Ostwald ripening on the morphology of a growth surface in terms of the distribution of terraces and step edges during and after deposition.The numerical results of the model coincide well with the experimental observation.

  16. Asymptotic heat transfer model in thin liquid films

    CERN Document Server

    Chhay, Marx; Gisclon, Marguerite; Ruyer-Quil, Christian

    2015-01-01

    In this article, we present a modelling of heat transfer occuring through a liquid film flowing down a vertical wall. This model is formally derived thanks to asymptotic developpment, by considering the physical ratio of typical length scales of the study. A new Nusselt thermal solution is proposed, taking into account the hydrodynamic free surface variations and the contributions of the higher order terms in the asymptotic model are numerically pointed out. The comparisons are provided against the resolution of the full Fourier equations in a steady state frame.

  17. Black Hole Entropy Calculation in a Modified Thin Film Model

    Indian Academy of Sciences (India)

    Jingyi Zhang

    2011-03-01

    The thin film model is modified to calculate the black hole entropy. The difference from the original method is that the Parikh–Wilczek tunnelling framework is introduced and the self-gravitation of the emission particles is taken into account. In terms of our improvement, if the entropy is still proportional to the area, then the emission energy of the particles will satisfy = /360.

  18. Modeling and Simulation of the Microstructure Evolution during a Cooling of Immiscible Alloys in the Miscibility Gap

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructure development during a cooling period of alloys being immiscible in the liquid state such as AlPb or Al-Bi has gained renewed scientific and technical interest during the last decades. Experiments have been performed to investigate the phase transformation kinetics in the liquid miscibility gap and numerical models have been developed to simulate and analyze the solidification process. The recently developed computational modeling techniques can, to some extent, be applied to describe the decomposition, the spatial phase separation and the microstructure evolution during a cooling period of an immiscible alloy through the miscibility gap. This article overviews the researches in this field.

  19. An Experimental Investigation on Transpiration Cooling Part II: Comparison of Cooling Methods and Media

    OpenAIRE

    Wang J; Messner J.; Stetter H.

    2004-01-01

    This article attempts to provide a cooling performance comparison of various mass transfer cooling methods and different cooling media through two experiments. In the first experiment, pressurized air was used as a cooling medium and two different circular tubes were used as specimens. One is made of impermeable solid material with four rows of discrete holes to simulate film cooling, and the other consists of sintered porous material to create a porous transpiration cooling effect. The...

  20. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  1. Dynamic models of heating and cooling coils with one-dimensional air distribution

    Science.gov (United States)

    Wang, Zijie; Krauss, G.

    1993-06-01

    This paper presents the simulation models of the plate-fin, air-to-water (or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying coils in the HVAC (Heating, Ventilation and Air-Conditioning) systems. The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid. The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes. They can also be used to optimize the structures of such coils. The models are based on principal laws of heat and mass conservation and fluid mechanics. They are transparent and easy to use. In our work, a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique. Therefore we can conveniently simulate the coils with different structures and different geometric parameters. Two modular programs TRNSYS (Transient System Simulation) and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified. The coil elements and a real coil were simulated. The results were compared with the data offered by the manufacturer (company SOFICA) and also with those obtained using critical methods such as NTU method, etc. and good agreement is attained.

  2. A new mathematical model to simulate AVA cold-induced vasodilation reaction to local cooling

    Science.gov (United States)

    Rida, Mohamad; Karaki, Wafaa; Ghaddar, Nesreen; Ghali, Kamel; Hoballah, Jamal

    2014-01-01

    The purpose of this work was to integrate a new mathematical model with a bioheat model, based on physiology and first principles, to predict thermoregulatory arterio-venous anastomoses (AVA) and cold-induced vasodilation (CIVD) reaction to local cooling. The transient energy balance equations of body segments constrained by thermoregulatory controls were solved numerically to predict segmental core and skin temperatures, and arterial blood flow for given metabolic rate and environmental conditions. Two similar AVA-CIVD mechanisms were incorporated. The first was activated during drop in local skin temperature (hand immersions in cold fluid. When compared with published data, the model predicted accurately the onset time of CIVD at 25 min and T CIVD,min at 10 °C for hand exposure to still air at 0 °C. Good agreement was also obtained between predicted finger skin temperature and experimentally published values for repeated immersion in cold water at environmental conditions of 30, 25, and 20 °C. The CIVD thermal response was found related to core body temperature, finger skin temperature, and initial finger sensible heat loss rate upon exposure to cold fluid. The model captured central and local stimulations of the CIVD and accommodated observed variability reported in literature of onset time of CIVD reaction and T CIVD,min.

  3. Dynamic Models of Heating and Cooling Coils with One—Dimensional Air Distribution

    Institute of Scientific and Technical Information of China (English)

    WangZijie; G.Krauss

    1993-01-01

    This paper presents the simulation models of the plate-fin,air-to-water(or water vapour) heat exchangers used as air-heating or air-cooling and dehumidifying colis in the HVAC(Heating,Ventilation and AIr-Conditioning)systems.The thermal models are used to calculate the heat exchange between distributing air and coil pipes and outlet temperatures of air and heat or chilled fluid.The aerodynamic models are used to account for the pressure drop of the air crossing the coil tubes,They can also be used to optimize the structres of such coils.The models are based on principal laws of teat and mass conservation and fluid mechanics.They are transparent and easy to use.In our work,a coil is considered as an assembly of numbers of basic elements in which all the state variables are unique.Therefore we can conveniently simulate the coils with different structures and different geometric parameters.Two modular programs TRNSYS(Transient System Simulation)and ESACAP are utilized as supporting softwares which make the programming and simulation greatly simplified.The coil elements and a real coil were simulated.The results were compared with the data offered by the manufacturer(company SOFICA) and also with those obtained using critical methods such as NTU method ,etc.and good agreement is attained.

  4. Modeling of Rocket Fuel Heating and Cooling Processes in the Interior Receptacle Space of Ground-Based Systems

    Directory of Open Access Journals (Sweden)

    K. I. Denisova

    2016-01-01

    Full Text Available The propellant to fill the fuel tanks of the spacecraft, upper stages, and space rockets on technical and ground-based launch sites before fueling should be prepared to ensure many of its parameters, including temperature, in appropriate condition. Preparation of fuel temperature is arranged through heating and cooling the rocket propellants (RP in the tanks of fueling equipment. Processes of RP temperature preparation are the most energy-intensive and timeconsuming ones, which require that a choice of sustainable technologies and modes of cooling (heating RP provided by the ground-based equipment has been made through modeling of the RP [1] temperature preparation processes at the stage of design and operation of the groundbased fueling equipment.The RP temperature preparation in the tanks of the ground-based systems can be provided through the heat-exchangers built-in the internal space and being external with respect to the tank in which antifreeze, air or liquid nitrogen may be used as the heat transfer media. The papers [1-12], which note a promising use of the liquid nitrogen to cool PR, present schematic diagrams and modeling systems for the RP temperature preparation in the fueling equipment of the ground-based systems.We consider the RP temperature preparation using heat exchangers to be placed directly in RP tanks. Feeding the liquid nitrogen into heat exchanger with the antifreeze provides the cooling mode of PR while a heated air fed there does that of heating. The paper gives the systems of equations and results of modeling the processes of RP temperature preparation, and its estimated efficiency.The systems of equations of cooling and heating RP are derived on the assumption that the heat exchange between the fuel and the antifreeze, as well as between the storage tank and the environment is quasi-stationary.The paper presents calculation results of the fuel temperature in the tank, and coolant temperature in the heat exchanger, as

  5. Gas cooling in semi-analytic models and smoothed particle hydrodynamics simulations: are results consistent?

    Science.gov (United States)

    Saro, A.; De Lucia, G.; Borgani, S.; Dolag, K.

    2010-08-01

    We present a detailed comparison between the galaxy populations within a massive cluster, as predicted by hydrodynamical smoothed particle hydrodynamics (SPH) simulations and by a semi-analytic model (SAM) of galaxy formation. Both models include gas cooling and a simple prescription of star formation, which consists in transforming instantaneously any cold gas available into stars, while neglecting any source of energy feedback. This simplified comparison is thus not meant to be compared with observational data, but is aimed at understanding the level of agreement, at the stripped-down level considered, between two techniques that are widely used to model galaxy formation in a cosmological framework and which present complementary advantages and disadvantages. We find that, in general, galaxy populations from SAMs and SPH have similar statistical properties, in agreement with previous studies. However, when comparing galaxies on an object-by-object basis, we find a number of interesting differences: (i) the star formation histories of the brightest cluster galaxies (BCGs) from SAM and SPH models differ significantly, with the SPH BCG exhibiting a lower level of star formation activity at low redshift, and a more intense and shorter initial burst of star formation with respect to its SAM counterpart; (ii) while all stars associated with the BCG were formed in its progenitors in the SAM used here, this holds true only for half of the final BCG stellar mass in the SPH simulation, the remaining half being contributed by tidal stripping of stars from the diffuse stellar component associated with galaxies accreted on the cluster halo; (iii) SPH satellites can lose up to 90 per cent of their stellar mass at the time of accretion, due to tidal stripping, a process not included in the SAM used in this paper; (iv) in the SPH simulation, significant cooling occurs on the most massive satellite galaxies and this lasts for up to 1 Gyr after accretion. This physical process is

  6. A Model to Predict Total Chlorine Residue in the Cooling Seawater of a Power Plant Using Iodine Colorimetric Method

    Directory of Open Access Journals (Sweden)

    Pei-Jie Meng

    2008-04-01

    Full Text Available A model experiment monitoring the fate of total residue oxidant (TRO in water at a constant temperature and salinity indicated that it decayed exponentially with time, and with TRO decaying faster in seawater than in distilled water. The reduction of TRO by temperature (°K was found to fit a curvilinear relationship in distilled water (r2 = 0.997 and a linear relationship in seawater (r2 = 0.996. Based on the decay rate, flow rate, and the length of cooling water flowing through at a given temperature, the TRO level in the cooling water of a power plant could be estimated using the equation developed in this study. This predictive model would provide a benchmark for power plant operators to adjust the addition of chlorine to levels necessary to control bio-fouling of cooling water intake pipelines, but without irritating ambient marine organisms.

  7. A Model to Predict Total Chlorine Residue in the Cooling Seawater of a Power Plant Using Iodine Colorimetric Method

    Science.gov (United States)

    Wang, Jih-Terng; Chen, Ming-Hui; Lee, Hung-Jen; Chang, Wen-Been; Chen, Chung-Chi; Pai, Su-Cheng; Meng, Pei-Jie

    2008-01-01

    A model experiment monitoring the fate of total residue oxidant (TRO) in water at a constant temperature and salinity indicated that it decayed exponentially with time, and with TRO decaying faster in seawater than in distilled water. The reduction of TRO by temperature (°K) was found to fit a curvilinear relationship in distilled water (r2 = 0.997) and a linear relationship in seawater (r2 = 0.996). Based on the decay rate, flow rate, and the length of cooling water flowing through at a given temperature, the TRO level in the cooling water of a power plant could be estimated using the equation developed in this study. This predictive model would provide a benchmark for power plant operators to adjust the addition of chlorine to levels necessary to control bio-fouling of cooling water intake pipelines, but without irritating ambient marine organisms. PMID:19325768

  8. Electron cooling

    Science.gov (United States)

    Meshkov, I.; Sidorin, A.

    2004-10-01

    The brief review of the most significant and interesting achievements in electron cooling method, which took place during last two years, is presented. The description of the electron cooling facilities-storage rings and traps being in operation or under development-is given. The applications of the electron cooling method are considered. The following modern fields of the method development are discussed: crystalline beam formation, expansion into middle and high energy electron cooling (the Fermilab Recycler Electron Cooler, the BNL cooler-recuperator, cooling with circulating electron beam, the GSI project), electron cooling in traps, antihydrogen generation, electron cooling of positrons (the LEPTA project).

  9. Model-Based Fault Detection and Isolation of a Liquid-Cooled Frequency Converter on a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Peng Li

    2012-01-01

    Full Text Available With the rapid development of wind energy technologies and growth of installed wind turbine capacity in the world, the reliability of the wind turbine becomes an important issue for wind turbine manufactures, owners, and operators. The reliability of the wind turbine can be improved by implementing advanced fault detection and isolation schemes. In this paper, an observer-based fault detection and isolation method for the cooling system in a liquid-cooled frequency converter on a wind turbine which is built up in a scalar version in the laboratory is presented. A dynamic model of the scale cooling system is derived based on energy balance equation. A fault analysis is conducted to determine the severity and occurrence rate of possible component faults and their end effects in the cooling system. A method using unknown input observer is developed in order to detect and isolate the faults based on the developed dynamical model. The designed fault detection and isolation algorithm is applied on a set of measured experiment data in which different faults are artificially introduced to the scaled cooling system. The experimental results conclude that the different faults are successfully detected and isolated.

  10. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  11. Modeling the water uptake by chicken carcasses during cooling by immersion

    Directory of Open Access Journals (Sweden)

    Tiago Dias Martins

    2011-09-01

    Full Text Available In this study, water uptake by poultry carcasses during cooling by water immersion was modeled using artificial neural networks. Data from twenty-five independent variables and the final mass of the carcass were collected in an industrial plant to train and validate the model. Different network structures with one hidden layer were tested, and the Downhill Simplex method was used to optimize the synaptic weights. In order to accelerate the optimization calculus, Principal Component Analysis (PCA was used to preprocess the input data. The obtained results were: i PCA reduced the number of input variables from twenty-five to ten; ii the neural network structure 4-6-1 was the one with the best result; iii PCA gave the following order of importance: parameters of mass transfer, heat transfer, and initial characteristics of the carcass. The main contributions of this work were to provide an accurate model for predicting the final content of water in the carcasses and a better understanding of the variables involved.

  12. Precipitation model in microalloyed steels both isothermal and continuous cooling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. F.; Quispe, A.; Gomez, M.

    2015-07-01

    Niobium and vanadium precipitates (nitrides and carbides) can inhibit the static recrystallization of austenite but this does not happen for Ti, which form nitrides at high temperatures. RPTT diagrams show the interaction between recrystallization and precipitation allowing study the strain induced precipitation kinetics and precipitate coarsening. Based on Dutta and Sellars expression for the start of strain-induced precipitation in microalloyed steels, a new model has been constructed which takes into account the influence of variables such as microalloying element percentages, strain, temperature, strain rate and grain size. Recrystallization- Precipitation-Time-Temperature (RPTT) diagrams have been plotted thanks to a new experimental study carried out by means of hot torsion tests on approximately twenty microalloyed steels with different Nb, V and Ti contents. Mathematical analysis of the results recommends the modification of some parameters such as the supersaturation ratio (ks) and constant B, which is no longer a constant but a function of ks. The expressions are now more consistent and predict the Precipitation-Time-Temperature (PTT) curves with remarkable accuracy. The model for strain-induced precipitation kinetics is completed by means of Avramis equation. Finally, the model constructed in isothermal testing conditions, it has been converted to continuous cooling conditions in order to apply it in hot rolling. (Author)

  13. Improved Lumped Models for Transient Combined Convective and Radiative Cooling of Multilayer Spherical Media

    Directory of Open Access Journals (Sweden)

    Chen An

    2017-01-01

    Full Text Available In this work, we studied the transient combined convection and radiation of multilayer spherical media with volumetric heat generation, extending the previous work on the particular case of a spherical body subjected to radiative cooling. The proposed lumped models were obtained through two-point Hermite approximations for the average temperature and heat flux in each layer. For the average temperature, the plain trapezoidal rule (H0,0 approximation was employed in all layers, except for the innermost layer, where the second-order two-side corrected trapezoidal rule (H2,1 approximation was utilized. For the heat flux, the plain trapezoidal rule (H0,0 approximation was employed for all the layers. The transient heat conduction in a TRISO-coated fuel particle being composed of five layers (namely, fuel kernel, buffer of porous carbon, inner pyrocarbon, silicon carbide, and outer pyrocarbon was analyzed using the proposed lumped models, the results of which were verified by comparison with the finite difference solution of the original distributed parameter model. Parametric studies were conducted to examine the effects of the dimensionless heat generation rate, the radiation-conduction parameter, and the Biot number on the temporal variations of the average temperatures.

  14. Random field distributed Heisenberg model on a thin film geometry

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit, E-mail: umit.akinci@deu.edu.tr

    2014-11-15

    The effects of the bimodal random field distribution on the thermal and magnetic properties of the Heisenberg thin film have been investigated by making use of a two spin cluster with the decoupling approximation. Particular attention has been devoted to the obtaining of phase diagrams and magnetization behaviors. The physical behaviors of special as well as tricritical points are discussed for a wide range of selected Hamiltonian parameters. For example, it is found that when the strength of a magnetic field increases, the locations of the special point (which is the ratio of the surface exchange interaction and the exchange interaction of the inner layers that makes the critical temperature of the film independent of the thickness) in the related plane decrease. Moreover, tricritical behavior has been obtained for higher values of the magnetic field, and influences of the varying Hamiltonian parameters on its behavior have been elucidated in detail in order to have a better understanding of the mechanism underlying the considered system. - Highlights: • Effect of bimodal random field distribution within the Heisenberg model is investigated. • Phase diagrams of the random field Heisenberg model in a thin film geometry are obtained. • Effect of the random field on the magnetic properties is obtained. • Variation of the special point with random field is determined. • Variation of the tricritical point with random field is determined.

  15. Simulations and Modelling of Absorption Cooling Unit by Means of Peltier Module

    Directory of Open Access Journals (Sweden)

    Vladimír KOCÚR

    2011-07-01

    Full Text Available Article refers to function of absorption cooling unit simulated by means of Peltier module. Although, this system works on entirely different physical principle, it is necessary to use it as equivalent of absorption cooling what is proved in more detail in article.

  16. Analytical model of transient thermal effect on convectional cooled end-pumped laser rod

    Indian Academy of Sciences (India)

    Khalid S Shibib; Mohammad A Munshid; Kadim A Hubiter

    2013-10-01

    The transient analytical solutions of temperature distribution, stress, strain and optical path difference in convectional cooled end-pumped laser rod are derived. The results are compared with other works and good agreements are found. The effects of increasing the edge cooling and face cooling are studied. It is found that an increase in the edge cooling has significant effect on reducing the maximum temperature that can be reached in the laser rod but it has no effect on the value of optical path difference. It is also found that increasing this type of cooling significantly reduces the time required to reach the thermal equilibrium with a slight increase in the max. tensile hoop stress that can be reached as the cooling increases. On the other hand, increase in face cooling reduces the response time, optical path difference and the maximum temperature that can be reached in the laser rod but a significant increase in the max. tensile hoop stress is observed. A matching between the advantages of these two type of cooling may be useful for a designer.

  17. Simulations and Modelling of Absorption Cooling Unit by Means of Peltier Module

    OpenAIRE

    Vladimír KOCÚR; Jozef ŠURIANSKY

    2011-01-01

    Article refers to function of absorption cooling unit simulated by means of Peltier module. Although, this system works on entirely different physical principle, it is necessary to use it as equivalent of absorption cooling what is proved in more detail in article.

  18. Experimental investigations on showerhead cooling on a blunt body

    Energy Technology Data Exchange (ETDEWEB)

    Falcoz, C.; Ott, P. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire de Thermique Appliquee et de Turbomachines (LTT), 1015 Lausanne (Switzerland); Weigand, B. [Institut fuer Thermodynamik der Luft- und Raumfahrt (ITLR), Stuttgart University, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2006-04-15

    In modern gas turbines, the turbine airfoil leading edge is currently protected from the hot gases by specific film cooling schemes, so-called showerhead cooling. The present paper shows an experimental study of different showerhead cooling geometries on a blunt body. For these tests, TLC (thermochromatic liquid crystals) have been used for measuring the film cooling performance and the heat transfer. Detailed experimental results for the aerodynamics, the film cooling effectiveness and the heat transfer enhancement are presented for different film cooling geometries. (author)

  19. In vivo laser cartilage reshaping with carbon dioxide spray cooling in a rabbit ear model: a pilot study.

    Science.gov (United States)

    Kuan, Edward C; Hamamoto, Ashley A; Sun, Victor; Nguyen, Tony; Manuel, Cyrus T; Protsenko, Dmitry E; Wong, Brian J F; Nelson, J Stuart; Jia, Wangcun

    2014-12-01

    Similar to conventional cryogen spray cooling, carbon dioxide (CO2) spray may be used in combination with laser cartilage reshaping (LCR) to produce cartilage shape change while minimizing cutaneous thermal injury. Recent ex vivo evaluation of LCR with CO2 cooling in a rabbit model has identified a promising initial parameter space for in vivo safety and efficacy evaluation. This pilot study aimed to evaluate shape change and cutaneous injury following LCR with CO2 cooling in 5 live rabbits. The midportion of live rabbit ears were irradiated with a 1.45 µm wavelength diode laser (12 J/cm(2)) with simultaneous CO2 spray cooling (85 millisecond duration, 4 alternating heating/cooling cycles per site, 5 to 6 irradiation sites per row for 3 rows per ear). Experimental and control ears (no LCR) were splinted in the flexed position for 30 days following exposure. A total of 5 ears each were allocated to the experimental and control groups. Shape change was observed in all irradiated ears (mean 70 ± 3°), which was statistically different from control (mean 37 ± 11°, P = 0.009). No significant thermal cutaneous injury was observed, with preservation of the full thickness of skin, microvasculature, and adnexal structures. Confocal microscopy and histology demonstrated an intact and viable chondrocyte population surrounding irradiated sites. LCR with CO2 spray cooling can produce clinically significant shape change in the rabbit auricle while minimizing thermal cutaneous and cartilaginous injury and frostbite. This pilot study lends support for the potential use of CO2 spray as an adjunct to existing thermal-based cartilage reshaping modalities. An in vivo systematic evaluation of optimal laser dosimetry and cooling parameters is required. © 2014 Wiley Periodicals, Inc.

  20. Stratification of a Foam Film Formed from a Nonionic Micellar Solution: Experiments and Modeling.

    Science.gov (United States)

    Lee, Jongju; Nikolov, Alex; Wasan, Darsh

    2016-05-17

    Thin liquid films containing surfactant micelles or other nanocolloidal particles are considered to be the key structural elements of foams containing gas and liquid. We report here the experimental results and theoretical modeling for the phenomenon of the stratification (stepwise thinning) of a foam film formed from a nonionic micellar solution. The film stratification phenomenon was experimentally observed by reflected light microinterferometry. We observed that the stepwise layer-by-layer decrease of the film thickness is due to the appearance and growth of a dark spot of one layer less than the film thickness in the film. The dark spot expansion is driven by the diffusion of the dislocation (or vacancy) in the micellar lattice. The vacancies from the meniscus diffuse and condense into the dark spot, leading to its expansion inside the film. We experimentally observed the expansion of the dark spot at various film thicknesses (i.e., the number of micellar layers) and at different film sizes. We also measured the contact angle between the film and the meniscus; we used the data to estimate the structural film interaction energy barrier and the apparent diffusion coefficient. We used the two-dimensional diffusion model to model the dynamics of the dark spot expansion with consideration to the apparent diffusion coefficient and the film size. The model predictions are in good agreement with the experimental observations. On the basis of this model, we carried out a parametric study depicting the effects of the film thickness (or the number of micellar layers) and film area on the rate of the dark spot expansion. We also generalized the model previously proposed by Kralchevsky et al. [ Langmuir 1990 , 6 , 1180 - 1189 ], incorporating the effects of the film size, film thickness, and apparent diffusion coefficient to predict the dark spot expansion rate.

  1. Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel

    Science.gov (United States)

    Mella, R.; Wenman, M. R.

    2013-06-01

    Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of

  2. Cooling of a Diesel Reformate Fuelled Solid Oxide Fuel Cell by Internal Reforming of Methane: A Modelling Study

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaowei; Alexander Kromp

    2013-01-01

    In this paper a system combining a diesel reformer using catalytic partial oxidation (CPOX) with the Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Unit (APU) applications is modeled with respect to the cooling effect provided by internal reforming of methane in anode gas channel.A model mixture consisting of 80% n-hexadecane and 20% 1-methylnaphthalin is used to simulate the commercial diesel.The modelling consists of several steps.First,equilibrium gas composition at the exit of CPOX reformer is modelled in terms oxygen to carbon (O/C) ratio,fuel utilization ratio and anode gas recirculation.Second,product composition,especially methane content,is determined for the methanation process at the operating temperatures ranging from 500 ℃ to 520 ℃.Finally,the cooling power provided by internal reforming of methane in SOFC fuel channel is calculated for two concepts to increase the methane content of the diesel reformate.The results show that the first concept,operating the diesel reformer at low O/C ratio and/or recirculation ratio,is not realizable due to high probability of coke formation,whereas the second concept,combining a methanation process with CPOX,can provide a significant cooling effect in addition to the conventional cooling concept which needs higher levels of excess air.

  3. A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films

    KAUST Repository

    Kwiatkowski, Joe J.

    2011-01-01

    We present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.

  4. Thermal modelling of cooling tool cutting when milling by electrical analogy

    Directory of Open Access Journals (Sweden)

    Benmoussa H.

    2010-06-01

    Full Text Available Measurement temperatures by (some devises are applied immediately after shut-down and may be corrected for the temperature drop that occurs in the interval between shut-down and measurement. This paper presents a new procedure for thermal modelling of the tool cutting used just after machining; when the tool is out off the chip in order to extrapolate the cutting temperature from the temperature measured when the tool is at stand still. A fin approximation is made in enhancing heat loss (by conduction and convection to air stream is used. In the modelling we introduce an equivalent thermal network to estimate the cutting temperature as a function of specific energy. In another hand, a local modified element lumped conduction equation is used to predict the temperature gradient with time when the tool is being cooled, with initial and boundary conditions. These predictions provide a detailed view of the global heat transfer coefficient as a function of cutting speed because the heat loss for the tool in air stream is an order of magnitude larger than in normal environment. Finally we deduct the cutting temperature by inverse method.

  5. Non-linear Model Predictive Control for cooling strings of superconducting magnets using superfluid helium

    CERN Document Server

    AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique

    In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...

  6. Real-Time, Model-Based Spray-Cooling Control System for Steel Continuous Casting

    Science.gov (United States)

    Petrus, Bryan; Zheng, Kai; Zhou, X.; Thomas, Brian G.; Bentsman, Joseph

    2011-02-01

    This article presents a new system to control secondary cooling water sprays in continuous casting of thin steel slabs (CONONLINE). It uses real-time numerical simulation of heat transfer and solidification within the strand as a software sensor in place of unreliable temperature measurements. The one-dimensional finite-difference model, CON1D, is adapted to create the real-time predictor of the slab temperature and solidification state. During operation, the model is updated with data collected by the caster automation systems. A decentralized controller configuration based on a bank of proportional-integral controllers with antiwindup is developed to maintain the shell surface-temperature profile at a desired set point. A new method of set-point generation is proposed to account for measured mold heat flux variations. A user-friendly monitor visualizes the results and accepts set-point changes from the caster operator. Example simulations demonstrate how a significantly better shell surface-temperature control is achieved.

  7. Thermal modelling of cooling tool cutting when milling by electrical analogy

    Science.gov (United States)

    Benabid, F.; Arrouf, M.; Assas, M.; Benmoussa, H.

    2010-06-01

    Measurement temperatures by (some devises) are applied immediately after shut-down and may be corrected for the temperature drop that occurs in the interval between shut-down and measurement. This paper presents a new procedure for thermal modelling of the tool cutting used just after machining; when the tool is out off the chip in order to extrapolate the cutting temperature from the temperature measured when the tool is at stand still. A fin approximation is made in enhancing heat loss (by conduction and convection) to air stream is used. In the modelling we introduce an equivalent thermal network to estimate the cutting temperature as a function of specific energy. In another hand, a local modified element lumped conduction equation is used to predict the temperature gradient with time when the tool is being cooled, with initial and boundary conditions. These predictions provide a detailed view of the global heat transfer coefficient as a function of cutting speed because the heat loss for the tool in air stream is an order of magnitude larger than in normal environment. Finally we deduct the cutting temperature by inverse method.

  8. Improved lumped models for transient combined convective and radiative cooling of a two-layer spherical fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alice Cunha da; Su, Jian, E-mail: alicecs@poli.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)

  9. Comparison of the efficacy of free residual chlorine and monochloramine against biofilms in model and full scale cooling towers.

    Science.gov (United States)

    Türetgen, Irfan

    2004-04-01

    The presence of microbial cells on surfaces results in the formation of biofilms, which may also give rise to microbiologically influenced corrosion. Biofilms accumulate on all submerged industrial and environmental surfaces. The efficacy of disinfectants is usually evaluated using planktonic cultures, which often leads to an underestimate of the concentration required to control a biofilm. The aim of this study was to investigate the efficacy of monochloramine on biofilms developed in a cooling tower. The disinfectants selected for the study were commercial formulations recommended for controlling microbial growth in cooling towers. A cooling tower and a laboratory model recirculating water system were used as biofilm reactors. Although previous studies have evaluated the efficacy of free chlorine and monochloramine for controlling biofilm growth, there is a lack of published data concerning the use monochloramine in cooling towers. Stainless steel coupons were inserted in each tower basin for a period of 30 d before removal. Monochloramine and free chlorine were tested under identical conditions on mixed biofilms which had been allowed to grow on coupons. Monochloramine was found to be significantly more effective than free chlorine against cooling tower biofilms.

  10. Analysis of the effect of renal excretory system cooling during thermal radiofrequency ablation in an animal model

    Directory of Open Access Journals (Sweden)

    Andre Meireles

    2014-01-01

    Full Text Available Objective: Analysis of renal excretory system integrity and efficacy of radiofrequency ablation with and without irrigation with saline at 2 o C (SF2. Materials and Methods: The median third of sixteen kidneys were submitted to radiofrequency (exposition of 1 cm controlled by intra-surgical ultrasound, with eight minutes cycles and median temperature of 90 o C in eight female pigs. One excretory renal system was cooled with SF2, at a 30ml/min rate, and the other kidney was not. After 14 days of post-operatory, the biggest diameters of the lesions and the radiological aspects of the excretory system were compared by bilateral ascending pyelogram and the animals were sacrificed in order to perform histological analysis. Results: There were no significant differences between the diameters of the kidney lesions whether or not exposed to cooling of the excretory system. Median diameter of the cooled kidneys and not cooled kidneys were respectively (in mm: anteroposterior: 11.46 vs. 12.5 (p = 0.23; longitudinal: 17.94 vs. 18.84 (p = 0.62; depth: 11.38 vs. 12.25 (p = 0.47. There was no lesion of the excretory system or signs of leakage of contrast media or hydronephrosis at ascending pyelogram. Conclusion: Cooling of excretory system during radiofrequency ablation does not significantly alter generated coagulation necrosis or affect the integrity of the excretory system in the studied model.

  11. Performance of a 10-kJ SMES model cooled by liquid hydrogen thermo-siphon flow for ASPCS study

    Science.gov (United States)

    Makida, Y.; Shintomi, T.; Hamajima, T.; Ota, N.; Katsura, M.; Ando, K.; Takao, T.; Tsuda, M.; Miyagi, D.; Tsujigami, H.; Fujikawa, S.; Hirose, J.; Iwaki, K.; Komagome, T.

    2015-12-01

    We propose a new electrical power storage and stabilization system, called an Advanced Superconducting Power Conditioning System (ASPCS), which consists of superconducting magnetic energy storage (SMES) and hydrogen energy storage, converged on a liquid hydrogen station for fuel cell vehicles. A small 10- kJ SMES system, in which a BSCCO coil cooled by liquid hydrogen was installed, was developed to create an experimental model of an ASPCS. The SMES coil is conductively cooled by liquid hydrogen flow through a thermo-siphon line under a liquid hydrogen buffer tank. After fabrication of the system, cooldown tests were carried out using liquid hydrogen. The SMES coil was successfully charged up to a nominal current of 200 A. An eddy current loss, which was mainly induced in pure aluminum plates pasted onto each pancake coils for conduction cooling, was also measured.

  12. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2015-01-01

    In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed that the ......In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed...... that the maximum differences between the calculated surface temperature and heat transfer using the proposed model and the measured data were 0.8 ºC and 8.1 W/m2 for radiant floor heating system when average water temperature between 40 ºC and 60 ºC. For the corresponding values were 0.3 ºC and 2.0 W/m2...... for radiant floor cooling systems when average water temperature between 10 ºC and 20 ºC. Numerically simulated data in this study were also used to validate the proposed model. The results showed that the surface temperature and heat transfer of radiant floor calculated by the proposed model agreed very well...

  13. Model of laser cooling in the Yb3+ -doped fluorozirconate glass ZBLAN

    Science.gov (United States)

    Hehlen, Markus P.; Epstein, Richard I.; Inoue, Hiroyuki

    2007-04-01

    A quantitative description of optical refrigeration in Yb3+ -doped ZBLAN glass in the presence of transition-metal and OH impurities is presented. The model includes the competition of radiative processes with energy migration, energy transfer to transition-metal ions, and multiphonon relaxation. Molecular dynamics calculations of pure ZBLAN and ZBLAN doped with transition-metal ions provide the structural information that, when combined with spectroscopic data, allows for the calculation of electric-dipole energy-transfer rates in the framework of the Dexter theory. The structural data is further used to extend the traditional energy-gap law to multiphonon relaxation via vibrational impurities. The cooling efficiency is sensitive to the presence of both 3d metal ions with absorption in the near infrared and high-frequency vibrational impurities such as OH . The calculation establishes maximum impurity concentrations for different operating temperatures and finds Cu2+ , Fe2+ , Co2+ , Ni2+ , and OH to be the most problematic species. Cu2+ in particular has to be reduced to ZBLAN:Yb3+ optical cryocooler to operate at 100-150K .

  14. Conceptual design and modeling of particle-matter interaction cooling systems for muon based applications

    CERN Document Server

    Stratakis, Diktys; Rogers, Chris T; Alekou, Androula; Pasternak, Jaroslaw

    2014-01-01

    An ionization cooling channel is a tightly spaced lattice containing absorbers for reducing the momentum of the muon beam, rf cavities for restoring the longitudinal momentum, and strong solenoids for focusing. Such a lattice can be an essential feature for fundamental high-energy physics applications. In this paper we design, simulate, and compare four individual cooling schemes that rely on ionization cooling. We establish a scaling characterizing the impact of rf gradient limitations on the overall performance and systematically compare important lattice parameters such as the required magnetic fields and the number of cavities and absorber lengths for each cooling scenario. We discuss approaches for reducing the peak magnetic field inside the rf cavities by either increasing the lattice cell length or adopting a novel bucked-coil configuration. We numerically examine the performance of our proposed channels with two independent codes that fully incorporate all basic particle-matter-interaction physical pr...

  15. Conceptual design and modeling of particle-matter interaction cooling systems for muon based applications

    Directory of Open Access Journals (Sweden)

    Diktys Stratakis

    2014-07-01

    Full Text Available An ionization cooling channel is a tightly spaced lattice containing absorbers for reducing the momentum of the muon beam, rf cavities for restoring the longitudinal momentum, and strong solenoids for focusing. Such a lattice can be an essential feature for fundamental high-energy physics applications. In this paper we design, simulate, and compare four individual cooling schemes that rely on ionization cooling. We establish a scaling characterizing the impact of rf gradient limitations on the overall performance and systematically compare important lattice parameters such as the required magnetic fields and the number of cavities and absorber lengths for each cooling scenario. We discuss approaches for reducing the peak magnetic field inside the rf cavities by either increasing the lattice cell length or adopting a novel bucked-coil configuration. We numerically examine the performance of our proposed channels with two independent codes that fully incorporate all basic particle-matter-interaction physical processes.

  16. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    van Vliet, M. T H; van Beek, L. P H; Eisner, S.; Flörke, M.; Wada, Y.; Bierkens, M. F P

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding

  17. A computer program for full-coverage film-cooled blading analysis including the effects of a thermal barrier coating

    Science.gov (United States)

    1978-01-01

    The program input, coolant flow and heat transfer model, and the program output are discussed. As an example, sections of the suction and pressure sides of a high temperature, high pressure turbine vane are analyzed to show the effects of a thermal barrier coating. Compared to the uncoated design, the coating halves the required coolant flow, while simultaneously reducing metal outer temperatures by over 111 K.

  18. Asymmetric crystallization during cooling and heating in model glass-forming systems.

    Science.gov (United States)

    Wang, Minglei; Zhang, Kai; Li, Zhusong; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2015-03-01

    We perform molecular dynamics (MD) simulations of the crystallization process in binary Lennard-Jones systems during heating and cooling to investigate atomic-scale crystallization kinetics in glass-forming materials. For the cooling protocol, we prepared equilibrated liquids above the liquidus temperature Tl and cooled each sample to zero temperature at rate Rc. For the heating protocol, we first cooled equilibrated liquids to zero temperature at rate Rp and then heated the samples to temperature T>Tl at rate Rh. We measured the critical heating and cooling rates Rh* and Rc*, below which the systems begin to form a substantial fraction of crystalline clusters during the heating and cooling protocols. We show that Rh*>Rc* and that the asymmetry ratio Rh*/Rc* includes an intrinsic contribution that increases with the glass-forming ability (GFA) of the system and a preparation-rate dependent contribution that increases strongly as Rp→Rc* from above. We also show that the predictions from classical nucleation theory (CNT) can qualitatively describe the dependence of the asymmetry ratio on the GFA and preparation rate Rp from the MD simulations and results for the asymmetry ratio measured in Zr- and Au-based bulk metallic glasses (BMG). This work emphasizes the need for and benefits of an improved understanding of crystallization processes in BMGs and other glass-forming systems.

  19. Experimental study on the heat transfer characteristics of a nuclear reactor containment wall cooled by gravitationally falling water

    Science.gov (United States)

    Pasek, Ari D.; Umar, Efrison; Suwono, Aryadi; Manalu, Reinhard E. E.

    2012-06-01

    Gravitationally falling water cooling is one of mechanism utilized by a modern nuclear Pressurized Water Reactor (PWR) for its Passive Containment Cooling System (PCCS). Since the cooling is closely related to the safety, water film cooling characteristics of the PCCS should be studied. This paper deals with the experimental study of laminar water film cooling on the containment model wall. The influences of water mass flow rate and wall heat rate on the heat transfer characteristic were studied. This research was started with design and assembly of a containment model equipped with the water cooling system, and calibration of all measurement devices. The containment model is a scaled down model of AP 1000 reactor. Below the containment steam is generated using electrical heaters. The steam heated the containment wall, and then the temperatures of the wall in several positions were measure transiently using thermocouples and data acquisition. The containment was then cooled by falling water sprayed from the top of the containment. The experiments were done for various wall heat rate and cooling water flow rate. The objective of the research is to find the temperature profile along the wall before and after the water cooling applied, prediction of the water film characteristic such as means velocity, thickness and their influence to the heat transfer coefficient. The result of the experiments shows that the wall temperatures significantly drop after being sprayed with water. The thickness of water film increases with increasing water flow rate and remained constant with increasing wall heat rate. The heat transfer coefficient decreases as film mass flow rate increase due to the increases of the film thickness which causes the increasing of the thermal resistance. The heat transfer coefficient increases slightly as the wall heat rate increases. The experimental results were then compared with previous theoretical studied.

  20. Development of differential coastal cooling above sloping bottom: laboratory and numerical modelling

    Science.gov (United States)

    Stepanova, Natilya

    2013-04-01

    The process of formation of differential coastal cooling above sloping bottom, often observed in autumn in coastal regions of seas and large lakes, is investigated by means of laboratory experiments and numerical modelling. During this period, an integral heat flux is directed from water to atmosphere. When water temperature is above that of maximum density (what is typically the case in autumn), it results in a negative buoyancy flux through the surface and the appearance of vertical convection. Water temperature decreases, and in shallow parts the process goes faster than in deeper ones, so that significant horizontal temperature gradients above sloping bottom are formed along with vertical thermal homogeneity of every particular water column. The corresponding density and pressure gradients cause large-scale exchange flows between shallow and deep parts of a basin. The goal of this work is an investigation of the process of establishment of the surface water temperature profile from the coast to the deep part and comparison of the characteristics of this profile with the observed flow rate of the horizontal exchange flows. A series of laboratory experiments was conducted in a rectangular plexiglas laboratory channel with internal dimensions 33 cm × 33 cm × 750 cm; a 5m-long part of the bottom had a slope of A~0.03; walls and bottom were thermally insulated. Heat exchange through the surface with cooler air in laboratory provided natural cooling; initial water temperature varied between 25 and 31 ° C, air temperature - from 19 to 25 ° C. Maximum water layer depth (10, 12, 13, 16, 20, 22.5, 24, 24.5, 27 cm) and the initial air-water temperature difference (Δ~4, 5, 6, 8, 9, 11 °C) were changing parameters in the experiments. Registration of water temperature time series in 8 points (1 cm below the water surface in the sloping region with time step 30 s) and vertical profilings in these locations were carried out by electronic thermistors. Flow-rate of

  1. 叶栅前缘单排冷却孔气膜冷却效果的数值研究%Numerical Study on Single Row of Cooling Holes in the Leading Edge of Blade Cascade Film Cooling Effect

    Institute of Scientific and Technical Information of China (English)

    袁野; 万剑峰

    2014-01-01

    To improve turbine inlet temperature is an effective measure to improve the thermal efficiency and the output power of the gas-turbine.A 3D numerical simulation,which is based on Cooling/Bleed (air-jet model) model and S-A ( Spalart-Allmaras) turbulent model,was carried out to reduce the temperature of the gas turbine blade leading edge and improve temperature uniformity.The results show that apart from the downstream hole center,reducing tilt angles will help to reduce the temperature at leading edge and improve temperature uniformity,especially in the case of high blow ratio.%提高燃气轮机入口温度是提高其热效率和输出功率的有效措施,但目前燃气轮机进口的燃气温度已远超叶片材料的承受极限。为了降低燃气轮机叶片前缘的温度和提高温度的均匀性,对气膜冷却孔采用Cooling/Bleed (冷气喷射模型)模型,采用S-A( Spalart-Allmaras)模型,对叶栅进行了三维数值模拟。模拟结果表明:除孔中心下游以外,降低倾斜角有助于降低前缘温度和提高温度的均匀性,另外吹风比越大效果越明显。

  2. A probabilistic model of the electron transport in films of nanocrystals arranged in a cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Ilka [Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova (Italy); Scotognella, Francesco, E-mail: francesco.scotognella@polimi.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milan (Italy)

    2016-08-01

    The fabrication of nanocrystal (NC) films, starting from colloidal dispersion, is a very attractive topic in condensed matter physics community. NC films can be employed for transistors, light emitting diodes, lasers, and solar cells. For this reason the understanding of the film conductivity is of major importance. In this paper we describe a probabilistic model that allows the prediction of the conductivity of NC films, in this case of a cubic lattice of Lead Selenide or Cadmium Selenide NCs. The model is based on the hopping probability between NCs. The results are compared to experimental data reported in literature. - Highlights: • Colloidal nanocrystal (NC) film conductivity is a topic of major importance. • We present a probabilistic model to predict the electron conductivity in NC films. • The model is based on the hopping probability between NCs. • We found a good agreement between the model and data reported in literature.

  3. Thin film superfluid optomechanics

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sachkou, Yauhen; He, Xin; Bowen, Warwick P

    2016-01-01

    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid $^4$He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates $g_0>2\\pi \\times 100$ kHz and single photon cooperativities $C_0>10$ are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as $g_0>\\Omega_M$ and opens the prospect of laser cooling a liquid into its quantum ground state.

  4. Theoretical modeling of RF ablation with internally cooled electrodes: comparative study of different thermal boundary conditions at the electrode-tissue interface.

    Science.gov (United States)

    Rivera, María J; Molina, Juan A López; Trujillo, Macarena; Berjano, Enrique J

    2009-07-01

    Previous studies on computer modeling of RF ablation with cooled electrodes modeled the internal cooling circuit by setting surface temperature at the coolant temperature (i.e., Dirichlet condition, DC). Our objective was to compare the temperature profiles computed from different thermal boundary conditions at the electrode-tissue interface. We built an analytical one-dimensional model based on a spherical electrode. Four cases were considered: A) DC with uniform initial condition, B) DC with pre-cooling period, C) Boundary condition based on Newton's cooling law (NC) with uniform initial condition, and D) NC with a pre-cooling period. The results showed that for a long time (120 s), the profiles obtained with (Cases B and D) and without (Cases A and C) considering pre-cooling are very similar. However, for shorter times ( 30 s), Cases A and C overestimated the temperature at points away from the electrode-tissue interface. In the NC cases, this overestimation was more evident for higher values of the convective heat transfer coefficient (h). Finally, with NC, when h was increased the temperature profiles became more similar to those with DC. The results suggest that theoretical modeling of RF ablation with cooled electrodes should consider: 1) the modeling of a pre-cooling period, especially if one is interested in the thermal profiles registered at the beginning of RF application; and 2) NC rather than DC, especially for low flow in the internal circuit.

  5. Theoretical modelling, experimental studies and clinical simulations of urethral cooling catheters for use during prostate thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Sean R H [Division of Medical Physics, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto (Canada); Sherar, Michael D [Division of Medical Physics, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto (Canada)

    2003-03-21

    Urethral cooling catheters are used to prevent thermal damage to the urethra during thermal therapy of the prostate. Quantification of a catheter's heat transfer characteristics is necessary for prediction of the catheter's influence on the temperature and thermal dose distribution in periurethral tissue. Two cooling catheters with different designs were examined: the Dornier Urowave catheter and a prototype device from BSD Medical Corp. A convection coefficient, h, was used to characterize the cooling ability of each catheter. The value of the convection coefficient (h = 330 W m{sup -2} deg C{sup -1} for the Dornier catheter, h = 160 W m{sup -2} deg C{sup -1} for the BSD device) was obtained by comparing temperatures measured in a tissue-equivalent phantom material to temperatures predicted by a finite element method simulation of the phantom experiments. The coefficient was found to be insensitive to the rate of coolant flow inside the catheter between 40 and 120 ml min{sup -1}. The convection coefficient method for modelling urethral catheters was incorporated into simulations of microwave heating of the prostate. Results from these simulations indicate that the Dornier device is significantly more effective than the BSD catheter at cooling the tissue surrounding the urethra.

  6. Measuring and overcoming limits of the Saffman-Delbrück model for soap film viscosities.

    Science.gov (United States)

    Vivek, Skanda; Weeks, Eric R

    2015-01-01

    We observe tracer particles diffusing in soap films to measure the two-dimensional (2D) viscous properties of the films. Saffman-Delbrück type models relate the single-particle diffusivity to parameters of the film (such as thickness h) for thin films, but the relation breaks down for thicker films. Notably, the diffusivity is faster than expected for thicker films, with the crossover at h/d = 5.2 ± 0.9 using the tracer particle diameter d. This indicates a crossover from purely 2D diffusion to diffusion that is more three-dimensional. We demonstrate that measuring the correlations of particle pairs as a function of their separation overcomes the limitations of the Saffman-Delbrück model and allows one to measure the viscosity of a soap film for any thickness.

  7. Asymmetric crystallization upon heating and cooling in model glass-forming systems

    Science.gov (United States)

    Wang, Minglei; Zhang, Kai; Liu, Yanhui; Schroers, Jan; Shattuck, Mark; O'Hern, Corey

    2014-03-01

    We perform molecular dynamics simulations of binary Lennard-Jones (LJ) and hard-sphere (HS) systems to understand the asymmetry in the critical cooling and heating rates for crystallization observed in experiments on bulk metallic glasses, where much faster heating rates are required to prevent crystallization. For the LJ systems, we cool the systems at different rates (above the critical cooling rate Rc) to temperatures below the glass transition, and subsequently begin heating the samples at different rates to measure the critical heating rate Rh below which the system crystallizes. We perform companion studies of HS systems, except we measure the asymmetry in the critical compression and dilation rates to enhance the asymmetry. We show that the asymmetry increases with the glass-formability of the binary mixtures and explain this result by characterizing the structural order of the systems.

  8. Simulation of cooling channel rheocasting process of A356 aluminum alloy using three-phase volume averaging model

    Institute of Scientific and Technical Information of China (English)

    T. Wang; B.Pustal; M. Abondano; T. Grimmig; A. B(u)hrig-Polaczek; M. Wu; A. Ludwig

    2005-01-01

    The cooling channel process is a rehocasting method by which the prematerial with globular microstructure can be produced to fit the thixocasting process. A three-phase model based on volume averaging approach is proposed to simulate the cooling channel process of A356 Aluminum alloy. The three phases are liquid, solid and air respectively and treated as separated and interacting continua, sharing a single pressure field. The mass, momentum, enthalpy transport equations for each phase are solved. The developed model can predict the evolution of liquid, solid and air fraction as well as the distribution of grain density and grain size. The effect of pouring temperature on the grain density, grain size and solid fraction is analyzed in detail.

  9. Computer aided simulation for developing a simple model to predict cooling of packaged foods

    DEFF Research Database (Denmark)

    Christensen, Martin Gram; Feyissa, Aberham Hailu; Adler-Nissen, Jens

    A new equation to predict equilibrium temperatures for cooling operations of packaged foods has been deducted from the traditional 1st order solution to Fourier’s heat transfer equations. The equation is analytical in form and only requires measurable parameters, in form of area vs. volume ratio (A...... are too laborious or impossible to conduct. The deducted equation was tested for irregular geometries, unequal heat transfer and headspace restrictions. The new equation predicted equilibrium temperature curves of the simulated cooling with a low error (1.5°C for Fourier numbers below 0.3) and good...

  10. A model for pressurized hydrogen induced thin film blisters

    Science.gov (United States)

    van den Bos, R. A. J. M.; Reshetniak, V.; Lee, C. J.; Benschop, J.; Bijkerk, F.

    2016-12-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required for a stable blister is calculated. From this model, the adhesion energy of the blister cap, the internal pressure, and the critical H-dose for blister formation can be calculated. In the second part, the flux balance required for a blister to grow to a stable size is calculated. The model is applied to blisters formed in a Mo/Si multilayer after being exposed to hydrogen ions. From the model, the adhesion energy of the Mo/Si blister cap was calculated to be around 1.05 J/m2 with internal pressures in the range of 175-280 MPa. Based on the model, a minimum ion dose for the onset of blister formation was calculated to be d = 4.2 × 1018 ions/cm2. From the flux balance equations, the diffusion constant for the Mo/Si blister cap was estimated to be DH2=(10 ±1 )×10-18 cm2/s .

  11. Study of Depolarization Field Influence on Ferroelectric Films Within Transverse Ising Model

    Institute of Scientific and Technical Information of China (English)

    TAO Yong-Mei; SHI Qin-Fen; JIANG Qing

    2005-01-01

    An improved transverse Ising model is proposed by taking the depolarization field effect into account.Within the framework of mean-field theory we investigate the behavior of the ferroelectric thin film. Our results show that the influence of the depolarization field is to flatten the spontaneous polarization profile and make the films more homogeneous, which is consistent with Ginzburg-Landau theory. This fact shows that this model can be taken as an effective model to deal with the ferroelectric film and can be further extended to refer to quantum effect. The competition between quantum effect and depolarization field induces some interesting phenomena on ferroelectric thin films.

  12. The local autocorrelation time in thin film and semi-infinite model

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1984-05-01

    The nearest-neighbour Ising model of a film in which exchange couplings in surface layers can differ from exchange couplings in other layers is considered. The dependence of the local autocorrelation time on distances to surfaces of the film, temperature and surface exchange couplings is discussed. The behaviour of the local autocorrelation time in a three-dimensional semi-infinite model is obtained assuming that the thickness of the film tends to infinity.

  13. Evaluating the performance of a new model for predicting the growth of Clostridium perfringens in cooked, uncured meat and poultry products under isothermal, heating, and dynamically cooling conditions

    Science.gov (United States)

    Clostridium perfringens Type A is a significant public health threat and may germinate, outgrow, and multiply during cooling of cooked meats. This study evaluates a new C. perfringens growth model in IPMP Dynamic Prediction using the same criteria and cooling data in Mohr and others (2015), but inc...

  14. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  15. Global and regional cooling in a warming climate from CMIP5 models

    Science.gov (United States)

    Medhaug, Iselin; Drange, Helge

    2015-04-01

    Instrumental temperature records show that the global climate may experience decadal-scale (hiatus) periods without warming despite an indisputable long-term warming trend. A large range of factors have been proposed to explain these non-warming decades, like volcanic cooling, reduced solar energy input, low stratospheric water vapor content, elevated tropospheric aerosols, internal variability of the climate system, or a combination thereof. We have analysed 17 global climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5), identifying the likelihood and duration of periods without warming in the four Representative Concentration Pathway (RCP) scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5, together with the preindustrial control and historical simulations. We find that non-warming periods, when the effect of volcanic eruptions and variations in the solar cycle are neglected, may last for up to 10, 15 and 30 years for RCP8.5, RCP6.0 and RCP 4.5, respectively. Regionally, the likelihood of a decadal-scale hiatus periods decrease first in the tropical Atlantic, Indian Ocean and western Pacific with increasing global temperatures in the RCP scenarios. The North Atlantic and the Southern Ocean are the regions with largest variability relative to the regional warming signal. As a response to the global temperature increase, the radiative imbalance at top of the atmosphere increases and the global oceans warm. This holds for both the upper and the deep ocean in all scenarios. In the CMIP5 simulations, anomalous uptake and storage of ocean heat are the main factors explaining the decadal-scale surface temperature hiatus periods. The tropical East Pacific is a key region for these variations, acting in tandem with basin-scale anomalies in the sea level pressure. On sub-decadal time scales, ocean storage of heat is largest and comparable in magnitude in the Pacific and Southern Oceans, followed by the Atlantic Ocean. We find no relation

  16. Development of a model to describe organic films on aerosol particles and cloud droplets. Final report; Entwicklung eines Modells zur Beschreibung organischer Filme auf Aerosolteilchen und Wolkentropfen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Forkel, R. (ed.); Seidl, W.

    2000-12-01

    Organic substances with polar groups are enriched on water surfaces and can form monomolecular surface films which can reduce the surface tension. A new model to describe surface films is presented, which describes in detail the film forming properties of fatty acids with up to 22 carbon atoms. The model is applied to measured concentrations of fatty acids (from the literature) in rain water and on aerosol particles and cloud droplets. An investigation of the sources of fatty acids has shown, that abrasion of the wax layer on leaves and needles is the main sources for surface film material in the western USA. Anthropogenic sources in urban areas are meat preparation and cigarette smoke. The agreement between model results and measurements when the model was applied to rain water confirms the original assumption that fatty acids are a main compound of surface films in rain water. For humid aerosol particles the application of the model on measured concentrations of fatty acids only showed strongly diluted films. Only for remote forest areas in western USA concentrated films were found, with the surface tension reduced by 20 to 30%. On cloud droplets the surface films is still more diluted than on aerosol particles. For all investigated cases the films was too much diluted to have an effect on the activation process of cloud droplets. (orig.) [German] Organische Substanzen mit polaren Gruppen reichern sich an der Wasseroberflaeche an und koennen monomolekulare Oberflaechenfilme bilden, die zu einer Verringerung der Oberflaechenspannung fuehren. Es wird ein neues Modell zur Beschreibung eines Oberflaechenfilms beschrieben, das detailliert die filmbildenden Eigenschaften der Fettsaeuren mit bis zu 22 Kohlenstoffatomen erfasst. Dieses Modell ist auf gemessene Konzentrationen von Fettsaeuren (Literaturdaten) in Regenwasser und auf atmosphaerischen Aerosolteilchen und Wolkentropfen angewandt worden. Eine Betrachtung der Quellen der Fettsaeuren zeigte, dass der Abrieb der

  17. 多种气膜冷却形式下轴对称矢量喷管壁温计算研究%Numerical Study on Film Cooling and Wall Temperature of Vectored Axial-symmetric Nozzle

    Institute of Scientific and Technical Information of China (English)

    薛航; 陈徐屹; 张小英

    2014-01-01

    The study on the cooling structure of vectoring nozzle is very essential for developing the vectoring propulsion technology in aero-engine .To study the cooling technology of the heat shield on the axial-symmetric vectoring nozzle with 20° deflection ,the heat balance equation based on heat transfer of nozzle has been devel-oped and solved with Newton-Rafael method to give wall temperature .Heat transfer of film cooling is computed with empirical formula of cooling effectiveness .And radiative heating from the gas is computed with net radia-tion analysis method in an enclosure .To verify the computation method ,wall temperature of a certain axial-symmetric nozzle in after burning condition is computed and compared with the results of reference .Study shows that the heat shield plays a good cooling part for convergent part of nozzle with film cooling reducing its temperature remarkably .Compared with convergent part of nozzle which is protected by the heat shield ,tem-perature of the divergent section of nozzle is much higher and needs further cooling .%航空发动机矢量喷管的冷却结构设计是研究矢量推进技术应用的关键问题之一。针对某偏转20°轴对称矢量喷管隔热屏采用的十种气膜冷却结构,建立基于壁面传热的热平衡方程,采用牛顿-拉斐尔森迭代法得出十种冷却结构下壁面及隔热屏的温度。其中气膜冷却采用有效温比经验公式计算,燃气辐射采用封闭腔净辐射分析法计算,并把本文计算的壁温与文献结果进行对比分析。结果表明:隔热屏对喷管收敛段有很好的冷却作用,采用气膜冷却可显著降低其温度;相对于受隔热屏保护的收敛段而言,喷管扩张段的受热形势较为严峻,温度更高,其冷却有待加强。

  18. Cool Farm Tool – Potato: Model Description and Performance of Four Production Systems

    NARCIS (Netherlands)

    Haverkort, A.J.; Hillier, J.G.

    2011-01-01

    The Cool Farm Tool – Potato (CFT-Potato) is a spreadsheet programme that allows the calculation of the amount of CO2 equivalents that it costs to produce 1 t of potato. The spreadsheet was adapted from an original generic version of the tool, and completed for potato production in diverse production

  19. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    van Vliet, M. T H; van Beek, L. P H; Eisner, S.; Flörke, M.; Wada, Y.; Bierkens, M. F P

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding o

  20. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Beek, van L.P.H.; Eisner, S.; Flörke, M.; Wada, Y.; Bierkens, M.F.P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved

  1. Effect of T56 preswirl cooling modelling on disc assembly temperature prediction

    CSIR Research Space (South Africa)

    Roos, TH

    2007-09-01

    Full Text Available The T56 Series III 1st stage rotor blade is cooled using moderately preswirled air from 36 preswirl injection nozzles. The amount of swirl achieved by discrete preswirl coolant jets is generally unknown, due to mixing losses. A “frozenrotor” CFD...

  2. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  3. Multi-model assessment of global hydropower and cooling water discharge potential under climate change

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Beek, van L.P.H.; Eisner, S.; Flörke, M.; Wada, Y.; Bierkens, M.F.P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understandin

  4. Modeling of tri-chloro-fluoro-methane hydrate formation in a w/o emulsion submitted to steady cooling

    Energy Technology Data Exchange (ETDEWEB)

    Avendano-Gomez, Juan Ramon; Limas-Ballesteros, Roberto [Laboratorio de Investigacion en Ingenieria Quimica Ambiental, SEPI-ESIQIE, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, Edificio 8, 3. piso 07738, Mexico DF (Mexico); Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico DF (Mexico)

    2006-05-15

    The aim of this work is to study the modeling of the thermal evolution inside an hydrate forming system which is submitted to an imposed steady cooling. The study system is a w/o emulsion where the formulation considers the CCl{sub 3}F as the hydrate forming molecule dissolved in the oil phase. The hydrate formation occurs in the aqueous phase of the emulsion, i.e. in the dispersed phase. The model equation is based on the resolution of the continuity equation in terms of a heat balance for the dispersed phase. The crystallization of the CCl{sub 3}F hydrate occurs at supercooling conditions (T{sub c}model equation subjected to boundary conditions allow to depict the evolution of temperature in the dispersed phase. The most singular point in the temperature-time curve is the onset time of hydrate crystallization. Three time intervals characterize the evolution of temperature during the steady cooling of the w/o emulsion: (1) steady cooling, (2) hydrate formation with a release of heat, (3) a last interval of steady cooling. (author)

  5. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  6. Modeling flux pinning in thin undoped and BazRo3-doped YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Irjala, M.; Huhtinen, H.

    2009-01-01

    A simple model based on distributions of twin boundaries, dislocations, and BaZrO3 nanorods is presented to describe the Jc properties of undoped and BaZrO3 (BZO)-doped YBa2Cu3Ox thin films. The model accurately describes the shape of Jc(B,T) curves of the films, when the pinning site distributions...

  7. Minimal model for optical transmission through holey metal films

    Energy Technology Data Exchange (ETDEWEB)

    MartIn-Moreno, L [Departamento de Fisica de la Materia Condensada-ICMA, Universidad de Zaragoza-CSIC, E-50009 Zaragoza (Spain); GarcIa-Vidal, F J [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)], E-mail: lmm@unizar.es

    2008-07-30

    This paper presents a tutorial on the computation of both extraordinary optical transmission and surface electromagnetic modes in holey metal films. Our model consists of a square array of square holes in a perfect conductor. It is shown that considering just the fundamental waveguide mode inside the holes captures the main features of the optical transmission, which allows us to obtain quasi-analytical results. Extraordinary optical transmission is unambiguously linked to the presence of surface electromagnetic modes in the corrugated structure. The particular case of surface electromagnetic modes in a perfect conductor is analyzed, paying attention to different strategies for increasing their confinement to the surface. The use of the energy loss of a charged particle passing close to the surface as a spectroscopic tool for these surface modes is also discussed.

  8. FDTD subcell graphene model beyond the thin-film approximation

    CERN Document Server

    Valuev, Ilya; Bogdanova, Maria; Kotov, Oleg; Lozovik, Yurii

    2016-01-01

    A subcell technique for calculation of optical properties of graphene with the finite-difference time-domain (FDTD) method is presented. The technique takes into account the surface conductivity of graphene which allows the correct calculation of its dispersive response for arbitrarily polarized incident waves interacting with the graphene.The developed technique is verified for a planar graphene sheet configuration against the exact analytical solution. Based on the same test case scenario, we also show that the subcell technique demonstrates a superior accuracy and numerical efficiency with respect to the widely used thin-film FDTD approach for modeling graphene. We further apply our technique to the simulations of a graphene metamaterial containing periodically spaced graphene strips (graphene strip-grating) and demonstrate good agreement with the available theoretical results.

  9. Model of a thin film optical fiber fluorosensor

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1991-03-01

    The efficiency of core-light injection from sources in the cladding of an optical fiber is modeled analytically by means of the exact field solution of a step-profile fiber. The analysis is based on the techniques by Marcuse (1988) in which the sources are treated as infinitesimal electric currents with random phase and orientation that excite radiation fields and bound modes. Expressions are developed based on an infinite cladding approximation which yield the power efficiency for a fiber coated with fluorescent sources in the core/cladding interface. Marcuse's results are confirmed for the case of a weakly guiding cylindrical fiber with fluorescent sources uniformly distributed in the cladding, and the power efficiency is shown to be practically constant for variable wavelengths and core radii. The most efficient fibers have the thin film located at the core/cladding boundary, and fibers with larger differences in the indices of refraction are shown to be the most efficient.

  10. Blast-cooling of beef-in-sauce catering meals: numerical results based on a dynamic zero-order model

    Directory of Open Access Journals (Sweden)

    Jose A. Rabi

    2014-10-01

    Full Text Available Beef-in-sauce catering meals under blast-cooling have been investigated in a research project which aims at quantitative HACCP (hazard analysis critical control point. In view of its prospective coupling to a predictive microbiology model proposed in the project, zero-order spatial dependence has proved to suitably predict meal temperatures in response to temperature variations in the cooling air. This approach has modelled heat transfer rates via the a priori unknown convective coefficient hc which is allowed to vary due to uncertainty and variability in the actual modus operandi of the chosen case study hospital kitchen. Implemented in MS Excel®, the numerical procedure has successfully combined the 4th order Runge-Kutta method, to solve the governing equation, with non-linear optimization, via the built-in Solver, to determine the coefficient hc. In this work, the coefficient hc was assessed for 119 distinct recently-cooked meal samples whose temperature-time profiles were recorded in situ after 17 technical visits to the hospital kitchen over a year. The average value and standard deviation results were hc = 12.0 ± 4.1 W m-2 K-1, whilst the lowest values (associated with the worst cooling scenarios were about hc » 6.0 W m-2 K-1.

  11. Modeling thin-film piezoelectric polymer ultrasonic sensors

    Science.gov (United States)

    González, M. G.; Sorichetti, P. A.; Santiago, G. D.

    2014-11-01

    This paper presents a model suitable to design and characterize broadband thin film sensors based on piezoelectric polymers. The aim is to describe adequately the sensor behavior, with a reasonable number of parameters and based on well-known physical equations. The mechanical variables are described by an acoustic transmission line. The electrical behavior is described by the quasi-static approximation, given the large difference between the velocities of propagation of the electrical and mechanical disturbances. The line parameters include the effects of the elastic and electrical properties of the material. The model was validated with measurements of a poly(vinylidene flouride) sensor designed for short-pulse detection. The model variables were calculated from the properties of the polymer at frequencies between 100 Hz and 30 MHz and at temperatures between 283 K and 313 K, a relevant range for applications in biology and medicine. The simulations agree very well with the experimental data, predicting satisfactorily the influence of temperature and the dielectric properties of the polymer on the behavior of the sensor. Conversely, the model allowed the calculation of the material dielectric properties from the measured response of the sensor, with good agreement with the published values.

  12. A Regulation of Tropical Climate by Radiative Cooling as Simulated in a Cumulus Ensemble Model

    Science.gov (United States)

    Sui, Chung-Hsiung; Lau, K.-M.; Li, X.; Chou, M.-D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Responses of tropical atmosphere to low-boundary forcing are investigated in a 2-D cumulus ensemble model (CEM) with an imposed warm-pool and cold-pool SST contrast (deltaSST). The domain-mean vertical motion is constrained to produce heat sink and moisture source as in the observed tropical climate. In a series of experiments, the warm pool SST is specified at different values while the cold pool SST is specified at 26 C. The strength of the circulation increases with increasing deltaSST until deltaSST reaches 3.5 C, and remains unchanged as deltaSST exceeds 3.5 C. The regulation of tropical convection by zonal SST gradient is constrained by the radiative cooling over the cold pool. For deltaSST less than 3.5 C, an enhanced subsidence warming is balanced by a reduced condensation heating over the cold pool. For deltaSST greater than 3.5 C, the subsidence regime expands over the entire cold pool where no condensation heating exist so that a further enhanced subsidence warming can no longer be sustained. The above regulation mechanism is also evident in the change of energy at the top of the atmosphere (TOA) that is dominated by cloud and water vapor greenhouse effect (c (sub LW)) and G (sub clear). The change in shortwave radiation at TOA is largely cancelled between the warm pool and cold pool, likely due to the same imposed vertical motion in our experiments. For deltaSST less than 3.5 C, an increase of deltaSST is associated with a large increase in c (sub Lw) due to increased total clouds in response to enhanced SST-induced circulation. For deltaSST greater than 3.5 C, clouds over the warm pool decrease with increasing SST, and the change in c (sub LW) is much smaller. In both dSST regimes, the change in CLW is larger than the change in G(sub clear) which is slightly negative. However, in the case of uniform warming (deltaSST=0), DeltaG(sub clear), is positive, approximately 5 W per square meters per degree change of SST.

  13. Measuring diffuse interstellar bands with cool stars. Improved line lists to model background stellar spectra

    Science.gov (United States)

    Monreal-Ibero, A.; Lallement, R.

    2017-03-01

    Context. Diffuse stellar bands (DIBs) are ubiquitous in stellar spectra. Traditionally, they have been studied through their extraction from hot (early-type) stars because of their smooth continuum. In an era in which there are several ongoing or planned massive Galactic surveys using multi-object spectrographs, cool (late-type) stars constitute an appealing set of targets. However, from the technical point of view, the extraction of DIBs in their spectra is more challenging because of the complexity of the continuum. Aims: In this contribution we provide the community with an improved set of stellar lines in the spectral regions associated with the strong DIBs at λ6196.0, λ6269.8, λ6283.8, and λ6379.3. These lines allow for the creation of better stellar synthetic spectra, reproducing the background emission and a more accurate extraction of the magnitudes associated with a given DIB (e.g., equivalent width, radial velocity). Methods: The Sun and Arcturus were used as representative examples of dwarf and giant stars, respectively. A high quality spectrum for each of them was modeled using TURBOSPECTRUM and the Vienna Atomic Line Database (VALD) stellar line list. The oscillator strength log (gf) and wavelength of specific lines were modified to create synthetic spectra in which the residuals in both the Sun and Arcturus were minimized. Results: The TURBOSPECTRUM synthetic spectra, based on improved line lists, reproduce the observed spectra for the Sun and Arcturus in the mentioned spectral ranges with greater accuracy. Residuals between the synthetic and observed spectra are always ≲10%, which is much better than residuals with previously existing options. We tested the new line lists with some characteristic spectra from a variety of stars, including both giant and dwarf stars, and under different degrees of extinction. As occurred with the Sun and Arcturus, residuals in the fits used to extract the DIB information are smaller when using synthetic spectra

  14. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  15. Precipitation model in microalloyed steels both isothermal and continuous cooling conditions

    Directory of Open Access Journals (Sweden)

    Medina, Sebastián F.

    2015-12-01

    Full Text Available Niobium and vanadium precipitates (nitrides and carbides can inhibit the static recrystallization of austenite but this does not happen for Ti, which form nitrides at high temperatures. RPTT diagrams show the interaction between recrystallization and precipitation allowing study the strain induced precipitation kinetics and precipitate coarsening. Based on Dutta and Sellars’s expression for the start of strain-induced precipitation in microalloyed steels, a new model has been constructed which takes into account the influence of variables such as microalloying element percentages, strain, temperature, strain rate and grain size. Recrystallization- Precipitation-Time-Temperature (RPTT diagrams have been plotted thanks to a new experimental study carried out by means of hot torsion tests on approximately twenty microalloyed steels with different Nb, V and Ti contents. Mathematical analysis of the results recommends the modification of some parameters such as the supersaturation ratio (ks and constant B, which is no longer a constant but a function of ks. The expressions are now more consistent and predict the Precipitation-Time-Temperature (PTT curves with remarkable accuracy. The model for strain-induced precipitation kinetics is completed by means of Avrami’s equation. Finally, the model constructed in isothermal testing conditions, it has been converted to continuous cooling conditions in order to apply it in hot rolling.Los precipitados de V y Nb (nitruros y carburos pueden inhibir la recristalización estática de la austenita, pero no sucede lo mismo con el Ti que forma nitruros a altas temperaturas. Los diagramas RPTT muestran la interacción entre la recristalización y la precipitación, permitiendo estudiar la cinética de la misma y el crecimiento de los precipitados. Partiendo de la expresión de Dutta y Sellars se ha construido un modelo para la precipitación inducida por la deformación en aceros microaleados. El nuevo modelo

  16. Mathematical model on heat transfer of water-cooling steel-stick bottom electrode of DC electric arc furnace

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    For predicting and controlling the melted depth of bottom electrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process of heat transfer, then 3D mathematical model by control capacity method is built. At the same time, the measurement on the melted depth of bottom electrode is conducted which verified the correctness of the built mathematical model. On the base of verification, all kinds of key parameters are calculated through the application and a series of results are simulated. Finally, the optimum parameters are found and the service lifeof bottom electrode is prolonged.

  17. Modeling of the filling and cooling processes of hot fuel mains in Liquid Fuel Rocket Power Plant (LFRPP)

    Science.gov (United States)

    Prisnyakov, V. F.; Pokrishkin, V. V.; Serebryansky, V. N.

    A mathematical model of heat and mass exchange processes during filling and cooling of hot fuel mains of the Liquid Fuel Rocket Power Plant (LFRPP), which allows to define a mass consumption and distribution of two-phase flow parameters by the length of pipeline. Results of calculations are compared with experimental data, taken during filling of the main with a supply of liquid oxygen from the tank into the combustion chamber. Also, the results of modeling of hydrogen main dynamic characteristics of LFRPP in the same conditions are given.

  18. Energy models. Integrated heating and cooling in different sports fields and halls; Energiamalli. Urheilupaikkojen integroitu laemmitys ja jaeaehdytys (UPILAEJAE)

    Energy Technology Data Exchange (ETDEWEB)

    Aittomaeki, A.; Maekinen, A.

    2009-07-01

    The efficient use of energy is playing an increasing role in saving natural resources and in maintaining competitiveness. The system integration plays an essential role when efficiency is maximized. Expressed in thermodynamical terms the question is about minimizing the loss of energy. When planning the integration of heating and cooling the impacts of different coupling possibilities and measurements should be compared. In this report the modeling or simulation of energy balances studies in different systems is described. In the system integration of different sports buildings the modeling parts are the following: office space with heating systems, indoor ice-skating rink, skiing tunnel, indoor swimming pool, sports-field and sport center

  19. Danish Cool

    DEFF Research Database (Denmark)

    Toft, Anne Elisabeth

    2016-01-01

    Danish Cool. Keld Helmer-Petersen, Photography and the Photobook Handout exhibition text in English and Chinese by Anne Elisabeth Toft, Curator The exhibition Danish Cool. Keld Helmer-Petersen, Photography and the Photobook presents the ground-breaking work of late Danish photographer Keld Helmer...

  20. Boundary model-based reference control of blower cooled high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Kær, Søren Knudsen

    2011-01-01

    Fuel cells have, by design, a limited effective life time, which depends on how they are operated. The general consent is that operation of the fuel cell at the extreme of the operational range, or operation of the fuel cell without sufficient reactants (a.k.a. starvation), will lower the effective...... life time of a fuel cell significantly. On air cooled HTPEMFCs, the blower, which supplies the fuel cell with oxygen for the chemical process, also functions as the cooling system. This makes the blower bi-functional and as a result a higher supply of oxygen is often available, hence changes...... in the fuel cell output can be optimised by the knowledge of how much oxygen is supplied to the fuel cell at any given time, without reducing the effective life time of a fuel cell by starvation....

  1. Boundary model-based reference control of blower cooled high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Kær, Søren Knudsen

    2011-01-01

    Fuel cells have, by design, a limited effective life time, which depends on how they are operated. The general consent is that operation of the fuel cell at the extreme of the operational range, or operation of the fuel cell without sufficient reactants (a.k.a. starvation), will lower the effective...... life time of a fuel cell significantly. On air cooled HTPEMFCs, the blower, which supplies the fuel cell with oxygen for the chemical process, also functions as the cooling system. This makes the blower bi-functional and as a result a higher supply of oxygen is often available, hence changes...... in the fuel cell output can be optimised by the knowledge of how much oxygen is supplied to the fuel cell at any given time, without reducing the effective life time of a fuel cell by starvation....

  2. Computational Modelling of Couette Flow of Nanofluids with Viscous Heating and Convective Cooling

    Directory of Open Access Journals (Sweden)

    Oluwole Daniel Makinde

    2014-01-01

    Full Text Available The combined effect of viscous heating and convective cooling on Couette flow and heat transfer characteristics of water base nanofluids containing Copper Oxide (CuO and Alumina (Al2O3 as nanoparticles is investigated. It is assumed that the nanofluid flows in a channel between two parallel plates with the channel’s upper plate accelerating and exchange heat with the ambient surrounding following the Newton’s law of cooling, while the lower plate is stationary and maintained at a constant temperature. Using appropriate similarity transformation, the governing Navier-Stokes and the energy equations are reduced to a set of nonlinear ordinary differential equations. These equations are solved analytically by regular perturbation method with series improvement technique and numerically by an efficient Runge-Kutta-Fehlberg integration technique coupled with shooting method. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, pressure drop and Nusselt number are presented graphically, and discussed quantitatively.

  3. Modeling and fabrication of a planar thin film airflow sensor

    Science.gov (United States)

    Adamec, Richard J.; Tanner, Philip G.; Thiel, David V.

    2001-11-01

    A thin film airflow transducer based on the hot wire anemometer principle was designed using current MEMS modelling & simulation software. Flow sensors are commonly implemented with thermal isolation of the sensor from the bulk substrate mass using methods such as reverse side etching or sacrificial layers, however this paper will present a sensor relying on thermal insulation only. This insulation may be provided by layers of material exhibiting relatively poor thermal conduction characteristics such as silicon dioxide or polyimide, giving rise to a number of advantages such as removing the process of reverse side etching. Limiting fabrication to use of simple processes such as photolithography and sputtering/evaporative deposition also simplifies this design and assists in greatly increasing the compatibility with standard CMOS fabrication processes and materials. A combination of both theoretical computer modelling and physical fabrication and testing has been the approach to this research. Preliminary testing of this design has demonstrated small yet measurable temperature gradients across the device surface during steady state operation. The novel approach to this device is the investigation of pulsed operation, effectively a transient analysis that allows the thermal conduction effects of the bulk mass to be significantly reduced, leading to a significant increase of both efficiency and response time. Electro-thermo-mechanical and computational fluid dynamic analysis of the structure successfully model the thermal conduction, radiation and forced convection effects of the device during and after ohmic heating of the sensor's heating element.

  4. Laser cooling of the AlCl molecule with a three-electronic-level theoretical model

    Science.gov (United States)

    Wan, Mingjie; Yuan, Di; Jin, Chengguo; Wang, Fanhou; Yang, Yujie; Yu, You; Shao, Juxiang

    2016-07-01

    Feasibility of laser-cooling AlCl molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the X1Σ+, a3Π, and A1Π states are studied based on multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with ACVQZ basis set, spin-orbit coupling effects are considered at the MRCI+Q level. Highly diagonally distributed Franck-Condon factors (f00 = 0.9988 and f11 = 0.9970) and branching ratios (R00 = 0.9965, R01 = 2.85 × 10-3, R02 = 6.35 × 10-4, and R03 = 2.05 × 10-6) for the A 1 Π 1 ( ν ' = 0 ) → X 1 Σ0 + + ( ν ″ = 0 ) transition are determined. A sufficiently radiative lifetime τ (A1Π1) = 4.99 ns is predicted for rapid laser cooling. The proposed cooling wavelength is deep in the ultraviolet region at λ00 = 261.75 nm. Total emission rates for the a 3 Π 0 + → X 1 Σ0 + + , a 3 Π 1 → X 1 Σ0 + + , A1Π1 → a3Π0+, and A1Π1 → a3Π1 transitions are particularly small (˜10 s-1-650 s-1). The calculated vibrational branching loss ratio to the intermediate a3Π0+ and a3Π1 states can be negligible. The results imply the probability of laser cooling AlCl molecule with three-electronic-level.

  5. Laser cooling of the AlCl molecule with a three-electronic-level theoretical model.

    Science.gov (United States)

    Wan, Mingjie; Yuan, Di; Jin, Chengguo; Wang, Fanhou; Yang, Yujie; Yu, You; Shao, Juxiang

    2016-07-14

    Feasibility of laser-cooling AlCl molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the X(1)Σ(+), a(3)Π, and A(1)Π states are studied based on multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with ACVQZ basis set, spin-orbit coupling effects are considered at the MRCI+Q level. Highly diagonally distributed Franck-Condon factors (f00 = 0.9988 and f11 = 0.9970) and branching ratios (R00 = 0.9965, R01 = 2.85 × 10(-3), R02 = 6.35 × 10(-4), and R03 = 2.05 × 10(-6)) for the A(1)Π1(ν(')=0)→X(1)Σ0(+) (+)(ν(″)=0) transition are determined. A sufficiently radiative lifetime τ (A(1)Π1) = 4.99 ns is predicted for rapid laser cooling. The proposed cooling wavelength is deep in the ultraviolet region at λ00 = 261.75 nm. Total emission rates for the a(3)Π0(+) →X(1)Σ0(+) (+), a(3)Π1→X(1)Σ0(+) (+), A(1)Π1 → a(3)Π0(+) , and A(1)Π1 → a(3)Π1 transitions are particularly small (∼10 s(-1)-650 s(-1)). The calculated vibrational branching loss ratio to the intermediate a(3)Π0(+) and a(3)Π1 states can be negligible. The results imply the probability of laser cooling AlCl molecule with three-electronic-level.

  6. Hydraulic and thermal testing of different helium cooled irradiation rig models for the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Christine, E-mail: Christine.Klein@kit.edu; Arbeiter, Frederik; Martin, Thomas; Taubmann, Peter

    2016-03-15

    Highlights: • Two different single 1:1 irradiation rigs inside a mock-up container are presented. • Pressure drops in the single rig minichannels are measured. • Temperature fields are measured under different heater and flow conditions. • Predictability and reproducibility of the cooling flows can be shown. - Abstract: The hydraulic and thermal testing of two different irradiation rig models A and B, differing in the inlet nozzle design, bottom reflector length and steps inside a mock-up container is part of the HFTM validation activities which support the engineering design of the High Flux Test Module. The pressure drops for all models in the test section are measured for overall mass flow rates of 1–12 g/s and different absolute pressures of 1500 hPa and 2500 hPa at the pressure port at the inlet section. The pressure drops in different sections of the experiment and in the single rig minichannels are also measured with additional pressure ports on the surfaces of the rig models. Predictability and reproducibility of the cooling effects of the main cooling channels in the HFTM irradiation zone can be shown. Rig model B with a backward facing step is for high mass flow rates >∼7.5 g/s (this is the operation regime of the HFTM) superior to rig model A. Uniform perfusion of the multiple parallel minichannels of the irradiation rigs by helium gas is of importance to obtain uniform and predictable temperatures. Temperature fields under different heater and flow conditions have been measured.

  7. Modeling AGN Feedback in Cool-Core Clusters: The Formation of Cold Clumps

    CERN Document Server

    Li, Yuan

    2013-01-01

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven AGN feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the SMBH. When the intra-cluster medium (ICM) in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t_{TI}/t_{ff} < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km/s. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall towards the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, s...

  8. Gray-Box Approach for Thermal Modelling of Buildings for Applications in District Heating and Cooling Networks

    Energy Technology Data Exchange (ETDEWEB)

    Saurav, Kumar; Chandan, Vikas

    2017-05-19

    District-heating-and-cooling (DHC) systems are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increase the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components such as buildings, pipes, valves, heating source, etc., interacting with each other. In this paper, we focus on building modelling. In particular, we present a gray-box methodology for thermal modelling of buildings. Gray-box modelling is a hybrid of data driven and physics based models where, coefficients of the equations from physics based models are learned using data. This approach allows us to capture the dynamics of the buildings more effectively as compared to pure data driven approach. Additionally, this approach results in a simpler models as compared to pure physics based models. We first develop the individual components of the building such as temperature evolution, flow controller, etc. These individual models are then integrated in to the complete gray-box model for the building. The model is validated using data collected from one of the buildings at Lule{\\aa}, a city on the coast of northern Sweden.

  9. Novel device for tissue cooling during endoscopic laryngeal laser surgery: thermal damage study in an ex vivo calf model.

    Science.gov (United States)

    Koo, Hae Jin; Burns, James A; Kobler, James B; Heaton, James T; Zeitels, Steven M

    2012-07-01

    Minimizing collateral thermal damage during endoscopic laryngeal laser surgery remains a priority, and tissue cooling is one way to achieve this goal. Cooling systems utilizing compressed air have been shown to reduce the extent of thermal trauma on the vocal folds, but these units are not ideal for endoscopic applications because cooling is inefficient at the low airflows needed. We examined whether a novel vortex cooling device that generates cooled air at low flow rates would provide a cooling benefit beyond that which could be obtained by using room-temperature air for cooling tissue or by using no cooling during simulated laryngeal laser surgery. A continuous-wave thulium laser was used to incise glottic tissue in 12 calf vocal folds. Cooling was achieved with a prototype vortex cooler (9 degrees C air output; flow rate, 3 L/min), and tissue temperature measurements were compared to those with room-air cooling and no cooling. Thermal damage was analyzed histologically by measuring the depth of lactate dehydrogenase inactivation surrounding the mucosal incision. The cooling conditions were tested during time-constant cuts (8 seconds) and depth-constant cuts (into the thyroarytenoid muscle). During time-constant cuts, comparison between vortex cooling and room-air cooling revealed that vortex cooling resulted in a thermal damage zone that was 14% smaller (519 versus 603 microm; p cooling created a thermal damage zone that was 32% smaller than that created with no cooling (p cooling (p cooling reduces thermal damage more effectively than room-air cooling or no cooling during both time-constant and depth-constant thulium laser cuts.

  10. CONTINUED NEUTRON STAR CRUST COOLING OF THE 11 Hz X-RAY PULSAR IN TERZAN 5: A CHALLENGE TO HEATING AND COOLING MODELS?

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R.; Altamirano, D.; Fridriksson, J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Brown, E. F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201 (United States); Homan, J. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Heinke, C. O.; Sivakoff, G. R. [Department of Physics, University of Alberta, 4-183 CCIS, Edmonton, AB T6G 2E1 (Canada); Pooley, D., E-mail: degenaar@umich.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2013-09-20

    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11 week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ≅2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled.

  11. Counter-Flow Cooling Tower Test Cell

    Directory of Open Access Journals (Sweden)

    Dvořák Lukáš

    2014-03-01

    Full Text Available The article contains a design of a functional experimental model of a cross-flow mechanical draft cooling tower and the results and outcomes of measurements. This device is primarily used for measuring performance characteristics of cooling fills, but with a simple rebuild, it can be used for measuring other thermodynamic processes that take part in so-called wet cooling. The main advantages of the particular test cell lie in the accuracy, size, and the possibility of changing the water distribution level. This feature is very useful for measurements of fills of different heights without the influence of the spray and rain zone. The functionality of this test cell has been verified experimentally during assembly, and data from the measurement of common film cooling fills have been compared against the results taken from another experimental line. For the purpose of evaluating the data gathered, computational scripts were created in the MATLAB numerical computing environment. The first script is for exact calculation of the thermal balance of the model, and the second is for determining Merkel’s number via Chebyshev’s method.

  12. A comparative study on showerhead cooling performance

    Energy Technology Data Exchange (ETDEWEB)

    Falcoz, C.; Ott, P. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire de Thermique Appliquee et de Turbomachines (LTT), 1015 Lausanne (Switzerland); Weigand, B. [Institut fuer Thermodynamik der Luft- und Raumfahrt (ITLR), Stuttgart University, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2006-04-15

    In modern gas turbines, the turbine airfoil leading edge is currently protected from the hot gas by specific film cooling schemes, so called showerhead cooling. The present paper shows a numerical study of different showerhead cooling geometries. The 3D finite element program ABAQUS as well as a 2D finite element program have been employed to predict the showerhead cooling performance. In the numerical calculations, the different cooling effects and their contribution to the total showerhead cooling performance have been investigated separately. From the numerical calculations a simple method has been derived which enables the prediction of the performance of a 3D showerhead cooling scheme by simple 2D computations. Experimental investigations on showerhead cooling have been presented in a companion paper [C. Falcoz, B. Weigand, P. Ott, Experimental investigations on showerhead cooling on a blunt body. Int. J. Heat Mass Transfer, in press. r publication]. (author)

  13. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  14. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for FHRs

    Science.gov (United States)

    Lu, Qiuping

    Direct Reactor Auxiliary Cooling System (DRACS) is a passive decay heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines coated particle fuel and a graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three coupled natural circulation/convection loops, relying completely on buoyancy as the driving force. These loops are coupled through two heat exchangers, namely, the DRACS Heat Exchanger (DHX) and the Natural Draft Heat Exchanger (NDHX). In addition, a fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during normal operation of the reactor, but to keep the DRACS ready for activation, if needed, during accidents. While the DRACS concept has been proposed, there are no actual prototypic DRACS systems for FHRs built or tested in the literature. The primary goal of the present research is to design, test, and model the DRACS for FHR applications. Previously, a detailed modular design of the DRACS for a 20-MWth FHR was developed. As a starting point, the DRACS was designed to remove 1% of the reactor nominal power, i.e., 200 kW decay power. In addition, a detailed scaling analysis has been performed to develop the key non-dimensional numbers that characterize the DRACS system. Based on the previous work on the prototypic DRACS design and scaling analysis, two scaled-down test facilities have been designed and constructed, namely, Low-temperature DRACS Test Facility (LTDF) and High-temperature DRACS Test Facility (HTDF). The LTDF has a nominal power capacity of 6 kW. It uses 1.0-MPa water as the primary coolant, 0.1-MPa water as the secondary coolant, and ambient air as the ultimate heat sink. The main purpose of the LTDF is to examine the couplings among the three natural circulation/convection loops in the DRACS, as well as to provide design and operation experience for the HTDF. An extensive test matrix has

  15. COOLING, HEATING AND POWER PERFORMANCE OF SILICON-BASED FILM PV RADIANT PANEL MODULES%电热冷联产硅基薄膜光伏辐射板组件的性能研究

    Institute of Scientific and Technical Information of China (English)

    尹宝泉; 王一平; 朱丽

    2013-01-01

    Photovoltaic/thermal (PV/T) collectors are difficult to compromise between low temperature of PV cells and application of the co-generated heat.The cooling,heating and power cogeneration of module based on silicon thin-film solar module and radiant panel was proposed to solve the problem.The radiant panel collects the cold source for cooling the PV module,solves the unevenness of PV cooling and thermal utilization,and improves the comprehensive efficiency,the realize cooling,heating and power cogeneration.Comparative analysis for the PV module,radiant panel module and PV/T module were carried out in Langfang city,China.The experiment results showed that the conversion efficiency of PV cells is improved by 3%-6%,the thermal efficiency of radiant panel is improved slightly and reaches 45%,and its cooling capacity reduces slightly and still possesses 30-50W/m2.It is very important in promoting renewable energy applications in buildings.%对联产组件的性能进行户外测试,并分别与常规硅基薄膜组件、常规辐射板组件的性能进行对比.实验结果表明,相比于同类型硅基薄膜组件,硅基薄膜光伏辐射板组件的光电转换效率可提高3% ~6%;相对于同规格辐射板组件,其集热效率略有提高,达到45%;而其制冷量有所降低,但仍可达到30~50W/m2.

  16. Modeling of the Radial Heat Flow and Cooling Processes in a Deep Ultraviolet Cu+ Ne-CuBr Laser

    Directory of Open Access Journals (Sweden)

    Iliycho Petkov Iliev

    2009-01-01

    Full Text Available An improved theoretical model of the gas temperature profile in the cross-section of an ultraviolet copper ion excited copper bromide laser is developed. The model is based on the solution of the one-dimensional heat conduction equation subject to special nonlinear boundary conditions, describing the heat interaction between the laser tube and its surroundings. It takes into account the nonuniform distribution of the volume power density along with the radius of the laser tube. The problem is reduced to the boundary value problem of the first kind. An explicit solution of this model is obtained. The model is applied for the evaluation of the gas temperature profiles of the laser in the conditions of free and forced air-cooling. Comparison with other simple models assumed constant volume power density is made. In particular, a simple expression for calculating the average gas temperature is found.

  17. Investigation, modelling and control of the 1.9 K cooling loop for superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Flemsæter, Bjorn

    2000-01-01

    The temperature of the superconducting magnets for the 27 km LHC particle accelerator under construction at CERN is a control parameter with strict operating constraints imposed by (a) the maximum temperature at which the magnets can operate, (b) the cooling capacity of the cryogenic system, (c) the variability of applied heat loads and (d) the accuracy of the instrumentation. A pilot plant for studying aspects beyond single magnet testing has been constructed. This magnet test string is a 35-m full-scale model if the LHC and consists of four superconducting cryogmagnets operating in a static bath of He II at 1.9 K. An experimental investigation of the properties dynamic characteristics of the 1.9 K cooling loop of the magnet test string has been carried out. A first principle model of the system has been created. A series of experiments designed for system identification purposes have been carried out, and black box models of the system have been created on the basis on the recorded data. A Model Predictive ...

  18. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    Directory of Open Access Journals (Sweden)

    Robert J. Lovelett

    2016-04-01

    Full Text Available Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstrate the modeling approach with the example of chalcopyrite Cu(InGa(SeS2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa(SeS2 thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.

  19. Multiscale Modeling for Linking Growth, Microstructure, and Properties of Inorganic Microporous Films

    Science.gov (United States)

    Vlachos, Dion G.

    2002-01-01

    The focus of this presentation is on multiscale modeling in order to link processing, microstructure, and properties of materials. Overview of problems we study includes: Growth mechanisms in chemical and physical vapor epitaxy; thin films of zeolites for separation and sensing; thin Pd films for hydrogen separation and pattern formation by self-regulation routes.

  20. An Extension Landau-Lifshitz Model in Studying Soft Ferromagnetic Films

    Institute of Scientific and Technical Information of China (English)

    Jing-na Li; Xiao-feng Wang; Zheng-an Yao

    2007-01-01

    In this paper, we propose a model in studying soft ferromagnetic films, which is readily accessible experimentally. By using penalty approximation and compensated compactness, we prove that the dynamical equation in thin film has a local weak solution. Moreover, the corresponding linear equation is also dealt with in great detail.

  1. Quantitative characterization of morphological evolution in Q=2 Potts model aluminum thin films

    NARCIS (Netherlands)

    Alsem, DH; Stach, EA; de Hosson, JTM; Aziz, MJ; Bartelt, NC; Berbezier,; Hannon, JB; Hearne, SJ

    2003-01-01

    In this research, we have focused on the morphological evolution of a model metal film / silicon substrate system. When aluminum (Al) is physical vapor deposited on (100) oriented single crystal silicon (Si) at 280degreesC it grows heteroepitaxially. Crystallographically, the resulting films are a P

  2. Using Film to Elucidate Leadership Effectiveness Models: Reflection on Authentic Learning Experiences

    Science.gov (United States)

    Rajendran, Diana; Andrew, Martin

    2014-01-01

    This paper examines how students in a third year management unit at a university of technology in Australia evaluate the usefulness of film as a tool for developing a deeper understanding of the theoretical leadership effectiveness model developed by Robbins (1997). The study reviews the range of studies describing the use of films in teaching…

  3. Extension of the prognostic model of sea surface temperature to rain-induced cool and fresh lenses

    Science.gov (United States)

    Bellenger, Hugo; Drushka, Kyla; Asher, William; Reverdin, Gilles; Katsumata, Masaki; Watanabe, Michio

    2017-01-01

    The Zeng and Beljaars (2005) sea surface temperature prognostic scheme, developed to represent diurnal warming, is extended to represent rain-induced freshening and cooling. Effects of rain on salinity and temperature in the molecular skin layer (first few hundred micrometers) and the near-surface turbulent layer (first few meters) are separately parameterized by taking into account rain-induced fluxes of sensible heat and freshwater, surface stress, and mixing induced by droplets penetrating the water surface. Numerical results from this scheme are compared to observational data from two field studies of near-surface ocean stratifications caused by rain, to surface drifter observations and to previous computations with an idealized ocean mixed layer model, demonstrating that the scheme produces temperature variations consistent with in situ observations and model results. It reproduces the dependency of salinity on wind and rainfall rate and the lifetime of fresh lenses. In addition, the scheme reproduces the observed lag between temperature and salinity minimum at low wind speed and is sensitive to the peak rain rate for a given amount of rain. Finally, a first assessment of the impact of these fresh lenses on ocean surface variability is given for the near-equatorial western Pacific. In particular, the variability due to the mean rain-induced cooling is comparable to the variability due to the diurnal warming so that they both impact large-scale horizontal surface temperature gradients. The present parameterization can be used in a variety of models to study the impact of rain-induced fresh and cool lenses at different spatial and temporal scales.

  4. Effect of Over-Tree Evaporative Cooling in Orchards on Microclimate and Accuracy of Insect Model Predictions.

    Science.gov (United States)

    Chambers, Ute; Jones, Vincent P

    2015-12-01

    Orchard design and management practices can alter microclimate and, thus, potentially affect insect development. If sufficiently large, these deviations in microclimate can compromise the accuracy of phenology model predictions used in integrated pest management (IPM) programs. Sunburn causes considerable damage in the Pacific Northwest, United States, apple-producing region. Common prevention strategies include the use of fruit surface protectants, evaporative cooling (EC), or both. This study focused on the effect of EC on ambient temperatures and model predictions for four insects (codling moth, Cydia pomonella L.; Lacanobia fruitworm, Lacanobia subjuncta Grote and Robinson; oblique-banded leafroller, Choristoneura rosaceana Harris; and Pandemis leafroller, Pandemis pyrusana Kearfott). Over-tree EC was applied in July and August when daily maximum temperatures were predicted to be ≥30°C between 1200-1700 hours (15/15 min on/off interval) in 2011 and between 1200-1800 hours (15/10 min on/off interval, or continuous on) in 2012. Control plots were sprayed once with kaolin clay in early July. During interval and continuous cooling, over-tree cooling reduced average afternoon temperatures compared with the kaolin treatment by 2.1-3.2°C. Compared with kaolin-treated controls, codling moth and Lacanobia fruitworm egg hatch in EC plots was predicted to occur up to 2 d and 1 d late, respectively. The presence of fourth-instar oblique-banded leafroller and Pandemis leafroller was predicted to occur up to 2 d and 1 d earlier in EC plots, respectively. These differences in model predictions were negligible, suggesting that no adjustments in pest management timing are needed when using EC in high-density apple orchards.

  5. Understanding geometric instabilities in thin films via a multi-layer model.

    Science.gov (United States)

    Lejeune, Emma; Javili, Ali; Linder, Christian

    2016-01-21

    When a thin stiff film adhered to a compliant substrate is subject to compressive stresses, the film will experience a geometric instability and buckle out of plane. For high film/substrate stiffness ratios with relatively low levels of strain, the primary mode of instability will either be wrinkling or buckling delamination depending on the material and geometric properties of the system. Previous works approach these systems by treating the film and substrate as homogenous layers, either consistently perfectly attached, or perfectly unattached at interfacial flaws. However, this approach neglects systems where the film and substrate are uniformly weakly attached or where interfacial layers due to surface modifications in either the film or substrate are present. Here we demonstrate a method for accounting for these additional thin surface layers via an analytical solution verified by numerical results. The main outcome of this work is an improved understanding of how these layers influence global behavior. We demonstrate the utility of our model with applications ranging from buckling based metrology in ultrathin films, to an improved understanding of the formation of a novel surface in carbon nanotube bio-interface films. Moving forward, this model can be used to interpret experimental results, particularly for systems which deviate from traditional behavior, and aid in the evaluation and design of future film/substrate systems.

  6. Laboratory modeling of standing shocks and radiatively cooled jets with angular momentum

    CERN Document Server

    Ampleford, D J; Ciardi, A; Bland, S N; Bott, S C; Hall, G N; Naz, N; Jennings, C A; Sherlock, M; Chittenden, J P; Palmer, J B A; Frank, A; Blackman, E

    2007-01-01

    The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z-pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal velocities. By varying the twist angle of the array, the rotation velocity of the system can be controlled, with jet rotation velocities ~18% of the propagation velocity directly measured.

  7. ANSYS modeling of thermal contraction of SPL HOM couplers during cool-down

    CERN Document Server

    Papke, K

    2016-01-01

    During the cool-down the HOM coupler as well as the cavity inside the cryo module experience a thermal contraction. For most materials between room temperature and liquid helium temperatures, the changes in dimension are in the order of a few tenths of a percent change in volume. This paper presents the effect of thermal contraction on the RF transmission behavior of HOM couplers, and in particular the influence on its notch filter. Furthermore the simulation process with APDL is explained in detail. Conclusions about the necessary tuning range of the notch filter are made which is especially a concern for couplers with only notch filter.

  8. Modeling of Liquid Film along Absorber Cylinders in an Absorption Chiller

    Science.gov (United States)

    Suzuki, Hiroshi; Yamanaka, Tomofumi; Nagamoto, Wataru; Sugiyama, Takahide

    A two-dimensional liquid film model of LiBr solution falling along absorber cylinders has been studied to obtain boundary conditions for computing vapor flow in the absorber-evaporator of an absorption chiller. The model was established based on the assumptions that LiBr concentration and temperature profiles in the liquid film obey the third order polynomial expressions. It was indicated that mass flux and absorbed heat on the liquid surface can be calculated with simple numerical computations on the present analytical model. The overall heat transfer coefficient and total absorbed mass per second calculated with the present liquid film model was compared with experimental data for validation. The results calculated with the present model showed good agreement with the experimental data. Then, it was concluded the present model was useful enough for determining surface conditions on the LiBr liquid film around absorber cylinders.

  9. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2016-01-01

    Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  10. The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings

    Science.gov (United States)

    Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.

    1979-01-01

    The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.

  11. Continued Neutron Star Crust Cooling of the 11 Hz X-Ray Pulsar in Terzan 5: A Challenge to Heating and Cooling Models?

    CERN Document Server

    Degenaar, N; Brown, E F; Altamirano, D; Cackett, E M; Fridriksson, J; Homan, J; Heinke, C O; Miller, J M; Pooley, D; Sivakoff, G R

    2013-01-01

    The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480-2446 in the globular cluster Terzan 5 exhibited an 11-week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ~2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating