WorldWideScience

Sample records for film cooling hole

  1. Film cooling modeling of a turbine vane with multiple configurations of holes

    Directory of Open Access Journals (Sweden)

    J.H. Liu

    2018-03-01

    Full Text Available Film cooling flow is important for gas turbine thermal protection. But it is difficult to predict the film cooling flow performances. The aim of this paper is to modeling the film cooling flow of a turbine vane with endwall film cooling, showerhead film cooling, and pressure/suction side film cooling simultaneously. Developing a method by adding endwall film cooling domain, the endwall film cooling flow can be simulated by CFD. This method can include heat transfer between flow and solid and capture the coolant details in the entering tubes. The conjugate heat transfer (CHT method was utilized for fluid-solid thermal transfer at interfaces. The results show that the highest film overall effectiveness occurred immediately downstream the holes. The distribution of overall effectiveness is relatively homogenous in the zones between holes row in the leading edge no matter considering solid conduction. Without solid thermal transfer, better lateral coverage downstream the holes can form due to higher density ratio. The overall effectiveness and temperature field are affected by solid conduction, but the aerodynamic performance keeps consistent. Single row of holes in endwall cannot form good coverage in the lateral direction, but the showerhead film cooling configuration can form a preferable coverage layer.

  2. Mechanism of Film Cooling with One Inlet and Double Outlet Hole Injection at Various Turbulence Intensities

    Science.gov (United States)

    Li, Guangchao; Chen, Yukai; Kou, Zhihai; Zhang, Wei; Zhang, Guochen

    2018-03-01

    The trunk-branch hole was designed as a novel film cooling concept, which aims for improving film cooling performance by producing anti-vortex. The trunk-branch hole is easily manufactured in comparison with the expanded hole since it consists of two cylindrical holes. The effect of turbulence on the film cooling effectiveness with a trunk-branch hole injection was investigated at the blowing ratios of 0.5, 1.0, 1.5 and 2.0 by numerical simulation. The turbulence intensities from 0.4 % to 20 % were considered. The realizable http://www.w3.org/1998/Math/MathML">k-ɛ k - ɛ turbulence model and the enhanced wall function were used. The more effective anti-vortex occurs at the low blowing ratio of 0.5 %. The high turbulence intensity causes the effectiveness evenly distributed in the spanwise direction. The increase of turbulence intensity leads to a slight decrease of the spanwise averaged effectiveness at the low blowing ratio of 0.5, but a significant increase at the high blowing ratios of 1.5 and 2.0. The optimal blowing ratio of the averaged surface effectiveness is improved from 1.0 to 1.5 when the turbulence intensity increases from 0.4 % to 20 %.

  3. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    Science.gov (United States)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  4. Long Hole Film Cooling Dataset for CFD Development . Part 1; Infrared Thermography and Thermocouple Surveys

    Science.gov (United States)

    Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James

    2013-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  5. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  6. Full Coverage Shaped Hole Film Cooling in an Accelerating Boundary Layer with High Free-Stream Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest E. [University of North Dakota; Kingery, Joseph E. [University of North Dakota

    2015-06-17

    Full coverage shaped-hole film cooling and downstream heat transfer measurements have been acquired in the accelerating flows over a large cylindrical leading edge test surface. The shaped holes had an 8° lateral expansion angled at 30° to the surface with spanwise and streamwise spacings of 3 diameters. Measurements were conducted at four blowing ratios, two Reynolds numbers and six well documented turbulence conditions. Film cooling measurements were acquired over a four to one range in blowing ratio at the lower Reynolds number and at the two lower blowing ratios for the higher Reynolds number. The film cooling measurements were acquired at a coolant to free-stream density ratio of approximately 1.04. The flows were subjected to a low turbulence condition (Tu = 0.7%), two levels of turbulence for a smaller sized grid (Tu = 3.5%, and 7.9%), one turbulence level for a larger grid (8.1%), and two levels of turbulence generated using a mock aero-combustor (Tu = 9.3% and 13.7%). Turbulence level is shown to have a significant influence in mixing away film cooling coverage progressively as the flow develops in the streamwise direction. Effectiveness levels for the aero-combustor turbulence condition are reduced to as low as 20% of low turbulence values by the furthest downstream region. The film cooling discharge is located close to the leading edge with very thin and accelerating upstream boundary layers. Film cooling data at the lower Reynolds number, show that transitional flows have significantly improved effectiveness levels compared with turbulent flows. Downstream effectiveness levels are very similar to slot film cooling data taken at the same coolant flow rates over the same cylindrical test surface. However, slots perform significantly better in the near discharge region. These data are expected to be very useful in grounding computational predictions of full coverage shaped hole film cooling with elevated turbulence levels and acceleration. IR

  7. Turbine airfoil film cooling

    Science.gov (United States)

    Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.

    1987-10-01

    The experimental data obtained in this program gives insight into the physical phenomena that occur on a film cooled airfoil, and should provide a relevant data base for verification of new design tools. Results indicate that the downstream film cooling process is a complex function of the thermal dilution and turbulence augmentation parameters with trends actually reversing as blowing strength and coolant-to-gas temperature ratio varied. The pressure surface of the airfoil is shown to exhibit a considerably higher degree of sensitivity to changes in the film cooling parameters and, consequently, should prove to be more of a challenge than the suction surface in accurately predicting heat transfer levels with downsteam film cooling.

  8. Influences of Holes Arrangement on Creep Characteristic of Nickel-Base Single Crystal Alloy Blade Cooling Holes

    Directory of Open Access Journals (Sweden)

    Lei Li

    2013-01-01

    Full Text Available Film cooling technology is developed to enhance the temperature resistant of nickel-base single crystal alloy blade. The shape, dimension, and arrangement of cooling holes impact the blade strength and life grievously. In this paper, the influences of holes arrangement on creep characteristic of cooling holes in the plate sample are investigated. The constitutive model for creep considering both cavitation and degradation damage is developed to predict the creep behavior of cooling holes. Results show that there are stress interferences among cooling holes. The distance and radius of the cooling holes impact the creep behavior of cooling holes seriously. Decreasing horizontal distance of the holes results in creep time reducing. On the contrary, increasing the vertical distance of the holes makes the creep time reduced.

  9. Recent Development in Turbine Blade Film Cooling

    Directory of Open Access Journals (Sweden)

    Je-Chin Han

    2001-01-01

    Full Text Available Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT. The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.

  10. Influence of Cooling Holes Distribution on High Cycle Fatigue Fracture Behavior of DD6 Single Crystal Superalloy

    Directory of Open Access Journals (Sweden)

    HU Chun-yan

    2017-04-01

    Full Text Available The modeling air-cooled turbine blades specimens of DD6 single crystal superalloy with different distributions of cooling film holes were used to study the high cycle fatigue properties at room temperature. The SEM fracture observation was carried out. The results indicate that the cooling holes have significant effects on the high fatigue life of DD6 single crystal superalloy. The average life of non-hole specimens is four times of that of the three-row holes specimens under the same testing conditions. However, the distribution of cooling film holes has relatively less influence on fatigue life. The fracture of the specimens with non-hole is linear source by SEM analysis, but the cracks are found around the cooling film holes and the fracture of the specimens with single row to three rows is a typical multi-source rupture, and cracks all initiate from near film holes. According to fracture and crystallography theoretical conjecture, the cracks propagate along the {001} slip plane for non-hole, single-row holes and the middle location of the multi-row holes specimens. However, the cracks around the holes grow along the {111} slip plane for upper and lower holes of the specimens with multi-row holes. In addition, the distribution of stress field along cooling holes of four different specimens was analysed by FEM method. The results show that the fracture location and morphology of specimens are consistent well with numerical simulation analysis.

  11. Black holes, cooling flows and galaxy formation.

    Science.gov (United States)

    Peacock, J A

    2005-03-15

    Central black holes in galaxies are now well established as a ubiquitous phenomenon, and this fact is important for theories of cosmological structure formation. Merging of galaxy haloes must preserve the proportionality between black hole mass and baryonic mass; the way in which this happens may help solve difficulties with existing ing models of galaxy formation, which suffer from excessive cooling and thus over- produce stars. Feedback from active nuclei may be the missing piece of the puzzle, regulating galaxy-scale cooling flows. Such a process now seems to be observed in cluster-scale cooling flows, where dissipation of sound waves generated by radio lobes can plausibly balance the energy lost in X-rays, at least in a time-averaged sense.

  12. Film Cooling Optimization Using Numerical Computation of the Compressible Viscous Flow Equations and Simplex Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elsayed

    2013-01-01

    Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.

  13. The influence of curvature on film cooling performance

    Science.gov (United States)

    Schwarz, S. G.; Goldstein, R. J.; Eckert, E. R. G.

    1990-06-01

    The effects of injection rate and strength of curvature on film cooling performance of gas injected through a row of holes on a convex surface is studied. Comparisons are made to film cooling of concave and flat surfaces. Three different relative strengths of curvature (ratio of radius of curvature to radius of injection hole), two density ratios (0.95 and 2.0), and a wide range of blowing rates (0.3 to 2.7) are considered. A foreign gas injection technique (mass transfer analogy) is used. The strength of curvature was controlled by varying the injection hole diameter. At low blowing rates, film cooling is more effective on the convex surface than on a flat or a concave surface. The cross stream pressure gradient present in curved flows tends to push the jet into the convex wall. As the injection rate is increased, normal and tangential jet momentum promote lift-off from the convex surface, thereby lowering performance. In contrast, previous studies show that a concave surface, tangential jet momentum, flow instabilities, and blockage improve performance on a concave surface as blowing rate is increased.

  14. Large Eddy simulation of flat plate film cooling at high blowing ratio using open FOAM

    Science.gov (United States)

    Baagherzadeh Hushmandi, Narmin

    2017-12-01

    In this work, numerical analysis was performed to predict the behaviour of high Reynolds number turbulent cross-flows used in film cooling applications. The geometry included one row of three discrete coolant holes inclined at 30 degrees to the main flow. In the computational model, the width of the channel was cut into one sixth and symmetry boundaries were applied in the centreline of the coolant hole and along the line of symmetry between two adjacent holes. One of the main factors that affect the performance of film cooling is the blowing ratio of coolant to the main flow. A blowing ratio equal to two was chosen in this study. Analysis showed that the common practice CFD models that employ RANS equations together with turbulence modelling under predict the film cooling effectiveness up to a factor of four. However, LES method showed better agreement of film cooling effectiveness both in tendency and absolute values compared with experimental results.

  15. Experimental and numerical study of near bleed hole heat transfer enhancement in internal turbine blade cooling channels

    CSIR Research Space (South Africa)

    Scheepers, G

    2006-01-01

    Full Text Available of platinum thin film gauges and a transient testing technique were implemented to take measurements downstream of the film cooling hole entrance. Although this technique presents less detail than thermal crystals it however provides the capability of testing...

  16. Numerical and experimental investigation of turbine blade film cooling

    Science.gov (United States)

    Berkache, Amar; Dizene, Rabah

    2017-12-01

    The blades in a gas turbine engine are exposed to extreme temperature levels that exceed the melting temperature of the material. Therefore, efficient cooling is a requirement for high performance of the gas turbine engine. The present study investigates film cooling by means of 3D numerical simulations using a commercial code: Fluent. Three numerical models, namely k-ɛ, RSM and SST turbulence models; are applied and then prediction results are compared to experimental measurements conducted by PIV technique. The experimental model realized in the ENSEMA laboratory uses a flat plate with several rows of staggered holes. The performance of the injected flow into the mainstream is analyzed. The comparison shows that the RANS closure models improve the over-predictions of center-line film cooling velocities that is caused by the limitations of the RANS method due to its isotropy eddy diffusivity.

  17. Influence of deflection hole angle on effusion cooling in a real combustion chamber condition

    Directory of Open Access Journals (Sweden)

    Liu Xiao

    2015-01-01

    Full Text Available Fluid-solid coupling simulation is conducted to investigate the performance of effusion cooling in the real combustion chamber condition of strong rotation and primary holes. The wall temperature and film cooling effectiveness of different deflection angle is analyzed. From the results, it is concluded that the performance of effusion is better than conventional film cooling. The wall temperature and gradient is lower, the cooling efficiency is higher and the coolant is reduced by 20%, but pressure loss is slightly increased. The cooling effectiveness decreases behind primary holes because of local combustion. Comparison with the effect of deflection angle, the cooling performance of 60 deg deflection angle is best. The coolant is better attached to the wall downstream when the deflection angle is same as the rotating mainstream. In addition, the effect of deflection angle is not so significant on the coolant flow rate, but a large negative impact on the pressure loss. Although the cooling effectiveness of 60 deg deflection angle is highest, the total pressure recovery coefficient is lower. The maximum temperature drops about 70K and the outlet temperature distribution trends more consistent. So various factors should be taken into consideration when designing of deflection angle.

  18. NITROANILINE FILM-HOLE MODIFIED GLASSY CARBON ...

    African Journals Online (AJOL)

    The result showed that PNA film-hole modified GCE has a good stability and long life. Table 1. Comparison of the analytical performance of the proposed dopamine sensor with previously reported dopamine sensors. Sensor. Method LOD (µM). Ref. Co(II) complex and multi-walled carbon nanotubes modified GCE. Amp.

  19. Squeeze film dampers with oil hole feed

    Science.gov (United States)

    Chen, P. Y. P.; Hahn, E. J.

    1994-01-01

    To improve the damping capability of squeeze film dampers, oil hole feed rather than circumferential groove feed is a practical proposition. However, circular orbit response can no longer be assumed, significantly complicating the design analysis. This paper details a feasible transient solution procedure for such dampers, with particular emphasis on the additional difficulties due to the introduction of oil holes. It is shown how a cosine power series solution may be utilized to evaluate the oil hole pressure contributions, enabling appropriate tabular data to be compiled. The solution procedure is shown to be applicable even in the presence of flow restrictors, albeit at the expense of introducing an iteration at each time step. Though not of primary interest, the procedure is also applicable to dynamically loaded journal bearings with oil hole feed.

  20. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  1. Conjugate calculation of a film-cooled blade for improvement of the leading edge cooling configuration

    Directory of Open Access Journals (Sweden)

    Norbert Moritz

    2013-03-01

    Full Text Available Great efforts are still put into the design process of advanced film-cooling configurations. In particular, the vanes and blades of turbine front stages have to be cooled extensively for a safe operation. The conjugate calculation technique is used for the three-dimensional thermal load prediction of a film-cooled test blade of a modern gas turbine. Thus, it becomes possible to take into account the interaction of internal flows, external flow, and heat transfer without the prescription of heat transfer coefficients. The focus of the investigation is laid on the leading edge part of the blade. The numerical model consists of all internal flow passages and cooling hole rows at the leading edge. Furthermore, the radial gap flow is also part of the model. The comparison with thermal pyrometer measurements shows that with respect to regions with high thermal load a qualitatively and quantitatively good agreement of the conjugate results and the measurements can be found. In particular, the region in the vicinity of the mid-span section is exposed to a higher thermal load, which requires further improvement of the cooling arrangement. Altogether the achieved results demonstrate that the conjugate calculation technique is applicable for reasonable prediction of three-dimensional thermal load of complex cooling configurations for blades.

  2. Numerical Analysis of Film Cooling at High Blowing Ratio

    Science.gov (United States)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  3. The Effect of Wake Passing on Turbine Blade Film Cooling

    Science.gov (United States)

    Heidmann, James David

    1996-01-01

    The effect of upstream blade row wake passing on the showerhead film cooling performance of a downstream turbine blade has been investigated through a combination of experimental and computational studies. The experiments were performed in a steady-flow annular turbine cascade facility equipped with an upstream rotating row of cylindrical rods to produce a periodic wake field similar to that found in an actual turbine. Spanwise, chordwise, and temporal resolution of the blade surface temperature were achieved through the use of an array of nickel thin-film surface gauges covering one unit cell of showerhead film hole pattern. Film effectiveness and Nusselt number values were determined for a test matrix of various injectants, injectant blowing ratios, and wake Strouhal numbers. Results indicated a demonstratable reduction in film effectiveness with increasing Strouhal number, as well as the expected increase in film effectiveness with blowing ratio. An equation was developed to correlate the span-average film effectiveness data. The primary effect of wake unsteadiness was found to be correlated well by a chordwise-constant decrement of 0.094-St. Measurable spanwise film effectiveness variations were found near the showerhead region, but meaningful unsteady variations and downstream spanwise variations were not found. Nusselt numbers were less sensitive to wake and injection changes. Computations were performed using a three-dimensional turbulent Navier-Stokes code which was modified to model wake passing and film cooling. Unsteady computations were found to agree well with steady computations provided the proper time-average blowing ratio and pressure/suction surface flow split are matched. The remaining differences were isolated to be due to the enhanced mixing in the unsteady solution caused by the wake sweeping normally on the pressure surface. Steady computations were found to be in excellent agreement with experimental Nusselt numbers, but to overpredict

  4. Leading edge film cooling effects on turbine blade heat transfer

    Science.gov (United States)

    Garg, Vijay K.; Gaugler, Raymond E.

    1995-01-01

    An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.

  5. Large Eddy Simulation of Film-Cooling Jets

    Science.gov (United States)

    Iourokina, Ioulia

    2005-11-01

    Large Eddy Simulation of inclined jets issuing into a turbulent boundary layer crossflow has been performed. The simulation models film-cooling experiments of Pietrzyk et al. (J. of. Turb., 1989), consisting of a large plenum feeding an array of jets inclined at 35° to the flat surface with a pitch 3D and L/D=3.5. The blowing ratio is 0.5 with unity density ratio. The numerical method used is a hybrid combining external compressible solver with a low-Mach number code for the plenum and film holes. Vorticity dynamics pertinent to jet-in-crossflow interactions is analyzed and three-dimensional vortical structures are revealed. Turbulence statistics are compared to the experimental data. The turbulence production due to shearing in the crossflow is compared to that within the jet hole. The influence of three-dimensional coherent structures on the wall heat transfer is investigated and strategies to increase film- cooling performance are discussed.

  6. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  7. Effect of an upstream bulge configuration on film cooling with and without mist injection.

    Science.gov (United States)

    Wang, Jin; Li, Qianqian; Sundén, Bengt; Ma, Ting; Cui, Pei

    2017-12-01

    To meet the economic requirements of power output, the increased inlet temperature of modern gas turbines is above the melting point of the material. Therefore, high-efficient cooling technology is needed to protect the blades from the hot mainstream. In this study, film cooling was investigated in a simplified channel. A bulge located upstream of the film hole was numerically investigated by analysis of the film cooling effectiveness distribution downstream of the wall. The flow distribution in the plate channel is first presented. Comparing with a case without bulge, different cases with bulge heights of 0.1d, 0.3d and 0.5d were examined with blowing ratios of 0.5 and 1.0. Cases with 1% mist injection were also included in order to obtain better cooling performance. Results show that the bulge configuration located upstream the film hole makes the cooling film more uniform, and enhanceslateral cooling effectiveness. Unlike other cases, the configuration with a 0.3d-height bulge shows a good balance in improving the downstream and lateral cooling effectiveness. Compared with the case without mist at M = 0.5, the 0.3d-height bulge with 1% mist injection increases lateral average effectiveness by 559% at x/d = 55. In addition, a reduction of the thermal stress concentration can be obtained by increasing the height of the bulge configuration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  9. Improving Durability of Turbine Components Through Trenched Film Cooling and Contoured Endwalls

    Energy Technology Data Exchange (ETDEWEB)

    Bogard, David G. [Univ. of Texas, Austin, TX (United States); Thole, Karen A. [Pennsylvania State Univ., State College, PA (United States)

    2014-09-30

    The experimental and computational studies of the turbine endwall and vane models completed in this research program have provided a comprehensive understanding of turbine cooling with combined film cooling and TBC. To correctly simulate the cooling effects of TBC requires the use of matched Biot number models, a technique developed in our laboratories. This technique allows for the measurement of the overall cooling effectiveness which is a measure of the combined internal and external cooling for a turbine component. The overall cooling effectiveness provides an indication of the actual metal temperature that would occur at engine conditions, and is hence a more powerful performance indicator than the film effectiveness parameter that is commonly used for film cooling studies. Furthermore these studies include the effects of contaminant depositions which are expected to occur when gas turbines are operated with syngas fuels. Results from the endwall studies performed at Penn State University and the vane model studies performed at the University of Texas are the first direct measurements of the combined effects of film cooling and TBC. These results show that TBC has a dominating effect on the overall cooling effectiveness, which enhances the importance of the internal cooling mechanisms, and downplays the importance of the film cooling of the external surface. The TBC was found to increase overall cooling effectiveness by a factor of two to four. When combined with TBC, the primary cooling from film cooling holes was found to be due to the convective cooling within the holes, not from the film effectiveness on the surface of the TBC. Simulations of the deposition of contaminants on the endwall and vane surfaces showed that these depositions caused a large increase in surface roughness and significant degradation of film effectiveness. However, despite these negative factors, the depositions caused only a slight decrease in the overall cooling effectiveness on

  10. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1993-01-01

    This report summarizes the findings on the NASA contract NAG8-212, Task No. 3. The overall project consists of three tasks, all of which have been successfully completed. In addition, some supporting supplemental work, not required by the contract, has been performed and is documented herein. Task 1 involved the modification of the wall functions in the code FDNS (Finite Difference Navier-Stokes) to use a Reynolds Analogy-based method. This task was completed in August, 1992. Task 2 involved the verification of the code against experimentally available data. The data chosen for comparison was from an experiment involving the injection of helium from a wall jet. Results obtained in completing this task also show the sensitivity of the FDNS code to unknown conditions at the injection slot. This task was completed in September, 1992. Task 3 required the computation of the flow of hot exhaust gases through the P&W 40K subscale nozzle. Computations were performed both with and without film coolant injection. This task was completed in July, 1993. The FDNS program tends to overpredict heat fluxes, but, with suitable modeling of backside cooling, may give reasonable wall temperature predictions. For film cooling in the P&W 40K calorimeter subscale nozzle, the average wall temperature is reduced from 1750R to about 1050R by the film cooling. The average wall heat flux is reduced by a factor of 3.

  11. Slot film cooling: A comprehensive experimental characterization

    Science.gov (United States)

    Raffan, Fernando

    When components of a propulsion system are exposed to elevated flow temperatures there is a risk for catastrophic failure if the components are not properly protected from the thermal loads. Among several strategies, slot film cooling is one of the most commonly used, yet poorly understood active cooling techniques. Tangential injection of a relatively cool fluid layer protects the surface(s) in question, but the turbulent mixing between the hot mainstream and cooler film along with the presence of the wall presents an inherently complex problem where kinematics, thermal transport and multimodal heat transfer are coupled. Furthermore, new propulsion designs rely heavily on CFD analysis to verify their viability. These CFD models require validation of their results, and the current literature does not provide a comprehensive data set for film cooling that meets all the demands for proper validation, namely a comprehensive (kinematic, thermal and boundary condition data) data set obtained over a wide range of conditions. This body of work aims at solving the fundamental issue of validation by providing high quality comprehensive film cooling data (kinematics, thermal mixing, heat transfer). 3 distinct velocity ratios (VR=u c/uinfinity) are examined corresponding to wall-wake (VR˜0.5), min-shear (VR ˜ 1.0), and wall-jet (VR˜2.0) type flows at injection, while the temperature ratio TR= Tinfinity/Tc is approximately 1.5 for all cases. Turbulence intensities at injection are 2-4% for the mainstream (urms/uinfinity, vrms/uinfinity,), and on the order of 8-10% for the coolant (urms/uc, vrms/uc,). A special emphasis is placed on inlet characterization, since inlet data in the literature is often incomplete or is of relatively low quality for CFD development. The data reveals that min-shear injection provides the best performance, followed by the wall-jet. The wall-wake case is comparably poor in performance. The comprehensive data suggests that this relative performance

  12. The study on the evaporation cooling efficiency and effectiveness of cooling tower of film type

    International Nuclear Information System (INIS)

    Li Yingjian; You Xinkui; Qiu Qi; Li Jiezhi

    2011-01-01

    Based on heat and mass transport mechanism of film type cooling, which was combined with an on-site test on counter flow film type cooling tower, a mathematical model on the evaporation and cooling efficiency and effectiveness has been developed. Under typical climatic conditions, air conditioning load and the operating condition, the mass and heat balances have been calculated for the air and the cooling water including the volume of evaporative cooling water. Changing rule has been measured and calculated between coefficient of performance (COP) and chiller load. The influences of air and cooling water parameters on the evaporative cooling efficiency were analyzed in cooling tower restrained by latent heat evaporative cooling, and detailed derivation and computation revealed that both the evaporative cooling efficiency and effectiveness of cooling tower are the same characteristics parameters of the thermal performance of a cooling tower under identical assumptions.

  13. Flat plate film cooling at the coolant supply into triangular and cylindrical craters

    Directory of Open Access Journals (Sweden)

    Khalatov Artem A.

    2017-01-01

    Full Text Available The results are given of the film cooling numerical simulation of three different schemes including single-array of the traditional round inclined holes, as well as inclined holes arranged in the cylindrical or triangular dimples (craters. The results of simulation showed that at the medium and high values of the blowing ratio (m > 1.0 the scheme with coolant supply into triangular craters improves the adiabatic film cooling efficiency by 1.5…2.7 times compared to the traditional array of inclined holes, or by 1.3…1.8 times compared to the scheme with coolant supply into cylindrical craters. The greater film cooling efficiency with the coolant supply into triangular craters is explained by decrease in the intensity of secondary vortex structures (“kidney” vortex. This is due to the partial destruction and transformation of the coolant jets structure interacting with front wall of the crater. Simultaneously, the film cooling uniformity is increased in the span-wise direction.

  14. A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

    Science.gov (United States)

    Ameri, A. A.; Rigby, D. L.

    1999-01-01

    A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.

  15. Large Eddy Simulation of a Film Cooling Technique with a Plenum

    Science.gov (United States)

    Dharmarathne, Suranga; Sridhar, Narendran; Araya, Guillermo; Castillo, Luciano; Parameswaran, Sivapathasund

    2012-11-01

    Factors that affect the film cooling performance have been categorized into three main groups: (i) coolant & mainstream conditions, (ii) hole geometry & configuration, and (iii) airfoil geometry Bogard et al. (2006). The present study focuses on the second group of factors, namely, the modeling of coolant hole and the plenum. It is required to simulate correct physics of the problem to achieve more realistic numerical results. In this regard, modeling of cooling jet hole and the plenum chamber is highly important Iourokina et al. (2006). Substitution of artificial boundary conditions instead of correct plenum design would yield unrealistic results Iourokina et al. (2006). This study attempts to model film cooling technique with a plenum using a Large Eddy Simulation.Incompressible coolant jet ejects to the surface of the plate at an angle of 30° where it meets compressible turbulent boundary layer which simulates the turbine inflow conditions. Dynamic multi-scale approach Araya (2011) is introduced to prescribe turbulent inflow conditions. Simulations are carried out for two different blowing ratios and film cooling effectiveness is calculated for both cases. Results obtained from LES will be compared with experimental results.

  16. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  17. Investigation of the cooling film distribution in liquid rocket engine

    Directory of Open Access Journals (Sweden)

    Luís Antonio Silva

    2011-05-01

    Full Text Available This study presents the results of the investigation of a cooling method widely used in the combustion chambers, which is called cooling film, and it is applied to a liquid rocket engine that uses as propellants liquid oxygen and kerosene. Starting from an engine cooling, whose film is formed through the fuel spray guns positioned on the periphery of the injection system, the film was experimentally examined, it is formed by liquid that seeped through the inner wall of the combustion chamber. The parameter used for validation and refinement of the theoretical penetration of the film was cooling, as this parameter is of paramount importance to obtain an efficient thermal protection inside the combustion chamber. Cold tests confirmed a penetrating cold enough cooling of the film for the length of the combustion chamber of the studied engine.

  18. Effect of external turbulence on the efficiency of film cooling with coolant injection into a transverse trench

    Science.gov (United States)

    Khalatov, A. A.; Panchenko, N. A.; Severin, S. D.

    2017-09-01

    Film cooling is among the basic methods used for thermal protection of blades in modern high-temperature gas turbines. Results of computer simulation of film cooling with coolant injection via a row of conventional inclined holes or a row of holes in a trench are presented in this paper. The ANSYS CFX 14 commercial software package was used for CFD-modeling. The effect is studied of the mainstream turbulence on the film cooling efficiency for the blowing ratio range between 0.6 and 2.3 and three different turbulence intensities of 1, 5, and 10%. The mainstream velocity was 150 and 400 m/s, while the temperatures of the mainstream and the injected coolant were 1100 and 500°C, respectively. It is demonstrated that, for the coolant injection via one row of trenched holes, an increase in the mainstream turbulence intensity reduces the film cooling efficiency in the entire investigated range of blowing ratios. It was revealed that freestream turbulence had varied effects on the film cooling efficiency depending on the blowing ratio and mainstream velocity in a blade channel. Thus, an increase in the mainstream turbulence intensity from 1 to 10% decreases the surface-averaged film cooling efficiency by 3-10% at a high mainstream velocity (400 m/s) in the blade channel and by 12-23% at a moderate velocity (of 150 m/s). Here, lower film cooling efficiencies correspond to higher blowing ratios. The effect of mainstream turbulence intensity on the film cooling efficiency decreases with increasing the mainstream velocity in the modeled channel for both investigated configurations.

  19. Numerical and experimental investigation of thermoelectric cooling in down-hole measuring tools; a case study

    Directory of Open Access Journals (Sweden)

    Rohitha Weerasinghe

    2017-09-01

    Full Text Available Use of Peltier cooling in down-hole seismic tooling has been restricted by the performance of such devices at elevated temperatures. Present paper analyses the performance of Peltier cooling in temperatures suited for down-hole measuring equipment using measurements, predicted manufacturer data and computational fluid dynamic analysis. Peltier performance prediction techniques is presented with measurements. Validity of the extrapolation of thermoelectric cooling performance at elevated temperatures has been tested using computational models for thermoelectric cooling device. This method has been used to model cooling characteristics of a prototype downhole tool and the computational technique used has been proven valid.

  20. Optimized use of cooling holes to decrease the amount of thermal damage on a plastic gear tooth

    OpenAIRE

    Demagna Koffi; Alencar Bravo; Lotfi Toubal; Fouad Erchiqui

    2016-01-01

    The full potential of plastic gear usage is limited by not only poor mechanical properties but also equally poor temperature limits and poor heat conduction properties. Cooling holes were developed to decrease the amount of thermal damage on the contact surface. These cooling holes promote increased stress and tooth deflection, thus exerting a negative effect. This article compares various cooling holes for plastic gear configurations and proposes novel cooling holes. Thermal and mechanical s...

  1. Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998

    Directory of Open Access Journals (Sweden)

    D. M. Kercher

    2000-01-01

    Full Text Available Film cooling for turbine airfoil leading edges has been a common practice for at least 35 years as turbine inlet gas temperatures and pressures have continually increased along with cooling air temperatures for higher engine cycle efficiency. With substantial engine cycle performance improvements from higher gas temperatures, it has become increasingly necessary to film cool nozzle and rotor blade leading edges since external heat transfer coefficients and thus heat load are the highest in this airfoil region. Optimum cooling air requirements in this harsh environment has prompted a significant number of film cooling investigations and analytical studies reported over the past 25 years from academia, industry and government agencies. Substantial progress has been made in understanding the complex nature of leading edge film cooling from airfoil cascades, simulated airfoil leading edges and environment. This bibliography is a report of the open-literature references available which provide information on the complex aero–thermo interaction of leading edge gaseous film cooling with mainstream flow. From much of this investigative information has come successful operational leading edge film cooling design systems capable of sustaining airfoil leading edge durability in very hostile turbine environments.

  2. Numerical Investigations of the Influence of Unsteady Vane Trailing Edge Shock Wave on Film Cooling Effectiveness of Rotor Blade Leading Edge

    Science.gov (United States)

    Wang, Yufeng; Cai, Le; Wang, Songtao; Zhou, Xun

    2018-04-01

    Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave. In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.

  3. NITROANILINE FILM-HOLE MODIFIED GLASSY CARBON ...

    African Journals Online (AJOL)

    ABSTRACT. Herein, we report determination of dopamine (DA) at modified glassy carbon electrode (GCE) with a film produced by reduction of diazonium generated from p-nitroaniline (PNA). Pores were created purposely by stripping pre-deposited gold nanoparticles (AuNPs) in the modifier film. The modified electrodes.

  4. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1992-01-01

    Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.

  5. Aerodynamic Losses in Turbines with and without Film Cooling, as Influenced by Mainstream Turbulence, Surface Roughness, Airfoil Shape, and Mach Number

    Directory of Open Access Journals (Sweden)

    Phil Ligrani

    2012-01-01

    Full Text Available The influences of a variety of different physical phenomena are described as they affect the aerodynamic performance of turbine airfoils in compressible, high-speed flows with either subsonic or transonic Mach number distributions. The presented experimental and numerically predicted results are from a series of investigations which have taken place over the past 32 years. Considered are (i symmetric airfoils with no film cooling, (ii symmetric airfoils with film cooling, (iii cambered vanes with no film cooling, and (iv cambered vanes with film cooling. When no film cooling is employed on the symmetric airfoils and cambered vanes, experimentally measured and numerically predicted variations of freestream turbulence intensity, surface roughness, exit Mach number, and airfoil camber are considered as they influence local and integrated total pressure losses, deficits of local kinetic energy, Mach number deficits, area-averaged loss coefficients, mass-averaged total pressure loss coefficients, omega loss coefficients, second law loss parameters, and distributions of integrated aerodynamic loss. Similar quantities are measured, and similar parameters are considered when film-cooling is employed on airfoil suction surfaces, along with film cooling density ratio, blowing ratio, Mach number ratio, hole orientation, hole shape, and number of rows of holes.

  6. Influencing Factors and Simplified Model of Film Hole Irrigation

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2017-07-01

    Full Text Available Film hole irrigation is an advanced low-cost and high-efficiency irrigation method, which can improve water conservation and water use efficiency. Given its various advantages and potential applications, we conducted a laboratory study to investigate the effects of soil texture, bulk density, initial soil moisture, irrigation depth, opening ratio (ρ, film hole diameter (D, and spacing on cumulative infiltration using SWMS-2D. We then proposed a simplified model based on the Kostiakov model for infiltration estimation. Error analyses indicated SWMS-2D to be suitable for infiltration simulation of film hole irrigation. Additional SWMS-2D-based investigations indicated that, for a certain soil, initial soil moisture and irrigation depth had the weakest effects on cumulative infiltration, whereas ρ and D had the strongest effects on cumulative infiltration. A simplified model with ρ and D was further established, and its use was then expanded to different soils. Verification based on seven soil types indicated that the established simplified double-factor model effectively estimates cumulative infiltration for film hole irrigation, with a small mean average error of 0.141–2.299 mm, a root mean square error of 0.177–2.722 mm, a percent bias of −2.131–1.479%, and a large Nash–Sutcliffe coefficient that is close to 1.0.

  7. Black Hole Entropy Calculation in a Modified Thin Film Model

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The thin film model is modified to calculate the black hole entropy. The difference from the original method is that the Parikh–Wilczek tunnelling framework is introduced and the self-gravitation of the emission particles is taken into account. In terms of our improvement, if the entropy is still proportional to the ...

  8. Combined Effects of Wakes and Jet Pulsing on Film Cooling

    Science.gov (United States)

    2008-10-01

    the wheel was driven by an electric motor and had 24 threaded holes around its circumfer- ence, into which 38 cm long, 1.905 cm diameter hollow alumi...Merlin model with a Stirling cooled detector was used to measure the surface temperature field of the test wall. The temperature reso- lution of the

  9. Optimized use of cooling holes to decrease the amount of thermal damage on a plastic gear tooth

    Directory of Open Access Journals (Sweden)

    Demagna Koffi

    2016-05-01

    Full Text Available The full potential of plastic gear usage is limited by not only poor mechanical properties but also equally poor temperature limits and poor heat conduction properties. Cooling holes were developed to decrease the amount of thermal damage on the contact surface. These cooling holes promote increased stress and tooth deflection, thus exerting a negative effect. This article compares various cooling holes for plastic gear configurations and proposes novel cooling holes. Thermal and mechanical simulations that consider specific aspects of plastic gear meshing were performed. The main objective of this article was to verify the best methods for reducing thermal damage through cooling holes. The results indicate the best compromise between the temperature reduction and the mechanical properties of the new tooth geometry. The results also indicate that the simple variations in the cooling holes proposed can improve tooth performance.

  10. Inter-slit Coupling in Gold Film Hole Arrays

    OpenAIRE

    Carmeli, Itai; Walther, Roman; Schneider, Reinhard; Gerthsen, Dagmar; Kaufman, Yaron; Shvarzman, Ayala; Richter, Shachar; Cohen, Hagai

    2012-01-01

    Inter-slit interactions across one-dimensional arrays of sub-micro meter rectangular holes in gold films are explored. Using electron energy loss spectroscopy combined with scanning transmission electron microscopy, a series of cavity standing waves is resolved, indicating particularly high interslit interactions, about an order of magnitude larger than the intra-slit edge to edge coupling. Pronounced signal enhancements are thus induced, dominated by short-range interactions and high mode-lo...

  11. Reynolds-Averaged Navier-Stokes Solutions to Flat Plate Film Cooling Scenarios

    Science.gov (United States)

    Johnson, Perry L.; Shyam, Vikram; Hah, Chunill

    2011-01-01

    The predictions of several Reynolds-Averaged Navier-Stokes solutions for a baseline film cooling geometry are analyzed and compared with experimental data. The Fluent finite volume code was used to perform the computations with the realizable k-epsilon turbulence model. The film hole was angled at 35 to the crossflow with a Reynolds number of 17,400. Multiple length-to-diameter ratios (1.75 and 3.5) as well as momentum flux ratios (0.125 and 0.5) were simulated with various domains, boundary conditions, and grid refinements. The coolant to mainstream density ratio was maintained at 2.0 for all scenarios. Computational domain and boundary condition variations show the ability to reduce the computational cost as compared to previous studies. A number of grid refinement and coarsening variations are compared for further insights into the reduction of computational cost. Liberal refinement in the near hole region is valuable, especially for higher momentum jets that tend to lift-off and create a recirculating flow. A lack of proper refinement in the near hole region can severely diminish the accuracy of the solution, even in the far region. The effects of momentum ratio and hole length-to-diameter ratio are also discussed.

  12. Aerodynamic losses calculation of a turbine blade with film cooling with forward and backward injection by numerical method

    Science.gov (United States)

    Prajapati, Anil

    Thermal efficiency and power output of gas turbines can be increased by increasing the turbine blade inlet temperature. However, the main problem is the durability of the turbine blade due to the thermal stress on it at high temperature. This has led to the development of film cooling technology, in which coolant is injected from a series of cooling holes made on the blade surface to form an insulating blanket over the blade surface. However, it has to pay the aerodynamic penalties due to the injection of coolant, which are not fully understood. Pressure loss coefficient is one of the easy and widely used parameters to determine the aerodynamic loss occurred on a turbine blade. The losses occurred on the turbine blade with forward injection and backward injection cooling are studied at a different blowing ratios by a numerical simulation, which shows that the loss is higher in the case of backward injection than in forward injection. Fan-shaped cooling holes are also considered to compare with the cylindrical holes. It is observed that the loss is increased due to the fan-shaped holes in the forward injection whereas there is not a substantial difference due to the fan-shaped holes in the backward injection. The aerodynamic loss due to the location of coolant injection is studied by using injection from the leading edge, pressure side, suction side and trailing edge respectively. The study is performed to determine the effect of incidence angles and coolant injection angles on the aerodynamic loss.

  13. The Growth of Black Holes and Bulges at the Cores of Cooling Flows

    NARCIS (Netherlands)

    Rafferty, D.A.; McNamara, B.R.; Nulsen, P.E.J.; Wise, M.

    2007-01-01

    Central cluster galaxies (cDs) in cooling flows are growing rapidly through gas accretion and star formation. At the same time, AGN outbursts fueled by accretion onto supermassive black holes are generating X-ray cavity systems and driving outflows that exceed those in powerful quasars. We show that

  14. Optimized thin film coatings for passive radiative cooling applications

    Science.gov (United States)

    Naghshine, Babak B.; Saboonchi, Ahmad

    2018-03-01

    Passive radiative cooling is a very interesting method, which lays on low atmospheric downward radiation within 8-13 μm waveband at dry climates. Various thin film multilayer structures have been investigated in numerous experimental studies, in order to find better coatings to exploit the full potential of this method. However, theoretical works are handful and limited. In this paper, the Simulated Annealing and Genetic Algorithm are used to optimize a thin film multilayer structure for passive radiative cooling applications. Spectral radiative properties are calculated through the matrix formulation. Considering a wide range of materials, 30 high-potential convective shields are suggested. According to the calculations, cooling can be possible even under direct sunlight, using the introduced shields. Moreover, a few water-soluble materials are studied for the first time and the results show that, a KBr substrate coated by a thin CaF2 or polyethylene film can is very close to an ideal coating for passive radiative cooling at night.

  15. Evaluation of Hole Quality in Hardened Steel with High-Speed Drilling Using Different Cooling Systems

    Directory of Open Access Journals (Sweden)

    Lincoln Cardoso Brandão

    2011-01-01

    Full Text Available This work evaluates the hole quality on AISI H13 hardened steel using high-speed drilling. Specimens were machined with new and worn out drills with 8.6 mm diameter and (TiAlN coating. Two levels of cutting speed and three levels of cooling/lubrication systems (flooded, minimum lubrication quantity, and dry were used. The hole quality is evaluated on surface roughness (Ra parameter, diameter error, circularity, and cylindricity error. A statistical analysis of the results shows that the cooling/lubrication system significantly affects the hole quality for all measured variables. This analysis indicates that dry machining produces the worst results. Higher cutting speeds not only prove beneficial to diameter error and circularity errors, but also show no significant difference on surface roughness and cylindricity errors. The effects of the interaction between the cooling/lubrication systems, tool wear, and cutting speed indicate that only cylindricity error is influenced. Thus, the conclusion is that the best hole quality is produced with a higher cutting speed using flooded or minimum lubrication quantity independent of drill wear.

  16. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    Science.gov (United States)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  17. Thin-Film Evaporative Cooling for Side-Pumped Laser

    Science.gov (United States)

    Stewart, Brian K. (Inventor)

    2010-01-01

    A system and method are provided for cooling a crystal rod of a side-pumped laser. A transparent housing receives the crystal rod therethrough so that an annular gap is defined between the housing and the radial surface of the crystal rod. A fluid coolant is injected into the annular gap such the annular gap is partially filled with the fluid coolant while the radial surface of the crystal rod is wetted as a thin film all along the axial length thereof.

  18. Numerical investigations of cooling holes system role in the protection of the walls of a gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ben Sik Ali, Ahlem; Kriaa, Wassim; Mhiri, Hatem [Ecole Nationale D' Ingenieurs de Monastir, Unite de Thermique et Thermodynamique des Procedes industriels, Monastir (Tunisia); Bournot, Philippe [IUSTI, UMR CNRS 6595, Marseille (France)

    2012-05-15

    Numerical simulations in a gas turbine Swirl stabilized combustor were conducted to investigate the effectiveness of a cooling system in the protection of combustor walls. The studied combustion chamber has a high degree of geometrical complexity related to the injection system as well as the cooling system based on a big distribution of small holes (about 3,390 holes) bored on the flame tube walls. Two cases were considered respectively the flame tube without and with its cooling system. The calculations were carried out using the industrial CFD code FLUENT 6.2. The various simulations made it possible to highlight the role of cooling holes in the protection of the flame tube walls against the high temperatures of the combustion products. In fact, the comparison between the results of the two studied cases demonstrated that the walls temperature can be reduced by about 800 C by the mean of cooling holes technique. (orig.)

  19. Film cooling effects on the tip flow characteristics of a gas turbine blade

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-03-01

    Full Text Available An experimental investigation of the tip flow characteristics between a gas turbine blade tip and the shroud was conducted by a pressure-test system and a particle image velocimetry (PIV system. A three-times scaled profile of the GE-E3 blade with five film cooling holes was used as specimen. The effects on flow characteristics by the rim width and the groove depth of the squealer tip were revealed. The rim widths were (a 0.9%, (b 2.1%, and (c 3.0% of the axial chord, and the groove depths were (a 2.8%, (b 4.8%, and (c 10% of the blade span. Several pressure taps on the top plate above the blades were connected to pressure gauges. By a CCD camera the PIV system recorded the velocity field around the leading edge zone including the five cooling holes. The flow distributions both in the tip clearance and in the passage were revealed, and the influence of the inlet velocity was determined. In this work, the tip flow characteristics with and without film cooling were investigated. The effects of different global blowing ratios of M=0.5, 1.0, 1.3 and 2.5 were established. It was found that decreasing the rim width resulted in a lower mass flow rate of the leakage flow, and the pressure distributions from the leading edge to the trailing edge showed a linearly increasing trend. It was also found that if the inlet velocity was less than 1.5 m/s, the flow field in the passage far away from the suction side appeared as a stagnation zone.

  20. Effect of cooling methods on hole quality in drilling of aluminium 6061-6T

    International Nuclear Information System (INIS)

    Islam, M N; Boswell, B

    2016-01-01

    The influence of cooling method and drilling parameters on hole production has been investigated experimentally and analytically by measuring the hole quality. A three-level, three-parameter experiment was conducted using design-of-experiment methodology. The three levels of independent input parameters were: for cooling method—flood drilling, minimum quantity lubrication (MQL) drilling and cryogenic drilling; for feed rate—0.2, 0.3 and 0.4 mm/rev; and for cutting speed—60, 75 and 100 m/min. The selected work and tool materials were aluminium 6061-6T and high speed steel (HSS), respectively. The measured output parameters were the three most widely used quality characteristics of drilled holes - diameter error, circularity and surface roughness. The results were analysed applying three methods: Pareto ANOVA, Taguchi method and traditional analysis. The findings revealed that the cooling method has a significant effect on diameter error (contribution ratio 88.27%), moderate effect on surface roughness (contribution ratio 41.74%) and relatively small effect on circularity (contribution ratio 23.64%). The best results for the dimensional accuracy and surface roughness were achieved by MQL drilling. Cryogenic drilling produced the best circularity results; however, in terms of dimensional accuracy and surface roughness it was the worst. (paper)

  1. Effect of cooling methods on hole quality in drilling of aluminium 6061-6T

    Science.gov (United States)

    Islam, M. N.; Boswell, B.

    2016-02-01

    The influence of cooling method and drilling parameters on hole production has been investigated experimentally and analytically by measuring the hole quality. A three-level, three-parameter experiment was conducted using design-of-experiment methodology. The three levels of independent input parameters were: for cooling method—flood drilling, minimum quantity lubrication (MQL) drilling and cryogenic drilling; for feed rate—0.2, 0.3 and 0.4 mm/rev; and for cutting speed—60, 75 and 100 m/min. The selected work and tool materials were aluminium 6061-6T and high speed steel (HSS), respectively. The measured output parameters were the three most widely used quality characteristics of drilled holes - diameter error, circularity and surface roughness. The results were analysed applying three methods: Pareto ANOVA, Taguchi method and traditional analysis. The findings revealed that the cooling method has a significant effect on diameter error (contribution ratio 88.27%), moderate effect on surface roughness (contribution ratio 41.74%) and relatively small effect on circularity (contribution ratio 23.64%). The best results for the dimensional accuracy and surface roughness were achieved by MQL drilling. Cryogenic drilling produced the best circularity results; however, in terms of dimensional accuracy and surface roughness it was the worst.

  2. Computational study of turbine blade cooling with various blowing ratios

    Directory of Open Access Journals (Sweden)

    Madhurima Dey

    2016-06-01

    Full Text Available This paper presents computational analysis of centerline film cooling effectiveness using Navier-Stokes equation solver. Film cooling effectiveness has been varied along the downstream of cooling holes. The computational model has been validated with benchmark experimental literature. Computational study compares film cooling effectiveness over various blowing ratios (M and various hole shapes. The k-ω shear stress transport model of FLUENT software has been used for the computational analysis. The hole geometry and blowing ratios have important effects on film cooling effectiveness. Computational results reveal that film cooling effectiveness increases with increase in blowing ratio whereas effectiveness decreases due to intermixing of coolant and mainstream flow and due to coolant jet lift off. The best results were obtained for fan-shaped hole with M=1.00. While for lower blowing ratio, coolant is unable to spread over a longer distance downstream of cooling holes.

  3. Numerical analysis of hypersonic turbulent film cooling flows

    Science.gov (United States)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  4. Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 1: Film cooling.

    Science.gov (United States)

    Takeishi, K; Aoki, S

    2001-05-01

    This paper deals with the contribution of heat transfer to increase the turbine inlet temperature of industrial gas turbines in order to attain efficient and environmentally benign engines. High efficiency film cooling, in the form of shaped film cooling and full coverage film cooling, is one of the most important cooling technologies. Corresponding heat transfer tests to optimize the film cooling effectiveness are shown and discussed in this first part of the contribution.

  5. An investigation on the cooling characteristics of impingement-reversed convection film cooling in a curved section

    International Nuclear Information System (INIS)

    Yang, Weihua; Liu, Xue; Li, Xiangli

    2013-01-01

    An experiment was designed at the curving section of a combustion chamber to study the effects of cooling effectiveness on impingement-reversed convection film cooling with and without pin fins. Numerical simulations were also carried out. The effectiveness of compound cooling increased with the rise in blowing ratio. With regard to the effect of the pin fins, impingement pin fin-reversed convection film cooling was more effective than the method without pin fins, particularly for smaller blowing ratio conditions. The number and arrangement of fin pin rows had a small effect on cooling efficiency under the same blowing ratio value. Simulation results agreed well with experimental data and could be used to optimize basic design.

  6. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.

  7. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-09-01

    The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Investigation of Film Cooling Strategies CFD versus Experiments -Potential for Using Reduced Models

    OpenAIRE

    Nadalina Jafabadi, Hossein

    2010-01-01

    The ability and efficiency of today’s gas turbine engines are highly dependent on development of cooling technologies, among which film cooling is one of the most important. Investigations have been conducted towards discovering different aspects of film cooling, utilizing both experiments and performing CFD simulations. Although, investigation by using CFD analysis is less expensive in general, the results obtained from CFD calculations should be validated by means of experimental results. I...

  9. Experimental investigation of gas turbine airfoil aerodynamic performance without and with film cooling in an annular sector cascade

    Energy Technology Data Exchange (ETDEWEB)

    Wiers, S.H.

    2002-02-01

    subject, as well as state of the art in secondary flow, single cooling jet behavior and film cooling. An overview of existing linear, annular and rotating annular test facilities is also given. The second part deals with the design and instrumentation as well as the measuring technique used for the performed investigations. Surface flow visualization has been performed to get a first idea about the secondary flow. Aerodynamic performance measurements have been conducted by means of five-hole pneumatic pressure probe traverses at 98%, 106% and 140% of c{sub ax} downstream of the cascade to gain information about the secondary flow and primary loss distribution. The variation of the Reynolds number and turbulence level show an overall loss increase for higher turbulence levels and Reynolds numbers due to higher mixing losses. Experimental investigations in terms of surface flow visualization and 5 hole pressure probe traverse of the influence of film cooling on the secondary flow effects and the losses of the cascade have been performed on a modem three dimensional nozzle guide vane with shower head cooling at the leading edge, four film cooling rows at the suction side, two film cooling rows at the pressure side and trailing edge ejection. The results of the flow visualization and pressure probe traverse show that the secondary flow region is only slightly effected by the ejection of low momentum cooling air. The cooling jets are deflected towards the hub, due to the low energy contents. With increasing mass flux ratio, respectively momentum flux ratio, the expanded secondary flow area at the trailing edge decreases. A rapid increase of the mixing loss at the midsection for ejection of high mass flow ratios in a highly accelerated flow at the suction side is observed. The coolant is seen, in every case, to increase the loss compared with the uncooled case. This is in accordance with the findings of most authors with regard to airfoil surface cooling, but the decrease in

  10. Black Hole Entropy Calculation in a Modified Thin Film Model Jingyi ...

    Indian Academy of Sciences (India)

    Black hole entropy—thin film model—tunnelling framework—self-gravitation. 1. Improvement to the thin film model. According to the Parikh–Wilczek tunnelling framework, Hawking radiation. (Hawking 1975) was described as a tunnelling process triggered by vacuum fluc- tuations near the horizon (Parikh & Wilczek 2000).

  11. Extraordinary light transmission through a metal film perforated by a subwavelength hole array

    Science.gov (United States)

    Zyablovskii, A. A.; Pavlov, A. A.; Klimov, V. V.; Pukhov, A. A.; Dorofeenko, A. V.; Vinogradov, A. P.; Lisyanskii, A. A.

    2017-08-01

    It is shown that, depending on the incident wave frequency and the system geometry, the extraordinary transmission of light through a metal film perforated by an array of subwavelength holes can be described by one of the three mechanisms: the "transparency window" in the metal, excitation of the Fabry-Perot resonance of a collective mode produced by the hybridization of evanescence modes of the holes and surface plasmons, and excitation of a plasmon on the rear boundary of the film. The excitation of a plasmon resonance on the front boundary of the metal film does not make any substantial contribution to the transmission coefficient, although introduces a contribution to the reflection coefficient.

  12. Ab initio analytical model of light transmission through a cylindrical subwavelength hole in an optically thick film

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2011-01-01

    the film thickness considerably exceeds the hole diameter. It is emphasized that a specific pole corresponding to excitation of surface plasmon polaritons does not appear in the analysis. The theory is illustrated by the calculation of light transmission through a subwavelength hole in an Ag film.......The rigorous analytical theory of light transmission through a cylindrical hole of arbitrary diameter in an optically thick film is developed. The approach is based on the introduction of fictitious surface currents at both hole openings and both film surfaces. The solution of Maxwell’s equations...

  13. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  14. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    Energy Technology Data Exchange (ETDEWEB)

    Alija, A; Perez-Junquera, A; RodrIguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I [Depto. Fisica, Fac. Ciencias, Universidad de Oviedo - CINN, Av. Calvo Sotelo s/n, 33007 Oviedo (Spain); Marconi, V I; Kolton, A B; Parrondo, J M R [Depto. Fisica Atomica, Molecular y Nuclear, and GISC, Universidad Complutense, 28040 Madrid (Spain); Anguita, J V [Instituto de Microelectronica de Madrid, CNM-CSIC, Isaac Newton 8, PTM, Tres Cantos, 28760 Madrid (Spain)

    2009-02-21

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 {mu}m triangles, which is the characteristic length scale set by domain wall width.

  15. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    International Nuclear Information System (INIS)

    Alija, A; Perez-Junquera, A; RodrIguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I; Marconi, V I; Kolton, A B; Parrondo, J M R; Anguita, J V

    2009-01-01

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 μm triangles, which is the characteristic length scale set by domain wall width.

  16. Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane

    National Research Council Canada - National Science Library

    Rutledge, James

    2004-01-01

    An experimental study was conducted in a simulated three vane linear cascade to determine the effects of surface roughness and film cooling on the heat transfer coefficient distribution in the region...

  17. Active Control of Transverse Jets for Film Cooling Applications: A Limited Statement of Work

    National Research Council Canada - National Science Library

    Nikitopoulos, D. E

    2006-01-01

    .... A theoretical analysis was conducted and mechanisms that can play a defining role in film cooling control were identified on the basis of fundamental fluid-dynamics, prior experiments and preliminary...

  18. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining.

    Science.gov (United States)

    Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang

    2018-01-19

    Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks.

  19. A Computational Study for the Utilization of Jet Pulsations in Gas Turbine Film Cooling and Flow Control

    Science.gov (United States)

    Kartuzova, Olga V.

    2012-01-01

    This report is the second part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part is NASA/CR-2012-217415. The third part is NASA/CR-2012-217417. Jets have been utilized in various turbomachinery applications in order to improve gas turbines performance. Jet pulsation is a promising technique because of the reduction in the amount of air removed from compressor. In this work two areas of pulsed jets applications were computationally investigated using the commercial code Fluent (ANSYS, Inc.); the first one is film cooling of High Pressure Turbine (HPT) blades and second one is flow separation control over Low Pressure Turbine (LPT) airfoil using Vortex Generator Jets (VGJ). Using pulsed jets for film cooling purposes can help to improve the effectiveness and thus allow higher turbine inlet temperature. Effects of the film hole geometry, blowing ratio and density ratio of the jet, pulsation frequency and duty cycle of blowing on the film cooling effectiveness were investigated. As for the low-pressure turbine (LPT) stages, the boundary layer separation on the suction side of airfoils can occur due to strong adverse pressure gradients. The problem is exacerbated as airfoil loading is increased. Active flow control could provide a means for minimizing separation under conditions where it is most severe (low Reynolds number), without causing additional losses under other conditions (high Reynolds number). The effects of the jet geometry, blowing ratio, density ratio, pulsation frequency and duty cycle on the size of the separated region were examined in this work. The results from Reynolds Averaged Navier-Stokes and Large Eddy Simulation computational approaches were compared with the experimental data.

  20. Genetic Algorithm Optimization of a Film Cooling Array on a Modern Turbine Inlet Vane

    Science.gov (United States)

    2012-09-01

    breathing engines, film-cooling technology became necessary in rocket engines as advances in rocket motor development have intensified the problem of...µm and 9 µm in a 320 by 240 pixel field. 138 The system is internally cooled down to 70 K with a Stirling cycle and has several temperature

  1. Strong second-harmonic radiation from a thin silver film with randomly distributed small holes

    CERN Document Server

    Rakov, N; Xiao, M

    2003-01-01

    We report the observation of strong second-harmonic radiation from a thin silver film containing randomly distributed small holes. A pulsed laser beam of wavelength 1064 nm impinges at an angle of incidence 45 deg. on the film, and the reflection is collected by a CCD detector and analysed by a high-resolution spectrometer. Strong second-harmonic radiation was observed at the wavelength of 532 nm with a halfwidth of 40 nm. (letter to the editor)

  2. Intensive cooling metallic bodies with low thermal conductivity in film boiling of ethanol

    Science.gov (United States)

    Zabirov, A. R.; Yagov, V. V.; Kanin, P. K.

    2017-10-01

    Film boiling regime occurs when temperature of solid surface exceeds the attainable limiting temperature of the cooling liquid. In unsteady conditions, this boiling regime has applications in safety systems of Nuclear Power Plants (NPP) and in metal-processing. Nonsteady film boiling of subcooled water has unresolved issues relating to the conditions when low-intensive stable film boiling regime turns to a high intensive mode. The present paper considers the new experimental results on unsteady film boiling of ethanol over a wide range of subcoolings. On the basis of the experimental data, a hypothesis has been developed to explain appearance of the intensive heat transfer during film boiling.

  3. Black Hole Entropy Calculation in a Modified Thin Film Model Jingyi ...

    Indian Academy of Sciences (India)

    Abstract. The thin film model is modified to calculate the black hole entropy. The difference from the original method is that the Parikh–. Wilczek tunnelling framework is introduced and the self-gravitation of the emission particles is taken into account. In terms of our improvement, if the entropy is still proportional to the area, ...

  4. Investigation of ultra-thin titania films as hole-blocking contacts for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungchul [School of Mechanical Engineering; Georgia Institute of Technology; Atlanta, USA; Ou, Kai-Lin [Department of Chemistry & Biochemistry; University of Arizona; Tucson, USA; Wu, Xin [Department of Chemistry & Biochemistry; University of Arizona; Tucson, USA; Ndione, Paul F. [National Renewable Energy Laboratory (NREL); Golden, USA; Berry, Joseph [National Renewable Energy Laboratory (NREL); Golden, USA; Lambert, Yannick [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN); Le Centre National de la Recherche Scientifique (CNRS); Villeneuve d' Ascq, France; Mélin, Thierry [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN); Le Centre National de la Recherche Scientifique (CNRS); Villeneuve d' Ascq, France; Armstrong, Neal R. [Department of Chemistry & Biochemistry; University of Arizona; Tucson, USA; Graham, Samuel [School of Mechanical Engineering; Georgia Institute of Technology; Atlanta, USA; School of Materials Science and Engineering; Center for Organic Photonics and Electronics

    2015-01-01

    Ultra-thin (0.5–10 nm) plasma-enhanced atomic layer deposited titanium oxide (TiOx) films deposited on indium-tin-oxide contacts, are investigated as hole-blocking interlayers using conventional electrochemistry, Si-diodes, and heterojunction (P3HT:PCBM) organic photovoltaics (OPVs).

  5. Peltier cooling and onsager reciprocity in ferromagnetic thin films.

    Science.gov (United States)

    Avery, A D; Zink, B L

    2013-09-20

    We present direct measurements of the Peltier effect as a function of temperature from 77 to 325 K in Ni, Ni(80)Fe(20), and Fe thin films made using a suspended Si-N membrane structure. Measurement of the Seebeck effect in the same films allows us to directly test predictions of Onsager reciprocity between the Peltier and Seebeck effects. The Peltier coefficient Π is negative for both Ni and Ni(80)Fe(20) films and positive for the Fe film. The Fe film also exhibits a peak associated with the magnon drag Peltier effect. The observation of magnon drag in the Fe film verifies that the coupling between the phonon, magnon, and electron systems in the film is the same whether driven by heat current or charge current. The excellent agreement between Π values predicted using the experimentally determined Seebeck coefficient for these films and measured values offers direct experimental confirmation of the Onsager reciprocity between these thermoelectric effects in ferromagnetic thin films near room temperature.

  6. Computational and experimental study on supersonic film cooling for liquid rocket nozzle applications

    Directory of Open Access Journals (Sweden)

    Vijayakumar Vishnu

    2015-01-01

    Full Text Available An experimental and computational investigation of supersonic film cooling (SFC was conducted on a subscale model of a rocket engine nozzle. A computational model of a convergent-divergent nozzle was generated, incorporating a secondary injection module for film cooling in the divergent section. Computational Fluid Dynamic (CFD simulations were run on the model and different injection configurations were analyzed. The CFD simulations also analyzed the parameters that influence film cooling effectiveness. Subsequent to the CFD analysis and literature survey an angled injection configuration was found to be more effective, therefore the hardware was fabricated for the same. The fabricated nozzle was later fixed to an Air-Kerosene combustor and numerous sets of experiments were conducted in order to ascertain the effect on film cooling on the nozzle wall. The film coolant employed was gaseous Nitrogen. The results showed substantial cooling along the walls and a considerable reduction in heat transfer from the combustion gas to the wall of the nozzle. Finally the computational model was validated using the experimental results. There was fairly good agreement between the predicted nozzle wall temperature and the value obtained through experiments.

  7. Development of an experiment for measuring film cooling performance in supersonic flows

    Science.gov (United States)

    Maqbool, Daanish

    This thesis describes the development of an experiment for acquiring supersonic film cooling performance data in canonical configurations suitable for code validation. A methodology for selecting appropriate experimental conditions is developed and used to select test conditions in the UMD atmospheric pressure wind tunnel that are relevant to film cooling conditions encountered in the J-2X rocket engine. A new technique for inferring wall heat flux with 10% uncertainty from temperature-time histories of embedded sensors is developed and implemented. Preliminary heat flux measurements on the uncooled upper wall and on the lower wall with the film cooling flow turned off suggest that RANS solvers using Menter's SST model are able to predict heat flux within 15% in the far-field (> 10 injection slot heights) but are very inaccurate in the near-field. However, more experiments are needed to confirm this finding. Preliminary Schlieren images showing the shear layer growth rate are also presented.

  8. The Formation of Counter-Rotating Vortex Pair and the Nature of Liftoff-Reattachment in Film-Cooling Flow

    Directory of Open Access Journals (Sweden)

    Hao Ming Li

    2016-12-01

    Full Text Available Traditionally, the formation of the Counter-Rotating Vortex Pair (CRVP has been attributed to three main sources: the jet-mainstream shear layer where the jet meets with the mainstream flow right outside the pipe, the in-tube boundary layer developing along the pipe wall, and the in-tube vortices associated with the tube inlet vorticity; whereas the liftoff-reattachment phenomenon occurring in the main flow along the plate right downstream of the jet has been associated with the jet flow trajectory. The jet-mainstream shear layer has also been demonstrated to be the dominant source of CRVP formation, whereby the shear layer disintegrates into vortex rings that deform as the jet convects downstream, becoming a pair of CRVPs flowing within the jet and eventually turning into the main flow direction. These traditional findings are assessed qualitatively and quantitatively for film-cooling flow in gas turbines by simulating numerically the flow and evaluating the extent to which the traditional flow phenomena are taking place particularly for CRVP and for flow liftoff-reattachment. To this end, three flow simulation cases are used; they are referred to as 1—the baseline case; 2—the free-slip in-tube wall case (FSIT; and 3—the unsteady flow case. The baseline case is a typical film-cooling case. The FSIT case is used to assess the in-tube boundary layer. Cases 1 and 2 are simulated using the Reynolds-averaged Navier-Stokes equations (RANS, whereas Case 3 solves a Detached Eddy Simulation (DES model. It is concluded that decreasing the strength of the CRVP, which is the case for e.g., shaped holes, provides high cooling performance, and the liftoff-reattachment phenomenon was thus found to be strongly influenced by the entrainment caused by the CRVP, rather than the jet flow trajectory. These interpretations of the flow physics that are more relevant to gas turbine cooling flow are new and provide a physics-based guideline for designing new film-cooling

  9. Vortex interaction enhanced saturation number and caging effect in a superconducting film with a honeycomb array of nanoscale holes.

    Energy Technology Data Exchange (ETDEWEB)

    Latimer, M. L.; Berdiyorov, G. R.; Xiao, Z. L.; Kwok, W. K.; Peeters, F. M. (Materials Science Division); (Northern Illinois Univ.); (Universiteit Antwerpen)

    2012-01-01

    The electrical transport properties of a MoGe thin film with a honeycomb array of nanoscale holes are investigated. The critical current of the system shows nonmatching anomalies as a function of applied magnetic field, enabling us to distinguish between multiquanta vortices trapped in the holes and interstitial vortices located between the holes. The number of vortices trapped in each hole is found to be larger than the saturation number predicted for an isolated hole and shows a nonlinear field dependence, leading to the caging effect as predicted from the Ginzburg-Landau (GL) theory. Our experimental results are supplemented by numerical simulations based on the GL theory.

  10. Study of Vortices Embedded in Boundary Layers with Film Cooling.

    Science.gov (United States)

    1987-03-01

    ons art c13o,,1 UNCLASSIFIED 1 UNCLASSIFIED SSCUIRTY CLASIFICATION OF THIS PAGE (Whfm D OWa 3 19. ABSTRACT (cont.) In order to conduct this study, a...cm (0.125 in.). It is constructed of corrosion- resistant, non-magnetic stainless steel . The five pressure holes are arranged in two different planes...the flow field to be conducted. Both the spanwise and vertical traversing blocks are mounted on a 20-thread per inch drive screw and two ground steel

  11. Measurements in Film Cooling Flows with Periodic Wakes

    Science.gov (United States)

    2008-10-01

    aluminum hub was in- stalled on an electric motor , just below the gap between the con- traction and test plate. The axis of the rotation was parallel to the...sensors TSI model 1218-T1.5 were used for the velocity. An infrared IR camera FLIR Systems Merlin model with a Stirling cooled detector was used to

  12. Hole trapping in E-beam irradiated SiO2 films

    Science.gov (United States)

    Aitken, J. M.; Dekeersmaecker, R. F.

    1990-07-01

    Low energy (25 kV) electron beam irradiation of MOS capacitors is shown to produce neutral hole traps in thin ‘radiation hardened’ SiO2 films. These traps are found in an uncharged state after irradiation and are populated by passing a small hole current, generated by avalanche breakdown of the n-type silicon substrate, through the oxide. From the time dependence of the observed trapping, a capture cross-section between 1 × 10˜-13 and 1 × 10-14 cm2 is deduced. The trap density is found to depend on the annealing conditions and incident electron beam dosage. The density of traps increases with incident electron beam exposure. Once introduced into the oxide by the radiation the traps can be removed by thermal anneals at temperatures above 500° C. Parallels between electron and hole trapping on these neutral centers are strong evidence for an amphoteric uncharged trap generated by ionizing radiation.

  13. An improved thin film brick-wall model of black hole entropy

    CERN Document Server

    Liu Wen Biao

    2001-01-01

    The authors improve the brick-wall model to take only the contribution of a thin film near the event horizon into account. This improvement not only gives them a satisfactory result, but also avoids some drawbacks in the original brick-wall method such as the little mass approximation, neglecting logarithm term, and taking the term L/sup 3/ as the contribution of the vacuum surrounding a black hole. It is found that there is an intrinsic relation between the event horizon and the entropy. The event horizon is the characteristic of a black hole, so the entropy calculating of a black hole is also naturally related to its horizon. (12 refs).

  14. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells

    KAUST Repository

    Peng, Wei

    2016-03-02

    High-quality perovskite monocrystalline films are successfully grown through cavitation-triggered asymmetric crystallization. These films enable a simple cell structure, ITO/CH3NH3PbBr3/Au, with near 100% internal quantum efficiency, promising power conversion efficiencies (PCEs) >5%, and superior stability for prototype cells. Furthermore, the monocrystalline devices using a hole-transporter-free structure yield PCEs ≈6.5%, the highest among other similar-structured CH3NH3PbBr3 solar cells to date.

  15. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    F. Valdés-Bango

    2017-05-01

    Full Text Available Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  16. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Science.gov (United States)

    Valdés-Bango, F.; Vélez, M.; Alvarez-Prado, L. M.; Alameda, J. M.; Martín, J. I.

    2017-05-01

    Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  17. Hydrogen film cooling of a small hydrogen-oxygen thrust chamber and its effect on erosion rates of various ablative materials

    Science.gov (United States)

    Hannum, N.; Roberts, W. E.; Russell, L. M.

    1977-01-01

    An experimental investigation was conducted to determine what arrangement of film-coolant-injection orifices should be used to decrease the erosion rates of small, high temperature, high pressure ablative thrust chambers without incurring a large penalty in combustion performance. All of the film cooling was supplied through holes in a ring between the outer row of injector elements and the chamber wall. The best arrangement, which had twice the number of holes as there were outer row injection elements, was also the simplest. The performance penalties, presented as a reduction in characteristic exhaust velocity efficiency, were 0.8 and 2.8 percentage points for the 10 and 20 percent cooling flows, respectively, The best film-coolant injector was then used to obtain erosion rates for 19 ablative materials. The throat erosion rate was reduced by a factor of 2.5 with a 10 percent coolant flow. Only the more expensive silica phenolic materials had low enough erosion rates to be considered for use in the nozzle throat. However, some of the cheaper materials might qualify for use in other areas of small nozzles with large throat diameters where the higher erosion rates are more acceptable.

  18. The Influence of Cooling Air Injection on Flow Development and Heat Transfer in a Rotating Leading Edge Coolant Duct of a Film-Cooled Turbine Blade

    National Research Council Canada - National Science Library

    Elfert, Martin

    2003-01-01

    .... This paper provides information about rotational effects on fluid motion and heat transfer within a rotating coolant duct of circular cross section with bleeding of cooling air through a row of film...

  19. Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling

    Science.gov (United States)

    Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong

    2015-01-01

    Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of

  20. Design of a Film Cooling Experiment for Rocket Engines

    Science.gov (United States)

    2010-03-01

    TDLAS Tunable Diode Laser Absorption Spectroscopy UCC Ultra Compact Combustor μm micrometers VI Virtual Instrument Xe Xenon ZnSe...C or 0.75%)(27). The thermocouple connects to the control computer and imported into LabVIEW®. Needle valve with Vernier handles control flow...from the manifold to each wall of the FCR. The Vernier handles provide precise control of the flow as well as repeatability between runs. The film

  1. Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode.

    Science.gov (United States)

    Yang, Yajie; Yang, Xiaojie; Yang, Wenyao; Li, Shibin; Xu, Jianhua; Jiang, Yadong

    2014-01-01

    In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices.

  2. Radiotherapy film densitometry using a slow-scan, cooled, digital CCD imaging system

    International Nuclear Information System (INIS)

    Burch, S.E.

    1993-01-01

    A method of performing high-resolution two-dimensional film densitometry for full size radiographic film (35 x 43 cm) using a cooled CCD camera was proposed. Studies were performed to evaluate the physical characteristics of the camera system and recommendations were made to assure maximum accuracy of density measurement. Test films of various sizes and densities, as well as clinical dosimetry films, were measured with the CCD densitometer and the reference transmission densitometer. The measured densities agreed within the stated accuracy of the transmission densitometer for all films with maximum density less than or equal to 1.5 optical density units. The 0.2 mm spatial resolution with 4096 shades of gray made it possible to study dose distributions even for films containing areas of high dose gradients. Patient verification radiographs were used to study exit beam dose distributions to detect errors in beam placement, patient position, and proper placement of beam modifying devices such as wedges and compensators. For studying photon beam dose distributions within phantoms, a method was developed using lead foils placed lateral to the film plane to filter very low energy scattered photons. The error in measurement of central axis percentage depth dose from film for 4 MV x-rays, 25 x 25 cm field was decreased from 65% to 4%. The method requires only two calibration films for density to dose conversion and represents an important advance in the field of film densitometry for radiotherapy. The technique was applied to the study of dynamic wedge dose distribution from a 6 MV linear accelerator. The phantom modification decreased the error in percentage depth dose from 21% to 1% for the 15 x 15 cm beam with 60 degree wedge angle. Profile off-axis errors for the same beam were decreased from 8% to 3%. The film dosimetry system provides fast, high resolution film density data for use in radiotherapy imaging and quality assurance

  3. Cooling circuit for steam and air-cooled turbine nozzle stage

    Science.gov (United States)

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  4. Development of the Glenn-Heat-Transfer (Glenn-HT) Computer Code to Enable Time-Filtered Navier Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    Science.gov (United States)

    Ameri, Ali A.; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.

  5. Development of the Glenn Heat-Transfer (Glenn-HT) Computer Code to Enable Time-Filtered Navier-Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    Science.gov (United States)

    Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.

  6. Development of the Glenn-HT Computer Code to Enable Time-Filtered Navier-Stokes (TFNS) Simulations and Application to Film Cooling on a Flat Plate Through Long Cooling Tubes

    Science.gov (United States)

    Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Philip; Thurman, Douglas; Steinthorsson, Erlendur

    2014-01-01

    Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations which are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminarturbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes which take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-HT code and applied to film cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30 holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and four blowing ratios of 0.5, 1.0, 1.5 and 2.0 are shown. Flow features under those conditions are also described.

  7. Effect of shocks on film cooling of a full scale turbojet exhaust nozzle having an external expansion surface

    Science.gov (United States)

    Straight, D. M.

    1979-01-01

    Cooling is one of the critical technologies for efficient design of exhaust nozzles, especially for the developing technology of nonaxisymmetric (2D) nozzles for future aircraft applications. Several promising 2D nozzle designs have external expansion surfaces which need to be cooled. Engine data are scarce, however, on nozzle cooling effectiveness in the supersonic flow environment (with shocks) that exists along external expansion surfaces. This paper will present experimental film cooling data obtained during exploratory testing with an axisymmetric plug nozzle having external expansion and installed on an afterburning turbojet engine in an altitude test facility. The data obtained shows that the shocks and local hot gas stream conditions have a marked effect on film cooling effectiveness. An existing film cooling correlation is adequate at some operating conditions but inadequate at other conditions such as in separated flow regions resulting from shock-boundary-layer interactions.

  8. Experimental assessment of an absorption cooling system utilizing a falling film absorber and generator

    International Nuclear Information System (INIS)

    Domínguez-Inzunza, L.A.; Hernández-Magallanes, J.A.; Soto, P.; Jiménez, C.; Gutiérrez-Urueta, G.; Rivera, W.

    2016-01-01

    Highlights: • A new prototype of an absorption cooling system using NH 3 /LiNO 3 was developed. • Falling films shell and tubes heat exchangers were used as absorber and generator. • Evaporator temperatures as low as 4 °C were achieved. • The COP varied between 0.27 and 0.62 depending on the system temperatures. • A flow recirculation in the absorber was implemented showing an increase in COP. - Abstract: This study presents the results of the evaluation of an ammonia/lithium nitrate absorption cooling system. The generator and the absorber are shell and tubes falling film heat exchangers while the rest of the components are compact plate heat exchangers. A parametric study was carried out in order to determine the coefficients of performance and cooling capacities at different operating conditions. Also, an analysis was carried out to determine the influence of the absorber solution recirculation on the system performance. The generator temperatures varied between 80 °C and 100 °C, while the cooling water temperatures varied from 20 °C to 34 °C. Cooling capacities up to 4.5 kW and evaporator temperatures as low as 4 °C were achieved with the system. The internal coefficients of performance varied between 0.3 and 0.62 depending on the system operating temperatures. The system also showed good stability and repeatability.

  9. Modification and application of water film model in COCOSYS for PWR's passive containment cooling

    International Nuclear Information System (INIS)

    Huang, Xi; Cheng, Xu

    2014-01-01

    Highlights: • Water film model in COCOSYS has been modified by considering film breakup. • Shear stress on film surface created by countercurrent flow has been considered. • Formation and development of rivulets have been taken into account. • Modified model has been applied for passive containment cooling system. • The modified water film model has optimized the simulation results. - Abstract: In this paper the physical model describing water film behaviors in German containment code system COCOSYS has been modified by taking into consideration the film breakup and subsequent phenomena as well as the effect of film interfacial shear stress created by countercurrent air flow. The modified model has extended its capability to predict particular water film behaviors including breakup at a critical film thickness based on minimum total energy criterion, the formation of rivulets according to total energy equilibrium as well as subsequent performance of rivulets according to several assumptions and observations from experiments. Furthermore, the modification considers also the change of velocity distribution on the cross section of film/rivulets due to shear stress. Based on the geometry of AP1000 and Generic Containment, simulations predicting containment pressure variation during accidents with operation of passive containment cooling system have been carried out. With the new model, considerably larger peak pressures are observed by comparing with those predicted with original water film model within a certain range of water film flow rate. Sensitivity analyses also point out that contact angle between water rivulets and steel substrate plays a significant role in the film cooling

  10. Enhanced infrared transmission through subwavelength hole arrays in a thin gold film mounted with dielectric micro-domes

    Science.gov (United States)

    Kumar, Raghwendra; Ramakrishna, S. Anantha

    2018-04-01

    Dielectric micro-domes were mounted on the subwavelength holes of a periodically perforated gold film such that a lens-like micro-dome covers each hole. In comparison to the extraordinary transmission through an array of bare holes in the gold film, this structure showed a further enhanced transmission over a larger range of incident angles with much larger bandwidth at mid-wave infrared wavelengths (3-4.5~μ m). The structure was fabricated using laser interference lithography, a novel back-exposure with an ultra-violet laser, and lift-off process that left behind the micro-domes of SU-8, covering each of the holes in the gold film. The measured transmittance of these perforated gold films, with and without the micro-domes, was verified by electromagnetic wave simulations. The enhanced transmittance arises from the scattered electromagnetic fields of the micro-domes, which couple the incident light efficiently via the scattered near-fields into the waveguide modes of holes in the plasmonic film. The increased transmittance and the highly enhanced and localized near-fields can be used to enhance the photo-response of infrared detectors over relevant bands, for example, the 3-4.5~μ m band that is used for thermal imaging applications.

  11. Large eddy simulations of turbulent flows on graphics processing units: Application to film-cooling flows

    Science.gov (United States)

    Shinn, Aaron F.

    Computational Fluid Dynamics (CFD) simulations can be very computationally expensive, especially for Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of turbulent ows. In LES the large, energy containing eddies are resolved by the computational mesh, but the smaller (sub-grid) scales are modeled. In DNS, all scales of turbulence are resolved, including the smallest dissipative (Kolmogorov) scales. Clusters of CPUs have been the standard approach for such simulations, but an emerging approach is the use of Graphics Processing Units (GPUs), which deliver impressive computing performance compared to CPUs. Recently there has been great interest in the scientific computing community to use GPUs for general-purpose computation (such as the numerical solution of PDEs) rather than graphics rendering. To explore the use of GPUs for CFD simulations, an incompressible Navier-Stokes solver was developed for a GPU. This solver is capable of simulating unsteady laminar flows or performing a LES or DNS of turbulent ows. The Navier-Stokes equations are solved via a fractional-step method and are spatially discretized using the finite volume method on a Cartesian mesh. An immersed boundary method based on a ghost cell treatment was developed to handle flow past complex geometries. The implementation of these numerical methods had to suit the architecture of the GPU, which is designed for massive multithreading. The details of this implementation will be described, along with strategies for performance optimization. Validation of the GPU-based solver was performed for fundamental bench-mark problems, and a performance assessment indicated that the solver was over an order-of-magnitude faster compared to a CPU. The GPU-based Navier-Stokes solver was used to study film-cooling flows via Large Eddy Simulation. In modern gas turbine engines, the film-cooling method is used to protect turbine blades from hot combustion gases. Therefore, understanding the physics of

  12. Building roof with conical holes containing PCM to reduce the cooling load: Numerical study

    International Nuclear Information System (INIS)

    Alawadhi, Esam M.; Alqallaf, Hashem J.

    2011-01-01

    Highlights: → We investigated a roof structure with cone frustum holes containing PCM. → Different types of PCM and geometries of the PCM are presented. → The results indicate that the heat flux at the indoor space is reduced by 39%. - Abstract: The thermal effectiveness of a building's roof with phase change material (PCM) is presented in this paper. The considered model consists of a concrete slab with vertical cone frustum holes filled with PCM. The objective of incorporating the PCM into the roof structure is to utilize its high latent heat of fusion to reduce the heat gain during the energy demanded peak hours, by absorbing the incoming energy through the melting process in the roof before it reaches the indoor space. The thermal effectiveness of the proposed roof-PCM system is determined by comparing the heat flux at the indoor surface to a roof without the PCM during typical working hours. A parametric study is conducted to assess the effects of the cone frustum geometry, and the kind of PCM used. The n-Eicosane shows the best performance among the examined PCMs, and the conical geometry of the PCM container is the best in term of thermal effectiveness. The results indicate that the heat flux at the indoor surface of the roof can be reduced up to 39% for a certain type of PCM and geometry of PCM cone frustum holes.

  13. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  14. Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.

  15. The effect of holes in the dispersion relation of propagative surface plasmon modes of nanoperforated semitransparent metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Kekesi, R., E-mail: renata.kekesi@csic.es; Meneses-Rodríguez, D.; García-Pérez, F.; González, M. U.; García-Martín, A.; Cebollada, A.; Armelles, G., E-mail: gaspar@imm.cnm.csic.es [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain)

    2014-10-07

    We have analysed the effect that holes have on the properties of propagative surface plasmon modes in semitransparent nanoperforated Au films. The modes have been excited in Kretschmann configuration. Contrary to continuous films, where only one mode is excited, two modes are observed in Au nanohole array. The origin of this different behavior is discussed using effective optical properties for the nanoperforated films. The presence of the holes affects the effective optical constants of the membranes in two ways: it changes the contribution of the free electrons, and it gives rise to a localized transition due to a hole induced plasmon resonance. This localized transition interacts with the propagative surface plasmon modes, originating the two detected modes.

  16. Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fang, H.; Akinoglu, E. M.; Fumagalli, P., E-mail: paul.fumagalli@fu-berlin.de [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Caballero, B.; García-Martín, A. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, Tres Cantos, E-28760 Madrid (Spain); Papaioannou, E. Th. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Cuevas, J. C. [Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Giersig, M. [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Helmholtz Zentrum Berlin, Institute of Nanoarchitectures for Energy Conversion, 14195 Berlin (Germany)

    2015-04-13

    A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin films.

  17. Hydrodynamic stability of thermoviscous liquid film inside a rotating horizontal cylinder: Heating and cooling effects

    Science.gov (United States)

    Kumawat, Tara Chand; Tiwari, Naveen

    2018-03-01

    Steady two-dimensional solutions and their stability analysis are presented for thin film of a thermoviscous liquid flowing inside a cylinder rotating about its horizontal axis. The inner surface of the cylinder is either uniformly hotter or colder than the enveloping air. The mass, momentum, and energy equations are simplified using thin-film approximation. The analytically obtained film thickness evolution equation consists of various dimensionless parameters such as gravitational number, Bond number, Biot number, thermoviscosity number, and Marangoni number. The viscosity of the liquid is considered as an exponential function of temperature. The viscosity increases (decreases) within the film thickness away from the inner surface of the cylinder when the surface is uniformly hotter (colder) than the atmosphere. For hotter (colder) surface, the film thickness on the rising side decreases (increases) when convective heat transfer at the free surface is increased. The surface tension gradient at the free surface generates Marangoni stress that has a destabilizing (stabilizing) effect on the thin film flow in the case of a hotter (colder) cylinder. The thermoviscosity number stabilizes (destabilizes) the flow on a heating (cooling) surface and this effect increases with an increase in the heat transfer at the free surface. For a hotter surface and in the presence of Marangoni stress, the convective heat transfer at the interface has the destabilizing effect for small values of the Biot number and assumes a stabilizing role for larger values. Non-linear simulations show consistency with the linear stability analysis.

  18. Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes with Cross-Flow

    Directory of Open Access Journals (Sweden)

    M. E. Taslim

    2004-01-01

    Full Text Available Diffusion-shaped film holes with compound angles are currently being investigated for high temperature gas turbine airfoil film cooling. An accurate prediction of the coolant blowing rate through these film holes is essential in determining the film effectiveness. Therefore, the discharge coefficients associated with these film holes for a range of hole pressure ratios is essential in designing airfoil cooling circuits. Most of the available discharge coefficient data in open literature has been for cylindrical holes. The main objective of this experimental investigation was to measure the discharge coefficients for subsonic as well as supersonic pressure ratios through a single conical-diffusion hole. The conical hole has an exit-to-inlet area ratio of 4, a nominal flow length-to-inlet diameter ratio of 4, and an angle with respect to the exit plane (inclination angle of 0°, 30°, 45°, and 60°. Measurements were performed with and without a cross-flow. For the cases with a cross-flow, discharge coefficients were measured for each of the hole geometries and 5 angles between the projected conical hole axis and the cross-flow direction of 0°, 45°, 90°, 135°, and 180°. Results are compared with available data in open literature for cylindrical film holes as well as limited data for conical film holes.

  19. Gas infall into atomic cooling haloes: on the formation of protogalactic disks and supermassive black holes at z > 10

    CERN Document Server

    Prieto, Joaquin; Haiman, Zoltan

    2013-01-01

    We have performed cosmo-hydro simulations using the RAMSES code to study atomic cooling (ACHs) haloes at z=10 with masses 5E7Msun10 to date. We examine the morphology, angular momentum (AM), thermodynamic, and turbulence of these haloes, in order to assess the prevalence of disks and supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the AM of the gas and its parent DM halo. Only 3 haloes form rotationally supported cores. Two of the most massive haloes form massive, compact overdense blobs. These blobs have an accretion rate ~0.5 Msun/yr (at a distance of 100 pc), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes forming blobs are located at knots of the cosmic web, cooled early on, and experienced many mergers. The gas in these haloes is lumpy and highly turbulent, with Mach N....

  20. Passive radiative cooling design with broadband optical thin-film filters

    Science.gov (United States)

    Kecebas, Muhammed Ali; Menguc, M. Pinar; Kosar, Ali; Sendur, Kursat

    2017-09-01

    The operation of most electronic semiconductor devices suffers from the self-generated heat. In the case of photovoltaic or thermos-photovoltaic cells, their exposure to sun or high temperature sources make them get warm beyond the desired operating conditions. In both incidences, the solution strategy requires effective radiative cooling process, i.e., by selective absorption and emission in predetermined spectral windows. In this study, we outline two approaches for alternative 2D thin film coatings, which can enhance the passive thermal management for application to electronic equipment. Most traditional techniques use a metallic (silver) layer because of their high reflectivity, although they display strong absorption in the visible and near-infrared spectrums. We show that strong absorption in the visible and near-infrared spectrums due to a metallic layer can be avoided by repetitive high index-low index periodic layers and broadband reflection in visible and near-infrared spectrums can still be achieved. These modifications increase the average reflectance in the visible and near-infrared spectrums by 3-4%, which increases the cooling power by at least 35 W/m2. We also show that the performance of radiative cooling can be enhanced by inserting an Al2O3 film (which has strong absorption in the 8-13 μm spectrum, and does not absorb in the visible and near-infrared) within conventional coating structures. These two approaches enhance the cooling power of passive radiative cooling systems from the typical reported values of 40 W/m2-100 W/m2 and 65 W/m2 levels respectively.

  1. CAN BLACK HOLE NEUTRINO-COOLED DISKS POWER SHORT GAMMA-RAY BURSTS?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Gu, Wei-Min [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Lin, Yi-Qing [School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian 361024 (China); Hou, Shu-Jin, E-mail: tongliu@xmu.edu.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2015-06-10

    Stellar-mass black holes (BHs) surrounded by neutrino-dominated accretion flows (NDAFs) are plausible sources of power for gamma-ray bursts (GRBs) via neutrino emission and their annihilation. The progenitors of short-duration GRBs (SGRBs) are generally considered to be compact binary mergers. According to the simulation results, the disk mass of the NDAF is limited after merger events. We can estimate such disk masses using the current SGRB observational data and fireball model. The results show that the disk mass of a certain SGRB mainly depends on its output energy, jet opening angle, and central BH characteristics. Even for the extreme BH parameters, some SGRBs require massive disks, which approach or exceed the limits in simulations. We suggest that there may exist alternative MHD processes or mechanisms that increase the neutrino emission to produce SGRBs with reasonable BH parameters and disk masses.

  2. Perovskite Thin Film Solar Cells Based on Inorganic Hole Conducting Materials

    Directory of Open Access Journals (Sweden)

    Pan-Pan Zhang

    2017-01-01

    Full Text Available Organic-inorganic metal halide perovskites have recently shown great potential for application, due to their advantages of low-cost, excellent photoelectric properties and high power conversion efficiency. Perovskite-based thin film solar cells have achieved a power conversion efficiency (PCE of up to 20%. Hole transport materials (HTMs are one of the most important components of perovskite solar cells (PSCs, having functions of optimizing interface, adjusting the energy match, and helping to obtain higher PCE. Inorganic p-type semiconductors are alternative HTMs due to their chemical stability, higher mobility, high transparency in the visible region, and applicable valence band (VB energy level. This review analyzed the advantages, disadvantages, and development prospects of several popular inorganic HTMs in PSCs.

  3. Hot-electron effect in PdAu thin-film resistors with attached cooling fins

    International Nuclear Information System (INIS)

    Pleikies, J; Flokstra, J; Usenko, O; Frossati, G; Stolz, R; Fritzsch, L

    2009-01-01

    The sensitivity of superconducting electronics operated in the sub-Kelvin temperature range is usually limited by the hot-electron effect. Here, an increased thermal resistance due to a weakened electron-phonon coupling leads to a higher temperature of the electrons in the thin-film shunt resistors of the Josephson junctions. Cooling fins can be attached to weaken this effect. We characterized different configurations of resistors in PdAu with or without attached cooling fins by dissipating power and determining the effective electron temperature. This was done by directly measuring the Johnson noise with a SQUID amplifier. The results are compared to theory and numerical calculations on the electronic heat transport. The latter turns out to be a useful tool for the optimization of the thermal design of superconducting electronics.

  4. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  5. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  6. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  7. Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells

    Science.gov (United States)

    Tao, Hong; Ma, Zhibin; Yang, Guang; Wang, Haoning; Long, Hao; Zhao, Hongyang; Qin, Pingli; Fang, Guojia

    2018-03-01

    Tin oxide (SnO2) film with high mobility and good transmittance has been reported as a promising semiconductor material for high performance perovskite solar cells (PSCs). In this study, ultrathin SnO2 film synthesized by radio frequency magnetron sputtering (RFMS) method at room temperature was employed as hole blocking layer for planar PSCs. The room-temperature sputtered SnO2 film not only shows favourable energy band structure but also improves the surface topography of fluorine doped SnO2 (FTO) substrate and perovskite (CH3NH3PbI3) layer. Thus, this SnO2 hole blocking layer can efficiently promote electron transport and suppress carrier recombination. Furthermore, the best efficiency of 13.68% was obtained for planar PSC with SnO2 hole blocking layer prepared at room temperature. This research highlights the room-temperature preparation process of hole blocking layer in PSC and has a certain reference significance for the usage of flexible and low-cost substrates.

  8. Si-nanocrystal/P3HT hybrid films with a 50- and 12-fold enhancement of hole mobility and density: films prepared by successive drop casting.

    Science.gov (United States)

    Kajiya, Daisuke; Saitow, Ken-ichi

    2015-10-14

    Hybrid silicon nanocrystal (Si-NC)/poly(3-hexylthiophene) (P3HT) films serve as the active layers of quantum dot/polymer hybrid photovoltaics. To achieve effective photovoltaic properties, it is necessary to enhance the charge carrier mobility and carrier density of the P3HT films. A 50- and 12-fold enhancement of the hole mobility and hole density, respectively, was achieved along the out-of-plane direction of a Si-NC/P3HT hybrid film, which corresponds to the carrier-migration direction between the photovoltaic electrodes. According to time-of-flight, electronic absorption, Raman, atomic force microscopy, photoluminescence lifetime, and X-ray diffraction measurements, the significant enhancement of the mobility and density was attributed to both an increase in the P3HT crystallinity and the dissociation efficiency of P3HT excitons on the addition of Si-NCs to the P3HT films. These enhancements were achieved using a film preparation method developed in the present study, which has been named successive drop casting.

  9. Flame-Sprayed Y2O3 Films with Metal-EDTA Complex Using Various Cooling Agents

    Science.gov (United States)

    Komatsu, Keiji; Toyama, Ayumu; Sekiya, Tetsuo; Shirai, Tomoyuki; Nakamura, Atsushi; Toda, Ikumi; Ohshio, Shigeo; Muramatsu, Hiroyuki; Saitoh, Hidetoshi

    2017-01-01

    In this study, yttrium oxide (Y2O3) films were synthesized from a metal-ethylenediaminetetraacetic (metal-EDTA) complex by employing a H2-O2 combustion flame. A rotation apparatus and various cooling agents (compressed air, liquid nitrogen, and atomized purified water) were used during the synthesis to control the thermal history during film deposition. An EDTA·Y·H complex was prepared and used as the staring material for the synthesis of Y2O3 films with a flame-spraying apparatus. Although thermally extreme environments were employed during the synthesis, all of the obtained Y2O3 films showed only a few cracks and minor peeling in their microstructures. For instance, the Y2O3 film synthesized using the rotation apparatus with water atomization units exhibited a porosity of 22.8%. The maximum film's temperature after deposition was 453 °C owing to the high heat of evaporation of water. Cooling effects of substrate by various cooling units for solidification was dominated to heat of vaporization, not to unit's temperatures.

  10. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.

  11. Experimental study on supersonic film cooling on the surface of a blunt body in hypersonic flow

    International Nuclear Information System (INIS)

    Fu Jia; Yi Shi-He; Wang Xiao-Hu; He Lin; Ge Yong

    2014-01-01

    The experimental study focuses on the heat flux on a double cone blunt body in the presence of tangential-slot supersonic injection into hypersonic flow. The tests are conducted in a contoured axisymmetric nozzle with Mach numbers of 7.3 and 8.1, and the total temperature is about 900 K. The injection Mach number is 3.2, and total temperature is 300 K. A constant voltage circuit is developed to supply the temperature detectors instead of the normally used constant current circuit. The schlieren photographs are presented additionally to visualize the flow and help analyze the pressure relationship between the cooling flow and the main flow. The dependence of the film-cooling effectiveness on flow parameters, i.e. the blow ratio, the convective Mach number, and the attack angle, is determined. A semi-empirical formula is tested by the present data, and is improved for a better correlation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    Science.gov (United States)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  13. Modeling the methane hydrate formation in an aqueous film submitted to steady cooling

    Energy Technology Data Exchange (ETDEWEB)

    Avendano-Gomez, J.R. [ESIQIE, Laboratorio de Ingenieria Quimica Ambiental, Mexico (Mexico). Inst. Politecnico Nacional; Garcia-Sanchez, F. [Laboratorio de Termodinamica, Mexico (Mexico). Inst. Mexicano del Petroleo; Gurrola, D.V. [UPIBI, Laboratorio de Diseno de Plantas, Mexico (Mexico). Inst. Politecnico Nacional

    2008-07-01

    Gas hydrates, or clathrate hydrates, are ice-like compounds that results from the kinetic process of crystallization of an aqueous solution supersaturated with a dissolved gas. This paper presented a model that took into account two factors involved in the hydrate crystallization, notably the stochastic nature of crystallization that causes sub-cooling and the heat resulting from the exothermic enthalpy of hydrate formation. The purpose of this study was to model the thermal evolution inside a hydrate forming system which was submitted to an imposed steady cooling. The study system was a cylindrical thin film of aqueous solution at 19 Mpa. The study involved using methane as the hydrate forming molecule. It was assumed that methane was homogeneously dissolved in the aqueous phase. Ethane hydrate was formed through a kinetic process of nucleation and crystallization. In order to predict the onset time of nucleation, the induction time needed to be considered. This paper discussed the probability of nucleation as well as the estimation of the rate of nucleation. It also presented the mathematical model and boundary conditions. These included assumptions and derivation of the model; boundary conditions; initial conditions; and numerical solution of the model equation. It was concluded that the heat source must be considered when investigating crystallization effects. 34 refs., 2 tabs., 2 figs.

  14. Hole-dominated transport in InSb nanowires grown on high-quality InSb films

    Energy Technology Data Exchange (ETDEWEB)

    Algarni, Zaina; George, David; Singh, Abhay; Lin, Yuankun; Philipose, U., E-mail: usha.philipose@unt.edu [University of North Texas, Department of Physics (United States)

    2016-12-15

    We have developed an effective strategy for synthesizing p-type indium antimonide (InSb) nanowires on a thin film of InSb grown on glass substrate. The InSb films were grown by a chemical reaction between Sb{sub 2}S{sub 3} and In and were characterized by structural, compositional, and optical studies. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal that the surface of the substrate is covered with a polycrystalline InSb film comprised of sub-micron sized InSb islands. Energy dispersive X-ray (EDX) results show that the film is stoichiometric InSb. The optical constants of the InSb film, characterized using a variable-angle spectroscopic ellipsometer (VASE) shows a maximum value for refractive index at 3.7 near 1.8 eV, and the extinction coefficient (k) shows a maximum value 3.3 near 4.1 eV. InSb nanowires were subsequently grown on the InSb film with 20 nm sized Au nanoparticles functioning as the metal catalyst initiating nanowire growth. The InSb nanowires with diameters in the range of 40–60 nm exhibit good crystallinity and were found to be rich in Sb. High concentrations of anions in binary semiconductors are known to introduce acceptor levels within the band gap. This un-intentional doping of the InSb nanowire resulting in hole-dominated transport in the nanowires is demonstrated by the fabrication of a p-channel nanowire field effect transistor. The hole concentration and field effect mobility are estimated to be ≈1.3 × 10{sup 17} cm{sup −3} and 1000 cm{sup 2} V{sup −1} s{sup −1}, respectively, at room temperature, values that are particularly attractive for the technological implications of utilizing p-InSb nanowires in CMOS electronics.

  15. A method to achieve homogeneous dispersion of large transmembrane complexes within the holes of carbon films for electron cryomicroscopy

    Science.gov (United States)

    Cheung, Martin; Kajimura, Naoko; Makino, Fumiaki; Ashihara, Masamichi; Miyata, Tomoko; Kato, Takayuki; Namba, Keiichi; Blocker, Ariel J.

    2013-01-01

    Difficulties associated with using X-ray crystallography for structural studies of large macromolecular complexes have made single particle cryo-electron microscopy (cryoEM) a key technique in structural biology. The efficient application of the single particle cryoEM approach requires the sample to be vitrified within the holes of carbon films, with particles well dispersed throughout the ice and adopting multiple orientations. To achieve this, the carbon support film is first hydrophilised by glow discharge, which allows the sample to spread over the film. Unfortunately, for transmembrane complexes especially, this procedure can result in severe sample adsorption to the carbon support film, reducing the number of particles dispersed in the ice. This problem is rate-limiting in the single particle cryoEM approach and has hindered its widespread application to hydrophobic complexes. We describe a novel grid preparation technique that allows for good particle dispersion in the ice and minimal hydrophobic particle adhesion to the support film. This is achieved by hydrophilisation of the carbon support film by the use of selected detergents that interact with the support so as to achieve a hydrophilic and neutral or selectively charged surface. PMID:23356983

  16. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng

    2014-04-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  17. Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch(2).

    Science.gov (United States)

    Huang, Cheng; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas

    2015-01-01

    Polymer blend lithography (PBL) is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012), PBL was demonstrated for the fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA), dissolved in methyl ethyl ketone (MEK) is used. This system forms a purely lateral structure on the substrate at controlled humidity, which means that PS droplets are formed in a PMMA matrix, whereby both phases have direct contact both to the substrate and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by a lift-off process. As a consequence, the resulting metal nanostructure is an exact replica of the pattern of the selectively removed polymer (either a perforated metal film or metal islands). The minimum diameter of these holes or metal islands demonstrated here is about 50 nm. Au, Pd, Cu, Cr and Al templates were fabricated in this work by metal PBL. The wavelength-selective optical transmission spectra due to the localized surface plasmonic effect of the holes in perforated Al films were investigated and compared to the respective hole diameter histograms.

  18. Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

    Directory of Open Access Journals (Sweden)

    Cheng Huang

    2015-05-01

    Full Text Available Polymer blend lithography (PBL is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012, PBL was demonstrated for the fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of polystyrene (PS and poly(methyl methacrylate (PMMA, dissolved in methyl ethyl ketone (MEK is used. This system forms a purely lateral structure on the substrate at controlled humidity, which means that PS droplets are formed in a PMMA matrix, whereby both phases have direct contact both to the substrate and to the air interface. Therefore, a subsequent selective dissolution of either the PS or PMMA component leaves behind a nanostructured film which can be used as a lithographic mask. We use this lithographic mask for the fabrication of metal patterns by thermal evaporation of the metal, followed by a lift-off process. As a consequence, the resulting metal nanostructure is an exact replica of the pattern of the selectively removed polymer (either a perforated metal film or metal islands. The minimum diameter of these holes or metal islands demonstrated here is about 50 nm. Au, Pd, Cu, Cr and Al templates were fabricated in this work by metal PBL. The wavelength-selective optical transmission spectra due to the localized surface plasmonic effect of the holes in perforated Al films were investigated and compared to the respective hole diameter histograms.

  19. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  20. Siloxane-Terminated Solubilizing Side Chains: Bringing Conjugated Polymer Backbones Closer and Boosting Hole Mobilities in Thin-Film Transistors

    KAUST Repository

    Mei, Jianguo

    2011-12-21

    We introduce a novel siloxane-terminated solubilizing group and demonstrate its effectiveness as a side chain in an isoindigo-based conjugated polymer. An average hole mobility of 2.00 cm 2 V -1 s -1 (with a maximum mobility of 2.48 cm 2 V -1 s -1), was obtained from solution-processed thin-film transistors, one of the highest mobilities reported to date. In contrast, the reference polymer with a branched alkyl side chain gave an average hole mobility of 0.30 cm 2 V -1 s -1 and a maximum mobility of 0.57 cm 2 V -1 s -1. This is largely explained by the polymer packing: our new polymer exhibited a π-π stacking distance of 3.58 Å, while the reference polymer showed a distance of 3.76 Å. © 2011 American Chemical Society.

  1. Electroactivity of a starburst hole-transport material in Langmuir-Blodgett films. Solid state effects and intervalence charge transfer.

    Science.gov (United States)

    Parra, Vicente; Del Caño, Teodosio; Rodríguez-Méndez, María L; De Saja, José A; Bouvet, Marcel; Shirota, Yasuhiko

    2007-06-14

    Here we report on the electroactivity properties of Langmuir-Blodgett (LB) films of the hole-transport molecule 4,4',4''-tris[3-methylphenyl(phenyl)amino] triphenylamine (m-MTDATA). Fairly stable Langmuir films at the air-water interface are accomplished, despite the non-amphiphilic character of the molecule. The reflection-absorption infrared spectroscopy (RAIRS) and Fourier transform infrared (FT-IR) analysis revealed that the molecules arrange with no neat preferential orientation, in agreement with the amorphous glassy nature of this starburst molecule. However, there is a tendency of the molecules to organize in a more planar conformation due to the intermolecular stacking induced by the LB technique. On the other hand, the fundamental electrochemistry (by cyclic voltammetry, CV) of the films is also analyzed. The CV studies of both solution and films reveal that both the solid state and the electrolyte's anions clearly affect the m-MTDATA's electroactivity, exhibiting a unique and broad redox process instead of the two reversible oxidations observed in solution. The oxidization mechanism is discussed. Finally, the spectroelectrochemistry studies evidence that the oxidization of the films leads to new absorption bands, among which the emerging bands in the NIR region ascribed to intervalence charge transfer (IVCT) between the generated aminyl radical cations should be pointed out.

  2. Crystalline MoOx Thin-Films as Hole Transport Layers in DBP/C70 Based Organic Solar Cell

    DEFF Research Database (Denmark)

    Ahmadpour, Mehrad; Fernandes Cauduro, André Luis; dos Reis, Roberto

    Transition Metal Oxides such as Molybdenum oxide (MoOx) have been intensively used as hole transport layers in different organic, inorganic and hybrid technologies, demonstrating also important improvements on the power conversion efficiency as well as on the stability of different types of solar...... cells. Among several different deposition methods available for fabrication of MoOx thin-films, reactive sputtering arises as an interesting alternative due to its full control over the deposition parameters such as the deposition power, reactive gas partial pressure and the deposition rate....

  3. 2D and 3D Modeling Efforts in Fuel Film Cooling of Liquid Rocket Engines (Conference Paper with Briefing Charts)

    Science.gov (United States)

    2017-01-12

    Conference Paper with Briefing Charts 3. DATES COVERED (From - To) 17 November 2016 – 12 January 2017 4. TITLE AND SUBTITLE 2D and 3D Modeling ...98) Prescribed by ANSI Std. 239.18 2D and 3D Modeling Efforts in Fuel Film Cooling of Liquid Rocket Engines Kevin C. Brown∗, Edward B. Coy†, and...wide. As a consequence, the 3D simulations may better model the experimental setup used, but are perhaps not representative of the long circumferential

  4. THE X-RAY SPECTRUM OF THE COOLING-FLOW QUASAR H1821+643: A MASSIVE BLACK HOLE FEEDING OFF THE INTRACLUSTER MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Christopher S.; Lohfink, Anne M. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Babul, Arif [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Fabian, Andrew C.; Russell, Helen R.; Walker, Stephen A. [Institute of Astronomy, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Hlavacek-Larrondo, Julie, E-mail: chris@astro.umd.edu [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada)

    2014-09-10

    We present a deep Suzaku observation of H1821+643, an extremely rare example of a powerful quasar hosted by the central massive galaxy of a rich cooling-core cluster of galaxies. Informed by previous Chandra studies of the cluster, we achieve a spectral separation of emission from the active galactic nucleus (AGN) and the intracluster medium (ICM). With a high degree of confidence, we identify the signatures of X-ray reflection/reprocessing by cold and slowly moving material in the AGN's immediate environment. The iron abundance of this matter is found to be significantly sub-solar (Z ≈ 0.4 Z {sub ☉}), an unusual finding for powerful AGN but in line with the idea that this quasar is feeding from the ICM via a Compton-induced cooling flow. We also find a subtle soft excess that can be described phenomenologically (with an additional blackbody component) or as ionized X-ray reflection from the inner regions of a high inclination (i ≈ 57°) accretion disk around a spinning (a > 0.4) black hole. We describe how the ionization state of the accretion disk can be used to constrain the Eddington fraction of the source. Applying these arguments to our spectrum implies an Eddington fraction of 0.25-0.5, with an associated black hole mass of 3--6×10{sup 9} M{sub ⊙}.

  5. Effect of fluorine plasma treatment with chemically reduced graphene oxide thin films as hole transport layer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Youn-Yeol; Kang, Byung Hyun; Lee, Yang Doo; Lee, Sang Bin; Ju, Byeong-Kwon, E-mail: bkju@korea.ac.kr

    2013-12-15

    The inorganic materials such as V{sub 2}O{sub 5}, MoO{sub 3} and WO{sub 3} were investigated to replace PEDOT:PSS as hole transport layer (HTL) in organic electronic devices such as organic solar cells (OSCs) and organic lighting emission diodes. However, these methods require vacuum techniques that are long time process and complex. Here, we report about plasma treatment with SF{sub 6} and CF{sub 4} using reactive ion etching on reduced graphene oxide (rGO) thin films that are obtained using an eco-friendly method with vitamin C. The plasma treated rGO thin films have dipoles since they consist of covalent bonds with fluorine on the surface of rGO. This means it is possible to increase the electrostatic potential energy than bare rGO. Increased potential energy on the surface of rGO films is worth applying organic electronic devices as HTL such as OSCs. Consequently, the power conversion efficiency of OSCs increased more than the rGO films without plasma treatment.

  6. Cu-filled through-hole electrode for ZnS using high adhesive strength Ni–P thin film

    International Nuclear Information System (INIS)

    Okamoto, Naoki; Miyamoto, Megumi; Saito, Takeyasu; Kondo, Kazuo; Fukumoto, Takafumi; Hirota, Masaki

    2012-01-01

    Zinc sulfide (ZnS) and related materials are important for applications in ultraviolet light emitting diodes, cathode ray tubes, flat panel displays and infrared ray (IR) windows. In order to utilize these optoelectronics devices in electronic products, 3D-packaging as well as wafer level packaging (WLP) are needed. The two methods used to achieve this are physical vapor deposition (PVD) and conventional electroless deposition processes. However, both these methods have problems. Films made by PVD are not always of uniform thickness if the substrate is not flat. On the other hand, films made by conventional electroless deposition have weak adhesive strength to substrates. In order to overcome these limitations, we developed a new electroless deposition process to form nickel–phosphorus (Ni–P) films. This process combines catalyzation (Cu deposition) and electroless deposition processes. The films made using the new process show high adhesive strength in tensile tests and also very uniform thickness. In addition, conformal Cu filling of through-holes was achieved by using this new electroless deposition process.

  7. Airfoil, platform, and cooling passage measurements on a rotating transonic high-pressure turbine

    Science.gov (United States)

    Nickol, Jeremy B.

    An experiment was performed at The Ohio State University Gas Turbine Laboratory for a film-cooled high-pressure turbine stage operating at design-corrected conditions, with variable rotor and aft purge cooling flow rates. Several distinct experimental programs are combined into one experiment and their results are presented. Pressure and temperature measurements in the internal cooling passages that feed the airfoil film cooling are used as boundary conditions in a model that calculates cooling flow rates and blowing ratio out of each individual film cooling hole. The cooling holes on the suction side choke at even the lowest levels of film cooling, ejecting more than twice the coolant as the holes on the pressure side. However, the blowing ratios are very close due to the freestream massflux on the suction side also being almost twice as great. The highest local blowing ratios actually occur close to the airfoil stagnation point as a result of the low freestream massflux conditions. The choking of suction side cooling holes also results in the majority of any additional coolant added to the blade flowing out through the leading edge and pressure side rows. A second focus of this dissertation is the heat transfer on the rotor airfoil, which features uncooled blades and blades with three different shapes of film cooling hole: cylindrical, diffusing fan shape, and a new advanced shape. Shaped cooling holes have previously shown immense promise on simpler geometries, but experimental results for a rotating turbine have not previously been published in the open literature. Significant improvement from the uncooled case is observed for all shapes of cooling holes, but the improvement from the round to more advanced shapes is seen to be relatively minor. The reduction in relative effectiveness is likely due to the engine-representative secondary flow field interfering with the cooling flow mechanics in the freestream, and may also be caused by shocks and other

  8. Two-phase behavior in strained thin films of hole-doped manganites

    OpenAIRE

    Biswas, Amlan; Rajeswari, M.; Srivastava, R. C.; Li, Y. H.; Venkatesan, T.; Greene, R. L.; Millis, A. J.

    1999-01-01

    We present a study of the effect of biaxial strain on the electrical and magnetic properties of thin films of manganites. We observe that manganite films grown under biaxial compressive strain exhibit island growth morphology which leads to a non-uniform distribution of the strain. Transport and magnetic properties of these films suggest the coexistence of two different phases, a metallic ferromagnet and an insulating antiferromagnet. We suggest that the high strain regions are insulating whi...

  9. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs.

    Science.gov (United States)

    Smith, Jeremy; Zhang, Weimin; Sougrat, Rachid; Zhao, Kui; Li, Ruipeng; Cha, Dongkyu; Amassian, Aram; Heeney, Martin; McCulloch, Iain; Anthopoulos, Thomas D

    2012-05-08

    Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm(2) /Vs, current on/off ratio ≥10(6) and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm 2/Vs

    KAUST Repository

    Smith, Jeremy N.

    2012-04-10

    Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm 2/Vs, current on/off ratio ≥10 6 and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Anomalous transmission through heavily doped conducting polymer films with periodic subwavelength hole array

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-08-01

    We observed resonantly enhanced (or anomalous transmission) terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF 6 molecules [PPy(PF6)]. The anomalous transmission spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the resonantly enhanced transmission peaks are broader in the exotic metallic PPy(PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, indicating that the surface plasmon polaritons on the PPy(PF6) film surfaces have higher attenuation.

  12. Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya

    2013-01-01

    The optical, structural and charge transport properties of solution-processed films of copper(i) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ∼20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics with a maximum field-effect mobility in the range of 0.01-0.1 cm2 V-1 s-1. © 2013 The Royal Society of Chemistry.

  13. Fabrication of nanostructured ZnO film as a hole-conducting layer of organic photovoltaic cell

    Science.gov (United States)

    Kim, Hyomin; Kwon, Yiseul; Choe, Youngson

    2013-05-01

    We have investigated the effect of fibrous nanostructured ZnO film as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the concentration of zinc acetate dihydrate, the changes of performance characteristics were evaluated. Fibrous nanostructured ZnO film was prepared by sol-gel process and annealed on a hot plate. As the concentration of zinc acetate dihydrate increased, ZnO fibrous nanostructure grew from 300 to 600 nm. The obtained ZnO nanostructured fibrous films have taken the shape of a maze-like structure and were characterized by UV-visible absorption, scanning electron microscopy, and X-ray diffraction techniques. The intensity of absorption bands in the ultraviolet region was increased with increasing precursor concentration. The X-ray diffraction studies show that the ZnO fibrous nanostructures became strongly (002)-oriented with increasing concentration of precursor. The bulk heterojunction photovoltaic cells were fabricated using poly(3-hexylthiophene-2,5-diyl) and indene-C60 bisadduct as active layer, and their electrical properties were investigated. The external quantum efficiency of the fabricated device increased with increasing precursor concentration.

  14. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  15. Minimization of the Effects of Secondary Reactions on Turbine Film Cooling in a Fuel Rich Environment

    Science.gov (United States)

    2014-06-02

    Influence of the Coolant Jet -flow Direction on the Cooling Effectiveness." GT2012-68517. Copenhagen Denmark, ASME Turbo Expo, 2012. 185 [10...computation of temperature profiles for reacting and non-reacting jets ...interaction of the mainstream with the exiting coolant jets . The mainstream impacts the cooling flow jet causing the coolant jet to turn towards the

  16. Rectified vortex motion in an Nb film with a spacing-graded array of holes

    Czech Academy of Sciences Publication Activity Database

    Wu, T.C.; Cao, R.; Yang, T.-J.; Horng, L.; Wu, J.C.; Koláček, Jan

    2010-01-01

    Roč. 150, 5-6 (2010), s. 280-284 ISSN 0038-1098 R&D Projects: GA ČR GA202/08/0326 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductor * thin films * scanning electron microscopy, * flux pinning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.979, year: 2010

  17. Unveiling the irreversible performance degradation of organo-inorganic halide perovskite films and solar cells during heating and cooling processes.

    Science.gov (United States)

    Mamun, Abdullah Al; Ava, Tanzila Tasnim; Byun, Hye Ryung; Jeong, Hyeon Jun; Jeong, Mun Seok; Nguyen, Loi; Gausin, Christine; Namkoong, Gon

    2017-07-26

    While organo-inorganic halide perovskite solar cells show great potential to meet future energy needs, their thermal instability raises serious questions about their commercialization viability. At present, the stability of perovskite solar cells has been studied under various environmental conditions including humidity and temperature. Nonetheless, understanding of the performance of CH 3 NH 3 PbI 3-x Cl x perovskite solar cells is limited. This study reports the irreversible performance degradation of CH 3 NH 3 PbI 3-x Cl x perovskite solar cells during the heating and cooling processes under AM 1.5 and unveils what triggers the irreversible performance degradation of solar cells. Particularly, the primary cause of the irreversible performance degradation of CH 3 NH 3 PbI 3-x Cl x is quantitatively analyzed by monitoring in real time the development of deteriorated crystallinity, charge trapping/detrapping, trap depth, and the PbI 2 phase, namely a critical signal of perovskite degradation while varying the temperature of the perovskite films and solar cells. Most surprisingly, it is revealed that the degradation of both perovskite films and solar cells was triggered at ∼70 °C. Remarkably, even after the device temperature cooled down to room temperature, the degraded performance of the solar cells persisted with increasing charge trapping and further development of the PbI 2 phase. Identification of the irreversible performance degradation of perovskite solar cells provides guidance for future development of more stable perovskite solar cells.

  18. Wafer-Scale Fabrication of Thin SiN Membranes and Au Films and Membranes with Arrays of Sub-um Holes Using Nanosphere Lithography

    OpenAIRE

    Klein, Mona Julia Katharina

    2010-01-01

    In this thesis, the wafer-scale fabrication of SiN membranes, Au films and Au membranes with arrays of sub-µm holes is described. Two conceptually different processes (1) and (2) were developed, both of which are based on nanosphere lithography (NSL) with self-assembled close-packed monolayers of polystyrene (PS) beads. PS beads with a diameter D in the range of 420 nm to 530 nm were used. The hole array periodicity p was thus determined by D. D...

  19. Analysis of the current density characteristics in through-mask electrochemical micromachining (TMEMM for fabrication of micro-hole arrays on invar alloy film

    Directory of Open Access Journals (Sweden)

    Da-som JIN

    2017-06-01

    Full Text Available Invar alloy consisting of 64% iron and 36% nickel has been widely used for the production of shadow masks for organic light emitting diodes (OLEDs because of its low thermal expansion coefficient (1.86 × 10−6 cm/°C. To fabricate micro-hole arrays on 30 μm invar alloy film, through-mask electrochemical micromachining (TMEMM was developed and combined with a portion of the photolithography etching process. For precise hole shapes, patterned photoresist (PR film was applied as an insulating mask. To investigate the relationship between the current density and the material removal rate, the principle of the electrochemical machining was studied with a focus on the equation. The finite element method (FEM was used to verify the influence of each parameter on the current density on the invar alloy film surface. The parameters considered were the thickness of the PR mask, inter-electrode gap (IEG, and electrolyte concentration. Design of experiments (DOE was used to figure out the contribution of each parameter. A simulation was conducted with varying parameters to figure out their relationships with the current density. Optimization was conducted to select the suitable conditions. An experiment was carried out to verify the simulation results. It was possible to fabricate micro-hole arrays on invar alloy film using TMEMM, which is a promising method that can be applied to fabrications of OLEDs shadow masks.

  20. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    Science.gov (United States)

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  1. Synthesis of environmentally responsive organic materials by application of ion track holes in polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Omichi, Hideki; Yoshida, Masaru; Asano, Masaharu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Katakai, Ryoichi; Spohr, R.; Vetter, J.

    1997-03-01

    Polymer films were irradiated by heavy ion beams and etched by a concentrated alkali solution to produce particle track membranes (PTMs). Then the PTMs were chemically modified by grafting such monomers as amino acid group containing methacryloyl and N-isopropylacrylamide the polymers of which are known as environmentally responsive hydrogels. The size of pores of the modified PTMs under different temperatures in water was followed by electron microscopy. The pore was controlled from an open state to a completely closed state by changing temperature. The conductivity through the membrane was measured by changing the temperature of the cell. (author)

  2. Additives, Hole Transporting Materials and Spectroscopic Methods to Characterize the Properties of Perovskite Films.

    Science.gov (United States)

    Ummadisingu, Amita; Seo, Ji-Youn; Stojanovic, Marko; Zakeeruddin, Shaik M; Grätzel, Michael; Hagfeldt, Anders; Vlachopoulos, Nick; Saliba, Michael

    2017-11-29

    The achievement of high efficiency and high stability in perovskite solar cells (PSCs) requires optimal selection and evaluation of the various components. After a brief introduction to the perovskite materials and their historical evolution, the first part is devoted to the hole transporting material (HTM), between photoelectrode and dark counter electrode. The basic requirements for an efficient HTM are stated. Subsequently, the most used HTM, spiro-OMeTAD, is compared to alternative HTMs, both small-molecule size species and electronically conducting polymers. The second part is devoted to additives related to the performance of the perovskite light-absorbing material itself. These are related either to the modification of the composition of the material itself or to the optimization of the morphology during the perovskite preparation stage, and their effect is in the enhancement of the power conversion efficiency, the long-term stability, or the reproducibility of the properties of the PSCs. Finally, a number of spectroscopic methods based on the UV-Vis part of the electromagnetic spectrum useful for characterizing the different perovskite material types are described in the last part of this review.

  3. Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes

    Science.gov (United States)

    DeWitt, Kenneth; Garg Vijay; Ameri, Ali

    2005-01-01

    The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.

  4. Hot-electron effect in PdAu thin-film resistors with attached cooling fins

    NARCIS (Netherlands)

    Pleikies, J.; Usenko, O.; Stolz, R.; Fritzsch, L.; Frossati, G.; Flokstra, Jakob

    2009-01-01

    The sensitivity of superconducting electronics operated in the sub-Kelvin temperature range is usually limited by the hot-electron effect. Here, an increased thermal resistance due to a weakened electron–phonon coupling leads to a higher temperature of the electrons in the thin-film shunt resistors

  5. Hydrogen film cooling with incident and swept-shock interactions in a Mach 6.4 nitrogen free stream

    Science.gov (United States)

    Olsen, George C.; Nowak, Robert J.

    1995-01-01

    The effectiveness of slot film cooling of a flat plate in a Mach 6.4 flow with and without incident and swept oblique shock interactions was experimentally investigated. Hydrogen was the primary coolant gas, although some tests were conducted using helium as the coolant. Tests were conducted in the Calspan 48-Inch Shock Tunnel with a nitrogen flow field to preclude combustion of the hydrogen coolant gas. A two-dimensional highly instrumented model developed in a previous test series was used. Parameters investigated included coolant mass flow rate, coolant gas, local free-stream Reynolds number, incident oblique shock strength, and a swept oblique shock. Both gases were highly effective coolants in undisturbed flow; however, both incident and swept shocks degraded that effectiveness.

  6. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m 2 ·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m 2 ·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  7. Growth of TiO2 thin films on chemically textured Si for solar cell applications as a hole-blocking and antireflection layer

    Science.gov (United States)

    Singh, Ranveer; Kumar, Mohit; Saini, Mahesh; Singh, Avanendra; Satpati, Biswarup; Som, Tapobrata

    2017-10-01

    In this work, we investigate the broad-band photoabsorption of an n-TiO2 thin film and its hole-blocking properties when a heterostructure is grown on a chemically textured p-Si substrate. We demonstrate that average specular reflectance of conformally grown TiO2 thin films on chemically prepared pyramidally textured Si substrates can be brought down to ∼0.2% (in the wavelength range of 300-1200 nm), which increases up to ∼0.53% after annealing at 673 K in air for 1 h. X-ray diffraction data reveal the amorphous nature of as-grown TiO2 thin films which undergoes a transition to a crystalline one after annealing. In addition, bulk current-voltage characteristics show that the leakage current increases after annealing which corroborates well a with change in the band gap, as is measured from the optical absorption spectra, due to a transition from amorphous to crystalline (anatase phase) of TiO2. Moreover, TiO2/Si heterojunction allows the transport of electrons but blocks the transport of holes. The present results are not only important for the fundamental understanding of the charge transport across TiO2/Si heterostructures but also to design hole-blocking solar cells.

  8. Tensile Strain Effects on the Magneto-transport in Calcium Manganese Oxide Thin Films: Comparison with its Hole-doped Counterpart

    Science.gov (United States)

    Lawson, Bridget; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Ferrone, Natalie; Houston, David; Yong, Grace; Kolagani, Rajeswari

    Magnetoresistance properties of the epitaxial thin films of doped rare earth manganites are known to be influenced by the effect of bi-axial strain induced by lattice mismatch with the substrate. In hole-doped manganites, the effect of both compressive and tensile strain is qualitatively consistent with the expected changes in unit cell symmetry from cubic to tetragonal, leading to Jahn-Teller strain fields that affect the energy levels of Mn3 + energy levels. Recent work in our laboratory on CaMnO3 thin films has pointed out that tetragonal distortions introduced by tensile lattice mismatch strain may also have the effect of modulating the oxygen content of the films in agreement with theoretical models that propose such coupling between strain and oxygen content. Our research focuses on comparing the magneto-transport properties of hole-doped manganite LaCaMnO3 thin films with that of its electron doped counter parts, in an effort to delineate the effects of oxygen stoichiometry changes on magneto-transport from the effects of Jahn-Teller type strain. Towson University Office of Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grant from the Fisher College of Science and Mathematics, Seed Funding Grant from the School of Emerging technologies and the NSF Grant ECCS 112856.

  9. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    Science.gov (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  10. Holes help control temperature

    Science.gov (United States)

    Chhatpar, C. K.

    1981-01-01

    Study of passive thermal control for the Solar Terrestrial Subsatellite (STSS) has found that array of "see through" holes substantially improves performance of system. Holes in payload mounting plates allow line of sight radiative heat transfer between hot and cold ends of spacecraft and between mounting plates and ends. Temperature gradients between plates are thereby reduced, as is temperature of each plate. Holes and selected exterior paints and finishes keep payload cool for all orientations and operating modes of STSS.

  11. Axisymmetric computational fluid dynamics analysis of a film/dump-cooled rocket nozzle plume

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Prediction of convective base heating rates for a new launch vehicle presents significant challenges to analysts concerned with base environments. The present effort seeks to augment classical base heating scaling techniques via a detailed investigation of the exhaust plume shear layer of a single H2/O2 Space Transportation Main Engine (STME). Use of fuel-rich turbine exhaust to cool the STME nozzle presented concerns regarding potential recirculation of these gases to the base region with attendant increase in the base heating rate. A pressure-based full Navier-Stokes computational fluid dynamics (CFD) code with finite rate chemistry is used to predict plumes for vehicle altitudes of 10 kft and 50 kft. Levels of combustible species within the plume shear layers are calculated in order to assess assumptions made in the base heating analysis.

  12. Numerical Study of the Effects of Thermal Barrier Coating and Turbulence Intensity on Cooling Performances of a Nozzle Guide Vane

    Directory of Open Access Journals (Sweden)

    Prasert Prapamonthon

    2017-03-01

    Full Text Available This work presents a numerical investigation of the combined effects of thermal barrier coating (TBC with mainstream turbulence intensity (Tu on a modified vane of the real film-cooled nozzle guide vane (NGV reported by Timko (NASA CR-168289. Using a 3D conjugate heat transfer (CHT analysis, the NGVs with and without TBC are simulated at three Tus (Tu = 3.3%, 10% and 20%. The overall cooling effectiveness, TBC effectiveness and heat transfer coefficient are analyzed and discussed. The results indicate the following three interesting phenomena: (1 TBC on the pressure side (PS is more effective than that on the suction side (SS due to a fewer number of film holes on the SS; (2 for all three Tus, the variation trends of the overall cooling effectiveness are similar, and TBC plays the positive and negative roles in heat flux at the same time, and significantly increases the overall cooling effectiveness in regions cooled ineffectively by cooling air; (3 when Tu increases, the TBC effect is more significant, for example, at the highest Tu (Tu = 20% the overall cooling effectiveness can increase as much as 24% in the film cooling ineffective regions, but near the trailing edge (TE and the exits and downstream of film holes on the SS, this phenomenon is slight.

  13. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices.

    Science.gov (United States)

    Zhang, Guang; Jiang, Shaohui; Yao, Wei; Liu, Changhong

    2016-11-16

    Owing to the outstanding properties of thermal conduction, lightweight, and chemical durability, carbon nanotubes (CNTs) have revealed promising applications in thermal management materials. Meanwhile, the increasingly popular portable electronics and the rapid development of space technology need lighter weight, smaller size, and more effective thermal management devices. Here, a novel kind of heat dissipation devices based on the superaligned CNT films and underlying microchannels is proposed, and the heat dissipation properties are measured at the natural condition. Distinctive from previous studies, by combining the advantages of microchannels and CNTs, such a novel heat dissipation device enables superior natural convection heat transfer properties. Our findings prove that the novel CNT-based devices could show an 86.6% larger total natural heat dissipation properties than bare copper plate. Further calculations of the radiation and natural convection heat transfer properties demonstrate that the excellent passive cooling properties of these CNT-based devices are primarily caused by the reinforcement of the natural convection heat transfer properties. Furthermore, the heat dissipation mechanisms are briefly discussed, and we propose that the very high heat transfer coefficients and the porous structures of superaligned CNT films play critical roles in reinforcing the natural convection. The novel CNT-based heat dissipation devices also have advantages of energy-saving, free-noise, and without additional accessories. So we believe that the CNT-based heat dissipation devices would replace the traditional metal-finned heat dissipation devices and have promising applications in electronic devices, such as photovoltaic devices, portable electronic devices, and electronic displays.

  14. The Influence of Cooling Air Injection on Flow Development and Heat Transfer in a Rotating Leading Edge Coolant Duct of a Film-Cooled Turbine Blade

    National Research Council Canada - National Science Library

    Elfert, Martin

    2003-01-01

    .... The improvement of the efficiency demands higher performance from the blade cooling systems with minimized coolant flow rates to cope with the increase in heat load as well as to meet the obligatory safety requirements...

  15. Conjugate Heat Transfer Study at Interior Surface of NGV Leading Edge with Combined Shower Head and Impingement Cooling

    OpenAIRE

    Arun Kumar Pujari; B. V. S. S. S. Prasad; N. Sitaram

    2014-01-01

    A computational study on conjugate heat transfer is carried out to present the behavior of nondimensional temperature and heat transfer coefficient of a Nozzle Guide Vane (NGV) leading edge. Reynolds number of both mainstream flow and coolant impinging jets are varied. The NGV has five rows of film cooling holes arranged in shower head manner and four rows of impingement holes arranged in staggered manner. The results are presented by considering materials of different thermal conductivity. T...

  16. Rapid and high sensitive structure evaluation of ferroelectric films using micro-Raman spectroscopy: In-situ observation of stress accumulation and release in PbTiO3 films during first cooling process

    International Nuclear Information System (INIS)

    Nishide, M; Nishida, K; Yamamoto, T; Matsuoka, M; Tai, T; Katoda, T; Funakubo, H

    2011-01-01

    Stress changes of the (100)/(001)-oriented PbTiO 3 (PT) films deposited on MgO(100), Pt(100)/MgO(100) and Pt(111)/Ti/SiO 2 /Si(100) substrates under the cooling process after film deposition was investigated by in-situ observation using metal organic chemical vapor deposition (MOCVD)-Raman spectroscopy combined system. The stress changed from compressive to tensile near T c and large compressive stress made high c-domain volume fraction. It was made clear that the stress condition at T c affects the c-domain volume fraction at room temperature (R.T.). These results indicate that in-situ Raman spectroscopy measurement is useful tool for monitoring the stress state under the cooling process.

  17. Study of cooling effectiveness for an integrated cooling turbine blade

    OpenAIRE

    Matsushita, Masahiro; Yamane, Takashi; Mimura, Fujio; Fukuyama, Yoshitaka; 松下 政裕; 山根 敬; 三村 富嗣雄; 福山 佳孝

    2007-01-01

    Experimental study of film cooling, impingement cooling and integrated cooling were carried out with the aim of applying them to turbine cooling. The experiments were conducted with 673 K hot gas flow and room temperature cooling air. Test plate surface temperature distributions were measured with an infrared camera. This report presents fundamental research data on cooling performance of the test plates for the validation of numerical simulation. Moreover, simplify heat transfer calculations...

  18. Sputtered nickel oxide thin film for efficient hole transport layer in polymer–fullerene bulk-heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Widjonarko, N. Edwin [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics; National Renewable Energy Lab. (NREL), Golden, CO (United States); Ratcliff, Erin L. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Chemistry and Biochemistry; Perkins, Craig L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sigdel, Ajaya K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Denver, CO (United States). Dept. of Physics and Astronomy; Zakutayev, Andriy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ndione, Paul F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gillaspie, Dane T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ginley, David S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Olson, Dana C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Berry, Joseph J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-03-01

    Bulk-heterojunction (BHJ) organic photovoltaics (OPV) are promising thin-film renewable energy conversion options due to low production cost by high-throughput roll-to-roll manufacturing, an expansive list of compatible materials, and flexible device fabrication.

  19. Low-Temperature, Chemically Grown Titanium Oxide Thin Films with a High Hole Tunneling Rate for Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu-Tsu Lee

    2016-05-01

    Full Text Available In this paper, we propose a chemically grown titanium oxide (TiO2 on Si to form a heterojunction for photovoltaic devices. The chemically grown TiO2 does not block hole transport. Ultraviolet photoemission spectroscopy was used to study the band alignment. A substantial band offset at the TiO2/Si interface was observed. X-ray photoemission spectroscopy (XPS revealed that the chemically grown TiO2 is oxygen-deficient and contains numerous gap states. A multiple-trap-assisted tunneling (TAT model was used to explain the high hole injection rate. According to this model, the tunneling rate can be 105 orders of magnitude higher for holes passing through TiO2 than for flow through SiO2. With 24-nm-thick TiO2, a Si solar cell achieves a 33.2 mA/cm2 photocurrent on a planar substrate, with a 9.4% power conversion efficiency. Plan-view scanning electron microscopy images indicate that a moth-eye-like structure formed during TiO2 deposition. This structure enables light harvesting for a high photocurrent. The high photocurrent and ease of production of chemically grown TiO2 imply that it is a suitable candidate for future low-cost, high-efficiency solar cell applications.

  20. Transpiration and film cooling boundary layer computer program. Volume 1: Numerical solutions of the turbulent boundary layer equations with equilibrium chemistry

    Science.gov (United States)

    Levine, J. N.

    1971-01-01

    A finite difference turbulent boundary layer computer program has been developed. The program is primarily oriented towards the calculation of boundary layer performance losses in rocket engines; however, the solution is general, and has much broader applicability. The effects of transpiration and film cooling as well as the effect of equilibrium chemical reactions (currently restricted to the H2-O2 system) can be calculated. The turbulent transport terms are evaluated using the phenomenological mixing length - eddy viscosity concept. The equations of motion are solved using the Crank-Nicolson implicit finite difference technique. The analysis and computer program have been checked out by solving a series of both laminar and turbulent test cases and comparing the results to data or other solutions. These comparisons have shown that the program is capable of producing very satisfactory results for a wide range of flows. Further refinements to the analysis and program, especially as applied to film cooling solutions, would be aided by the acquisition of a firm data base.

  1. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  2. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    Science.gov (United States)

    Ke, Cangming; Peters, Ian Marius; Sahraei, Nasim; Aberle, Armin G.; Stangl, Rolf

    2015-06-01

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t+-i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlOx) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlOx parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t+-i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm2, according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed.

  3. Compensating Scientism through "The Black Hole."

    Science.gov (United States)

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…

  4. Characterization of Organic Thin Film Solar Cells of PCDTBT : PC71BM Prepared by Different Mixing Ratio and Effect of Hole Transport Layer

    Directory of Open Access Journals (Sweden)

    Vijay Srinivasan Murugesan

    2015-01-01

    Full Text Available The organic thin film solar cells (OTFSCs have been successfully fabricated using PCDTBT : PC71BM with different mixing ratios (1 : 1 to 1 : 8 and the influence of hole transport layer thickness (PEDOT : PSS. The active layers with different mixing ratios of PCDTBT : PC71BM have been fabricated using o-dichlorobenzene (o-DCB. The surface morphology of the active layers and PEDOT : PSS layer with different thicknesses were characterized by AFM analysis. Here, we report that the OTFSCs with high performance have been optimized with 1 : 4 ratios of PCDTBT : PC71BM. The power conversion efficiency (PCE = 5.17% of the solar cells was significantly improved by changing thickness of PEDOT : PSS layer. The thickness of the PEDOT : PSS layer was found to be of significant importance; the thickness of the PEDOT : PSS layer at 45 nm (higher spin speed 5000 rpm shows higher short circuit current density (Jsc and lower series resistance (Rs and higher PCE.

  5. Film

    OpenAIRE

    Jones, Sarah

    2002-01-01

    This book looks at the movie industry and at the labour intensive but fascinating process of making a feature film. It examines each stage in the production of a film, from initial idea through to the final cut and screening, and highlights the main activities that take place along the way. The book not only looks at the work of prominent people in the film world, such as directors and actors, but also describes the equally important but less high profile contributions of the gaffer, best boy...

  6. Film

    OpenAIRE

    Bould, M.

    2014-01-01

    A critical overview of critical-theoretical understandings of sf film, especially those promulgated by critics devoted to sf as a prose fiction form. It also considers adaptation, spectacle and special effects.

  7. Beam cooling

    OpenAIRE

    Danared, H

    2006-01-01

    Beam cooling is the technique of reducing the momentum spread and increasing the phase-space density of stored particle beams. This paper gives an introduction to beam cooling and Liouville’s theorem, and then it describes the three methods of active beam cooling that have been proven to work so far, namely electron cooling, stochastic cooling, and laser cooling. Ionization cooling is also mentioned briefly.

  8. Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud

    Science.gov (United States)

    Burdgick, Steven Sebastian; Sexton, Brendan Francis; Kellock, Iain Robertson

    2002-01-01

    A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

  9. Evolution of the thickness of the aluminum oxide film due to the pH of the cooling water and surface temperature of the fuel elements clad of a nuclear reactor

    International Nuclear Information System (INIS)

    Babiche, Ivan

    2013-01-01

    This paper describes the mechanism of growth of a film of aluminum oxide on an alloy of the same material, which serves as a protective surface being the constituent material of the RP-10 nuclear reactor fuel elements clads. The most influential parameters on the growth of this film are: the pH of the cooling water and the clad surface temperature of the fuel element. For this study, a mathematical model relating the evolution of the aluminum oxide layer thickness over the time, according to the same oxide film using a power law is used. It is concluded that the time of irradiation, the heat flux at the surface of the aluminum material, the speed of the coolant, the thermal conductivity of the oxide, the initial thickness of the oxide layer and the solubility of the protective oxide are parameters affecting in the rate and film formation. (author).

  10. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  11. Film

    OpenAIRE

    Balint, Ruth; Dolgopolov, Greg

    2008-01-01

    From the beginning of the twentieth century, Sydney defined cosmopolitanism and modernity in the national imagination, and central to this image was the cinema: its technology, its architecture, its stars, its marketing and the stories it circulated to its audiences about Australia and the world. Though it is difficult to define a genre of Sydney film, Sydney provided the backdrop for a host of ideas about the city, and later suburbia. Sydney came to be seen as a ‘tinsel town’ of cultural ban...

  12. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells

    KAUST Repository

    Wijeyasinghe, Nilushi

    2017-07-28

    This study reports the development of copper(I) thiocyanate (CuSCN) hole-transport layers (HTLs) processed from aqueous ammonia as a novel alternative to conventional n-alkyl sulfide solvents. Wide bandgap (3.4–3.9 eV) and ultrathin (3–5 nm) layers of CuSCN are formed when the aqueous CuSCN–ammine complex solution is spin-cast in air and annealed at 100 °C. X-ray photoelectron spectroscopy confirms the high compositional purity of the formed CuSCN layers, while the high-resolution valence band spectra agree with first-principles calculations. Study of the hole-transport properties using field-effect transistor measurements reveals that the aqueous-processed CuSCN layers exhibit a fivefold higher hole mobility than films processed from diethyl sulfide solutions with the maximum values approaching 0.1 cm2 V−1 s−1. A further interesting characteristic is the low surface roughness of the resulting CuSCN layers, which in the case of solar cells helps to planarize the indium tin oxide anode. Organic bulk heterojunction and planar organometal halide perovskite solar cells based on aqueous-processed CuSCN HTLs yield power conversion efficiency of 10.7% and 17.5%, respectively. Importantly, aqueous-processed CuSCN-based cells consistently outperform devices based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate HTLs. This is the first report on CuSCN films and devices processed via an aqueous-based synthetic route that is compatible with high-throughput manufacturing and paves the way for further developments.

  13. Passive cooling in modern nuclear reactors

    International Nuclear Information System (INIS)

    Rouai, N. M.

    1998-01-01

    This paper presents some recent experimental results performed with the aim of understanding the mechanism of passive cooling. The AP 600 passive containment cooling system is simulated by an electrically heated vertical pipe, which is cooled by a naturally induced air flow and by a water film descending under gravity. The results demonstrate that although the presence of the water film improved the heat transfer significantly, the mode of heat transfer was very dependent on the experimental parameters. Preheating the water improved both film stability and overall cooling performance

  14. Brane holes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Mukohyama, Shinji

    2011-01-01

    The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.

  15. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    Science.gov (United States)

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  16. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  17. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  18. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  19. Coronal Holes

    Directory of Open Access Journals (Sweden)

    Steven R. Cranmer

    2009-09-01

    Full Text Available Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations, and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance, but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.

  20. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  1. Investigating degradation behavior of hole-trapping effect under static and dynamic gate-bias stress in a dual gate a-InGaZnO thin film transistor with etch stop layer

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Po-Yung [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Hsieh, Tien-Yu [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Tsai, Ming-Yen; Chen, Bo-Wei; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chou, Cheng-Hsu; Chang, Jung-Fang [Product Technology Center, Chimei Innolux Corp., Tainan 741, Taiwan (China)

    2016-03-31

    The degree of degradation between the amorphous-indium–gallium–zinc oxide (a-IGZO) thin film transistor (TFT) using the top-gate only or bottom-gate only is compared. Under negative gate bias illumination stress (NBIS), the threshold voltage (V{sub T}) after bottom-gate NBIS monotonically shifts in the negative direction, whereas top-gate NBIS operation exhibits on-state current increases without V{sub T} shift. Such anomalous degradation behavior of NBIS under top-gate operation is due to hole-trapping in the etch stop layer above the central portion of the channel. These phenomena can be ascribed to the screening of the electric field by redundant source/drain electrodes. In addition, the device degradation of dual gate a-IGZO TFT stressed with different top gate pulse waveforms is investigated. It is observed that the degradation is dependent on the frequency of the top gate pulses. The V{sub T} shift increases with decreasing frequency, indicating the hole mobility of IGZO is low. - Highlights: • Static and dynamic gate bias stresses are imposed on dual gate InGaZnO TFTs. • Top-gate NBIS operation exhibits on-state current increases without VT shift. • The degradation behavior of top-gate NBIS is due to hole-trapping in the ESL. • The degradation is dependent on the frequency of the top gate pulses. • The V{sub T} shift increases with decreasing frequency of the top gate pulses.

  2. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  3. Liquid rocket engine fluid-cooled combustion chambers

    Science.gov (United States)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  4. Quantum black holes

    CERN Document Server

    Calmet, Xavier; Winstanley, Elizabeth

    2014-01-01

    Written by foremost experts, this short book gives a clear description of the physics of quantum black holes. The reader will learn about quantum black holes in four and higher dimensions, primordial black holes, the production of black holes in high energy particle collisions, Hawking radiation, black holes in models of low scale quantum gravity and quantum gravitational aspects of black holes.

  5. Cooling methods for power plants

    International Nuclear Information System (INIS)

    Gaspersic, B.; Fabjan, L.; Petelin, S.

    1977-01-01

    There are some results of measurements carried out on the wet cooling tower 275 MWe at TE Sostanj and on the experimental cooling tower at Jozef Stefan Institute, as well. They are including: the measurements of the output air conditions, the measurements of the cross current of water film and vapour-air flowing through two plates, and the distribution of velocity in boundary layer measured by anemometer

  6. Cooling tower

    International Nuclear Information System (INIS)

    Baer, E.; Dittrich, H.; Ernst, G.; Roller, W.

    1975-01-01

    The task on which the invention is based is to design a cooling tower in such a way that the negative influences of the wind, in particular strong side winds (wind velocities of over 10 m/s), on the functioning of the cooling tower are reduced or eliminated altogether. (orig./TK) [de

  7. Satellite hole formation during dewetting: experiment and simulation

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    The dewetting of thin polymer films on solid substrates has been studied extensively in recent years. These films can decay either by nucleation events or by spinodal dewetting, essentially only depending on the interface potential describing the short- and long-range intermolecular interactions between the interfaces and the initial film thickness. Here, we describe experiments and simulations concerned with the decay of polystyrene thin films. The rupture of the film occurs by the formation of a correlated pattern of holes ('satellite holes') along the liquid rims accumulating at the channel borders. The development of this complex film rupture process, which is neither simply spinodal nor nucleation dewetting, can be mimicked precisely by making use of a novel simulation code based on a rigorous mathematical treatment of the thin film equation and on the knowledge of the effective interface potential of the system. The conditions that determine the appearance and the position of the satellite holes around ...

  8. Black holes

    International Nuclear Information System (INIS)

    Carter, B.

    1980-01-01

    In years 1920 as a result of quantum mechanics principles governing the structure of ordinary matter, a sudden importance for a problem raised a long time ago by Laplace: what happens when a massive body becomes so dense that even light cannot escape from its gravitational field. It is difficult to conceive how could be avoided in the actual universe the accumulation of important masses of cold matter having been submitted to gravitational breaking down followed by the formation of what is called to day a black hole [fr

  9. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  10. Simple method for formation of nanometer scale holes in membranes

    International Nuclear Information System (INIS)

    Schenkel, T.; Stach, E.A.; Radmilovic, V.; Park, S.-J.; Persaud, A.

    2003-01-01

    When nanometer scale holes (diameters of 50 to a few hundred nm) are imaged in a scanning electron microscope (SEM) at pressures in the 10 -5 to 10 -6 torr range, hydrocarbon deposits built up and result in the closing of holes within minutes of imaging. Additionally, electron beam deposition of material from a gas source allows the closing of holes with films of platinum or TEOS oxide. In an instrument equipped both with a focused ion beam (FIB), and an SEM, holes can be formed and then covered with a thin film to form nanopores with controlled openings, ranging down to only a few nanometers

  11. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Black holes; numerical relativity; nonlinear sigma. Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. ... Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, NY 11968, USA ...

  12. Conjugate Heat Transfer Study at Interior Surface of NGV Leading Edge with Combined Shower Head and Impingement Cooling

    Directory of Open Access Journals (Sweden)

    Arun Kumar Pujari

    2014-01-01

    Full Text Available A computational study on conjugate heat transfer is carried out to present the behavior of nondimensional temperature and heat transfer coefficient of a Nozzle Guide Vane (NGV leading edge. Reynolds number of both mainstream flow and coolant impinging jets are varied. The NGV has five rows of film cooling holes arranged in shower head manner and four rows of impingement holes arranged in staggered manner. The results are presented by considering materials of different thermal conductivity. The results show that the mainstream flow affects the temperature distribution on the interior side of the vane leading edge for high conductivity material whereas it has negligible effects for low conductivity material. The effect of changing blowing ratio on internal heat transfer coefficient and internal surface temperature is also presented.

  13. Nonisolated dynamic black holes and white holes

    International Nuclear Information System (INIS)

    McClure, M. L.; Anderson, Kaem; Bardahl, Kirk

    2008-01-01

    Modifying the Kerr-Schild transformation used to generate black and white hole spacetimes, new dynamic black and white holes are obtained using a time-dependent Kerr-Schild scalar field. Physical solutions are found for black holes that shrink with time and for white holes that expand with time. The black hole spacetimes are physical only in the vicinity of the black hole, with the physical region increasing in radius with time. The white hole spacetimes are physical throughout. Unlike the standard Schwarzschild solution the singularities are nonisolated, since the time dependence introduces a mass-energy distribution. The surfaces in the metrics where g tt =g rr =0 are dynamic, moving inward with time for the black holes and outward for the white holes, which leads to a question of whether these spacetimes truly have event horizons--a problem shared with Vaidya's cosmological black hole spacetimes. By finding a surface that shrinks or expands at the same rate as the null geodesics move, and within which null geodesics move inward or outward faster than the surfaces shrink or expand, respectively, it is verified that these do in fact behave like black and white holes

  14. Cosmic microwave background radiation of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  15. Hole-Aligning Tool

    Science.gov (United States)

    Collins, Frank A.; Saude, Frank; Sep, Martin J.

    1996-01-01

    Tool designed for use in aligning holes in plates or other structural members to be joined by bolt through holes. Holes aligned without exerting forces perpendicular to planes of holes. Tool features screw-driven-wedge design similar to (but simpler than) that of some automotive exhaust-pipe-expanding tools.

  16. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  17. Deburring small intersecting holes

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-08-01

    Deburring intersecting holes is one of the most difficult deburring tasks faced by many industries. Only 14 of the 37 major deburring processes are applicable to most intersecting hole applications. Only five of these are normally applicable to small or miniature holes. Basic process capabilities and techniques used as a function of hole sizes and intersection depths are summarized.

  18. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  19. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  20. Alleviation of process-induced cracking of the antireflection TiN coating (ARC-TiN) in Al-Cu and Al-Cu-Si films

    CERN Document Server

    Peng, Y C; Yang, Y R; Hsieh, W Y; Hsieh, Y F

    1999-01-01

    The alleviation of cracking of the TiN-ARC layer on Al-Cu and Al-Cu-Si films after the development process has been achieved. For the TiN-ARC/Al-Cu system, the stress-induced defects decreased with increasing TiN-ARC layer thickness. In contrast, for the TiN-ARC/Al-Cu-Si system, Si nodules formed during cooling, thereby inducing poor coverage with high aspect-ratio holes. As a result, the photoresist developer penetrated through the films. Chemical vapor deposition of TiN-ARC or predeposition of a Ti Interposing layer was used to eliminate the formation of Si nodules.

  1. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

    DEFF Research Database (Denmark)

    Usami, Koji; Naesby, A.; Bagci, Tolga

    2012-01-01

    Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and......Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high......-quality-factor and optically active semiconductor nanomembrane. The cooling is a result of electron–hole generation by cavity photons. Consequently, the cooling factor depends on the optical wavelength, varies drastically in the vicinity of the semiconductor bandgap, and follows the excitonic absorption behaviour...... an alternative cooling mechanism that is a result of electronic stress via the deformation potential, and outline future directions for cavity optomechanics with optically active semiconductors....

  2. Black Holes and the Large Hadron Collider

    Science.gov (United States)

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  3. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  4. ATLAS - Liquid Cooling Systems

    CERN Multimedia

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  5. Interacting black holes

    International Nuclear Information System (INIS)

    Costa, Miguel S.; Perry, Malcolm J.

    2000-01-01

    We revisit the geometry representing l collinear Schwarzschild black holes. It is seen that the black holes' horizons are deformed by their mutual gravitational attraction. The geometry has a string like conical singularity that connects the holes but has nevertheless a well defined action. Using standard gravitational thermodynamics techniques we determine the free energy for two black holes at fixed temperature and distance, their entropy and mutual force. When the black holes are far apart the results agree with Newtonian gravity expectations. This analyses is generalized to the case of charged black holes. Then we consider black holes embedded in string/M-theory as bound states of branes. Using the effective string description of these bound states and for large separation we reproduce exactly the semi-classical result for the entropy, including the correction associated with the interaction between the holes

  6. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  7. Sound Hole Sound

    OpenAIRE

    Politzer, David

    2015-01-01

    The volume of air that goes in and out of a musical instrument's sound hole is related to the sound hole's contribution to the volume of the sound. Helmholtz's result for the simplest case of steady flow through an elliptical hole is reviewed. Measurements on multiple holes in sound box geometries and scales relevant to real musical instruments demonstrate the importance of a variety of effects. Electric capacitance of single flat plates is a mathematically identical problem, offering an alte...

  8. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  9. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  10. Integrated circuit cooled turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  11. Cool Snacks

    DEFF Research Database (Denmark)

    Krogager, Stinne Gunder Strøm; Grunert, Klaus G; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  12. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  13. Untersuchungen zur Optimiening der Kueh11uft-Ausblasekonfiguration fortschrittlicher Turbinenbeschaufelungen (Experiments on the Optimization of Cool Air Blow-Off Configurations of Advanced Turbine Blades )

    National Research Council Canada - National Science Library

    Ganzert, Wolfgang

    2000-01-01

    Deftly building upon a strong literature on film cooling in aerodynamics, the author observes various film cooling configurations in experiments designed to provide a better understanding of the TRACE...

  14. Monopole black hole skyrmions

    OpenAIRE

    Moss, I.G.; Shiiki, N.; Winstanley, E.

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  15. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  16. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  17. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  18. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  19. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  20. PIV and Rotational Raman-Based Temperature Measurements for CFD Validation in a Single Injector Cooling Flow

    Science.gov (United States)

    Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.

    2018-01-01

    Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.

  1. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  2. Black hole feedback on the first galaxies

    Science.gov (United States)

    Jeon, Myoungwon; Pawlik, Andreas H.; Greif, Thomas H.; Glover, Simon C. O.; Bromm, Volker; Milosavljević, Miloš; Klessen, Ralf S.

    2012-09-01

    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through selfconsistent, cosmological simulations. X-ray radiation fromthe accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback startingwith the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.

  3. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  4. Aspects of hole-burning and spectro-temporal holography in molecular doped solids

    International Nuclear Information System (INIS)

    Galap, J.-P.

    2006-01-01

    The persistent spectral hole-burning (PSHB) phenomenon has been known since 1974. It is still an important research area for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectra, photophysics, photochemistry, and dynamics of molecular doped amorphous media, organic as well as inorganic. From another point of view, PSHB allows the engraving of any spectral structures in the inhomogeneous absorption band profile of molecular doped amorphous hosts or ion doped crystals cooled down to liquid helium temperatures. Therefore, a PSHB material is programmable in the spectral domain and consequently it can be transformed in an optical processor capable of achieving user-defined optical functions. Some aspects of both fields are illustrated in the present paper. Concerning the search for efficient PSHB materials, the hole-burning performances and the photophysics of polymer and xerogel based systems are compared. The problem of high-temperature persistent spectral hole-burning materials and the search for new frequency selective photosensitive systems for fast optical pulse processing at 800 nm are considered. Regarding the points treated, inorganic hosts based on silicate xerogels or porous glasses have shown the best results. Moreover, by combining inorganic and organic capabilities or by grafting organic species to the host, hybrid xerogels have not yet revealed all possibilities. Also, the interest of two-photon materials for engraving spectral features with near-infrared or infrared light is developed. As an introduction to possible applications of PSHB material, the basics of spectro-temporal holography are remembered and a demonstrative experiment using a naphthalocyanine-doped polymer film is described, proving that the temporal aberration free recompression of ultrashort light pulses is feasible, therefore opening a way for applications in ultrashort light pulse shaping. Aspects for a comparison between cw hole

  5. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    had good evidence until now," said co-author Paul Martini, also of OSU. "This can help solve a couple of mysteries about galaxy clusters." One mystery is why there are so many blue, star-forming galaxies in young, distant clusters and fewer in nearby, older clusters. AGN are believed to expel or destroy cool gas in their host galaxy through powerful eruptions from the black hole. This may stifle star formation and the blue, massive stars will then gradually die off, leaving behind only the old, redder stars. This process takes about a billion years or more to take place, so a dearth of star-forming galaxies is only noticeable for older clusters. The process that sets the temperature of the hot gas in clusters when they form is also an open question. These new results suggest that even more AGN may have been present when most clusters were forming about ten billion years ago. Early heating of a cluster by large numbers of AGN can have a significant, long-lasting effect on the structure of a cluster by "puffing up" the gas. "In a few nearby clusters we've seen evidence for huge eruptions generated by supermassive black holes. But this is sedate compared to what might be going on in younger clusters," said Eastman. These results appeared in the July 20th issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  6. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  7. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  8. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  9. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  10. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  11. Cooling of BITTER-type electromagnetic coils with intense field

    International Nuclear Information System (INIS)

    Fournier, Jacques

    1966-01-01

    After having outlined the various problems faced when designing BITTER-type electromagnetic coils with axial cooling (evacuation of the power dissipated in the coil, electromagnetic forces, fabrication and machining technologies, corrosion and erosion due to the presence of water and to potential differences), the author of this research thesis reports the study of the cooling of such an electromagnetic coil. In order to know the heat power to be evacuated for a given field, both the power and the field must be computed, but the influence of cooling holes on these both values is not well known. Thus, the author reports the study of the influence of these holes on the power to be dissipated by these holes, and on the magnetic field. Then, he studies how this power is evacuated, and determines heat exchange relationships for the coil canals. He finally discusses how the obtained results can be used to design an advanced electromagnetic coil [fr

  12. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  13. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  14. Misting cooling technique for protected culture of Oncidium orchids ...

    African Journals Online (AJOL)

    user

    2012-10-04

    Oct 4, 2012 ... developed a novel cooling method with a moving water film over an external shade cloth for evaporative cooling work. The microclimate model is a useful tool for design of greenhouses and evaluation of the performance of controlling equipments (Chen et al., 2011; Guillermo et al., 2011; Onder, 2009; Oz et ...

  15. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  16. Film Cooling in Fuel Rich Environments

    Science.gov (United States)

    2013-03-27

    Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial...conducted in the finite element solver Abaqus . An initial two dimensional study was run using a solver created by the author in Matlab. Results are shown

  17. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  18. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  19. Black hole candidates

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Black hole candidates. In the case of X-ray sources such as Cyg X-1, the mass of the compact object inferred from combined optical and X-ray data, suggest M_compact object > 3.4 M_sun => Black Hole! A remarkable discovery!! Thus X-ray emitting binary systems ...

  20. Black hole Berry phase

    NARCIS (Netherlands)

    de Boer, J.; Papadodimas, K.; Verlinde, E.

    2009-01-01

    Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the

  1. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  2. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  3. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of ...

  4. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  5. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  6. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  7. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    as a star or dispersing altogether. Were we engineers with advanced technology, we might attempt to find that critical amount of energy necessary to form a black hole. However, despite some fears to the contrary, such technology does not exist, so instead we investigate this critical regime numerically. The first step is to pick ...

  8. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    denotes the partial derivatives of . The construction of a numerical method with which ... which configurations form black holes and which disperse (the only two options in this model). The problem in picturing such a space is that it is infinite ..... 4.1 The future: Less symmetry. The work described above all assumes spherical ...

  9. Active cooling of a down hole well tractor

    DEFF Research Database (Denmark)

    Soprani, Stefano; Nesgaard, Carsten

    Wireline interventions in high temperature wells represent one of today’s biggest challenges for the oil and gas industry. The high wellbore temperatures, which can reach 200 °C, drastically reduce the life of the electronic components contained in the wireline downhole tools, which can cause the....... Average and maximum mismatches of 3% and 10%, respectively, were found between the measured and predicted heat transfer coefficients, showing good agreement between experimental results and model forecasts....

  10. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    levels found on in service vanes (Bons, et al., 2001, up to 300 microns) flow blockage in first stage turbine nozzles can easily reach 1 to 2 percent in conventional turbines. Deposition levels in syngas fueled gas turbines are expected to be even more problematic. The likelihood of significant deposition to the leading edge of vanes in a syngas environment indicates the need to examine this effect on the leading edge cooling problem. It is critical to understand the influence of leading edge geometry and turbulence on deposition rates for both internally and showerhead cooled leading edge regions. The expected level of deposition in a vane stagnation region not only significantly changes the heat transfer problem but also suggests that cooling arrays may clog. Addressing the cooling issue suggests a need to better understand stagnation region heat transfer with realistic roughness as well as the other variables affecting transport near the leading edge. Also, the question of whether leading edge regions can be cooled internally with modern cooling approaches should also be raised, thus avoiding the clogging issue. Addressing deposition in the pressure side throat region of the nozzle is another critical issue for this environment. Issues such as examining the protective effect of slot and full coverage discrete-hole film cooling on limiting deposition as well as the influence of roughness and turbulence on effectiveness should be raised. The objective of this present study is to address these technical challenges to help enable the development of high efficiency syngas tolerant gas turbine engines.

  11. Synchrotron radiation from spherically accreting black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1982-01-01

    Spherical accretion onto a Schwartzchild black hole, of gas with frozen-in magnetic field, is studied numerically and analytically for a range of hole masses and accretion rates in which synchrotron emission is the dominant radiative mechanism. At small radii the equipartition of magnetic, kinetic, and gravitational energy is assumed to apply, and the gas is heated by dissipation of infalling magnetic energy, turbulent energy, etc. The models can be classified into three types: (a) synchrotron cooling negligible, (b) synchrotron cooling important but synchrotron self-absorption negligible, (c) synchrotron cooling and self-absorption important. In the first case gas temperatures become very high near the horizon but luminosity efficiencies (luminosity/mass-energy accretion rate) are low. In cases (b) and (c) the gas flow near the horizon is essentially isothermal and luminosity efficiencies are fairly high. The analysis and results for the isothermal cases (b) and (c) are valid only for moderate dissipative heating and synchrotron self-absorption. If self-absorption is very strong or if dissipated energy is comparable to infall energy, Comptonization effects, not included in the analysis, become important

  12. A New Cosmological Model: Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2009-07-01

    Full Text Available A new cosmological model called black hole universe is proposed. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient mate- rials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer is infinite in radius and limits to zero for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by the universe family tree. Mathematically, the entire space can be represented as a set of all universes. A black hole universe is a subset of the en- tire space or a subspace. The child universes are null sets or empty spaces. All layers or universes are governed by the same physics - the Einstein general theory of relativity with the Robertson-walker metric of spacetime - and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. The entire life of a universe begins from the birth as a hot star-like or supermassive black hole, passes through the growth and cools down, and expands to the death with infinite large and zero mass density and absolute temperature. The black hole universe model is consistent with the Mach principle, the observations of the universe, and the Einstein general theory of relativity. Its various aspects can be understood with the well-developed physics without any difficulty. The dark energy is not required for the universe to accelerate its expansion. The inflation is not necessary because the black hole universe

  13. Simulation of Impinging Cooling Performance with Pin Fins and Mist Cooling Adopted in a Simplified Gas Turbine Transition Piece

    OpenAIRE

    Tao Xu; Hang Xiu; Junlou Li; Haichao Ge; Qing Shao; Guang Yang; Zhenglei Yu

    2014-01-01

    The gas turbine transition piece was simplified to a one-four cylinder double chamber model with a single row of impinging holes in the outer wall. Heat transfer augmentation in the coolant chamber was achieved through the use of pin fin structure and mist cooling, which could increase the turbulence and heat transfer efficiency. The present research is focused on heat transfer and pressure characteristics of the impinging cooling in the coolant chamber using FLUENT software. With the given d...

  14. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  15. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  16. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  17. Delayed Macular Hole Closure

    Directory of Open Access Journals (Sweden)

    Peter Distelmaier

    2014-04-01

    Full Text Available Purpose: The presented case raises questions regarding the favorable scheduling of planned postoperative care and the ideal observation interval to decide for reoperations in macular hole surgery. Furthermore a discussion about the use of short- and long-acting gas tamponades in macular hole surgery is encouraged. Methods: We present an interventional case report and a short review of the pertinent literature. Results: We report a case of spontaneous delayed macular hole closure after vitreoretinal surgery had been performed initially without the expected success. A 73-year-old male Caucasian patient presented at our clinic with a stage 2 macular hole in his left eye. He underwent 23-gauge pars plana vitrectomy and internal limiting membrane peeling with a 20% C2F6-gas tamponade. Sixteen days after the procedure, an OCT scan revealed a persistent stage 2 macular hole, and the patient was scheduled for reoperation. Surprisingly, at the date of planned surgery, which was another 11 days later, the macular hole had resolved spontaneously without any further intervention. Conclusions: So far no common opinion exists regarding the use of short- or long-acting gas in macular hole surgery. Our case of delayed macular hole closure after complete resorption of the gas tamponade raises questions about the need and duration of strict prone positioning after surgery. Furthermore short-acting gas might be as efficient as long-acting gas. We suggest to wait with a second intervention at least 4 weeks after the initial surgery, since a delayed macular hole closure is possible.

  18. Water cooled static pressure probe

    Science.gov (United States)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  19. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  20. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  1. Planckian charged black holes in ultraviolet self-complete quantum gravity

    Directory of Open Access Journals (Sweden)

    Piero Nicolini

    2018-03-01

    Full Text Available We present an analysis of the role of the charge within the self-complete quantum gravity paradigm. By studying the classicalization of generic ultraviolet improved charged black hole solutions around the Planck scale, we showed that the charge introduces important differences with respect to the neutral case. First, there exists a family of black hole parameters fulfilling the particle-black hole condition. Second, there is no extremal particle-black hole solution but quasi extremal charged particle-black holes at the best. We showed that the Hawking emission disrupts the condition of particle-black hole. By analyzing the Schwinger pair production mechanism, the charge is quickly shed and the particle-black hole condition can ultimately be restored in a cooling down phase towards a zero temperature configuration, provided non-classical effects are taken into account.

  2. Planckian charged black holes in ultraviolet self-complete quantum gravity

    Science.gov (United States)

    Nicolini, Piero

    2018-03-01

    We present an analysis of the role of the charge within the self-complete quantum gravity paradigm. By studying the classicalization of generic ultraviolet improved charged black hole solutions around the Planck scale, we showed that the charge introduces important differences with respect to the neutral case. First, there exists a family of black hole parameters fulfilling the particle-black hole condition. Second, there is no extremal particle-black hole solution but quasi extremal charged particle-black holes at the best. We showed that the Hawking emission disrupts the condition of particle-black hole. By analyzing the Schwinger pair production mechanism, the charge is quickly shed and the particle-black hole condition can ultimately be restored in a cooling down phase towards a zero temperature configuration, provided non-classical effects are taken into account.

  3. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  4. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  5. Illuminating black holes

    Science.gov (United States)

    Barr, Ian A.; Bull, Anne; O'Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.

    2016-07-01

    Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.

  6. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  7. Muon cooling channels

    CERN Document Server

    Eberhard-K-Kei

    2003-01-01

    A procedure uses the equations that govern ionization cooling, and leads to the most important parameters of a muon cooling channel that achieves assumed performance parameters. First, purely transverse cooling is considered, followed by both transverse and longitudinal cooling in quadrupole and solenoid channels. Similarities and differences in the results are discussed in detail, and a common notation is developed. Procedure and notation are applied to a few published cooling channels. The parameters of the cooling channels are derived step by step, starting from assumed values of the initial, final and equilibrium emittances, both transverse and longitudinal, the length of the cooling channel, and the material properties of the absorber. The results obtained include cooling lengths and partition numbers, amplitude functions and limits on the dispersion at the absorber, length, aperture and spacing of the absorber, parameters of the RF system that achieve the longitudinal amplitude function and bucket area ...

  8. Quantum black holes

    International Nuclear Information System (INIS)

    't Hooft, G.

    1987-01-01

    No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references

  9. Design of conformal cooling for plastic injection moulding by heat transfer simulation

    Directory of Open Access Journals (Sweden)

    Sabrina Marques

    2015-12-01

    Full Text Available The cooling channels of a mold for plastic injection have to be as close as possible to the part geometry in order to ensure fast and homogeneous cooling. However, conventional methods to manufacture cooling channels (drilling can only produce linear holes. Selective laser melting (SLM is an additive manufacturing technique capable to manufacture complex cooling channels (known as conformal cooling. Nevertheless, because of the high costs of SLM the benefits of conformal collings are still not clear. The current work investigates two designs of conformal coolings: i parallel circuit; ii serial circuit. Both coolings are evaluated against to traditional cooling circuits (linear channels by CAE simulation to produce parts of polypropylene. The results show that if the conformal cooling is not properly designed it cannot provide reasonable results. The deformation of the product can be reduced significantly after injection but the cycle time reduced not more than 6%.

  10. Charged Galileon black holes

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory

  11. The Thermodynamics of Black Holes

    Directory of Open Access Journals (Sweden)

    Wald Robert M.

    2001-01-01

    Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  12. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  13. Modelling of hydro-thermo-mechanical effects in a fracture intersecting a nuclear waste deposition hole

    International Nuclear Information System (INIS)

    Rutqvist, J.; Stephansson, O.; Noorishad, J.; Tsang, C.F.

    1991-01-01

    The groundwater flow in a vertical fracture intersecting a hypothetical nuclear waste deposition hole was examined. After excavation and emplacement of the nuclear waste canister, the aperture of the radial fracture decreased close to the deposition hole. After swelling of the compacted bentonite buffer and when the rock mass has cooled to virgin temperature, the fracture aperture increased adjacent to the deposition hole wall. This causes a fluid flow velocity increase up to more than one order of magnitude adjacent to the deposition hole wall. The far field flow rate through the repository is slightly affected by the swelling of the bentonite buffer

  14. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  15. Black holes, cuspy atmospheres and galaxy formation.

    Science.gov (United States)

    Binney, James

    2005-03-15

    In cuspy atmospheres, jets driven by supermassive black holes (BHs) offset radiative cooling. The jets fire episodically, but often enough that the cuspy atmosphere does not move very far towards a cooling catastrophe in the intervals of jet inactivity. The ability of energy released on the sub-parsec scale of the BH to balance cooling on scales of several tens of kiloparsecs arises through a combination of the temperature sensitivity of the accretion rate and the way in which the radius of jet disruption varies with ambient density. Accretion of hot gas does not significantly increase BH masses, which are determined by periods of rapid BH growth and star formation when cold gas is briefly abundant at the galactic centre. Hot gas does not accumulate in shallow potential wells. As the Universe ages, deeper wells form, and eventually hot gas accumulates. This gas soon prevents the formation of further stars, since jets powered by the BH prevent it from cooling, and it mops up most cold infalling gas before many stars can form. Thus, BHs set the upper limit to the masses of galaxies. The formation of low-mass galaxies is inhibited by a combination of photo- heating and supernova-driven galactic winds. Working in tandem, these mechanisms can probably explain the profound difference between the galaxy luminosity function and the mass function of dark haloes expected in the cold dark matter cosmology.

  16. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  17. Laser cooling of solids

    OpenAIRE

    Nemova, Galina

    2009-01-01

    Parallel to advances in laser cooling of atoms and ions in dilute gas phase, which has progressed immensely, resulting in physics Nobel prizes in 1997 and 2001, major progress has recently been made in laser cooling of solids. I compare the physical nature of the laser cooling of atoms and ions with that of the laser cooling of solids. I point out all advantages of this new and very promising area of laser physics. Laser cooling of solids (optical refrigeration) at the present time can be lar...

  18. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  19. Control of hole localization in magnetic semiconductors by axial strain

    Science.gov (United States)

    Raebiger, Hannes; Bae, Soungmin; Echeverría-Arrondo, Carlos; Ayuela, Andrés

    2018-02-01

    Mn and Fe-doped GaN are widely studied prototype systems for hole-mediated magnetic semiconductors. The nature of the hole states around the Mn and Fe impurities, however, remains under debate. Our self-interaction corrected density-functional calculations show that the charge neutral Mn 0 and positively charged Fe+ impurities have symmetry-broken d5+h ground states, in which the hole is trapped by one of the surrounding N atoms in a small polaron state. We further show that both systems also have a variety of other d5+h configurations, including symmetric, delocalized states, which may be stabilized by axial strain. This finding opens a pathway to promote long-range hole-mediated magnetic interactions by strain engineering and clarifies why highly strained thin-films samples often exhibit anomalous magnetic properties.

  20. Design, synthesis, thin film deposition and characterization of new indium tin oxide anode functionalization/hole transport organic materials and their application to high performance organic light-emitting diodes

    Science.gov (United States)

    Huang, Qinglan

    The primary goals of this dissertation were to understand the physical and chemical aspects of organic light-emitting diode (OLED) fundamentals, develop new materials as well as device structures, and enhance OLED electroluminescent (EL) response. Accordingly, this dissertation analyzes the relative effects of indium tin oxide (ITO) anode-hole transporting layer (HTL) contact vs. the intrinsic HTL material properties on OLED EL response. Two siloxane-based HTL materials, 4,4'-bis[(4″ -trichlorosilylpropyl-1″-naphthylphenylamino)biphenyl (NPB-Si2) and 4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPD-Si2) have thereby been designed, synthesized and covalently bound to ITO surface. They afford a 250% increase in luminance and ˜50% reduction in turn-on voltage vs. comparable 4,4'-bis(1-naphthylphenylamino)biphenyl (NPB) HTL-based devices. These results suggest new strategies for developing OLED HTL structures, with focus on the anode-HTL contact. Furthermore, archetypical OLED device structures have been refined by simultaneously incorporating the TPD-Si2 layer and a hole- and exciton-blocking/electron transport layer (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) in tris(8-hydroxyquinolato)aluminum(III) and tetrakis(2-methyl-8-hydroxyquinolinato)borate-based OLEDs. The refined device structures lead to high performance OLEDs such as green-emitting OLEDs with maximum luminance (Lmax) ˜ 85,000 cd/m2, power and forward external quantum efficiencies (eta p and etaext) as high as 15.2 lm/W and 4.4 +/- 0.5%, respectively, and blue-emitting OLEDs with Lmax 30,000 cd/m 2, and ˜5.0 lm/W and 1.6 +/- 0.2% etap and eta ext, respectively. The high performance is attributed to synergistically enhanced hole/electron injection and recombination efficiency. In addition, molecule-scale structure effects at ITO anode-HTL interfaces have been systematically probed via a self-assembly approach. A series of silyltriarylamine precursors differing in aryl group and

  1. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  2. Pulsation of black holes

    Science.gov (United States)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  3. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  4. Bringing Black Holes Home

    Science.gov (United States)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  5. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  6. Numerical solution for the temperature distribution in a cooled guide vane blade of a radial gas turbine

    Science.gov (United States)

    Hosny, W. M.; Tabakoff, W.

    1977-01-01

    A two dimensional finite difference numerical technique is presented to determine the temperature distribution of an internal cooled blade of radial turbine guide vanes. A simple convection cooling is assumed inside the guide vane blade. Such cooling has relatively small cooling effectiveness at the leading edge and at the trailing edge. Heat transfer augmentation in these critical areas may be achieved by using impingement jets and film cooling. A computer program is written in FORTRAN IV for IBM 370/165 computer.

  7. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  8. Nonphotochemical hole burning and dispersive kinetics in amorphous solids

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, M.J.

    1990-09-21

    Results covering burn intensities in the nW to {mu}W/cm{sup 2} range, of dispersive hole growth kinetics are reported for Oxazine 720 in glycerol glasses and polyvinyl alcohol polymer films and their deuterated analogues. A theoretical model which employs a distribution function for the hole burning rate constant based upon a Gaussian distribution for the tunnel parameter is shown to accurately describe the kinetic data. This model incorporates the linear electron-phonon coupling. A method for calculating the nonphotochemical quantum yield is presented which utilizes the Gaussian distribution of tunnel parameters. The quantum yield calculation can be extended to determine a quantum yield as a function of hole depth. The effect of spontaneous hole filling is shown to be insignificant over the burn intensity range studied. Average relaxation rates for hole burning are {approximately}8 orders of magnitude greater than for hole filling. The dispersive kinetics of hole burning are observed to be independent over the temperature range of these experiments, 1.6 to 7.0 K. 6 refs., 20 figs., 1 tab.

  9. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  10. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  11. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  12. Are black holes springlike?

    Science.gov (United States)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  13. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  14. Partons and black holes

    International Nuclear Information System (INIS)

    Susskind, L.; Griffin, P.

    1994-01-01

    A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection

  15. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  16. Growth of Primordial Black Holes

    Science.gov (United States)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  17. NASA Microclimate Cooling Challenges

    Science.gov (United States)

    Trevino, Luis A.

    2004-01-01

    The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.

  18. On a general class of regular rotating black holes based on a smeared mass distribution

    Directory of Open Access Journals (Sweden)

    Alexis Larranaga

    2015-04-01

    Full Text Available In this work we investigate the behavior of a new general class of rotating regular black holes based on a non-Gaussian smeared mass distribution. It is shown that the existence of a fundamental minimal length cures the well-known problems in the terminal phase of black hole evaporation, since we find that there is a finite maximum temperature that the black hole reaches before cooling down to absolute zero, so that the evaporation ends up in a zero temperature extremal black hole whose mass and size depends on the value of the fundamental length and on the rotation parameter of the black hole. We also study the geodesic structure in these spacetimes and calculate the shadows that these black holes produce.

  19. THE MATHEMATICAL MODEL OF COOLING RECYCLED WATER IN A COOLING TOWER WITH MECHANICAL TRACTION

    Directory of Open Access Journals (Sweden)

    V. K. Bitiukov

    2014-01-01

    Full Text Available Summary. Analyzed the process of cooling recycled water in the block of cooling towers with forced draft as a control object. Established that for a given construction of the cooling tower its work determined by the ratio of mass flows of water and air. Spending hot water in tower on cooling and rotation speed of shafts of fans are control actions in the waterblock. Controlled perturbation - temperature, humidity, barometric pressure, air temperature and pressure hot water. Uncontrolled disturbance - change of total heat transfer coefficients in the cooling towers, wind speed and direction, formation of ice on the input windows. Mathematical model of cooling process describes the joint heat-and-mass transfer in cooling tower, current water film, the deposition of water droplets, the consumption of electric energy by fan unit allows to optimize the process of cooling through minimizing the total value of active electric power consumed by all cooling towers. It is based on the modified equation of Merkel, equations of Klauzir-Clapeyron, Navier-Stokes. Model is valid under the assumption that the temperature of the water at the interface is equal to the weight average temperature of water, with the air at the interface is saturated. Accepted that the heat flow from the water to the air along the normal to the boundary surface depends on the difference of enthalpy of these environments at the edge of the boundary surfacesection and the weight average enthalpy, water and air are distributed evenly over the crosssectional area of the sprinkler. Development takes into account peculiarities of fluid motion in the sprinkler and allows to determine the adiabatic saturation temperature of the air by the method of "wet" thermometer without its direct measurement. The model is applicable to control the cooling process in real-time.

  20. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  1. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  2. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  3. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  4. Twistors and Black Holes

    NARCIS (Netherlands)

    Neitzke, A.; Pioline, B.; Vandoren, S.

    2007-01-01

    Motivated by black hole physics in N = 2,D = 4 supergravity, we study the geometry of quaternionic-K¨ahler manifolds Mobtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Käahler potentials on the twistor space Z and Swann

  5. Black Holes and Entanglement

    International Nuclear Information System (INIS)

    Borsten, L.

    2011-01-01

    An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.

  6. Black Holes and Entanglement

    Science.gov (United States)

    Borsten, L.

    2011-07-01

    An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.

  7. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  8. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  9. Dancing around the Black Hole

    Science.gov (United States)

    2001-08-01

    ISAAC Finds "Cool" Young Stellar Systems at the Centres of Active Galaxies Summary Supermassive Black Holes are present at the centres of many galaxies, some weighing hundreds of millions times more than the Sun. These extremely dense objects cannot be observed directly, but violently moving gas clouds and stars in their strong gravitational fields are responsible for the emission of energetic radiation from such "active galaxy nuclei" (AGN) . A heavy Black Hole feeds agressively on its surroundings . When the neighbouring gas and stars finally spiral into the Black Hole, a substantial fraction of the infalling mass is transformed into pure energy. However, it is not yet well understood how, long before this dramatic event takes place, all that material is moved from the outer regions of the galaxy towards the central region. So how is the food for the central Black Hole delivered to the table in the first place? To cast more light on this central question, a team of French and Swiss astronomers [1] has carried out a series of trailblazing observations with the VLT Infrared Spectrometer And Array Camera (ISAAC) on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory. The ISAAC instrument is particularly well suited to this type of observations. Visible light cannot penetrate the thick clouds of dust and gas in the innermost regions of active galaxies, but by recording the infrared light from the stars close to the Black Hole , their motions can be studied. By charting those motions in the central regions of three active galaxies (NGC 1097, NGC 1808 and NGC 5728), the astronomers were able to confirm the presence of "nuclear bars" in all three. These are dynamical structures that "open a road" for the flow of material towards the innermost region. Moreover, the team was surprised to discover signs of a young stellar population near the centres of these galaxies - stars that have apparently formed quite recently in a central gas disk. Such a system is unstable

  10. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  11. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    most sensitive scientific instrument ever ... sion, expelling a lot of the mass, but leaving behind a black hole that is at least ... hole, and indeed such a phenomenon may explain the disappear- ance of a star in the galaxy N6946 [21]. The collapse of stars into black holes might account for some of the extraordinarily powerful ...

  12. Warped products and black holes

    International Nuclear Information System (INIS)

    Hong, Soon-Tae

    2005-01-01

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  13. Sowing Black Hole Seeds: Forming Direct Collapse Black Holes With Realistic Lyman-Werner Radiation Fields in Cosmological Simulations

    Science.gov (United States)

    Holley-Bockelmann, Kelly; Dunn, Glenna; Bellovary, Jillian M.; Christensen, Charlotte

    2016-01-01

    Luminous quasars detected at redshifts z > 6 require that the first black holes form early and grow to ~109 solar masses within one Gyr. Our work uses cosmological simulations to study the formation and early growth of direct collapse black holes. In the pre-reionization epoch, molecular hydrogen (H2) causes gas to fragment and form Population III stars, but Lyman-Werner radiation can suppress H2 formation and allow gas to collapse directly into a massive black hole. The critical flux required to inhibit H2 formation, Jcrit, is hotly debated, largely due to the uncertainties in the source radiation spectrum, H2 self-shielding, and collisional dissociation rates. Here, we test the power of the direct collapse model in a non-uniform Lyman-Werner radiation field, using an updated version of the SPH+N-body tree code Gasoline with H2 non-equilibrium abundance tracking, H2 cooling, and a modern SPH implementation. We vary Jcrit from 30 to 104 J21 to study the effect on seed black holes, focusing on black hole formation as a function of environment, halo mass, metallicity, and proximity of the Lyman-Werner source. We discuss the constraints on massive black hole occupation fraction in the quasar epoch, and implications for reionization, high-redshift X-ray background radiation, and gravitational waves.

  14. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  15. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  16. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  17. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  18. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  19. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  20. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  1. Initial Cooling Experiment (ICE)

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  2. Laser hole cutting into bronze: Thermal stress analysis

    Science.gov (United States)

    Yilbas, B. S.; Ahktar, S. S.; Chatwin, C.

    2011-10-01

    Laser hole cutting in bronze is carried out and the thermal stress formed in the cutting section is examined using a finite element code. The cut geometry and microstructural changes in the cutting section are examined using optical microscope, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS). It is found that the high conductivity of bronze increases the cooling rates within the cutting section, which influences the thermal stress field in the cutting region. The residual stress predicted is in the order of 200 MPa within the vicinity of the hole circumference. The striation pattern at the kerf surface changes towards the hole exit, which is associated with the drag forces developed in this region.

  3. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  4. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  5. f(R) Black holes

    OpenAIRE

    Moon, Taeyoon; Myung, Yun Soo; Son, Edwin J.

    2011-01-01

    We study the $f(R)$-Maxwell black hole imposed by constant curvature and its all thermodynamic quantities, which may lead to the Reissner-Nordstr\\"om-AdS black hole by redefining Newtonian constant and charge. Further, we obtain the $f(R)$-Yang-Mills black hole imposed by constant curvature, which is related to the Einstein-Yang-Mills black hole in AdS space. Since there is no analytic black hole solution in the presence of Yang-Mills field, we obtain asymptotic solutions. Then, we confirm th...

  6. Black Holes and Firewalls

    Science.gov (United States)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  7. Rotating black hole and quintessence

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2016-01-01

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e 2 ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E , it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter ω and so is the ergoregion. (orig.)

  8. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  9. Beyond the black hole

    International Nuclear Information System (INIS)

    Boslough, J.

    1985-01-01

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  10. Black holes and holography

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2012-01-01

    The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.

  11. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  12. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  13. Role of primordial black holes in the direct collapse scenario of supermassive black hole formation at high redshifts

    Science.gov (United States)

    Pandey, Kanhaiya L.; Mangalam, A.

    2018-02-01

    In this paper, we explore the possibility of accreting primordial black holes as the source of heating for the collapsing gas in the context of the direct collapse black hole scenario for the formation of super-massive black holes (SMBHs) at high redshifts, z˜ 6-7. One of the essential requirements for the direct collapse model to work is to maintain the temperature of the in-falling gas at ≈ 10^4 K. We show that even under the existing abundance limits, the primordial black holes of masses ≳ 10^{-2}M_⊙, can heat the collapsing gas to an extent that the H_2 formation is inhibited. The collapsing gas can maintain its temperature at 10^4 K till the gas reaches a critical density n_{{c}} {≈ } 10^3 cm^{-3}, at which the roto-vibrational states of H_2 approaches local thermodynamic equilibrium and H_2 cooling becomes inefficient. In the absence of H_2 cooling, the temperature of the collapsing gas stays at ≈ 10^4 K even as it collapses further. We discuss scenarios of subsequent angular momentum removal and the route to find collapse through either a supermassive star or a supermassive disk.

  14. Towards Laser Cooling of Semiconductors

    Science.gov (United States)

    Hassani nia, Iman

    This dissertation reports on novel theoretical concepts as well as experimental efforts toward laser cooling of semiconductors. The use of quantum well system brings the opportunity to engineer bandstructure, effective masses and the spatial distribution of electrons and holes. This permits the incorporation of novel quantum mechanical phenomena to manipulate the temperature change of the material upon light-matter interaction. Inspired by the fact that Coulomb interaction can lead to blueshift of radiation after photo-absorption, the theory of Coulomb assisted laser cooling is proposed and investigated for the first time. In order to design suitable multiple quantum well (MQW) structures with Coulomb interaction a Poisson-Schrodinger solver was devised using MATLAB software. The software is capable of simulating all III-V material compositions and it results have been confirmed experimentally. In the next step, different MQW designs were proposed and optimized to exploit Coulomb interaction for assisting of optical refrigeration. One of the suitable designs with standard InGaAsP/InAlAs/InP layers was used to grow the MQW structures using metal organic vapor deposition (MOCVD). Novel techniques of fabrication were implemented to make suspended structures for detecting ultralow thermal powers. By fabricating accurate thermometers, the temperature changes of the device upon laser absorption were measured. The accurate measurement of the temperature encouraged us to characterize the electrical response of the device as another important tool to promote our understanding of the 4 underlying physical phenomena. This is in addition to the accurate spectral and time-resolved photoluminescence measurements that provided us with a wealth of information about the effects of stress, Auger recombination and excitonic radiance in such structures. As the future works, important measurements for finding the quantum efficiency of the devices via electrical characterization and

  15. Evaporative cooling of trapped atoms

    International Nuclear Information System (INIS)

    Ketterle, W.; Van Druten, N.J.

    1996-01-01

    This report discusses the following topics on evaporative cooling of trapped atoms: Theoretical models for evaporative cooling; the role of collisions for real atoms; experimental techniques and summary of evaporative cooling experiments. 166 refs., 6 figs., 3 tabs

  16. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Barry Univ., Miami Shores, FL (United States). Physical Sciences; Irastorza, Igor [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Redondo, Javier [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [DESY Hamburg (Germany). Theory Group

    2015-12-15

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a preference for a mild non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP represents the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO.

  17. Water-cooled electronics

    CERN Document Server

    Dumont, G; Righini, B

    2000-01-01

    LHC experiments demand on cooling of electronic instrumentation will be extremely high. A large number of racks will be located in underground caverns and counting rooms, where cooling by conventional climatisation would be prohibitively expensive. A series of tests on the direct water cooling of VMEbus units and of their standard power supplies is reported. A maximum dissipation of 60 W for each module and more than 1000 W delivered by the power supply to the crate have been reached. These values comply with the VMEbus specifications. (3 refs).

  18. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  19. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Wang Yiping; Cui Yong; Zhu Li; Han Lijun

    2008-01-01

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m 2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m 2 . As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m 2 and 36 W/m 2 , respectively

  20. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes

    Science.gov (United States)

    Freund, Friedemann T.; Freund, Minoru M.

    2012-01-01

    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  1. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  2. Cooling Devices in Laser therapy.

    Science.gov (United States)

    Das, Anupam; Sarda, Aarti; De, Abhishek

    2016-01-01

    Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician's personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  3. Film/NotFilm

    OpenAIRE

    Willems, Gertjan

    2016-01-01

    Although Samuel Beckett (1906-1989) showed a genuine interest in audio-visual media in his fascinating and innovative radio plays and television works, and in 1936 even wrote a letter to Sergei Eisenstein to be accepted to the famous Soviet film school VGIK, the 22-minute Film (1965) was his only venture into cinema. Beckett conceived the film, wrote the screenplay, supervised the production and, as one of the film’s crew members recalled and as the director Alan Schneider himself acknowledge...

  4. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  5. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  6. LHC cooling gains ground

    CERN Multimedia

    Huillet-Miraton Catherine

    The nominal cryogenic conditions of 1.9 K have been achieved in sectors 5-6 and 7-8. This means that a quarter of the machine has reached the nominal conditions for LHC operation, having attained a temperature of below 2 K (-271°C), which is colder than interstellar space! Elsewhere, the cryogenic system in Sector 8-1 has been filled with liquid helium and cooled to 2K and will soon be available for magnet testing. Sectors 6-7 and 2-3 are being cooled down and cool-down operations have started in Sector 3-4. Finally, preparations are in hand for the cool-down of Sector 1-2 in May and of Sector 4-5, which is currently being consolidated. The LHC should be completely cold for the summer. For more information: http://lhc.web.cern.ch/lhc/Cooldown_status.htm.

  7. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  8. Cooling tower waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

    1998-05-01

    At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

  9. COD correction for laser cooling at S-LSR

    International Nuclear Information System (INIS)

    Souda, Hikaru; Fujimoto, Shinji; Tongu, Hiromu; Shirai, Toshiyuki; Tanabe, Mikio; Ishikawa, Takehiro; Nakao, Masao; Ikegami, Masahiro; Wakita, Akihisa; Iwata, Soma; Fujimoto, Tetsuya; Takeuchi, Takeshi; Noda, Koji; Noda, Akira

    2008-01-01

    A closed orbit is corrected for single-turn injection to perform laser cooling experiments of 40 keV 24 Mg + beam at the small laser-equipped storage ring (S-LSR). Closed orbit distortion (COD) corrections have been carried out using a downhill simplex method, and CODs of less than ±0.5mm have been achieved throughout the whole circumference. The injection orbit and the CODs are optimized to pass through the two aperture holes in the alignment targets located in the laser cooling section with an algorithm to maximize beam lifetime. The CODs at the aperture holes are reduced to be less than ±0.2mm, assuring an overlap between the laser and the 24 Mg + ion beam.

  10. Black Holes, Worm Holes, and Future Space Propulsion

    Science.gov (United States)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  11. Deep Hole in 'Clovis'

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 At a rock called 'Clovis,' the rock abrasion tool on NASA's Mars Exploration Rover Spirit cut a 9-millimeter (0.35-inch) hole during the rover's 216th martian day, or sol (Aug. 11, 2004). The hole is the deepest drilled in a rock on Mars so far. This approximately true-color view was made from images taken by Spirit's panoramic camera on sol 226 (Aug. 21, 2004) at around 12:50 p.m. local true solar time -- early afternoon in Gusev Crater on Mars. To the right is a 'brush flower' of circles produced by scrubbing the surface of the rock with the abrasion tool's wire brush. Scientists used rover's Moessbauer spectrometer and alpha particle X-ray spectrometer to look for iron-bearing minerals and determine the elemental chemical composition of the rock. This composite combines images taken with the camera's 750-, 530-, and 430-nanometer filters. The grayish-blue hue in this image suggests that the interior of the rock contains iron minerals that are less oxidized than minerals on the surface. The diameter of the hole cut into the rock is 4.5 centimeters (1.8 inches). Data on the graph (Figure 1) from the alpha particle X-ray spectrometer instrument on the robotic arm of NASA's Mars Exploration Rover Spirit reveal the elemental chemistry of two rocks, 'Ebenezer' and 'Clovis,' (see PIA06914) in the 'Columbia Hills.' Scientists found, through comparison of the rocks' chemistry, that Ebenezer and Clovis have very different compositions from the rocks on the Gusev plains.

  12. Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers.

    Science.gov (United States)

    Mayer, L; Kazantzidis, S; Escala, A; Callegari, S

    2010-08-26

    Observations of distant quasars indicate that supermassive black holes of billions of solar masses already existed less than a billion years after the Big Bang. Models in which the 'seeds' of such black holes form by the collapse of primordial metal-free stars cannot explain the rapid appearance of these supermassive black holes because gas accretion is not sufficiently efficient. Alternatively, these black holes may form by direct collapse of gas within isolated protogalaxies, but current models require idealized conditions, such as metal-free gas, to prevent cooling and star formation from consuming the gas reservoir. Here we report simulations showing that mergers between massive protogalaxies naturally produce the conditions for direct collapse into a supermassive black hole with no need to suppress cooling and star formation. Merger-driven gas inflows give rise to an unstable, massive nuclear gas disk of a few billion solar masses, which funnels more than 10(8) solar masses of gas to a sub-parsec-scale gas cloud in only 100,000 years. The cloud undergoes gravitational collapse, which eventually leads to the formation of a massive black hole. The black hole can subsequently grow to a billion solar masses on timescales of about 10(8) years by accreting gas from the surrounding disk.

  13. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  14. Quantum effects in black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1979-01-01

    A strict definition of black holes is presented and some properties with regard to their mass are enumerated. The Hawking quantum effect - the effect of vacuum instability in the black hole gravitational field, as a result of shich the black hole radiates as a heated body is analyzed. It is shown that in order to obtain results on the black hole radiation it is sufficient to predetermine the in-vacuum state at a time moment in the past, when the collapsing body has a large size, and its gravitational field can be neglected. The causes and the place of particle production by the black hole, and also the space-time inside the black hole, are considered

  15. Particle creation by black holes

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1975-01-01

    In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de

  16. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  17. Artificial black holes

    CERN Document Server

    Visser, Matt; Volovik, Grigory E

    2009-01-01

    Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.

  18. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  19. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  20. Prediction of ultraviolet-induced damage during plasma processes in dielectric films using on-wafer monitoring techniques

    International Nuclear Information System (INIS)

    Ishikawa, Yasushi; Katoh, Yuji; Okigawa, Mitsuru; Samukawa, Seiji

    2005-01-01

    We measured electron-hole pairs generated in dielectric film using our developed on-wafer monitoring technique to detect electrical currents in the film during the plasma etching processes. The electron-hole pairs were generated by plasma induced ultraviolet (UV) photons, and the number of electron-hole pairs depends on the UV wavelength. In SiO 2 film, UV light, which has a wavelength of less than 140 nm, generates electron-hole pairs, because the band gap energy of the film is 8.8 eV. On the other hand, in Si 3 N 4 film, which has a band gap energy level of 5.0 eV, UV light below 250 nm induces the electron-hole pairs. Additionally, we evaluated the fluorocarbon gas plasma process that induces UV radiation damage using multilayer sensors that consisted of both SiO 2 and Si 3 N 4 stacked films. In these cases, electron-hole pair generation depended on the dielectric film structure. There were more electron-hole pairs generated in the SiO 2 deposited on the Si 3 N 4 film than in the Si 3 N 4 deposited on the SiO 2 film. As a result, our developed on-wafer monitoring sensor was able to predict electron-hole pair generation and the device characteristics

  1. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  2. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  3. Destroying extremal magnetized black holes

    Science.gov (United States)

    Siahaan, Haryanto M.

    2017-07-01

    The gedanken experiment by Wald to destroy a black hole using a test particle in the equatorial plane is adapted to the case of extremal magnetized black holes. We find that the presence of external magnetic fields resulting from the "Ernst magnetization" permits a test particle to have strong enough energy to destroy the black hole. However, the corresponding effective potentials show that such particles would never reach the horizon.

  4. Calandria cooling structure in pressure tube reactor

    International Nuclear Information System (INIS)

    Hyugaji, Takenori; Sasada, Yasuhiro.

    1976-01-01

    Purpose: To contrive the structure of a heavy water distributing device in a pressure tube reactor thereby to reduce the variation in the cooling function thereof due to the welding deformation and installation error. Constitution: A heating water distributing plate is provided at the lower part of the upper tubular plate of a calandria tank to form a heavy water distributing chamber between both plates and a plurality of calandria tubes. Heavy water which has flowed in the upper part of the heavy water distributing plate from the heavy water inlet nozzle flows down through gaps formed around the calandria tubes, whereby the cooling of the calandria tank and the calandria tubes is carried out. In the above described calandria cooling structure, a heavy water distributing plate support is provided to secure the heavy water distributing plate and torus-shaped heavy water distributing rings are fixed to holes formed in the heavy water distributing plate penetrating through the calandria tubes thereby to form torus-shaped heavy water outlet ports each having a space. (Seki, T.)

  5. Gas turbine row #1 steam cooled vane

    Science.gov (United States)

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  6. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    Strominger, A.

    1996-01-01

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  7. On black hole horizon fluctuations

    International Nuclear Information System (INIS)

    Tuchin, K.L.

    1999-01-01

    A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken

  8. Black holes and the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  9. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  10. Braneworld Black Hole Gravitational Lensing

    International Nuclear Information System (INIS)

    Liang Jun

    2017-01-01

    A class of braneworld black holes, which I called as Bronnikov–Melnikov–Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio–Fabbri–Mazzacurati (CFM) black holes. (paper)

  11. Can Black Hole Relax Unitarily?

    Science.gov (United States)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  12. How black holes saved relativity

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  13. Nariai black holes with quintessence

    OpenAIRE

    Fernando, Sharmanthie

    2014-01-01

    In this paper we study the properties of Schwarzschild black hole surrounded by quintessence matter. The main objective of the paper is to show the existence of Nariai type black hole for special values of the parameters in the theory. The Nariai black hole with the quintessence has the topology $dS_2 \\times S_2$ with $dS_2$ with a different scalar curvature than what would be expected for the Schwarzschild-de Sitter degenerate black hole. Temperature and the entropy for the Schwarzschild-de ...

  14. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  15. Dewetting dynamics in miscible polymer-polymer thin film mixtures

    Science.gov (United States)

    Besancon, Brian M.; Green, Peter F.

    2007-06-01

    Thin polystyrene films supported by oxidized silicon (SiOx/Si) substrates may be unstable or metastable, depending on the film thickness, h, and can ultimately dewet the substrate when heated above their glass transition. In the metastable regime, holes nucleate throughout the film and subsequently grow due to capillary driving forces. Recent studies have shown that the addition of a second component, such as a copolymer or miscible polymer, can suppress the dewetting process and stabilize the film. We examined the hole growth dynamics and the hole morphology in thin film mixtures composed of polystyrene and tetramethyl bisphenol-A polycarbonate (TMPC) supported by SiOx/Si substrates. The hole growth velocity decreased with increasing TMPC content beyond that expected from changes in the bulk viscosity. The authors show that the suppression of the dewetting velocity is primarily due to reductions in the capillary driving force for dewetting and to increased friction at the substrate-polymer interface. The viscosity, as determined from the hole growth dynamics, decreases with decreasing film thickness, and is connected to a depression of the glass transition of the film.

  16. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  17. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  18. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  19. Experiments on the breakup of drop-impact crowns by Marangoni holes

    KAUST Repository

    Aljedaani, Abdulrahman Barakat

    2018-04-04

    We investigate experimentally the breakup of the Edgerton crown due to Marangoni instability when a highly viscous drop impacts on a thin film of lower-viscosity liquid, which also has different surface tension than the drop liquid. The presence of this low-viscosity film modifies the boundary condition, giving effective slip to the drop along the solid substrate. This allows the high-viscosity drop to form a regular bowl-shaped crown, which rises vertically away from the solid and subsequently breaks up through the formation of a multitude of Marangoni holes. Previous experiments have proposed that the breakup of the crown results from a spray of fine droplets ejected from the thin low-viscosity film on the solid, e.g. Thoroddsen et al. (J. Fluid Mech., vol. 557, 2006, pp. 63–72). These droplets can hit the inner side of the crown forming spots with lower surface tension, which drives a thinning patch leading to the hole formation. We test the validity of this assumption with close-up imaging to identify individual spray droplets, to show how they hit the crown and their lower surface tension drive the hole formation. The experiments indicate that every Marangoni-driven patch/hole is promoted by the impact of such a microdroplet. Surprisingly, in experiments with pools of higher surface tension, we also see hole formation. Here the Marangoni stress changes direction and the hole formation looks qualitatively different, with holes and ruptures forming in a repeatable fashion at the centre of each spray droplet impact. Impacts onto films of the same liquid, or onto an immiscible liquid, do not in general form holes. We furthermore characterize the effects of drop viscosity and substrate-film thickness on the overall evolution of the crown. We also measure the three characteristic velocities associated with the hole formation: i.e. the Marangoni-driven growth of the thinning patches, the rupture speed of the resulting thin films inside these patches and finally the

  20. Preparation of Track Etch Membrane Filters Using Polystyrene Film

    International Nuclear Information System (INIS)

    Kaewsaenee, Jerawut; Ratanatongchai, Wichian; Supaphol, Pitt; Visal-athaphand, Pinpan

    2007-08-01

    Full text: Polystyrene nuclear track etch membrane filters was prepared by exposed 13 .m thin film polystyrene with fission fragment. Nuclear latent track was enlarged to through hole on the film by etching with 80 o C 40% H 2 SO 4 with K 2 Cr 2 O 7 solution for 6-10 hour. The hole size was depend on concentration of etching solution and etching time with 1.3-3.4 .m hole diameter. The flow rate test of water was 0.79-1.56 mm cm-2 min-1 at 109.8-113.7 kPa pressure

  1. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  2. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  3. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  4. ELECTRON COOLING OF RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.; LITVINENKO, V.; BARTON, D.; ET AL.

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV.

  5. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    was discovered in the constellation Cygnus; a bright X-ray emit- ter associated with a twin-star system, and christened Cygnus X-. 1. It has a massive star and a black hole orbiting each other. With an optical telescope it is the companion star of the black hole which is visible, which produces stellar winds blowing away from.

  6. Black holes and quantum mechanics

    NARCIS (Netherlands)

    t Hooft, G.|info:eu-repo/dai/nl/074127888

    2010-01-01

    After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these

  7. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  8. ATLAS simulated black hole event

    CERN Multimedia

    Pequenão, J

    2008-01-01

    The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  9. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  10. What, no black hole evaporation

    International Nuclear Information System (INIS)

    Hajicek, P.; Israel, W.

    1980-01-01

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  11. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  12. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  13. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  14. Application of Poly(Lactic Acid) Mulching Film in Watermelon Cultivation in Greenhouse

    OpenAIRE

    WANG Ting-ting; LI Mei; JIANG Wei; WU Rong-hua; SUN Cheng

    2017-01-01

    The degradation properties of poly(lactic acid)(PLA) mulching film and its effects on soil and crops were studied in this paper. The comparison experiments based on watermelon production were conducted with PLA mulching film and traditional non-degradable PE mulching film. The results showed that the PLA mulching film firstly appeared cracks, then holes and breaks in the end during the degradation process. The PLA mulching film had more favorable heat preservation effect, and there were no si...

  15. Bore tube assembly for steam cooling a turbine rotor

    Science.gov (United States)

    DeStefano, Thomas Daniel; Wilson, Ian David

    2002-01-01

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  16. P-type hole mobility measurement in Na-doped BaSnO3

    Science.gov (United States)

    Hong, Sungyun; Jang, Yeaju; Park, Jisung; Char, Kookrin

    P-type doping in oxide materials has been a difficult task because of the oxygen vacancies. Taking advantage of the excellent oxygen stability in BaSnO3 (BSO), we replaced Ba with Na in BSO to achieve p-type doping. Ba1-xNaxSnO3 (BNSO) films with varying dopant ratios were epitaxially grown by the pulsed laser deposition technique. We confirmed that the BNSO films were properly grown and determined their lattice constants with respect to the dopant ratio by x-ray diffraction. Due to the high resistance of the films at room temperature, we measured the transport properties of the BNSO films at temperatures ranging from 200 C to 400 C. Hall resistance measurements in a +/- 5 kG magnetic field were performed to confirm that the films are indeed p-type. As the temperature increased, the hole carrier concentration of the films increased while the film resistance decreased. The hole mobility values, in the tens of cm2/Vsec range, were found to decrease with the temperature. We will present the complete doping rate and temperature dependence of the hole mobility and compare their behavior with those of n-type La-doped BSO. Samsung science and technology foundation.

  17. Magnetic fields around black holes

    Science.gov (United States)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  18. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  19. Digesting the doughnut hole.

    Science.gov (United States)

    Joyce, Geoffrey F; Zissimopoulos, Julie; Goldman, Dana P

    2013-12-01

    Despite its success, Medicare Part D has been widely criticized for the gap in coverage, the so-called "doughnut hole". We compare the use of prescription drugs among beneficiaries subject to the coverage gap with usage among beneficiaries who are not exposed to it. We find that the coverage gap does, indeed, disrupt the use of prescription drugs among seniors with diabetes. But the declines in usage are modest and concentrated among higher cost, brand-name medications. Demand for high cost medications such as antipsychotics, antiasthmatics, and drugs of the central nervous system decline by 8-18% in the coverage gap, while use of lower cost medications with high generic penetration such as beta blockers, ACE inhibitors and antidepressants decline by 3-5% after reaching the gap. More importantly, lower adherence to medications is not associated with increases in medical service use. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Regular phantom black holes.

    Science.gov (United States)

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  1. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  2. The search for black holes

    International Nuclear Information System (INIS)

    Torn, K.

    1976-01-01

    Conceivable experimental investigations to prove the existence of black holes are discussed. Double system with a black hole turning around a star-satellite are in the spotlight. X-radiation emmited by such systems and resulting from accretion of the stellar gas by a black hole, and the gas heating when falling on the black hole might prove the model suggested. A source of strong X-radiation observed in the Cygnus star cluster and referred to as Cygnus X-1 may be thus identified as a black hole. Direct registration of short X-ray pulses with msec intervals might prove the suggestion. The lack of appropriate astrophysic facilities is pointed out to be the major difficulty on the way of experimental verifications

  3. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  4. Performance of non-recessed hole-entry hybrid journal bearing operating under turbulent regime

    Directory of Open Access Journals (Sweden)

    Nathi Ram

    2016-03-01

    Full Text Available The effect of turbulent flow on non-recessed hole-entry hybrid journal bearing system has been investigated numerically. For turbulent flow of lubricant in compensated hole-entry hybrid journal bearing by CFV, the Reynolds equation has been modified and solved using finite element method. The performance characteristics parameters of bearing have been presented for different values of Reynolds numbers. The bearing provides the higher values of minimum fluid film thickness and fluid film stiffness coefficients for constant restrictor design parameter when bearing operates under turbulent regime than laminar regime.

  5. Area spectrum of slowly rotating black holes

    OpenAIRE

    Myung, Yun Soo

    2010-01-01

    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  6. Direct electronic measurement of Peltier cooling and heating in graphene.

    Science.gov (United States)

    Vera-Marun, I J; van den Berg, J J; Dejene, F K; van Wees, B J

    2016-05-10

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  7. Are LIGO's Black Holes Made From Smaller Black Holes?

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that

  8. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  9. Simulation of Impinging Cooling Performance with Pin Fins and Mist Cooling Adopted in a Simplified Gas Turbine Transition Piece

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2014-01-01

    Full Text Available The gas turbine transition piece was simplified to a one-four cylinder double chamber model with a single row of impinging holes in the outer wall. Heat transfer augmentation in the coolant chamber was achieved through the use of pin fin structure and mist cooling, which could increase the turbulence and heat transfer efficiency. The present research is focused on heat transfer and pressure characteristics of the impinging cooling in the coolant chamber using FLUENT software. With the given diameter of impinging hole, pin fin diameter ratios D/d have been numerically studied in ranges from 1 to 2. Three different detached L were simulated. The impinging cooling performance in all cases was compared between single-phase and two-phase (imported appropriate mist flow in the coolant chamber. All the simulation results reveal that the factors of L and D/d have significant effects on the convective heat transfer. After the pin fin structure was taken, the resulting temperature decrease of 38.77 K at most compared with the result of structure without pin fins. And with the mist injecting into the cooling chamber, the area weighted average temperature got a lower value without excess pressure loss, which could satisfy the more stringent requirements in engineering.

  10. Electron Cooling Dynamics for RHIC

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Ben-Zvi, I.; Eidelman, Yu.; Litvinenko, V.N.; Malitsky, N.; Bruhwiler, D.; Meshkov, I.; Sidorin, A.; Smirnov, A.; Trubnikov, G.

    2005-01-01

    Research towards high-energy electron cooling of RHIC is presently underway at Brookhaven National Laboratory. In this new regime, electron cooling has many unique features and challenges. At high energy, due to the difficulty of providing operational reserves, the expected cooling times must be estimated with a high degree of accuracy compared to extant low-energy coolers. To address these high-energy cooling issues, a detailed study of cooling dynamics based on computer codes and experimental benchmarking was launched at BNL. In this paper, we present an update of the high-energy cooling dynamics studies. We also include a discussion of some features of electron cooling relevant to colliders, such as the effects of rapid cooling of the beam core and an accurate treatment of the intra-beam scattering for such cooled ion distributions

  11. Stability and Heat Transfer Characteristics of Condensing Films

    Science.gov (United States)

    Hermanson, J. C.; Pedersen, P. C.; Allen, J. S.; Shear, M. A.; Chen, Z. Q.; Alexandrou, A. N.

    2002-01-01

    The overall objective of this research is to investigate the fundamental physics of film condensation in reduced gravity. The condensation of vapor on a cool surface is important in many engineering problems,including spacecraft thermal control and also the behavior of condensate films that may form on the interior surfaces of spacecraft. To examine the effects of body force on condensing films, two different geometries have been tested in the laboratory: (1) a stabilizing gravitational body force (+1g, or condensing surface facing 'upwards') and (2) de-stabilizing gravitational body force (-1g, or 'downwards'). For each geometry, different fluid configurations are employed to help isolate the fluid mechanical and thermal mechanisms operative in condensing films. The fluid configurations are (a) a condensing film, and (b) a non-condensing film with film growth by mass addition by through the plate surface. Condensation experiments are conducted in a test cell containing a cooled copper or brass plate with an exposed diameter of 12.7 cm. The metal surface is polished to allow for double-pass shadowgraph imaging, and the test surface is instrumented with imbedded heat transfer gauges and thermocouples. Representative shadowgraph images of a condensing, unstable (-1g) n-pentane film are shown. The interfacial disturbances associated with the de-stabilizing body force leading to droplet formation and break-off can be clearly seen. The heat transfer coefficient associated with the condensing film is shown. The heat transfer coefficient is seen to initially decrease, consistent with the increased thermal resistance due to layer growth. For sufficiently long time, a steady value of heat transfer is observed, accompanied by continuous droplet formation and break-off. The non-condensing cell consists of a stack of thin stainless steel disks 10 cm in diameter mounted in a brass enclosure. The disks are perforated with a regular pattern of 361 holes each 0.25 mm in diameter

  12. Black hole decay as geodesic motion

    International Nuclear Information System (INIS)

    Gupta, Kumar S.; Sen, Siddhartha

    2003-01-01

    We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The equation governing black hole decay can be identified as the geodesic equation in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. Moreover, this approach predicts a precise correction term to the usual expression for the decay rate of black holes

  13. Black holes and quantum processes in them

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1976-01-01

    The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them

  14. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  15. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...

  16. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  17. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  18. Electron Cooling of RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Barton, D.S.; Beavis, D.B.; Blaskiewicz, M.; Brennan, J.M.; Burrill, A.; Calaga, R.; Cameron, P.; Chang, X.Y.; Connolly, R.; Eidelman, Yu.I.; Fedotov, A.V.; Fischer, W.; Gassner, D.M.; Hahn, H.; Harrison, M.; Hershcovitch, A.; Hseuh, H.-C.; Jain, A.K.; Johnson, P.D.J.; Kayran, D.; Kewisch, J.; Lambiase, R.F.; Litvinenko, V.; MacKay, W.W.; Mahler, G.J.; Malitsky, N.; McIntyre, G.T.; Meng, W.; Mirabella, K.A.M.; Montag, C.; Nehring, T.C.N.; Nicoletti, T.; Oerter, B.; Parzen, G.; Pate, D.; Rank, J.; Rao, T.; Roser, T.; Russo, T.; Scaduto, J.; Smith, K.; Trbojevic, D.; Wang, G.; Wei, J.; Williams, N.W.W.; Wu, K.-C.; Yakimenko, V.; Zaltsman, A.; Zhao, Y.; Abell, D.T.; Bruhwiler, D.L.; Bluem, H.; Burger, A.; Cole, M.D.; Favale, A.J.; Holmes, D.; Rathke, J.; Schultheiss, T.; Todd, A.M.M.; Burov, A.V.; Nagaitsev, S.; Delayen, J.R.; Derbenev, Y.S.; Funk, L. W.; Kneisel, P.; Merminga, L.; Phillips, H.L.; Preble, J.P.; Koop, I.; Parkhomchuk, V.V.; Shatunov, Y.M.; Skrinsky, A.N.; Koop, I.; Parkhomchuk, V.V.; Shatunov, Y.M.; Skrinsky, A.N.; Sekutowicz, J.S.

    2005-01-01

    We report progress on the R and D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R and D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/

  19. Electron Cooling of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; Yu.I. Eidelman; A.V. Fedotov; W. Fischer; D.M. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A.K. Jain; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; W.W. MacKay; G.J. Mahler; N. Malitsky; G.T. McIntyre; W. Meng; K.A.M. Mirabella; C. Montag; T.C.N. Nehring; T. Nicoletti; B. Oerter; G. Parzen; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; K. Smith; D. Trbojevic; G. Wang; J. Wei; N.W.W. Williams; K.-C. Wu; V. Yakimenko; A. Zaltsman; Y. Zhao; D.T. Abell; D.L. Bruhwiler; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; A.V. Burov; S. Nagaitsev; J.R. Delayen; Y.S. Derbenev; L. W. Funk; P. Kneisel; L. Merminga; H.L. Phillips; J.P. Preble; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; J.S. Sekutowicz

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

  20. Black holes on all scales: similarities and differences

    Science.gov (United States)

    Done, Chris

    2015-04-01

    I will review what we know about astrophysical black holes, from the stellar mass back holes formed from the death of massive stars, to the supermassive black holes in galaxy centres. Where material falls onto a black hole of any size, the enourmous gravitational energy released transforms these darkest objects in the Universe into the brightest. The luminous accretion flow lights up the regions of intensely curved spacetime, and its spectrum and variabilty carry the imprint of strong gravity as well as the geometry and dynamics of the emitting material. I will show how the stellar mass black holes form a homogeneous set, and how their large changes in mass accretion rate on easily observable timescales mean that they form a a template for how the spectrum and variability of the accretion flow, and its associated jet, change with mass accretion rate. They ubiquitously show a dramatic switch in both spectral, variability and jet properties as the mass accretion rate changes, probably associated with a change from a hot, geometrically thick flow to a cool, geometrically thin disc. Since the geometry and dynamics of the disc are well understood, these spectra give a clean test of Einstin's gravity in the strong field limit, with clear evidence for the existance of a last stable circular orbit. The hot flows are less well understood, but it is possible that the characteristic timescale for variabilty seen in these data is from Lens-Thirring (vertical) precession of the flow around the black hole. Scaling these models of a changing accretion flow up to the supermassive black holes can give an explanation for the multiple different types of unobscured AGN. However, as well as similarities, there are also some differences in the properties of the spectra, variability and particularly in the jet. A small subset of the most massive black holes have highly relativistic jets, with relativisitically emitting out to GeV or TeV energies. I show that the statistics of these jets

  1. Electron Cooling Study for MEIC

    International Nuclear Information System (INIS)

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  2. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    Directory of Open Access Journals (Sweden)

    E. U. Donev

    2008-01-01

    Full Text Available We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model. The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.

  3. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    Thorne, K.S.; Price, R.H.; Macdonald, D.A.

    1986-01-01

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  4. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  5. A Lovelock black hole bestiary

    International Nuclear Information System (INIS)

    Camanho, Xián O; Edelstein, José D

    2013-01-01

    We revisit the study of (A)dS black holes in Lovelock theories. We present a new tool that allows to attack this problem in full generality. In analyzing maximally symmetric Lovelock black holes with non-planar horizon topologies, many distinctive and interesting features are observed. Among them, the existence of maximally symmetric vacua does not support black holes in vast regions of the space of gravitational couplings, multi-horizon black holes and branches of solutions that suggest the existence of a rich diagram of phase transitions. The appearance of naked singularities seems unavoidable in some cases, raising the question about the fate of the cosmic censorship conjecture in these theories. There is a preferred branch of solutions for planar black holes, as well as for non-planar black holes with high enough mass or temperature. Our study clarifies the role of all branches of solutions, including asymptotically dS black holes, and whether they should be considered when studying these theories in the context of AdS/CFT. (paper)

  6. Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations

    Science.gov (United States)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-11-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  7. Unveiling the edge of time black holes, white holes, wormholes

    CERN Document Server

    Gribbin, John

    1992-01-01

    Acclaimed science writer John Gribbin recounts dramatic stories that have led scientists to believe black holes and their more mysterious kin are not only real, but might actually provide a passage to other universes and travel through time.

  8. Quantum Mechanics of Black Holes

    Science.gov (United States)

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  9. Tunnelling from Goedel black holes

    International Nuclear Information System (INIS)

    Kerner, Ryan; Mann, R. B.

    2007-01-01

    We consider the spacetime structure of Kerr-Goedel black holes, analyzing their parameter space in detail. We apply the tunnelling method to compute their temperature and compare the results to previous calculations obtained via other methods. We claim that it is not possible to have the closed timelike curve (CTC) horizon in between the two black hole horizons and include a discussion of issues that occur when the radius of the CTC horizon is smaller than the radius of both black hole horizons

  10. Black Holes: A Traveler's Guide

    Science.gov (United States)

    Pickover, Clifford A.

    1998-03-01

    BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.

  11. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  12. Quantum mechanics of black holes.

    Science.gov (United States)

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  13. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  14. Gravitational polarizability of black holes

    International Nuclear Information System (INIS)

    Damour, Thibault; Lecian, Orchidea Maria

    2009-01-01

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  15. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  16. Sorption cooling: a valid extension to passive cooling

    NARCIS (Netherlands)

    Doornink, D.J.; Burger, Johannes Faas; ter Brake, Hermanus J.M.

    2008-01-01

    Passive cooling has shown to be a very dependable cryogenic cooling method for space missions. Several missions employ passive radiators to cool down their delicate sensor systems for many years, without consuming power, without exporting vibrations or producing electromagnetic interference. So for

  17. Model problems for gravitationally perturbed black holes

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.; Macdonald, D.A.; Crowley, R.J.; Redmount, I.H.

    1986-01-01

    The membrane formalism is applied to various types of gravitational perturbations of a black hole. Attention is given to the disturbance of the horizon of a black hole by compact masses lowered toward a nonrotating hole and the deformations experienced by a rotating hole. Nonaxisymmetric gravitational tidal fields in rigid motion about a rotating hole are considered, along with the behavior of massive particle moving along the equator of a rotating hole, and the spindown of a rotating hole in an external tidal field. The extraction of rotational energy from a black hole by orbiting bodies is examined, as are superradiant scattering of gravitational waves and the quasi-normal modes of a black hole. The perturbations imparted to a black hole by a compact body plunging into the membrane (a stretched horizon) at a velocity close to the local light speed and by a radially accelerated particle above the horizon of a nonrotating hole are also explored

  18. Preparation and abrasion resistance of transparent super-hydrophobic coating by combining crater-like silica films with acicular boehmite powder

    International Nuclear Information System (INIS)

    Yanagisawa, Tomoki; Nakajima, Akira; Sakai, Munetoshi; Kameshima, Yoshikazu; Okada, Kiyoshi

    2009-01-01

    A super-hydrophobic coating was prepared by combining a rigid base film with crater-like hemispherical holes and acicular nanoparticles. The acicular boehmite powder provides a high contact angle on the film surface. The rigid base film with crater-like hemispherical holes inhibits the rapid decrease of contact angle by surface rubbing. The combination of different roughness is an effective method for improving the abrasion resistance of super-hydrophobic films.

  19. Heating solar coronal holes

    Science.gov (United States)

    Parker, E. N.

    1991-01-01

    It has been shown that the coronal hole, and the associated high-speed stream in the solar wind, are powered by a heat input of the order of 500,000 ergs/sq cm s, with most of the heat injected in the first 1-2 solar radii, and perhaps 100,000 ergs/sq cm s introduced at distances of several solar radii to provide the high speed of the issuing solar wind. The traditional view has been that this energy is obtained from Alfven waves generated in the subphotospheric convection, which dissipate as they propagate outward, converting the wave energy into heat. This paper reviews the generation of waves and the known wave dissipation mechanisms, to show that the necessary Alfven waves are not produced under the conditions presently understood to exist in the sun, nor would such waves dissipate significantly in the first 1-2 solar radii if they existed. Wave dissipation occurs only over distances of the order of 5 solar radii or more.

  20. Black holes in astrophysics

    International Nuclear Information System (INIS)

    Narayan, Ramesh

    2005-01-01

    This paper reviews the current status of black hole (BH) astrophysics, focusing on topics of interest to a physics audience. Astronomers have discovered dozens of compact objects with masses greater than 3M o-dot , the likely maximum mass of a neutron star. These objects are identified as BH candidates. Some of the candidates have masses ∼5M o-dot -20M o-dot and are found in x-ray binaries, while the rest have masses ∼10 6 M o-dot -10 9.5 M o-dot and are found in galactic nuclei. A variety of methods are being tried to estimate the spin parameters of the candidate BHs. There is strong circumstantial evidence that many of the objects have event horizons, so there is good reason to believe that the candidates are true BHs. Recent MHD simulations of magnetized plasma accreting on rotating BHs seem to hint that relativistic jets may be produced by a magnetic analogue of the Penrose process

  1. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  2. Cooling devices in laser therapy

    Directory of Open Access Journals (Sweden)

    Anupam Das

    2016-01-01

    Full Text Available Cooling devices and methods are now integrated into most laser systems, with a view to protecting the epidermis, reducing pain and erythema and improving the efficacy of laser. On the basis of method employed, it can be divided into contact cooling and non-contact cooling. With respect to timing of irradiation of laser, the nomenclatures include pre-cooling, parallel cooling and post-cooling. The choice of the cooling device is dictated by the laser device, the physician′s personal choice with respect to user-friendliness, comfort of the patient, the price and maintenance costs of the device. We hereby briefly review the various techniques of cooling, employed in laser practice.

  3. Phase transition for black holes with scalar hair and topological black holes

    OpenAIRE

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by usi...

  4. Universality in the nonlinear leveling of capillary films

    Science.gov (United States)

    Zheng, Zhong; Fontelos, Marco A.; Shin, Sangwoo; Stone, Howard A.

    2018-03-01

    Many material science, coating, and manufacturing problems involve liquid films where defects that span the film thickness must be removed. Here, we study the surface-tension-driven leveling dynamics of a thin viscous film following closure of an initial hole. The dynamics of the film shape is described by a nonlinear evolution equation, for which we obtain a self-similar solution. The analytical results are verified using time-dependent numerical and experimental results for the profile shapes and the minimum film thickness at the center. The universal behavior we identify can be useful for characterizing the time evolution of the leveling process and estimating material properties from experiments.

  5. Initial mass function of intermediate-mass black hole seeds

    Science.gov (United States)

    Ferrara, A.; Salvadori, S.; Yue, B.; Schleicher, D.

    2014-09-01

    We study the initial mass function (IMF) and hosting halo properties of intermediate-mass black holes (IMBHs, 104-6 M⊙) formed inside metal-free, UV-illuminated atomic-cooling haloes (virial temperature Tvir ≥ 104 K) either via the direct collapse of the gas or via an intermediate supermassive star (SMS) stage. These IMBHs have been recently advocated as the seeds of the supermassive black holes observed at z ≈ 6. We achieve this goal in three steps: (a) we derive the gas accretion rate for a proto-SMS to undergo General Relativity instability and produce a direct collapse black hole (DCBH) or to enter the zero-age main sequence and later collapse into an IMBH; (b) we use merger-tree simulations to select atomic-cooling haloes in which either a DCBH or SMS can form and grow, accounting for metal enrichment and major mergers that halt the growth of the proto-SMS by gas fragmentation. We derive the properties of the hosting haloes and the mass distribution of black holes at this stage, and dub it the `birth mass function'; (c) we follow the further growth of the DCBH by accreting the leftover gas in the parent halo and compute the final IMBH mass. We consider two extreme cases in which minihaloes (Tvir populate haloes (a) of mass 7.5 < log (Mh/ M⊙) < 8, (b) in the redshift range 8 < z < 17, (c) with IMBH in the mass range 4.75 < (log M•/ M⊙) < 6.25.

  6. Liquid metal cooled divertor for ARIES

    International Nuclear Information System (INIS)

    Muraviev, E.

    1994-01-01

    The paper represents an overview of the design study of a divertor system with liquid metal coolant (gallium) related to ARIES project. The work has been conducted by a group of specialists from Institute of Nuclear Fusion of Russian Scientific Center Kurchatov Institute within the scope of subcontract No. E212601 with General Atomics, San Diego, CA, USA. The key features of the proposed divertor design concept based on the specific LM coolant properties are as follows: (1) the requirement of the vacuum tightness of the divertor cooling tract is dismissed; (2) the pressurized coolant ducts can be separated from the plasma facing structure (PFS) elements which are subject to the thermal loads, and with this feature PFS can be replaced independently, without disturbing the cooling system; this is achieved with using free LM jets sprayed on the back side of the PFS elements, free LM film cooling and free LM draining under the action of gravity force. The divertor design has been developed formally as particularly applicable to ARIES-II reactor, the major reason for this being the choice of a vanadium-based alloy as the structural material compatible with gallium. Though there are some good prospects that carbon based materials including SiC-composite might be compatible with gallium as well. Then this concept could be used also in ARIES-IV and this possibility should be kept in mind for future

  7. Cooling apparatus and couplings therefor

    Science.gov (United States)

    Lomax, Curtis; Webbon, Bruce

    1993-11-01

    A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container. A pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.

  8. Cooled particle accelerator target

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  9. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  10. Use of interfacial layers to prolong hole lifetimes in hematite probed by ultrafast transient absorption spectroscopy

    Science.gov (United States)

    Paradzah, Alexander T.; Diale, Mmantsae; Maabong, Kelebogile; Krüger, Tjaart P. J.

    2018-04-01

    Hematite is a widely investigated material for applications in solar water oxidation due primarily to its small bandgap. However, full realization of the material continues to be hampered by fast electron-hole recombination rates among other weaknesses such as low hole mobility, short hole diffusion length and low conductivity. To address the problem of fast electron-hole recombination, researchers have resorted to growth of nano-structured hematite, doping and use of under-layers. Under-layer materials enhance the photo-current by minimising electron-hole recombination through suppressing of back electron flow from the substrate, such as fluorine-doped tin oxide (FTO), to hematite. We have carried out ultrafast transient absorption spectroscopy on hematite in which Nb2O5 and SnO2 materials were used as interfacial layers to enhance hole lifetimes. The transient absorption data was fit with four different lifetimes ranging from a few hundred femtoseconds to a few nanoseconds. We show that the electron-hole recombination is slower in samples where interfacial layers are used than in pristine hematite. We also develop a model through target analysis to illustrate the effect of under-layers on electron-hole recombination rates in hematite thin films.

  11. Black holes and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)

    2010-07-15

    After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.

  12. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  13. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  14. Laser Cooling of Solids

    Science.gov (United States)

    2009-01-01

    Panel (b) com- pares the cooling efficiencies of available thermoelectric coolers ( TECs ) with ZBLANP:Yb3+-based optical refrigerators. Devices based...on materials with low parasitic heating will outperform TECs below 200 . Coolers made from current materials are less efficient than TECs at all...luminescence extraction efficiency are being explored as well. A novel method based on the frustrated total internal reflection across a vacuum “ nano -gap” is

  15. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  16. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    Science.gov (United States)

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-11-01

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  17. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  18. Muon Cooling - Emittance Exchange

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    Muon Cooling is the key factor in building of a Muon collider, (to a less degree) Muon storage ring, and a Neutrino Factory. Muon colliders potential to provide a probe for fundamental particle physics is very interesting, but may take a considerable time to realize, as much more work and study is needed. Utilizing high intensity Muon sources - Neutrino Factories, and other intermediate steps are very important and will greatly expand our abilities and confidence in the credibility of high energy muon colliders. To obtain the needed collider luminosity, the phase-space volume must be greatly reduced within the muon life time. The Ionization cooling is the preferred method used to compress the phase space and reduce the emittance to obtain high luminosity muon beams. We note that, the ionization losses results not only in damping, but also heating. The use of alternating solenoid lattices has been proposed, where the emittance are large. We present an overview of the cooling and discuss formalism, solenoid magnets and some beam dynamics

  19. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  20. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  1. Terahertz superconducting plasmonic hole array

    OpenAIRE

    Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applicatio...

  2. Black holes from extended inflation

    International Nuclear Information System (INIS)

    Hsu, S.D.H.; Lawrence Berkeley Lab., CA

    1990-01-01

    It is argued that models of extended inflation, in which modified Einstein gravity allows a graceful exit from the false vacuum, lead to copious production of black holes. The critical temperature of the inflationary phase transition must be >10 8 GeV in order to avoid severe cosmological problems in a universe dominated by black holes. We speculate on the possibility that the interiors of false vacuum regions evolve into baby universes. (orig.)

  3. Black Holes as Dark Matter

    OpenAIRE

    Frampton, Paul H.

    2009-01-01

    While the energy of the universe has been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological entropy is almost entirely, about $(1 - 10^{-15})$, from black holes and only $10^{-15}$ from everything else. This identification of all dark matter as black holes is natural in statistical mechanics. Cosmological history of dark matter is discussed.

  4. Black holes in the universe

    International Nuclear Information System (INIS)

    Camenzind, M.

    2005-01-01

    While physicists have been grappling with the theory of black holes (BH), as shown by the many contributions to the Einstein year, astronomers have been successfully searching for real black holes in the Universe. Black hole astrophysics began in the 1960s with the discovery of quasars and other active galactic nuclei (AGN) in distant galaxies. Already in the 1960s it became clear that the most natural explanation for the quasar activity is the release of gravitational energy through accretion of gas onto supermassive black holes. The remnants of this activity have now been found in the centers of about 50 nearby galaxies. BH astrophysics received a new twist in the 1970s with the discovery of the X-ray binary (XRB) Cygnus X-1. The X-ray emitting compact object was too massive to be explained by a neutron star. Today, about 20 excellent BH candidates are known in XRBs. On the extragalactic scale, more than 100.000 quasars have been found in large galaxy surveys. At the redshift of the most distant ones, the Universe was younger than one billion year. The most enigmatic black hole candidates identified in the last years are the compact objects behind the Gamma-Ray Bursters. The formation of all these types of black holes is accompanied by extensive emission of gravitational waves. The detection of these strong gravity events is one of the biggest challenges for physicists in the near future. (author)

  5. Black Hole Spin Measurement Uncertainty

    Science.gov (United States)

    Salvesen, Greg; Begelman, Mitchell C.

    2018-01-01

    Angular momentum, or spin, is one of only two fundamental properties of astrophysical black holes, and measuring its value has numerous applications. For instance, obtaining reliable spin measurements could constrain the growth history of supermassive black holes and reveal whether relativistic jets are powered by tapping into the black hole spin reservoir. The two well-established techniques for measuring black hole spin can both be applied to X-ray binaries, but are in disagreement for cases of non-maximal spin. This discrepancy must be resolved if either technique is to be deemed robust. We show that the technique based on disc continuum fitting is sensitive to uncertainties regarding the disc atmosphere, which are observationally unconstrained. By incorporating reasonable uncertainties into black hole spin probability density functions, we demonstrate that the spin measured by disc continuum fitting can become highly uncertain. Future work toward understanding how the observed disc continuum is altered by atmospheric physics, particularly magnetic fields, will further strengthen black hole spin measurement techniques.

  6. Atomic structure in black hole

    International Nuclear Information System (INIS)

    Nagatani, Yukinori

    2006-01-01

    We propose that any black hole has atomic structure in its inside and has no horizon as a model of black holes. Our proposal is founded on a mean field approximation of gravity. The structure of our model consists of a (charged) singularity at the center and quantum fluctuations of fields around the singularity, namely, it is quite similar to that of atoms. Any properties of black holes, e.g. entropy, can be explained by the model. The model naturally quantizes black holes. In particular, we find the minimum black hole, whose structure is similar to that of the hydrogen atom and whose Schwarzschild radius is approximately 1.1287 times the Planck length. Our approach is conceptually similar to Bohr's model of the atomic structure, and the concept of the minimum Schwarzschild radius is similar to that of the Bohr radius. The model predicts that black holes carry baryon number, and the baryon number is rapidly violated. This baryon number violation can be used as verification of the model. (author)

  7. Formation and Coalescence of Electron Solitary Holes

    DEFF Research Database (Denmark)

    Saeki, K.; Michelsen, Poul; Pécseli, H. L.

    1979-01-01

    Electron solitary holes were observed in a magnetized collisionless plasma. These holes were identified as Bernstein-Green-Kruskal equilibria, thus being purely kinetic phenomena. The electron hole does not damp even though its velocity is close to the electron thermal velocity. Two holes attract...

  8. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    Wei Ren

    2006-01-01

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  9. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  10. Black holes as parts of entangled systems

    Science.gov (United States)

    Basini, G.; Capozziello, S.; Longo, G.

    A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.

  11. Black hole quantum spectrum

    Science.gov (United States)

    Corda, Christian

    2013-12-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.

  12. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  13. Investigative Study of Heat Transfer and Blades Cooling in the Gas Turbine

    Science.gov (United States)

    Loh, Teck Seng; Srigrarom, Sutthiphong

    Flow visualization experiments had been conducted using a water tunnel to investigate and study the effect of different hole geometries on lift-off and spreading characteristics on a jet in a cross flow stream. The relationships between the hydraulic diameters of the hole geometries and their lift-off and spreading characteristics were also investigated. Eight different hole geometries with the same cross-sectional area were used in the experiments. They are round, square, triangle, rectangular, "rect-circle", "peanut", "V-shaped" and "W-shaped". Dye release injection technique was used to visualize the characteristics of the jet trajectories from different hole geometries. From the results, the different geometries of cooling holes were found to have an effect on the trajectory of the jet. Hole geometries with "tongues" in them such as "W-shaped" and "V-shaped" holes produced jets with better flow adherence but poorer spreading. Hole geometries with lower hydraulic diameters also produced jets with better flow adherence but poorer spreading.

  14. Nuclear films

    International Nuclear Information System (INIS)

    Malone, Peter.

    1985-01-01

    This booklet is a resource for the study of feature films that highlight the theme of nuclear war. It provides basic credits and brief indication of the theme, treatment, quality and particular notable aspects; and a series of questions raised by the film. Seventy feature films and thirty documentaries are examined

  15. Laser cooling by adiabatic transfer

    Science.gov (United States)

    Norcia, Matthew; Cline, Julia; Bartolotta, John; Holland, Murray; Thompson, James

    2017-04-01

    We have demonstrated a new method of laser cooling applicable to particles with narrow linewidth optical transitions. This simple and robust cooling mechanism uses a frequency-swept laser to adiabatically transfer atoms between internal and motional states. The role of spontaneous emission is reduced (though is still critical) compared to Doppler cooling. This allows us to achieve greater slowing forces than would be possible with Doppler cooling, and may make this an appealing technique for cooling molecules. In this talk, I will present a demonstration of this technique in a cold strontium system. DARPA QUASAR, NIST, NSF PFC.

  16. Electron cooling experiments at Fermilab

    International Nuclear Information System (INIS)

    Forster, R.; Hardek, T.; Johnson, D.E.; Kells, W.; Kerner, V.; Lai, H.; Lennox, A.J.; Mills, F.; Miyahara, Y.; Oleksiuk, L.; Peters, R.; Rhoades, T.; Young, D.; McIntyre, P.M.

    1981-01-01

    A 115 Mev proton beam has been successfully cooled in the Electron Cooling Ring at Fermilab. Initial experiments have measured the longitudinal drag force, transverse damping rate, and equilibrium beam size. The proton beam was cooled by a factor of aproximately 50 in momentum spread in 5 sec, and by a factor of 3 in transverse size in 15 sec. Long term losses were consistent with single scattering from residual gas, with lifetime approximately 1000 sec. Using the measured electron beam temperature T/sub e/.0.8(2) ev, the observed cooling agrees well with expectations from cooling theory. 13 refs

  17. Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes

    OpenAIRE

    Graber, James S.

    1999-01-01

    A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

  18. Black holes from fluid mechanics

    Science.gov (United States)

    Lahiri, Subhaneil

    2009-12-01

    We use the AdS/CFT correspondence in a regime where the field theory is well described by fluid mechanics to study large black holes in asymptotically locally anti de Sitter spaces. In particular, we use the fluid description to study the thermodynamics of the black holes and the existence of exotic horizon topologies in higher dimensions. First we test this method by comparing large rotating black holes in global AdSD spaces to stationary solutions of the relativistic Navier-Stokes equations on SD-2. Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, IIB string theory on AdS5 x S 5 and M theory on AdS4 x S7 and AdS7 x S 4. We then construct solutions to the relativistic Navier-Stokes equations that describe the long wavelength collective dynamics of the deconfined plasma phase of N = 4 Yang Mills theory compactified down to d = 3 on a Scherk-Schwarz circle. Our solutions are stationary, axially symmetric spinning balls and rings of plasma. These solutions, which are dual to (yet to be constructed) rotating black holes and black rings in Scherk-Schwarz compactified AdS 5, and have properties that are qualitatively similar to those of black holes and black rings in flat five dimensional gravity. We also study the stability of these solutions to small fluctuations, which provides an indirect method for studying Gregory-Laflamme instabilities. We also extend the construction to higher dimensions, allowing one to study the existence of new black hole topologies and their phase diagram.

  19. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  20. Thermodynamics of Horava-Lifshitz black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Kim, Yong-Wan

    2010-01-01

    We study black holes in the Horava-Lifshitz gravity with a parameter λ. For 1/3≤λ 3, the black holes behave the Reissner-Nordstroem type black hole in asymptotically flat spacetimes. Hence, these all are quite different from the Schwarzschild-AdS black hole of Einstein gravity. The temperature, mass, entropy, and heat capacity are derived for investigating thermodynamic properties of these black holes. (orig.)