WorldWideScience

Sample records for film ceramic strain

  1. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  2. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  3. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  4. High-Temperature, Thin-Film Ceramic Thermocouples Developed

    Science.gov (United States)

    Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.

    2005-01-01

    To enable long-duration, more distant human and robotic missions for the Vision for Space Exploration, as well as safer, lighter, quieter, and more fuel efficient vehicles for aeronautics and space transportation, NASA is developing instrumentation and material technologies. The high-temperature capabilities of thin-film ceramic thermocouples are being explored at the NASA Glenn Research Center by the Sensors and Electronics Branch and the Ceramics Branch in partnership with Case Western Reserve University (CWRU). Glenn s Sensors and Electronics Branch is developing thin-film sensors for surface measurement of strain, temperature, heat flux, and surface flow in propulsion system research. Glenn s Ceramics Branch, in conjunction with CWRU, is developing structural and functional ceramic technology for aeropropulsion and space propulsion.

  5. Microscale mechanics for metal thin film delamination along ceramic substrates

    Institute of Scientific and Technical Information of China (English)

    魏悦广

    2000-01-01

    The metal thin film delamination along metal/ceramic interface in the case of large scale yielding is studied by employing the strain gradient plasticity theory and the material microscale effects are considered. Two different f racture process models are used in this study to describe the nonlinear delamination phenomena for metal thin films. A set of experiments have been done on the mechanism of copper films delaminating from silica substrates, based on which the peak interface separation stress and the micro-length scale of material, as well as the dislocation-free zone size are predicted.

  6. Microscale mechanics for metal thin film delamination along ceramic substrates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The metal thin film delamination along metal/ceramic interface in the case of large scale yielding is studied by employing the strain gradient plasticity theory and the material microscale effects are considered.Two different fracture process models are used in this study to describe the nonlinear delamination phenomena for metal thin films.A set of experiments have been done on the mechanism of copper films delaminating from silica substrates,based on which the peak interface separation stress and the micro-length scale of material,as well as the dislocation-free zone size are predicted.

  7. High Strain Rate Compression Testing of Ceramics and Ceramic Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, W. R. (William R.)

    2005-01-01

    The compressive deformation and failure behavior of ceramics and ceramic-metal composites for armor applications has been studied as a function of strain rate at Los Alamos National Laboratory since the late 1980s. High strain rate ({approx}10{sup 3} s{sup -1}) uniaxial compression loading can be achieved using the Kolsky-split-Hopkinson pressure bar (SHPB) technique, but special methods must be used to obtain valid strength results. This paper reviews these methods and the limitations of the Kolsky-SHPB technique for this class of materials. The Kolsky-split-Hopkinson pressure bar (Kolsky-SHPB) technique was originally developed to characterize the mechanical behavior of ductile materials such as metals and polymers where the results can be used to develop strain-rate and temperature-dependent constitutive behavior models that empirically describe macroscopic plastic flow. The flow behavior of metals and polymers is generally controlled by thermally-activated and rate-dependent dislocation motion or polymer chain motion in response to shear stresses. Conversely, the macroscopic mechanical behavior of dense, brittle, ceramic-based materials is dominated by elastic deformation terminated by rapid failure associated with the propagation of defects in the material in response to resolved tensile stresses. This behavior is usually characterized by a distribution of macroscopically measured failure strengths and strains. The basis for any strain-rate dependence observed in the failure strength must originate from rate-dependence in the damage and fracture process, since uniform, uniaxial elastic behavior is rate-independent (e.g. inertial effects on crack growth). The study of microscopic damage and fracture processes and their rate-dependence under dynamic loading conditions is a difficult experimental challenge that is not addressed in this paper. The purpose of this paper is to review the methods that have been developed at the Los Alamos National Laboratory to

  8. A high-strain-rate superplastic ceramic.

    Science.gov (United States)

    Kim, B N; Hiraga, K; Morita, K; Sakka, Y

    2001-09-20

    High-strain-rate superplasticity describes the ability of a material to sustain large plastic deformation in tension at high strain rates of the order of 10-2 to 10-1 s-1 and is of great technological interest for the shape-forming of engineering materials. High-strain-rate superplasticity has been observed in aluminium-based and magnesium-based alloys. But for ceramic materials, superplastic deformation has been restricted to low strain rates of the order of 10-5 to 10-4 s-1 for most oxides and nitrides with the presence of intergranular cavities leading to premature failure. Here we show that a composite ceramic material consisting of tetragonal zirconium oxide, magnesium aluminate spinel and alpha-alumina phases exhibits superplasticity at strain rates up to 1 s-1. The composite also exhibits a large tensile elongation, exceeding 1,050 per cent for a strain rate of 0.4 s-1. The tensile flow behaviour and deformed microstructure of the material indicate that superplasticity is due to a combination of limited grain growth in the constitutive phases and the intervention of dislocation-induced plasticity in the zirconium oxide phase. We suggest that the present results hold promise for the application of shape-forming technologies to ceramic materials.

  9. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    OpenAIRE

    Gregory, Otto J.; Matin Amani; Ian M. Tougas

    2013-01-01

    Temperatures of hot section components in today’s gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges) for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stabil...

  10. Metallic and ceramic thin film thermocouples for gas turbine engines.

    Science.gov (United States)

    Tougas, Ian M; Amani, Matin; Gregory, Otto J

    2013-11-08

    Temperatures of hot section components in today's gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges) for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today's engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire) thermocouples.

  11. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Otto J. Gregory

    2013-11-01

    Full Text Available Temperatures of hot section components in today’s gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today’s engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire thermocouples.

  12. Ceramic films produced by a gel-dipping process

    Energy Technology Data Exchange (ETDEWEB)

    Santacruz, I.; Ferrari, B.; Nieto, M.I.; Moreno, R. [Instituto de Ceramica y Vidrio, CSIC, Camino de Valdelatas s/n, E-28049 Madrid (Spain)

    2003-09-01

    A novel method for manufacturing self-supporting ceramic films is based on the use of aqueous suspensions containing low concentrations of a biopolymer (carrageenan) and the formation of the film by immersion of a graphite substrate into the ceramic suspension heated at 60 C. A film is obtained by dipping after cooling at RT; burning out graphite during sintering leaves homogeneous, dense, and self-supported films (see Figure for an SEM image). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  13. Integrated thick-film nanostructures based on spinel ceramics.

    Science.gov (United States)

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-03-26

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications.

  14. Integrated thick-film nanostructures based on spinel ceramics

    OpenAIRE

    Klym, Halyna; Hadzaman, Ivan; Shpotyuk, Oleh; Brunner, Michael

    2014-01-01

    Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for...

  15. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  16. Development of Thin Film Ceramic Thermocouples for High Temperature Environments

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.

    2004-01-01

    The maximum use temperature of noble metal thin film thermocouples of 1100 C (2000 F) may not be adequate for use on components in the increasingly harsh conditions of advanced aircraft and next generation launch technology. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically found in the form of rods or probes. NASA Glenn Research Center is investigating the feasibility of ceramics as thin film thermocouples for extremely high temperature applications to take advantage of the stability and robustness of ceramics and the non-intrusiveness of thin films. This paper will discuss the current state of development in this effort.

  17. Method for fabrication of ceramic dielectric films on copper foils

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2017-06-14

    The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.

  18. Method for fabrication of ceramic dielectric films on copper foils

    Science.gov (United States)

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2015-03-10

    The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.

  19. Tailoring of unipolar strain in lead-free piezoelectrics using the ceramic/ceramic composite approach

    Energy Technology Data Exchange (ETDEWEB)

    Khansur, Neamul H.; Daniels, John E. [School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Groh, Claudia; Jo, Wook; Webber, Kyle G. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Reinhard, Christina [Diamond Light Source, Beamline I12 JEEP, Didcot, Oxfordshire OX11 0DE (United Kingdom); Kimpton, Justin A. [The Australian Synchrotron, Clayton, Victoria 3168 (Australia)

    2014-03-28

    The electric-field-induced strain response mechanism in a polycrystalline ceramic/ceramic composite of relaxor and ferroelectric materials has been studied using in situ high-energy x-ray diffraction. The addition of ferroelectric phase material in the relaxor matrix has produced a system where a small volume fraction behaves independently of the bulk under an applied electric field. Inter- and intra-grain models of the strain mechanism in the composite material consistent with the diffraction data have been proposed. The results show that such ceramic/ceramic composite microstructure has the potential for tailoring properties of future piezoelectric materials over a wider range than is possible in uniform compositions.

  20. Piezoelectric polymer and ceramic ultrafine fibers for piezocomposite films

    OpenAIRE

    Yördem, Sinan Onur; Yordem, Sinan Onur; Papila, Melih; Menceloğlu, Yusuf Z.; Menceloglu, Yusuf Z.; Öğüt, Erdem; Ogut, Erdem; Gülleroğlu, Mert; Gulleroglu, Mert

    2006-01-01

    This paper describes the process development and characterization of Poly(vinylidene fluoride) (PVDF) films and fiber mats and Zinc Oxide (ZnO) fibers as ingredients of a future piezo-composite film. The polymer system PVDF is electroactive and processed here by solution casting and annealing to form active films. Electrospinning of PVDF and Poly(vinyl alcohol)-Zincacetate precursor solutions were also under investigation to produce randomly oriented polymer and ceramic fiber mats, respective...

  1. Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing

    OpenAIRE

    2011-01-01

    Piezoelectric transducers are becoming increasingly popular for dynamic strain monitoring due to their small form factors and their ability to generate an electrical voltage drop in response to strain. Although numerous types of piezoelectric thin films have been adopted for strain sensing, it has been shown that piezo-ceramics are expensive, brittle, and can fail during operation, while piezo-polymers possess lower piezoelectricity and mechanical stiffness. Thus, the objective of this study ...

  2. Thin-Film Ceramic Thermocouples Fabricated and Tested

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Gregory, Otto J.; Blaha, Charles A.

    2004-01-01

    The Sensors and Electronics Technology Branch of the NASA Glenn Research Center is developing thin-film-based sensors for surface measurement in propulsion system research. Thin-film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner than wire- or foil-based sensors. One type of sensor being advanced is the thin-film thermocouple, specifically for applications in high-temperature combustion environments. Ceramics are being demonstrated as having the potential to meet the demands of thin-film thermocouples in advanced aerospace environments. The maximum-use temperature of noble metal thin-film thermocouples, 1500 C (2700 F), may not be adequate for components used in the increasingly harsh conditions of advanced aircraft and next-generation launch vehicles. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically in the form of bulky rods or probes. As part of ASTP, Glenn's Sensors and Electronics Technology Branch is leading an in-house effort to apply ceramics as thin-film thermocouples for extremely high-temperature applications as part of ASTP. Since the purity of the ceramics is crucial for the stability of the thermocouples, Glenn's Ceramics Branch and Case Western Reserve University are developing high-purity ceramic sputtering targets for fabricating high-temperature sensors. Glenn's Microsystems Fabrication Laboratory, supported by the Akima Corporation, is using these targets to fabricate thermocouple samples for testing. The first of the materials used were chromium silicide (CrSi) and tantalum carbide (TaC). These refractory materials are expected to survive temperatures in excess of 1500 C. Preliminary results indicate that the thermoelectric voltage output of a thin-film CrSi versus TaC thermocouple is 15 times that of the standard type R (platinum-rhodium versus platinum) thermocouple, producing 20 mV with a 200

  3. Internal strain analysis of ceramics using scanning laser acoustic microscopy

    Science.gov (United States)

    Kent, Renee M.

    1993-01-01

    Quantitative studies of material behavior characteristics are essential for predicting the functionality of a material under its operating conditions. A nonintrusive methodology for measuring the in situ strain of small dimeter (to 11 microns) ceramic fibers under uniaxial tensile loading and the local internal strains of ceramics and ceramic composites under flexural loading is introduced. The strain measurements and experimentally observed mechanical behavior are analyzed in terms of the microstructural development and fracture behavior of each test specimen evaluated. Measurement and analysis of Nicalon silicon carbide (SiC) fiber (15 microns diameter) indicate that the mean elastic modulus of the individual fiber is 185.3 GPa. Deviations observed in the experimentally determined elastic modulus values between specimens were attributed to microstructural variations which occur during processing. Corresponding variations in the fracture surface morphology were also observed. The observed local mechanical behavior of a lithium alumino-silicate (LAS) glass ceramic, a LAS/SiC monofilament composite, and a calcium alumino-silicate (CAS)/SiC fully reinforced composite exhibits nonlinearities and apparent hysteresis due to the subcritical mechanical loading. Local hysteresis in the LAS matrices coincided with the occurrence of multiple fracture initiation sites, localized microcracking, and secondary cracking. The observed microcracking phenomenon was attributed to stress relaxation of residual stresses developed during processing, and local interaction of the crack front with the microstructure. The relaxation strain and stress predicted on apparent mechanical hysteresis effects were defined and correlated with the magnitude of the measured fracture stress for each specimen studied. This quantitative correlation indicated a repeatable measure of the stress at which matrix microcracking occurred for stress relief of each material system. Stress relaxation occurred

  4. Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films

    Science.gov (United States)

    Khamseh, S.; Araghi, H.; Ghahari, M.; Faghihi Sani, M. A.

    2016-03-01

    W-doped VO2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VOX-WOX-VOX ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO2 (M) and VO2 (B) was formed in VOX-WOX-VOX ceramic thin films. Tungsten content of VOX-WOX-VOX ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance ( R sq) of VOX-WOX-VOX ceramic thin films increased from 65 to 86 kΩ/sq. The VOX-WOX-VOX ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness.

  5. Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites

    Science.gov (United States)

    Morscher, Gregory N.

    2006-01-01

    Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.

  6. Heat flux measurements on ceramics with thin film thermocouples

    Science.gov (United States)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  7. Ceramic thin film thermocouples for SiC-based ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Wrbanek, John D., E-mail: John.D.Wrbanek@nasa.gov; Fralick, Gustave C.; Zhu Dongming

    2012-06-30

    Conductive ceramic thin film thermocouples were investigated for application to silicon carbide fiber reinforced silicon carbide ceramic matrix composite (SiC/SiC CMC) components. High temperature conductive oxides based on indium and zinc oxides were selected for testing to high temperatures in air. Sample oxide films were first sputtered-deposited on alumina substrates then on SiC/SiC CMC sample disks. Operational issues such as cold junction compensation to a 0 Degree-Sign C reference, resistivity and thermopower variations are discussed. Results show that zinc oxides have an extremely high resistance and thus increased complexity for use as a thermocouple, but thermocouples using indium oxides can achieve a strong, nearly linear response to high temperatures. - Highlights: Black-Right-Pointing-Pointer Oxide thin film thermocouples tested for SiC/SiC ceramic matrix composites (CMCs) Black-Right-Pointing-Pointer In{sub 2}O{sub 3}, N:In{sub 2}O{sub 3}, ZnO, AlZnO sputtered and tested on Al{sub 2}O{sub 3} and CMC substrates Black-Right-Pointing-Pointer ZnO, AlZnO have high resistance, complex temperature response. Black-Right-Pointing-Pointer In{sub 2}O{sub 3}, N:In{sub 2}O{sub 3} conductive at room temperature, more linear temperature response.

  8. Sol-gel derived ceramic electrolyte films on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, Timothy Walter [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  9. Sol-gel derived ceramic electrolyte films on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, T.W.

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  10. Method for bonding thin film thermocouples to ceramics

    Science.gov (United States)

    Kreider, Kenneth G.

    1993-01-01

    A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

  11. Far infrared and Raman response in tetragonal PZT ceramic films

    Energy Technology Data Exchange (ETDEWEB)

    Buixaderas, E.; Kadlec, C.; Vanek, P.; Drnovsek, S.; Ursic, H.; Malic, B.

    2015-07-01

    PbZr{sub 0}.38Ti{sub 0}.62O{sub 3} and PbZr{sub 0}.36Ti{sub 0}.64{sub O}3 thick films deposited by screen printing on (0 0 0 1) single crystal sapphire substrates and prepared at two different sintering temperatures, were studied by Fourier-transform infrared reflectivity, time-domain TH{sub z} transmission spectroscopy and micro-Raman spectroscopy. The dielectric response is discussed using the Lichtenecker model to account for the porosity of the films and to obtain the dense bulk dielectric functions. Results are compared with bulk tetragonal PZT 42/58 ceramics. The dynamic response in the films is dominated by an overdamped lead-based vibration in the TH{sub z} range, as known in PZT, but its evaluated dielectric contribution is affected by the porosity and roughness of the surface. (Author)

  12. Magnetic properties on strained manganite thin film

    Science.gov (United States)

    Prajapat, C. L.; Singh, M. R.; Gupta, S. K.; Bhattacharya, D.; Basu, S.; Ravikumar, G.

    2014-04-01

    Structural and magnetic studies on La2/3Sr1/3MnO3 (LSMO) epitaxial films grown on STO (100) and MgO (100) substrates by Pulsed Laser Deposition are presented. Due to larger interface strain, the grain size of LSMO on MgO is much smaller than that on STO substrate. However, anisotropy energy produced as a result of in plane tensile strain is much larger in case of the films deposited on MgO in such a way that the blocking (irreversibility) temperature and the coercive fields inferred from temperature and magnetic field dependent magnetization measurements are significantly higher. The importance of this result for the memory applications is highlighted.

  13. Toughness enhancement in hard ceramic thin films by alloy design

    Science.gov (United States)

    Kindlund, H.; Sangiovanni, D. G.; Martínez-de-Olcoz, L.; Lu, J.; Jensen, J.; Birch, J.; Petrov, I.; Greene, J. E.; Chirita, V.; Hultman, L.

    2013-10-01

    Hardness is an essential property for a wide range of applications. However, hardness alone, typically accompanied by brittleness, is not sufficient to prevent failure in ceramic films exposed to high stresses. Using VN as a model system, we demonstrate with experiment and density functional theory (DFT) that refractory VMoN alloys exhibit not only enhanced hardness, but dramatically increased ductility. V0.5Mo0.5N hardness is 25% higher than that of VN. In addition, while nanoindented VN, as well as TiN reference samples, suffer from severe cracking typical of brittle ceramics, V0.5Mo0.5N films do not crack. Instead, they exhibit material pile-up around nanoindents, characteristic of plastic flow in ductile materials. Moreover, the wear resistance of V0.5Mo0.5N is considerably higher than that of VN. DFT results show that tuning the occupancy of d-t2g metallic bonding states in VMoN facilitates dislocation glide, and hence enhances toughness, via the formation of stronger metal/metal bonds along the slip direction and weaker metal/N bonds across the slip plane.

  14. Separation of Hydrogen Using an Electroless Deposited Thin-Film Palladium-Ceramic Composite Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.; King, F.G.; Fan, Ting-Fang; Roy, S. [North Carolina Agricultural and Technical State Univ., Greensboro, NC (United States). Dept. of Chemical Engineering

    1996-12-31

    The primary objective of this project was to prepare and characterize a hydrogen permselective palladium-ceramic composite membrane for high temperature gas separations and catalytic membrane reactors. Electroless plating method was used to deposit a thin palladium film on microporous ceramic substrate. The objective of this paper is to discuss the preparation and characterization of a thin-film palladium-ceramic composite membrane for selective separation of hydrogen at elevated temperatures and pressures. In this paper, we also present a model to describe the hydrogen transport through the palladium-ceramic composite membrane in a cocurrent flow configuration.

  15. Strain localization in compressed ZrO2(Y2O3) ceramics

    Science.gov (United States)

    Barannikova, S. A.; Buyakova, S. P.; Zuev, L. B.; Kul'Kov, S. N.

    2007-06-01

    Spatiotemporal distributions of local components of the distortion tensor of a nonplastic material—yttria partially stabilized tetragonal zirconia (YTZ) ceramics—have been studied under active compressive straining conditions using double-exposure speckle photography techniques. The strain localization patterns are presented and the features of macroscopic strain inhomogeneity in the elastic state of YTZ ceramics are considered.

  16. Analysis of strain and stress in ceramic, polymer and metal matrix composites by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Colomban, P. [LADIR, Nanophases and Heterogeneous Solids Group, UMR 7075 CNRS and Universite Pierre et Marie Curie, 2 rue Henry-Dunant, 94320 Thiais (France)

    2002-08-01

    Raman scattering is a unique tool providing information on the structure and short-range order of matter. Stress-induced Raman shifts can be used to determine the stress/strain in films, fibres, particulate composites and, more generally, in any phase a few microns or more in scale. Quantitative results follow from a wavenumber calibration as a function of tensile strains or pressures applied to reference fibres or crystals. Furthermore, if the material is coloured, (near) resonant Raman scattering occurs, which enhances the scattered light intensity and simplifies the spectra - especially for harmonics - but drastically reduces the analysed volume (in-depth penetration {proportional_to}10-100 nm). This paper discusses the effective and potential advantages/drawbacks of Raman micro-spectrometry technique. The procedures to improve the sensitivity, the legibility and the reliability will be addressed. Examples will be chosen among (aramid, C, SiC) fibre- reinforced ceramic (CMCs), polymer (PMCs) or metal matrix (MMCs) composites. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  17. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  18. Microstructural properties of BaTiO{sub 3} ceramics and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M. [Posgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Apartado Postal 2861, 22800 Ensenada, Baja California (Mexico)

    2000-07-01

    A microstructural study of BaTiO{sub 3} ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO{sub 3} thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO{sub 3} ceramic samples and thin films, as deposited and after an annealing process. (Author)

  19. Ceramic substrate including thin film multilayer surface conductor

    Science.gov (United States)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.

  20. Strain mediated self-assembly of ceramic nano islands

    Science.gov (United States)

    Rauscher, Michael

    This dissertation presents the first observations of self-assembled arrays of epitaxial nano islands in ceramic systems, based on RF sputtering and thermal processing of Gadolinia-doped ceria (GDC) thin films on an yttria-stabilized zirconia (YSZ) single crystal substrate. In contrast to the conventional semiconductor nano island self-assembly systems, the island arrays in the GDC-YSZ system provide materials with categorically different physical properties and functionalities, and they exhibit a stronger ordering at a larger characteristic length scale. The initial focus of this study was on the processing and characterization of thin GDC layers on YSZ, which are used in SOFCs as barriers to prevent the reaction of some cathode materials with the YSZ electrolyte. Chapter 3 of this document describes studies on relatively thin (300 nm) were found to fail by spalling from the YSZ substrate, leaving behind patches of unspalled film and exposing a sputter-mixed GDC-YSZ surface. Upon annealing, the modified surface spontaneously broke up into two-dimensional arrays of epitaxial islands with sub-micron dimensions, exhibiting order in spacing and alignment. In addition to the classical local effects that drive dewetting processes, the self-assembly of the epitaxial GDC-bearing islands is driven by elastic interactions between them, and these interactions are mediated by the elastically anisotropic underlying YSZ substrate. The stresses in the initial mixed surface layers are modified by two factors: The thermal-expansion mismatch leads to stresses, depending on temperature and heating rates. The lattice-parameter mismatch leads to coherency stresses, depending on chemical composition variations and interdiffusion rates. When the initial surface layers cannot relieve their stress by other mechanisms, they break up by surface diffusion to introduce stress-free surfaces and relax the stresses in their vicinity, at the expense of increasing surface area and energy. The

  1. Resistance-Strain Relation On Vanadium Dioxide Thin Films

    Science.gov (United States)

    Amiri, Ali; Leclair, Patrick; Gupta, Arun

    Vanadium dioxide is a strongly correlated material with a sharp metal to insulator transition at ~341 K. It is well known that the strain along c-axis can change the transition temperature, but the other effects of the strain have not been drawing much attention. In this work we have studied the effects of the strain on resistance changes in the polycrystalline and epitaxial films. Polycrystalline films of VO2 are deposited on the Pb(Mg1/3Nb2/3)0.72Ti0.28O3(001) (PMN-PT) using a SiO2 buffer layer. The strain on film is tuned by applying a bias electric field through the piezoelectric substrate, and the resistance is measured using four-probe method. The epitaxial films of VO2 are grown on TiO2 (001) and have been glued to PMN-PT substrate to transfer strain. The change in the resistance of the epitaxial films is measured to be only about 30% more than polycrystalline films for the same amount of strain. We have studied the strain-induced resistance changes as a function of temperature. we have shown that the resistance is more sensitive to strain in the metallic phase.

  2. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    Science.gov (United States)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  3. Piezoelectric ceramic thick films deposited on silicon substrates by screen printing

    Science.gov (United States)

    Yao, Kui; He, Xujiang; Xu, Yuan; Chen, Meima

    2004-07-01

    Screen-printing processes offer advantages in producing directly patterned and integrated piezoelectric elements, and fill an important technological gap between thin film and bulk ceramics. However, several existing problems in the screen-printed piezoelectric thick films, such as the poor reliability and the required high sintering temperature, are significantly limiting their applications. In this work, lead zirconate titanate (PZT) ceramic films of 30 μm in thickness were deposited on Pt-coated silicon substrates by the screen-printing process, in which the ceramic pastes were prepared through a chemical liquid-phase doping approach. Porous thick films with good adhesion were formed on the substrates at a temperature of 925°C. Stable out-of-plane piezoelectric vibration of the thick films was observed with a laser scanning vibrometer (LSV), and the piezoelectric dilatation magnitude was determined accordingly. Our piezoelectric measurements through the areal displacement detection with LSV exhibited distinct advantages for piezoelectric film characterization, including high reliability, high efficiency, and comprehensive information. The longitudinal piezoelectric coefficients of the thick films were calculated from the measured dilatation data through a numerical simulation. High piezoelectric voltage constants were obtained due to the very low dielectric constant of the porous thick films. The application potentials of our screen-printed thick films as integrated piezoelectric sensors are discussed.

  4. Engineering of piezoelectric properties in ferroelectric ceramics and thin films

    Directory of Open Access Journals (Sweden)

    Damjanovic, D.

    1999-12-01

    Full Text Available The paper discusses different possibilities for controlling piezoelectric properties of ferroelectric materials and devices. The piezoelectric properties engineering can be made on different scales. Tuning of the piezoelectric response by controlling contributions from domain walls displacement is used to illustrate engineering on nanometer scale. Texture control in ferroelectric films and grain size control is discussed as an example of property control on micrometer scale. Finally, engineering on macroscopic (millimeter scale is illustrated by amplification methods employed in multilayer actuators and different bimorph-type structures as well as by control of electro-mechanical properties in polymer-ceramic composites.

    El presente trabajo discute las diferentes posibilidades existentes en el control de las propiedades piezoeléctricas de materiales ferroeléctricos y dispositivos piezoeléctricos. La ingeniería de las propiedades piezoeléctricas se puede llevar a cabo a diferentes niveles. El ajuste de dichas propiedades controlando las contribuciones del desplazamiento de paredes de dominios se usa para ilustrar el diseño a escala nanométrica. El control de la textura en láminas delgadas ferroeléctricas y el control del tamaño de grano serán tratados como un ejemplo del control de propiedades a nivel micrométrico. Por último, la ingeniería de materiales a escala macroscópica (milimétrica será ilustrada mediante algunos métodos de amplificación empleados en actuadores multicapa y diferentes estructuras de tipo bimorfo, al igual que por métodos de control de las propiedades electromecánicas en materiales compuestos polímerico-cerámicos.

  5. Thin-film solar cells on perlite glass-ceramic substrates

    Science.gov (United States)

    Petrosyan, Stepan G.; Babayan, Virab H.; Musayelyan, Ashot S.; Harutyunyan, Levon A.; Zalesski, Valery B.; Kravchenko, Vladimir M.; Leonova, Tatyana R.; Polikanin, Alexander M.; Khodin, Alexander A.

    2013-06-01

    For the first time, thin-film CIGS solar cells have been fabricated by co-evaporation on specially developed non-conducting perlite (an aluminum potassium sodium silicate natural mineral of volcanic origin) glass-ceramic substrates to develop a fully integrated photovoltaic and building element. Such glass-ceramic material can meet the physical requirements to solar cells substrates as well as the cost goals. The preliminary data presented show that CIGS solar cells deposited on ceramic substrates can exhibit efficiency higher than 10%.

  6. Preparation and Characterization of Nanotitanium Dioxide Coating Film Doped with Fe3+ Ions on Porous Ceramic

    Institute of Scientific and Technical Information of China (English)

    Kejing Xu

    2005-01-01

    The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material-Fe3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time,filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol,amount of Fe3+ ions doped as well as the coating times greatly affect the quality of coating film,the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4,the viscosity is about 6 mPa·S,the amount of doped Fe3+ ions is about 2.0 g/L,the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition,the porosity of porous ceramic is about 42.5%,the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 min.

  7. Hysteresis in the I{sub c}(H) characteristics of high-temperature superconducting ceramics and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Altshuler, E.; Musa, J.; Hart, C.; Ares, O. [Univ. of Havana, La Habana (Cuba)] [and others

    1995-12-01

    The experimental hysteretic behavior of the transport critical current observed in ceramic Y-Ba-Cu-O and (Bi-Pb)-Sr-Ca-Cu-O, as well as thin film Y-Ba-Cu-O, are presented. The data are analyzed semiqualitatively. The results show certain similarities among the ceramic samples and the films.

  8. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.

    Science.gov (United States)

    Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei

    2012-12-01

    In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.

  9. Understanding the deformation of ceramic materials at high strain rates.

    OpenAIRE

    Hallam, David A.

    2015-01-01

    Ceramic hardness and plasticity have been highlighted as important characteristics in ballistic performance; both of which can be measured and semi-quantified from indentation experiments, respectively. However, relatively little work has investigated the accompanying type, on-set and evolution of indentation-induced damage that may also be contributing an influential role. Pressureless sintered SiC and spark plasma sintered B4C, SiC-AlN-C and range of SiC-B4C composite samples were invest...

  10. Unusual strain relaxation in Cu thin films on Ni(001)

    DEFF Research Database (Denmark)

    Rasmussen, F.B.; Baker, J.; Nielsen, M.;

    1997-01-01

    Surface x-ray diffraction has been used to study the growth of thin Cu films on Ni(001). We give direct evidence for the formation of embedded wedges with internal {111} facets in the film, as recently suggested by Muller et al. [Phys. Rev. Lett. 76, 2358 (1996)]. The unusual strain distribution...

  11. Robust polarization and strain behavior of Sm-modified BiFeO3 piezoelectric ceramics.

    Science.gov (United States)

    Walker, Julian; Budic, Bojan; Bryant, Peter; Kurusingal, Valsala; Sorrell, Charles C; Bencan, Andreja; Rojac, Tadej; Valanoor, Nagarajan

    2015-01-01

    The route to phase-pure BiFeO3 (BFO) ceramics with excellent ferroelectric and electromechanical properties is severely impeded by difficulties associated with the perovskite phase stability during synthesis. This has meant that dopants and solid solutions with BFO have been investigated as a means of not only improving the functional properties, but also of improving the perovskite phase formation of BFO-based ceramics. The present work focuses on Sm-modified BFO ceramics of composition Bi0.88Sm0.12FeO3. The polarization and strain behaviors were investigated as a function of the phase composition, microstructure, and chemical composition. Addition of Sm reduces the susceptibility of the BFO perovskite to phase degradation by Si impurities. Si was observed to react into Sm-rich grains dispersed within the microstructure, with no large increases in the amount of bismuth-parasitic phases, namely Bi25FeO39 and Bi2Fe4O9. These as-prepared ceramics exhibited robust polarization behavior showing maximum remnant polarizations of ~40 to 50 μC/cm(2). The electric-fieldinduced strain showed an appreciable stability in terms of the driving field frequency with maximum peak-to-peak strains of ~0.3% and a coercive field of ~130 kV/cm.

  12. Electric field induced strain, switching and energy storage behaviour of lead free Barium Zirconium Titanate ceramic

    Science.gov (United States)

    Badapanda, T.; Chaterjee, S.; Mishra, Anupam; Ranjan, Rajeev; Anwar, S.

    2017-09-01

    There is a huge demand of lead-free high performance ceramics with large strain, low hysteresis loss and high-energy storage ability at room temperature. In this context, we investigated the large electric field induced strain, switching behaviour and energy storage properties of BaZr0.05Ti0.95O3 ceramic (BZT) prepared by high energy ball milling technique, reportedly exhibiting a triple point transition near the room temperature. The X-ray diffraction of the BZT ceramic confirms orthorhombic symmetry with space group Amm2 at room temperature. The room temperature dielectric study reveals that there is a negligible variation of dielectric constant and dielectric loss with frequency. The polarization behaviour at various applied electric fields was studied and the energy storage densities were obtained from the integral area of P-E loops. Electric field induced strain behaviour has been studied with due emphasis on the electrostrictive response at room temperature. The ferroelectric and electromechanical properties derived from the P-E and S-E loops suggest that the present ceramic encompass the properties of actuation and energy storage simultaneously.

  13. Film Coating Process Research and Characterization of TiN Coated Racetrack-type Ceramic Pipe

    CERN Document Server

    Wang, Jie; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiangtao; Hong, Yuanzhi; Wang, Yong

    2015-01-01

    TiN film was coated on the internal face of racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. According to the AFM, SEM, XPS test results,these properties were analyzed, such as TiN film roughness and surface morphology. At the same time, the deposition rates were studied under two types' cathode, Ti wires and Ti plate. According to the SEM test results, Ti plate cathode can improve the TiN/Ti film deposition rate obviously.

  14. Texture in Metallic and Ceramic Films and Coatings

    OpenAIRE

    Czerwinski, F; J. A. Szpunar

    1999-01-01

    The properties of films and coatings can be optimized for a variety of applications by modifying their texture. Understanding how the texture in thin films is formed and how it can be controlled during film growth process is one of the most important areas of texture research. Several examples were selected to illustrate how the texture in films and coatings is developed and to explain how various properties of films are affected by texture. In particular, texture development during electrode...

  15. Polymer Thin Film Buckling: Wrinkling and Strain Localizations

    Science.gov (United States)

    Ebata, Yuri; Croll, Andrew B.; Crosby, Alfred J.

    2011-03-01

    Out of plane deformations of thin films are observed in everyday life, e.g. wrinkled aging human skin or folded fabrics. Recently, these deformations are being pursued for fabricating unique patterned surfaces. In this study, the transition from wrinkling, a low-strain buckling behavior, to localized deformations such as fold and delamination, is investigated for polystyrene films with thickness ranging from 5nm to 180nm. The thin films are attached to a uniaxially strained polydimethysiloxane substrate and the strain is released incrementally to apply increasing compressive strain to the attached film. The wavelength and the amplitude of local out-of-plane deformation are measured as global compression is increased to distinguish between wrinkling, folding, and delamination. The transition from wrinkling to strain localizing events is observed by tracking the statistics of amplitude distribution sampled across a large lateral area. A critical strain map is constructed to denote the strain regimes at which wrinkle, fold, and delamination occur. NSF-DMR 0907219.

  16. Direct measurement of intrinsic critical strain and internal strain in barrier films

    NARCIS (Netherlands)

    Vellinga, W. P.; De Hosson, J. Th M.; Bouten, P. C. P.

    2011-01-01

    Resistance measurements during uniaxial tensile deformation of very thin (10 nm) conducting oxide films deposited on 150 nm SiN films on polyethylene naphthalate are discussed. It is first shown that certain characteristics of resistance versus strain curves are representative for the fracture behav

  17. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films

    NARCIS (Netherlands)

    Catalan, G; Sinnamon, LJ; Gregg, JM

    2004-01-01

    Recent experimental measurements of large flexoelectric coefficients in ferroelectric ceramics suggest that strain gradients can affect the polarization and permittivity behaviour of inhomogeneously strained ferroelectrics. Here we present a phenomenological model of the effect of flexoelectricity o

  18. Large Electric-Field Modulation of Magnetic Properties in Fe Films on BiScO3-PbTiO3 Ceramics

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2010-01-01

    Full Text Available Based on the magneto-optical Kerr effect, we report the electric-field modulation of the magnetic properties in Fe/BiScO3-PbTiO3 (BSPT film-on-ceramic substrate structure. The Fe films are directly grown on the fully-poled BSPT ceramic substrates by magnetron sputtering. An electric field applied parallel to the prepolarization direction of the piezoelectric BSPT can induce a reversible increase in the coercive field Hc of about 30%, whereas an electric field antiparallel to the prepolarization direction can cause a persistent, tremendous decrease (as large as 97% in Hc, and a small reversal electric field can resume it back. The strain induced by the inverse piezoelectric effect is the primary mechanism behind. This large modulation of the coercive field by the electric field could inspire further exploration of electric-field-controlled magnetic switching in multiferroic heterostructures.

  19. Residual strain scanning of alumina-based ceramic composites by neutron diffraction

    Science.gov (United States)

    Ruiz-Hervias, J.; Bruno, G.; Bueno, S.; Gurauskis, J.; Baudín, C.; Fan, K. Y.

    2014-11-01

    Residual strain profiles were measured by neutron diffraction in alumina-aluminum titanate ceramic composites sintered at two different temperatures, namely 1450 and 1550°C. The results show that irrespective of the direction and the sintering temperature, the obtained profiles are almost flat, with very similar results for both temperatures. In addition, the results demonstrate that the alumina is in compression whereas the aluminium titanate is subjected to tensile residual stresses.

  20. Inverse analysis determining interfacial properties between metal film and ceramic substrate with an adhesive layer

    Institute of Scientific and Technical Information of China (English)

    Haifeng Zhao; Yueguang Wei

    2008-01-01

    In the present study, peel tests and inverse analysis were performed to determine the interfacial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250μm and three peel angles of 90°,135°and 180°were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result

  1. Induced Nucleation of Diamond Films on ZnS Substrates Precoated with Ceramic Interlayer

    Institute of Scientific and Technical Information of China (English)

    GAO Xu-Hui; YANG Hai; LU Fan-Xiu; TONG Yu-Mei; GUO Hui-Bin; TANG Wei-Zhong; LI Cheng-Ming; CHEN Guang-Chao; YU Huai-Zhi; CHENG Hong-Fan

    2004-01-01

    @@ We attempt to coat a multi-spectrum chemical-vapour-deposition ZnS substrate with smooth crystalline diamond films on the top of properly designed ceramic interlayer, which provides protection for ZnS against corrosion by the H2-CH4 microwave plasma and mitigates the thermal expansion coefficient mismatching between diamond and ZnS. However, difficulties in the homogeneous diamond nucleation on a ceramic interlayer were encountered.It was found that high rate nucleation of diamond could be induced by a metal or semiconductor mask placed on the top of ZnS.

  2. Growth and Corrosion Characteristics of Plasma Electrolytic Oxidation Ceramic Films Formed on AZ31 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    王丽; 陈砺; 严宗诚; 王红林; 彭家志

    2009-01-01

    The growth characteristics of oxide ceramic films formed on AZ31 magnesium alloy with plasma electrolytic oxidation(PEO)technique in alkaline silicate solution Were investigated.The composition,slructure and morphology of the coatings were detected by energy dispersive X-ray spectroscope and scanning electron microscope.The amount of dissolved magnesium in the electrolytes during PEO process was measured by atomic absorption spectrometry.The results indicated that the growth process of PEO films had three stages when applied with constant voltage mode.In the first stage,the growth rate of PEO films was low,and concentrations of elements O.Mg and Si varied slightly.Atter sparking occurred(the second stage).the PEO films showed higher growth rate due to the high transfer rate of ionS and electrons,and the existoncc of plasma reactions.When the growth rate tended to maintain stable with time,the third stage happened.PEO films exhibited different uniform and pitting.corrosion characteristiCS in difierent reaction stages.The films formed at 300 V for 30 min performed best corrosion resistance and the phase of ceramic films was mainly composed of MgSiO3 and forsterite Mg2SiO4.

  3. Interfacial Bonding Strength of TiN Film Coated on Si3N4 Ceramic Substrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The fraction of TiN/Si3N4 in the cross section was observed with scanning electric microscope (SEM), and residual stresses of TiN coated on the surface of Si3N4 ceramic were measured with X-ray diffraction (XRD).The hardness of TiN film was measured, and bonding strength of TiN film coated on Si3N4 substrate was measured by scratching method. The formed mechanism of residual stress and the failure mechanism of the bonding interface in the film were analyzed, and the adhesion mechanism of TiN film was investigated preliminarily. The results show that residual stresses of TiN film are all behaved as compressive stress, and TiN film is represented smoothly with brittle fracture, which is closely bonded with Si3N4 substrate. TiN film has high hardness and bonding strength of about 500 MPa, which could satisfy usage requests of the surface of cutting Si3N4 ceramic.

  4. Microstructure and thermochromic properties of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khamseh, S.; Ghahari, M. [Institute for Color Science and Technology, Department of Nanomaterial and Nanocoatings, Tehran (Iran, Islamic Republic of); Araghi, H. [Islamic Azad University, Department of Materials Engineering, Science and Research Branch, Tehran (Iran, Islamic Republic of); Faghihi Sani, M.A. [Sharif University of Technology, Department of Materials Science and Engineering, Tehran (Iran, Islamic Republic of)

    2016-03-15

    W-doped VO{sub 2} films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO{sub 2} (M) and VO{sub 2} (B) was formed in VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films. Tungsten content of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance (R{sub sq}) of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films increased from 65 to 86 kΩ/sq. The VO{sub X}-WO{sub X}-VO{sub X} ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness. (orig.)

  5. Strain mapping on gold thin film buckling and siliconblistering

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Tamura, N.; Parry, G.; Colin, J.; Coupeau, C.; Cleymand, F.; Padmore, H.

    2005-09-01

    Stress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.

  6. Ultra high strain properties of lanthanum substituted PZT electro-ceramics prepared via mechanical activation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajeet, E-mail: jkajeet@yahoo.co.in [Ceramics and Composites Group, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Bhanu Prasad, V.V., E-mail: bhanu@dmrl.drdo.in [Ceramics and Composites Group, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); James Raju, K.C., E-mail: kcjrsp@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); James, A.R., E-mail: james@dmrl.drdo.in [Ceramics and Composites Group, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2014-06-25

    Highlights: • PLZT comparable with PMN–PT and their hot-pressed counterparts synthesized. • HEM applied for ceramic preparation at reduced sintering temperature. • Strain value (0.27%) comparable to previous reported values for PLZT 8/60/40. • The electric field induced (strain) hysteresis loss was also found to be very less. - Abstract: Substitution of lanthanum at the A sites of perovskite lead zirconate titanate ceramics shows an improvement in the structural and electrical properties. (Pb{sub 0.92}La{sub 0.08})(Zr{sub 0.60}Ti{sub 0.40})O{sub 3} (PLZT 8/60/40) was prepared using high energy mechano-chemical milling. The effect of milling on the microstructure and electrical properties of PLZT 8/60/40 has been studied. X-ray diffraction shows the phase formation after milling itself. TEM was used to measure the particle size. The SEM image of the sintered pellet shows a dense microstructure and the average grain size was found to be <1.5 μm. Electrical properties of the ceramics were characterized. Piezoelectric charge coefficient (d{sub 33}) was found to be 561 pC/N. Resonance studies were performed on poled ceramics and the electromechanical coupling factor was calculated by the resonance method. The PLZT 8/60/40 composition showed a well saturated and uniform P–E hysteresis loop with remanent polarization (P{sub r}) of 33.29 μC/cm{sup 2} and a coercive field (E{sub c}) of 10.57 kV/cm. Electric field induced strain (S–E loop) shows a value of ∼0.27% with minimum loss.

  7. Separation of hydrogen using thin film palladium-ceramic composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.; King, F.G.; Su, N.; Udo-Aka, U.I.

    1995-11-01

    The primary objective of this study was to prepare and characterize a hydrogen permselective palladium-ceramic composite membrane for high temperature gas separations and catalytic membrane reactors. Electroless plating method was used as a potential route to deposit a thin palladium film on microporous ceramic substrate. The objectives of the work presented here were to characterize the new Pd-ceramic composite membrane by SEM and EDX analysis and to carry out fundamental permeability measurements of the membrane at elevated temperatures and pressures. The potential application of membranes in high temperature gas separation and reactor technology have been recognized by many investigators. In the coal gasification process, the exit gases are normally hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, and water vapor. The objective is to obtain hydrogen from this gas mixture.

  8. Ceramic Films via Organometallic Complex as Single Source Precursor

    Institute of Scientific and Technical Information of China (English)

    Shyu Shin-Guang; Wu Juan-Seng; Wu Chi-Chin; Chi Kal-Ming

    2004-01-01

    Fe2(CO)6(μ-S2) was used as a single source precursor in attempt to produce FeS film via MOCVD. Pyrolysis of Fe2(CO)6(μ-S2) at temperature below 500℃ produced Fe1-xS or Fe7S8 powder as indicated by its powder X-ray spectra. At 750 ℃, polycrystalline FeS powder was obtained. In film deposition, polycrystalline Fe1-xS or Fe7Ss films were obtained on Si(100) and Ag/Si(100) substrates below 500 ℃. SEM micrographs showed the film on Si(100) substrate containing whisker like grains. However, pillar like grains were obtained on Ag/Si(100) substrate.Deposition rates are also different for different substrates as evaluated by the thickness of the films, which were obtained by SEM micrographs of the cross section of the films. At 750℃, similar polycrystalline Fe1-xS or Fe7S8 film was obtained.

  9. Analysis of film strain and stress in a film-substrate cantilever system

    Institute of Scientific and Technical Information of China (English)

    BAI; Narsu

    2008-01-01

    The bending problem of a magnetic film-nonmagnetic substrate cantilever system is studied by using the principle of energy minimization. Emphasis is placed on the analysis of geometrical and physical parameter dependence of the neutral plane,internal film stress and strain of the cantilever system,and then the influence of such a parameter on the bending characteristic is presented. The results indicate,owing to the anisotropic expanding feature of the magnetostriction,that the neutral plane is generally anisotropic,and moves downwards rapidly with the increasing thickness ratio. Meanwhile,the bounding rigidity of substrate on the film will de-crease with the increasing thickness ratio,and thus release the film stress,i.e.,it decreases,but the film strain increases. The effect of Poisson’s ratio of the materi-als on the film strain,the stress and the neutral plane in the direction transverse to the magnetization is prominent. For the strain and the stress in the magnetization,however,the role of Poisson’s ratio is inconspicuous. This property is due to the initiative elongating (or contracting) feature of the magnetic film along its mag-netization.

  10. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    Directory of Open Access Journals (Sweden)

    Olfa Kanoun

    2014-06-01

    Full Text Available Compared with traditional conductive fillers, carbon nanotubes (CNTs have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors.

  11. Method for fabrication of crack-free ceramic dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan

    2016-05-31

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  12. Tribological investigations of sol-gel ceramic films

    Institute of Scientific and Technical Information of China (English)

    张文光; 王成焘; 刘维民

    2002-01-01

    Tribological properties of the TiO2, doped TiO2, AI2O3 and SiO2 thin films prepared by different sol-gel processes are reported. The results indicate that doping deteriorates the wear resistance of TiO2; organic modifier can improve the tribological property of AI2O3 significantly; and the SiO2 film prepared from inorganic salt sodium silicate registers much better wear resistance than that from ethyl orthosilicate.

  13. Tribological investigations of sol-gel ceramic films

    Institute of Scientific and Technical Information of China (English)

    张文光; 刘维民; 王成焘

    2002-01-01

    Tribological properties of the TiO2, doped TiO2, Al2O3 and SiO2 thin films prepared by different sol-gel processes are reported. The results indicate that doping deteriorates the wear resistance of TiO2; organic modifier can improve the tribological property of Al2O3 significantly; and the SiO2 film prepared from inorganic salt sodium silicate registers much better wear resistance than that from ethyl orthosilicate.

  14. Electrically Insulative Performances of Ceramic and Clay Films Deposited via Supersonic Spraying

    Science.gov (United States)

    Lee, Jong-Gun; Kim, Do-Yeon; Joshi, Bhavana N.; Lee, Jong-Hyuk; Lee, Tae-Kyu; Kim, Jang-soo; Yang, Dae-ho; Kim, Woo-Young; Al-Deyab, Salem S.; Yoon, Sam S.

    2016-04-01

    Supersonic spray coating techniques were applied to deposit ceramic and clay particles as films for use in electrical insulation. TiO2 and Al2O3 ceramics were aerosol-deposited under vacuum while kaolinite, montmorillonite, and bentonite clays were deposited by cold spraying in open air. The electrical resistivity of Al2O3 and TiO2 were ~109 and ~108 Ω cm, respectively. The resistivity of kaolinite and montmorillonite were ~1012 Ω cm. Bentonite showed the lowest electrical resistivity of ~109 Ω cm among the clays because of the high cation exchange capacity of the material. The film surface morphologies and mechanical properties in the form of hardness and scratchability were also investigated.

  15. Laser Treatment of Nanoparticulated Metal Thin Films for Ceramic Tile Decoration.

    Science.gov (United States)

    Rico, V J; Lahoz, R; Rey-García, F; Yubero, F; Espinós, J P; de la Fuente, G F; González-Elipe, A R

    2016-09-21

    This paper presents a new method for the fabrication of metal-like decorative layers on glazed ceramic tiles. It consists of the laser treatment of Cu thin films prepared by electron-beam evaporation at glancing angles. A thin film of discontinuous Cu nanoparticles was electron-beam-evaporated in an oblique angle configuration onto ceramic tiles and an ample palette of colors obtained by laser treatment both in air and in vacuum. Scanning electron microscopy along with UV-vis-near-IR spectroscopy and time-of-flight secondary ion mass spectrometry analysis were used to characterize the differently colored layers. On the basis of these analyses, color development has been accounted for by a simple model considering surface melting phenomena and different microstructural and chemical transformations of the outmost surface layers of the samples.

  16. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film

    KAUST Repository

    Lai, K.

    2010-07-08

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd 1/2Sr1/2MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  17. Microstructural and Electrical Characterization of Barium Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition

    Science.gov (United States)

    2003-04-03

    Strontium Titanate-Based Solid Solution Thin Films Deposited on Ceramic Substrates by Pulsed Laser Deposition DISTRIBUTION: Approved for public...Society H2.4 Microstructural and Electrical Characterization of Barium Strontium Titanate- based Solid Solution Thin Films Deposited on Ceramic...investigated and report the microstructural and electrical characterization of selected barium strontium titanate-based solid solution thin films

  18. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  19. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here......, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x...... heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials....

  20. Corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments

    Science.gov (United States)

    Kusada, Kentaro

    The objective of this study is to evaluate corrosion resistance and durability of siloxane ceramic/polymer films for aluminum alloys in marine environments. Al5052-H3 and Al6061-T6 were selected as substrates, and HCLCoat11 and HCLCoat13 developed in the Hawaii Corrosion Laboratory were selected for the siloxane ceramic/polymer coatings. The HCLCoat11 is a quasi-ceramic coating that has little to no hydrocarbons in its structure. The HCLCoat13 is formulated to incorporate more hydrocarbons to improve adhesion to substrate surfaces with less active functionalities. In this study, two major corrosion evaluation methods were used, which were the polarization test and the immersion test. The polarization tests provided theoretical corrosion rates (mg/dm 2/day) of bare, HCLCoat11-coated, and HCLCoat13-coated aluminum alloys in aerated 3.15wt% sodium chloride solution. From these results, the HCLCoat13-coated Al5052-H3 was found to have the lowest corrosion rate which was 0.073mdd. The next lowest corrosion rate was 0.166mdd of the HCLCoat11-coated Al5052-H3. Corrosion initiation was found to occur at preexisting breaches (pores) in the films by optical microscopy and SEM analysis. The HCLCoat11 film had many preexisting breaches of 1-2microm in diameter, while the HCLCoat13 film had much fewer preexisting breaches of less than 1microm in diameter. However, the immersion tests showed that the seawater immersion made HCLCoat13 film break away while the HCLCoat11 film did not apparently degrade, indicating that the HCLCoat11 film is more durable against seawater than the HCLCoat13. Raman spectroscopy revealed that there was some degradation of HCLCoat11 and HCLCoat13. For the HCLCoat11 film, the structure relaxation of Si-O-Si linkages was observed. On the other hand, seawater generated C-H-S bonds in the HCLCoat13 film resulting in the degradation of the film. In addition, it was found that the HCLCoat11 coating had anti-fouling properties due to its high water contact

  1. Fully Integrated Applications of Thin Films on Low Temperature Cofired Ceramic (LTCC)

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose Wolf; Ken Peterson; Matt O' Keefe; Wayne Huebner; Bill Kuhn

    2012-04-19

    Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC), as well as initial thin film capacitors on LTCC. The ruggedness of a multipurpose Ti-Cu-Pt-Au stack for connectivity and RF conductivity has continued to benefit fabrication and reliability in state of-the-art modules, while the capacitors have followed the traditional Metal-Insulator-Metal (MIM) style. The full integration of thin film passives with thin film connectivity traces is presented. Certain passives, such as capacitors, require specifically tailored and separately patterned thin film (multi-)layers, including a dielectric. Different capacitance values are achieved by variation of both the insulator layer thickness and the active area of the capacitor. Other passives, such as filters, require only the conductor - a single thin film multilayer. This can be patterned from the same connectivity thin film material (Ti-Cu-Pt-Au), or a specially tailored thin film material (e.g. Ti-Cu-Au) can be deposited. Both versions are described, including process and integration details. Examples are discussed, ranging from patterning for maximum tolerances, to space and performance-optimized designs. Cross-sectional issues associated with integration are also highlighted in the discussion.

  2. Strain-controlled thermal conductivity in ferroic twinned films

    Science.gov (United States)

    Li, Suzhi; Ding, Xiangdong; Ren, Jie; Moya, Xavier; Li, Ju; Sun, Jun; Salje, Ekhard K. H.

    2014-09-01

    Large reversible changes of thermal conductivity are induced by mechanical stress, and the corresponding device is a key element for phononics applications. We show that the thermal conductivity κ of ferroic twinned thin films can be reversibly controlled by strain. Nonequilibrium molecular dynamics simulations reveal that thermal conductivity decreases linearly with the number of twin boundaries perpendicular to the direction of heat flow. Our demonstration of large and reversible changes in thermal conductivity driven by strain may inspire the design of controllable thermal switches for thermal logic gates and all-solid-state cooling devices.

  3. Misfit strain phase diagrams of epitaxial PMN-PT films

    Science.gov (United States)

    Khakpash, N.; Khassaf, H.; Rossetti, G. A.; Alpay, S. P.

    2015-02-01

    Misfit strain-temperature phase diagrams of three compositions of (001) pseudocubic (1 - x).Pb (Mgl/3Nb2/3)O3 - x.PbTiO3 (PMN-PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN-PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN-PT compared to barium strontium titanate and lead zirconate titanate films.

  4. Ceramics and amorphous thin films based on gallium sulphide doped by rare-earth sulphides

    Science.gov (United States)

    Popescu, M.; Sava, F.; Lőrinczi, A.; Velea, A.; Simandan, I. D.; Badica, P.; Burdusel, M.; Galca, A. C.; Matei, E.; Preda, N.; Secu, M.; Socol, G.; Jipa, F.; Zamfirescu, M.; Balan, A.

    2015-04-01

    Bulk ceramics of Ga2S3 and rare-earth sulfides (EuS, Gd2S3, Er2S3) as well as combinations thereof have been prepared by spark plasma sintering (SPS). The disk-shaped ceramics were used as targets for pulsed laser deposition (PLD) experiments to obtain amorphous thin films. The properties of these new bulks and amorphous thin films have been investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), optical transmission spectroscopy, and atomic force microscopy (AFM). In order to test the photoexpansion effect in Ga2S3 and the possibility to create planar arrays of microlenses, the film was irradiated with femtosecond laser pulses at different powers. For low laser power pulses (up to 100 mW power per pulse) a photoexpansion effect was observed, which leads to formation of hillocks with a height of 40-50 nm. EuS doped Ga2S3 thin film shows luminescence properties, which recommend them for optoelectronic applications.

  5. Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films

    Science.gov (United States)

    Cao, Shuai; Wang, Ye; Cao, Lin; Wang, Yu; Lin, Bingpeng; Lan, Wei

    2016-01-01

    Objective Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of TiO2 on organic compounds, we hoped to synthesize a novel bracket with a TiO2 thin film to develop a photocatalytic antimicrobial effect. Methods The sol-gel dip coating method was used to prepare TiO2 thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. Results Films with 5 coating layers annealed at 700℃ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. TiO2 thin films with 5 coating layers annealed at 700℃ exhibited the greatest antimicrobial activity under UV-A light irradiation. Conclusions These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets. PMID:27226960

  6. Tribological properties of hard carbon films on zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Bindal, C.; Fenske, G.R. [Argonne National Lab., IL (United States); Wilbur, P. [Colorado State Univ., Fort Collins, CO (United States)

    1995-12-31

    This study investigated the tribological properties of hard diamondlike carbon (DLC) films on magnesia-partially-stabilized zirconia (MgO-PSZ) substrates over a wide range of loads, speeds, temperatures, and counterface materials. The films were 2 {micro}m-thick and produced on by ion-beam deposition at room temperature. Tribological tests were conducted on a ball-on-disk machine in open air of 30 to 50% relative humidity under contact loads of 1 to 50 N, at sliding velocities of 0.1 to 6 m/s, and at temperatures to 400{degrees}C. A1{sub 2}O{sub 3} and Si{sub 3}N{sub 4} balls were also used and rubbed against the DLC-coated MgO-PSZ disks, primarily to assess and compare their friction and wear performance to that of MgO-PSZ balls. A series of long-duration lifetime tests was run at speeds of 1, 2, and 6 m/s under a 5-N load to assess the durability of these DLC films. Test results showed that the friction coefficients of MgO-PSZ balls sliding against MgO-PSZ disks were in the range of 0.5-0.8, and the average specific wear rates of MgO-PSZ balls ranged from 10{sup {minus}5} to 5 {times} 10{sup {minus}4} mm{sup 3}/N.m, depending on sliding velocity, contact load and ambient temperature. The friction coefficients of MgO-PSZ balls sliding against the DLC-coated-MgO-PSZ disks varied between 0.03 to 0.1. The average specific wear rates of MgO-PSZ balls were reduced by factors of three to four orders of magnitude when rubbed against the DLC coated disks. These DLC films could last 1.5 million to 4 million cycles, depending on sliding velocity. Scanning electron microscopy and micro-laser Raman Spectroscopy were used to elucidate the microstructural and chemical nature of DLC films and worn surfaces.

  7. Prediction of stress-strain behavior of ceramic matrix composites using unit cell model

    Directory of Open Access Journals (Sweden)

    Suzuki Takuya

    2015-01-01

    Full Text Available In this study, the elastic modulus and the stress-strain curve of ceramic matrix composites (CMCs were predicted by using the unit cell model that consists of fiber bundles and matrix. The unit cell model was developed based on the observation of cross sections of CMCs. The elastic modulus of CMCs was calculated from the results of finite element analysis using the developed model. The non-linear behavior of stress-strain curve of CMCs was also predicted by taking the degradation of the elastic modulus into consideration, where the degradation was related to the experimentally measured crack density in CMCs. The approach using the unit cell model was applied to two kinds of CMCs, and good agreement was obtained between the experimental and the calculated results.

  8. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  9. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Four Non-Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-06-18

    OF FOUR NON-OXIDE CERAMIC MATRIX COMPOSITES THESIS JUNE 2015 Sarah M. Wallentine, Captain, USAF AFIT-ENY-MS-15-J-048 DEPARTMENT OF THE...TEMPERATURES ON TENSILE PROPERTIES AND STRESS-STRAIN BEHAVIOR OF FOUR NON-OXIDE CERAMIC MATRIX COMPOSITES THESIS Presented to the Faculty...PRIOR EXPOSURE AT ELEVATED TEMPERATURES ON TENSILE PROPERTIES AND STRESS-STRAIN BEHAVIOR OF FOUR NON-OXIDE CERAMIC MATRIX COMPOSITES Sarah M

  10. Anomalous thickness-dependent strain states and strain-tunable magnetization in Zn-doped ferrite epitaxial films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. J.; Bao, J.; Gao, C., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yang, M. M.; Luo, Z. L., E-mail: zlluo@ustc.edu.cn, E-mail: cgao@ustc.edu.cn; Hu, C. S.; Chen, X. C.; Pan, G. Q. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, H. L. [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, S.; Wang, J. W.; Li, P. S.; Liu, Y.; Zhao, Y. G. [Department of Physics and State Key Laboratory of New Ceramics, Fine Processing, Tsinghua University, Beijing 100084 (China); Jiang, T.; Liu, Y. K.; Li, X. G. [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science, Technology of China, Hefei, Anhui 230026 (China)

    2014-05-07

    A series of Zn{sub x}Fe{sub 3−x}O{sub 4} (ZFO, x = 0.4) thin films were epitaxially deposited on single-crystal (001)-SrTiO{sub 3} (STO) substrates by radio frequency magnetron sputtering. The anomalous thickness-dependent strain states of ZFO films were found, i.e., a tensile in-plane strain exists in the thinner ZFO film and which monotonously turns into compressive in the thicker films. Considering the lattice constant of bulk ZFO is bigger than that of STO, this strain state cannot be explained in the conventional framework of lattice-mismatch-induced strain in the hetero-epitaxial system. This unusual phenomenon is proposed to be closely related to the Volmer-Weber film growth mode in the thinner films and incorporation of the interstitial atoms into the island's boundaries during subsequent epitaxial growth of the thicker films. The ZFO/STO epitaxial film is found in the nature of magnetic semiconductor by transport measurements. The in-plane magnetization of the ZFO/STO films is found to increase as the in-plane compressive strain develops, which is further proved in the (001)-ZFO/PMN-PT film where the film strain state can be in situ controlled with applied electric field. This compressive-strain-enhanced magnetization can be attributed to the strain-mediated electric-field-induced in-plane magnetic anisotropy field enhancement. The above results indicate that strain engineering on magnetic oxide semiconductor ZFO films is promising for novel oxide-electronic devices.

  11. Preparation of AZO Nanoparticles, Ceramic Targets and Thin Films by a Co-precipitaition Method

    Institute of Scientific and Technical Information of China (English)

    XIU Sanmu; WEI Tiefeng; YANG Ye; ZHANG Ting; LI Jia; SONG Weijie

    2015-01-01

    We comprehensively study the co-precipitation preparation of aluminum doped zinc oxide (AZO) nanoparticles, ceramic target and thin iflm deposition. The nanoparticles calcined below 700℃possessed pure wurtzite structure of ZnO. When the calcination temperature exceeded 700℃, ZnAl2O4 phase appeared. The resistivity and relative density of the AZO target pressed from nanoparticles were 3×10-3Ω∙cm and 99.1%, respectively. The minimum resistivity of AZO thin films prepared by DC sputtering of the ceramic target reached 4.1×10–4Ω∙cm with the mobility of 33 cm2/v∙s and the carrier concentration of 4.5 ×1020 cm-3. The average optical transmittance of the AZO thin iflms in the visible wavelength range (400-800 nm) was more than 80%.

  12. High-temperature conductivity evaluation of Nb doped SrTiO{sub 3} thin films: Influence of strain and growth mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Aguesse, Frédéric [Imperial College London, Department of Materials and London Centre for Nanotechnology, Exhibition Road, SW7 2AZ, London (United Kingdom); CIC ENERGIGUNE, Parque Tecnológico de Alaba, Albert Einstein 48, ED.CIC, 01510, Miñano (Spain); Axelsson, Anna-Karin [Imperial College London, Department of Materials and London Centre for Nanotechnology, Exhibition Road, SW7 2AZ, London (United Kingdom); Reinhard, Patrick [Nonmetallic Inorganic Materials, ETH Zürich, Wolfgang-Pauli-Str. 10, HCI G539, CH-8093, Zürich (Switzerland); Tileli, Vasiliki [Imperial College London, Department of Materials and London Centre for Nanotechnology, Exhibition Road, SW7 2AZ, London (United Kingdom); Rupp, Jennifer L.M. [Massachusetts Institute of Technology (MIT), Department of Materials Science and Engineering and Department of Nuclear Science and Engineering, Cambridge, MA 02139 (United States); Alford, Neil McN [Imperial College London, Department of Materials and London Centre for Nanotechnology, Exhibition Road, SW7 2AZ, London (United Kingdom)

    2013-07-31

    Doped SrTiO{sub 3} thin films, 55 nm thick, were epitaxially grown by Pulsed Laser Deposition with niobium contents ranging from 2 to 5 mol% on SrTiO{sub 3} and LaAlO{sub 3} substrates. The different templates result in different growth defects, film growth mechanism and therefore a different volume fraction of uniformly strained film under the critical thickness. The investigation of the conductivity reveals a significant difference between the two substrate choices, but only at elevated temperatures with conductivity values up to 30% larger for films on SrTiO{sub 3} substrates compared with LaAlO{sub 3}. Whereas in bulk ceramics the niobium level dictates the total conductivity, here it was found that the substrate choice had a greater influence for thin films, in particular at temperatures over 400 °C. This finding provides important information on conductive layers in complex heterostructures where strain and defects could work cooperatively. - Highlights: • Relation between growth mechanisms of Nb-SrTiO{sub 3} thin films with substrate mismatch • Strain dependence of the conductivity revealed by high temperature measurements • Increase of conductivity for films deposited on SrTiO{sub 3} compared to LaAlO{sub 3} substrates • Conductivity mechanisms depend on the mechanical strain applied by the substrate.

  13. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    Science.gov (United States)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-08-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x)BaTiO3, which initially possess a pseudo-cubic symmetry, can be tuned to undergo phase transformations to combined lower symmetry phases, thus decreasing the anisotropy of the transformation strain. Further, modelling of transformation strains of individual grains shows that minimum grain-scale strain heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials.

  14. Strain profiles in ion implanted ceramic polycrystals: An approach based on reciprocal-space crystal selection

    Energy Technology Data Exchange (ETDEWEB)

    Palancher, H., E-mail: herve.palancher@cea.fr; Martin, G.; Fouet, J. [CEA, DEN, DEC, F-13108 Saint Paul lez Durance (France); Goudeau, P. [Institut Pprime, CNRS-Université de Poitiers–ENSMA, SP2MI, F-86360 Chasseneuil (France); Boulle, A. [Science des Procédés Céramiques et Traitements de Surface (SPCTS), CNRS UMR 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges (France); Rieutord, F. [CEA, DSM, INAC, F-38054 Grenoble Cedex 9 (France); Favre-Nicolin, V. [Université Grenoble-Alpes, F-38041 Grenoble, France, Institut Universitaire de France, F-75005 Paris (France); Blanc, N. [Institut NEEL, CNRS-Univ Grenoble Alpes, F-38042 Grenoble (France); Onofri, C. [CEA, DEN, DEC, F-13108 Saint Paul lez Durance (France); CEMES, CNRS UPR 8011, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4 (France)

    2016-01-18

    The determination of the state of strain in implanted materials is a key issue in the study of their mechanical stability. Whereas this question is nowadays relatively easily solved in the case of single crystals, it remains a challenging task in the case of polycrystalline materials. In this paper, we take benefit of the intense and parallel beams provided by third generation synchrotron sources combined with a two-dimensional detection system to analyze individual grains in polycrystals, hence obtaining “single crystal-like” data. The feasibility of the approach is demonstrated with implanted UO{sub 2} polycrystals where the in-depth strain profile is extracted for individual grains using numerical simulations of the diffracted signal. The influence of the implantation dose is precisely analyzed for several diffracting planes and grains. This work suggests that, at low fluences, the development of strain is mainly due to ballistic effects with little effect from He ions, independently from the crystallographic orientation. At higher fluences, the evolution of the strain profiles suggests a partial and anisotropic plastic relaxation. With the present approach, robust and reliable structural information can be obtained, even from complex polycrystalline ceramic materials.

  15. NiCr thin film strain gauges fabricated on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Danisman, Murat [Yildiz Technical Univ., Istanbul (Turkey). Metallurgical and Engineering Dept.; Cansever, Nurhan [Gedik Univ., Istanbul (Turkey). Electronic Engineering Dept.

    2013-10-01

    In order to investigate the strain gauge characteristics of NiCr thin films, 500 nm NiCr (80 wt.-% and 20 wt.-%, respectively) thin films were deposited on glass substrates by DC magnetron sputtering. After deposition, NiCr thin films were characterized by using X-Ray diffraction analysis, scanning electron microscope and four-point probe techniques inview of crystallization, phases, film structure and electrical resistivity. After characterization, NiCr thin films were shaped into strain gauges by photo lithography and wet etching techniques. Strain gauges were tested with different loads, and strain values were calculated by comparing the results with commercial NiCr strain gauges with the same surface area. Resistivity change vs. strain was plotted, and the gauge factor of fabricated thin film strain gauges was evaluated as 1.23. (orig.)

  16. Dynamic strain in metallic vs insulating manganite films

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Martina Cornelia; Oswald, Steffen; Schultz, Ludwig; Doerr, Kathrin [IFW Dresden (Germany)

    2008-07-01

    The use of a ferro- and piezoelectric substrate, PMN-PT(001) (PbMg{sub 1/3}Nb{sub 2/3}O{sub 3}){sub 0.72}(PbTiO{sub 3}){sub 0.28}, allows us to biaxially compress as grown epitaxial films by as much as 0.2%. This reversible dynamic strain process gives a unique insight into the effect of strain on perovskite oxides, eliminating effects such as varying oxygen concentration, which may occur when several substrates with different lattice mismatch are used. We have prepared PLCMO (Pr{sub 1-x}La{sub x}){sub 0.7}Ca{sub 0.3}MnO{sub 3} films on PMN-PT substrates for a range of x values. Around x=0.6, the system exhibits a transition from an insulating to a metallic ground state. We have recorded changes in magnetic moment and transition temperature upon varying x, and compared the effects of dynamic strain on transport behaviour in the metallic and insulating ground states.

  17. Strain-Induced Water Dissociation on Supported Ultrathin Oxide Films

    CERN Document Server

    Song, Zhenjun; Xu, Hu

    2015-01-01

    Controlling the dissociation of single water molecule on an insulating surface plays a crucial role in many catalytic reactions. In this Letter, we have identified the enhanced chemical reactivity of ultrathin MgO(100) films deposited on Mo(100) substrate that causes water dissociation. We reveal that the ability to split water on insulating surface closely depends on the lattice mismatch between ultrathin films and the underlying substrate, and substrate-induced in-plane tensile strain dramatically results in water dissociation on MgO(100). Three dissociative adsorption configurations of water with lower energy are predicted, and the structural transition going from molecular form to dissociative form is almost barrierless. Our results provide an effective avenue to achieve water dissociation at the single-molecule level and shed light on how to tune the chemical reactions of insulating surfaces by choosing the suitable substrates.

  18. Misfit strain phase diagrams of epitaxial PMN–PT films

    Energy Technology Data Exchange (ETDEWEB)

    Khakpash, N.; Khassaf, H.; Rossetti, G. A. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2015-02-23

    Misfit strain–temperature phase diagrams of three compositions of (001) pseudocubic (1 − x)·Pb (Mg{sub l/3}Nb{sub 2/3})O{sub 3} − x·PbTiO{sub 3} (PMN–PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN–PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN–PT compared to barium strontium titanate and lead zirconate titanate films.

  19. Ceramic thick film humidity sensor based on MgTiO{sub 3} + LiF

    Energy Technology Data Exchange (ETDEWEB)

    Kassas, Ahmad, E-mail: a.kassas.mcema@ul.edu.lb [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand [Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Lakiss, Hassan [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Faculty of Engineering, Section III, Hariri Campus, Hadath, Beirut (Lebanon); Hamieh, Tayssir [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon)

    2013-10-15

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO{sub 3} + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO{sub 3}/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time.

  20. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    OpenAIRE

    M.A. Bodea; Sbarcea, G.; Naik, Gururaj V.; Boltasseva, Alexandra; Klar, T. A.; Pedarnig, J. D.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass from dense and small-grained ceramic targets show optical transmission larger than 70 % in the visible and reveal an onset of metallic reflectivity in the near infrared at 1100 nm and a crossover to...

  1. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...... from dense and small-grained ceramic targets show optical transmission larger than 70 % in the visible and reveal an onset of metallic reflectivity in the near infrared at 1100 nm and a crossover to a negative real part of the permittivity at approximately 1500 nm. In comparison to noble metals, doped...

  2. Giant actuation strain nearly 0.6% in a periodically orthogonal poled lead titanate zirconate ceramic via reversible domain switching

    Science.gov (United States)

    Li, Faxin; Wang, Qiangzhong; Miao, Hongchen

    2017-08-01

    The widely used ferroelectric ceramics based actuators always suffer from small output strains (typically ˜0.1%-0.15%). Non-180° domain switching can generate a large strain in ferroelectrics but it is usually irreversible. In this work, we tailored the domain structures in a soft lead titanate zirconate (PZT) ceramic by periodical orthogonal poling. The non-180° switching in this domain-engineered PZT ceramics turns to be reversible, resulting in a local giant actuation strain of nearly 0.6% under a field of 2 kV/mm at 0.1 Hz. The large interfacial stresses between regions with different poling directions during electric loading/unloading were thought to be responsible for the reversible non-180° domain switching. The switching strain drops quickly with the increasing frequency, and stabilized at about 0.2% at or above 1.0 Hz. The large actuation strain remains quite stable after 104 cycles of loading, which is very promising for low-frequency, large-strain actuators.

  3. Tailoring magnetic frustration in strained epitaxial FeRh films

    Science.gov (United States)

    Witte, Ralf; Kruk, Robert; Gruner, Markus E.; Brand, Richard A.; Wang, Di; Schlabach, Sabine; Beck, Andre; Provenzano, Virgil; Pentcheva, Rossitza; Wende, Heiko; Hahn, Horst

    2016-03-01

    We report on a strain-induced martensitic transformation, accompanied by a suppression of magnetic order in epitaxial films of chemically disordered FeRh. X-ray diffraction, transmission electron microscopy, and electronic structure calculations reveal that the lowering of symmetry (from cubic to tetragonal) imposed by the epitaxial relation leads to a further, unexpected, tetragonal-to-orthorhombic transition, triggered by a band-Jahn-Teller-type lattice instability. The collapse of magnetic order is a direct consequence of this structural change, which upsets the subtle balance between ferromagnetic nearest-neighbor interactions arising from Fe-Rh hybridization and frustrated antiferromagnetic coupling among localized Fe moments at larger distances.

  4. Evolution of microstructure, strain and physical properties in oxide nanocomposite films.

    Science.gov (United States)

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; Zhang, Wenrui; Lü, Xuejie; Dowden, Paul; MacManus-Driscoll, Judith L; Wang, Haiyan; Jia, Quanxi

    2014-06-24

    We, using LSMO:ZnO nanocomposite films as a model system, have studied the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures, strain states, and functionalities. It further shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.

  5. Spatio-temporal behaviour of atomic-scale tribo-ceramic films in adaptive surface engineered nano-materials.

    Science.gov (United States)

    Fox-Rabinovich, G; Kovalev, A; Veldhuis, S; Yamamoto, K; Endrino, J L; Gershman, I S; Rashkovskiy, A; Aguirre, M H; Wainstein, D L

    2015-03-05

    Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these phases. They act as thermal barriers with an amazing energy soaking/dissipating capacity. Less protective tribo-films cannot sustain in these severe conditions and rapidly wear out. Therefore, a functional hierarchy is established. The created tribo-films act in synergy, striving to better adapt themselves to external stimuli. Under a highly complex structure and non-equilibrium state, the upcoming generation of adaptive surface engineered nano-multilayer materials behaves like intelligent systems - capable of generating, with unprecedented efficiency, the necessary tribo-films to endure an increasingly severe environment.

  6. Strain engineering on structures and properties in ferroelectric thin films with perovskite structures

    Directory of Open Access Journals (Sweden)

    TANG Yanxue

    2015-08-01

    Full Text Available Ferroelectric thin films possess ferroelectric,piezoelectric,pyroelectric and photovoltaic properties,which have bright prospect for transducers,actuators,sensors,energy harvesting and solar cells.The properties of ferroelectric films are closely related to their strain due to films constrained by substrates.Therefore,the key to improve the properties of ferroelectric films is how to use substrates to regulate and control their strain,and then regulate their polarized state.This paper review the research progress of regulating the properties of ferroelectric films with perovskite structure by strain engineering and the problems needed to be resolved.

  7. Robustness and Versatility of Thin Films on Low Temperature Cofired Ceramic (LTCC)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J. Ambrose; Vianco, P. T.; Johnson, M. H.; Goldammer, S.

    2011-10-09

    Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC). The ruggedness of a multipurpose Ti-Cu-Pt-Au stack has continued to benefit fabrication and reliability in state-of-theart modules. Space optimization is described, preserving miniaturization of critical spaces and component pads. Additional soldering details are also presented, including trends with solder-stop materials. Feature compensation becomes a simple step in the normal manufacturing flow which enables exact targeting of desired feature sizes. In addition, fine details of the manufacturing process, including ion milling, will be discussed. We will discuss full long-term aging results and structural details that reinforce the reliability and function. Different thin film materials for specific applications can be exploited for additional capabilities such as filters and other integral components. Cross sections verify the results shown. This successful integration of thin films on LTCC points to higher frequencies which require finer lines and spaces. Advancements of these applications become possible due to the associated progression of smaller skin depth and thinner metallic material.

  8. Conditioning film and initial biofilm formation on ceramics tiles in the marine environment.

    Science.gov (United States)

    Siboni, Nachshon; Lidor, Michal; Kramarsky-Winter, Esti; Kushmaro, Ariel

    2007-09-01

    The formation of biofilm on surfaces in the marine environment is believed to be an important factor driving colonization and recruitment of some sessile invertebrate communities. The present study follows the process of biofilm buildup on unglazed ceramic tiles deployed into the marine environment in the northern Gulf of Eilat. PCR-DGGE of film eluted from the tile surface indicated the presence of bacteria as early as 2 h after deployment. The makeup of the biofilm bacterial community was dynamic. Bacterial presence was apparent microscopically 6 h after deployment, though a developed biofilm was not observed until 24 h following deployment. Total organic carbon (TOC) data suggest that a conditioning film was built within the first four hours following deployment. During this time period TOC reached the highest level possibly due to adhesion of organics (e.g., sugars, proteins and humic substances) from the water column. We suggest that the primary adhering bacteria, whilst still in the reversible stage of adhesion, utilize the conditioning film as food causing the decrease in TOC. Understanding the dynamics between these primary bacterial settlers is of importance, since they may play a role on the succession of invertebrate species settlement onto artificial surfaces.

  9. Atomistic Structure, Strength, and Kinetic Properties of Intergranular Films in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garofalini, Stephen H

    2015-01-08

    Intergranular films (IGFs) present in polycrystalline oxide and nitride ceramics provide an excellent example of nanoconfined glasses that occupy only a small volume percentage of the bulk ceramic, but can significantly influence various mechanical, thermal, chemical, and optical properties. By employing molecular dynamics computer simulations, we have been able to predict structures and the locations of atoms at the crystal/IGF interface that were subsequently verified with the newest electron microscopies. Modification of the chemistry of the crystal surface in the simulations provided the necessary mechanism for adsorption of specific rare earth ions from the IGF in the liquid state to the crystal surface. Such results had eluded other computational approaches such as ab-initio calculations because of the need to include not only the modified chemistry of the crystal surfaces but also an accurate description of the adjoining glassy IGF. This segregation of certain ions from the IGF to the crystal caused changes in the local chemistry of the IGF that affected fracture behavior in the simulations. Additional work with the rare earth ions La and Lu in the silicon oxynitride IGFs showed the mechanisms for their different affects on crystal growth, even though both types of ions are seen adhering to a bounding crystal surface that would normally imply equivalent affects on grain growth.

  10. Surface structure of coherently strained ceria ultrathin films

    Science.gov (United States)

    Shi, Yezhou; Stone, Kevin H.; Guan, Zixuan; Monti, Matteo; Cao, Chuntian; El Gabaly, Farid; Chueh, William C.; Toney, Michael F.

    2016-11-01

    Cerium oxide, or ceria, is an important material for solid oxide fuel cells and water splitting devices. Although the ceria surface is active in catalytic and electrochemical reactions, how its catalytic properties are affected by the surface structure under operating conditions is far from understood. We investigate the structure of the coherently strained Ce O2 ultrathin films on yttria-stabilized zirconia (001) single crystals by specular synchrotron x-ray diffraction (XRD) under oxidizing conditions as a first step to study the surface structure in situ. An excellent agreement between the experiment data and the model is achieved by using a "stacks and islands" model that has a two-component roughness. One component is due to the tiny clusters of nanometer scale in lateral dimensions on each terrace, while the other component is due to slightly different Ce O2 thickness that span over hundreds of nanometers on neighboring terraces. We attribute the nonuniform thickness to step depairing during the thin film deposition that is supported by the surface morphology results on the microscopic level. Importantly, our model also shows that the polarity of the ceria surface is removed by a half monolayer surface coverage of oxygen. The successful resolution of the ceria surface structure using in situ specular synchrotron XRD paves the way to study the structural evolution of ceria as a fuel cell electrode under catalytically relevant temperatures and gas pressures.

  11. High-strain-rate superplasticity in oxide ceramics: a trial of microstructural design based on creep-cavitation mechanisms

    Institute of Scientific and Technical Information of China (English)

    Keijiro HIRAGA; Byung-Nam KIM; Koji MORITA; Hidehiro YOSHIDA; Yoshio SAKKA; Masaaki TABUCHI

    2011-01-01

    From existing knowledge about high-temperature cavitation mechanisms, necessary conditions were discussed for the suppression of cavitation failure during superplastic deformation in ceramic materials. The discussion, where special attention was placed on the relaxation of stress concentrations during grain-boundary sliding and cavity nucleation and growth, leaded to a conclusion that cavitation failure could be retarded by the simultaneous controlling of the initial grain size, the number of residual defects,diffusivity, dynamic grain growth and the homogeneity of microstructure. On the basis of this conclusion, high-strain-rate superplasticity (defined as superplasticity at a strain rate higher than 0.01 s-1) could be intentionally attained in some oxide ceramic materials. This was shown in tetragonal zirconia and composites consisting of zirconia, α-alumina and a spinel phase.

  12. The effect of tape casting operational parameters on the quality of adjacently graded ceramic film

    DEFF Research Database (Denmark)

    Bulatova, Regina; Gudik-Sørensen, Mads; Della Negra, Michela;

    2016-01-01

    For small length tape casting of ceramic slurries varying green film thickness is often a problem. To optimise this, the following parameters were investigated: single blade, double blade, using a pump system and a modelled speed change mode have been analysed. Advantages and limitations of every...... method are described here. The tape casting experiments were built to be generic in order to allow the control of various processing conditions. From these results, the single-blade technique was chosen for a study of side-by-side tape casting. The influence of the geometric parameters of partitioning...... the casting tank into chambers, on the quality of graded tape was studied. Tape casting experiments at different speeds and partition tongue lengths in combination with rheological tests revealed that high casting speeds and absence of the partition under the blade are detrimental to the formation...

  13. A Ceramic Thick Film Humidity Sensor Based on MnZn Ferrite

    Directory of Open Access Journals (Sweden)

    D. Egan

    2002-02-01

    Full Text Available A ceramic thick film humidity sensor, produced from MnZn ferrite, is presented. The proposed sensing mechanism is a combination of proton hopping, hydronium diffusion, and vacancy donor traps releasing electrons into the conduction band. The sensor structure comprises a two-layer device; the first layer is an interdigitated conductor and the second layer is a 30μm thick sensing layer. The effects of sintering the sensing pastes in air and vacuum have been reported. The air-fired sample exhibits the highest humidity sensitivity (1.54%/RH% and the lowest temperature sensitivity (0.37%/oC. The vacuum-fired sample has the lowest humidity sensitivity (0.043%/RH and the highest temperature sensitivity (0.77%/oC. The sensitivity results indicate that the air-fired sample has the best potential for use in humidity sensing applications.

  14. Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain

    Energy Technology Data Exchange (ETDEWEB)

    Glushko, O. [Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, 8700 Leoben (Austria); Marx, V.M.; Kirchlechner, C. [Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, 8700 Leoben (Austria); Max-Plank-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, 40237 Düsseldorf (Germany); Zizak, I. [Helmholtz-Zentrum Berlin for Materials and Energy, Albert-Einstein-Str. 15, D-12489 Berlin (Germany); Cordill, M.J. [Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, 8700 Leoben (Austria); Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, 8700 Leoben (Austria)

    2014-02-03

    Substantial recovery (decrease) of electrical resistance during and after unloading is demonstrated for copper films on polyethylene terephthalate substrates subjected to a tensile strain with different peak values. Particularly, the films strained to 5% exhibit full resistance recovery after unloading despite clearly visible plastic deformation of the film. The recovery of electrical resistance in connection with the mechanical behavior of film/substrate couple is discussed with the help of in situ scanning electron microscopy and X-ray diffraction analysis. - Highlights: • Tensile tests on 200 nm Cu films on PET substrate are performed. • Electrical resistance is recorded in-situ during loading and unloading. • Significant recovery (decrease) of resistance is observed during and after unloading. • Films strained to 5% demonstrate full resistance recovery. • Viscoelastic relaxation of PET is responsible for recovery of Cu film resistance.

  15. Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films

    Science.gov (United States)

    White, J. S.; Bator, M.; Hu, Y.; Luetkens, H.; Stahn, J.; Capelli, S.; Das, S.; Döbeli, M.; Lippert, Th.; Malik, V. K.; Martynczuk, J.; Wokaun, A.; Kenzelmann, M.; Niedermayer, Ch.; Schneider, C. W.

    2013-07-01

    Single phase and strained LuMnO3 thin films are discovered to display coexisting ferromagnetic and antiferromagnetic orders. A large moment ferromagnetism (≈1μB), which is absent in bulk samples, is shown to display a magnetic moment distribution that is peaked at the highly strained substrate-film interface. We further show that the strain-induced ferromagnetism and the antiferromagnetic order are coupled via an exchange field, therefore demonstrating strained rare-earth manganite thin films as promising candidate systems for new multifunctional devices.

  16. A search for strain gradients in gold thin films on substrates using x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Leung, O. S. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205 (United States); Munkholm, A. [Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Brennan, S. [Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Stanford, California 94309 (United States); Nix, W. D. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205 (United States)

    2000-08-01

    The high strengths of gold thin films on silicon substrates have been studied with particular reference to the possible effect of strain gradients. Wafer curvature/thermal cycling measurements have been used to study the strengths of unpassivated, oxide-free gold films ranging in thickness from 0.1 to 2.5 {mu}m. Films thinner than about 1 {mu}m in thickness appear to be weakened by diffusional relaxation effects near the free surface and are not good candidates for the study of strain gradient plasticity. Our search for plastically induced strain gradients was thus limited to thicker films with correspondingly larger grain sizes. Three related x-ray diffraction techniques have been used to investigate the elastic strains in these films. The standard d{sub hkl} vs sin2 {psi} technique has been used to find the average strain through the thickness of the films. The results are consistent with wafer curvature measurements. We have also measured a number of d{sub hkl}'s as a function of penetration depth to construct depth-dependent d{sub hkl} vs sin2 {psi} plots. These data show that the residual elastic strain is essentially independent of depth in the film. Finally, a new technique for sample rotation has been used to measure the d{sub hkl}'s for a fixed set of grains in the film as a function of penetration depth. Again, no detectable gradient in strain has been observed. These results show that the high strengths of unpassivated gold films relative to the strength of bulk gold cannot be rationalized on the basis of strain gradients through the film thickness. However, a sharp gradient in strain close to the film substrate interface cannot be ruled out. (c) 2000 American Institute of Physics.

  17. Strain tunability of dielectric and ferroelectric properties in epitaxial lead titanate thin films

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films is numerically investigated by using a phase field model,in which the surface effect of polarization is taken into account.The response of polarization to the applied electric field in the thickness direction is examined with different misfit strains at room temperature.It is found that a co...

  18. Study on Physical and Chemical Behaviors of Rare Earths in Preparing Ceramic Tube Supported Palladium Film by Electroless Plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rare earths of ytterbium, lanthanum, praseodymium, neodymium and their binary mixtures were respectively added into the traditional electroless plating solution to prepare thin palladium film on the inner surface of porous ceramic tube. The experimental results shows that the addition of rare earths increases palladium deposition rates and the binary mixtures are superior to the single rare earths and the mixture of ytterbium-lanthanum is the most efficient. Adding the mixture of ytterbium-lanthanum can also reduce the plating temperature by 10~20 ℃, shrink the metal crystal size and improve the film densification compared to those by traditional electroless plating. A thin palladium film with 5 μm was prepared and the film made a highly pure hydrogen with a molar fraction of more than 99.97% from a H2-N2 gas mixture. More attentions were paid to analyze the physical and chemical behaviors of the rare earths in palladium film preparation.

  19. Supercapacitors: Ferroelectric Polymer-Ceramic Nanoparticle Composite Films for Use in the Capacitive Storage of Electrical Energy

    Science.gov (United States)

    Parsons, Dana; Pierce, Andrew; Porter, Tim; Dillingham, Randy; Cornelison, David

    2010-03-01

    Most new alternative energy solutions including wind and solar power, will require short term energy storage for widespread implementation. One means of storage would be the use of capacitors owing to their rapid delivery of power and longevity compared to chemical batteries. Capacitor materials exhibiting high dielectric permittivity and breakdown strength, as well as light weight and environmental safety are most desirable. Recently, new classes of capacitor dielectric materials, consisting of ferroelectric polymer matrices containing ceramic nanoparticles have attracted renewed interest due to their high potential energy storage, charge and discharge properties and lightweight. In this study, polyvinylidene flouride (PVDF) thin films containing nanoparticles of the ceramic titanium dioxide created using a physical vapor deposition process, are analyzed for use as dielectrics for a supercapacitor. Measured results of the film parameters including dielectric properties and breakdown voltages will be presented. These parameters will be analyzed with respect to film characteristics such as, dispersion of the ceramic particles, thickness of the films and composition ratios.

  20. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  1. Strain dependent ultrafast carrier dynamics in EuTiO3 films

    Science.gov (United States)

    Li, Zhong-guo; Zhao, Run; Li, Weiwei; Wang, Haiyan; Yang, Hao; Song, Ying-lin

    2014-10-01

    The photocarrier relaxation dynamics of EuTiO3 films have been investigated using femtosecond transient absorption spectroscopy. Two kinds of EuTiO3 films, with and without strain, have been included. In both films, the decay dynamics of 2p-3dt2g transition has a fast (˜2 ps) and slow (ns) components which are independent of the strain. Remarkably, the transient photobleaching of 4f-3dt2g transition is found to be enhanced considerably in the strained film, accompanied with a subnanosecond carrier lifetime. This behavior can be linked to the strain induced band structure modulation. Our results reveal the dynamical interactions in EuTiO3, identifying the critical roles of strain in photo induced phenomena.

  2. Strain and High Temperature Superconductivity: Unexpected Results from Direct Electronic Structure Measurements in Thin Films

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloetta, D.; Mitrovic, S.; Onellion, M.; Xi, X.; Margaritondo, G.; Pavuna, D.

    2003-07-01

    Angle-resolved photoemission spectroscopy reveals very surprising strain-induced effects on the electronic band dispersion of epitaxial La2-xSrxCuO4-δ thin films. In strained films we measure a band that crosses the Fermi level (EF) well before the Brillouin zone boundary. This is in contrast to the flat band reported in unstrained single crystals and in our unstrained films, as well as in contrast to the band flattening predicted by band structure calculations for in-plane compressive strain. In spite of the density of states reduction near EF, the critical temperature increases in strained films with respect to unstrained samples. These results require a radical departure from commonly accepted notions about strain effects on high temperature superconductors, with possible general repercussions on superconductivity theory.

  3. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films

    Science.gov (United States)

    Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.

    2016-10-01

    Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.

  4. Quantitative Analysis of Life Index of Electrothermal-Film Coated Ceramic Heating Elements with Rare-Earth Element Doped

    Institute of Scientific and Technical Information of China (English)

    He Ping

    2004-01-01

    For electrothermal-film heating elements for ceramics, the quantitative expression of the relation between the contents of multicomponent semiconductor dope and rare-earth element additive through the multivariate statistical regression analysis was presented, and the optimum control index of the multicomponent semiconductor dope and the rareearth element for the maximum life was also determined. The research shows that the life value ranging from 15 to 20 thousand hours can be ensured only if the evaluation grade of metal oxide dope in the compounding formula is controlled between grades 0.5 to 1.2. The relation of the content of multicomponent rare-earth element dope and the life index of electrothermal-film heating material for ceramics was determined theoretically.

  5. Novel texturing method for sputtered zinc oxide films prepared at high deposition rate from ceramic tube targets

    Directory of Open Access Journals (Sweden)

    Hüpkes J.

    2011-10-01

    Full Text Available Sputtered and wet-chemically texture etched zinc oxide (ZnO films on glass substrates are regularly applied as transparent front contact in silicon based thin film solar cells. In this study, chemical wet etching in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl on aluminum doped zinc oxide (ZnO:Al films deposited by magnetron sputtering from ceramic tube targets at high discharge power (~10 kW/m target length is investigated. Films with thickness of around 800 nm were etched in diluted HCl acid and HF acid to achieve rough surface textures. It is found that the etching of the films in both etchants leads to different surface textures. A two steps etching process, which is especially favorable for films prepared at high deposition rate, was systematically studied. By etching first in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl these films are furnished with a surface texture which is characterized by craters with typical diameter of around 500 − 1000 nm. The resulting surface structure is comparable to etched films sputtered at low deposition rate, which had been demonstrated to be able to achieve high efficiencies in silicon thin film solar cells.

  6. Amino Acid Hydrolysis and Analysis System for Investigation of Site Directed Nucleation and Growth of Ceramic Films on Metallic Surfaces

    Science.gov (United States)

    2008-09-30

    of biomineralization by hemocytes isolated from a bivalve on a metal substrate outside of the organism. These results indicate that it is possible...to deposit a ceramic material onto a metal substrate at ambient temperature and pressure. Figure I A-B. SEM evidence of cellular biomineralization on...hydrolysis and analysis system for investigation of site directed nucleation and growth of cera1nic films on metallic surfaces Sb. GRANT NUMBER

  7. Conformation of LSM/YSZ and LSM ceramic films obtained by the citrate and solid mixture techniques; Conformacao de filmes ceramicos de LSM e LSM/YSZ obtidos pelas tecnicas citratos e mistura de solidos

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, R.; Vargas, R.A.; Andreoli, M.; Seo, E.S.M., E-mail: rchiba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de SOFC - Insumos e Componentes

    2009-07-01

    In this work, the ceramic films of LSM/YSZ (strontium-doped lanthanum manganite/Yttria-stabilized zirconia) and LSM used as cathodes of the solid oxide fuel cells (SOFC) are conformed by the wet powder spraying technique. The composite LSM/YSZ was obtained by the solid mixture technique and LSM by the citrate technique. For the formation of the LSM/YSZ and LSM ceramic films was necessary the preparation of dispersed ceramic suspensions for the deposition in YSZ substrate, used as electrolyte of the CaCOS. These powders were conformed using an aerograph for the deposition of the LSM/YSZ and LSM thin films of approximately 40 microns. The half-cells had been characterized by X-ray diffractometry (XRD), identifying the phases hexagonal (LSM) and cubica (YSZ). And electronic scanning electron microscopy (SEM) was used to evaluate the adherence and porosity of the ceramic films according to the characteristics of the cathode. (author)

  8. Evaluating sol-gel ceramic thin films for metal implant applications: III. In vitro aging of sol-gel-derived zirconia films on Ti-6Al-4V.

    Science.gov (United States)

    Kirk, P B; Filiaggi, M J; Sodhi, R N; Pilliar, R M

    1999-01-01

    Sol-gel-derived zirconia films were deposited onto polished Ti-6Al-4V substrates by dip-coating from an alkoxide precursor solution. No change in morphology of the zirconia film was observed after aging at 37 degrees C for 4-12 weeks in pH 4.0 buffer solution or Hanks' balanced salt solution (HBSS), although a precipitate predominantly composed of calcium phosphate was formed on those films aged in HBSS. X-ray diffraction identified the phase of the zirconia film as either cubic or tetragonal, and revealed no degradation to the monoclinic phase after aging. By a substrate straining test, the fracture strain of the coating was revealed to be 1.5%, above the yield strain of the titanium alloy substrate. At this strain level, through-thickness cracks formed in the coating where slip bands emerged from the substrate. Qualitatively, the adhesion of the film was sufficient to prevent gross delamination of the film at high strain levels, although small regions of delamination were caused by compressive buckling of the film. This behavior indicates generally good adhesion. No change in this behavior was observed after aging.

  9. Study on deposition technique and properties of Pd/Ag alloy film sensor supported on ceramic substrate

    Science.gov (United States)

    Geng, Z. T.; He, Q.; Jin, C. G.

    2016-07-01

    Developing high-quality hydrogen sensitive material is the core part of hydrogen sensor, whose performance is determined by the sensitive response, reproducibility and recovery of hydrogen material etc. In order to overcome the defects of hydrogen embrittlement in previous hydrogen sensor which were based on the pure palladium, sliver as the second component added to the palladium was studied. Using photochemical etching technology to produce a bent metal mask, the mask is put on the ceramic substrate. Firstly, the thin film of Ta2O5 as a transition layer grew on the ceramic substrate. Then, a series of Pd/Ag alloy film sensors were prepared, and each performance characterization of Pd/Ag alloy film was studied. Testing results indicated that the thin film had a good linear output performance at 0∼⃒30% hydrogen concentration range, and demonstrates a high responsiveness and good repeatability. With temperature increasing, the strength of the responsive signal of the Pd/Ag alloy film decreases and its responsive time was also shortened.

  10. Low Temperature Processing of Nanocrystalline Lead Zirconate Titanate (PZT) Thick Films and Ceramics by a Modified Sol-Gel Route

    Science.gov (United States)

    Zhu, Weiguang; Wang, Zhihong; Zhao, Changlei; Tan, Ooi Kiang; Hng, Huey Hoon

    2002-11-01

    Dispersing fine particles into a sol-gel matrix is a promising process to get a thick 0-3 composite coating layer. In this paper, we have further improved this modified sol-gel process by nanocrystalline composite technique to realize the low temperature annealing. Dense Pb(Zr, Ti)O3 (PZT) thick films of 10 to 50 μm in thickness have been obtained on the platinum-coated silicon substrates by spin-coating at sintering temperature of 600-700°C and fully developed submicron-sized grains have been demonstrated in screen-printing piezoelectric films on alumina substrates at sintering temperature of 700-800°C. The dependence of various properties such as microstructure, crystallization, ferroelectric and dielectric properties of such made thick films on the processing parameters have been investigated. For a 10 μm-thick film spin-coated on silicon wafer, the dielectric loss and relative permittivity are 0.010 and 1024, respectively, at 1 kHz. The remanent polarization (Pr) and the coercive field (Ec) are 13.6 μC/cm2 and 34.5 kV/cm, respectively. Obviously, such made thick film has comparable properties with bulk PZT ceramic. This novel technique can be extensively used in sol-gel, screen-printing, tape-casting, even in traditional ceramic process to reduce the process temperature.

  11. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO2 laser beam. A powdered dental glass-ceramic material from the system SiO2-Na2O-K2O-CaO-Al2O3-MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310(-6)/K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel

  12. Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-05-25

    A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.

  13. Liquid spreading on ceramic-coated carbon nanotube films and patterned microstructures

    Science.gov (United States)

    Zhao, Hangbo; Hart, A. John

    2015-11-01

    We study the capillary-driven liquid spreading behavior on films and microstructures of ceramic-coated vertically aligned carbon nanotubes (CNTs) fabricated on quartz substrates. The nanoscale porosity and micro-scale dimensions of the CNT structures, which can be precisely varied by the fabrication process, enable quantitative measurements that can be related to analytical models of the spreading behavior. Moreover, the conformal alumina coating by atomic layer deposition (ALD) prevents capillary-induced deformation of the CNTs upon meniscus recession, which has complicated previous studies of this topic. Washburn-like liquid spreading behavior is observed on non-patterned CNT surfaces, and is explained using a scaling model based on the balance of capillary driving force and the viscous drag force. Using these insights, we design patterned surfaces with controllable spreading rates and study the contact line pinning-depinning behavior. The nanoscale porosity, controllable surface chemistry, and mechanical stability of coated CNTs provide significantly enhanced liquid-solid interfacial area compared to solid microstructures. As a result, these surface designs may be useful for applications such as phase-change heat transfer and electrochemical energy storage. Funding for this project is provided by the National Institutes of Health and the MIT Center for Clean Water and Clean Energy supported by the King Fahd University of Petroleum and Minerals.

  14. Microstructure and strain relaxation in thin nanocrystalline platinum films produced via different sputtering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Wolfgang, E-mail: wolfgang.gruber@tu-clausthal.de [Institut für Metallurgie, TU Clausthal, Robert-Koch-Str. 42, D38678 Clausthal-Zellerfeld (Germany); Baehtz, Carsten [Institut für Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Horisberger, Michael [Laboratory for Scientific Developments & Novel Materials (LDM), Paul-Scherrer-Institute, Villigen PSI (Switzerland); Ratschinski, Ingmar [Institut für Nichtmetallische Werkstoffe, TU Clausthal, Zehntnerstr. 2a, D-38678 Clausthal-Zellerfeld (Germany); Clausthaler Zentrum für Materialtechnik, Leibnizstraße 9, D-38678 Clausthal-Zellerfeld (Germany); Schmidt, Harald [Institut für Metallurgie, TU Clausthal, Robert-Koch-Str. 42, D38678 Clausthal-Zellerfeld (Germany); Clausthaler Zentrum für Materialtechnik, Leibnizstraße 9, D-38678 Clausthal-Zellerfeld (Germany)

    2016-04-15

    Graphical abstract: - Highlights: • Residual strain relaxation in nano crystalline platinum films was investigated. • Magnetron sputtered and ion beam sputtered Pt films are compared. • XRD measurements were carried out using synchrotron radiation. • Thickness fringes in the Bragg peak give information on microstructure. • Residual strain relaxation is stronger in films composed of equally oriented columns. - Abstract: In this study we investigated the correlation between microstructure and residual strain relaxation in nanocrystalline Pt films with a thickness of about 20 nm produced by different deposition techniques: magnetron sputtering and ion beam sputtering. X-ray diffractometry was carried out using synchrotron radiation. The out-of-plane interplanar distance was measured during isothermal in situ annealing at temperatures between 130 °C und 210 °C. The thermoelastic expansion coefficient is equal for both types of nanocrystalline Pt films and slightly lower than for coarse grained Pt. The relaxation of residual out-of-plain strain depends on temperature and is significantly stronger in the case of the magnetron sputtered films than for the ion beam sputtered films. Different relaxation of compressive stress is ascribed to the different microstructures which evolve during deposition via the corresponding deposition technique. Thickness fringes around the (1 1 1) Bragg peak deposited via magnetron sputtering reveal that these films are essentially composed of columnar (1 1 1) oriented grains which cover the whole film thickness. In contrast, no thickness fringes are observed around the (1 1 1) Bragg peak of films prepared by ion beam sputtering indicating a significantly different microstructure. This is confirmed by Electron Backscatter Diffraction which reveals a (1 1 1) texture for both types of films. The (1 1 1) texture, however, is significantly stronger in the case of the magnetron sputtered films. Grain growth at low homologous

  15. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    Directory of Open Access Journals (Sweden)

    Francisca Guadalupe Cabrera-Covarrubias

    2016-12-01

    Full Text Available The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε; therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%, such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content are those of: σ (elastic ranges and failure maximum, ε (elastic ranges and failure maximum, and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  16. Strain-coupled multiferroic model system of magnetic films on piezoelectric PMN-PT(001)

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, Andreas; Rata, Diana; Boldyreva, Ksenia; Bilani-Zeneli, Orkidia; Dekker, Martina Cornelia; Schultz, Ludwig; Doerr, Kathrin [IFW Dresden (Germany)

    2009-07-01

    In many multiferroic composites the interrelation of magnetic and polar electric properties originates from joined elastic strain of the components. A straightforward model system for quantitative investigations of strain-modulated magnetic properties comprises of magnetic films epitaxially grown on high-strain piezoelectric single crystals. In this work, we report on structural, ferroelectric and elastic properties of Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} (PMN-PT) (001) single crystals utilized as thin film substrates for dynamical strain control of up to 0.25% in complex oxide films. A tunable buffer layer system of solid solutions of perovskite-type LaScO{sub 3} and LaAlO{sub 3} has been developed that serves to adjust the in-plane parameter of buffered PMN-PT in a range of several percent. Thus, various as-grown strain states of a given magnetic film can be prepared and studied under reversible strain. First examples for La{sub 1-x}Sr{sub x}BO{sub 3} (B=Co or Mn) films under both statically and dynamically varied biaxial strain will be discussed.

  17. Thermal Vapor Deposition and Characterization of Polymer-Ceramic Nanoparticle Composite Thin Films and Capacitors

    Science.gov (United States)

    Ewen, Crystal L.

    Thin films composed of the polymer polyvinylidene uoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2) were fabricated via thermal vapor deposition. The goal of this research was to improve the amount of TiO2 deposited by varying the temperature and deposition time, to obtain more accurate thickness measurements, and to improve on the electrical properties. The electrical properties analyzed in this study were the dielectric constant, capacitance, breakdown strength and energy density of the capacitors. A starting mixture of PVDF, TiO2, and dimethylformamide (DMF) was prepared prior to deposition, where DMF was used only as a solvent. The elemental composition of the films was determined with energy dispersive x-ray spectroscopy (EDS) using a scanning electron microscope (SEM). Elemental mapping of the films shows that the nanoparticles are homogeneously distributed in the polymer. The ideal initial concentrations (which yield the largest TiO2 concentration) of PVDF and TiO2 were determined to be 83% and 17% respectively by weight. The highest weight percent of Ti was 32.4%, which was made with a deposition temperature of 474°C (corresponding to a current of 27 A) and deposition time of 13 minutes. Thefilm thickness was measured by combining EDS and ImageJ to be 243--46 nm. Parallel plate capacitors were fabricated by combining thermal vapor deposition for the dielectric and sputter coating for the electrodes. For the electrodes, the parallel plates are gold palladium (AuPd) with PVDF:TiO2 as the dielectric. The AuPd electrodes were deposited via sputter coating. Each electrode was sputtered for 100s, which yielded a thickness of 33 nm. The dielectric constant was determined experimentally to be 10.8 and estimated using the Maxwell-Garnett effective medium approximation to be 13.1. The capacitance of these capacitors averaged 30--2 nF. The breakdown voltage of the capacitor was 25--4 V, which corresponds to a breakdown strength of 103 MV/m. Lastly

  18. Influence of strain/stress on the nonlinear-optical properties of sprayed deposited ZnO:Al thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bahedi, K., E-mail: bahedikhadija@yahoo.fr [Laboratoire Optoelectronique et Physico-chimie des Materiaux.Unite de recherche associe au CNRST-URAC-14. Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000 (Morocco); Addou, M.; Jouad, M. El; Sofiani, Z. [Laboratoire Optoelectronique et Physico-chimie des Materiaux.Unite de recherche associe au CNRST-URAC-14. Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000 (Morocco); Oauzzani, H. EL; Sahraoui, B. [Institute of Sciences and Molecular Technologies of Angers, MOLTECH Anjou - UMR CNRS 6200, 2 bd Lavoisier 49045 ANGERS cedex2 (France)

    2011-07-01

    Nanocrystalline ZnO:Al thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 450 deg. C to study their crystalline structure, composition, strain, stress, roughness characteristics and nonlinear optical susceptibility as a function of Al concentration (0, 2, 3, 5 at.%). The films were characterized by X-ray diffractometer (XRD), EDAX 9100 analyser, atomic force microscopy (AFM) and third harmonic generation (THG). The Al (3 at.%) doped ZnO thin films exhibited the lower strain/stress than undoped films. The nonlinear properties of the ZnO:Al thin films have been found to be influenced by the films strain/stress.

  19. Void nucleation in biaxially strained ultrathin films of face-centered cubic metals

    Science.gov (United States)

    Kolluri, Kedarnath; Gungor, M. Rauf; Maroudas, Dimitrios

    2007-05-01

    We report an analysis of void nucleation as a relaxation mechanism in freestanding biaxially strained ultrathin films of face-centered cubic metals based on large-scale molecular-dynamics simulations. Above a critical strain level, multiple threading dislocations are emitted from the film surface. The surface step traces formed by gliding dislocations on intersecting and on adjacent parallel glide planes lead to formation and growth of surface pits and grooves, while vacancies form due to gliding of jogged dislocations and dislocation intersections. Coalescence of the surface pits with vacancy clusters is the precursor to the formation of a larger void extending across the film.

  20. Strain relaxation in thin films of Cu grown on Ni(001)

    DEFF Research Database (Denmark)

    Rasmussen, F.B.; Baker, J.; Nielsen, M.;

    1998-01-01

    Surface X-ray diffraction and kinematical model calculations are used to determine the strain relaxation of embedded wedges with internal (111) facets formed in thin Cu films when grown on Ni(001). We show the wedges to be inhomogenously strained with a large lateral relaxation near the Cu...

  1. Mechanical strains in pecvd SiN:H films for nanophotonic application

    Institute of Scientific and Technical Information of China (English)

    O. Semenova; A. Kozelskaya; Li Zhi-Yong; Yu Yu-De

    2015-01-01

    Hydrogenated amorphous silicon nitride films (SiNx:H) are deposited at low temperature by high-frequency plasma-enhanced chemical vapor deposition (HF PECVD). The main effort is to investigate the roles of plasma frequency and plasma power density in determining the film properties particularly in stress. Information about chemical bonds in the films is obtained by Fourier transform infrared spectroscopy (FTIR). The stresses in the SiNx:H film are determined from substrate curvature measurements. It is shown that plasma frequency plays an important role in controlling the stresses in SiNx:H films. For silicon nitride layers grown at plasma frequency 40.68 MHz initial tensile stresses are observed to be in a range of 400 MPa–700 MPa. Measurements of the intrinsic stresses of silicon nitride films show that the stress quantity is sufficient for film applications in strained silicon photonics.

  2. Ferroelectricity emerging in strained (111)-textured ZrO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhen, E-mail: a0082709@u.nus.edu, E-mail: msecj@nus.edu.sg; Deng, Jinyu; Liu, Ziyan; Xiao, Juanxiu; Yan, Xiaobing; Wang, John; Chen, Jingsheng, E-mail: a0082709@u.nus.edu, E-mail: msecj@nus.edu.sg [Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575 (Singapore); Wang, Jingxian; Dong, Zhili [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Yang, Ping [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore)

    2016-01-04

    (Anti-)ferroelectricity in complementary metal-oxide-semiconductor (CMOS)-compatible binary oxides have attracted considerable research interest recently. Here, we show that by using substrate-induced strain, the orthorhombic phase and the desired ferroelectricity could be achieved in ZrO{sub 2} thin films. Our theoretical analyses suggest that the strain imposed on the ZrO{sub 2} (111) film by the TiN/MgO (001) substrate would energetically favor the tetragonal (t) and orthorhombic (o) phases over the monoclinic (m) phase of ZrO{sub 2}, and the compressive strain along certain 〈11-2〉 directions may further stabilize the o-phase. Experimentally ZrO{sub 2} thin films are sputtered onto the MgO (001) substrates buffered by epitaxial TiN layers. ZrO{sub 2} thin films exhibit t- and o-phases, which are highly (111)-textured and strained, as evidenced by X-ray diffraction and transmission electron microscopy. Both polarization-electric field (P-E) loops and corresponding current responses to voltage stimulations measured with appropriate applied fields reveal the ferroelectric sub-loop behavior of the ZrO{sub 2} films at certain thicknesses, confirming that the ferroelectric o-phase has been developed in the strained (111)-textured ZrO{sub 2} films. However, further increasing the applied field leads to the disappearance of ferroelectric hysteresis, the possible reasons of which are discussed.

  3. Strain-Modulated Exchange-Spring Magnetic Behavior in Amorphous Tb-Fe Thin Films

    Science.gov (United States)

    Lee, Taehwan; Panduranga, Mohanchandra Kotekar; Han, Chang Wan; Ortalan, Volkan; Carman, Gregory Paul

    2017-08-01

    This paper studies the room-temperature exchange-spring magnetic behavior of amorphous TbFe films subjected to an applied strain. The cross-sectional composition measurement of the sputter-deposited TbFe film shows a compositional gradient through the thickness. The gradient is near the compensation composition of amorphous TbFe film producing a Tb-dominant region and a Fe-dominant region. The as-deposited film shows a two-step switching behavior with a negative coercive field, while an applied compressive (or tensile) strain eliminates (or enhances) the two-step switching behavior. The strain influence is attributed to the TbFe composition gradient and relatively large magnetoelastic property of the Tb-dominant region as compared to the Fe-dominant one.

  4. Relationship between texture and residual macro-strain in CVD diamond films based on phenomenological analysis

    Institute of Scientific and Technical Information of China (English)

    Weimin Mao; Hongxi Zhu; Leng Chen; Huiping Feng

    2008-01-01

    The relationship between texture and elastic properties of chemical vapor deposition (CVD) diamond films was analyzed based on the phenomenological theory, which reveals the influence of crystalline orientation and texture on the residual macro-strain and macro-stress. The phenomenological calculations indicated that the difference in Young's modulus could be 15% in single dia- mond crystals and 5% in diamond films with homogeneously distributed strong fiber texture. The experimentally measured residual strains of free-standing CVD diamond films were in good agreement with the correspondingly calculated Young's modulus in con- nection with the multi-fiber textures in the fills, though the difference in Young's modulus induced by texture was only around 1%. It is believed that texture should be one of the important factors influencing the residual stress and strain of CVD diamond films.

  5. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Vasconcelos Daniela C. Leite

    1999-01-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  6. Strategies towards controlling strain-induced mesoscopic phase separation in manganite thin films

    Science.gov (United States)

    Habermeier, H.-U.

    2008-10-01

    Complex oxides represent a class of materials with a plethora of fascinating intrinsic physical functionalities. The intriguing interplay of charge, spin and orbital ordering in these systems superimposed by lattice effects opens a scientifically rewarding playground for both fundamental as well as application oriented research. The existence of nanoscale electronic phase separation in correlated complex oxides is one of the areas in this field whose impact on the current understanding of their physics and potential applications is not yet clear. In this paper this issue is treated from the point of view of complex oxide thin film technology. Commenting on aspects of complex oxide thin film growth gives an insight into the complexity of a reliable thin film technology for these materials. Exploring fundamentals of interfacial strain generation and strain accommodation paves the way to intentionally manipulate thin film properties. Furthermore, examples are given for an extrinsic continuous tuning of intrinsic electronic inhomogeneities in perovskite-type complex oxide thin films.

  7. Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing

    Science.gov (United States)

    Goel, Pratibha; Singh, J. P.

    2014-11-01

    Highly reflective and surface conductive strain gauges have been prepared by embedding the silver nanorods (AgNRs) into polydimethylsiloxane (PDMS). Thermal curing of PDMS on AgNRs grown Si wafer leads to a flexible, reflective and conductive silver surface. The reflectance of the as prepared films were observed to be 60% with a low value of sheet resistance. The reflectance of the film was able to be tuned from 60% to 15% in the visible region. The fabrication of a parallel plate capacitor strain sensor from AgNRs embedded PDMS, and tuning of the capacitance with respect to the applied strain, leads to a gauge factor of ~1. These mechanically tunable AgNRs/PDMS films demonstrate potential application as a strain sensor.

  8. Epitaxial strain induced atomic ordering in stoichiometric LaCoO3 thin films

    Science.gov (United States)

    Choi, Woo Seok; Kwon, Ji-Hwan; Jeen, Hyoungjeen; Sawatzky, George A.; Hinkov, Vladimir; Kim, Miyoung; Lee, Ho Nyung

    2015-03-01

    Heteroepitaxial strain imposed in complex transition metal oxide thin films is recognized as an effective tool for identifying and controlling emergent physical phenomena. Stoichiometric LaCoO3 is particularly interesting, since the thin film form of the material exhibits a robust macroscopic ferromagnetic ordering, while the bulk form of the material is a zero spin, nonmagnetic insulator. In this work, we show that the ferromagnetic ordering observed in LaCoO3 thin films is related to a lattice modulation in the atomic scale, originating from the epitaxial strain. The possibility of oxygen vacancies have been carefully ruled out using various macroscopic and microscopic spectroscopic techniques, and an unconventional strain relaxation behavior identified by strip-like lattice modulation pattern was responsible for the non-zero spin ground state of Co3+ ions. We further note that the unconventional strain relaxation did not involve any uncontrolled misfit dislocations.

  9. Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified TiO2 film on glazed ceramic surface

    Science.gov (United States)

    Zhang, Peng; Tian, Jie; Xu, Ruifen; Ma, Guojun

    2013-02-01

    A new, simple, and low-cost method has been developed to enhance the surface properties of TiO2 film. Degussa P25-TiO2 nanoparticles were modified by tetraethyl orthosilicate (TEOS) on glazed ceramic tiles. Effects of tetraethyl orthosilicate modification on microstructure, crystal structure, hydrophilicity, photocatalytic activity and stability of the film were investigated. The obtained results showed that P25-TiO2/TEOS particles exhibited better dispersion, higher surface area, bigger surface roughness and smaller particle size comparing to pure P25-TiO2 particles, which resulted in better hydrophilicity after 10 days in a dark place and higher photocatalytic activity under visible light irradiation. 68% of Rhodamine B was degraded by P25-TiO2/TEOS film in 25 h with the light intensity of 5000 ± 500 lx, and degradation rate reached to 82% with the light intensity of 10,000 ± 1000 lx. Furthermore, two fundamentally different systems, in which the films recycle for repetitive degradation after soaked in dye solution and for discoloration after depositing dye on the surfaces, respectively, were measured to confirm that P25-TiO2/TEOS film showed excellently stable performances. Therefore the P25-TiO2/TEOS film we obtained has good washing resistance and would be a promising candidate for practical applications.

  10. The Investigation of the Zr-doped LaNbO4 Thin Ceramic Films by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Darius Virbukas

    2015-09-01

    Full Text Available Thin Zr-doped lanthanum niobium oxide (LaNb1-xZrxO4 films were formed on the optical quartz (SiO2 substrates using magnetron sputtering technique. Formed LaNb1-xZrxO4 thin films were characterized using different techniques: X-ray diffraction (XRD, scanning electron microscope (SEM and impedance spectroscopy. Electrical parameters of LaNb1-xZrxO4 thin ceramic were investigated in the frequency range from 0.1 Hz to 1.0 MHz in temperature range from 773 to 1173 K.It was determined that LaNb1-xZrxO4 thin ceramic films have the tetragonal structure and non-Debye type of relaxation. The activation energy was estimated from the relaxation time of impedance, electric modulus and conductivity resulting the activation energies vary from 1.12 ± 1 eV (Zr 1.99at.%, to 1.24 eV±1 eV (Zr 0.62at.%.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.9535

  11. The Investigation of the Zr-doped LaNbO4 Thin Ceramic Films by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Darius Virbukas

    2015-09-01

    Full Text Available Thin Zr-doped lanthanum niobium oxide (LaNb1-xZrxO4 films were formed on the optical quartz (SiO2 substrates using magnetron sputtering technique. Formed LaNb1-xZrxO4 thin films were characterized using different techniques: X-ray diffraction (XRD, scanning electron microscope (SEM and impedance spectroscopy. Electrical parameters of LaNb1-xZrxO4 thin ceramic were investigated in the frequency range from 0.1 Hz to 1.0 MHz in temperature range from 773 to 1173 K.It was determined that LaNb1-xZrxO4 thin ceramic films have the tetragonal structure and non-Debye type of relaxation. The activation energy was estimated from the relaxation time of impedance, electric modulus and conductivity resulting the activation energies vary from 1.12 ± 1 eV (Zr 1.99at.%, to 1.24 eV±1 eV (Zr 0.62at.%.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.9535

  12. Strain-induced modification in microstructure and electrical properties of polycrystalline LaNiO{sub 3-δ} films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, M.W. [Chinese Academy of Sciences, Shenyang National Laboratory for Material Science, Institute of Metal Research, Shenyang (China); Shenyang Aerospace University, School of Material Science and Engineering, Shenyang (China); Wang, H.L.; Zhang, Y.J.; Wang, Z.J. [Chinese Academy of Sciences, Shenyang National Laboratory for Material Science, Institute of Metal Research, Shenyang (China); Lei, H. [Chinese Academy of Sciences, Institute of Metal Research, Shenyang (China); Jia, N. [Northeastern University, Key Laboratory for Anisotropy and Texture of Materials (ATM), Shenyang (China)

    2016-04-15

    In the present work, lanthanum nickel oxide (LaNiO{sub 3-δ}) thin films are prepared with the sol-gel multilayer coating method. Substrates with different thermal expansion coefficients are chosen to introduce thermal strain into the polycrystalline LaNiO{sub 3-δ} (LNO) films. The effects of strain on the microstructure and electrical properties of LNO films are investigated. The results show that with increasing magnitude of strain, except for the change in lattice constant, an increase in defects in LNO films might occur. Furthermore, the resistivity of LNO films firstly decreases as the strain evolves from tensile to compressive, and then, increases again with the increasing compressive strain. The anomalous change in the both resistivity and transport behavior of LNO films under different strains is ascribed to the combined effects of the varying lattice constant and oxygen vacancy density. (orig.)

  13. Strain induced room temperature ferromagnetism in epitaxial magnesium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenghe; Kim, Ki Wook [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nori, Sudhakar; Lee, Yi-Fang; Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kumar, D. [Department of Mechanical Engineering, North Carolina A & T State University, Greensboro, North Carolina 27411 (United States); Wu, Fan [Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08540 (United States); Prater, J. T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States)

    2015-10-28

    We report on the epitaxial growth and room-temperature ferromagnetic properties of MgO thin films deposited on hexagonal c-sapphire substrates by pulsed laser deposition. The epitaxial nature of the films has been confirmed by both θ-2θ and φ-scans of X-ray diffraction pattern. Even though bulk MgO is a nonmagnetic insulator, we have found that the MgO films exhibit ferromagnetism and hysteresis loops yielding a maximum saturation magnetization up to 17 emu/cc and large coercivity, H{sub c} = 1200 Oe. We have also found that the saturation magnetization gets enhanced and that the crystallization degraded with decreased growth temperature, suggesting that the origin of our magnetic coupling could be point defects manifested by the strain in the films. X-ray (θ-2θ) diffraction peak shift and strain analysis clearly support the presence of strain in films resulting from the presence of point defects. Based on careful investigations using secondary ion mass spectrometer and X-ray photoelectron spectroscopy studies, we have ruled out the possibility of the presence of any external magnetic impurities. We discuss the critical role of microstructural characteristics and associated strain on the physical properties of the MgO films and establish a correlation between defects and magnetic properties.

  14. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    OpenAIRE

    Vasconcelos Daniela C. Leite; Cesar Maria das Graças M.M.; Cunha Marco Antônio da; Vasconcelos Wander L.

    1999-01-01

    The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz) of the coated steel samples were evaluated as well. The use of MgO containing strontium red...

  15. Enhanced photovoltaic currents in strained Fe-doped LiNbO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ryotaro [Division of Physics, Institute of Liberal Education, School of Medicine, Nihon University, 31-10, Ooyaguchi-kamicho, Itabashi-ku, Tokyo 173-8601 (Japan); Takahashi, Shusuke; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru [Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2015-12-15

    We investigate the impact of strain on photovoltaic current (J{sub z}) characteristics for iron-doped LiNbO{sub 3} (Fe-LN) under visible light illumination by thin-film experiments. The J{sub z} values are demonstrated to be dramatically enhanced for the film with a tensile strain along the P{sub s} direction, which is over 500 times as large as that of the bulk (strain-free) Fe-LN crystals. Density functional theory (DFT) calculations show that the tensile strain increases an off-center displacement of Fe{sup 2+} that is opposite to the P{sub s} direction. Our experimental and DFT study demonstrates that the control of the lattice strain is effective in enhancing the photovoltaic effect in the Fe-LN system. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Strain effects on optical polarisation properties in(11(2)2)plane GaN films

    Institute of Scientific and Technical Information of China (English)

    Hao Guo-Dong; Chen Yong-Hai; Fan Ya-Ming; Huang Xiao-Hui; Wang Huai-Bing

    2010-01-01

    We present the theoretical results of the electronic band structure of wurtzite GaN films under biaxial strains in the(1122)-plane.The calculations are performed by the κ·p perturbation theory approach through using the effectivemass Hamiltonian for an arbitrary direction.The results show that the transition energies decrease with the biaxial strains changing from-0.5% to 0.5%.For films of(11(2)2)-plane,the strains are expected to be anisotropic in the growth plane.Such anisotropic strains give rise to valence band mixing which results in dramatic change in optical polarisation property.The strain can also result in optical polarisation switching phenomena.Finally,we discuss the applications of these properties to the(1122)plane GaN-based light-emitting diode and lase diode.

  17. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

    Science.gov (United States)

    Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen

    2017-02-01

    Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

  18. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

    Science.gov (United States)

    Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen

    2017-07-01

    Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

  19. Morphological instability in epitaxially strained dislocation-free solid films - Linear stability theory

    Science.gov (United States)

    Spencer, B. J.; Voorhees, P. W.; Davis, S. H.

    1993-01-01

    The morphological instability of a growing epitaxially strained dislocation-free solid film is analyzed. An evolution equation for the film surface is derived in the dilute limit of vacancies based on surface diffusion driven by a stress-dependent chemical potential. From the time-dependent linear stability problem the conditions for which a growing film is unstable are determined. It is found that the instability is driven by the lattice mismatch between the film and the substrate; however, low temperatures as well as elastically stiff substrates are stabilizing influences. The results also reveal that the critical film thickness for instability depends on the growth rate of the film itself. Detailed comparison with experimental observations indicates that the instability described exhibits many of the observed features of the onset of the 'island instability'.

  20. Anomalous magnetic Properties of an iron film System deposited on fracture surfaces of α-Al2O3 ceramics

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhi-Wei; Chen Miao-Gen; Jiang Wei-Di; Feng Chun-Mu; Ye Gao-Xiang

    2008-01-01

    An iron film percolation system is fabricated by vapour-phase deposition on fracture surfaces of α-Al2O3 ceramics.The zero-field-cooled(ZFC)and field-cooled(FC)magnetization measurement reveals that the magnetic phase of the film samples evolve from a high-temperature ferromagnetic state to a low-temperature spin-glass-fike state.which is also demonstrated by the temperature-dependent ac susceptibility of the iron films.The temperature dependence of the exchange bias field He of the iron film exhibits a minimum peak around the temperature T=5 K,which is independent of the magnitude of the cooling field Hcf.However,for T>10 K,(1)He is always negative when Hcf=2 kOe and(2) for Hcf=20kOe(1Oe≈80A/m),He changes from negative to positive values as T increases.Our experimental results show that the anomalous hysteresis properties mainly result from the oxide surfaces of the films with spin-glass-like phase.

  1. Thickness dependence of magnetoelectric response for composites of Pb(Zr0.52Ti0.48O3 films on CoFe2O4 ceramic substrates

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-08-01

    Full Text Available Using chemical solution spin-coating we grew Pb(Zr0.52Ti0.48O3 films of different thicknesses on highly dense CoFe2O4 ceramics. X-ray diffraction revealed no other phases except Pb(Zr0.52Ti0.48O3 and CoFe2O4. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr0.52Ti0.48O3 film was important in obtaining strong magnetoelectric coupling.

  2. Thickness dependence of magnetoelectric response for composites of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on CoFe{sub 2}O{sub 4} ceramic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: wang-jing@nuaa.edu.cn; Zhu, Kongjun [State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wu, Xia; Deng, Chaoyong [School of Electronics and Information Engineering, Guizhou University, Guiyang 550025 (China); Peng, Renci; Wang, Jianjun [School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2014-08-15

    Using chemical solution spin-coating we grew Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films of different thicknesses on highly dense CoFe{sub 2}O{sub 4} ceramics. X-ray diffraction revealed no other phases except Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} and CoFe{sub 2}O{sub 4}. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} film was important in obtaining strong magnetoelectric coupling.

  3. Magnetization states in epitaxial thin films subjected to misfit strains and demagnetization field

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Junqing [Department of Applied Mathematics, School of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014 (China); Wang, Jie, E-mail: jw@zju.edu.cn [Institute of Applied Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2015-01-15

    The effect of non-equally biaxial in-plane misfit strains and demagnetization field on the magnetization states of ferromagnetic thin films is analytically investigated by using a nonlinear thermodynamic theory. The “misfit strain–misfit strain” phase diagrams of the magnetization states at room temperature for α-Fe and CoFe{sub 2}O{sub 4} thin films epitaxially grown on tetragonal substrates are developed by minimizing the total free energy. For a cubic ferromagnetic thin film, an out-of-plane magnetization state exists in the region of tensile misfit strains if the magnetostrictive coefficient of λ{sub 100} is negative and the demagnetization field is small, whereas the out-of-plane magnetization vanishes in the whole region of misfit strains when the demagnetization field is large.

  4. Fabrication, lattice strain, corrosion resistance and mechanical strength of nanocrystalline nickel films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanocrystalline nickel films of 17-40 nm grain sizes were prepared using pulsejet electrodeposition. Structure, corrosion and lattice strain were analysed by transmission electron microscope, electrochemical workstation and X-ray diffraction, revealing that with decreasing of grain size, the lattice strain, corrosion rate of the films are enhanced. The observations can be consistently understood in terms of the bond-order-length-strength correlation mechanism indicating that the shortened and strengthened bonds between the under-coordinated atoms modify the energy density and the atomic cohesive energy in the surface skins of the grains.The surface energy density gain is responsible for the residual atomic cohesive energy for the activation energy of corrosion.Additionally, a novel algorithm was proposed to extract the elastic-plastic properties of nickel films and results that the nickel film has much higher yield strength than bulk nickel.

  5. First-principles modeling of strain in perovskite ferroelectric thin films

    OpenAIRE

    Diéguez, Oswaldo; Vanderbilt, David

    2008-01-01

    We review the role that first-principles calculations have played in understanding the effects of substrate-imposed misfit strain on epitaxially grown perovskite ferroelectric films. We do so by analyzing the case of BaTiO$_3$, complementing our previous publications on this subject with unpublished data to help explain in detail how these calculations are done. We also review similar studies in the literature for other perovskite ferroelectric-film materials.

  6. High temperature electrical behaviour and failure mechanisms of glass-ceramic dielectrics in thick film multilayers

    OpenAIRE

    Manca, Jean

    1994-01-01

    Glass-ceramics are polycrystalline materials obtained from glasses after an appropriate thermal treatment. They are of importance because they offer combinations of physical properties not available with other classes of materials. Glass-ceramics have become established as commercially important materials in fields such as consumer products, applications for the aerospace industry and protective coatings for metals. Recently, their technological importance has also been recognized in the fiel...

  7. Converse magnetoelectric effect via strain-driven magnetization reorientations in ultrathin ferromagnetic films on ferroelectric substrates

    Science.gov (United States)

    Pertsev, N. A.

    2015-07-01

    A phenomenological theory is developed for the strain-driven magnetization reorientations occurring in ultrathin ferromagnetic films coupled to ferroelectric substrates experiencing electric-field-induced piezoelectric deformations. The theory takes into account the surface/interface magnetic anisotropy playing an important role in the energetics of such films and first describes the thickness-driven spin reorientation transitions emerging in the presence of substrate-induced lattice strains. Then the threshold and critical intensities of the electric field created in a ferroelectric substrate are calculated, at which different magnetic states acquire the same energy or become unstable in a strained ferromagnetic overlayer. To demonstrate stability ranges of various possible magnetization orientations, we introduce magnetoelectric orientational diagrams, where the electric-field intensity and film thickness are employed as two variables. Such diagrams are constructed for ultrathin Ni, Fe, and F e60C o40 films coupled to single crystals of classical and relaxor ferroelectrics. The inspection of these diagrams shows that the use of multiferroic hybrids comprising ultrathin ferromagnetic films significantly enlarges the range of ferroic materials suitable for experimental observations of the strain-mediated converse magnetoelectric effect.

  8. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    Science.gov (United States)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  9. New strain states and radical property tuning of metal oxides using a nanocomposite thin film approach

    Directory of Open Access Journals (Sweden)

    Judith MacManus-Driscoll

    2015-06-01

    Full Text Available Auxetic-like strain states were generated in self-assembled nanocomposite thin films of (Ba0.6Sr0.4TiO31−x − (Sm2O3x(BSTO − SmO. A switch from auxetic-like to elastic-like strain behavior was observed for x > 0.50, when the SmO switched from being nanopillars in the BSTO matrix to being the matrix with BSTO nanopillars embedded in it. A simple model was adopted to explain how in-plane strain varies with x. At high x (0.75, strongly enhanced ferroelectric properties were obtained compared to pure BSTO films. The nanocomposite method represents a powerful new way to tune the properties of a wide range of strongly correlated metal oxides whose properties are very sensitive to strain.

  10. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  11. Strain effects on thermal transport and anisotropy in thin-films of Si and Ge

    Science.gov (United States)

    Foss, Cameron J.; Aksamija, Zlatan

    2016-12-01

    As dimensions of nanoelectronic devices become smaller, reaching a few nanometers in modern processors, CPU hot spots become increasingly more difficult to manage. Applying mechanical strain in nanostructures provides an additional tuning mechanism for both electronic band structures and phonon dispersions that is independent of other methods such as alloying and dimensional confinement. By breaking crystal symmetry, strain increases anisotropy. We present thermal conductivity calculations, performed in thin Si and Ge strained films, using first principles calculations of vibrational frequencies under biaxial strain, along with a phonon Boltzmann transport equation within the relaxation time approximation. We find that, while in-plane transport is not strongly dependent on strain, the cross-plane component of the thermal conductivity tensor shows a clear strain dependence, with up to 20% increase (decrease) at 4% compressive (tensile) strain in both Si and Ge. We also uncover that strain emphasizes the anisotropy between in-plane and cross-plane thermal conductivity across several orders of magnitude in film thickness.

  12. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-c films

    Indian Academy of Sciences (India)

    Davor Pavuna; Daniel Ariosa; Dominique Cloetta; Claudia Cancellieri; Mike Abrecht

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≃ 15 nm thin La2-SrCuO4 (LSCO) films we almost double c to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under tensile strain exhibit the dispersion that is three-dimensional, yet c drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the two-dimensional character of the dispersion and increases c, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO2 planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced c.

  13. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    Science.gov (United States)

    Kent, Renee M.; Vary, Alex

    1992-01-01

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress vs strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns).

  14. Cooperative photoinduced metastable phase control in strained manganite films

    Science.gov (United States)

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S. W.; Post, K. W.; Jin, Feng; Nelson, K. A.; Basov, D. N.; Wu, Wenbin; Averitt, R. D.

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

  15. Effects of epitaxial strain on oxygen vacancy ordering in LaCoO3 films

    Science.gov (United States)

    Biskup, Neven; Mehta, Virat; Pennycook, Steven; Suzuki, Yuri; Varela, Maria; Ornl Collaboration; Ucb Collaboration; Ucm Collaboration

    2013-03-01

    We report on atomically-resolved Z-contrast imaging and electron-energy-loss spectroscopy of epitaxial LaCoO3 thin films grown on SrTiO3, LaAlO3 and (LaAlO3)(SrTaO3) substrates. Regardless of the sign and magnitude of the epitaxial strain imposed by substrate, the LaCoO3 thin films contain oxygen vacancies to varying degrees. These oxygen vacancies tend to order parallel to the film/substrate interface in LCO films under tensile strain and perpendicular under compressive strain. Oxygen vacancy ordering results in charge ordering (CO) among the Co ions as observed by EELS through analysis of the Co L2,3 intensity ratio. We will discuss the amount of oxygen vacancies, the resulting superstructures and CO in the context of the ferromagnetismobserved in these films. Research at ORNL supported by the U.S. DOE-BES, MSED, and also by ORNL's ShaRE User Program (sponsored by DOE-BES), at UCM supported by the ERC Starting Investigator Award and at UC Berkeley and LBNL was supported by the Director, Office of Science, BES -

  16. Necking of anisotropic micro-films with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2008-01-01

    Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco......-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening...... exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress....

  17. Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations

    Science.gov (United States)

    Lee, Bo Mi; Loh, Kenneth J.

    2017-04-01

    Carbon nanotubes can be randomly deposited in polymer thin film matrices to form nanocomposite strain sensors. However, a computational framework that enables the direct design of these nanocomposite thin films is still lacking. The objective of this study is to derive an experimentally validated and two-dimensional numerical model of carbon nanotube-based thin film strain sensors. This study consisted of two parts. First, multi-walled carbon nanotube (MWCNT)-Pluronic strain sensors were fabricated using vacuum filtration, and their physical, electrical, and electromechanical properties were evaluated. Second, scanning electron microscope images of the films were used for identifying topological features of the percolated MWCNT network, where the information obtained was then utilized for developing the numerical model. Validation of the numerical model was achieved by ensuring that the area ratios (of MWCNTs relative to the polymer matrix) were equivalent for both the experimental and modeled cases. Strain sensing behavior of the percolation-based model was simulated and then compared to experimental test results.

  18. The spin polarized band structure of strained thin films of gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Waldfried, C.; Dowben, P.A. [Univ. of Nebraska, Lincoln, NE (United States); Vescovo, E. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1998-12-31

    The magnetic properties of strained thin films of gadolinium are characterized by a wave vector and thickness dependence of the exchange splitting. The spin-resolved band structure has been mapped by spin polarized photoemission, and provides considerable insight into the relationship between magnetism of local moment systems, and band structure.

  19. Strain-effect for controlled growth mode and well-ordered structure of quaterrylene thin films

    Science.gov (United States)

    Hayakawa, Ryoma; Turak, Ayse; Zhang, XueNa; Hiroshiba, Nobuya; Dosch, Helmut; Chikyow, Toyohiro; Wakayama, Yutaka

    2010-07-01

    We investigated the evolution of quaterrylene thin films on SiO2 and on an octadecyltrichlorosilane self-assembled monolayer (OTS-SAM) to examine the impact of film strains on the growth processes and evolving structure. Surface modification by SAMs allowed tailoring of the growth process from a Stranski-Krastanov (SK) mode (layer-plus-island) on the SiO2 surface to a Frank-van der Merwe mode (layer-by-layer) on the OTS surface. Detailed structural analysis by x-ray diffraction techniques confirmed that the SK mode was driven by lattice strain in the initial wetting layers on the SiO2 surface. On the other hand, strain-free wetting layers were already formed at the beginning of growth on the OTS surface, thereby suppressing three-dimensional island formation. Moreover, the films on the SiO2 surface were found to incorporate high microstrain induced by crystal defects such as dislocations and a mosaic structure. In contrast, few crystal defects were present in the films on OTS surface, demonstrating that OTS treatment enables marked improvement of the molecular alignment. These results clearly indicate that the lattice strain induced by the molecular-substrate interaction is essential for controlling the overall growth process.

  20. Generation of localized strain in a thin film piezoelectric to control individual magnetoelectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jizhai; Liang, Cheng-Yen; Sepulveda, Abdon; Carman, Gregory P.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095 (United States); Paisley, Elizabeth A.; Ihlefeld, Jon F. [Electronic, Optical, and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-08-31

    Experimental results demonstrate the ability of a surface electrode pattern to produce sufficient in-plane strain in a PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) thin film clamped by a Si substrate to control magnetism in a 1000 nm diameter Ni ring. The electrode pattern and the Ni ring/PZT thin film heterostructure were designed using a finite element based micromagnetics code. The magnetoelectric heterostructures were fabricated on the PZT film using e-beam lithography and characterized using magnetic force microscopy. Application of voltage to the electrodes moved one of the “onion” state domain walls. This method enables the development of complex architectures incorporating strain-mediated multiferroic devices.

  1. X-ray diffraction from thin films : Size/strain analysis and whole pattern fitting

    Energy Technology Data Exchange (ETDEWEB)

    Scardi, P. [Trento Univ. (Italy). Dept. of Materials Engineering

    1996-09-01

    Line Profile Analysis (LPA) and whole pattern fitting may be used with success for the characterization of thin films from XRD data collected with the traditional Bragg-Brentano geometry. The size/strain analysis was conducted by an integrated procedure of profile modelling-assisted Fourier analysis, in order to measure the content of lattice imperfections and crystalline domain size along the growth direction in heteroepitaxial thin films. The microstructure of these films is typical of several PVD processes for the production of highly textured and low-defect thin crystalline layers. The same analysis could be conducted on random thin films as well, and in this case it is possible to determine an average crystallite size and shape. As will be shown in the paper, structural and microstructural parameters obtained by these methods may be correlated with thin film properties of technological interest. The whole pattern analysis may be used to obtain the information contained in a wide region of the diffraction pattern. This approach, currently used for the quantitative analysis of phase mixtures in traditional powder samples, was modified to account both for the size/strain effects, according to a simplified LPA, and for the structure of thin films and multi-layer systems. In this way, a detailed analysis based on a structural model for the present phases can be performed considering the real geometry of these samples. In particular, the quantitative phase analysis could be conducted in terms of layer thickness instead of volume or weight fractions.

  2. Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natural Rubber

    Directory of Open Access Journals (Sweden)

    Sreenivasulu Tadakaluru

    2014-01-01

    Full Text Available Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ~5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain. As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor and 620% (carbon nanotube sensor were measured; these values are respectively ~50 and ~120 times greater than those of conventional metallic strain sensors.

  3. Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber.

    Science.gov (United States)

    Tadakaluru, Sreenivasulu; Thongsuwan, Wiradej; Singjai, Pisith

    2014-01-06

    Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ~5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ~50 and ~120 times greater than those of conventional metallic strain sensors.

  4. Effect of uni- and biaxial strain on phase transformations in Fe thin films

    Science.gov (United States)

    Sak-Saracino, Emilia; Urbassek, Herbert M.

    2016-01-01

    Using molecular-dynamics simulation, we study the phase transformations in Fe thin films induced by uni- and biaxial strain. Both the austenitic transformation of a body-centered cubic (bcc) film at the equilibrium temperature of the face-centered cubic (fcc)-bcc transformation and the martensitic transformation of an undercooled fcc film are studied. We demonstrate that different strain states (uni- or biaxial) induce different nucleation kinetics of the new phase and hence different microstructures evolve. For the case of the austenitic transformation, the direction of the applied strain selects the orientation of the nucleated grains of the new phase; the application of biaxial strain leads to a symmetric twinned structure. For the martensitic transformation, the influence of the strain state is even more pronounced, in that it can either inhibit the transformation, induce the homogeneous nucleation of a fine-dispersed array of the new phase resulting in a single-crystalline final state, or lead to the more conventional mechanism of heterogeneous nucleation of grains at the free surfaces, which grow and result in a poly-crystalline microstructure of the transformed material.

  5. Residual Strains in a Nanometer Thick Cr Film Measured on Micromachined Beams

    Institute of Scientific and Technical Information of China (English)

    Z.M. Zhou; Yong Zhou; Ying Cao; Haiping Mao

    2009-01-01

    A Cr film with a 75 nm thickness sputtered on a Si substrate was used to fabricate microbridge and microcan-tilever samples with the MEMS (microelectromechanical system) technique. The profile of the buckled beams was measured by using the interference technique with white light and fitted with a theoretical result. The uniform residual strain in the bridge samples was deduced from the variation of buckling amplitude with the beam length. On the other hand, the gradient residual strain was determined from the deflection profile of the cantilever. The residual uniform and gradient strain in the Cr film are about 4.96×10-3 and 4.2967×10-5, respectively.

  6. Ceramic hot film sensor for exhaust gas mass flow measurements in automotive applications; Keramischer Heissfilmsensor zur Abgasmassenstrommessung in automotiven Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Dismon, Heinrich; Grimm, Karsten; Toennesmann, Andres; Nigrin, Sven [Pierburg GmbH, Neuss (Germany); Wienand, Karlheinz; Muziol, Matthias [Heraeus Sensor Technology GmbH, Kleinostheim (Germany)

    2008-07-01

    Due to increasingly stringent emission standards, a number of internal measures as well as exhaust gas aftertreatment systems have become state-of-the-art technology for passenger car and heavy duty engines. However, the full potential of these measures, for example the cooled external exhaust gas recirculation, can only be utilized if the engine control is adapted adequately well in all engine states. Thus, the requirements for future engine controls become more demanding and consequently the standards for sensors used in the control loop will increase. In this context this article introduces a new exhaust gas mass flow sensor based or the principle of hot film anemometry. The sensor comprising a ceramic sensor element is developed especially for the use in engine exhaust gases providing the exhaust gas mass flow as a direct measurement and control variable. Next to the sensor technology first results of engine tests are presented in this paper. (orig.)

  7. Nanoscale phase mixture in uniaxial strained BiFeO3 (110) thin films

    Science.gov (United States)

    Liu, Huajun; Yang, Ping; You, Lu; Zhou, Yang; Fan, Zhen; Tan, Hui Ru; Wang, Junling; Wang, John; Yao, Kui

    2015-09-01

    A strain-induced nanoscale phase mixture in epitaxial BiFeO3 (110) films is investigated. High resolution synchrotron x-ray diffraction shows that a monoclinic M2 phase (orthorhombic-like, with a c/a ˜ 1.01) coexists as the intermediate phase between monoclinic M1 phase (tetragonal-like, with a c/a ˜ 1.26) and monoclinic M3 phase (rhombohedral-like, with a c/a ˜ 1.00), as the film thickness increases from 10 to 190 nm. Cross-sectional transmission electron microscopy images reveal the evolution of domain patterns with coexistence of multiple phases. The different ferroelectric polarization directions of these phases, as shown by piezoelectric force microscopy, indicate a strong potential for high electromechanical response. The shear strain ɛ 13 is found to be a significant driving factor to reduce strain energy as film thickness increases, according to our theoretical calculations based on the measured lattice parameters. The nanoscale mixed phases, large structure distortions, and polarization rotations among the multiple phases indicate that (110)-oriented epitaxial films provide a promising way to control multifunctionalities of BiFeO3 and an alternative direction to explore the rich physics of perovskite system.

  8. Passive wireless strain and pH sensing using carbon nanotube-gold nanocomposite thin films

    Science.gov (United States)

    Loh, Kenneth J.; Lynch, Jerome P.; Kotov, Nicholas A.

    2007-04-01

    The recent development of wireless sensors for structural health monitoring has revealed their strong dependency on portable, limited battery supplies. Unlike current wireless sensors, passive radio frequency identification (RFID) systems based on inductive coupling can wirelessly receive power from a portable reader while transmitting collected data back. In this paper, preliminary results of a novel inductively coupled strain and corrosion sensor based upon material fabrication techniques from the nanotechnology field are presented. By varying polyelectrolyte species during a layer-by-layer fabrication process, carbon nanotube-polyelectrolyte multilayer thin film sensors sensitive to different mechanical (e.g. strain) and chemical (e.g. pH) stimuli can be produced. Validation studies conducted with different carbon nanotube thin films designed as either strain or pH sensors reveal high sensitivity and linear performance. When coupled with a copper inductive coil antenna, resulting RFID-based sensors exhibit wirelessly readable changes in resonant frequency and bandwidth. Furthermore, a carbon nanotube-gold nanocomposite thin film is fabricated and patterned into a highly conductive coil structure to realize a novel thin film inductive antenna. Preliminary results indicate that nanotube-gold nanocomposites exhibit resonance conditions, holding great promise for future RFID applications.

  9. Strain-Induced Energy Band Gap Opening in Two-Dimensional Bilayered Silicon Film

    Science.gov (United States)

    Ji, Z.; Zhou, R.; Lew Yan Voon, L. C.; Zhuang, Y.

    2016-10-01

    This work presents a theoretical study of the structural and electronic properties of bilayered silicon film (BiSF) under in-plane biaxial strain/stress using density functional theory (DFT). Atomic structures of the two-dimensional (2-D) silicon films are optimized by using both the local-density approximation (LDA) and generalized gradient approximation (GGA). In the absence of strain/stress, five buckled hexagonal honeycomb structures of the BiSF with triangular lattice have been obtained as local energy minima, and their structural stability has been verified. These structures present a Dirac-cone shaped energy band diagram with zero energy band gaps. Applying a tensile biaxial strain leads to a reduction of the buckling height. Atomically flat structures with zero buckling height have been observed when the AA-stacking structures are under a critical biaxial strain. Increase of the strain between 10.7% and 15.4% results in a band-gap opening with a maximum energy band gap opening of ˜0.17 eV, obtained when a 14.3% strain is applied. Energy band diagrams, electron transmission efficiency, and the charge transport property are calculated. Additionally, an asymmetric energetically favorable atomic structure of BiSF shows a non-zero band gap in the absence of strain/stress and a maximum band gap of 0.15 eV as a -1.71% compressive strain is applied. Both tensile and compressive strain/stress can lead to a band gap opening in the asymmetric structure.

  10. Thermodynamic theory of strain-mediated direct magnetoelectric effect in multiferroic film-substrate hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kukhar, V G [Visual Trading Systems LLC, St Petersburg Branch, 194044 St Petersburg (Russian Federation); Pertsev, N A [A F Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St Petersburg (Russian Federation); Kholkin, A L, E-mail: pertsev.domain@mail.ioffe.ru [Center for Research in Ceramics and Composite Materials (CICECO) and Department of Ceramics and Glass Engineering, University of Aveiro, 3810-193 Aveiro (Portugal)

    2010-07-02

    A nonlinear thermodynamic theory is developed for the strain-mediated direct magnetoelectric (ME) effect displayed by ferroelectric-ferromagnetic nanostructures. This effect results from transmission of magnetic-field-induced deformations of a thick ferromagnetic substrate to a thin ferroelectric overlayer, where the polarization changes due to lattice strains. The strain-dependent polarization and permittivity of an epitaxial nanolayer (few tens of nm thick) are calculated using the thermodynamic theory of single-domain ferroelectric films. The substrate magnetostrictive deformations are described phenomenologically, taking into account their nonlinear variation with magnetic field. The calculations show that ME polarization and voltage coefficients strongly depend on the initial strain state of the film. For BaTiO{sub 3} and PbTiO{sub 3} films deposited on Co{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4}, the out-of-plane polarization and related ME coefficients are calculated numerically as a function of magnetic field parallel to the interface. For films stabilized in the monoclinic phase, this transverse ME response depends on the orientation of magnetic field relative to their in-plane crystallographic axes. The longitudinal ME coefficient is also evaluated and, for a substrate geometry minimizing the demagnetizing field, predicted to be comparable to the transverse one. For BaTiO{sub 3} and PbTiO{sub 3} films deposited on Terfenol-D, the calculations yield high ME polarization coefficients {approx} 10{sup -7} s m{sup -1} and giant ME voltage coefficients {approx} 50 V cm{sup -1} Oe{sup -1}.

  11. Thermodynamic theory of strain-mediated direct magnetoelectric effect in multiferroic film-substrate hybrids.

    Science.gov (United States)

    Kukhar, V G; Pertsev, N A; Kholkin, A L

    2010-07-02

    A nonlinear thermodynamic theory is developed for the strain-mediated direct magnetoelectric (ME) effect displayed by ferroelectric-ferromagnetic nanostructures. This effect results from transmission of magnetic-field-induced deformations of a thick ferromagnetic substrate to a thin ferroelectric overlayer, where the polarization changes due to lattice strains. The strain-dependent polarization and permittivity of an epitaxial nanolayer (few tens of nm thick) are calculated using the thermodynamic theory of single-domain ferroelectric films. The substrate magnetostrictive deformations are described phenomenologically, taking into account their nonlinear variation with magnetic field. The calculations show that ME polarization and voltage coefficients strongly depend on the initial strain state of the film. For BaTiO(3) and PbTiO(3) films deposited on Co(0.8)Zn(0.2)Fe(2)O(4), the out-of-plane polarization and related ME coefficients are calculated numerically as a function of magnetic field parallel to the interface. For films stabilized in the monoclinic phase, this transverse ME response depends on the orientation of magnetic field relative to their in-plane crystallographic axes. The longitudinal ME coefficient is also evaluated and, for a substrate geometry minimizing the demagnetizing field, predicted to be comparable to the transverse one. For BaTiO(3) and PbTiO(3) films deposited on Terfenol-D, the calculations yield high ME polarization coefficients approximately 10(-7) s m(-1) and giant ME voltage coefficients approximately 50 V cm(-1) Oe(-1).

  12. High-voltage thin-film GaN LEDs fabricated on ceramic substrates: the alleviated droop effect at 670 W/cm(2).

    Science.gov (United States)

    Tsai, M L; Liao, J H; Yeh, J H; Hsu, T C; Hon, S J; Chung, T Y; Lai, K Y

    2013-11-04

    High-voltage thin-film GaN LEDs with the emission wavelength of 455 nm were fabricated on ceramic substrates (230 W/m · K). The high-voltage operation was achieved by three cascaded sub-LEDs with dielectric passivation and metal bridges conformally deposited on the side walls. Under the driving power of 670 W/cm(2), the high-voltage LEDs exhibit much alleviated efficiency droop and the operative temperature below 80 °C. The excellent performances were attributed to the improved current spreading within each sub-LED and the superior heat sinking of the ceramic substrate.

  13. Synergistic Effects of Stress-Rupture and Cyclic Loading on Strain Response of Fiber-Reinforced Ceramic-Matrix Composites at Elevated Temperature in Oxidizing Atmosphere

    Directory of Open Access Journals (Sweden)

    Longbiao Li

    2017-02-01

    Full Text Available In this paper, the synergistic effects of stress rupture and cyclic loading on the strain response of fiber-reinforced ceramic-matrix composites (CMCs at elevated temperature in air have been investigated. The stress-strain relationships considering interface wear and interface oxidation in the interface debonded region under stress rupture and cyclic loading have been developed to establish the relationship between the peak strain, the interface debonded length, the interface oxidation length and the interface slip lengths. The effects of the stress rupture time, stress levels, matrix crack spacing, fiber volume fraction and oxidation temperature on the peak strain and the interface slip lengths have been investigated. The experimental fatigue hysteresis loops, interface slip lengths, peak strain and interface oxidation length of cross-ply SiC/MAS (magnesium alumino-silicate, MAS composite under cyclic fatigue and stress rupture at 566 and 1093 °C in air have been predicted.

  14. Stoichiometry as key to ferroelectricity in compressively strained SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Haislmaier, R. C.; Engel-Herbert, R.; Gopalan, V. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-18

    While strain is a powerful tuning parameter for inducing ferroelectricity in thin film oxides, the role of stoichiometry control is critical, but far less explored. A series of compressively strained SrTiO{sub 3} films on (001) (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.35} substrates were grown by hybrid molecular beam epitaxy where the Ti cation was supplied using a metal-organic titanium tetraisopropoxide molecule that helps systematically and precisely control Sr:Ti stoichiometry in the resulting films. A stoichiometric growth window is located through X-ray diffraction and in-situ reflection high-energy electron diffraction measurements, which show a minimum out-of-plane lattice parameter as well as constant growth rate within the stoichiometric growth window range. Using temperature dependent optical second harmonic generation (SHG) characterization, a ferroelectric-to-paraelectric transition at T ∼ 180 K is observed for a stoichiometric SrTiO{sub 3} film, as well as a higher temperature structural transition at T ∼ 385 K. Using SHG polarimetry modeling, the polar point group symmetry is determined to be tetragonal 4mm with the polarization pointing out-of-plane of the film. The SHG coefficients, d{sub 31}/d{sub 15}=3 and d{sub 33}/d{sub 15}=21, were determined at 298 K. The ferroelectric transition disappears in films grown outside the growth window, thus proving the critical role of stoichiometry control in realizing strain-induced ferroelectricity.

  15. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

    Science.gov (United States)

    Lipomi, Darren J.; Vosgueritchian, Michael; Tee, Benjamin C.-K.; Hellstrom, Sondra L.; Lee, Jennifer A.; Fox, Courtney H.; Bao, Zhenan

    2011-12-01

    Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm-1 in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.

  16. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes.

    Science.gov (United States)

    Lipomi, Darren J; Vosgueritchian, Michael; Tee, Benjamin C-K; Hellstrom, Sondra L; Lee, Jennifer A; Fox, Courtney H; Bao, Zhenan

    2011-10-23

    Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm(-1) in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.

  17. Electric field induced relaxor behavior in anisotropically strained SrTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y., E-mail: y.dai@fz-juelich.de; Schubert, J.; Hollmann, E.; Wördenweber, R.

    2016-03-15

    Electric fields can modify the dielectric response of ferroelectric and especially relaxor ferroelectric material. Since strained ferroelectric fields represent ideal candidates for relaxor ferroelectrics, we analyzed the impact of ac and dc electric fields and field orientation on the dielectric properties of anisotropically strained epitaxial SrTiO{sub 3} films in detail. The tensile strain in the SrTiO{sub 3} films causes an increase of the ferroelectric-dielectric phase transition temperature to 258 K and 288 K for small and large tensile strains, respectively. The resulting films represent relaxor-type ferroelectrics with properties that strongly depend on the applied electric field. While a dc bias field significantly suppresses the permittivity in the paraelectric regime ranging from 180 K to 320 K, an ac field leads to an even more pronounced enhancement of the permittivity in an even larger temperature regime (e.g. reduction of up to 50% versus enhancement of up to 380% for 0.5 V/μm dc bias or ac field, respectively). Furthermore the ac field dependence is nonlinear and cannot be explained by the classical Rayleigh law. Frequency dependent measurements show among others that the electric field dependences are strongly related to the relaxor-type behavior. The different dielectric responses are explained in terms of the mobility and dynamic of regimes of uniform polarization, the polar nanoregions, that are generally assumed to be responsible for the relaxor behavior.

  18. Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites

    Science.gov (United States)

    Tian, Bian; Zhang, Zhongkai; Shi, Peng; Zheng, Chen; Yu, Qiuyue; Jing, Weixuan; Jiang, Zhuangde

    2017-01-01

    A tungsten-rhenium thin film thermocouple is designed and fabricated, depending on the principle of thermal-electric effect caused by the high temperature. The characteristics of thin film thermocouples in different temperatures are investigated via numerical analysis and analog simulation. The working mechanism and thermo-electric features of the thermocouples are analyzed depending on the simulation results. Then the thin film thermocouples are fabricated and calibrated. The calibration results show that the thin film thermocouples based on the tungsten-rhenium material achieve ideal static characteristics and work well in the practical applications.

  19. Geometric pre-patterning based tuning of the period doubling onset strain during thin film wrinkling

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourabh K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-16

    Wrinkling of supported thin films is an easy-to-implement and low-cost fabrication technique for generation of stretch-tunable periodic micro and nano-scale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric pre-patterning based technique is introduced to delay the onset of period doubling that can be implemented to predictively tune the onset strain even with limited system knowledge. The technique comprises pre-patterning the film/base bilayer with a sinusoidal pattern that has the same period as the natural wrinkle period of the system. The effectiveness of this technique has been verified via physical and computational experiments on the polydimethylsiloxane/glass bilayer system. It is observed that the period doubling onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest pre-pattern aspect ratio (2∙amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain can be increased up to a limit by increasing the amplitude of the pre-patterns and (ii) the delaying effect can be captured entirely by the pre-pattern geometry. As a result, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Thus, geometric pre-patterning is a practical scheme to suppress period doubling that can increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.

  20. High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics

    Science.gov (United States)

    Dai, Ye-Jing; Zhao, Yong-Jie; Zhao, Zhe; Zhao, Zhi-Hao; Zhou, Qi-Wu; Zhang, Xiao-Wen

    2016-07-01

    Acceptor doping is an efficient method to improve ferroelectric material performance through the formation of defect dipoles. Here, a high electrostrictive strain of 0.16-0.19%, and large d33\\ast of  >300 pm V-1 are obtained in CuO-doped (K0.5Na0.5)NbO3 ceramics. We analyzed the orientation relationship and the interaction between defect dipole polarization (P d) along orientation and spontaneous polarization (P s) parallel to in orthorhombic (K0.5Na0.5)NbO3. Thus, a ‘coupling effect’ mechanism was suggested to explain how the P d and P s can work together to contribute to the electrostrictive strains in this lead-free piezoelectric ceramic.

  1. Synthesis of tunable plasmonic metal-ceramic nanocomposite thin films by temporally modulated sputtered fluxes

    Science.gov (United States)

    Magnfält, D.; Melander, E.; Boyd, R. D.; Kapaklis, V.; Sarakinos, K.

    2017-05-01

    The scientific and technological interest for metal-dielectric nanocomposite thin films emanates from the excitation of localized surface plasmon resonances (LSPRs) on the metal component. The overall optical response of the nanocomposite is governed by the refractive index of the dielectric matrix and the properties of the metallic nanoparticles in terms of their bulk optical properties, size, and shape, and the inter-particle distance of separation. In order to tune the film morphology and optical properties, complex synthesis processes which include multiple steps—i.e., film deposition followed by post-deposition treatment by thermal or laser annealing—are commonly employed. In the present study, we demonstrate that the absorption resonances of Ag/AlOxNy nanocomposite films can be effectively tuned from green (˜2.4 eV) to violet (˜2.8 eV) using a single-step synthesis process that is based on modulating the arrival pattern of film forming species with sub-monolayer resolution, while keeping the amount of Ag in the films constant. Our data indicate that the optical response of the films is the result of LSPRs on isolated Ag nanoparticles that are seemingly shifted by dipolar interactions between neighboring particles. The synthesis strategy presented may be of relevance for enabling integration of plasmonic nanocomposite films on thermally sensitive substrates.

  2. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-Tc films

    Science.gov (United States)

    Pavuna, Davor; Ariosa, Daniel; Cloetta, Dominique; Cancellieri, Claudia; Abrecht, Mike

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (<30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-T_{c} superconductors (HTSC) under different degrees of epitaxial ({compressive vs. tensile}) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≈15 nm thin La_{2-x}Sr_{x}CuO_{4} (LSCO) films we almost double T_{c} to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under {tensile} strain exhibit the dispersion that is three-dimensional, yet T_{c} drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO_{2} plane, enhances the two-dimensional character of the dispersion and increases T_{c}, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO_{2 } planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced T_{c}.

  3. High strain rate sensitivity of hardness in quinary Ti-Zr-Hf-Cu-Ni high entropy metallic glass thin films

    Science.gov (United States)

    Zhao, Shaofan; Wang, Haibin; Xiao, Lin; Guo, Nan; Zhao, Delin; Yao, Kefu; Chen, Na

    2017-10-01

    Quinary Ti-Zr-Hf-Cu-Ni high-entropy metallic glass thin films were produced by magnetron sputter deposition. Nanoindentation tests indicate that the deposited film exhibits a relatively large hardness of 10.4±0.6 GPa and a high elastic modulus of 131±11 GPa under the strain rate of 0.5 s-1. Specifically, the strain rate sensitivity of hardness measured for the thin film is 0.05, the highest value reported for metallic glasses so far. Such high strain rate sensitivity of hardness is likely due to the high-entropy effect which stabilizes the amorphous structure with enhanced homogeneity.

  4. Non-uniform, axisymmetric misfit strain: in thin films bonded on plate substrates/substrate systems: the relation between non-uniform film stresses and system curvatures

    Institute of Scientific and Technical Information of China (English)

    Yonggang Huang; D. Ngo; A.J. Rosakis

    2005-01-01

    Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. By considering a circular thin film/substrate system subject to non-uniform, but axisymmetric misfit strain distributions in the thin film, we derived relations between the film stresses and the misfit strain, and between the plate system's curvatures and the misfit strain. These relations feature a "local"part which involves a direct dependence of the stress or curvature components on the misfit strain at the same point, and a "non-local" part which reflects the effect of misfit strain of other points on the location of scrutiny. Most notably, we also derived relations between the polar components of the film stress and those of system curvatures which allow for the experimental inference of such stresses from full-field curvature measurements in the presence of arbitrary radial non-uniformities. These relations also feature a "non-local"dependence on curvatures making a full-field measurement a necessity. Finally, it is shown that the interfacial shear tractions between the film and the substrate are proportional to the radial gradients of the first curvature invariant and can also be inferred experimentally.

  5. Micro-strain, dislocation density and surface chemical state analysis of multication thin films

    Science.gov (United States)

    Jayaram, P.; Pradyumnan, P. P.; Karazhanov, S. Zh.

    2016-11-01

    Multication complex metal oxide thin films are rapidly expanding the class of materials with many technologically important applications. Herein this work, the surface of the pulsed laser deposited thin films of Zn2SnO4 and multinary compounds obtained by substitution/co-substitution of Sn4+ with In3+ and Ga3+ are studied by X-ray photoelectron emission spectroscopy (X-PES) method. Peaks corresponding to the elements of Zn, Sn, Ga, In and O on the film surface has been identified and contribution of the elements has been studied by the computer aided surface analysis (CASA) software. Binding energies, full-width at half maximum (FWHM), spin-orbit splitting energies, asymmetric peak-shape fitting parameters and quantification of elements in the films are discussed. Studies of structural properties of the films by x-ray diffraction (XRD) technique showed inverse spinel type lattice with preferential orientation. Micro-strain, dislocation density and crystallite sizes in the film surface have been estimated.

  6. Micro-strain, dislocation density and surface chemical state analysis of multication thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jayaram, P., E-mail: jayarampnair@gmail.com [Department of Physics, MES Ponnani College Ponnani, Kerala (India); Pradyumnan, P.P. [Department of Physics, University of Calicut, Kerala 673 635 (India); Karazhanov, S.Zh. [Department for Solar Energy, Institute for Energy Technology, Kjeller (Norway)

    2016-11-15

    Multication complex metal oxide thin films are rapidly expanding the class of materials with many technologically important applications. Herein this work, the surface of the pulsed laser deposited thin films of Zn{sub 2}SnO{sub 4} and multinary compounds obtained by substitution/co-substitution of Sn{sup 4+} with In{sup 3+} and Ga{sup 3+} are studied by X-ray photoelectron emission spectroscopy (X-PES) method. Peaks corresponding to the elements of Zn, Sn, Ga, In and O on the film surface has been identified and contribution of the elements has been studied by the computer aided surface analysis (CASA) software. Binding energies, full-width at half maximum (FWHM), spin-orbit splitting energies, asymmetric peak-shape fitting parameters and quantification of elements in the films are discussed. Studies of structural properties of the films by x-ray diffraction (XRD) technique showed inverse spinel type lattice with preferential orientation. Micro-strain, dislocation density and crystallite sizes in the film surface have been estimated.

  7. Designing micro-patterned Ti films that survive up to 10% applied tensile strain

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Noble C.; Spolenak, Ralph [ETH Zuerich, Laboratory for Nanometallurgy, Department of Materials, Zuerich (Switzerland); Cherenack, Kunigunde; Troester, Gerhard [ETH Zuerich, Wearable Computing Lab, Institute for Electronics, Zuerich (Switzerland)

    2010-07-15

    Reducing the strain in brittle device layers is critical in the fabrication of robust flexible electronic devices. In this study, the cracking behavior of micro-patterned 500-nm-thick Ti films was investigated via uniaxial tensile testing by in situ SEM and 4-point probe measurements. Both visual observations by SEM and 4-pt resistance measurements showed that strategically patterned oval holes, off-set and rotated by 45 , had a significant effect on limiting the extent of cracking, specifically, in preventing cracks from converging. Failure with regard to electrical conduction was delayed from less than 2% to more than 10% strain. (orig.)

  8. Wrinkling of a stiff thin film bonded to a pre-strained, compliant substrate with finite thickness.

    Science.gov (United States)

    Ma, Yinji; Xue, Yeguang; Jang, Kyung-In; Feng, Xue; Rogers, John A; Huang, Yonggang

    2016-08-01

    A stiff thin film bonded to a pre-strained, compliant substrate wrinkles into a sinusoidal form upon release of the pre-strain. Many analytical models developed for the critical pre-strain for wrinkling assume that the substrate is semi-infinite. This critical pre-strain is actually much smaller than that for a substrate with finite thickness (Ma Y et al. 2016 Adv. Funct. Mater. (doi:10.1002/adfm.201600713)). An analytical solution of the critical pre-strain for a system of a stiff film bonded to a pre-strained, finite-thickness, compliant substrate is obtained, and it agrees well with the finite-element analysis. The finite-thickness effect is significant when the substrate tensile stiffness cannot overwhelm the film tensile stiffness.

  9. Strain-delocalizing effect of a metal substrate on nanocrystalline Ni film

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Dexing [Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009 (China); Zhou, Jianqiu, E-mail: zhouj@njut.edu.cn [Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009 (China); Department of Mechanical Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province 430070 (China); Liu, Hongxi; Dong, Shuhong [Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009 (China); Wang, Ying [Department of Mechanical and Electronic Engineering, Suzhou Institute of Industrial Technology, Suzhou, Jiangsu 215104 (China)

    2015-07-29

    Uniaxial tensile test and scanning electron microscopy (SEM) are introduced to study the tensile properties of electrodeposited nanocrystalline nickel/coarse-grained copper (N/C) composite in this paper. Compared to the stress strain response of pure nanocrystalline (NC) nickel (Ni), the tensile ductility of N/C composite is enhanced significantly. Based on the experimental results, a multi-phase composite model is proposed to investigate the micromechanical behaviors of the NC Ni film and N/C composite plate. The constitutive models are implemented into ABAQUS/Explicit in the form of VUMAT subroutine. A series of numerical simulations are carried out and the predications were in good agreement with experimental results. It can be concluded that the coarse-grained (CG) substrate work well in suppressing the strain localization in the NC Ni film.

  10. Strain controlled orbital state and magnetization in insulating LaMnO3+δ films

    Science.gov (United States)

    Zhang, A. M.; Cheng, S. L.; Lin, J. G.; Wu, X. S.

    2015-05-01

    LaMnO3+δ films with various thicknesses were grown on LaAlO3 (001) single crystal substrate to investigate the effect of in-plane compressive strain (˜-0.57%) on magnetic properties. All films exhibit a blocking temperature Tb at which the zero field cooled magnetization reaches a maximum, indicating the ferromagnetic (FM) nanoclusters are embedded in the background of antiferromagnetic (AFM) matrix. The onset temperature of FM transition Tc and Tb is increased by 24% and 89%, respectively, with the thickness decreasing from 82.4 nm to 9.2 nm. Simultaneously, the saturation magnetization greatly increases by 309%, which is ascribed to the strain-induced transition of AFM to FM phase due to the orbital order structure switching from x2- 1/y2-1 [A-type] to (x2- y2) + (z2- 1) [F-type].

  11. Low temperature magnetic imaging of strained multiferroic EuTiO3 thin films

    Science.gov (United States)

    Geng, Yanan; Wu, Weida; Freeland, J. W.; Ryan, P.; Kim, J. W.; Ke, X.; Schiffer, P.; Lee, J. H.; Schlom, D. G.; Fennie, C. J.

    2010-03-01

    It has been predicted that the competition between paraelectric antiferromagnetic state and ferroelectric ferromagnetic state in perovskite EuTiO3 can be tuned by epitaxial strain.footnotetextC.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97, 267602 (2006). Tensile-strained EuTiO3 thin films grown on DyScO3 (110) substrate by molecular-beam epitaxy are confirmed to be ferromagnetic at low temperature by magnetometry and magneto-capacitance. Here we present magnetic imaging of EuTiO3/DyScO3 thin film using low temperature magnetic force microscopy (LT-MFM). Temperature dependence of MFM contrast confirms the ferromagnetic ground state. The magnetic field dependence of MFM images will be discussed in conjunction with magnetometry and magneto-capacitance measurements.

  12. Bulk photovoltaic effect at infrared wavelength in strained Bi2Te3 films

    Science.gov (United States)

    Liu, Yucong; Chen, Jiadong; Wang, Chao; Deng, Huiyong; Zhu, Da-Ming; Hu, Gujin; Chen, Xiaoshuang; Dai, Ning

    2016-12-01

    As a prominent three-dimensional (3-D) topological insulator, traditional thermoelectric material Bi2Te3 has re-attracted greater interest in recent years. Herein, we demonstrate for the first time that c-axis oriented strained Bi2Te3 films exhibit the bulk photovoltaic effect (BPVE) at infrared wavelengths, which was only found in wide band-gap ferroelectric materials before. Moreover, further experiments show that the bulk photovoltaic effect probably comes from the flexoelectric effect which was induced by the stress gradient in strained Bi2Te3 films. And we anticipate that the results are generalizable to other layer-structured or two-dimensional (2-D) materials, e.g., Bi2Se3 and MoS2.

  13. Thin-film monocrystalline-silicon solar cells made by a seed layer approach on glass-ceramic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, I.; Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Vallon, S. [Corning European Technology Center, 7bis avenue de Valvins, 77210 Avon (France); Mayolet, A. [Corning Incorporated, SP-FR02-12, Corning, NY 14831 (United States)

    2010-02-15

    Solar modules made from thin-film crystalline-silicon layers of high quality on glass substrates could lower the price of photovoltaic electricity substantially. One way to create crystalline-silicon thin films on non-silicon substrates is to use the so-called ''seed layer approach'', in which a thin crystalline-silicon seed layer is first created, followed by epitaxial thickening of this seed layer. In this paper, we present the first solar cell results obtained on 10-{mu}m-thick monocrystalline-silicon (mono-Si) layers obtained by a seed layer approach on transparent glass-ceramic substrates. The seed layers were made using implant-induced separation and anodic bonding. These layers were then epitaxially thickened by thermal CVD. Simple solar cell structures without integrated light trapping features showed efficiencies of up to 7.5%. Compared to polycrystalline-silicon layers made by aluminum-induced crystallization of amorphous silicon and thermal CVD, the mono-Si layers have a much higher bulk diffusion lifetime. (author)

  14. Designing a standard for strain mapping: HR-EBSD analysis of SiGe thin film structures on Si.

    Science.gov (United States)

    Vaudin, M D; Osborn, W A; Friedman, L H; Gorham, J M; Vartanian, V; Cook, R F

    2015-01-01

    Patterned SiGe thin film structures, heteroepitaxially deposited on Si substrates, are investigated as potential reference standards to establish the accuracy of high resolution electron backscattered diffraction (HR-EBSD) strain measurement methods. The proposed standards incorporate thin films of tetragonally distorted epitaxial Si₁-xGex adjacent to strain-free Si. Six films of three different nominal compositions (x=0.2, 0.3, and 0.4) and various thicknesses were studied. Film composition and out-of-plane lattice spacing measurements, by x-ray photoelectron spectroscopy and x-ray diffraction, respectively, provided independent determinations of film epitaxy and predictions of tetragonal strain for direct comparison with HR-EBSD strain measurements. Films assessed to be coherent with the substrate exhibited tetragonal strain values measured by HR-EBSD identical to those predicted from the composition and x-ray diffraction measurements, within experimental relative uncertainties of order 2%. Such films thus provide suitable prototypes for designing a strain reference standard. Published by Elsevier B.V.

  15. Sol-gel preparation of ion-conducting ceramics for use in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, M.I.

    1992-12-01

    A metal alkoxide sol-gel solution suitable for depositing a thin film of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} on a porous substrate has been developed; such films should be useful in fuel cell electrode and oxygen separation membrane manufacture. Crack-free films have been deposited on both dense and porous substrates by dip-coating and spin-coating techniques followed by a heat treatment in air. Fourier transform infrared spectroscopy was used to determine the chemical structure of metal alkoxide solution system. X-ray diffraction was used to determine crystalline phases formed at various temperatures, while scanning electron microscopy was used to determine physical characteristics of the films. Surface coatings have been successfully applied to porous substrates through the control of the substrate pore size, deposition parameters, and firing parameters. Conditions have been defined for which films can be deposited, and for which the physical and chemical characteristics of the film can be improved. A theoretical discussion of the chemical reactions taking place before and after hydrolysis in the mixed alkoxide solutions is presented, and the conditions necessary for successful synthesis are defined. Applicability of these films as ionic and electronic conductors is discussed.

  16. Silicon carbide thin films as nuclear ceramics grown by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, M., E-mail: morarm@nipne.ro [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO 77125, Magurele - Bucharest (Romania); Velisa, G. [Horia Hulubei National Institute of Physics and Nuclear Engineering, P.O.BOX MG-6, Bucharest - Magurele (Romania); Ion, V.; Andrei, A. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO 77125, Magurele - Bucharest (Romania); Scintee, N.; Ionescu, P. [Horia Hulubei National Institute of Physics and Nuclear Engineering, P.O.BOX MG-6, Bucharest - Magurele (Romania); Stanciu, S.G. [Center for Microscopy- Microanalysis and Information Processing, University ' POLITEHNICA' of Bucharest, Bucharest (Romania); Pantelica, D. [Horia Hulubei National Institute of Physics and Nuclear Engineering, P.O.BOX MG-6, Bucharest - Magurele (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO 77125, Magurele - Bucharest (Romania)

    2011-09-01

    Silicon carbide has been identified as a potential inert matrix candidate for advanced fuel. In this work, the growth of SiC thin films by pulsed laser deposition is reported. The stoicheometry and thickness of deposited films was investigated by non-Rutherford backscattering spectrometry. The influence of the deposition parameters, i.e. substrate temperature and laser fluence on the structure, morphology and optical properties of the deposited thin layers was studied. It was found that polycrystalline SiC thin films with uniform surface morphology were obtained at 873 K.

  17. Electrical properties of nanoscale metallic thin films on dielectric elastomer at various strain rates

    Science.gov (United States)

    Faisal, Md. Shahnewaz Sabit; Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan

    2015-04-01

    Dielectric elastomers (DEs) have significant applications in artificial muscle and other biomedical equipment and device fabrications. Metallic thin films by thin film transfer and sputter coating techniques can provide conductive surfaces on the DE samples, and can be used as electrodes for the actuators and other biomedical sensing devices. In the present study, 3M VHB 4910 tape was used as a DE for the coating and electrical characterization tests. A 150 nm thickness of gold was coated on the DE surfaces by sputter coating under vacuum with different pre-strains, ranging from 0 to 100%. Some of the thin films were transferred to the surface of the DEs. Sputter coating, and direct transferring gold leaf coating methods were studied and the results were analyzed in detail in terms of the strain rates and electrical resistivity changes. Initial studies indicated that the metallic surfaces remain conductive even though the DE films were considerably elongated. The coated DEs can be used as artificial muscle by applying electrical stimulation through the conductive surfaces. This study may provide great benefits to the readers, researchers, as well as companies involved in manufacturing of artificial muscles and actuators using smart materials.

  18. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vakiv, M; Hadzaman, I; Klym, H; Shpotyuk, O [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Brunner, M, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Fachhochschule Koeln/University of Applied Sciences, 2 Betzdorfer str., Koeln, 50679 (Germany)

    2011-04-01

    Temperature sensitive thick films based on spinel-type NiMn{sub 2}O{sub 4}-CuMn{sub 2}O{sub 4}-MnCo{sub 2}O{sub 4} manganites with p- and p{sup +}-types of electrical conductivity and their multilayer p{sup +}-p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p{sup +}-conductive films. Some part of the p{sup +}-p structures were of high stability, the relative electrical drift being no more than 1 %.

  19. Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications

    Science.gov (United States)

    Guddala, S.; Chiappini, A.; Armellini, C.; Turell, S.; Righini, G. C.; Ferrari, M.; Narayana Rao, D.

    2015-02-01

    Glass-ceramics are a kind of two-phase materials constituted by nanocrystals embedded in a glass matrix and the respective volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. Among these properties transparency is crucial in particular when confined structures, such as, dielectric optical waveguides, are considered. Moreover, the segregation of dopant rare-earth ions, like erbium, in low phonon energy crystalline medium makes these structures more promising in the development of waveguide amplifiers. Here we are proposing a new class of low phonon energy tin oxide semiconductor medium doped silicate based planar waveguides. Er3+ doped (100-x) SiO2-xSnO2 (x= 10, 20, 25 and 30mol%), glass-ceramic planar waveguide thin films were fabricated by a simple sol-gel processing and dip coating technique. XRD and HRTEM studies indicates the glass-ceramic phase of the film and the dispersion of ~4nm diameter of tin oxide nanocrystals in the amorphous phase of silica. The spectroscopic assessment indicates the distribution of the dopant erbium ions in the crystalline medium of tin oxide. The observed low losses, 0.5±0.2 dB/cm, at 1.54 μm communication wavelength makes them a quite promising material for the development of high gain integrated optical amplifiers.

  20. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Her...

  1. Correlation between droplet-induced strain actuation and voltage generation in single-wall carbon nanotube films.

    Science.gov (United States)

    Liu, Zheng; Hu, Lijun; Liu, Ji; Qiu, Caiyu; Zhou, Haiqing; Hashim, Daniel P; Shi, Gang; Peng, Cheng; Najmaei, Sina; Sun, Lianfeng; Lou, Jun; Ajayan, Pulickel M

    2011-12-14

    In this paper, a method of strain actuation of single-walled carbon nanotube (SWNT) films using droplets is examined, and the physical origin of an open-circuit voltage (Voc)-observed across the film during this process-is explored. We demonstrate that droplet actuation is driven by the formation of a capillary bridge between the suspended SWNT films and the substrates, which deforms the films by wetting forces during evaporation. The induced strain is further evaluated and analyzed using dynamic Raman and two-dimensional correlation spectra. Supported by theoretical calculations, our experiments reveal the time and strain dependency of the capillary bridge's midpoint directional movement. This relationship is applied to display the correlation between the induced strain and the measured Voc.

  2. Growth Mechanism of Strain-Dependent Morphological Change in PEDOT:PSS Films

    Science.gov (United States)

    Lee, Yoo-Yong; Choi, Gwang Mook; Lim, Seung-Min; Cho, Ju-Young; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2016-04-01

    Understanding the mechanism of the strain-dependent conductivity change in polymers in stretched conditions is important. We observed a strain-induced growth of the conductive regions of PEDOT:PSS films, induced by a coalescence of conductive PEDOT-rich cores. This growth due to coalescence leads to a gradual decrease in the electrical resistivity up to 95%, independent of the thickness of the PEDOT:PSS films. The primary mechanism for the evolution of the PEDOT-rich cores proceeds by the cores growing larger as they consuming relatively smaller cores. This process is caused by a strain-induced local rearrangement of PEDOT segments in the vicinity of PSS shells around the cores and also changes the chemical environment in PEDOT, induced by the electron-withdrawing effects around the PEDOT chains. The strain-induced growth mechanism is beneficial to understanding the phenomenon of polymeric chain rearrangement in mechanical deformation and to modulating the electrical conductivity for practical applications.

  3. The strained epitaxial Nd-Fe-B films by mechanical elongation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ah-Ram; Neu, Volker; Huehne, Ruben; Holzapfel, Bernhard; Schultz, Ludwig; Faehler, Sebastian [IFW Dresden (Germany); Matias, Vlakimir [Los Alamos National Laboratory, Los Alamos, NM (United States); Haenisch, Jens [IFW Dresden (Germany); Los Alamos National Laboratory, Los Alamos, NM (United States)

    2009-07-01

    Though it is well known that a variation of lattice constants strongly influences the functional properties of materials, most of the experiments are limited to hydrostatic pressure or biaxial stress. Here we present an approach, which impresses a large uniaxial strain on epitaxially grown films in order to tune their functional properties. A ductile Hastelloy substrate covered with a (001) oriented ion beam assisted MgO layer is used. Conventional mechanical elongation after deposition breaks the symmetry within the substrate plane compared to the as-deposited state. Consequences are exemplarily examined for an epitaxial hard magnetic Nd{sub 2}Fe{sub 14}B film strained by 2%. Though magnetostriction is usually considered to be negligible in this material exhibiting a high magnetocrystalline anisotropy, the uniaxial strain results in an elliptical distortion of the in-plane anisotropy below the spin-reorientation temperature. Our approach is versatile to study the influence of large strain on various materials, as the used MgO(001) layer is a common substrate for epitaxial growth.

  4. Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface

    Science.gov (United States)

    Sankara Rama Krishnan, P. S.; Morozovska, Anna N.; Eliseev, Eugene A.; Ramasse, Quentin M.; Kepaptsoglou, Demie; Liang, Wen-I.; Chu, Ying-Hao; Munroe, Paul; Nagarajan, V.

    2014-02-01

    Cation intermixing at functional oxide interfaces remains a highly controversial area directly relevant to interface-driven nanoelectronic device properties. Here, we systematically explore the cation intermixing in epitaxial (001) oriented multiferroic bismuth ferrite (BFO) grown on a (001) lanthanum aluminate (LAO) substrate. Aberration corrected dedicated scanning transmission electron microscopy and electron energy loss spectroscopy reveal that the interface is not chemically sharp, but with an intermixing of ˜2 nm. The driving force for this process is identified as misfit-driven elastic strain. Landau-Ginzburg-Devonshire-based phenomenological theory was combined with the Sheldon and Shenoy formula in order to understand the influence of boundary conditions and depolarizing fields arising from misfit strain between the LAO substrate and BFO film. The theory predicts the presence of a strong potential gradient at the interface, which decays on moving into the bulk of the film. This potential gradient is significant enough to drive the cation migration across the interface, thereby mitigating the misfit strain. Our results offer new insights on how chemical roughening at oxide interfaces can be effective in stabilizing the structural integrity of the interface without the need for misfit dislocations. These findings offer a general formalism for understanding cation intermixing at highly strained oxide interfaces that are used in nanoelectronic devices.

  5. Phage type and sensitivity to antibiotics of Staphylococcus aureus film-forming strains isolated from airway mucosa

    Directory of Open Access Journals (Sweden)

    O. S. Voronkova

    2014-10-01

    Full Text Available Today film-forming strains of bacteria play very important role in clinical pathology. Staphylococci are ones of most dangerous of them. This bacteria can determine different pathological processes, for example, complication of airway mucosa. The ability to form a biofilm is one of the main properties of nosocomial strains. These strains should be monitored and their carriers are to be properly treated. To determine the origin of staphylococci strains we used bacteriophages from the International kit. The aim of research was to determine the phage type of staphylococci film-forming strains, that were isolated from naso-pharingial mucosa. Phage typing has been carried out for 16 film-forming strains of S. aureus. To solve this problem, we used the International phage kit by Fisher’s method. As a result, sensitivity to phages from the International kit showed 53.8% of studied strains of S. aureus. 64.3% of sensitivity strains were lysed by one of the phage, 21.4% – were by two of the phages, 14.3% – by three of the phages. Isolates were sensitive to phages: 81 – 42.9%, 75 – 35.7%, 28.6% were sensitive to phages 47 and 53. All cases of detection of sensitivity to phage 47 coincided with the ability to form biofilm. Among non-film-forming strains there was no sensitive strains for this phage. Film-forming strains resist to erythromycin (62.5%, ciprofloxacin (43.8%, gentamicin (56.3%, tetracycline (87.5%, amoxicillin (93.8%, and cefuroxime (37.5%. All cases of sensitivity to phage 47 coincided with resistance to erythromycin, amoxicillin and tetracycline. For two of these strains, we also defined resistance to gentamicin and for one of them – to ciprofloxacin. Results of research allowed to relate the bacterial cultures for determining the type. This may have implications for studying of film-forming ability, because surface structures of bacterial cell take place in this process. Belonging of an isolate to specific phage type may

  6. Cu{sub 2}ZnSnSb(S,Se,Te){sub 4} film formation from selenization of sputtered self-prepared single ceramic target

    Energy Technology Data Exchange (ETDEWEB)

    Tsega, Moges, E-mail: mogestsega@yahoo.com [Department of Physics, University of the Free State (Qwaqwa campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Kuo, Dong-Hau [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Dejene, F.B. [Department of Physics, University of the Free State (Qwaqwa campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa)

    2015-08-31

    Single-layered Cu{sub 2}ZnSnSb(S,Se,Te){sub 4}(CZTASSeTe) thin films were prepared on Mo/glass substrate by radio frequency magnetron sputtering of a self-prepared single ceramic target. Successive selenization for the as-deposited film at a substrate temperature of 200 °C in Se-atmosphere was performed at various temperatures between 400 °C and 600 °C for 1 h. Structural investigation of the grown films revealed single-phase tetragonal structure corresponding to kesterite CZTSSe. All measured samples were found to exhibit p-type conductivity. An improved grain size and crystal quality with suitable atomic ratio [Cu/(Zn + Sb + Sn) = 0.89, Zn/Sn = 1.15, and metal/(S + Se + Te) = 1.02] obtained for CZTASSeTe film selenized at 600 °C. The Hall concentration increased from 1.06 to 5.8 × 10{sup 17} cm{sup −3}, mobility increased from 2.82 to 44.3 cm{sup 2} V{sup −1} s{sup −1}, and resistivity decreased from 20.92 to 0.24 Ω cm as the precursor film is selenized to 600 °C. An enhanced Hall mobility can be ascribed to the larger grains with better crystallinity and composition in the selenized film at 600 °C. Our large grain size and maximized mobility for CZTASSeTe film at the selenization temperature of 600 °C from single ceramic target can be useful for the fabrication of the CZTASSeTe absorber layer. - Highlights: • Cu{sub 2}ZnSnSb(S,Se,Te){sub 4} thin films were deposited by sputtering single ceramic target. • Structural and electrical properties of the films are presented. • Properties of CZTASSeTe thin films were related to Se vaporization temperature. • Selenized film at 600 °C presents the best crystal quality and enhanced Hall mobility.

  7. Epitaxial strain-engineered self-assembly of magnetic nanostructures in FeRh thin films

    Science.gov (United States)

    Witte, Ralf; Kruk, Robert; Molinari, Alan; Wang, Di; Schlabach, Sabine; Brand, Richard A.; Provenzano, Virgil; Hahn, Horst

    2017-01-01

    In this paper we introduce an innovative bottom-up approach for engineering self-assembled magnetic nanostructures using epitaxial strain-induced twinning and phase separation. X-ray diffraction, 57Fe Mössbauer spectroscopy, scanning tunneling microscopy, and transmission electron microscopy show that epitaxial films of a near-equiatomic FeRh alloy respond to the applied epitaxial strain by laterally splitting into two structural phases on the nanometer length scale. Most importantly, these two structural phases differ with respect to their magnetic properties, one being paramagnetic and the other ferromagnetic, thus leading to the formation of a patterned magnetic nanostructure. It is argued that the phase separation directly results from the different strain-dependence of the total energy of the two competing phases. This straightforward relation directly enables further tailoring and optimization of the nanostructures’ properties.

  8. Necking of anisotropic micro-films with strain-gradient effects

    Institute of Scientific and Technical Information of China (English)

    Brian Nyvang Legarth

    2008-01-01

    Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a speci-men with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield cri-teria and strain-gradient effects are accounted for using the visco-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving aniso-tropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening exponent. This holds true for both local and non-local materials. Anisotropic hardening delays the point of maximum overall nominal stress.

  9. Strain and chemical function decoration induced quantum spin Hall effect in 2D silicene and Sn film

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guohua; Zhang, Yun; Cao, Juexian, E-mail: jxcao@xtu.edu.cn

    2015-07-17

    The topological properties of silicene and Sn film decorated with chemical functional groups (–H, –F, –Cl, –Br, –I) are investigated by the first-principle calculations. It is found that Sn films decorated with F, Cl, Br and I are topological insulators with sizable gap while the other combinations are normal insulators. The phase transition of X decorated silicene and Sn film was investigated by applying external strain. Our results pointed out that the normal insulators can transform into topological insulators with sizable gap under critical strain. The research provided new routes to design 2D topological insulator with sizable gap which has wide applications in next-generation spintronics devices. - Highlights: • The inverted band order can be obtained with applying external strain. • Band gaps of TIs can be enhanced by external strain. • Quantum phase transition is observed under a critical strain for X−Si and X−Sn.

  10. Characterization of the spatial elastoresistivity of inkjet-printed carbon nanotube thin films for strain-state sensing

    Science.gov (United States)

    Gruener, Patrick; Zhao, Yingjun; Schagerl, Martin

    2017-04-01

    Carbon nanotube (CNT)-embedded polymer solution can be inkjet-printed into a thin sheet consisting uniform morphology and consistent electrical properties. When subjected to a loading scheme, the thin film's inherent electrical property changes in tandem with the deformation. This unique property makes CNT thin films the appropriate candidate for strain sensing applications. Recent studies on characterizing the gage factor of CNT-embedded thin films are limited to learning the materials resistance change along the loading direction only. However, research interests on strain measurement of a structure have shifted from point-based interrogation to spatial strain-state monitoring. In this study an attempt to characterize its anisotropic resistivity was carried out. The resistivity-strain constitutional relation of an inkjet-printed CNT thin film is established based on theories for semi-conductive materials. The 2D elastoresistivity properties were characterized via the Montgomery method. It is observed that the change in resistivity in both directions are exhibiting linear trend to their strains in the same direction, but the thin film is more sensitive toward compressive strains. The final result of this study has inspired future research on fully characterizing the thin film's elastoresistivity under different loading situations, and the way to characterize shear elastoresistivity shall also be reconsidered.

  11. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors

    Science.gov (United States)

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Azrin Shah, Nabila Farhana; Shasmin, Hanie Nadia; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx), their chemical reactions and bonding with polydimethylsiloxane (PDMS) were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz) was obtained for the ceramic sintered at 1050 °C (S1050) and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz) film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%), viscoelastic property (tanδ = E″/E′: 0.225) and glass transition temperature (Tg: −58.5 °C) were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000%) and its flexible S1050/PDMS composite film (306%) based humidity sensors was found to be at 100 Hz, better than conventional materials. PMID:26927116

  12. Synthesis and Characterizations of Novel Ca-Mg-Ti-Fe-Oxides Based Ceramic Nanocrystals and Flexible Film of Polydimethylsiloxane Composite with Improved Mechanical and Dielectric Properties for Sensors

    Directory of Open Access Journals (Sweden)

    Ashis Tripathy

    2016-02-01

    Full Text Available Armalcolite, a rare ceramic mineral and normally found in the lunar earth, was synthesized by solid-state step-sintering. The in situ phase-changed novel ceramic nanocrystals of Ca-Mg-Ti-Fe based oxide (CMTFOx, their chemical reactions and bonding with polydimethylsiloxane (PDMS were determined by X-ray diffraction, infrared spectroscopy, and microscopy. Water absorption of all the CMTFOx was high. The lower dielectric loss tangent value (0.155 at 1 MHz was obtained for the ceramic sintered at 1050 °C (S1050 and it became lowest for the S1050/PDMS nanocomposite (0.002 at 1 MHz film, which was made by spin coating at 3000 rpm. The excellent flexibility (static modulus ≈ 0.27 MPa and elongation > 90%, viscoelastic property (tanδ = E″/E′: 0.225 and glass transition temperature (Tg: −58.5 °C were obtained for S1050/PDMS film. Parallel-plate capacitive and flexible resistive humidity sensors have been developed successfully. The best sensing performance of the present S1050 (3000% and its flexible S1050/PDMS composite film (306% based humidity sensors was found to be at 100 Hz, better than conventional materials.

  13. Engineering of the Curie temperature of epitaxial Sr1-xBaxTiO3 films via strain

    Science.gov (United States)

    Dai, Y.; Schubert, J.; Hollmann, E.; Mussler, G.; Wördenweber, R.

    2016-09-01

    The impact of strain on the structural and electrical properties of epitaxial Sr1-xBaxTiO3 films grown on single crystalline DyScO3 (110), TbScO3 (110), and GdScO3 (110) substrates is presented. X-ray diffraction measurements demonstrate that all films are grown epitaxially. The tensile in-plane strain is only partially compensated by a contraction of the out-of-plane lattice parameter. As a result, the volume of the unit cell of the Sr1-xBaxTiO3 film increases due to the tensile strain, and the resulting Poisson ratio of the film is ν ≈ 0.33, which is larger than but still close to the literature values of ν ≈ 0.23 for unstrained defect-free SrTiO3. The Curie temperature derived from the temperature dependence of the in-plane dielectric response leads to a strain-temperature phase diagram for the epitaxial Sr1-xBaxTiO3 films. The experimental data show a deviation from the linear dependence predicted by the Landau thermodynamic theory for large strain (>1.2%). However, using the equilibrium thermodynamic analysis, we can demonstrate that this deviation arises from the relaxation of the strain due to defect formation in the film. The result reveals that in addition to the nominal misfit strain, the defect formation strongly affects the effective strain and, thus, the dielectric response of epitaxially grown ferroelectric films.

  14. On the origin of perpendicular magnetic anisotropy in strained Fe-Co(-X) films

    Science.gov (United States)

    Reichel, L.; Edström, A.; Pohl, D.; Rusz, J.; Eriksson, O.; Schultz, L.; Fähler, S.

    2017-02-01

    Very high magnetic anisotropies have been theoretically predicted for strained Fe-Co(-X) and indeed several experiments on epitaxial thin films seemed to confirm strain induced anisotropy enhancement. This study presents a critical analysis of the different contributions to perpendicular anisotropy: volume, interface and surface anisotropies. Tracing these contributions, thickness series of single layer films as well as multilayers with Au-Cu buffers/interlayers of different lattice parameters have been prepared. The analysis of their magnetic anisotropy reveals a negligible influence of the lattice parameter of the buffer. Electronic effects, originating from both, the Au-Cu interface and the film surface, outrange the elastic effects. Surface anisotropy, however, exceeds the interface anisotropy by more than a factor of three. A comparison with results from density functional theory suggests, that the experimentally observed strong perpendicular surface anisotropy originates from a deviation from an ideal oxide-free surface. Accordingly, tailored Fe-Co-X/oxide interfaces may open a route towards high anisotropy in rare-earth free materials.

  15. Contribution to the large and stable electric field induced strain for textured Pb(Mg1/3Nb2/3)0.675Ti0.325O3 ceramics

    Science.gov (United States)

    Zeng, Jiangtao; Zhao, Kunyu; Ruan, Wei; Ruan, Xuezheng; Zheng, Liaoying; Li, Guorong

    2016-08-01

    Textured Pb(Mg1/3Nb2/3)0.675Ti0.325O3 (PMN-PT) ceramics were prepared by the templated grain growth method with 3% plate-like BaTiO3 as templates. The degree of grain orientation was about 81% by calculating from the XRD pattern. Temperature dependence of electric field induced strain was measured for both untextured and textured PMN-PT ceramics. The results show that the electric field induced strain for textured PMN-PT ceramics is much larger and more stable than that for untextured PMN-PT ceramics in a wide temperature range. The contribution from the piezoelectric effect and electrostrictive effect to the strain was analyzed, and it was found that textured PMN-PT ceramics exhibited electrostrictive coefficient Q33 as high as 5.19 × 10-2 m4 C-2 and it was comparable to that of PMN-PT single crystals. The electrostrictive effect contributed the main part of the enhancement of electric field induced strain for textured PMN-PT ceramics.

  16. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    Science.gov (United States)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  17. Thickness-dependent electronic structure modulation of ferromagnetic films on shape memory alloy substrates based on a pure strain effect

    Science.gov (United States)

    Feng, Chun; Hu, Di; Gong, Kui; Jiang, Xumin; Yin, Jianjuan; Cao, Yi; Tang, Xiao-Lei; Yang, Feng; Zhou, Zhongfu; Yu, Guanghua; Andrew Evans, D.

    2016-11-01

    Pure strain-induced electronic structure modulation in ferromagnetic films is critical for developing reliable strain-assisted spintronic devices with low power consumption. For the conventional electricity-controlled strain engineering, it is difficult to reveal the pure strain effect on electronic structure tunability due to the inseparability of pure strain effect and surface charge effect. Here, a non-electrically controlled NiTi shape memory alloy was utilized as a strain output substrate to induce a pure strain on attached Fe films through a thermally controlled shape memory effect. The pure strain induced electronic structure evolution was revealed by in-situ X-ray photoelectron spectroscopy and correlated with first-principles calculations and magnetic anisotropy measurements. A compressive strain enhances the shielding effect for core electrons and significantly tunes their binding energy. Meanwhile, the strain modifies the partial density of states of outer d orbits, which may affect spin-orbit coupling strength and related magnetic anisotropy. This work helps for clarifying the physical nature of the pure strain effect and developing the pure-strain-assisted spintronic devices.

  18. Interfacial-strain-induced structural and polarization evolutions in epitaxial multiferroic BiFeO3 (001) thin films.

    Science.gov (United States)

    Guo, Haizhong; Zhao, Ruiqiang; Jin, Kui-Juan; Gu, Lin; Xiao, Dongdong; Yang, Zhenzhong; Li, Xiaolong; Wang, Le; He, Xu; Gu, Junxing; Wan, Qian; Wang, Can; Lu, Huibin; Ge, Chen; He, Meng; Yang, Guozhen

    2015-02-04

    Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials. Here, to explore the effects of the interfacial strain on the properties of the multiferroic BiFeO3 films, we investigated thickness-dependent structural and polarization evolutions of the BiFeO3 films. The epitaxial growth with an atomic stacking sequence of BiO/TiO2 at the interface was confirmed by scanning transmission electron microscopy. Combining X-ray diffraction experiments and first-principles calculations, a thickness-dependent structural evolution was observed from a fully strained tetragonality to a partially relaxed one without any structural phase transition or rotated twins. The tetragonality (c/a) of the BiFeO3 films increases as the film thickness decreases, while the polarization is in contrast with this trend, and the size effect including the depolarization field plays a crucial role in this contradiction in thinner films. These findings offer an alternative strategy to manipulate structural and polarization properties by tuning the interfacial strain in epitaxial multiferroic thin films.

  19. Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene.

    Science.gov (United States)

    Bedolla Pantoja, Marco A; Abbott, Nicholas L

    2016-05-25

    We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (LC to lower the anchoring energy of the LC on these substrates, thus allowing the elastic energy of the strained LC film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health.

  20. Enhancement of perpendicular magnetic anisotropy by compressive strain in alternately layered FeNi thin films.

    Science.gov (United States)

    Sakamaki, M; Amemiya, K

    2014-04-23

    The effect of the lattice strain on magnetic anisotropy of alternately layered FeNi ultrathin films grown on a substrate, Cu(tCu = 0-70 ML)/Ni(48)Cu(52)(124 ML)/Cu(0 0 1) single crystal, is systematically studied by means of in situ x-ray magnetic circular dichroism (XMCD) and reflection high-energy electron diffraction (RHEED) analyses. To investigate the magnetic anisotropy of the FeNi layer itself, a non-magnetic substrate is adopted. From the RHEED analysis, the in-plane lattice constant, ain, of the substrate is found to shrink by 0.8% and 0.5% at tCu = 0 and 10 ML as compared to that of bulk Cu, respectively. Fe L-edge XMCD analysis is performed for n ML FeNi films grown on various ain, and perpendicular magnetic anisotropy (PMA) is observed at n = 3 and 5, whereas the film with n = 7 shows in-plane magnetic anisotropy. Moreover, it is found that PMA is enhanced with decreasing ain, in the case where a Cu spacer layer is inserted. We suppose that magnetic anisotropy in the FeNi films is mainly carried by Fe, and the delocalization of the in-plane orbitals near the Fermi level increases the perpendicular orbital magnetic moment, which leads to the enhancement of PMA.

  1. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    Science.gov (United States)

    Lin, Kae-Long

    2007-09-05

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown.

  2. Interplay of the strain and microstructure in ferroelectric epitaxial CaTiO3 Films

    Science.gov (United States)

    He, Qian; Liang, Qiao; Biegalski, Michael; Borisevich, Albina

    2014-03-01

    CaTiO3 (CTO) was predicted to become ferroelectric under lattice strain. However, other factors such as oxygen octahedral tilts or microstructural details can play a role. In this work, two 20 nm CTO films were grown on LSAT and NGO by PLD. They both show ferroelectricity, with Tc near 140 K on LSAT and near 70 K on NGO, and the remnant polarization at 10K of 5 and 2 μC/cm, respectively. This is surprising given that the strain of CTO on both substrates is similar. AC-STEM shows two major differences in microstructure between two CTO films: Firstly, the first few nm of CTO on NGO show perfect epitaxial growth, and after that grains start to develop, but the c-axis of CTO remains aligned with the c-axis of NGO, suggesting the presence of 180° grain boundaries only. However for CTO/LSAT, grains begin to develop at the interface and their c-axes have two possible orientations, resulting in both 180° and 90° grain boundaries. These grain boundaries are either dislocations or ferroelastic twins. Secondly, the octahedral tilt behavior at the film/substrate interface is different: CTO/LSAT has a 5-6 unit cell transition region from the untilted LSAT to the tilted CTO, which is not the case in CTO/NGO. The connection between the microstructure, substrate strain and connections to the ferroelectric properties will be discussed in detail. Research at ORNL supported by the MSE Division, BES, U.S. DOE, and through a user project supported by ORNL's CNMS, which is also sponsored by BES, U.S. DOE.

  3. Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure

    Science.gov (United States)

    Figueroa, A. I.; Zhang, S. L.; Baker, A. A.; Chalasani, R.; Kohn, A.; Speller, S. C.; Gianolio, D.; Pfleiderer, C.; van der Laan, G.; Hesjedal, T.

    2016-11-01

    We report a study of the strain state of epitaxial MnSi films on Si(111) substrates in the thick film limit (100-500 Å) as a function of film thickness using polarization-dependent extended x-ray absorption fine structure (EXAFS). All films investigated are phase-pure and of high quality with a sharp interface between MnSi and Si. The investigated MnSi films are in a thickness regime where the magnetic transition temperature Tc assumes a thickness-independent enhanced value of ≥43 K as compared with that of bulk MnSi, where Tc≈29 K . A detailed refinement of the EXAFS data reveals that the Mn positions are unchanged, whereas the Si positions vary along the out-of-plane [111] direction, alternating in orientation from unit cell to unit cell. Thus, for thick MnSi films, the unit cell volume is essentially that of bulk MnSi—except in the vicinity of the interface with the Si substrate (thin film limit). In view of the enhanced magnetic transition temperature we conclude that the mere presence of the interface, and its specific characteristics, strongly affects the magnetic properties of the entire MnSi film, even far from the interface. Our analysis provides invaluable information about the local strain at the MnSi/Si(111) interface. The presented methodology of polarization dependent EXAFS can also be employed to investigate the local structure of other interesting interfaces.

  4. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    Science.gov (United States)

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  5. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.I. [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal); Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal)

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  6. Properties of doped ZnO transparent conductive thin films deposited by RF magnetron sputtering using a series of high quality ceramic targets

    Institute of Scientific and Technical Information of China (English)

    LIN Wei; MA Ruixin; SHAO Wei; KANG Bo; WU Zhongliang

    2008-01-01

    To obtain high transmittance and low resistivity ZnO transparent conductive thin films,a series of ZnO ceramic targets (ZnO:Al,ZnO:(Al,Dy),ZnO:(Al,Gd),ZnO:(Al,Zr),ZnO:(Al,Nb),and ZnO:(Al,W)) were fabricated and used to deposit thin films onto glass substrates by radio frequency (RF) magnetron sputtering.X-ray diffraction (XRD) analysis shows that the films are polyerystalline fitting well with hexagonal wurtzite structure and have a preferred orientation of the (002) plane.The transmittance of above 86% as well as the lowest resistivity of 8.43 x 10-3 Ω·cm was obtained.

  7. Development of Energy-Efficient Cryogenic Leads with High Temperature Superconducting Films on Ceramic Substrates

    Science.gov (United States)

    Pan, A. V.; Fedoseev, S. A.; Shcherbakova, O. V.; Golovchanskiy, I. A.; Zhou, S.; Dou, S. X.; Webber, R. J.; Mukhanov, O. A.; Yamashita, T.; Taylor, R.

    High temperature superconductor (HTS) material can be used for the implementation of high-speed low-heat conduction data links to transport digital data from 4 K superconductor integrated circuits to higher-temperature parts of computing systems. In this work, we present a conceptual design of energy efficient interface and results in fabricating such HTS leads. Initial calculations have shown that the microstrip line cable geometry for typical materials employed in production of HTS thin films can be a two-layered film for which the two layers of about 10 cm long are separated by an insulation layer with as low permittivity as possible. With this architecture in mind, the pulsed laser deposition process has been designed in a 45 cm diameter vacuum chamber to incorporate an oscillating sample holder with homogeneous substrate heating up to 900°C, while the laser plume is fixed. This design has allowed us to produce 200 nm to 500 nm thick, 7 cm to 10 cm long YBa2Cu3O7 thin films with the homogeneous critical temperature (Tc) of about 90 K. The critical current density (Jc) of the short samples obtained from the long sample is of (2 ± 1) × 1010 A/m2. Lines of 3-100 μm wide have been successfully patterned along the length of the samples in order to directly measure the Tc and Jc values over the entire length of the samples, as well as to attempt the structuring of multichannel data lead prototype.

  8. Direct angle resolved photoelectron spectroscopy (DARPES) on high-Tc films: doping, strains, Fermi surface topology and superconductivity

    Science.gov (United States)

    Pavuna, D.; Ariosa, D.; Cancellieri, C.; Cloetta, D.; Abrecht, M.

    2008-03-01

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-Tc films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La2-xSrxCuO4 (LSCO) thin films we double Tc from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while Tc is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the 2D character of the dispersion and increases Tc, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO2 planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  9. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-15

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.

  10. Magnetic Interactions in Strained Multiferroic EuTiO3 Thin Films

    Science.gov (United States)

    Freeland, J. W.; Ke, X.; Lee, J. H.; Ryan, P.; Kim, J. W.; Fennie, C. J.; Schiffer, P.; Schlom, D. G.

    2010-03-01

    Bulk EuTiO3 possesses a paraelectric and antiferromagnetic ground but it has been predicted that under tensile strain the system would show spontaneous ferromagnetic and ferroelectric order[1]. Here we present a study of the magnetic interactions in thin films of EuTiO3 grown on SrTiO3(001) and DyScO3(110) substrates by reactive molecular-beam epitaxy (MBE). Using magnetometry, x-ray magnetic circular dichroism, and magneto-capacitance, there clear evidence of ferromagnetic order under tensile strain while the unstrained films are anti-ferromagnetic. These results will be discussed in the context of the predicted behavior. Work at Argonne, including the Advanced Photon, is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. [1] C.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97, 267602 (2006)].

  11. A thin-film aluminum strain gauges array in a flexible gastrointestinal catheter for pressure measurements

    Science.gov (United States)

    Sousa, P. J.; Silva, L. R.; Pinto, V. C.; Goncalves, L. M.; Minas, G.

    2016-08-01

    This paper presents an innovative approach to measure the pressure patterns associated with the motility and peristaltic movements in the upper gastrointestinal tract. This approach is based on inexpensive and easy to fabricate thin-film aluminum strain gauge pressure sensors using a flexible polyimide film (Kapton) as substrate and SU-8 structural support. These sensors are fabricated using well-established and standard photolithographic and wet etching techniques. Each sensor has a 3.4 mm2 area, allowing a fabrication process with a high level of sensors integration (four sensors in 1.7 cm), which is suitable for placing them in a single catheter. These strain gauges bend when pressure is applied and, consequently, their electrical resistance is changed. The fabricated sensors feature an almost linear response (R 2  =  0.9945) and an overall sensitivity of 6.4 mV mmHg-1. Their readout and control electronics were developed in a flexible Kapton ribbon cable and, together with the sensors, bonded and wrapped around a catheter-like structure. The sequential acquisition of the different signals is carried by a microcontroller with a 10 bit ADC at a sample rate of 250 Hz per-1 sensor. The signals are presented in a user friendly interface developed using the integrated development environment software, QtCreator IDE, for better visualization by physicians.

  12. Strain engineering for controlled growth of thin-film FeNi L10

    Science.gov (United States)

    Frisk, Andreas; Hase, Thomas P. A.; Svedlindh, Peter; Johansson, Erik; Andersson, Gabriella

    2017-03-01

    FeNi thin films in the L10 phase were successfully grown by magnetron sputtering on HF-etched Si≤ft(0 0 1\\right) substrates on Cu/Cu100‑x Ni x buffers. The strain of the FeNi layer, {{(c/a)}\\text{FeNi}} , was varied in a controlled manner by changing the Ni content of the Cu100‑x Ni x buffer layer from x=0~\\text{at}. % to x=90~\\text{at}. % , which influenced the common in-plane lattice parameter of the CuNi and FeNi layers. The presence of the L10 phase was confirmed by resonant x-ray diffraction measurements at various positions in reciprocal space. The uniaxial magnetocrystalline anisotropy energy {{K}\\text{U}} is observed to be smaller (around 0.35 MJ m‑3) than predicted for a perfect FeNi L10 sample, but it is larger than for previously studied films. No notable variation in {{K}\\text{U}} with strain state {{(c/a)}\\text{FeNi}} is observed in the range achieved (0.99≲ {{(c/a)}\\text{FeNi}}≲ 1.02 ), which is in agreement with theoretical predictions.

  13. Strain-induced perpendicular magnetic anisotropy in L a2CoMn O6 -ɛ thin films and its dependence on film thickness

    Science.gov (United States)

    Galceran, Regina; López-Mir, Laura; Bozzo, Bernat; Cisneros-Fernández, José; Santiso, José; Balcells, Lluís; Frontera, Carlos; Martínez, Benjamín

    2016-04-01

    Ferromagnetic insulating L a2CoMn O6 -ɛ (LCMO) epitaxial thin films grown on top of SrTi O3 (001) substrates present a strong magnetic anisotropy favoring the out-of-plane (OP) orientation of the magnetization with a large anisotropy field (˜70 kOe for film thickness of about 15 nm). Diminishing oxygen off-stoichiometry of the film enhances the anisotropy. We attribute this to the concomitant shrinkage of the OP cell parameter and to the increasing of the tensile strain of the films. Consistently, LCMO films grown on (LaAlO3)0.3(Sr2AlTaO6) 0.7 and LaAl O3 substrates (with a larger OP lattice parameter and compressive stress) display in-plane (IP) magnetic anisotropy. Thus, we link the strong magnetic anisotropy observed in LCMO to the film stress: tensile strain favors perpendicular anisotropy, and compressive stress favors IP anisotropy. We also report on the thickness dependence of the magnetic properties. Perpendicular anisotropy, saturation magnetization, and Curie temperature are maintained over a large range of film thickness.

  14. Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natural Rubber

    Science.gov (United States)

    Tadakaluru, Sreenivasulu; Thongsuwan, Wiradej; Singjai, Pisith

    2014-01-01

    Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ∼5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ∼50 and ∼120 times greater than those of conventional metallic strain sensors. PMID:24399158

  15. Room-temperature Ferroelectricity in Uniaxially Strained Single-crystalline SrTiO3 Freestanding Films

    Science.gov (United States)

    Lu, Di; Crossley, Sam; Yoon, Hyeok; Hikita, Yasuyuki; Hwang, Harold

    Single crystal pure bulk SrTiO3 (STO) is an incipient ferroelectric whose dielectric permittivity rises to high values as temperature is reduced, but remains paraelectric to the lowest observable temperatures. Ferroelectric phases of STO may be stabilized via doping and strain, whose common effect is to split the spatial free energy well of ionic displacements. With epitaxial strain of the order of a few percent, Curie temperatures TC ~293 K have been observed. By exploiting a highly novel process to exfoliate epitaxial oxide films deposited by pulsed laser deposition, we have isolated sub-100 nm-thick freestanding films of STO which are readily manipulated and mechanically strained to high levels. Measurements of the in-plane dielectric properties for various applied strains reveal a continuously tunable ferroelectric TC. A two-order-of-magnitude enhanced dielectric response is displayed by a 1.2%-strained sample at TC ~290 K, as compared with the same sample unstrained at the same temperature. This is consistent with a phenomenological Ginzburg-Landau model, and previous studies on anchored films. The functional properties of strained STO have generated intense interest and debate, and have been suggested for device applications due to e.g. high voltage-tunable dielectric properties. Our work exhibits strain as a continuously variable experimental degree of freedom, which can induce numerous functional effects.

  16. Flexible strain sensors with high performance based on metallic glass thin film

    Science.gov (United States)

    Xian, H. J.; Cao, C. R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H.

    2017-09-01

    Searching strain sensitive materials for electronic skin is of crucial significance because of the restrictions of current materials such as poor electrical conductivity, large energy consumption, complex manufacturing process, and high cost. Here, we report a flexible strain sensor based on the Zr55Cu30Ni5Al10 metallic glass thin film which we name metallic glass skin. The metallic glass skin, synthesized by ion beam deposition, exhibits piezoresistance effects with a gauge factor of around 2.86, a large detectable strain range (˜1% or 180° bending angle), and good conductivity. Compared to other e-skin materials, the temperature coefficient of resistance of the metallic glass skin is extremely low (9.04 × 10-6 K-1), which is essential for the reduction in thermal drift. In addition, the metallic glass skin exhibits distinct antibacterial behavior desired for medical applications, also excellent reproducibility and repeatability (over 1000 times), nearly perfect linearity, low manufacturing cost, and negligible energy consumption, all of which are required for electronic skin for practical applications.

  17. Effect of strain on the critical current density of Bi-2223 thick films sandwiched between Ag sheets

    Energy Technology Data Exchange (ETDEWEB)

    Jia, J.H. (Academia Sinica, Hefei (China). Inst. of Solid State Physics); Kong, Q.P. (Academia Sinica, Hefei (China). Inst. of Solid State Physics); Wang, S.X. (Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics); Han, H.M. (Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics)

    1994-08-16

    The tapes of (Bi, Pb)[sub 2]Sr[sub 2]Ca[sub 2]Cu[sub 3]O[sub x] (Bi-2223) thick film sandwiched between Ag sheets are known to have very high J[sub c]. In this note, the stress-strain behaviour and the strain dependence of critical current density of the Ag/Bi-2223/Ag tapes are investigated. The microstructure of superconducting thick films subjected to various amounts of deformation was examined with a scanning electron microscope (SEM). (orig.)

  18. Structural control of magnetic anisotropy in a strain-driven multiferroic EuTiO3 thin film

    Science.gov (United States)

    Ke, X.; Birol, T.; Misra, R.; Lee, J.-H.; Kirby, B. J.; Schlom, D. G.; Fennie, C. J.; Freeland, J. W.

    2013-09-01

    Octahedral distortion plays a key role in engineering the physical properties of heterostructures composed of perovskite oxides. We observe a strong in-plane uniaxial magnetic anisotropy in a strain-enabled multiferroic EuTiO3 thin film epitaxially grown on a (110)o DyScO3 substrate. First-principles calculations show that the magnetic anisotropy is closely correlated with the uniaxial TiO6 octahedral tilting and the ferroelectric polarization of the film, indicating potential strong magnetoelectric coupling in the strain-engineered multiferroic system.

  19. Band gap tuning of epitaxial SrTiO{sub 3-δ}/Si(001) thin films through strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cottier, Ryan J.; Steinle, Nathan A.; Currie, Daniel A.; Theodoropoulou, Nikoleta, E-mail: ntheo@txstate.edu [Physics Department, Texas State University, San Marcos, Texas 78666 (United States)

    2015-11-30

    We investigate the effect of strain and oxygen vacancies (V{sub O}) on the crystal and optical properties of oxygen deficient, ultra-thin (4–30 nm) films of SrTiO{sub 3-δ} (STO) grown heteroepitaxially on p-Si(001) substrates by molecular beam epitaxy. We demonstrate that STO band gap tuning can be achieved through strain engineering and show that the energy shift of the direct energy gap transition of SrTiO{sub 3-δ}/Si films has a quantifiable dimensional and doping dependence that correlates well with the changes in crystal structure.

  20. Ferromagnetic response of multiferroic TbMnO{sub 3} films mediated by epitaxial strain and chemical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J.; Morán, O., E-mail: omoranc@unal.edu.co [Universidad Nacional de Colombia, Campus Medellín, Departamento de Física, Laboratorio de Materiales Cerámicos y Vítreos, A.A. 568, Medellín Colombia (Colombia); Astudillo, A.; Bolaños, G. [Low Temperature Laboratory, Department of Physics, University of Cauca, Calle 5 No. 4-70, Popayán (Colombia); Arnache, O. [Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A. 1226, Medellín (Colombia)

    2014-05-07

    High quality Tb{sub 1−x}Al{sub x}MnO{sub 3} (x = 0, 0.3) films have been grown under different values of compressive/tensile strain using (001)-oriented SrTiO{sub 3} and MgO substrates. The films were grown by means of rf sputtering at substrate temperature of 800  °C. X-ray diffraction analysis shows that films are single phase, preferentially oriented in the (111) and (122) directions for films deposited on SrTiO{sub 3} and MgO substrates, respectively. Although the TbMnO{sub 3} target shows antiferromagnetic order, the films deposited on both substrates show weak ferromagnetic phase at low temperature coexisting with the antiferromagnetic phase. The introduction of Al in the films clearly enhances their ferromagnetic behavior, improving the magnetic performance of this material. Indeed, M(H) measurements at 5 K show a well-defined hysteresis for films grown on both substrates. However, a stronger magnetic signal (larger values of remanence and coercive field) is observed for films deposited on MgO substrates. The chemical pressure generated by Al doping together with the substrate-induced strain seem to modify the subtle competition between magnetic interactions in the system. It is speculated that such modification could lead to a non-collinear magnetic state that may be tuned by strain modifications. This may be performed by varying the thickness of the films and/or considering other substrate materials.

  1. Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy.

    Science.gov (United States)

    Liu, Yuanming; Lam, Kwok Ho; Kirk Shung, K; Li, Jiangyu; Zhou, Qifa

    2013-05-14

    Conventional composite sol-gel method has been modified to enhance the piezoelectric performance of ceramic thick films. Lead zirconate titanate (PZT) and lead magnesium niobate-lead titanate (PMN-PT) thick films were fabricated using the modified sol-gel method for ultrasonic transducer applications. In this work, piezoresponse force microscopy was employed to evaluate the piezoelectric characteristics of PZT and PMN-PT composite sol-gel thick films. The images of the piezoelectric response and the strain-electric field hysteresis loop behavior were measured. The effective piezoelectric coefficient (d33,eff) of the films was determined from the measured loop data. It was found that the effective local piezoelectric coefficient of both PZT and PMN-PT composite films is comparable to that of their bulk ceramics. The promising results suggest that the modified composite sol-gel method is a promising way to prepare the high-quality, crack-free ceramic thick films.

  2. FOREWORD: Focus on innovation in ceramics research in East Asia Focus on innovation in ceramics research in East Asia

    Science.gov (United States)

    Kato, Akio; Hishita, Shunichi; Osada, Minoru; Haneda, Hajime

    2010-10-01

    Ceramics, as broadly defined, include all materials other than organic substances and metals, either crystalline or amorphous. They have been used by humans since early history and have contributed considerably to improving the quality of our life. In most cases, however, high-temperature treatment is necessary to prepare ceramics. This burdens the environment and there is therefore a great need for new ceramics processing methods. Recent technologically advanced ceramics are often composed of nanocrystallites, which have great potential for innovation in terms of exploring practical applications of nanomaterials and, consequently, reducing the environmental load. The ceramics industry had long flourished in Asia, particularly in East Asia, and even today, this region is leading the development of related materials. In line with these traditions, Japanese and Korean ceramics societies have been co-sponsoring seminars on ceramics since the 1980s. Having become more international in scope and context, a series of these seminars is now known as the International Japan-Korea Seminar on Ceramics. This focus issue contains eight key articles presented at the 26th International Japan-Korea Seminar on Ceramics held on 24-26 November 2010 at the Tsukuba International Congress Center. In particular, Fabbri et al review electrode materials for protonic solid-oxide fuel cells, and Kamiya et al outline the present situation and future prospects for transparent transistors, particularly those based on amorphous In-Ga-Zn-O films. Eitel et al discuss the progress in engineering high-strain lead-free piezoelectric ceramics. Kim and Kumar review a simple processing method for producing porous ceramics using polysiloxane precursors, Kamiya and Iijima focus on surface modification and characterization of nanomaterials, and Wan et al briefly review the strategy of reducing lattice thermal conductivity of thermoelectric materials and propose new materials for thermoelectric devices

  3. Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery

    Directory of Open Access Journals (Sweden)

    Kevin J. Maloney

    2013-08-01

    Full Text Available Ordered periodic microlattices with densities from 0.5 mg/cm3 to 500 mg/cm3 are fabricated by depositing various thin film materials (Au, Cu, Ni, SiO2, poly(C8H4F4 onto sacrificial polymer lattice templates. Young's modulus and strength are measured in compression and the density scaling is determined. At low relative densities, recovery from compressive strains of 50% and higher is observed, independent of lattice material. An analytical model is shown to accurately predict the transition between recoverable “pseudo-superelastic” and irrecoverable plastic deformation for all constituent materials. These materials are of interest for energy storage applications, deployable structures, and for acoustic, shock, and vibration damping.

  4. Oxygen vacancies in strained SrTiO3 thin films: Formation enthalpy and manipulation

    Science.gov (United States)

    Iglesias, L.; Sarantopoulos, Alexandros; Magén, C.; Rivadulla, F.

    2017-04-01

    We report the enthalpy of oxygen vacancy formation in thin films of electron-doped SrTiO3, under different degrees of epitaxial stress. We demonstrate that both compressive and tensile strain decrease this energy at a very similar rate and promote the formation of stable doubly ionized oxygen vacancies. Moreover, we also show that unintentional cationic vacancies introduced under typical growth conditions, produce a characteristic rotation pattern of TiO6 octahedra. The local concentration of oxygen vacancies can be modulated by an electric field with an AFM tip, changing not only the local electrical potential but also producing a nonvolatile mechanical response whose sign (up/down) can be reversed by the electric field.

  5. Effect of Thick Film Firing Conditions on the Solderability and Structure of Au-Pt-Pd Conductor for Low-Temperature, Co-Fired Ceramic Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, C.L; Vianco, P.T.

    1999-03-16

    Low-temperature, co-fired ceramics (LTCC) are the substrate material-of-choice for a growing number of multi-chip module (MCM) applications. Unlike the longer-standing hybrid microcircuit technology based upon alumina substrates, the manufacturability and reliability of thick film solder joints on LTCC substrates have not been widely studied. An investigation was undertaken to fully characterize such solder joints. A surface mount test vehicle with Daisy chain electrical connections was designed and built with Dupont{trademark} 951 tape. The Dupont{trademark} 4569 thick film ink (Au76-Pt21 -Pd3 wt.%) was used to establish the surface conductor pattern. The conductor pattern was fired onto the LTCC substrate in a matrix of process conditions that included: (1) double versus triple prints, (2) dielectric frame versus no frame, and (3) three firing temperatures (800 C, 875 C and 950 C). Pads were examined from the test vehicles. The porosity of the thick film layers was measured using quantitative image analysis in both the transverse and short transverse directions. A significant dependence on firing temperature was recorded for porosity. Solder paste comprised of Sn63-Pb37 powder with an RMA flux was screen printed onto the circuit boards. The appropriate components, which included chip capacitors of sizes 0805 up to 2225 and 50 mil pitch, leadless ceramic chip carriers having sizes of 16 I/O to 68 I/O, were then placed on the circuit boards. The test vehicles were oven reflowed under a N{sub 2} atmosphere. The solderability of the thick film pads was also observed to be sensitive to the firing conditions. Solderability appeared to degrade by the added processing steps needed for the triple print and dielectric window depositions. However, the primary factor in solderability was the firing temperature. Solderability was poorer when the firing temperature was higher.

  6. Structural properties of strained YBa2Cu3O6+x superconducting films grown by pulsed laser deposition

    Science.gov (United States)

    Ariosa, Daniel; Abrecht, M.; Pavuna, Davor; Onellion, Marshall

    2000-09-01

    In YBa2Cu3O6+x compound the tetragonal to orthorhombic transition occurs around x equals 0.3, followed by a continuum variation of lattice parameters. Hence both, the structural and superconducting properties, depend upon the oxygen content in CuO chains. Conversely, the epitaxial stress, exerted by the substrate on YBCO films, modified the lattice parameters influencing the oxygen stability in the chains. The understanding of this mechanism is essential when growing epitaxial films for in- situ photoemission studies as well as for tunneling experiments, since the oxygen stability up to the top surface unit-cell is a central issue. We have studied this effect on c-axis oriented YBCO films grown by laser ablation on (001) STO single crystals. Accurate x-ray diffraction analysis of thick films (t GRT 500 angstrom) indicates the presence of two distinct layers, one strained and the other relaxed. Detailed analysis shows that the relaxed layer is as well oxidized as bulk samples, while the strained one is oxygen deficient. Furthermore, despite an oxygen content of about x equals 0.65, the strained layer is in the tetragonal phase (in bulk, the tetragonal phase exists for x < 0.3). We discuss these results in terms of competition between the chemical pressure induced by oxygen inclusion in the chains, and the uniaxial stress within the film.

  7. Composition and misfit strain dependence of electrocaloric effect of Pb1-xSrxTiO3 thin films

    Institute of Scientific and Technical Information of China (English)

    Qiu Jian-Hua; Ding Jian-Ning; Yuan Ning-Yi; Wang Xiu-Qin

    2013-01-01

    A Landau-Devonshire thermodynamic theory is employed to investigate the effects of composition and misfit strain on the room-temperature electrocaloric effect of epitaxial Pb1-xSrxTiO3 thin films.The “temperature-misfit strain” phase diagrams with the Sr composition x of 0.1,0.3,and 0.5 are constructed.The introduction of Sr composition reduces the Curie temperature greatly,and enhances the electrocaloric effect.Moreover,the electrocaloric effect largely depends on the misfit strain.Therefore,the Sr composition and the misfit strain can be controlled to obtain the giant room-temperature electrocaloric effect.

  8. Non-coherent growth patches in pseudomorphic films: Unusual strain relief in electrodeposited Co on Cu(001)

    DEFF Research Database (Denmark)

    Schindler, W.; Koop, T.; Kazimirov, A.

    2000-01-01

    The critical thickness for pseudomorphic Co growth on Cu(001) is found to be independent of the onset of lattice constant relaxation. The pseudomorphic film relieves strain by local formation of orthomorphic growth patches within the pseudomorphic matrix. This unusual relaxation mechanism of elec...

  9. Flexible Quasi-Two-Dimensional CoFe2O4 Epitaxial Thin Films for Continuous Strain Tuning of Magnetic Properties.

    Science.gov (United States)

    Zhang, Yong; Shen, Lvkang; Liu, Ming; Li, Xin; Lu, Xiaoli; Lu, Lu; Ma, Chunrui; You, Caiyin; Chen, Aiping; Huang, Chuanwei; Chen, Lang; Alexe, Marin; Jia, Chun-Lin

    2017-08-22

    Epitaxial thin films of CoFe2O4 (CFO) have successfully been transferred from a SrTiO3 substrate onto a flexible polyimide substrate. By bending the flexible polyimide, different levels of uniaxial strain are continuously introduced into the CFO epitaxial thin films. Unlike traditional epitaxial strain induced by substrates, the strain from bending will not suffer from critical thickness limitation, crystalline quality variation, and substrate clamping, and more importantly, it provides a more intrinsic and reliable way to study strain-controlled behaviors in functional oxide systems. It is found that both the saturation magnetization and coercivity of the transferred films can be changed over the bending status and show a high accord with the movement of the curvature bending radius of the polyimide substrate. This reveals that the mechanical strain plays a critical role in tuning the magnetic properties of CFO thin films parallel and perpendicular to the film plane direction.

  10. Direct angle resolved photoelectron spectroscopy (DARPES) on high-T{sub c} films: doping, strains, Fermi surface topology and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Pavuna, D; Ariosa, D; Cancellieri, C; Cloetta, D; Abrecht, M [Institute of Physics of Complex Matter, FSB, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: davor.pavuna@epfl.ch

    2008-03-15

    Since 1997 we systematically perform Direct ARPES ( = DARPES) on in-situ grown, non-cleaved, ultra-thin (<25nm) cuprate films. Specifically, we probe low energy electronic structure and properties of high-T{sub c} films under different degree of epitaxial (compressive vs tensile) strain. In overdoped in-plane compressed La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) thin films we double T{sub c} from 20K to 40K, yet the Fermi surface (FS) remains essentially 2-dimensional (2D). In contrast, tensile strained films show 3-dimensional (3D) dispersion, while T{sub c} is drastically reduced. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO{sub 2} plane, enhances the 2D character of the dispersion and increases T{sub c}, while the tensile strain seems to act exactly in the opposite direction and the resulting dispersion is 3D. We have the FS topology for both cases. As the actual lattice of cuprates is 'Napoleon-cake' -like i.e. rigid CuO{sub 2} planes alternate with softer 'reservoir' (that strains distort differently) our results tend to rule out 2D rigid lattice mean field models. Finally, we briefly discuss recent successful determination of the FS topology from the observed wavevector quantization by DARPES in cuprate films thinner than 18 units cells (<24nm). Such an approach is of broader interest as it can be extended to other similar confined (ultra-thin) functional oxide systems.

  11. Electric field-induced giant strain and photoluminescence-enhancement effect in rare-earth modified lead-free piezoelectric ceramics.

    Science.gov (United States)

    Yao, Qirong; Wang, Feifei; Xu, Feng; Leung, Chung Ming; Wang, Tao; Tang, Yanxue; Ye, Xiang; Xie, Yiqun; Sun, Dazhi; Shi, Wangzhou

    2015-03-11

    In this work, an electric field-induced giant strain response and excellent photoluminescence-enhancement effect was obtained in a rare-earth ion modified lead-free piezoelectric system. Pr(3+)-modified 0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 ceramics were designed and fabricated by a conventional fabrication process. The ferroelectric, dielectric, piezoelectric, and photoluminescence performances were systematically studied, and a schematic phase diagram was constructed. It was found the Pr(3+) substitution induced a transition from ferroelectric a long-range order structure to a relaxor pseudocubic phase with short-range coherence structure. Around a critical composition of 0.8 mol % Pr(3+), a giant reversible strain of ∼0.43% with a normalized strain Smax/Emax of up to 770 pm/V was obtained at ∼5 kV/mm. Furthermore, the in situ electric field enhanced the photoluminescence intensity by ∼40% in the proposed system. These findings have great potential for actuator and multifunctional device applications, which may also open up a range of new applications.

  12. Strain Driven Phase Decomposition in Ion-Beam Sputtered Pr1−XCaXMnO3 Films

    Directory of Open Access Journals (Sweden)

    Benedikt Ifland

    2015-01-01

    Full Text Available The deposition of heteroepitaxial thin films on single crystalline substrates by means of physical deposition methods is commonly accompanied by mechanical strain due to lattice mismatch and defect generation. Here we present a detailed analysis of the influence of strain on the Mn solubility of Pr1-XCaXMnO3 thin films prepared by ion-beam sputtering. Combining results from X-ray diffraction, transmission electron microscopy and in situ hot-stage stress measurements, we give strong evidence that large tensile strain during deposition limits the Mn solubility range of the Perovskite phase to near-stoichiometric composition. Mn excess gives rise to MnOz precipitates and the precipitation seems to represent a stress relaxation path. With respect to size and density of the precipitates, the relaxation process can be affected by the choice of substrate and the deposition parameters, that is, the deposition temperature and the used sputter gas.

  13. Strain dependent magnetocaloric effect in La0.67Sr0.33MnO3 thin-films

    Directory of Open Access Journals (Sweden)

    V. Suresh Kumar

    2013-05-01

    Full Text Available The strain dependent magnetocaloric properties of La0.67Sr0.33MnO3 thin films deposited on three different substrates (001 LaAlO3 (LAO, (001 SrTiO3 (STO, and (001 La0.3Sr0.7Al0.65Ta0.35O9 (LSAT have been investigated under low magnetic fields and around magnetic phase transition temperatures. Compared to bulk samples, we observe a remarkable decrease in the ferromagnetic transition temperature that is close to room temperature, closely matched isothermal magnetic entropy change and relative cooling power values in tensile strained La0.67Sr0.33MnO3 films. The epitaxial strain plays a significant role in tuning the peak position of isothermal magnetic entropy change towards room temperature with improved cooling capacity.

  14. Three-dimensional dispersion induced by extreme tensile strain in La2-xSrxCuO4 films

    Science.gov (United States)

    Cloetta, D.; Ariosa, D.; Cancellieri, C.; Abrecht, M.; Mitrovic, S.; Pavuna, D.

    2006-07-01

    The electronic band structure probed by angle-resolved photoemission spectroscopy on thin epitaxial La2-xSrxCuO4 films under extreme tensile strain shows anomalous features compatible with c -axis dispersion. This result is in striking contrast with the usual quasi-two-dimensional (2D) dispersion observed up to now in most superconducting cuprates, including relaxed and compressively strained La2-xSrxCuO4 films grown under the same conditions. The data were analyzed using a 3D tight-binding dispersion for a body-centered-tetragonal lattice. We relate the enhancement of the c -axis dispersion to the significant displacement of the apical oxygen induced by epitaxial strain.

  15. Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2-host by Pb-implantation: XPS-and-DFT characterization

    Science.gov (United States)

    Zatsepin, D. A.; Boukhvalov, D. W.; Gavrilov, N. V.; Zatsepin, A. F.; Shur, V. Ya.; Esin, A. A.; Kim, S. S.; Kurmaev, E. Z.

    2017-04-01

    The results of combined experimental and theoretical study of substitutional and clustering effects in the structure of Pb-doped TiO2-hosts (bulk ceramics and thin-film morphologies) are presented. Pb-doping of the bulk and thin-film titanium dioxide was made with the help of pulsed ion-implantation without posterior tempering (Electronic Structure Modulation Mode). The X-ray photoelectron spectroscopy (XPS) qualification of core-levels and valence bands and Density-Functional Theory (DFT) calculations were employed in order to study the yielded electronic structure of Pb-ion modulated TiO2 host-matrices. The combined XPS-and-DFT analysis has agreed definitely with the scenario of the implantation stimulated appearance of PbO-like structures in the bulk morphology of TiO2:Pb, whereas in thin-film morphology the PbO2-like structure becomes dominating, essentially contributing weak O/Pb bonding (PbxOy defect clusters). The crucial role of the oxygen hollow-type vacancies for the process of Pb-impurity "insertion" into the structure of bulk TiO2 was pointed out employing DFT-based theoretical background. Both experiment and theory established clearly the final electronic structure re-arrangement of the bulk and thin-film morphologies of TiO2 because of the Pb-modulated deformation and shift of the initial Valence Base-Band Width about 1 eV up.

  16. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Directory of Open Access Journals (Sweden)

    Yali Xie

    2017-05-01

    Full Text Available We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  17. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Science.gov (United States)

    Xie, Yali; Zhan, Qingfeng; Shang, Tian; Yang, Huali; Wang, Baomin; Tang, Jin; Li, Run-Wei

    2017-05-01

    We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO) and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO) displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  18. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  19. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  20. Structural and electrical characterization of La{sub 0.72}Ca{sub 0.28}MnO{sub 3} ceramic and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ma Ji [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Theingi, Mya [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Department of Chemistry, University of Yangon, Yangon 11181 (Myanmar); Zhang Hui; Ding Xuan [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chen Qingming, E-mail: chqm99@yahoo.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer La{sub 0.72}Ca{sub 0.28}MnO{sub 3} films were prepared on flat and 15 Degree-Sign vicinal cut LaAlO{sub 3} substrate by pulsed laser deposition method. Black-Right-Pointing-Pointer The target used was fabricated with powders synthesized through sol-gel process. Black-Right-Pointing-Pointer Rocking curve and atomic force microscope images demonstrate the high crystalline quality. Black-Right-Pointing-Pointer The film deposited on tilted substrate shows a more uniform grain size. Black-Right-Pointing-Pointer The film deposited on tilted substrate shows a larger temperature coefficient of resistance value (11.3%). - Abstract: La{sub 1-x}Ca{sub x}MnO{sub 3} bulk ceramic with Ca content of 0.28 was sintered from nano-powders synthesized by sol-gel method. Epitaxial thin films of La{sub 0.72}Ca{sub 0.28}MnO{sub 3} have been prepared on both untilted and 15 Degree-Sign vicinal cut LaAlO{sub 3} (0 0 1) substrates by pulsed laser deposition technique. The structure and surface morphology of LCMO samples (powders, target and films) were investigated by X-ray diffraction, scanning electron microscope and atom force microscope. The temperature dependence of the resistance was also studied. Large temperature coefficient of resistance value of 11.3% at 234.1 K was obtained for the film grown on titled substrate.

  1. Effect of firing conditions on thick film microstructure and solder joint strength for low-temperature, co-fired ceramic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, C.L.; Vianco, P.T.; Rejent, J.A.

    2000-01-04

    Low-temperature, co-fired ceramics (LTCC) are the substrate material-of-choice for a growing number of multi-chip module (MCM) applications. Unlike the longer-standing hybrid microcircuit technology based upon alumina substrates, the manufacturability and reliability of thick film solder joints on LTCC substrates have not been widely studied. An investigation was undertaken to fully characterize solder joints on these substrates. A surface mount test vehicle with Daisy chain electrical connections was designed and built with Dupont{trademark} 951 tape. The Dupont{trademark} 4569 thick film ink (Au76-Pt21-Pd3 wt.%) was used to establish the surface conductor pattern. The conductor pattern was fired onto the LTCC substrate in a matrix of processing conditions that included: (1) double versus triple prints, (2) dielectric window versus no window, and (3) three firing temperatures (800 C, 875 C and 950 C). Sn63-Pb37 solder paste with an RMA flux was screen printed onto the circuit boards. The appropriate packages, which included five sizes of chip capacitors and four sizes of leadless ceramic chip carriers, were placed on the circuit boards. The test vehicles were oven reflowed under a N{sub 2} atmosphere. Nonsoldered pads were removed from the test vehicles and the porosity of their thick film layers was measured using quantitative image analysis in both the transverse and short transverse directions. A significant dependence on firing temperature was recorded for porosity. The double printed substrates without a dielectric window revealed a thick film porosity of 31.2% at 800 C, 26.2% at 875 C and 20.4% at 950 C. In contrast, the thick film porosity of the triple printed substrates with a dielectric window is 24.1% at 800 C, 23.2% at 875 C and 17.6% at 950 C. These observations were compared with the shear strength of the as-fabricated chip capacitor solder joints to determine the effect of firing conditions on solder joint integrity. The denser films from the higher

  2. Magnetism and magnetotransport of strained epitaxial La{sub 1-x}Sr{sub x}CoO{sub 3} (x = 0.18; 0.3) films

    Energy Technology Data Exchange (ETDEWEB)

    Bilani-Zeneli, Orkidia; Herklotz, Andreas; Rata, Diana; Boldyreva, Ksenia; Schultz, Ludwig; Kozlova, Nadja; Doerr, Kathrin [IFW Dresden, Postfach 270116, 01171 Dresden (Germany)

    2009-07-01

    Perovskite cobaltites La{sub 1-x}A{sub x}CoO{sub 3} (A=Sr,Ca) have been investigated in bulk form for the temperature- and pressure-dependent spin state of Co ions for decades. Magnetic studies of epitaxially grown films are rare, but recent work on LaCoO{sub 3} has indicated the potential for strain-controlled magnetism. In this work, films of La{sub 1-x}Sr{sub x}CoO{sub 3} (x=0.18;0.3) have been grown epitaxially on substrates of various lattice mismatch (SrTiO{sub 3}, LaAlO{sub 3}, LSAT, PMN-PT) by off-axis pulsed laser deposition. Film lattice parameters reveal that large strains can be maintained up to thicknesses beyond 60 nm. The films (x=0.18;0.3) are ferromagnetic with huge coercive fields indicating large magnetic anisotropy. The effect of biaxial strain on the Curie temperature and the magnetization has been derived from statically strained films and from reversibly strained films on piezoelectric PMN-PT(001). Interestingly, the strain strongly affects the electrical conduction: tensile strain leads to reduced conductivity and a strain-induced insulator state (x=0.3). Data on strain-dependent resistance and magnetoresistance in magnetic fields up to 50 T are discussed.

  3. Substrate-induced strain effects on Pr_{0.6}Ca_{0.4}MnO_{3} films

    OpenAIRE

    2003-01-01

    We report the characterization of the crystal structure, low-temperature charge and orbital ordering, transport, and magnetization of Pr_{0.6}Ca_{0.4}MnO_{3} films grown on LaAlO_{3}, NdGaO_{3}, and SrTiO_{3} substrates, which provide compressive (LaAlO_{3}) and tensile (NdGaO_{3} and SrTiO_{3}) strain. The films are observed to exhibit different crystallographic symmetries than the bulk material, and the low-temperature ordering is found to be more robust under compressive-- as opposed to te...

  4. Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films

    Science.gov (United States)

    Zarifi, M.; Kameli, P.; Ehsani, M. H.; Ahmadvand, H.; Salamati, H.

    2016-12-01

    The epitaxial strain can considerably modify the physical properties of thin films compared to the bulk. This paper reports the effects of substrate-induced strain on La0.5Ca0.5MnO3 (LCMO) thin films, grown on (100) SrTiO3 (STO) and LaAlO3 (LAO) substrates by pulsed laser deposition technique. Transport and magnetic properties were found to be strongly dependent on strain type. It is also shown that compressive (tensile) strain leads to the increase (decrease) in the magnetization of the films. Moreover, it was observed that all LCMO films deposited on both LAO and STO substrates behave as an insulator, but LCMO/LAO thin films with compressive strain have lower resistivity than LCMO/STO thin films with tensile strain. Applying magnetic field to LCMO/STO thin films with thickness of 25 and 50 nm leads to very small change in the resistivity, while the effects of magnetic field on the sample with thickness of 125 nm leads to an insulator-metal transition. For LCMO/LAO thin films, the magnetic field has a strong impact on the resistivity of samples. The results show that the magnetoresistance (MR) is enhanced by increasing film thickness for LCMO/LAO samples, due to the relatively stronger phase separation. For LCMO/STO thin films MR is drastically decreased by reduction of film thickness, which is attributed to the enhancement of the charge-orbital order (CO-O) accompanying the complex spin order (the so-called CE type). The changes of the antiferromagnetic structure from the CE to C type and the enhancement of the CE type could be attributed to the in-plane compressive and tensile strain, respectively.

  5. Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films

    Indian Academy of Sciences (India)

    C Dufour; K Dumesnil; Ph Mangin

    2006-07-01

    Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.

  6. Thermal stability and relaxation mechanisms in compressively strained Ge0.94Sn0.06 thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Fleischmann, C.; Lieten, R. R.; Hermann, P.; Hönicke, P.; Beckhoff, B.; Seidel, F.; Richard, O.; Bender, H.; Shimura, Y.; Zaima, S.; Uchida, N.; Temst, K.; Vandervorst, W.; Vantomme, A.

    2016-08-01

    Strained Ge1-xSnx thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge0.94Sn0.06 films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge0.94Sn0.06 films grown by molecular beam epitaxy.

  7. Chemical deposition of La0.7Ca0.3MnO3±δ films on ceramic substrates

    Directory of Open Access Journals (Sweden)

    Cássio Morilla-Santos

    2011-01-01

    Full Text Available In this paper, it is reported the growth of La0.7Ca0.3MnO3±δ films using a chemical solution deposition method (CSD by the spin-coating technique. Such solution was prepared through a route based on modified polymeric precursor method. Spin-coating deposition on different ceramic substrates was performed and analyzed by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. The magnetic response of the prepared specimens was studied using a SQUID magnetometer. The obtained results indicated uniform deposition on SrTiO3 and LaAlO3 substrates with similar characteristics. Furthermore, significant differences were detected in the Mn3+/Mn4+ valence ratio and a corresponding diverse magnetic response was observed. The sample prepared on SrTiO3 and LaAlO3 presented a critical temperature around 270 K as expected.

  8. High-Performance Protonic Ceramic Fuel Cells with Thin-Film Yttrium-Doped Barium Cerate-Zirconate Electrolytes on Compositionally Gradient Anodes.

    Science.gov (United States)

    Bae, Kiho; Lee, Sewook; Jang, Dong Young; Kim, Hyun Joong; Lee, Hunhyeong; Shin, Dongwook; Son, Ji-Won; Shim, Joon Hyung

    2016-04-13

    In this study, we used a compositionally gradient anode functional layer (AFL) consisting of Ni-BaCe(0.5)Zr(0.35)Y(0.15)O(3-δ) (BCZY) with increasing BCZY contents toward the electrolyte-anode interface for high-performance protonic ceramic fuel cells. It is identified that conventional homogeneous AFLs fail to stably accommodate a thin film of BCZY electrolyte. In contrast, a dense 2 μm thick BCZY electrolyte was successfully deposited onto the proposed gradient AFL with improved adhesion. A fuel cell containing this thin electrolyte showed a promising maximum peak power density of 635 mW cm(-2) at 600 °C, with an open-circuit voltage of over 1 V. Impedance analysis confirmed that minimizing the electrolyte thickness is essential for achieving a high power output, suggesting that the anode structure is important in stably accommodating thin electrolytes.

  9. Tunability of the Quantum Spin Hall Effect in Bi(110) Films: Effects of Electric Field and Strain Engineering.

    Science.gov (United States)

    Li, Sheng-Shi; Ji, Wei-Xiao; Li, Ping; Hu, Shu-Jun; Cai, Li; Zhang, Chang-Wen; Yan, Shi-Shen

    2017-06-28

    The quantum spin Hall (QSH) effect is promising for achieving dissipationless transport devices due to their robust gapless edge states inside insulating bulk gap. However, the currently discussed QSH insulators usually suffer from ultrahigh vacuum or low temperature due to the small bulk gap, which limits their practical applications. Searching for large-gap QSH insulators is highly desirable. Here, the tunable QSH state of a Bi(110) films with a black phosphorus (BP) structure, which is robust against structural deformation and electric field, is explored by first-principles calculations. It is found that the two-monolayer BP-Bi(110) film obtains a tunable large bulk gap by strain engineering and its QSH effect shows a favorable robustness within a wide range of combinations of in-plane and out-of-plane strains, although a single in-plane compression or out-of-plane extension may restrict the topological phase due to the self-doping effect. More interestingly, in view of biaxial strain, two competing physics on band topology induced by bonding-antibonding and px,y-pz band inversions are obtained. Meanwhile, the QSH effect can be persevered under an electric field of up to 0.9 V/Å. Moreover, with appropriate in-plane strain engineering, a nontrivial topological phase in a four-monolayer BP-Bi(110) film is identified. Our findings suggest that these two-dimensional BP-Bi(110) films are ideal platforms of the QSH effect for low-power dissipation devices.

  10. Interface engineering and strain in YBa2Cu3O7-δ thin films

    NARCIS (Netherlands)

    Huijben, Mark; Koster, Gertjan; Blank, Dave H.A.; Rijnders, Guus

    2008-01-01

    In thin films, new phases can be encountered near interfaces, whether it is the substrate-film interface or subsequent interfaces in the case of heterostructures. Both structural properties and surface morphology are a direct result of the thin film growth, controlled by deposition conditions and su

  11. Interface engineering and strain in YBa2Cu3O7-d thin films

    NARCIS (Netherlands)

    Huijben, Mark; Koster, Gertjan; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2008-01-01

    In thin films, new phases can be encountered near interfaces, whether it is the substrate-film interface or subsequent interfaces in the case of heterostructures. Both structural properties and surface morphology are a direct result of the thin film growth, controlled by deposition conditions and

  12. Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1-xSrxCoO3-δ thin films.

    Science.gov (United States)

    Kubicek, Markus; Cai, Zhuhua; Ma, Wen; Yildiz, Bilge; Hutter, Herbert; Fleig, Jürgen

    2013-04-23

    The influence of lattice strain on the oxygen exchange kinetics and diffusion in oxides was investigated on (100) epitaxial La1-xSrxCoO3-δ (LSC) thin films grown by pulsed laser deposition. Planar tensile and compressively strained LSC films were obtained on single-crystalline SrTiO3 and LaAlO3. 18O isotope exchange depth profiling with ToF-SIMS was employed to simultaneously measure the tracer surface exchange coefficient k* and the tracer diffusion coefficient D* in the temperature range 280-475 °C. In accordance with recent theoretical findings, much faster surface exchange (∼4 times) and diffusion (∼10 times) were observed for the tensile strained films compared to the compressively strained films in the entire temperature range. The same strain effect--tensile strain leading to higher k* and D*--was found for different LSC compositions (x=0.2 and x=0.4) and for surface-etched films. The temperature dependence of k* and D* is discussed with respect to the contributions of strain states, formation enthalpy of oxygen vacancies, and vacancy mobility at different temperatures. Our findings point toward the control of oxygen surface exchange and diffusion kinetics by means of lattice strain in existing mixed conducting oxides for energy conversion applications.

  13. Thin manganese films on Si(111)-(7 x 7): electronic structure and strain in silicide formation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani; Tallarida, M; Hansmann, M; Starke, U; Horn, K [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2004-04-07

    The electronic and structural properties of thin epitaxial Mn films on Si(111)-(7 x 7) and their silicide reaction are studied by means of low-energy electron diffraction, scanning tunnelling microscopy (STM) and photoemission spectroscopy (PES). The deposition of Mn at room temperature initially results in the growth of islands. The metal-silicon reaction already occurs at this temperature, which is further enhanced by annealing up to 400 deg. C, leading to the formation of manganese silicide and turning islands into nearly closed films at higher coverage. A pseudo-(1 x 1) phase develops for Mn films of up to 1 monolayer (ML) thickness. For films of higher thicknesses of up to 5 ML, a ( {radical}3 x {radical}3)R30 deg. phase is observed. STM images show that then the silicide film is almost closed and exhibits a strain relief network reflecting an incommensurate interface structure. PES reveals that the (1 x 1) phase is semiconducting while the ({radical}3 x {radical}3)R30 deg. phase is metallic. For both phases, Si 2p core level photoemission data indicate that the surface is probably terminated by Si atoms.

  14. Thin manganese films on Si(111)-(7 × 7): electronic structure and strain in silicide formation

    Science.gov (United States)

    Kumar, Ashwani; Tallarida, M.; Hansmann, M.; Starke, U.; Horn, K.

    2004-04-01

    The electronic and structural properties of thin epitaxial Mn films on Si(111)-(7 × 7) and their silicide reaction are studied by means of low-energy electron diffraction, scanning tunnelling microscopy (STM) and photoemission spectroscopy (PES). The deposition of Mn at room temperature initially results in the growth of islands. The metal-silicon reaction already occurs at this temperature, which is further enhanced by annealing up to 400°C, leading to the formation of manganese silicide and turning islands into nearly closed films at higher coverage. A pseudo-(1 × 1) phase develops for Mn films of up to 1 monolayer (ML) thickness. For films of higher thicknesses of up to 5 ML, a ( \\sqrt{3}\\times\\sqrt{3} )R30° phase is observed. STM images show that then the silicide film is almost closed and exhibits a strain relief network reflecting an incommensurate interface structure. PES reveals that the (1 × 1) phase is semiconducting while the ( \\sqrt{3}\\times\\sqrt{3} )R30° phase is metallic. For both phases, Si 2p core level photoemission data indicate that the surface is probably terminated by Si atoms.

  15. Strain Influence on the Oxygen Electrocatalysis of the (100)-Oriented Epitaxial La 2 NiO 4+δ Thin Films at Elevated Temperatures

    KAUST Repository

    Lee, Dongkyu

    2013-09-19

    Ruddlesden-Popper materials such as La2NiO4+δ (LNO) have high activities for surface oxygen exchange kinetics promising for solid oxide fuel cells and oxygen permeation membranes. Here we report the synthesis of the (100)tetragonal-oriented epitaxial LNO thin films prepared by pulsed laser deposition. The surface oxygen exchange kinetics determined from electrochemical impedance spectroscopy (EIS) were found to increase with decreasing film thickness from 390 to 14 nm. No significant change of the surface chemistry with different film thicknesses was observed using ex situ auger electron spectroscopy (AES). Increasing volumetric strains in the LNO films at elevated temperatures determined from in situ high-resolution X-ray diffraction (HRXRD) were correlated with increasing surface exchange kinetics and decreasing film thickness. Volumetric strains may alter the formation energy of interstitial oxygen and influence on the surface oxygen exchange kinetics of the LNO films. © 2013 American Chemical Society.

  16. Study on Preparation of Magnesium Alloy with Chemical Conversion Film Binder Ceramic Coating Bottom%用化学转化膜制备镁合金陶瓷涂层粘结底层研究

    Institute of Scientific and Technical Information of China (English)

    赵斌; 马壮; 张济民; 李欣棉

    2013-01-01

    The conversion of chromate salt, conversion of phosphate and phosphoric acid potassium permanganate conversion were selected to prepare chemical conversion film on magnesium alloy surface. The results indicate that the chromate salt conversion film and conversion of phosphate film on MB2 magnesium surface are un-dense, can not have barrier, shall not be applicable as ceramic coatings transition layers. Preparation of phosphoric acid potassium permanganate conversion film may slow or prevent ceramic pulp with the magnesium substrate for the reaction, be suitable to serve as the ceramic coating transition layers.%选用铬酸盐转化、磷酸盐转化及磷酸-高锰酸钾转化方法制备镁合金表面的化学转化膜.结果表明:在MB2镁合金表面制备的铬酸盐转化膜、磷酸盐转化膜均不够致密,不能起到阻隔作用,均不适合作为陶瓷涂层的过渡层使用;制备的磷酸-高锰酸钾转化膜可以减缓或阻止陶瓷料浆与镁合金基体的反应,适合作为陶瓷涂层的过渡层使用.

  17. Strain-relaxation and critical thickness of epitaxial La1.85Sr0.15CuO4 films

    Directory of Open Access Journals (Sweden)

    T. L. Meyer

    2015-12-01

    Full Text Available We report the thickness-dependent strain-relaxation behavior and the associated impacts upon the superconductivity in epitaxial La1.85Sr0.15CuO4 films grown on different substrates, which provide a range of strain. We have found that the critical thickness for the onset of superconductivity in La1.85Sr0.15CuO4 films is associated with the finite thickness effect and epitaxial strain. In particular, thin films with tensile strain greater than ∼0.25% revealed no superconductivity. We attribute this phenomenon to the inherent formation of oxygen vacancies that can be minimized via strain relaxation.

  18. Strain effect on the magnetic properties of SrRuO{sub 3} thin films on ferroelectric PMN-PT substrates

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, Andreas; Kataja, Mikko; Schultz, Ludwig; Doerr, Kathrin [IFW Dresden, IMW, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2011-07-01

    We investigate a two-component multiferroic system consisting of a ferroelectric 0.72PbMg{sub 1/3}Nb{sub 2/3}O{sub 3}-0.28PbTiO{sub 3} (PMN-PT) substrate and ferromagnetic SrRuO{sub 3} (SRO) thin films. The inverse piezoelectric effect of the substrate is used to reversibly vary the strain state of the epitaxial SRO films in order to clarify the strain dependence of the magnetic film properties. Buffer films of Sr{sub 1-x}Ba{sub x}TiO{sub 3} are introduced to vary the as-grown state of the SRO films and to cover a wider range from compressive to tensile strain. High resolution X-ray diffraction is deployed to structurally characterize the films and to determine Poisson's ratio of SRO, which is not known so far. SQUID magnetometry reveals that the Curie temperature is increasing with tensile strain, but starts to decrease again under high strain. Angular-dependent measurements provide that the easy axis orientation shows a complex dependence on strain and temperature. SQUID measurements on conventional substrates like SrTiO{sub 3} and LaAlO{sub 3} and electric transport measurements complete the data.

  19. Dielectric tunability of vertically aligned ferroelectric-metal oxide nanocomposite films controlled by out-of-plane misfit strain

    Science.gov (United States)

    Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong

    2016-04-01

    A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.

  20. Effects of confinement, surface-induced orientations and strain on dynamical behaviors of bacteria in thin liquid crystalline films.

    Science.gov (United States)

    Mushenheim, Peter C; Trivedi, Rishi R; Roy, Susmit Singha; Arnold, Michael S; Weibel, Douglas B; Abbott, Nicholas L

    2015-09-14

    We report on the organization and dynamics of bacteria (Proteus mirabilis) dispersed within lyotropic liquid crystal (LC) films confined by pairs of surfaces that induce homeotropic (perpendicular) or hybrid (homeotropic and parallel orientations at each surface) anchoring of the LC. By using motile vegetative bacteria (3 µm in length) and homeotropically aligned LC films with thicknesses that exceed the length of the rod-shaped cells, a key finding reported in this paper is that elastic torques generated by the LC are sufficiently large to overcome wall-induced hydrodynamic torques acting on the cells, thus leading to LC-guided bacterial motion near surfaces that orient LCs. This result extends to bacteria within LC films with hybrid anchoring, and leads to the observation that asymmetric strain within a hybrid aligned LC rectifies motions of motile cells. In contrast, when the LC film thickness is sufficiently small that confinement prevents alignment of the bacteria cells along a homeotropically aligned LC director (achieved using swarm cells of length 10-60 µm), the bacterial cells propel in directions orthogonal to the director, generating transient distortions in the LC that have striking "comet-like" optical signatures. In this limit, for hybrid LC films, we find LC elastic stresses deform the bodies of swarm cells into bent configurations that follow the LC director, thus unmasking a coupling between bacterial shape and LC strain. Overall, these results provide new insight into the influence of surface-oriented LCs on dynamical bacterial behaviors and hint at novel ways to manipulate bacteria using confined LC phases that are not possible in isotropic solutions.

  1. Ceramic barrier layers for flexible thin film solar cells on metallic substrates: a laboratory scale study for process optimization and barrier layer properties.

    Science.gov (United States)

    Delgado-Sanchez, Jose-Maria; Guilera, Nuria; Francesch, Laia; Alba, Maria D; Lopez, Laura; Sanchez, Emilio

    2014-11-12

    Flexible thin film solar cells are an alternative to both utility-scale and building integrated photovoltaic installations. The fabrication of these devices over electrically conducting low-cost foils requires the deposition of dielectric barrier layers to flatten the substrate surface, provide electrical isolation between the substrate and the device, and avoid the diffusion of metal impurities during the relatively high temperatures required to deposit the rest of the solar cell device layers. The typical roughness of low-cost stainless-steel foils is in the hundred-nanometer range, which is comparable or larger than the thin film layers comprising the device and this may result in electrical shunts that decrease solar cell performance. This manuscript assesses the properties of different single-layer and bilayer structures containing ceramics inks formulations based on Al2O3, AlN, or Si3N4 nanoparticles and deposited over stainless-steel foils using a rotogravure printing process. The best control of the substrate roughness was achieved for bilayers of Al2O3 or AlN with mixed particle size, which reduced the roughness and prevented the diffusion of metals impurities but AlN bilayers exhibited as well the best electrical insulation properties.

  2. Strain Effects of the Structural Characteristics of Ferroelectric Transition in Single-Domain Epitaxial BiFeO3 Films

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; PENG Xing-Ping

    2011-01-01

    Structural characteristics of phase transition in single-domain epitaxial BiFeOz films are studied by the Landau-Devonshire theory. It is predicted that remanent polarization shows strong strain dependence for different temperatures while spontaneous polarization is almost independent of strain over a wide temperature (0-500 °C). We also obtain the thickness dependence of the c-axis lattice parameter and Curie temperature, and make a comparison between the polarization rotation angle and the angle attributed to the structural evolution in epitaxial (001)p BiFeOa h'lms grown on SrTiO3 substrates. The theoretical results are in agreement with recent experimental and theoretical data. Our calculations show that the clamping effect should also be taken into account in order to depict the mechanism of the polarization rotation completely.%@@ Structural characteristics of phase transition in single-domain epitaxial BiFeO films are studied by the Landau- Devonshire theory.It is predicted that remanent polarization shows strong strain dependence for different tem- peratures while spontaneous polarization is almost independent of strain over a wide temperature (0-500 ℃).We also obtain the thickness dependence of the c-axis lattice parameter and Curie temperature, and make a compari- son between the polarization rotation angle and the angle attributed to the structural evolution in epitaxial (001) BiFeO films grown on SrTiO substrates.The theoretical results are in agreement with recent experimental and theoretical data.Our calculations show that the damping effect should also be taken into account in order to depict the mechanism of the poIarization rotation completely.

  3. Strain effect on ferroelectric switching dynamics of epitaxial PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Doerr, Kathrin; Herklotz, Andreas [IFW Dresden, IMW, Helmholtzstr.20, Dresden (Germany); Biegalski, Michael; Christen, Hans [CNMS, Oak Ridge National Laboratory, TN (United States)

    2011-07-01

    Elastic strain is known to change ferroic properties of thin films such as the remanent polarization. Less understood and little measured is the influence of the lattice strain induced by film-substrate mismatch on the switching dynamics. In this work, reversible biaxial strain has been applied to films on piezoelectric substrates for a study of their strain-dependent ferroelectric switching. PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) films have been epitaxially grown by pulsed laser deposition on piezoelectric substrates of 0.72PbMg{sub 1/3}Nb{sub 2/3}O{sub 3}-0.28PbTiO{sub 3}(001) (PMN-PT) buffered with a SrRuO{sub 3}/SrTiO{sub 3} double layer. Four-circle x-ray diffraction has been employed to confirm the tetragonal symmetry and to measure the lattice parameters of the films. Measurements of the characteristic ferroelectric switching time at various temperatures and strains show an increase of several percent under compression, revealing a similarly strong strain sensitivity of the switching dynamics as that of the remanent polarization. We attempt to identify the strain dependence of the domain wall velocity.

  4. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    aerospace , and military designs. One of the largest drawbacks to monolithic ceramics is low fracture toughness and susceptibility to catastrophic...Laboratory, Wright-Patterson AFB, OH, 2005. [30] G. Fair, " Ceramic Composites for Structural Aerospace Applications: Processing and Properties," Air...OF THREE OXIDE/OXIDE CERAMIC MATRIX COMPOSITES THESIS Christopher J. Hull, Captain, USAF AFIT-ENY-MS-15-M-228 DEPARTMENT OF THE AIR FORCE

  5. Effects of Substrate Local Strain on Microstructure of Electrodeposited Aluminum Film

    Institute of Scientific and Technical Information of China (English)

    TAN Yuehua; YAN Bo; GAO Ge; YANG Yuxin

    2006-01-01

    The aluminum coating layer was formed on a copper substrate with local strain region by using the electrodeposited method. It was found that the particle shape of the coating deposited on the copper substrate is very sensitive to the strain extent of substrate. The large needle-like aluminum particles were observed on the substrate region with large local strain, indicating that substrate local strain may affect the shape of the deposited particles and promote the nucleation and growth of the deposited particles.

  6. Interface strain coupling and its impact on the transport and magnetic properties of LaMnO{sub 3} thin films grown on ferroelectrically active substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, R.K., E-mail: zrk@ustc.edu [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University (Hong Kong); Wang, Y. [Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University (Hong Kong); Habermeier, H.-U. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Chan, H.L.W. [Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University (Hong Kong); Li, X.M.; Luo, H.S. [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2012-04-05

    Highlights: Black-Right-Pointing-Pointer Strong interface strain coupling in LaMnO{sub 3}/PMN-PT heterostructure. Black-Right-Pointing-Pointer In situ dynamic turning of the strain and lattice distortion of LaMnO{sub 3} films. Black-Right-Pointing-Pointer Coupling of electrons to lattice strain is crucial to understand the strain effect. - Abstract: Thin films of LaMnO{sub 3} have been epitaxially grown on Left-Pointing-Angle-Bracket 0 0 1 Right-Pointing-Angle-Bracket oriented ferroelectric 0.67Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.33PbTiO{sub 3} (PMN-PT) single-crystal substrates. The poling of the PMN-PT crystal causes a decrease in the resistance and an increase in the magnetization and magnetoresistance of the LaMnO{sub 3} film. In situ X-ray diffraction measurements revealed that these changes arise from the poling-induced strain in the PMN-PT substrate, which reduces the in-plane tensile strain and the Jahn-Teller (JT) distortion of MnO{sub 6} octahedra of the LaMnO{sub 3} film. Moreover, it was found that the transport properties of LaMnO{sub 3} films are much more sensitive to the poling-induced strain than that of CaMnO{sub 3} films for which there is no JT distortion, implying that the electron-lattice coupling is one of the most important ingredients in understanding the strain effect in LaMnO{sub 3} films.

  7. Strain-dependent magnetism and electric transport properties of La{sub 0.7}Sr{sub 0.3}CoO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, Andreas; Rata, Diana; Bilani, Orkidia; Schultz, Ludwig; Doerr, Kathrin [IFW-Dresden, Helmholtzstrass e 20, 01069 Dresden (Germany)

    2008-07-01

    The electronic and magnetic properties of some perovskite-type 3d transition metal oxides are known to be sensitive to epitaxial strain. In order to investigate the influence of strain in La{sub 0.7}Sr{sub 0.3}CoO{sub 3} (LSCO) compound, epitaxial films under different biaxial strain have been grown using various substrates. Additionally, piezoelectric substrates of the composition 0.72PbMg{sub 1/3}Nb{sub 2/3}O{sub 3}-0.28PbTiO{sub 3} (PMN-28%PT) were employed to control the in-plane strain dynamically by applying an electrical field. An insulator-type behaviour was observed in films grown under tensile strain, whereas compressed films show bulk, metallic properties. This drastic influence of strain was confirmed by using the PMN-PT substrates, where a reversible strain of 0.15% caused a resistance change of one order of magnitude at room temperature. On the contrary, the magnetization data revealed a rather small impact of tensile strain on the magnetic behaviour of LSCO films. We suggest that the insulator state of La{sub 0.7}Sr{sub 0.3}CoO{sub 3} is caused by a stain-induced static Jahn-Teller-type deformation of the CoO{sub 6} units, which may be efficient as a localization mechanism.

  8. Production of Highly Lubricious Ti-Based Ceramic Films for Reducing Friction between Web and Transiting Roller

    Science.gov (United States)

    Kohzaki, Masao; Makita, Ryohei

    2013-05-01

    Web transiting process machines have been developed for producing flexible and printed electronics. For establishing a stable roll-to-roll transportation without web defects, the friction coefficient between the web and the transiting roller should be controlled at a low value. We produced the titanium nitride-molybdenum disulfide (TiN-MoS2) composite films by DC magnetron sputtering for improving the frictional characteristics of the transiting roller used in manufacturing process of flexible and printed electronics. The hardness of the TiN-MoS2 films was about 17 GPa at 22% MoS2. The composite films containing 22% MoS2 showed a low friction coefficient of approximately 0.1 at room temperature, which was almost equal to that of diamond-like carbon (DLC) films. In addition, only a small wear was detected on the films after the friction test. The adhesive strength of the composite films was improved by forming the Ti interlayer, and the further reduction of wear was observed.

  9. A strain or electric field induced direct bandgap in ultrathin silicon film and its application in photovoltaics or photocatalysis.

    Science.gov (United States)

    Cao, Tengfei; Wang, Da; Geng, Dong-Sheng; Liu, Li-Min; Zhao, Jijun

    2016-03-14

    The indirect bandgap character of silicon greatly limits its applications in electronic or optoelectronic devices, and direct bandgaps are highly desirable in all silicon allotropes. The successful synthesis of ultrathin or even monolayer silicon films experimentally has opened new opportunities to further modulate the electronic structure of silicon through external modulation. In this work, strain or electric field effects on the electronic structure of ultrathin silicon film (USF) are systematically explored. The results demonstrate that all USFs are indirect band-gap semiconductors; interestingly, tensile strain or electric field efficiently tunes the USFs into direct band gap semiconductors. The indirect to direct band gap transition in the USFs not only extends their light adsorption spectra into the visible light region but also greatly enhances the adsorption intensity. Because of this, strained USFs have great potential to be used as a high-performance photovoltaic material. Furthermore, the high stability, moderate band-gap and proper band edge positions demonstrate that monolayer and bilayer USFs can also be used as photocatalysts for water splitting.

  10. Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, H., E-mail: yanagiha@bk.tsukuba.ac.jp; Utsumi, Y.; Niizeki, T., E-mail: t-niizeki@imr.tohoku.ac.jp; Inoue, J.; Kita, Eiji [Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan)

    2014-05-07

    We investigated the dependencies of both the magnetization characteristics and the perpendicular magnetic anisotropy of Co{sub x}Fe{sub 3–x}O{sub 4}(001) epitaxial films (x = 0.5 and 0.75) on the growth conditions of the reactive magnetron sputtering process. Both saturation magnetization and the magnetic uniaxial anisotropy constant K{sub u} are strongly dependent on the reactive gas (O{sub 2}) flow rate, although there is little difference in the surface structures for all samples observed by reflection high-energy electron diffraction. In addition, certain dead-layer-like regions were observed in the initial stage of the film growth for all films. Our results suggest that the magnetic properties of Co{sub x}Fe{sub 3–x}O{sub 4} epitaxial films are governed by the oxidation state and the film structure at the vicinity of the interface.

  11. Strain and temperature dependent absorption spectra studies for identifying the phase structure and band gap of EuTiO3 perovskite films.

    Science.gov (United States)

    Jiang, Kai; Zhao, Run; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Li, Wenwu; Hu, Zhigao; Yang, Hao; Chu, Junhao

    2015-12-21

    Post-annealing has been approved to effectively relax the out-of-plane strain in thin films. Epitaxial EuTiO3 (ETO) thin films, with and without strain, have been fabricated on (001) LaAlO3 substrates by pulsed laser deposition. The absorption and electronic transitions of the ETO thin films are investigated by means of temperature dependent transmittance spectra. The antiferrodistortive phase transition can be found at about 260-280 K. The first-principles calculations indicate there are two interband electronic transitions in ETO films. Remarkably, the direct optical band gap and higher interband transition for ETO films show variation in trends with different strains and temperatures. The strain leads to a band gap shrinkage of about 240 meV while the higher interband transition an expansion of about 140 meV. The hardening of the interband transition energies in ETO films with increasing temperature can be attributed to the Fröhlich electron-phonon interaction. The behavior can be linked to the strain and low temperature modified valence electronic structure, which is associated with rotations of the TiO6 octahedra.

  12. LaNiO{sub 3} films with tunable out-of-plane lattice parameter and their strain-related electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Haoming; Jenderka, Marcus; Grundmann, Marius; Lorenz, Michael [Universitaet Leipzig, Institut fuer Experimentelle Physik II, Semiconductor Physics Group (Germany)

    2015-09-15

    LaNiO{sub 3} (LNO) thin films were grown using pulsed laser deposition. The c-axis, i.e., out-of-plane lattice parameter of the films was controlled reproducibly by using different substrate materials and by variation of oxygen partial pressure and growth temperature. The out-of-plane (c-axis) strain of LNO deposited on LaAlO{sub 3} with increasing oxygen pressure changed from positive to negative. All the films show an excellent metallic conductivity with positive resistivity temperature coefficient. Lowest resistivity was about 300 μΩ cm. At high and low temperatures, the resistivity is explained by electron-phonon scattering and electron-electron interaction, respectively. In addition, the resistivity shows a clear dependence on the c-axis strain of LNO films. With increasing strain, the resistivity increases. However, this effect is much more pronounced for negative c-axis strain. Strain-dependent resistivity of LNO films on LAO at the indicated measurement temperatures. The inset is a typical AFM image of the LNO film surface. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Studies on strain relaxation of La0.5Ba0.5MnO3 film by normal and grazing incidence X-ray diffraction

    Science.gov (United States)

    Wang, Haiou; Tan, Weishi; Liu, Hao; Cao, Mengxiong; Wang, Xingyu; Ma, Chunlin; Jia, Quanjie

    2017-03-01

    Perovskite manganite La0.5Ba0.5MnO3 (LBMO) films were deposited on (001)-oriented single-crystal SrTiO3 (STO) substrates by pulsed laser deposition. High-resolution X-ray diffraction and grazing incidence X-ray diffraction techniques were applied to characterize the crystal structure and lattice strain of LBMO films. The in-plane and out-of-plane growth orientations of LBMO films with respect to substrate surface have been studied. The epitaxial orientation relationship LBMO (001) [100] //STO (001) [100] exists at the LBMO/STO interface. The lattice strain of LBMO film begins to relax with the thickness of LBMO film up to 12 nm. When the thickness is further increased up to 43 nm, the film is in fully strain-relaxed state. Jahn-Teller strain plays an important role in LBMO/STO system. The mechanism for strain relaxation is in accordance with that of tetragonal distortion.

  14. Strain-dependence Of The Structure And Ferroic Properties Of Epitaxial Ni-1 (-) Ti-x(1) (-) O-y(3) Thin Films Grown On Sapphire Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, V.; Colby, Robert J.; Hu, Dehong; Shelton, William A.; Chambers, Scott A.

    2015-03-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3 (M = Fe, Mn, Ni) [Fennie, Phys. Rev. Lett. 100, 167203 (2008)]. We set out to stabilize this metastable perovskite structure by growing NiTiO3 epitaxially on sapphire Al2O3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni1-xTi1-yO3 films of different Ni/Ti ratios and thicknesses were deposited on Al2O3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Néel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO3 thin films by film stoichiometry and thickness.

  15. TUNING THE MAGNETOELECTRIC PROPERTIES WITH STRAIN IN EPITAXIAL CO0.9SN0.1FE2O4 THIN FILMS

    Energy Technology Data Exchange (ETDEWEB)

    Rus, Stefania Florina [National Institute for Research and Development in Electrochemistry and Condensed Matter (INCEMC); Herklotz, Andreas [ORNL

    2015-01-01

    We have grown epitaxial Sn substituted cobalt ferrite thin films of various thicknesses on piezoelectric Pb(Mg1/3Nb2/(3))(0.72)Ti0.28O3 substrates and investigated the strain-induced changes of magnetic properties. All films described in this work have been deposited by pulsed laser deposition (PLD) from stoichiometric target of Co0.9Sn0.1Fe2O4. The lattice structure, crystallinity and orientation of the thin films were determined by X-ray diffraction analysis. The magnetization of thin films was measured for both, in-plane and out-of-plane configurations, using a superconductor quantum interference device (SQUID) magnetometer at 300 K. The measurements reveal that the magnetic anisotropy is altered by the strain imposed from the substrate upon application of an electric field. The magnetoelastic coupling is demonstrated by a change of the remanent magnetisation. However, we find that this strain effect is thickness dependent. The biggest strain effect is recorded for the thickest film (400nm) where an electric-field-controlled contraction of the substrate of 0.1% induces a relative change in magnetic moment of 9.3%. The relative change of the remanent magnetisation is reduced with decreasing film thickness and is smaller than 3% for the thinnest film (25nm).

  16. Electric field induced lattice strain in pseudocubic Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-modified BaTiO{sub 3}-BiFeO{sub 3} piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Ichiro, E-mail: ifujii@rins.ryukoku.ac.jp [Department of Materials Chemistry, Ryukoku University, Otsu, Shiga 520-2194 (Japan); Iizuka, Ryo; Ueno, Shintaro; Nakashima, Kouichi; Wada, Satoshi [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510 (Japan); Nakahira, Yuki; Sunada, Yuya; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan)

    2016-04-25

    Contributions to the piezoelectric response in pseudocubic 0.3BaTiO{sub 3}-0.1Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-0.6BiFeO{sub 3} ceramics were investigated by synchrotron X-ray diffraction under electric fields. All of the lattice strain determined from the 110, 111, and 200 pseudocubic diffraction peaks showed similar lattice strain hysteresis that was comparable to the bulk butterfly-like strain curve. It was suggested that the hysteresis of the lattice strain and the lack of anisotropy were related to the complex domain structure and the phase boundary composition.

  17. On the Novel Biaxial Strain Relaxation Mechanism in Epitaxial Composition Graded La1−xSrxMnO3 Thin Film Synthesized by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Yishu Wang

    2015-11-01

    Full Text Available We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 and La0.67Sr0.33MnO3 thin films were deposited by radio frequency (RF magnetron sputtering. The crystalline and epitaxy of all films were first studied by symmetric θ–2θ X-ray diffraction (XRD and low angle XRD experiments. Detailed microstructural characterization across the film thickness was conducted by high-resolution transmission electron microscopy and electron diffraction. Four compositional gradient domains were observed in the La1−xSrxMnO3 film ranging from LaMnO3 rich to La0.67Sr0.33MnO3 at the surface. A continuous reduction in the lattice parameter was observed accompanied by a significant reduction in the out-of-plane strain in the film. Fabrication of the composition gradient La1−xSrxMnO3 thin film was found to be a powerful method to relieve biaxial strain under critical thickness. Besides, the coexistence of domains with a composition variance is opening up various new possibilities of designing new nanoscale structures with unusual cross coupled properties.

  18. Rheology of Superplastic Ceramics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Constitutive equation of rheglogy describing a phenomenological level of superplastic deformation as functional correlation between tensor components of stress and strain rate has been analyzed for the case of superplastic ceramic flow. Rheological properties of material are taken into account by means of scalar rheological coefficients of shear and volume viscosity, which are functions of temperature, effective stress (or strain rate) and density of material.

  19. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  20. Growth mechanism and strain relaxation in zinc selenide and cadmium telluride/zinc telluride semiconductor thin films

    Science.gov (United States)

    Wei, Hsiang-Yi

    mechanism and defect density in the films. For As---precursor on the Si surface, Te adsorption on the terraces is inhibited and its migration to the step edges is enhanced. Therefore, the growth is expected to proceed in a step-flow growth mode. A strain relaxation mechanism including misfit dislocation generation, twin formation, and crystal tilt is proposed to account for the large lattice mismatch (f = 12.3%) in this system.

  1. Strain engineering effects on electrical properties of lead-free piezoelectric thin films on Si wafers.

    Science.gov (United States)

    Ohno, Tomoya; Kamai, Yuto; Oda, Yuutaro; Sakamoto, Naonori; Matsuda, Takeshi; Wakiya, Naoki; Suzuki, Hisao

    2014-01-01

    Using radio frequency - magnetron sputtering, calcium-doped barium zirconate titanate ((Ba(0.85)Ca(0.15))(Zr(0.1)Ti(0.9))O(3), BCZT) thin films were deposited on Si wafers with different bottom electrodes. The obtained BCZT thin film on a lanthanum nickel oxide (LNO) electrode had a highly c-axis preferred orientation, while the BCZT thin film on a Pt bottom electrode had (111) preferred orientation. Furthermore, the out-of-plane lattice constant of the BCZT on LNO/Si was 3.4% larger than that of the reported bulk material because of the compressive thermal stress from LNO with a large thermal expansion coefficient. This compressive thermal stress engenders an increase of the Curie temperature. The local piezoelectric response of the BCZT thin film on a LNO/Si structure was measured by piezoresponse force microscope.

  2. Strain-sensitive spin-state ordering in thin films of perovskite LaCoO3

    Science.gov (United States)

    Fujioka, J.; Yamasaki, Y.; Doi, A.; Nakao, H.; Kumai, R.; Murakami, Y.; Nakamura, M.; Kawasaki, M.; Arima, T.; Tokura, Y.

    2015-11-01

    We have investigated the lattice distortion coupled to the Co 3 d -spin-state ordering in thin films of perovskite LaCoO3 with various epitaxial strains by measurements of the magnetization, x-ray diffraction, and optical spectra. In the system with tensile strain about 0.5%, a lattice distortion characterized by the modulation vector q =(1 /6 ,1 /6 ,1 /6 ) emerges at 40 K, followed by a ferromagnetic ordering at 24 K. Alternatively, in systems with tensile strain exceeding 1%, the lattice distortion characterized by q =(1 /4 ,1 /4 ,1 /4 ) emerges at 120 K or higher, and subsequently the ferromagnetic or ferrimagnetic ordering occurs around 90 K. The evolution of infrared phonon spectra and resonant x-ray scattering at the Co K edge suggests that the population change in the Co 3 d spin state causes the strain-induced switching of spin-state ordering as well as of magnetic ordering in this canonical spin-state crossover system.

  3. Basic Strain Gradient Plasticity Theories with Application to Constrained Film Deformation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, John W.

    2011-01-01

    with the deformation theory under proportional straining, analogous to the corresponding coincidence in the conventional J(2) theories. The generality of proportional straining is demonstrated for pure power-law materials, and the utility of power-law solutions is illustrated for the constrained deformation of thin...

  4. Performance of Ceramics in Severe Environments

    Science.gov (United States)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.

    2005-01-01

    Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.

  5. Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes--an improved model for nanocrystalline thin films and a review of experimental data.

    Science.gov (United States)

    Korte, C; Keppner, J; Peters, A; Schichtel, N; Aydin, H; Janek, J

    2014-11-28

    A phenomenological and analytical model for the influence of strain effects on atomic transport in columnar thin films is presented. A model system consisting of two types of crystalline thin films with coherent interfaces is assumed. Biaxial mechanical strain ε0 is caused by lattice misfit of the two phases. The conjoined films consist of columnar crystallites with a small diameter l. Strain relaxation by local elastic deformation, parallel to the hetero-interface, is possible along the columnar grain boundaries. The spatial extent δ0 of the strained hetero-interface regions can be calculated, assuming an exponential decay of the deformation-forces. The effect of the strain field on the local ionic transport in a thin film is then calculated by using the thermodynamic relation between (isostatic) pressure and free activation enthalpy ΔG(#). An expression describing the total ionic transport relative to bulk transport of a thin film or a multilayer as a function of the layer thickness is obtained as an integral average over strained and unstrained regions. The expression depends only on known material constants such as Young modulus Y, Poisson ratio ν and activation volume ΔV(#), which can be combined as dimensionless parameters. The model is successfully used to describe own experimental data from conductivity and diffusion studies. In the second part of the paper a comprehensive literature overview of experimental studies on (fast) ion transport in thin films and multilayers along solid-solid hetero-interfaces is presented. By comparing and reviewing the data the observed interface effects can be classified into three groups: (i) transport along interfaces between extrinsic ionic conductors (and insulator), (ii) transport along an open surface of an extrinsic ionic conductor and (iii) transport along interfaces between intrinsic ionic conductors. The observed effects in these groups differ by about five orders of magnitude in a very consistent way. The

  6. Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, C. H.; Ouyang, Chuenhou, E-mail: wei0208@gmail.com, E-mail: houyang@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yao, Y. D. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Lo, S. C. [Material and Chemical Research Laboratories and Nanotechnology Research Center, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Chang, H. W., E-mail: wei0208@gmail.com, E-mail: houyang@mx.nthu.edu.tw [Department of Applied Physics, Tunghai University, Taichung 40704, Taiwan (China)

    2015-10-05

    FePd (001) films, prepared by an electron beam deposition system on MgO(100), exhibit a perpendicular magnetic anisotropy (1.7 × 10{sup 7 }erg/cc) with a high order parameter (0.92). The relation between stacking faults induced by the strain relaxation, which act as strong domain wall pinning sites, and the perpendicular coercivity of (001) oriented L1{sub 0} FePd films prepared at different temperatures have been investigated. Perpendicular coercivity can be apparently enhanced by raising the stacking fault densities, which can be elevated by climbing dissociation of total dislocation. The increased stacking fault densities (1.22 nm{sup −2}) with large perpendicular coercivity (6000 Oe) are obtained for samples prepared at 650 °C. This present work shows through controlling stacking fault density in FePd film, the coercivity can be manipulated, which can be applied in future magnetic devices.

  7. Tuning the metal-insulator transition via epitaxial strain and Co doping in NdNiO3 thin films grown by polymer-assisted deposition

    Science.gov (United States)

    Yao, Dan; Shi, Lei; Zhou, Shiming; Liu, Haifeng; Zhao, Jiyin; Li, Yang; Wang, Yang

    2016-01-01

    The epitaxial NdNi1-xCoxO3 (0 ≤ x ≤ 0.10) thin films on (001) LaAlO3 and (001) SrTiO3 substrates were grown by a simple polymer-assisted deposition technique. The co-function of the epitaxial strain and Co doping on the metal-insulator transition in perovskite nickelate NdNiO3 thin films is investigated. X-ray diffraction and scanning electron microscopy reveal that the as-prepared thin films exhibit good crystallinity and heteroepitaxy. The temperature dependent resistivities of the thin films indicate that both the epitaxial strain and Co doping lower the metal-insulator (MI) transition temperature, which can be treated as a way to tune the MI transition. Furthermore, under the investigated Co-doping levels, the MI transition temperature (TMI) shifts to low temperatures with Co content increasing under both compressive and tensile strain, and the more distinction is in the former situation. When x is increased up to 0.10, the insulating phase is completely suppressed under the compressive strain. With the strain increases from compression to tension, the resistivities are enhanced both in the metal and insulating regions. However, the Co-doping effect on the resistivity shows a more complex situation. As Co content x increases from zero to 0.10, the resistivities are reduced both in the metal and insulating regions under the tensile strain, whereas they are enhanced in the high-temperature metal region under the compressive strain. Based on the temperature dependent resistivity in the metal regions, it is suggested that the electron-phonon coupling in the films becomes weaker with the increase of both the strain and Co-doping.

  8. Tuning the metal-insulator transition via epitaxial strain and Co doping in NdNiO{sub 3} thin films grown by polymer-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Dan; Shi, Lei, E-mail: shil@ustc.edu.cn; Zhou, Shiming; Liu, Haifeng; Zhao, Jiyin; Li, Yang [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Yang [Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2016-01-21

    The epitaxial NdNi{sub 1-x}Co{sub x}O{sub 3} (0 ≤ x ≤ 0.10) thin films on (001) LaAlO{sub 3} and (001) SrTiO{sub 3} substrates were grown by a simple polymer-assisted deposition technique. The co-function of the epitaxial strain and Co doping on the metal-insulator transition in perovskite nickelate NdNiO{sub 3} thin films is investigated. X-ray diffraction and scanning electron microscopy reveal that the as-prepared thin films exhibit good crystallinity and heteroepitaxy. The temperature dependent resistivities of the thin films indicate that both the epitaxial strain and Co doping lower the metal-insulator (MI) transition temperature, which can be treated as a way to tune the MI transition. Furthermore, under the investigated Co-doping levels, the MI transition temperature (T{sub MI}) shifts to low temperatures with Co content increasing under both compressive and tensile strain, and the more distinction is in the former situation. When x is increased up to 0.10, the insulating phase is completely suppressed under the compressive strain. With the strain increases from compression to tension, the resistivities are enhanced both in the metal and insulating regions. However, the Co-doping effect on the resistivity shows a more complex situation. As Co content x increases from zero to 0.10, the resistivities are reduced both in the metal and insulating regions under the tensile strain, whereas they are enhanced in the high-temperature metal region under the compressive strain. Based on the temperature dependent resistivity in the metal regions, it is suggested that the electron-phonon coupling in the films becomes weaker with the increase of both the strain and Co-doping.

  9. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  10. Effects of strain on the properties of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Praus, R.B.; Gross, G.M.; S. Razavi, F.; Habermeier, H.-U. E-mail: huh@servix.mpi-stuttgart.mpg.de

    2000-03-01

    The lattice mismatch of doped manganites and conventional oxide substrate materials offers an interesting opportunity to tailor the epitaxial strain of thin films systematically. This can be used to study the interrelation of the microscopic arrangement of the atoms and the magnetotransport properties. In our experiment La{sub 0.67}Ca{sub 0.33}MnO{sub 3} thin films with varying thickness (40-520 nm) were grown on SrTiO{sub 3} (0 0 1) single-crystal substrates using the pulsed laser deposition technique. The thickness-dependent epitaxial strain leads to a systematic modification of the characteristic parameters of the magnetization curve and the dependence of resistivity on temperature. We analyse the magnetic and transport data of as-grown films and compare them to results of measurements performed on identical films subjected to a 1 h post-deposition annealing process at 900 deg. C in flowing oxygen.

  11. Strain induced ferromagnetism in epitaxial Cr{sub 2}O{sub 3} thin films integrated on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Punugupati, Sandhyarani, E-mail: spunugu@ncsu.edu; Narayan, Jagdish; Hunte, Frank [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-09-29

    We report on the epitaxial growth and magnetic properties of antiferromagnetic and magnetoelectric (ME) Cr{sub 2}O{sub 3} thin films deposited on cubic yttria stabilized zirconia (c-YSZ)/Si(001) using pulsed laser deposition. The X-ray diffraction (2ϴ and Φ) and TEM characterizations confirm that the films were grown epitaxially. The Cr{sub 2}O{sub 3}(0001) growth on YSZ(001) occurs with twin domains. There are four domains of Cr{sub 2}O{sub 3} with in-plane rotation of 30° or 150° from each other about the [0001] growth direction. The epitaxial relation between the layers is given as [001]Si ‖ [001]YSZ ‖ [0001]Cr{sub 2}O{sub 3} and [100]Si ǁ [100]YSZ ǁ [101{sup ¯}0] Cr{sub 2}O{sub 3} or [112{sup ¯}0] Cr{sub 2}O{sub 3}. Though the bulk Cr{sub 2}O{sub 3} is an antiferromagnetic with T{sub N} = 307 K, we found that the films exhibit ferromagnetic like hysteresis loops with high saturation and finite coercive field up to 400 K. The thickness dependent magnetizations together with oxygen annealing results suggest that the ferromagnetism (FM) is due to oxygen related defects whose concentration is controlled by strain present in the films. This FM, in addition to the intrinsic magneto-electric properties of Cr{sub 2}O{sub 3}, opens the door to relevant spintronics applications.

  12. Planar Hall effect and magnetic anisotropy in epitaxially strained chromium dioxide thin films

    NARCIS (Netherlands)

    Goennenwein, S.T.B.; Keizer, R.S.; Schink, S.W.; Van Dijk, I.; Klapwijk, T.M.; Miao, G.X.; Xiao, G.; Gupta, A.

    2007-01-01

    We have measured the in-plane anisotropic magnetoresistance of 100 nm thick CrO2 thin films at liquid He temperatures. In low magnetic fields H, both the longitudinal and the transverse (planar Hall) resistance show abrupt switches, which characteristically depend on the orientation of H. All the ex

  13. Growth and properties of strained VOx thin films with controlled stoichiometry

    NARCIS (Netherlands)

    Rata, AD; Chezan, AR; Haverkort, MW; Hsieh, HH; Lin, HJ; Chen, CT; Tjeng, LH; Hibma, T

    2004-01-01

    We have succeeded in growing epitaxial films of rocksalt VOx on MgO(001) substrates. The oxygen content as a function of oxygen flux was determined using O-18(2)-Rutherford backscattering spectrometry and the vanadium valence using x-ray-absorption spectroscopy. The upper and lower stoichiometry lim

  14. Tuning the terahertz low-energy charge dynamics by simultaneous effect of epitaxial and anisotropic strain in PrNi O3 thin films

    Science.gov (United States)

    Phanindra, V. Eswara; Das, Sarmistha; Kumar, K. Santhosh; Agarwal, Piyush; Rana, Rakesh; Rana, D. S.

    2017-02-01

    The interplay of charge, spin, and lattice correlations strongly influence the insulator-metal (I-M) transition and magnetic ordering in rare earth nickelates. In this context, we explored the low-energy charge dynamics in structurally modulated PrNi O3 (PNO) thin films to unravel the complexity of ground state across I-M transition using terahertz (THz) spectroscopy. The THz optical constants of compressive film on LaAl O3 (100) substrate and the tensile films on NdGa O3 (100), (001), (110), and (111) substrates with varying orthorhombic distortion exhibit remarkably distinct features as a function of frequency and temperature. The THz conductivity of compressive film sans any I-M transition follows the Drude model. In contrast, the tensile strained films exhibit non-Drude THz conductivity, a giant positive dielectric permittivity, and negative imaginary conductivity, all of which can be explained by the Drude-Smith model. This rich variety of low-energy dynamics manifests as a function of temperature, strain, and crystal orientation. Such distinct THz spectral features, as induced by a subtle variation in strain while crossing over from tensile to compressive strain and with varying degree of orthorhombicity coupled with oxygen vacancies, reveal a novel facet of structure-property relationship of PNO.

  15. Experimental and first-principles study of the electronic transport properties of strained Bi2Te3 thin films on a flexible substrate

    Science.gov (United States)

    Inamoto, Takuya; Takashiri, Masayuki

    2016-09-01

    On the basis of an experimental and first-principles study, strain effects on the thermoelectric properties of bismuth telluride (Bi2Te3) thin films were investigated. Bi2Te3 thin films were deposited on flexible polyimide substrates using a radio frequency magnetron sputtering method at a substrate temperature of 200 °C. Prior to deposition, various compressive and tensile bending strains were applied to the films by changing the bending radii of the flexible substrates. The structural and thermoelectric properties of the completed samples were analyzed. It was found that the lattice parameters of all samples exhibited smaller values compared to that of standard data for Bi2Te3 (JCPDS 15-0863) because the substrates might have shrunk during the film deposition, indicated by the fact that all the samples presented various compressive lattice strains. A theoretical analysis was performed using the first-principles study based on density functional theory. We calculated the electronic band structures for Bi2Te3 with the different lattice strains and predicted the thermoelectric properties based on the semi-classical Boltzmann transport equation in the rigid band approximation. The lowest conduction band edge in the Bi2Te3 band structure narrowed as the compressive lattice strain increased, indicating that the effective mass became smaller. Finally, the experimentally measured thermoelectric properties were compared with those obtained by the calculation. It was found that the calculated results were in good agreement with the experimental results.

  16. Strain engineering to control the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F.; Kemik, N.; Biegalski, M.D.; Christen, H.M.; Arenholz, E.; Takamura, Y.

    2010-06-15

    This work studies the control of the magnetic and magnetotransport properties of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} thin films through strain engineering. The strain state is characterized by the tetragonal distortion (c/a ratio), which can be varied continuously between a compressive strain of 1.005 to a tensile strain of 0.952 by changing the type of substrate, the growth rate, and the presence of an underlying La{sub 0.67}Sr{sub 0.33}FeO{sub 3} buffer layer. Increasing tensile tetragonal distortion of the La{sub 0.67}Sr{sub 0.33}MnO{sub 3} thin film decreases the saturation magnetization, changes the temperature dependence of the resistivity and magnetoresistance, and increases the resistivity by several orders of magnitude.

  17. Optical investigation of strain in Si-doped GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Paramo, J.; Calleja, J. M.; Sanchez-Garcia, M. A.; Calleja, E.

    2001-06-25

    The effects of Si doping on the growth mode and residual strain of GaN layers grown on Si(111) substrates by plasma-assisted molecular beam epitaxy are studied by Raman scattering and photoluminescence. As the Si concentration increases a progressive decrease of the high-energy E{sub 2} mode frequency is observed, together with a redshift of the excitonic emission. Both effects indicate an enhancement of the biaxial tensile strain of thermal origin for increasing doping level, which is confirmed by x-ray diffraction measurements. Beyond Si concentrations of 5{times}10{sup 18}cm{sup {minus}3} both the phonon frequency and the exciton emission energy increase again. This change indicates a partial strain relaxation due to a change in the growth mode. {copyright} 2001 American Institute of Physics.

  18. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

    OpenAIRE

    2016-01-01

    The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower s...

  19. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  20. Ceramic Processing

    Energy Technology Data Exchange (ETDEWEB)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  1. Thermal stability and relaxation mechanisms in compressively strained Ge{sub 0.94}Sn{sub 0.06} thin films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, C.; Lieten, R. R.; Shimura, Y.; Vandervorst, W. [Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Hermann, P.; Hönicke, P.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Seidel, F. [Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Institut für Elektronik-und Sensormaterialien, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg (Germany); Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Zaima, S. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Uchida, N. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba West SCR, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Temst, K.; Vantomme, A. [Instituut voor Kern-en Stralingsfysica, KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium)

    2016-08-28

    Strained Ge{sub 1-x}Sn{sub x} thin films have recently attracted a lot of attention as promising high mobility or light emitting materials for future micro- and optoelectronic devices. While they can be grown nowadays with high crystal quality, the mechanism by which strain energy is relieved upon thermal treatments remains speculative. To this end, we investigated the evolution (and the interplay) of composition, strain, and morphology of strained Ge{sub 0.94}Sn{sub 0.06} films with temperature. We observed a diffusion-driven formation of Sn-enriched islands (and their self-organization) as well as surface depressions (pits), resulting in phase separation and (local) reduction in strain energy, respectively. Remarkably, these compositional and morphological instabilities were found to be the dominating mechanisms to relieve energy, implying that the relaxation via misfit generation and propagation is not intrinsic to compressively strained Ge{sub 0.94}Sn{sub 0.06} films grown by molecular beam epitaxy.

  2. Strain-induced growth instability and nanoscale surface patterning in perovskite thin films

    Science.gov (United States)

    Pandya, Shishir; Damodaran, Anoop R.; Xu, Ruijuan; Hsu, Shang-Lin; Agar, Joshua C.; Martin, Lane W.

    2016-05-01

    Despite extensive studies on the effects of epitaxial strain on the evolution of the lattice and properties of materials, considerably less work has explored the impact of strain on growth dynamics. In this work, we demonstrate a growth-mode transition from 2D-step flow to self-organized, nanoscale 3D-island formation in PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 (001) heterostructures as the kinetics of the growth process respond to the evolution of strain. With increasing heterostructure thickness and misfit dislocation formation at the buried interface, a periodic, modulated strain field is generated that alters the adatom binding energy and, in turn, leads to a kinetic instability that drives a transition from 2D growth to ordered, 3D-island formation. The results suggest that the periodically varying binding energy can lead to inhomogeneous adsorption kinetics causing preferential growth at certain sites. This, in conjunction with the presence of an Ehrlich-Schwoebel barrier, gives rise to long-range, periodically-ordered arrays of so-called “wedding cake” 3D nanostructures which self-assemble along the [100] and [010].

  3. Crossover of uniaxial magnetic anisotropy direction mediated by interfacial strain of CoFe{sub 2}O{sub 4} films

    Energy Technology Data Exchange (ETDEWEB)

    Cho, C.-W.; Lee, D.Y. [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of); Bae, J.S. [Busan Center, Korea Basic Science Institute, Busan 618-230 (Korea, Republic of); Park, S., E-mail: psk@pusan.ac.kr [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-11-15

    This study examined the deposition temperature-dependent magnetic anisotropy of CoFe{sub 2}O{sub 4} films grown on Al{sub 2}O{sub 3}(0001) substrates using pulsed-laser deposition. X-ray diffraction revealed all films to have a 〈111〉 orientation except for the films grown at room temperature, which exhibited amorphous characteristics. Furthermore, the films deposited between 350 °C and 550 °C exhibited out-of-plane tensile strain even though, which was relieved as the deposition temperature increased. On the other hand, film deposited at 650 °C showed out-of-plane compressive strain. The in-plane and out-of-plane magnetic hysteresis loops, which were measured at room temperature, showed a decreased out-of-plane anisotropy when the deposition temperature was increased. Simple uniaxial magnetic anisotropy energy calculations based on the experimental data showed a direct correlation between the uniaxial magnetic anisotropy direction and stress of the films. X-ray photoelectron spectroscopy revealed variations in the cation distribution according to the deposition temperature. - Highlights: • Deposition temperature-dependent crossover between tensile and compressive out-of-plane strain occurred. • Uniaxial magnetic anisotropy changed from out-of-plane to in-plane depending on the strain state of the film. • A (B) site tetrahedral (octahedral) Co{sup 2+} contents decreased (increased) with deposition temperature. • Distribution between octahedral and tetrahedral sites of Fe{sup 3+} became even while perpendicular magnetic anisotropy decreased.

  4. Electronic structure and magnetism of strained bcc phases across the fcc to bcc transition in ultrathin Fe films

    Science.gov (United States)

    Calloni, Alberto; Berti, Giulia; Bussetti, Gianlorenzo; Fratesi, Guido; Finazzi, Marco; Ciccacci, Franco; Duò, Lamberto

    2016-11-01

    We investigated the electronic structure of the bcc metastable phases involved in the fcc to bcc transition of Fe. Ultrathin Fe films were grown on a 2-monolayer (ML) Ni/W(110) substrate, where a fcc lattice is stabilized at low Fe coverages and the transition proceeds through the formation of bcc nuclei showing a specific "Kurdjumov-Sachs" orientation with the substrate. A comprehensive description of the electronic structure evolution is achieved by combining spin-resolved UV photoemission spectroscopy and ab initio calculations. According to our results, an exchange-split band structure is observed starting from 2 ML of Fe, concomitant with the formation of ferromagnetic bcc nuclei. Continuous modifications are observed in the spin-resolved photoemission spectra for increasing Fe coverage, especially for what concerns the minority states, possibly indicative of the progressive relaxation of the strained bcc phase starting from the bcc/fcc interface.

  5. Enhanced thermo-mechanical performance and strain-induced band gap reduction of TiO2@PVC nanocomposite films

    Indian Academy of Sciences (India)

    Mudassir Hasan; Arghya Narayan Banerjee; Moonyong Lee

    2015-04-01

    The present paper reports the fabrication of TiO2@PVC nanocomposites by incorporating TiO2 in polyvinyl chloride (PVC) followed by solution casting to prepare TiO2@PVC nanocomposite thin films. The asprepared TiO2@PVC nanocomposite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy, thermogravimetric analysis, optical spectroscopy and mechanical strength analyses. The TiO2@PVC nanocomposites were found to be thermally and mechanically more stable compared with pure PVC. The anatase TiO2 in the TiO2@PVC nanocomposite showed a lower indirect band gap compared with pure TiO2, which can be attributed to the strain within the nanocomposite, thereby affecting the band-structure of the nanocomposite. Significant enhancement in the mechanical properties of TiO2@PVC compared with pure PVC was observed with a 10 wt% TiO2 loading, such as a 50% increase in Young's modulus and almost 100% improvement in the tensile strength.

  6. Engineering the polar magneto-optical Kerr effect in strongly strained L10-MnAl films

    Science.gov (United States)

    Zhu, Lijun; Brandt, Liane; Zhao, Jianhua

    2016-10-01

    We report the engineering of the polar magnetooptical (MO) Kerr effect in perpendicularly magnetized L10-MnAl epitaxial films with remarkably tuned magnetization, strain, and structural disorder by varying substrate temperature (T s) during molecular-beam epitaxy growth. The Kerr rotation was enhanced by a factor of up to 5 with T s increasing from 150 to 350 °C as a direct consequence of the improvement of the magnetization. A similar remarkable tuning effect was also observed on the Kerr ellipticity and the magnitude of the complex Kerr angle, while the phase of the complex Kerr angle appears to be independent of the magnetization. The combination of the good semiconductor compatibility, the moderate coercivity of 0.3-8.2 kOe, the tunable polar MO Kerr effect of up to ~0.034°, and giant spin precession frequencies of up to ~180 GHz makes L10-MnAl films a very interesting MO material. Our results give insights into both the microscopic mechanisms of the MO Kerr effect in L10-MnAl alloys and their scientific and technological application potential in the emerging spintronics and ultrafast MO modulators.

  7. Strain and structure in nano Ag films deposited on Au: Molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zientarski, Tomasz, E-mail: martom@dyzio.umcs.lublin.pl [Department for the Modelling of Physico-Chemical Processes, Maria Curie-Skłodowska University, ul. Gliniana 33, 20-614 Lublin (Poland); Chocyk, Dariusz [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland)

    2014-07-01

    Molecular dynamics simulations are applied to analyze the stress and structure of nano Ag thin films deposited on the Au substrate. The interactions in the system are described by the embedded atom method. The kinematical theory of scattering is employed to identify the structure obtained from simulations data. Results shows that the silver layers are adjusted to the crystalline lattice of the gold buffer layers, and during the deposition process only compressive stress is observed. In all the cases the distribution of stress does not depend on temperature.

  8. Role of Strain and Conductivity in Oxygen Electrocatalysis on LaCoO3 Thin Films.

    Science.gov (United States)

    Stoerzinger, Kelsey A; Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Ho Nyung; Shao-Horn, Yang

    2015-02-01

    The slow kinetics of the oxygen reduction and evolution reactions (ORR, OER) hinder energy conversion and storage in alkaline fuel cells and electrolyzers employing abundant transition metal oxide catalysts. Systematic studies linking material properties to catalytic activity are lacking, in part due to the heterogeneous nature of powder-based electrodes. We demonstrate, for the first time, that epitaxial strain can tune the activity of oxygen electrocatalysis in alkaline solutions, focusing on the model chemistry of LaCoO3, where moderate tensile strain can further induce changes in the electronic structure leading to increased activity. The resultant decrease in charge transfer resistance to the electrolyte reduces the overpotential in the ORR more notably than the OER and suggests a different dependence of the respective rate-limiting steps on electron transfer. This provides new insight into the reaction mechanism applicable to a range of perovskite chemistries, key to the rational design of highly active catalysts.

  9. Strain-dependence Of The Structure And Ferroic Properties Of Epitaxial NiTiO3 Thin Films Grown On Different Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Kovarik, Libor; Hu, Dehong; Chambers, Scott A.

    2015-08-14

    Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3 (M = Fe, Mn, Ni) [Fennie, Phys. Rev. Lett. 100, 167203 (2008)]. We set out to stabilize this metastable perovskite structure by growing NiTiO3 epitaxially on different substrates, and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO3 films were deposited on Al2O3, Fe2O3, and LiNbO3 substrates by pulsed laser deposition, and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO3 thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO3 is polarization-induced. From the substrates studied here, the perovskite substrate LiNbO3 proved to be the most promising one for strong multiferroism.

  10. Strain-Dependence of the Structure and Ferroic Properties of Epitaxial NiTiO3 Thin Films Grown on Different Substrates

    Directory of Open Access Journals (Sweden)

    Tamas Varga

    2015-01-01

    Full Text Available Polarization-induced weak ferromagnetism has been predicted a few years back in perovskite MTiO3 (M = Fe, Mn, and Ni. We set out to stabilize this metastable perovskite structure by growing NiTiO3 epitaxially on different substrates and to investigate the dependence of polar and magnetic properties on strain. Epitaxial NiTiO3 films were deposited on Al2O3, Fe2O3, and LiNbO3 substrates by pulsed laser deposition and characterized using several techniques. The effect of substrate choice on lattice strain, film structure, and physical properties was investigated. Our structural data from X-ray diffraction and electron microscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the weak ferromagnetism and lattice polarization on strain and highlight our ability to control the ferroic properties in NiTiO3 thin films by the choice of substrate. Our results are also consistent with the theoretical prediction that the ferromagnetism in acentric NiTiO3 is polarization induced. From the substrates studied here, the perovskite substrate LiNbO3 proved to be the most promising one for strong multiferroism.

  11. Tuning of near-infrared luminescence of SrTiO3:Ni2+ thin films grown on piezoelectric PMN-PT via strain engineering.

    Science.gov (United States)

    Bai, Gongxun; Zhang, Yang; Hao, Jianhua

    2014-07-17

    We report the tunable near-infrared luminescence of Ni(2+) doped SrTiO3 (STO:Ni) thin film grown on piezoelectric Pb(Mg(1/3)Nb(2/3))(0.7)Ti(0.3)O3 (PMN-PT) substrate via strain engineering differing from conventional chemical approach. Through controlling the thickness of STO:Ni film, the luminescent properties of the films including emission wavelength and bandwidth, as well as lifetime can be effectively tuned. The observed phenomena can be explained by the variation in the crystal field around Ni(2+) ions caused by strain due to the lattice mismatch. Moreover, the modulation of strain can be controlled under an external electric field via converse piezoelectric effect of PMN-PT used in this work. Consequently, controllable emission of the STO:Ni thin film is demonstrated in a reversible and real-time way, arising from the biaxial strain produced by piezoelectric PMN-PT. Physical mechanism behind the observation is discussed. This work will open a door for not only investigating the luminescent properties of the phosphors via piezoelectric platform, but also potentially developing novel planar light sources.

  12. Influence of strain on magnetic and electrical properties of La0.82Sr0.18CoO3 films

    Energy Technology Data Exchange (ETDEWEB)

    Bilani-Zeneli, Orkidia; Rata, Diana; Herklotz, Andreas; Schultz, Ludwig; Doerr, Kathrin [IFW Dresden (Germany). Institute for Metallic Materials

    2010-07-01

    Cobaltite perovskites La{sub 1-x}Sr{sub x}CoO{sub 3} have received attention mainly due to the thermally driven spin state transitions of the Co ions. For different doping, these transitions have been shown to be sensitive towards pressure in bulk and epitaxial strain in thin films. La{sub 1-x}SrxCoO{sub 3} with x=0.18 is of particular interest because it is located near the boundary of the Metal-Insulator transition. We have grown epitaxial La{sub 0.82}Sr{sub 0.18}CoO{sub 3} (LSCO) thin films by pulsed laser deposition on different substrates (PMN-PT, LaAlO{sub 3}, SrTiO{sub 3}, LSAT) providing reversible and static strain. In this work the influence of biaxial strain on the magnetic and electrical transport properties of LSCO films will be presented. Thin films reveal significant differences in magnetic behaviour with respect to bulk, e.g. the coercive fields are strongly enhanced. On the other hand tensile strain strongly suppresses the electrical conduction stabilizing thus an insulator state.

  13. Guanidine Soaps As Vehicles For Coating Ceramic Fibers

    Science.gov (United States)

    Philipp, Warren H.; Veitch, Lisa C.; Jaskowiak, Martha H.

    1994-01-01

    Soaps made from strong organic base guanidine and organic fatty acids serve as vehicles and binders for coating ceramic fibers, various smooth substrates, and other problematic surfaces with thin precious-metal or metal-oxide films. Films needed to serve as barriers to diffusion in fiber/matrix ceramic composite materials. Guanidine soaps entirely organic and burn off, leaving no residues.

  14. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  15. Effect of biaxial strain induced by piezoelectric PMN-PT on the upconversion photoluminescence of BaTiO₃:Yb/Er thin films.

    Science.gov (United States)

    Wu, Zhenping; Zhang, Yang; Bai, Gongxun; Tang, Weihua; Gao, Ju; Hao, Jianhua

    2014-11-17

    Thin films of Yb3+/Er3+ co-doped BaTiO3 (BTO:Yb/Er) have been epitaxially grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrates. Biaxial strain can be effectively controlled by applying electric field on PMN-PT substrate. A reversible, in situ and dynamic modification of upconversion photoluminescence in BTO:Yb/Er film was observed via converse piezoelectric effect. Detailed analysis and in situ X-ray diffraction indicate that such modulations are possibly due to the change in the lattice deformation of the thin films. This result suggests an alternative method to rationally tune the upconversion emissions via strain engineering.

  16. Strain profile and polarization enhancement in Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Amir, F.Z. [Physics Department, St John' s University, 8000 Utopia Pkwy, Jamaica, NY 11439 (United States); Donner, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Aspelmeyer, M. [Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Noheda, B. [Department of Chemical Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Xi, X.X. [Physics Department, College of Science and Technology, Temple University, 1900 N.13th Street, Philadelphia, PA 19122 (United States); Moss, S.C. [Department of Physics, University of Houston, 617 Science and Research Building 1, Houston, Texas 77204-5005 (United States)

    2012-11-15

    The sensitivity of spontaneous polarization to epitaxial strain for both 10 and 50 nm thick Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BSTO) ferroelectric thin films has been studied. Crystal truncation rod (CTR) profiles in the 00L directions at different wavelengths, and grazing incidence diffraction (GID) in the 0K0 direction on a single crystal have been recorded. Modeling of the CTR data gives a detailed picture of the strain and provides clear evidence of the film out-of-plane expansion at the surface, an increase of the polarization, as well as a contraction at the interface. GID data confirm the fitting of the CTR, showing an in-plane expansion of the BSTO film at the interface and a contraction at the surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Ceramic catalyst materials

    Energy Technology Data Exchange (ETDEWEB)

    Sault, A.G.; Gardner, T.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hanprasopwattanna, A.; Reardon, J.; Datye, A.K. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-08-01

    Hydrous titanium oxide (HTO) ion-exchange materials show great potential as ceramic catalyst supports due to an inherently high ion-exchange capacity which allows facile loading of catalytically active transition metal ions, and an ability to be cast as thin films on virtually any substrate. By coating titania and HTO materials onto inexpensive, high surface area substrates such as silica and alumina, the economics of using these materials is greatly improved, particularly for the HTO materials, which are substantially more expensive in the bulk form than other oxide supports. In addition, the development of thin film forms of these materials allows the catalytic and mechanical properties of the final catalyst formulation to be separately engineered. In order to fully realize the potential of thin film forms of titania and HTO, improved methods for the deposition and characterization of titania and HTO films on high surface area substrates are being developed. By varying deposition procedures, titania film thickness and substrate coverage can be varied from the submonolayer range to multilayer thicknesses on both silica and alumina. HTO films can also be formed, but the quality and reproducibility of these films is not nearly as good as for pure titania films. The films are characterized using a combination of isopropanol dehydration rate measurements, point of zero charge (PZC) measurements, BET surface area, transmission electron microscopy (TEM), and elemental analysis. In order to assess the effects of changes in film morphology on catalytic activity, the films are being loaded with MoO{sub 3} using either incipient wetness impregnation or ion-exchange of heptamolybdate anions followed by calcining. The MoO{sub 3} is then sulfided to form MOS{sub 2}, and tested for catalytic activity using pyrene hydrogenation and dibenzothiophene (DBT) desulfurization, model reactions that simulate reactions occurring during coal liquefaction.

  18. Ceramic Methyltrioxorhenium

    CERN Document Server

    Herrmann, R; Eickerling, G; Helbig, C; Hauf, C; Miller, R; Mayr, F; Krug von Nidda, H A; Scheidt, E W; Scherer, W; Herrmann, Rudolf; Troester, Klaus; Eickerling, Georg; Helbig, Christian; Hauf, Christoph; Miller, Robert; Mayr, Franz; Nidda, Hans-Albrecht Krug von; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang

    2006-01-01

    The metal oxide polymeric methyltrioxorhenium [(CH3)xReO3] is an unique epresentative of a layered inherent conducting organometallic polymer which adopts the structural motifs of classical perovskites in two dimensions (2D) in form of methyl-deficient, corner-sharing ReO5(CH3) octahedra. In order to improve the characteristics of polymeric methyltrioxorhenium with respect to its physical properties and potential usage as an inherentconducting polymer we tried to optimise the synthetic routes of polymeric modifications of 1 to obtain a sintered ceramic material, denoted ceramic MTO. Ceramic MTO formed in a solvent-free synthesis via auto-polymerisation and subsequent sintering processing displays clearly different mechanical and physical properties from polymeric MTO synthesised in aqueous solution. Ceramic MTO is shown to display activated Re-C and Re=O bonds relative to MTO. These electronic and structural characteristics of ceramic MTO are also reflected by a different chemical reactivity compared with its...

  19. Effect of perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction on the enhancement of domain wall creep velocity in Pt/Co thin films by piezoelectric strain

    Science.gov (United States)

    Shepley, Philippa M.; Burnell, Gavin; Moore, Thomas A.

    We investigate piezoelectric strain control of domain wall creep motion in perpendicularly magnetized Pt/Co thin films. Domain wall (DW) motion has potential applications in data storage and spintronics, where the use of voltages rather than magnetic fields to control magnetization reversal could reduce power consumption. Materials with perpendicular magnetic anisotropy (PMA) are of particular interest due to their narrow domain walls and potential for efficient current-induced DW motion. Sputtered Ta/Pt/Co(t)/X films (t=0.78-1.0nm, X= Pt, Ir/Pt or Ir) on thin glass substrates were bonded to biaxial piezoelectric transducers, to which 150V was applied to produce a tensile out-of-plane strain of 9x10-4. This reduced the PMA by 10kJ/m3 and increased the DW creep velocity by up to 90%. DW energy can be calculated from the PMA and the Dzyaloshinskii-Moriya interaction (DMI) field. DW creep measurements of DMI field found no change with strain. The change in DW velocity with strain is linear with the change in DW energy for Pt/Co DWs with a mixed Bloch-Neel structure. Pt/Co/Pt films with higher DW velocity changes were found to have purely Bloch DWs. We conclude that the velocity of Bloch DWs is more sensitive to strain-induced changes than that of Bloch-Neel DWs. funded by EPSRC.

  20. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    DEFF Research Database (Denmark)

    Walker, Julian; Simons, Hugh; Alikin, Denis O;

    2016-01-01

    )-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...

  1. Domain wall pinning on strain relaxation defects in FePt(001)/Pt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Attane, J. P.; Samson, Y.; Marty, A.; Halley, D.; Beigne, C.

    2001-08-06

    Thin FePt (001) films, grown by molecular-beam epitaxy on Pt(001), exhibit a very large perpendicular magnetic anisotropy (K{sub u}=5 x 10{sup 6}Jm{sup -3}) and a 100% magnetic remanence in perpendicular field. The lattice misfit between FePt and Pt (1.5%) relaxes through the pileup of a/6 <112> partial dislocations along {l_brace}111{r_brace} planes, leading to the formation of microtwins. Atomic force microscopy images demonstrate that this process induces a spontaneous rectangular nanostructuration of the sample, while magnetic force microscopy shows that the microtwins act as pinning sites for the magnetic walls. This leads to square magnetic domains and explains the large coercivity associated with the domain wall propagation. {copyright} 2001 American Institute of Physics.

  2. Domain wall pinning on strain relaxation defects in FePt(001)/Pt thin films

    Science.gov (United States)

    Attané, J. P.; Samson, Y.; Marty, A.; Halley, D.; Beigné, C.

    2001-08-01

    Thin FePt (001) films, grown by molecular-beam epitaxy on Pt(001), exhibit a very large perpendicular magnetic anisotropy (Ku=5×106J m-3) and a 100% magnetic remanence in perpendicular field. The lattice misfit between FePt and Pt (1.5%) relaxes through the pileup of a/6 partial dislocations along {111} planes, leading to the formation of microtwins. Atomic force microscopy images demonstrate that this process induces a spontaneous rectangular nanostructuration of the sample, while magnetic force microscopy shows that the microtwins act as pinning sites for the magnetic walls. This leads to square magnetic domains and explains the large coercivity associated with the domain wall propagation.

  3. Easy calibration method of vision system for in-situ measurement of strain of thin films

    Institute of Scientific and Technical Information of China (English)

    Jun-Hyub PARK; Dong-Joong KANG; Myung-Soo SHIN; Sung-Jo LIM; Son-Cheol YU; Kwang-Soo LEE; Jong-Eun HA; Sung-Hoon CHOA

    2009-01-01

    An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.

  4. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  5. Microstructure of highly strained BiFeO{sub 3} thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Heon Kim, Young, E-mail: young.h.kim@kriss.re.kr [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340 (Korea, Republic of); Bhatnagar, Akash; Pippel, Eckhard; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); Alexe, Marin [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany); University of Warwick, Coventry CV4 7AL, West Midlands (United Kingdom)

    2014-01-28

    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO{sub 3}) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

  6. Strains in Thermally Growing Alumina Films Measured in-situ usingSynchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

    2006-01-02

    Strains in thermally grown oxides have been measured in-situ, as the oxides develop and evolve. Extensive data have been acquired from oxides grown in air at elevated temperatures on different model alloys that form Al{sub 2}O{sub 3}. Using synchrotron x-rays at the Advanced Photon Source (Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from the oxidizing specimen were recorded every 5 minutes during oxidation and subsequent cooling. The diffraction patterns were analyzed to determine strains in the oxides, as well as phase changes and the degree of texture. To study a specimen's response to stress perturbation, the oxidizing temperature was quickly cooled from 1100 to 950 C to impose a compressive thermal stress in the scale. This paper describes this new experimental approach and gives examples from oxidized {beta}-NiAl, Fe-20Cr-10Al, Fe-28Al-5Cr and H{sub 2}-annealed Fe-28Al-5Cr (all at. %) alloys to illustrate some current understanding of the development and relaxation of growth stresses in Al{sub 2}O{sub 3}.

  7. Preparation of epitaxial La{sub 2-x}Sr{sub x}Cu0{sub 4} thin films for dynamic investigations of epitaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Trommler, S; Pahlke, P; Huehne, R; Schultz, L; Holzapfel, B, E-mail: s.trommler@ifw-dresden.d [IFW Dresden, PO Box 270116, D-01171 Dresden (Germany); Dresden University of Technology, Department of Physics, Institute for Physics of Solids, 01062 Dresdenm (Germany)

    2010-06-01

    Investigations using different single crystalline substrates can only hardly correlate the applied strain with the resulting superconducting properties of thin films directly, since growth conditions and microstructure may severely affect these properties. An alternative approach to study this interaction is the preparation of superconducting films on piezoelectric substrates enabling a dynamical variation of the induced strain by applying an electric field on the substrate. In this work we report on preliminary growth studies of thin epitaxial La{sub 2-x}Sr{sub x}CuO{sub 4} films on standard and piezoelectric single crystalline substrates. Structural and electrical properties of La{sub 2-x}Sr{sub x}CuO{sub 4} films on SrTiO{sub 3} and SrLaAlO{sub 4} substrates using on-axis pulsed laser deposition are shown and compared to films grown in off-axis geometry. Furthermore, we present the first results of the growth of La{sub 1.85}Sr{sub 0.15}CuO{sub 4} on piezoelectric (001) Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.72}Ti{sub 0.28}O{sub 3} (PMN-PT) substrates using off-axis geometry. Due to a large lattice mismatch between La{sub 2-x}Sr{sub x}CuO{sub 4} and PMN-PT substrates a buffer layer is required to match the lattice parameters and to support the growth of high quality films. Structural and superconducting properties of thin films grown epitaxial on a SrTiO{sub 3} buffer layer are shown and compared to films grown directly on SrTiO{sub 3} substrates.

  8. Compressive properties of open-cell ceramic foams

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-yan; FU Yi-ming; ZENG Xiao-ming

    2006-01-01

    The compressive experiments of two kinds of ceramic foams were completed. The results show that the behavior of ceramic foams made by organic filling method is anisotropic. The stress-strain responses of ceramic foams made by sponge-replication show isotropy and strain rate dependence. The struts brittle breaking of net structure of this ceramic foam arises at the weakest defects of framework or at the part of framework,which causes the initiation and expanding of cracks. The compressive strength of ceramic foam is dependent on the strut size and relative density of foams.

  9. Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films

    KAUST Repository

    Cossu, Fabrizio

    2013-06-21

    Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.

  10. Substrate-induced strain effects on Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C S [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Hill, J P [Department of Physics, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Gibbs, Doon [Department of Physics, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Rajeswari, M [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States); Biswas, A [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Shinde, S [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Greene, R L [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Venkatesan, T [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Millis, A J [Department of Physics, Columbia University, New York, NY 10027 (United States); Yokaichiya, F [Instituto de Fisica, Universidade Estadual de Campinas, CP 6165, Campinas, SP (Brazil); Giles, C [Instituto de Fisica, Universidade Estadual de Campinas, CP 6165, Campinas, SP (Brazil); Casa, D [CMC-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Venkataraman, C T [CMC-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Gog, T [CMC-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2004-01-14

    We report the characterization of the crystal structure, low-temperature charge and orbital ordering, transport and magnetization of Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} films grown on LaAlO{sub 3}, NdGaO{sub 3} and SrTiO{sub 3} substrates, which provide compressive (LaAlO{sub 3}) and tensile (NdGaO{sub 3} and SrTiO{sub 3}) strain. The films are observed to exhibit different crystallographic symmetries from the bulk material and the low-temperature ordering is found to be more robust under compressive as opposed to tensile strain. In fact, bulk-like charge and orbital ordering is not observed in the film grown on NdGaO{sub 3}, which is the substrate that provides the least amount of measured, but tensile, strain. This result suggests the importance of the role played by the Mn-O--Mn bond angles in the formation of charge and orbital ordering at low temperatures. Finally, in the film grown on LaAlO{sub 3}, a connection between the lattice distortion associated with orbital ordering and the magnetization is reported.

  11. Self-Assembled Magnetic Metallic Nanopillars in Ceramic Matrix with Anisotropic Magnetic and Electrical Transport Properties.

    Science.gov (United States)

    Su, Qing; Zhang, Wenrui; Lu, Ping; Fang, Shumin; Khatkhatay, Fauzia; Jian, Jie; Li, Leigang; Chen, Fanglin; Zhang, Xinghang; MacManus-Driscoll, Judith L; Chen, Aiping; Jia, Quanxi; Wang, Haiyan

    2016-08-10

    Ordered arrays of metallic nanopillars embedded in a ceramic matrix have recently attracted considerable interest for their multifunctionality in advanced devices. A number of hurdles need to be overcome for achieving practical devices, including selections of metal-ceramic combination, creation of tunable and ordered structure, and control of strain state. In this article, we demonstrate major advances to create such a fine nanoscale structure, i.e., epitaxial self-assembled vertically aligned metal-ceramic composite, in one-step growth using pulsed laser deposition. Tunable diameter and spacing of the nanopillars can be achieved by controlling the growth parameters such as deposition temperature. The magnetic metal-ceramic composite thin films demonstrate uniaxial anisotropic magnetic properties and enhanced coercivity compared to that of bulk metal. The system also presents unique anisotropic electrical transport properties under in-plane and out-of-plane directions. This work paves a new avenue to fabricate epitaxial metal-ceramic nanocomposites, which can simulate broader future explorations in nanocomposites with novel magnetic, optical, electrical, and catalytical properties.

  12. Heteroepitaxial strain in alkali halide thin films: KCl on NaCl

    DEFF Research Database (Denmark)

    Baker, J.; Lindgård, Per-Anker

    1999-01-01

    We have pet-formed Monte Carlo simulations of the properties of a NaCl (001) surface covered by full or partial layers of KCl, for coverages up to 5 monolayers (ML). A wide variety of structures of the film is found. For integer ML coverages we find the continuous, so-called floating mode rumple...... structure, as was previously found in the KBr/NaCl system. However, for a coverage of similar to 2.1 ML, we find a discrete structure of periodicity 3:4 of small regularly spaced KCl pyramids. It has the same scattering characteristics as the structure observed by Henzler et al. [Phys. Rev. B 52, 17 060...... (1995)], but it is two-dimensional modulated, rather than the rowlike stacking fault structure proposed by Henzler et al. Also, at a coverage of similar to 0.8 ML there is a stable 3:4 structure. Other structures are found at intermediate coverages, corresponding to regular arrays of dislocation lines...

  13. Controllable piezoelectricity of Pb(Zr0.2Ti0.8)O3 film via in situ misfit strain

    Science.gov (United States)

    Lee, Hyeon Jun; Guo, Er-Jia; Kwak, Jeong Hun; Hwang, Seung Hyun; Dörr, Kathrin; Lee, Jun Hee; Young Jo, Ji

    2017-01-01

    The tetragonality (c/a) of a PbZr0.2Ti0.8O3 (PZT) thin film on La0.7Sr0.3MnO3/ 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d33) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Our results demonstrate that the tetragonality of the PZT thin film plays a critical role in determining d33, and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate.

  14. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  15. Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO{sub 3}:CoFe{sub 2}O{sub 4} vertically aligned nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenrui; Jiao, Liang; Li, Leigang [Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Jian, Jie; Khatkhatay, Fauzia; Chu, Frank [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States); Chen, Aiping [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States); Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Jia, Quanxi [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); MacManus-Driscoll, Judith L. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-02-10

    Self-assembled BiFeO{sub 3}:CoFe{sub 2}O{sub 4} (BFO:CFO) vertically aligned nanocomposite thin films have been fabricated on SrTiO{sub 3} (001) substrates using pulsed laser deposition. The strain relaxation mechanism between BFO and CFO with a large lattice mismatch has been studied by X-ray diffraction and transmission electron microscopy. The as-prepared nanocomposite films exhibit enhanced perpendicular magnetic anisotropy as the BFO composition increases. Different anisotropy sources have been investigated, suggesting that spin-flop coupling between antiferromagnetic BFO and ferrimagnetic CFO plays a dominant role in enhancing the uniaxial magnetic anisotropy.

  16. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  17. DC-magnetron sputtering of ZnO:Al films on (00.1)Al{sub 2}O{sub 3} substrates from slip-casting sintered ceramic targets

    Energy Technology Data Exchange (ETDEWEB)

    Miccoli, I., E-mail: ilio.miccoli@unisalento.it [Photovoltaics R and D Lab, Alfa Impianti S.r.l., Via Baden Powell, I-73044 Galatone, Lecce (Italy); Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Monteroni, I-73100 Lecce (Italy); Spampinato, R.; Marzo, F. [Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Monteroni, I-73100 Lecce (Italy); Prete, P. [Istituto per la Microelettronica e Microsistemi del CNR, Unità di Lecce, Via Monteroni, I-73100 Lecce (Italy); Lovergine, N. [Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Via Monteroni, I-73100 Lecce (Italy)

    2014-09-15

    Highlights: • ZnO:Al was DC-sputtered on sapphire >350 °C by slip-casting sintered AZO target. • Films are highly (00.1)-oriented, smooth and transparent in the NIR–visible range. • Films growth rate decreases with temperature, while their grain size increases. • A high temperature reduction for sticking coefficients of impinging species is proved. • We prove that Thornton model does not apply to high-temperature DC-sputtered ZnO. - Abstract: High (>350 °C) temperature DC-sputtering deposition of ZnO:Al thin films onto single-crystal (00.1) oriented Al{sub 2}O{sub 3} (sapphire) substrates is reported, using a ultrahigh-density, low-resistivity and low-cost composite ceramic target produced by slip-casting (pressureless) sintering of ZnO–Al{sub 2}O{sub 3} (AZO) powders. The original combination of high-angle θ–2θ (Bragg–Brentano geometry) X-ray diffraction with low angle θ–2θ X-ray reflectivity (XRR) techniques allows us to define the AZO target composition and investigate the structural properties and surface/interface roughness of as-sputtered ZnO:Al films; besides, the growth dynamics of ZnO:Al is unambiguously determined. The target turned out composed of the sole wurtzite ZnO and spinel ZnAl{sub 2}O{sub 4} phases. X-ray diffraction analyses revealed highly (00.1)-oriented (epitaxial) ZnO:Al films, the material mean crystallite size being in the 13–20 nm range and increasing with temperature between 350 °C and 450 °C, while the film growth rate (determined via XRR measurements) decreases appreciably. XRR spectra also allowed to determine rms surface roughness <1 nm for present films and showed ZnO:Al density changes by only a few percent between 350 °C and 450 °C. The latter result disproves the often-adopted Thornton model for the description of the sputter-grown ZnO films and instead points out toward a reduction of the sticking coefficients of impinging species, as the main origin of film growth rate and grain size dependence

  18. Development of an embedded thin-film strain-gauge-based SHM network into 3D-woven composite structure for wind turbine blades

    Science.gov (United States)

    Zhao, Dongning; Rasool, Shafqat; Forde, Micheal; Weafer, Bryan; Archer, Edward; McIlhagger, Alistair; McLaughlin, James

    2017-04-01

    Recently, there has been increasing demand in developing low-cost, effective structure health monitoring system to be embedded into 3D-woven composite wind turbine blades to determine structural integrity and presence of defects. With measuring the strain and temperature inside composites at both in-situ blade resin curing and in-service stages, we are developing a novel scheme to embed a resistive-strain-based thin-metal-film sensory into the blade spar-cap that is made of composite laminates to determine structural integrity and presence of defects. Thus, with fiberglass, epoxy, and a thinmetal- film sensing element, a three-part, low-cost, smart composite laminate is developed. Embedded strain sensory inside composite laminate prototype survived after laminate curing process. The internal strain reading from embedded strain sensor under three-point-bending test standard is comparable. It proves that our proposed method will provide another SHM alternative to reduce sensing costs during the renewable green energy generation.

  19. Effect of Misfit Strain on Pyroelectric Properties of (111) Oriented Pb(Zr1-x Ti x ) O3 Thin Films

    Science.gov (United States)

    Qiu, Jian-Hua; Chen, Zhi-Hui; Wang, Xiu-Qin; Yuan, Ning-Yi; Ding, Jian-Ning

    2016-10-01

    Based on the Landau-Dovenshire theory, the thermodynamic potential of (111) oriented films is constructed to investigate the pyroelectric properties of Pb(Zr1-xTix) O3 thin films. Due to the presence of nonlinear coupling terms resulted from the (111) epitaxy with substrates, the effects of misfit strain and electric field on the phase transitions at room temperature are more complex than that of (001) and (110) oriented films. Pb(Zr0.5Ti0.5) O3 thin films with the Ti composition around the morphotropic phase boundary (MPB) have the giant dielectric and pyroelectric properties. Moreover, Pb(Zn1-xTix) O3 thin films grown on the tensile substrates which induce the triclinic γ phase have the larger dielectric and pyroelectric properties than that on the compressive substrates. Therefore, the physical properties of (111) oriented Pb(Zr1-xTix) O3 thin films can be adjusted by choosing the suitable substrates. Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the research fund of Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Major Projects of Natural Science Research in Jiangsu Province under Grant Nos. 15KJA43002, 16KJD430006, and also sponsored by Qing Lan Project of Education Department of Jiangsu Province

  20. Effects of growing conditions on the electric and magnetic properties of strained La2/3Sr1/3MnO3 thin films

    Institute of Scientific and Technical Information of China (English)

    卢海霞; 王晶; 沈保根; 孙继荣

    2015-01-01

    We investigate the growing condition dependences of magnetic and electric properties of the La2/3Sr1/3MnO3 thin films grown on SrTiO3 (001) substrates. With reducing the film thickness and growth pressure, the Curie temperature (TC) drops off, and the magnetism and metallicity are suppressed. At an appropriate deposition temperature, we can obtain the best texture and remarkably enhance the magnetic and electrical properties. However, the resistivity of film cannot be modulated by changing dc current and green light intensity. This result may be induced by the coherent strains in the epitaxially grown film due to its lattice mismatching that of the SrTiO3 substrate. Furthermore, we show that the relations between the magnetism and the resistivity for the typical films with different thickness values. For the 13.4-nm-thick film, the R–T curve presents two transition behaviors:insulator-to-metal and metal-to-insulator in the cooling process:the former corresponds to magnetic transition, and the later correlates with thermal excitation conduction.

  1. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications.

    Science.gov (United States)

    Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei

    2016-01-01

    The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

  2. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

    Directory of Open Access Journals (Sweden)

    Kuang-Yang Kou

    2016-01-01

    Full Text Available The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B, transparent conductive oxide (TCO materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

  3. Strain-dependence of the structure and ferroic properties of epitaxial Ni{sub 1−x}Ti{sub 1−y}O{sub 3} thin films grown on sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Tamas, E-mail: tamas.varga@pnnl.gov [Environmental Molecular Sciences Laboratory, Richland, WA (United States); Droubay, Timothy C. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States); Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Colby, Robert J.; Hu, Dehong [Environmental Molecular Sciences Laboratory, Richland, WA (United States); Shelton, William A. [Louisiana State University, Baton Rouge, LA (United States); Chambers, Scott A. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-03-02

    Polarization-induced weak ferromagnetism has been predicted a few years back in compounds MTiO{sub 3} (M = Fe, Mn, Ni) (Fennie, 2008). We set out to stabilize this metastable, distorted perovskite structure by growing NiTiO{sub 3} epitaxially on sapphire Al{sub 2}O{sub 3} (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni{sub 1−x}Ti{sub 1−y}O{sub 3} films of different Ni/Ti ratios and thicknesses were deposited on Al{sub 2}O{sub 3} substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Néel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO{sub 3} thin films by film stoichiometry and thickness. - Highlights: • NiTiO{sub 3} epitaxial thin films with LiNbO{sub 3}-type structure by pulsed laser deposition. • Strain varied by film thickness, stoichiometry, and synthesis temperature. • Systematic study of the effect of strain on film structure and physical properties. • Manipulation of ferroic properties by strain confirmed.

  4. Effects of electric-field-induced piezoelectric strain on the electronic transport properties of La{sub 0.9}Ce{sub 0.1}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, R.K., E-mail: zrk@ustc.edu [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong (China); Dong, S.N. [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026 (China); Wu, Y.Q.; Zhu, Q.X. [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Y.; Chan, H.L.W. [Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong (China); Li, X.M.; Luo, H.S. [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Li, X.G. [Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026 (China)

    2012-12-15

    The authors constructed multiferroic structures by growing La{sub 0.9}Ce{sub 0.1}MnO{sub 3} (LCEMO) thin films on piezoelectric 0.68Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.32PbTiO{sub 3} (PMN-PT) single-crystal substrates. Due to the efficient elastic coupling at the interface, the electric-field-induced piezoelectric strain in PMN-PT substrates is effectively transferred to LCEMO films and thus, leads to a decrease in the resistance and an increase in the magnetoresistance of the films. Particularly, it was found that the resistance-strain coefficient [({Delta}R/R){sub film}/({Delta}{epsilon}{sub zz}){sub film}] of the LCEMO film was considerably enhanced by the application of magnetic fields, demonstrating strong coupling between the lattice and the spin degrees of freedom. ({Delta}R/R){sub film}/({Delta}{epsilon}{sub zz}){sub film} at 122 K was enhanced by {approx} 28.8% by a magnetic field of 1.2 T. An analysis of the overall results demonstrates that the phase separation is crucial to understand strain-mediated modulation of electronic transport properties of manganite film/PMN-PT multiferroic structures. - Highlights: Black-Right-Pointing-Pointer La{sub 0.9}Ce{sub 0.1}Mn{sub O3} films were epitaxially grown on piezoelectric single crystals. Black-Right-Pointing-Pointer Piezoelectric strain influences the electronic transport properties of films. Black-Right-Pointing-Pointer Magnetic field enhances the piezoelectric strain effect. Black-Right-Pointing-Pointer Phase separation is crucial to understand the piezoelectric strain effect.

  5. Final Report for Award DE-SC0005403. Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, Joshua L. [Univ. of Delaware, Newark, DE (United States); Prasad, Ajay K. [Univ. of Delaware, Newark, DE (United States)

    2015-09-06

    The enclosed document provides a final report to document the research performed at the University of Delaware under Grant DE-SC0005403: Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping. The ultimate goal of this project was to learn how to systematically strain the inter-atomic distance in thin ceramic films and how to use this newfound control to improve the ease by which oxygen ions can conduct through the films. Increasing the ionic conductivity of ceramics holds the promise of drastic improvements in the performance of solid oxide fuel cells, chemical sensors, gas permeation membranes, and related devices. Before this work, the experimental evidence advocating for strain-based techniques was often controversial and poorly characterized. Enabling much of this work was a new method to quickly create a very wide range of ceramic nanostructures that was established during the first phase of the project. Following this initial phase, we created a variety of promising nanostructured epitaxial films and multilayers with systematic variations in lattice mismatch and dopant content. Over the course of the work, a positive effect of tensile atomic strain on the oxygen conductivity was conclusively found using a few different forms of samples and experimental techniques. The samples were built by sputtering, an industrially scalable technique, and thus the technological implementation of these results may be economically feasible. Still, two other results consistently achieved over multiple efforts in this work give pause. The first of these results was that very specific, pristine surfaces upon which to build the nanostructures were strictly required in order to achieve measurable results. The second of these results was that compressively strained films with concomitant reductions in oxygen conductivity are much easier to obtain relative to tensile-strained films with increased conductivity.

  6. Long-range ferromagnetic order in LaCoO3 -δ epitaxial films due to the interplay of epitaxial strain and oxygen vacancy ordering

    Science.gov (United States)

    Mehta, V. V.; Biskup, N.; Jenkins, C.; Arenholz, E.; Varela, M.; Suzuki, Y.

    2015-04-01

    We demonstrate that a combination of electronic structure modification and oxygen vacancy ordering can stabilize a long-range ferromagnetic ground state in epitaxial LaCoO3 thin films. Highest saturation magnetization values are found in the thin films in tension on SrTiO3 and (La ,Sr )(Al ,Ta )O3 substrates and the lowest values are found in thin films in compression on LaAlO3. Electron microscopy reveals oxygen vacancy ordering to varying degrees in all samples, although samples with the highest magnetization are the most defective. Element-specific x-ray absorption techniques reveal the presence of high spin Co2 + and Co3 + as well as low spin Co3 + in different proportions depending on the strain state. The interactions among the high spin Co ions and the oxygen vacancy superstructure are correlated with the stabilization of the long-range ferromagnetic order.

  7. Resistive switching and magnetic behavior of Bi0.8Ba0.2FeO3 / SrRuO3 / SrTiO3 films: role of thickness-dependent strain

    Science.gov (United States)

    Vagadia, Megha; Ravalia, Ashish; Trivedi, Priyanka; Jethva, Sadaf; Katba, Savan; Kuberkar, D. G.

    2016-05-01

    The thickness-dependent resistive switching and magnetic behavior of Bi0.8Ba0.2FeO3/SRO/STO (1 0 0) films have been studied in the context of strain modifications introduced by varying the film thickness. Generation of misfit dislocation results in strain relaxation with an increase in film thickness. All films (50, 100 and 200 nm) show hysteresis in I-V behavior at room temperature with applied voltage V max  =  ±5 V. Fitting of I-V data suggests that trap-controlled SCLC governs the conduction in HRS in the 50 nm film while in the 100 nm and 200 nm films, the charge transport mechanism is ohmic-type throughout the applied field. The ON/OFF switching ratio and current retention performance decrease with an increase in film thickness, suggesting that substrate-induced strain and interface modifications play an important role in governing the resistive switching mechanism in Bi0.8Ba0.2FeO3 films. A film with lower thickness ~50 nm is found to exhibit the highest magnetization which may be attributed to the increase in oxygen vacancies and compressive strain.

  8. Persistent monolayer-scale chemical ordering in Si{sub 1−x}Ge{sub x} heteroepitaxial films during surface roughening and strain relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Amatya, J. M.; Floro, J. A. [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2015-12-28

    Chemical ordering in semiconductor alloys could modify thermal and electronic transport, with potential benefits to thermoelectric properties. Here, metastable ordering that occurs during heteroepitaxial growth of Si{sub 1−x}Ge{sub x} thin film alloys on Si(001) and Ge(001) substrates is investigated. A parametric study was performed to study how strain, surface roughness, and growth parameters affect the order parameter during the alloy growth. The order parameter for the alloy films was carefully quantified using x-ray diffraction, taking into account an often-overlooked issue associated with the presence of multiple spatial variants associated with ordering along equivalent <111> directions. Optimal ordering was observed in the films having the smoothest surfaces. Extended strain relaxation is suggested to reduce the apparent order through creation of anti-phase boundaries. Ordering surprisingly persists even when the film surface extensively roughens to form (105) facets. Growth on deliberately miscut Si(001) surfaces does not affect the volume-averaged order parameter but does impact the relative volume fractions of the equivalent ordered variants in a manner consistent with geometrically necessary changes in step populations. These results provide somewhat self-contradictory implications for the role of step edges in controlling the ordering process, indicating that our understanding is still incomplete.

  9. Thermodynamic Properties, Hysteresis Behavior and Stress-Strain Analysis of MgH2 Thin Films, Studied over a Wide Temperature Range

    Directory of Open Access Journals (Sweden)

    Yevheniy Pivak

    2012-06-01

    Full Text Available Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333 K to 545 K. The enthalpy and entropy of hydride decomposition, ∆Hdes = −78.3 kJ/molH2, ∆Sdes = −136.1 J/K molH2, estimated from the Van't Hoff analysis, are in good agreement with bulk results, while the absorption thermodynamics, ∆Habs = −61.6 kJ/molH2, ∆Sabs = −110.9 J/K molH2, appear to be substantially affected by the clamping of the film to the substrate. The clamping is negligible at high temperatures, T > 523 K, while at lower temperatures, T < 393 K, it is considerable. The hysteresis at room temperature in Mg/Ta/Pd films increases by a factor of 16 as compared to MgH2 bulk. The hysteresis increases even further in Mg/Pd films, most likely due to the formation of a Mg-Pd alloy at the Mg/Pd interface. The stress–strain analysis of the Mg/Ta/Pd films at 300–333 K proves that the increase of the hysteresis occurs due to additional mechanical work during the (de-hydrogenation cycle. With a proper temperature correction, our stress–strain analysis quantitatively and qualitatively explains the hysteresis behavior in thin films, as compared to bulk, over the whole temperature range.

  10. Energy harvesting performance of piezoelectric ceramic and polymer nanowires

    Science.gov (United States)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-01

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in certain cases, to have similar energy conversion efficiencies, ceramics are more promising in strain-driven NGs while polymers are more promising for stress-driven NGs

  11. Tensile strain induced narrowed bandgap of TiO{sub 2} films: Utilizing the two-way shape memory effect of TiNiNb substrate and in-situ mechanical bending

    Energy Technology Data Exchange (ETDEWEB)

    Du, Minshu, E-mail: dms1223@126.com [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China); Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas, 78712 (United States); Cui, Lishan; Wan, Qiong [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China)

    2016-05-15

    Graphical abstract: - Highlights: • Imposed tensile strain to anatase TiO{sub 2} nanofilm by using the two-way shape memory effect of NiTiNb substrate. • Imposed tensile strain to rutile TiO{sub 2} thin film by in-situ mechanical bending. • Tauc plot based on the PEC-tested auction spectrum was utilized to precisely determine the bandgap of TiO{sub 2}. • Tensile strain narrowed the bandgap of anatase TiO{sub 2} by 60 meV and rutile TiO{sub 2} by 70 meV. • Tensile strain contributes to a 1.5 times larger photocurrent for the water oxidation reaction. - Abstract: Elastic strain is one of the methods to alter the band gap of semiconductors. However, relevant experimental work is limited due to the difficulty in imposing strain. Two new methods for imposing tensile strain to TiO{sub 2} film were introduced here. One is by utilizing the two-way shape memory effect of NiTiNb substrate, and the other method is in-situ mechanical bending. The former method succeeded in imposing 0.4% tensile strain to anatase TiO{sub 2} nanofilm, and strain narrowed the bandgap of TiO{sub 2} by 60 meV. The latter method enabled rutile TiO{sub 2} thin film under the 0.5% biaxially tensile-strained state, which contributes to a narrowed bandgap with ΔE{sub g} of 70 meV. Also, photocurrents of both strained TiO{sub 2} films increased by 1.5 times compared to the strain-free films, which indirectly verified the previous DFT prediction proposed by Thulin and Guerra in 2008 that tensile strain could improve the mobility and separation of photo-excite carriers.

  12. Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natural Rubber

    OpenAIRE

    Sreenivasulu Tadakaluru; Wiradej Thongsuwan; Pisith Singjai

    2014-01-01

    Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ∼5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. U...

  13. Development of Sensors for Ceramic Components in Advanced Propulsion Systems. Phase 2; Temperature Sensor Systems Evaluation

    Science.gov (United States)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1994-01-01

    The 'development of sensors for ceramic components in advanced propulsion systems' program is divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objective of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. Six materials, mutually agreed upon by NASA and Pratt & Whitney, were investigated under this program. This report summarizes the Phase 2 effort and provides conclusions and recommendations for each of the categories evaluated.

  14. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  15. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  16. Degree of crystallinity and strain in B{sub 4}C and SiC thin films as a function of processing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hershberger, J.; Yalisove, S.M.; Bilello, J.C. [Univ. of Michigan, Ann Arbor, MI (United States); Rek, Z.U. [Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.; Kustas, F. [Technology Assessment and Transfer, Annapolis, MD (United States)

    1998-12-31

    Amorphous and crystalline content in sputtered B{sub 4}C and SiC thin films has been analyzed by synchrotron grazing incidence x-ray scattering (GIXS). GIXS provided quantitative information on the average structure while TEM was used to find inhomogeneities such as small volume fraction phases. GIXS results were compared to simulations to determine average particle size or bond length for crystalline or amorphous phases respectively. In this work, the authors compared results from films deposited with, and without, an RF bias applied to the substrate during deposition. Results indicated that SiC can be described as strained polycrystalline material with particle size of approximately 13 {angstrom} for biased samples and 9 {angstrom} for unbiased samples. Boron carbide deposited without bias was completely crystalline with a particle size of approximately 30 {angstrom}, while the data suggested that B{sub 4}C deposited with bias is amorphous. The scattering from the biased materials was fourier transformed to yield radial distribution functions (RDF). This provided nearest neighbor distances, and it was demonstrated that the technique can be used to determine full three-dimensional strain tensors in amorphous thin films.

  17. Hybrid 2D photonic crystal-assisted Lu3Al5O12:Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index.

    Science.gov (United States)

    Park, Hoo Keun; Oh, Ji Hye; Kang, Heejoon; Zhang, Jian; Do, Young Rag

    2015-03-04

    This paper reports the combined optical effects of a two-dimensional (2D) SiNx photonic crystal layer (PCL)-assisted Lu3Al5O12:Ce (LuAG:Ce) green ceramic-plate phosphor (CPP) and a free-standing (Sr,Ca)AlSiN3:Eu red film phosphor to enhance luminous efficacy, color rendering index (CRI), and special CRI (R9) of LuAG:Ce CPP-capped white light-emitting diodes (LEDs) for high-power white LEDs at 350 mA. By introducing the 2D SiNx PCL, the luminous efficacy was improved by a factor of 1.25 and 1.15 compared to that of the conventional flat CPP-capped LED and the thickness-increased CPP-capped LED (with a thickness of 0.15 mm), respectively, while maintaining low color-rendering properties. The combining of the free-standing red film phosphor in the flat CPP-capped, the 2D PCL-assisted CPP-capped, and the thickness-increased CPP-capped LEDs led to enhancement of the CRI and the special CRI (R9); it also led to a decrease of the correlated color temperature (CCT) due to broad wavelength coverage via the addition of red emission. High CRI (94), natural white CCT (4450 K), and acceptable luminous efficacy (71.1 lm/W) were attained from the 2D PCL-assisted LuAG:Ce CPP/free-standing red film phosphor-based LED using a red phosphor concentration of 7.5 wt %. It is expected that the combination of the 2D PCL and the free-standing red film phosphor will be a good candidate for achieving a high-power white CPP-capped LED with excellent CRI.

  18. A Novel Conservation Method of Historical Outdoor Ceramics

    Directory of Open Access Journals (Sweden)

    Aivaras Kareiva

    2015-06-01

    Full Text Available In this study, a novel conservation method was developed for the protection of historical outdoor ceramics. The historical ceramics from monastery of “San Filippo di Fragalà” (Sicily, Italy were chosen for this study. Polymeric films on the surface of ceramics specimens were formed using Silres BS 16 as a precursor. For the comparison, the material Paraloid B-82, which is already known in the conservation practice, was also used for the formation of protective coatings on historical ceramics. The investigated samples were characterized by SEM, TG, EDX, XRD methods and contact angle measurements. The results obtained showed that ceramic samples were successfully preserved and saturated by Silres BS 16 with forming effective polymeric coatings on ancient ceramics surfaces. Keywords: Ancient ceramics, conservation, Silres BS 16, SEM, TG, contact angle.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6823

  19. Influence of piezoelectric strain on the Raman spectra of BiFeO{sub 3} films deposited on PMN-PT substrates

    Energy Technology Data Exchange (ETDEWEB)

    Himcinschi, Cameliu, E-mail: himcinsc@physik.tu-freiberg.de; Talkenberger, Andreas; Kortus, Jens [TU Bergakademie Freiberg, Institute of Theoretical Physics, 09596 Freiberg (Germany); Guo, Er-Jia [Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Germany); Institute for Metallic Materials, IFW Dresden, 01069 Dresden (Germany); Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Dörr, Kathrin [Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Germany); Institute for Metallic Materials, IFW Dresden, 01069 Dresden (Germany)

    2016-01-25

    BiFeO{sub 3} epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.28PbTiO{sub 3} (PMN-PT) substrates with a conductive buffer layer (La{sub 0.7}Sr{sub 0.3}MnO{sub 3} or SrRuO{sub 3}) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using the Poisson's number for BiFeO{sub 3}, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.

  20. Influence of piezoelectric strain on the Raman spectra of BiFeO3 films deposited on PMN-PT substrates

    Science.gov (United States)

    Himcinschi, Cameliu; Guo, Er-Jia; Talkenberger, Andreas; Dörr, Kathrin; Kortus, Jens

    2016-01-01

    BiFeO3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates with a conductive buffer layer (La0.7Sr0.3MnO3 or SrRuO3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using the Poisson's number for BiFeO3, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.

  1. Low-temperature growth of Ge{sub 1} {sub -x}Sn{sub x} thin films with strain control by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Hai, E-mail: hailin@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305 (United States); Chen, Robert; Huo Yijie; Kamins, Theodore I.; Harris, James S. [Department of Electrical Engineering, Stanford University, Stanford, California, 94305 (United States)

    2012-03-30

    High-quality Ge{sub 1-x}Sn{sub x} thin films on InGaAs buffer layers have been demonstrated using low-temperature growth by molecular beam epitaxy. X-ray diffraction and secondary ion mass spectrometry are used to determine the strain and Sn concentration. Up to 10.5% Sn has been incorporated into the Ge{sub 1-x}Sn{sub x} thin film without Sn precipitation, as verified by transmission electron microscopy. Roughened surfaces are found for tensile strained Ge{sub 1-x}Sn{sub x} layers. - Highlights: Black-Right-Pointing-Pointer GeSn alloys were grown by molecular beam epitaxy with up to 10.5% Sn. Black-Right-Pointing-Pointer Unstrained GeSn alloys have high crystal quality. Black-Right-Pointing-Pointer Consistent Sn concentration was obtained from two different methods. Black-Right-Pointing-Pointer The growth of tensile strained GeSn results in a roughened surface.

  2. Structural and morphological modification of PDMS thick film surfaces by ion implantation with the formation of strain-induced buckling domains

    Energy Technology Data Exchange (ETDEWEB)

    Winton, B.R., E-mail: bwinton@gmail.com [ISEM, University of Wollongong, AIIM Facility, Innovation Campus, Squires Way, Fairy Meadow, NSW 2519 (Australia); Ionescu, M.; Dou, S.X.; Wexler, D.; Alvarez, G.A. [ISEM, University of Wollongong, AIIM Facility, Innovation Campus, Squires Way, Fairy Meadow, NSW 2519 (Australia)

    2010-03-15

    Elastomer films with three-dimensional features self-organized into coherent and semi-coherent buckling domains were created by implanting different species of metal ions and combinations thereof, using a metal evaporation ion source, into quality polydimethylsiloxane films. As a result of the implantation process, functionalized discrete regions of strain-induced surface buckling were created, taking the forms of domains of parallel surface waves, semi-ordered regions and disordered regions. In addition, deep, strain-induced, V-shaped cracks were observed to penetrate well into the elastomer matrix. Characterization was via optical microscopy, X-ray diffraction, atomic force microscopy and high-resolution scanning electron microscopy (SEM) in the form of field emission SEM. It was found that controlling the localized strain by altering the metal ion species can control the frequency of the V-shaped cracks and the properties of the buckled areas. These observations and possible mechanisms for the formation of the cracks and domains are discussed in this paper.

  3. Studies on strain relaxation of La{sub 0.5}Ba{sub 0.5}MnO{sub 3} film by normal and grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiou [Hangzhou Dianzi University, Institute of Materials Physics, Hangzhou (China); Tan, Weishi [Hunan City University, College of Communication and Electronic Engineering, Yiyang (China); Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, Department of Applied Physics, Ministry of Education, Nanjing (China); Liu, Hao [Suzhou Institute of Industrial Technology, Department of Electronic and Communication Engineering, Suzhou (China); Cao, Mengxiong; Wang, Xingyu; Ma, Chunlin [Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, Department of Applied Physics, Ministry of Education, Nanjing (China); Jia, Quanjie [The Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2017-03-15

    Perovskite manganite La{sub 0.5}Ba{sub 0.5}MnO{sub 3} (LBMO) films were deposited on (001)-oriented single-crystal SrTiO{sub 3} (STO) substrates by pulsed laser deposition. High-resolution X-ray diffraction and grazing incidence X-ray diffraction techniques were applied to characterize the crystal structure and lattice strain of LBMO films. The in-plane and out-of-plane growth orientations of LBMO films with respect to substrate surface have been studied. The epitaxial orientation relationship LBMO (001) [100] //STO (001) [100] exists at the LBMO/STO interface. The lattice strain of LBMO film begins to relax with the thickness of LBMO film up to 12 nm. When the thickness is further increased up to 43 nm, the film is in fully strain-relaxed state. Jahn-Teller strain plays an important role in LBMO/STO system. The mechanism for strain relaxation is in accordance with that of tetragonal distortion. (orig.)

  4. Applications of sol gel ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, D. [Datec Coating Corp., Kingston, Ont. (Canada)

    1996-12-31

    The sol gel method is a chemical technique in which polycrystalline ceramic films are fabricated from a solution of organometallic precursors. The technique is attractive for many industrial applications because it is a simple (films are processed in air), flexible (can be used to coat complex geometries) and cost effective (does not require expensive equipment) process. In addition, dense, high quality coatings can be achieved at much lower temperatures than is generally required for sintering bulk ceramics. In this paper the conventional sol gel method and the new datec process are reviewed and potential applications of sol gel coatings in automotive, aerospace, petrochemical, nuclear and electronic industries are discussed. (orig.)

  5. Effect of electric-field-assisted thermal treatment on the strain and ferroelectric properties of (100)-oriented ferroelectric Pb(Zr0.52Ti0.48)O3 thin films

    Science.gov (United States)

    Zhang, Siqi; Wang, Shengkai; Zheng, Fu; Jin, Chenfei

    2016-12-01

    Ferroelectric Pb(Zr0.52Ti0.48)O3 thin films were deposited on the Pt/Ti/SiO2/Si substrate by a sol-gel method. As a direct electric field was applied on the films during thermal treatment, strain behavior and ferroelectric properties have been investigated. X-ray diffraction patterns show that great tensile strain exists nearby the interface of the 250 nm thin film while thermal treatment assisted with direct electric field can obviously relax it. The analysis of hysteresis loops indicates that the remnant polarization increases with the thermal treatment time. These results suggest that electric-field-assisted thermal treatment is an effective way to reduce films' tensile strain through the local plastic deformation in Pt layer and enhance the remnant polarization.

  6. Molecular-beam epitaxial growth of tensile-strained and n-doped Ge/Si(001) films using a GaP decomposition source

    Energy Technology Data Exchange (ETDEWEB)

    Luong, T.K.P. [Aix-Marseille Université, CNRS CINaM-UMR 7325, F-13288 Marseille Cedex 09 (France); Ghrib, A. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Université Paris-Sud, Bât. 220, F-91405 Orsay (France); Dau, M.T.; Zrir, M.A. [Aix-Marseille Université, CNRS CINaM-UMR 7325, F-13288 Marseille Cedex 09 (France); Stoffel, M. [Université de Lorraine, Institut Jean Lamour, UMR CNRS 7198, Nancy-Université, BP 70239, F-54506 Vandoeuvre-lès-Nancy Cedex (France); Le Thanh, V., E-mail: lethanh@cinam.univ.mrs.fr [Aix-Marseille Université, CNRS CINaM-UMR 7325, F-13288 Marseille Cedex 09 (France); Daineche, R. [Aix-Marseille Université, CNRS IM2NP-UMR 6242, F-13397 Marseille Cedex 20 (France); Le, T.G.; Heresanu, V.; Abbes, O.; Petit, M. [Aix-Marseille Université, CNRS CINaM-UMR 7325, F-13288 Marseille Cedex 09 (France); El Kurdi, M.; Boucaud, P. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Université Paris-Sud, Bât. 220, F-91405 Orsay (France); Rinnert, H. [Université de Lorraine, Institut Jean Lamour, UMR CNRS 7198, Nancy-Université, BP 70239, F-54506 Vandoeuvre-lès-Nancy Cedex (France); Murota, J. [Res. Inst. Elec. Comm., Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-04-30

    We have combined numerous characterization techniques to investigate the growth of tensile-strained and n-doped Ge films on Si(001) substrates by means of solid-source molecular-beam epitaxy. The Ge growth was carried out using a two-step growth method: a low-temperature growth to produce strain relaxed and smooth buffer layers, followed by a high-temperature growth to get high crystalline quality Ge layers. It is shown that the Ge/Si Stranski–Krastanov growth mode can be completely suppressed when the growth is performed at substrate temperatures ranging between 260 °C and 300 °C. X-ray diffraction measurements indicate that the Ge films grown at temperatures of 700–770 °C are tensile-strained with typical values lying in the range of 0.22–0.24%. Cyclic annealing allows further increase in the tensile strain up to 0.30%, which represents the highest value ever reported in the Ge/Si system. n-Doping of Ge was carried out using a GaP decomposition source. It is shown that heavy n-doping levels are obtained at low substrate temperatures (210–250 °C). For a GaP source temperature of 725 °C and a substrate temperature of 210 °C, a phosphorus concentration of about 10{sup 19} cm{sup −3} can be obtained. Photoluminescence measurements reveal an intensity enhancement of about 16 times of the direct band gap emission and display a redshift of 25 meV that can be attributed to band gap narrowing due to a high n-doping level. Finally, we discuss about growth strategies allowing optimizing the Ge growth/doping process for optoelectronic applications. - Highlights: • We investigate the effect of tensile strain and n-doping on Ge optical properties. • We show that cyclic annealing allows getting a tensile strain up to 0.30% in Ge. • n-Doping of Ge/Si films is performed using a GaP decomposition source. • We show that n-doping is more important to enhance the photoluminescence intensity. • We present new growth strategies to develop Ge

  7. Inchoate Discussion of Ru-Based Thick Film Strain Resistor′s Strain Sensitive Model%钌基厚膜应变电阻力敏模型的初始讨论

    Institute of Scientific and Technical Information of China (English)

    丁鹏; 马以武

    2004-01-01

    通过分析钌基厚膜应变电阻的隧道势垒模型,提出力敏模型.用Bi2O3和RuO2合成Bi2Ru2O7并进行试验,发现应变系数随导电相粒径的增大而增大.用力敏模型解释了这一现象,并解释了其他力敏现象,诸如应变系数随势垒高度的增大而增大.%We constructed a strain sensitive model through the analysis of the Ru-based thick film strain resistor' s tunneling barrier model. Bi2Ru2O7 was synthesized with Bi2O3 and RuO2. The gauge factor (GF) aggrandizes with the conductive particles radius' accretion. We interpreted this phenomenon through the strain sensitive model, and explained the other strain sensitive phenomenon, such as the GF mounts up with the barrier height' s augmention.

  8. Tuning magnetotransport and magnetic properties of La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin films using epitaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, A. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Lab. Louis Neel; Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencia de Materiales; Ranno, L.; Pierre, J. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Lab. Louis Neel

    2001-07-01

    Thin films of manganese perovskite La{sub 2/3}Ca{sub 1/3}MnO{sub 3} were grown epitaxially on lattice mismatched (1%) SrTiO{sub 3}(001) single crystalline substrates using the pulsed laser deposition method. Film thickness was varied in the range 10 nm to 200 nm. A large thickness dependence of the Curie temperature and of the metal-insulator transition temperature, has been observed. Detailed structural analyses have been performed in order to determine the epitaxial strain. The change of magnetic and transport properties and the appearance of a strong magnetic anisotropy are discussed using a model based on variations of the local Mn-O-Mn bonds. (orig.)

  9. Simple Creep Test For Ceramic Fibers

    Science.gov (United States)

    Dicarlo, James A.; Morscher, Gregory N.

    1994-01-01

    Simple bend-stress-relaxation test yields information on creep-related properties of polycrystalline ceramic fibers. Determination of these properties important part of efforts to develop ceramic composite materials that retain mechanical strength and resistance to creep at high temperatures. Present test measures effects of time, temperature, and applied strain on creep-related relaxation of bend stress in ceramic fiber of almost any diameter in almost any environment, without need for contact sensors. Degree of relaxation of bend stress determined from radii of curvature.

  10. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain.

    Science.gov (United States)

    Moya, X; Hueso, L E; Maccherozzi, F; Tovstolytkin, A I; Podyalovskii, D I; Ducati, C; Phillips, L C; Ghidini, M; Hovorka, O; Berger, A; Vickers, M E; Defay, E; Dhesi, S S; Mathur, N D

    2013-01-01

    Large thermal changes driven by a magnetic field have been proposed for environmentally friendly energy-efficient refrigeration, but only a few materials that suffer hysteresis show these giant magnetocaloric effects. Here we create giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La(0.7)Ca(0.3)MnO(3) using strain-mediated feedback from BaTiO(3) substrates near a first-order structural phase transition. Our findings should inspire the discovery of giant magnetocaloric effects in a wide range of magnetic materials, and the parallel development of nanostructured bulk samples for practical applications.

  11. Crystallite size measurement and micro-strain analysis of electrodeposited copper thin film using Williamson-Hall method

    Science.gov (United States)

    Augustin, Arun; Udupa, K. Rajendra; Udaya Bhat, K.

    2016-05-01

    The improvement in hydrophilicity of copper coating on aluminium for better antimicrobial activity can be achieved by increase in surface energy. The surface energy depends on the micro-strain of the coating. Micro-strain in the coatingincreases with reduction in crystallite size. In this investigation, the crystallite size in the electrodeposited copper coating was varied by varying deposition current density. Crystallite size and micro-strain in the coating were estimated using Williamson-Hall method. Values of crystallite sizes using TEM micrographs were in agreement with that using Williamson-Hall method. Also, presence of nano-twins in the coating contributed for micro-strain in copper coating.

  12. Theory of Strain-Controlled Magnetotransport and Stabilization of the Ferromagnetic Insulating Phase in Manganite Thin Films

    Science.gov (United States)

    Mukherjee, Anamitra; Cole, William S.; Woodward, Patrick; Randeria, Mohit; Trivedi, Nandini

    2013-04-01

    We show that applying strain on half-doped manganites makes it possible to tune the system to the proximity of a metal-insulator transition and thereby generate a colossal magnetoresistance (CMR) response. This phase competition not only allows control of CMR in ferromagnetic metallic manganites but can be used to generate CMR response in otherwise robust insulators at half-doping. Further, from our realistic microscopic model of strain and magnetotransport calculations within the Kubo formalism, we demonstrate a striking result of strain engineering that, under tensile strain, a ferromagnetic charge-ordered insulator, previously inaccessible to experiments, becomes stable.

  13. Properties of Nb-doped ZnO transparent conductive thin films deposited by rf magnetron sputtering using a high quality ceramic target

    Indian Academy of Sciences (India)

    J W Xu; H Wang; M H Jiang; X Y Liu

    2010-04-01

    Nb-doped ZnO films with (002) orientation have been grown on glass substrates by rf magnetron sputtering followed by vacuum annealing at 400°C for 3 h. The microstructures and surface figures of the Nbdoped ZnO films were investigated with X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. And its optical and electrical properties were measured at room temperature using a four-point probe technique and 756-type spectrophotometer, respectively. X-ray diffraction (XRD) revealed that the films are highly textured along the axis and perpendicular to the surface of the substrate. After annealing at 400°C for 180 min under vacuum, transmittance of about 90% in visible region for Nb doped ZnO films was confirmed by the optical transmission spectra, and the low resistivity of 5.47 × 10-3 .cm was obtained.

  14. In-situ strain effect on extrinsic transport of polycrystalline La{sub 0.7}(Ca,Sr){sub 0.3}MnO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Gangineni, R.B., E-mail: rameshg.phy@pondiuni.edu.in [Department of Physics, Pondicherry University, R. Venkataraman Nagar, Kalapet, Puducherry 605014 (India); IFW Dresden, Institute for Metallic Materials, Postfach 270116, 01171 Dresden (Germany); Kim, J.W. [IFW Dresden, Institute for Metallic Materials, Postfach 270116, 01171 Dresden (Germany); Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Gyeongnam 641-831 (Korea, Republic of); Nenkov, K. [IFW Dresden, Institute for Metallic Materials, Postfach 270116, 01171 Dresden (Germany); Schultz, L. [Functional Ceramics Group, Korea Institute of Materials Science (KIMS), Gyeongnam 641-831 (Korea, Republic of)

    2012-03-15

    The spin-polarised transport in ferromagnetic polycrystalline La{sub 0.7}(Sr,Ca){sub 0.3}MnO{sub 3} films on piezoelectric substrate has been investigated. The systematic study involved in finding the effect of in-situ strain on extrinsic electrical transport of various thick polycrystalline La{sub 0.7}(Sr,Ca){sub 0.3}MnO{sub 3} thin films. The in-situ strain in the manganite polycrystalline thin film is achieved by applying an electric field to the piezoelectric substrate 0.72 Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.28 PbTiO{sub 3} (PMN-PT). A reversible strain of about 0.11% is acquired with an application of 10 kV/cm to the piezoelectric substrate. A typical drop in resistance at low magnetic fields has been found in all the polycrystalline manganite films. The effect of reversible strain versus the resultant strain gauges was discussed in all the polycrystalline films. At low temperatures, the effect of strain on low-field magnetoresistance and high-field magnetoresistance was found to be negligible. Further, the results are compared with the transport in manganite films deposited on step edge junctions. - Highlights: Black-Right-Pointing-Pointer In-situ strain effect on extrinsic transport of polycrystalline La{sub 0.7}(Sr,Ca){sub 0.3}MnO{sub 3} thin films. Black-Right-Pointing-Pointer 0.11% reversible strain with 10 kV/cm to the piezoelectric substrate. Black-Right-Pointing-Pointer Successful fabrication of polycrystalline thin films on YMnO{sub 3} buffer layer. Black-Right-Pointing-Pointer A gauge factor of 165 for the Ca doped film close to its metal-insulator transition. Black-Right-Pointing-Pointer No change of average grain boundary susceptibility in an applied strain of 0.05%.

  15. Depth strain profile with sub-nm resolution in a thin silicon film using medium energy ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jalabert, D.; Rouviere, J.L. [CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, MINATEC Campus, Grenoble (France); Pelloux-Gervais, D.; Canut, B. [Institut des Nanotechnologies de Lyon, Universite de Lyon, INL-UMR5270, CNRS, INSA de Lyon, Villeurbanne 69621 (France); Beche, A. [CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, MINATEC Campus, Grenoble (France); FEI Company, Eindhoven (Netherlands); Hartmann, J.M.; Gergaud, P. [CEA-Leti, MINATEC, Grenoble (France)

    2012-02-15

    The depth strain profile in silicon from the Si(001) substrate to the surface of a 2 nm thick Si/12 nm thick SiGe/bulk Si heterostructure has been determined by medium energy ion scattering (MEIS). It shows with sub-nanometer resolution and high strain sensitivity that the thin Si cap presents residual compressive strain caused by Ge diffusion coming from the fully strained SiGe layer underneath. The strain state of the SiGe buffer have been checked by X-ray diffraction (XRD) and nano-beam electron diffraction (NBED) measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Comparison of Structures and Dielectric Properties of Bi1.65Zn1.0Nb1.5O7.225 Ceramic and Thin Film%Bi1.65Zn1.0Nb1.5O7.225陶瓷和薄膜的结构和介电性能对比

    Institute of Scientific and Technical Information of China (English)

    张效华; 辛凤; 胡跃辉; 杨丰; 陈义川

    2012-01-01

    Based on the Bi1.5Zn1.0Nb1.5O7 formula, the non-stoichiometric pyrochlore Bi1.65 Zn1.0 Nb1.5 O7.225 (BZN) ceramic was prepared by adding the Bi2O3 with 10 mol% excess amount. Bi1.65 Zn1.0 Nb1.5 O7.225 ceramics were prepared by the conventional solid-state reaction technology. Thin films were prepared on Pt/ SiO2/Si(100) substrates by pulsed laser deposition. Bi1.65Zn1.0Nb1.5 O7.225 ceramic and thin film was compared to investigate the difference of crystallinity, microstructure and dielectric properties. The results indicated that the sintered BZN ceramic and the deposited BZN thin films have a pure cubic pyrochlore structure, however, BZN thin film exhibits the strong preferential orientation of (222) plane. The lattice constant and microstructure between ceramic and thin film also both exhibit the obvious difference. After contrast the dielectric properties of ceramic and thin film, it can be concluded that the dielectric constant of BZN thin film is significantly larger than that of BZN ceramic, which can be attributed to the difference between bulk ceramic and thin film, such as thickness, density and the preferential orientation, etc.%以立方焦绿石Bi1.5Zn1.0Nb1.5O7(BZN)为配方基础,通过掺入过量10%的Bi2O3,形成Bi1.65Zn1.0Nb1.5O7.225非化学计量比分子式.采用固相反应法合成具有焦绿石立方结构的Bi1.65Zn1.0Nb1.5O7.225陶瓷,并采用脉冲激光沉积法在Pt/SiO2/Si(100)基片上制备其薄膜.对比研究了非化学计量比Bi1.5Zn1.0Nb1.5O7.225陶瓷和薄膜的结晶性能,微观形貌以及介电性能的差异.结果表明烧结的Bi1.65Zn1.0Nb1.5O7.225陶瓷和沉积的BZN薄膜都保持立方焦绿石单相结构,但是薄膜展现出较强的(222)晶面择优取向.陶瓷和薄膜的晶格常数,微观形貌都体现出差异.对比二者的介电特性后发现,Bi1.65Zn1.0Nb1.5O7.225薄膜的介电常数明显高于陶瓷的介电常数,这归因于薄膜和块体材料之间的差异,例如厚度,致密度,择优取向等.

  17. Ceramic susceptor for induction bonding of metals, ceramics, and plastics

    Science.gov (United States)

    Fox, Robert L.; Buckley, John D.

    1991-01-01

    A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.

  18. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  19. Dislocation and Elastic Strain in an InN Film Characterized by Synchrotron Radiation X-Ray Diffraction and Rutherford Backscattering/Channeling

    Institute of Scientific and Technical Information of China (English)

    CHENG Feng-Feng; FA Tao; WANG Xin-Qiang; YAO Shu-De

    2012-01-01

    Dislocation information and strain-related tetragonal distortion as well as crystalline qualities of a 2-μm-thick InN film grown by molecular beam epitaxy (MBE) are characterized by Rutherford backscattering/channeling (RBS/C) and synchrotron radiation x-ray diffraction (SR-XRD).The minimum yield xmin=2.5% deduced from the RBS/C results indicates a fairly good crystalline quality.From the SR-XRD results,we obtain the values of the screw and edge densities to be ρscrew =7.0027 X 109 and ρedge =8.6115 × 109 cm-2,respectively.The tetragonal distortion of the sample is found to be -0.27 % by angular scans,which is close to the -0.28 % derived by SR-XRD.The value of |e(⊥)/e‖| =0.6742 implies that the InN layer is much stiffer along the a axis than that along the c axis,where e‖ is the parallel elastic strain,and e⊥ is the perpendicular elastic strain.Photoluminescence results reveal a main peak of 0.653eV with the linewidth of 60meV,additional shoulder band could be due to impurities and related defects.%Dislocation information and strain-related tetragonal distortion as well as crystalline qualities of a 2-μm-thick InN film grown by molecular beam epitaxy (MBE) are characterized by Rutherford backscattering/'channeling (RBS/C) and synchrotron radiation x-ray diffraction (SR-XRD). The minimum yield Xmin=2.5% deduced from the RBS/C results indicates a fairly good crystalline quality. From the SR-XRD results, we obtain the values of the screw and edge densities to be pscrew = 7.0027 ×109 and pedge = 8.6115 ×109 cm-2, respectively. The tetragonal distortion of the sample is found to be-0.27% by angular scans, which is close to the -0.28 % derived by SR-XRD. The value of |e⊥/e|| | = 0.6742 implies that the InN layer is much stiffer along the a axis than that along the c axis, where e|| is the parallel elastic strain, and e⊥ is the perpendicular elastic strain. Photoluminescence results reveal a main peak of 0.653eV with the linewidth of 60me

  20. 基于陶瓷基体铂薄膜电阻热式气体质量流量计设计%Design of thermal gas mass flowmeter based on platinum film resistors on ceramic substrate

    Institute of Scientific and Technical Information of China (English)

    刘志亮; 姜国光

    2016-01-01

    A kind of design method for thermal gas mass flowmeter based on platinum film resistors on ceramic substrate is presented,principle of thermal gas flowmeter is analyzed,platinum resistive flow sensor based on ceramic substrate is made. In order to reduce power supply,through-hole scheme is proposed. A prototype is fabricated with a thermostatic control circuit and MSP430 MCU processing circuit. Calibration and test are implemented using sonic nozzle calibration device,measurement range of flowmeter is 500~1 500 kg/h,precision is ±0. 5%,and response time is 2 s,which meet demand for most industrial pipe air mass flow test,and has broad application prospects.%提出了一种基于陶瓷基体铂薄膜电阻热式气体质量流量计的设计方法,分析了热式气体流量计的原理,制作了陶瓷铂电阻流量敏感元件,为降低加热功耗,提出了通孔方案.设计了恒温差控制电路和MSP430单片机处理电路,并制作出了实际样机.采用音速喷嘴标定装置对样机进行了标定和测试,该流量计的测量范围500~1 500 kg/h,精度±0. 5%,响应时间2 s,能够满足大工业气体管道流量的测量要求,具有广阔的应用前景.

  1. Research and fabrication of NiCrAlY thin-film strain gauges%NiCrAlY薄膜应变计的研制

    Institute of Scientific and Technical Information of China (English)

    张洁; 杨晓东; 蒋书文; 蒋洪川; 赵晓辉; 张万里

    2015-01-01

    NiCrAlY thin film strain gauges are deposited on the nickel-based superalloy by radio-frequency magnetron sputtering. The effects of stabilized heat treatment at 1 000℃ on structure and surface morphology of NiCrAlY thin films are investigated and the electromechanical properties of NiCrAlY thin film strain gauges are measured. After stabilized heat treatment at 1 000℃,a layer of Al2 O3 is formed on the surface of NiCrAlY thin film,which is important cause for excellent high-temperature oxidation resistance. The variation of strain gauge resistance with temperature is linear in the temperature range from room temperature to 800℃. The temperature coefficient of resistance( TCR) is about 290 × 10-6/℃,and gauge factor( GF) is about 2. 1 at room temperature.%采用射频磁控溅射法在Ni基高温合金拉伸件上制备NiCrAlY薄膜应变计。研究了热稳定处理对NiCrAlY薄膜结构、表面形貌的影响,并且测试了NiCrAlY薄膜应变计的电学与应变性能。结果表明:热稳定处理后 NiCrAlY 薄膜应变计由于在表面形成了一层 Al2 O3膜,具有抗高温氧化的特性,在室温~800℃范围内,应变计电阻同温度呈线性变化,电阻温度系数( TCR)约为290×10-6/℃,室温下的应变计系数( GF)为2.1。

  2. Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: Competition between phonon confinement and strain-related effects

    Energy Technology Data Exchange (ETDEWEB)

    Pejova, Biljana, E-mail: biljana@pmf.ukim.mk

    2014-05-01

    Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample. - Graphical abstract: Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: competition between phonon confinement and strain-related effects. - Highlights: • Phonon confinement vs. strain-induced effects in ZnSe 3D QD assemblies were studied. • Shifts of the 1LO band result from an intricate compromise between the two effects. • SO and theoretically forbidden TO modes were

  3. Li-ion diffusion kinetics in LiCoPO{sub 4} thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-07-15

    LiCoPO{sub 4} thin films were deposited on Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATSP) solid electrolyte by radio frequency magnetron sputtering and were characterized by X-ray diffraction and scanning electron microscope. The films show a (1 1 1) preferred orientation upon annealing and are chemically stable with LATSP up to 600 C in air. An all-solid-state Li/PEO{sub 18}-Li(CF{sub 3}SO{sub 2}){sub 2}N/LATSP/LiCoPO{sub 4}/Au cell was fabricated to investigate the electrochemical performance and Li-ion chemical diffusion coefficients, D{sub Li}, of the LiCoPO{sub 4} thin films. The potential dependence of D{sub Li} values of the LiCoPO{sub 4} thin film was investigated by potentiostatic intermittent titration technique and was compared with those of the LiFePO{sub 4} thin film. These results showed that the intercalation mechanism of Li-ion in LiCoPO{sub 4} is different from that in LiFePO{sub 4}. (author)

  4. Effect of Au film pre-deposited at different durations as inner electrode on the electrical properties and interface microstructures of Na2O-PbO-Nb2O5-SiO2 multi-layer glass-ceramic capacitors

    Institute of Scientific and Technical Information of China (English)

    Jun ZHU; Jun LUO; Qingmeng ZHANG; Jun DU

    2011-01-01

    To further study the effect of sputtered Au film as transition electrode layer on the electrical properties and interface microstructures of Na2O-PbO-Nb2O5-SiO2 multilayer glass-ceramic capacitors,Au films pre-deposited at different time were prepared by DC magnetron sputtering.Compared with the single paste electrode structure,samples with Au films pre-deposited from 6 to 18 min have the consistent performance to effectively improve the electrical properties of the capacitors,resulting in the doubled breakdown strength,an increase of equivalent capacitance by 22% and a decrease of leakage current by an order of magnitude.SEM observations indicate that the Au films with deposition time from 6 to 18 min would all help the formation of a dense electrode/dielectric interface and inhibit the diffusion of Ag.The results reveal that Au film pre-deposited for 6 min as inner electrode was sufficient to improve the interface microstructure and therefore to inhibit the Ag diffusion and enhance the overall performance of the multi-layer glass-ceramic capacitors.

  5. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  6. Three dimensional strained semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  7. Ba2ErNbO6: A new perovskite ceramic substrate for Bi(2223) superconducting thick films (c(0) = 110 K)

    Indian Academy of Sciences (India)

    S U K Nair; P R S Warriar; J Koshy

    2005-02-01

    Barium erbium niobate (Ba2ErNbO6) has been developed as a new substrate for (Bi,Pb)2Sr2Ca2Cu3O [Bi(2223)] superconductor film. Ba2ErNbO6 (BENO) has a cubic perovskite structure with lattice constant, = 8.318 Å. The Bi(2223) superconductor does not show any detectable chemical reaction with BENO even under extreme processing conditions. Dip coated Bi (2223) thick film, Ba2ErNbO6 substrate, gave a c (0) of 110 K and current density of ∼ 4 × 103 A cm-2 at 77 K and zero magnetic field.

  8. Superconducting YBa2Cu3O7– thick film (c (0)$ = 92 K) on a newly developed perovskite ceramic substrate

    Indian Academy of Sciences (India)

    S U K Nair; P R S Warriar; J Koshy

    2002-04-01

    A complex perovskite oxide, YbBa2NbO6, as a non-reacting substrate for YBa2Cu3O7– superconducting film has been developed. The dielectric constant and loss factor values of the material are in the range suitable for its use as substrate for microwave application. A YBa2Cu3O7– superconducting thick film dip coated on YbBa2NbO6 substrate gave a c (0) of 92 K and current density of ∼ 1.3 × 104 A cm-2.

  9. Integral Textile Ceramic Structures

    Science.gov (United States)

    Marshall, David B.; Cox, Brian N.

    2008-08-01

    A new paradigm for ceramic composite structural components enables functionality in heat exchange, transpiration, detailed shape, and thermal strain management that significantly exceeds the prior art. The paradigm is based on the use of three-dimensional fiber reinforcement that is tailored to the specific shape, stress, and thermal requirements of a structural application and therefore generally requires innovative textile methods for each realization. Key features include the attainment of thin skins (less than 1 mm) that are nevertheless structurally robust, transpiration holes formed without cutting fibers, double curvature, compliant integral attachment to other structures that avoids thermal stress buildup, and microcomposite ceramic matrices that minimize spalling and allow the formation of smooth surfaces. All these features can be combined into structures of very varied gross shape and function, using a wide range of materials such as all-oxide systems and SiC and carbon fibers in SiC matrices. Illustrations are drawn from rocket nozzles, thermal protection systems, and gas turbine engines. The new design challenges that arise for such material/structure systems are being met by specialized computational modeling that departs significantly in the representation of materials behavior from that used in conventional finite element methods.

  10. 钻杆接头表面陶瓷膜层的制备和性能研究%Preparation and Characterization of Ceramic Film on Drilling Pipe Joint

    Institute of Scientific and Technical Information of China (English)

    黄本生; 刘阁; 江仲英; 尹文峰; 薛屺

    2015-01-01

    利用低压化学气相沉积技术(LPCVD),在钻杆接头表面制取Ti、Cr、A1的氮化物、碳化物和氧化物构成的金属陶瓷膜层.陶瓷膜的特性通过SEM、EDS和XRD分析.结合性能和腐蚀性能分别通过划痕试验和腐蚀实验测试.结果表明:陶瓷膜层致密而均匀,膜厚度在15 μm左右,且在膜层与基体之间还形成了一层厚5μm左右的过渡层.陶瓷复膜与基体材料结合性能良好,具有较好的致密性,不存在裂纹气孔等缺陷.陶瓷膜层有效阻隔了有害原子或离子与基体钢的接触,防止材料发生氢鼓泡、氢致开裂等,大大提高了钻杆接头材料的抗腐蚀性能.%A metallic ceramic film consisting of nitrides,carbides and oxides of Ti,Cr and A1 was prepared on the surface of a drilling pipe joint by low pressure chemical vapor deposition (LPCVD).The film was characterized by scanning electron microscopy (SEM),energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD).The adhesive ability and the corrosion resistance performance were evaluated by scratch test and corrosion test,respectively.The results show that the film is dense and homogeneous with 15 μm in thickness including a 5 μm transition layer.The film presents a good adherence to the substrate with no cracks and no pores.It could decrease electrochemical corrosion and chemical corrosion through separating the harmful atoms or ions from the substrate.Particularly,it could also effectively prevent H2S and CO2 from contacting the steel,avoiding hydrogen blistering (HB) and hydrogen to induce cracking (HIC).Consequently,the service life of drilling pipe can be greatly improved.

  11. 3D strain engineered self-rolled thin-film architecture for high-energy density lithium-ion batteries

    Science.gov (United States)

    Godbey, Griffin; Gong, Chen; Yu, Cynthia; Blythe, Clayton; Leite, Marina

    Recently, multiple 3D geometries have been implemented into energy storage devices (e . g . nanowire anodes and arrays of interdigitated rods) in order to better accommodate the large volume expansion experienced by the anode during lithiation and to increase the structure energy density. However, most approached structures are difficult to scale up. Here we show how self-rolled thin-films can maintain a high energy density and can potentially accommodate the volume expansion suffered by the anode. The self-rolled tubes are fabricated by physical deposition of the active layers, creating a stress gradient between thin-film stack due to differences in coefficient of thermal expansion. Upon a sacrificial layer removal, the thin-film rolls to relieve this built-in stress. We predict the final dimension of self-rolled battery tubes using known elastic properties of materials commonly used as the active layers of the device. We will discuss an appropriate figure-of-merit that defines how the winding process can ultimately affect the volumetric capacity of 3D self-rolled batteries.

  12. Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: Competition between phonon confinement and strain-related effects

    Science.gov (United States)

    Pejova, Biljana

    2014-05-01

    Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample.

  13. Cracking in thin films of colloidal particles on elastomeric substrates

    Science.gov (United States)

    Smith, Michael; Sharp, James

    2012-02-01

    The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

  14. Direct Deposition of Micron-Thick Aligned Ceramic TiO2 Nanofibrous Film on FTOs by Double-Needle Electrospinning Using Air-Turbulence Shielded Disc Collector

    Directory of Open Access Journals (Sweden)

    T. Krishnamoorthy

    2011-01-01

    Full Text Available One-dimensional (1D metal oxides, typically nanowires and nanorods, have unique electronic and optical properties due to quantum phenomena that find applications in modern energy and electronic devices. We present here the electrospinning method that produces the aligned TiO2 nanofibres directly on the fluorine-doped tin oxide (FTO substrates mounted rotating disc collector. The aligned TiO2 ceramic nanofibres mat of 6 μm thickness is achieved in 4 h using a nonconductive enclosed-air-shield with air-hood design over the FTO mounted rotating disc collector. The aligned TiO2 nanofibers are found to retain its integrity and binding on FTO surface even after sintering at 500°C. SIMON 8 modeling package is used to determine the behaviour of the charged polymer/TiO2 jet when single and double needles are used for electrospinning process. The simulation study reveals that the repulsive force of the charged fibers from the double needle exerts stronger electric field distribution along the flow of stream that results in the reduction of the fibers diameter, which is about 28 nm than that of using single-needle system.

  15. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Science.gov (United States)

    Kumar, Binod (Inventor)

    2003-01-01

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  16. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    Directory of Open Access Journals (Sweden)

    Marko Pavlin

    2011-12-01

    Full Text Available This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing.

  17. The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films [review article

    Science.gov (United States)

    Lamberti, C.

    2004-05-01

    In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques. Among them, a leading role has been certainly played by those exploiting synchrotron radiation (SR) sources. In fact synchrotron radiation has distinct advantages as a photon source, notably high brilliance and continuous energy spectrum; by using the latter characteristic atomic selectivity can be obtained and this is of fundamental help to investigate the structural environment of atoms present only in a few angstrom (Å) thick interface layers of heterostructures. The third generation synchrotron radiation sources have allowed to reach the limit of measuring a monolayer of material, corresponding to about 10 14 atoms/cm 2. Since, in the last decade, the use of intentionally strained heterostructures has greatly enhanced the performance of electrical and electro-optical semiconductor, a particular attention will be devoted to intentionally strained superlattices. First the effect of strain on the band lineups alignments in strained heterostructures will be discussed deeply. Then the attention will be focused on to review the most important results obtained by several groups in the characterization of semiconductor heterostructures using the following structural SR techniques: (i) X-ray absorption-based techniques such as EXAFS, polarization-dependent EXAFS, surface EXAFS and NEXAFS (or XANES); (ii) X-ray diffraction-based techniques such as high-resolution XRD, grazing incidence XRD, XRD reciprocal space maps, X-ray standing waves and diffraction anomalous fine structure (DAFS); (iii

  18. Electrical and magneto-resistance of Co/CNT/Epoxy thin film for strain and magnetic field sensing

    Science.gov (United States)

    Anand, Sandeep V.; Isaac, Rejin; Roy Mahapatra, D.

    2009-03-01

    Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

  19. Ceramic Matrix Composites .

    Directory of Open Access Journals (Sweden)

    J. Mukerji

    1993-10-01

    Full Text Available The present state of the knowledge of ceramic-matrix composites have been reviewed. The fracture toughness of present structural ceramics are not enough to permit design of high performance machines with ceramic parts. They also fail by catastrophic brittle fracture. It is generally believed that further improvement of fracture toughness is only possible by making composites of ceramics with ceramic fibre, particulate or platelets. Only ceramic-matrix composites capable of working above 1000 degree centigrade has been dealt with keeping reinforced plastics and metal-reinforced ceramics outside the purview. The author has discussed the basic mechanisms of toughening and fabrication of composites and the difficulties involved. Properties of available fibres and whiskers have been given. The best results obtained so far have been indicated. The limitations of improvement in properties of ceramic-matrix composites have been discussed.

  20. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  1. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  2. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    Science.gov (United States)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in certain cases, to have similar energy conversion efficiencies, ceramics are more promising in strain

  3. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies.

    Science.gov (United States)

    Schichtel, N; Korte, C; Hesse, D; Janek, J

    2009-05-07

    Ionic transport in solids parallel to grain or phase boundaries is usually strongly enhanced compared to the bulk. Transport perpendicular to an interface (across an interface) is often much slower. Therefore in modern micro- and nanoscaled devices, a severe influence on the ionic/atomic transport properties can be expected due to the high density of interfaces.Transport processes in boundaries of ionic materials are still not understood on an atomic scale. In most of the studies on ionic materials the interfacial transport properties are explained by the influence of space charge regions. Here we discuss the influence of interfacial strain at semicoherent or coherent heterophase boundaries on ionic transport along these interfaces in ionic materials. A qualitative model is introduced for (untilted and untwisted) hetero phase boundaries. For experimental verification, the interfacial oxygen ionic conductivity of different multilayer systems consisting of cubic ZrO(2) stabilised by aliovalent dopands (YSZ, CSZ) and an insulating oxide is investigated as a function of structural mismatch. Recent results on extremely fast ionic conduction in YSZ/SrTiO(3) thin film systems ("colossal ionic concuctivity at interfaces") is discussed from the viewpoint of strain effects.

  4. Dramatic influence of Dy{sup 3+} doping on strain and domain structure in lead-free piezoelectric 0.935(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}−0.065BaTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Li, C. Q.; Zhang, J. Z.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Yao, Q. R.; Wang, F. F.; Liu, A. Y.; Shi, W. Z. [Department of Physics, Shanghai Normal University, Shanghai 200234 (China)

    2015-12-15

    An electric-field induced giant strain response and doping level dependent domain structural variations have been studied in the dysprosium (Dy{sup 3+})-modified 0.935(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}-0.065BaTiO{sub 3}(xDy : NBBT) ceramics with the doping levels of 0%, 0.5%, 1%, and 2%. X-ray diffraction and Raman spectroscopy analyses not only demonstrates the change in ionic configurations induced by Dy{sup 3+} doping, but also shows the local crystal symmetry for x ≥ 0.5% doping levels to deviate from the idealized cubic structure. Piezoresponse force microscopy measurement exhibits the presence of an intermediate phase with orthorhombic symmetry at the critical Dy{sup 3+} doping level of 2%. Moreover, at this doping level, a giant recoverable nonlinear strain of ∼0.44% can be observed with high normalized strain (S{sub max}/E{sub max}) of 728 pm/V. At the same applied field, the strain exhibits a 175% increase than that of NBBT ceramic. Such a large strain stems from the varying coherence lengths of polar nanoregions (PNRs) and an unusual reversible 90° domain switching caused by the symmetry conforming property of point defects, where the restoring force is provided by unswitchable defects. The mechanism reveals a new possibility to achieve large electric-field strain effect for a wide range of ferroelectric systems, which can lead to applications in novel “on-off” actuators.

  5. Ceramic art in sculpture

    OpenAIRE

    Rokavec, Eva

    2014-01-01

    Diploma seminar speaks of ceramics as a field of artistic expression and not just as pottery craft. I presented short overview of developing ceramic sculpture and its changing role. Clay inspires design and touch more than other sculpture media. It starts as early as in prehistory. Although it sometimes seems that was sculptural ceramics neglected in art history overview, it was not so in actual praxis. There is a rich tradition of ceramics in the East and also in Europe during the renaissanc...

  6. Ceramic to metal seal

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gary S. (Albuquerque, NM); Wilcox, Paul D. (Albuquerque, NM)

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  7. Light element ceramics

    OpenAIRE

    Rao, KJ; Varma, KBR; Raju, AR

    1988-01-01

    An overview of a few structually important light element ceramics is presented. Included in the overview are silicon nitide, sialon, aluminium nitride, boron carbide and silicon carbide. Methods of preparation, characterization and industrial applications of these ceramics are summarized. Mechanical properties, industrial production techniques and principal uses of these ceramics are emphasized.

  8. Electric-field-controlled interface strain coupling and non-volatile resistance switching of La1-xBaxMnO3 thin films epitaxially grown on relaxor-based ferroelectric single crystals

    Science.gov (United States)

    Zheng, Ming; Zhu, Qiu-Xiang; Li, Xue-Yan; Yang, Ming-Min; Wang, Yu; Li, Xiao-Min; Shi, Xun; Luo, Hao-Su; Zheng, Ren-Kui

    2014-09-01

    We have fabricated magnetoelectric heterostructures by growing ferromagnetic La1-xBaxMnO3 (x = 0.2, 0.4) thin films on (001)-, (110)-, and (111)-oriented 0.31Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb1/2)O3-0.34PbTiO3 (PINT) ferroelectric single-crystal substrates. Upon poling along the [001], [110], or [111] crystal direction, the electric-field-induced non-180° domain switching gives rise to a decrease in the resistance and an enhancement of the metal-to-insulator transition temperature TC of the films. By taking advantage of the 180° ferroelectric domain switching, we identify that such changes in the resistance and TC are caused by domain switching-induced strain but not domain switching-induced accumulation or depletion of charge carriers at the interface. Further, we found that the domain switching-induced strain effects can be efficiently controlled by a magnetic field, mediated by the electronic phase separation. Moreover, we determined the evolution of the strength of the electronic phase separation against temperature and magnetic field by recording the strain-tunability of the resistance [(ΔR/R)strain] under magnetic fields. Additionally, opposing effects of domain switching-induced strain on ferromagnetism above and below 197 K for the La0.8Ba0.2MnO3 film and 150 K for the La0.6Ba0.4MnO3 film, respectively, were observed and explained by the magnetoelastic effect through adjusting the magnetic anisotropy. Finally, using the reversible ferroelastic domain switching of the PINT, we realized non-volatile resistance switching of the films at room temperature, implying potential applications of the magnetoelectric heterostructure in non-volatile memory devices.

  9. Structural properties of Cu2O epitaxial films grown on c-axis single crystal ZnO by magnetron sputtering

    Science.gov (United States)

    Gan, J.; Gorantla, S.; Riise, H. N.; Fjellvâg, Ø. S.; Diplas, S.; Løvvik, O. M.; Svensson, B. G.; Monakhov, E. V.; Gunnæs, A. E.

    2016-04-01

    Epitaxial Cu2O films grown by reactive and ceramic radio frequency magnetron sputtering on single crystalline ZnO (0001) substrates are investigated. The films are grown on both O- and Zn-polar surface of the ZnO substrates. The Cu2O films exhibit a columnar growth manner apart from a ˜5 nm thick CuO interfacial layer. In comparison to the reactively sputtered Cu2O, the ceramic-sputtered films are less strained and appear to contain nanovoids. Irrespective of polarity, the Cu2O grown by reactive sputtering is observed to have (111)Cu2O||(0001)ZnO epitaxial relationship, but in the case of ceramic sputtering the films are found to show additional (110)Cu2O reflections when grown on O-polar surface. The observed CuO interfacial layer can be detrimental for the performance of Cu2O/ZnO heterojunction solar cells reported in the literature.

  10. Design of LTCC-based Ceramic Structure for Chemical Microreactor

    Directory of Open Access Journals (Sweden)

    D. Belavic

    2012-04-01

    Full Text Available The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s, mixer(s, reformer and combustor. Low-temperature co-fired ceramic (LTCC technology was used to fabricate the ceramic structures with buried cavities and channels, and thick-film technology was used to make electrical heaters, temperature sensors and pressure sensors. The final 3D ceramic structure consists of 45 LTCC tapes. The dimensions of the structure are 75 × 41 × 9 mm3 and the weight is about 73 g.

  11. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  12. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  13. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  14. Percolation and electronic properties of superconducting (YBa sub 2 Cu sub 3 O sub 7 minus. delta. ) sub 1 minus x Ag sub x ceramics and thick films

    Energy Technology Data Exchange (ETDEWEB)

    Dwir, B.; Pavuna, D.; Affronte, M.; Berger, H. (Swiss Federal Institute of Technology, Lausanne (Switzerland)); Tholence, J.L. (C.R.T.B.T., Grenoble (France))

    1989-09-01

    The authors present the percolation and electronic properties of (Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}){sub 1{minus}x}Ag{sub x} compounds in which silver fills the intergranular space without reducing {Tc}, which remains at 92 {plus minus} 1 K. Normal-state resistivity is decreased by up to two orders of magnitude when adding up to 50 wt.% Ag({Tc} = 87 K), and samples exhibit improved contact resistance, better mechanical properties, and resistance to water. They analyzed the percolation properties of these compounds and found that the critical indices t, s are in agreement with percolation theory, but p{sub c} is higher than expected, probably due to the effect of holes. The J{sub c} estimated from magnetization reaches 5 {center dot} 10{sup 4} A/cm{sup 2} (at T = 4.2 K, H = 0) and shows enhancement of 15-50% by addition of {approximately} 10 wt.% Ag, which exists also in samples having a higher J{sub c} due to preparation conditions (temperature). They present preliminary results on the 2D percolation problem in (Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}){sub 1{minus}x}Ag{sub x} samples, obtained by preparing Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thick films using the spin-on technique. Preliminary results show good adhesion but a reduced {Tc} of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} films compared with bulk samples.

  15. Electric properties of high strain textured Na 0.5Bi 0.5TiO 3-BaTiO 3-K 0.5Na 0.5NbO 3 thick films

    Science.gov (United States)

    Fu, Fang; Zhai, Jiwei; Xu, Zhengkui; Bai, Wangfeng; Yao, Xi

    2011-05-01

    Textured (1 - x)(0.94Na 0.5Bi 0.5TiO 3 - 0.06BaTiO 3) - xK 0.5Na 0.5NbO 3 (abbreviated as NBT-BT-KNN) thick film on platinum substrate was prepared via tape casting method. The structure and electrical properties of the thick films were investigated. The results show that the thick films possess typical polycrystalline perovskite structures and the orientation degree reached to 75%. The remnant polarization ( Pr) and coercive field ( Ec) were optimized to 11.2 μC/cm 2 and 12.8 kV/cm for x = 0.02 thick film. The dielectric properties of NBT-BT-KNN thick films as a function of temperature were also investigated. With the addition of KNN, the Td (depolarization temperature) and TC (Curie temperature) are all decreased. Meanwhile, the dielectric constant is increased with the addition of the KNN at room temperature. The piezoelectric constant of the thick film was calculated from unipolar electric field-induced strain curve. With the addition of KNN, the d33 value increased and reached to the maximum value of 349 pm/V for x = 0.02 thick film.

  16. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  17. Fracture Toughness Prediction for MWCNT Reinforced Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Nguyen, Ba Nghiep

    2013-09-01

    This report describes the development of a micromechanics model to predict fracture toughness of multiwall carbon nanotube (MWCNT) reinforced ceramic composites to guide future experimental work for this project. The modeling work described in this report includes (i) prediction of elastic properties, (ii) development of a mechanistic damage model accounting for matrix cracking to predict the composite nonlinear stress/strain response to tensile loading to failure, and (iii) application of this damage model in a modified boundary layer (MBL) analysis using ABAQUS to predict fracture toughness and crack resistance behavior (R-curves) for ceramic materials containing MWCNTs at various volume fractions.

  18. Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges

    Science.gov (United States)

    Wang, Haolun; Zhang, Xuan; Wang, Ning; Li, Yan; Feng, Xue; Huang, Ya; Zhao, Chunsong; Liu, Zhenglian; Fang, Minghao; Ou, Gang; Gao, Huajian; Li, Xiaoyan; Wu, Hui

    2017-01-01

    Ultralight and resilient porous nanostructures have been fabricated in various material forms, including carbon, polymers, and metals. However, the development of ultralight and high-temperature resilient structures still remains extremely challenging. Ceramics exhibit good mechanical and chemical stability at high temperatures, but their brittleness and sensitivity to flaws significantly complicate the fabrication of resilient porous ceramic nanostructures. We report the manufacturing of large-scale, lightweight, high-temperature resilient, three-dimensional sponges based on a variety of oxide ceramic (for example, TiO2, ZrO2, yttria-stabilized ZrO2, and BaTiO3) nanofibers through an efficient solution blow-spinning process. The ceramic sponges consist of numerous tangled ceramic nanofibers, with densities varying from 8 to 40 mg/cm3. In situ uniaxial compression in a scanning electron microscope showed that the TiO2 nanofiber sponge exhibits high energy absorption (for example, dissipation of up to 29.6 mJ/cm3 in energy density at 50% strain) and recovers rapidly after compression in excess of 20% strain at both room temperature and 400°C. The sponge exhibits excellent resilience with residual strains of only ~1% at 800°C after 10 cycles of 10% compression strain and maintains good recoverability after compression at ~1300°C. We show that ceramic nanofiber sponges can serve multiple functions, such as elasticity-dependent electrical resistance, photocatalytic activity, and thermal insulation. PMID:28630915

  19. Atomic long-range order effects on Curie temperature and adiabatic spin-wave dynamics in strained Fe-Co alloy films

    Science.gov (United States)

    Schönecker, Stephan; Li, Xiaoqing; Johansson, Börje; Vitos, Levente

    2016-08-01

    The strained Fe-Co alloy in body-centered tetragonal (bct) structure has raised considerable interest due to its giant uniaxial magnetocrystalline anisotropy energy. On the basis of the classical Heisenberg Hamiltonian with ab initio interatomic exchange interactions, we perform a theoretical study of fundamental finite temperature magnetic properties of Fe1 -xCox alloy films as a function of three variables: chemical composition 0.3 ≤x ≤0.8 , bct geometry [a ,c (a )] arising from in-plane strain and associated out-of-plane relaxation, and atomic long-range order (ALRO). The Curie temperatures TC(x ,a ) obtained from Monte Carlo simulations display a competition between a pronounced dependence on tetragonality, strong ferromagnetism in the Co-rich alloy, and the beginning instability of ferromagnetic order in the Fe-rich alloy when c /a →√{2 } . Atomic ordering enhances TC and arises mainly due to different distributions of atoms in neighboring coordination shells rather than altering exchange interactions significantly. We investigate the ordering effect on the shape of the adiabatic spin-wave spectrum for selected pairs (x ,a ) . Our results indicate that long-wavelength acoustic spin-wave excitations show dependencies on x , a , and ALRO similar to those of TC. The directional anisotropy of the spin-wave stiffness d (x ,a ) peaks in narrow ranges of composition and tetragonality. ALRO exhibits a strong effect on d for near equiconcentration Fe-Co. We also discuss our findings in the context of employing Fe-Co as perpendicular magnetic recording medium.

  20. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  1. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  2. Silicon carbide and other films and method of deposition

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy (Inventor)

    2011-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  3. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  4. NOVEL EMBEDDED CERAMIC ELECTRODE SYSTEM TO ACTIVATE NANOSTRUCTURED TITANIUM DIOXIDE FOR DEGRADATION OF MTBE

    Science.gov (United States)

    A novel reactor combining a flame-deposited nanostructured titanium dioxide film and a set of embedded ceramic electrodes was designed, developed and tested for degradation of methyl tert-butyl ether (MTBE) in water. On applying a voltage to the ceramic electrodes, a surface coro...

  5. Liquid-Phase Processing of Barium Titanate Thin Films

    Science.gov (United States)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  6. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  7. Ceramic laser materials

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin

    2008-12-01

    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  8. Antibacterial ceramic for sandbox. Sunabayo kokin ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K. (Ishizuka Glass Co. Ltd. Nagoya (Japan))

    1993-10-01

    Sands in sandboxes in parks have been called into question of being contaminated by colon bacilli and spawns from ascarides. This paper introduces an antibacterial ceramic for sandbox developed as a new material effective to help reduce the contamination. The ceramic uses natural sand as the main raw material, which is added with borax and silver to contain silver ions that have bacteria and fungus resistance and deodorizing effect. The ceramic has an average grain size ranging from 0.5 mm to 0.7 mm, and is so devised as to match specific gravity, grain size and shape of the sand, hence no separation and segregation can occur. The result of weatherability and antibacterial strength tests on sand for a sandbox mixed with the ceramic at 1% suggests that its efficacy lasts for about three years. Its actual use is under observation. Its efficacy has been verified in a test that measures a survival factor of spawns from dog ascardides contacted with aqueous solution containing the ceramic at 1%. Safety and sanitation tests have proved the ceramic a highly safe product that conforms to the food sanitation law. 5 refs., 3 figs., 3 tabs.

  9. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  10. Correlation between magnetism and “dark stripes” in strained La{sub 1−x}Sr{sub x}CoO{sub 3} epitaxial films (0 ≤ x ≤ 0.1)

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Q. Q. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shen, X.; Yang, H. W.; Zhang, H. R.; Zhang, J.; Guan, X. X.; Yao, Y.; Wang, Y. G.; Yu, R. C., E-mail: rcyu@iphy.ac.cn; Sun, J. R., E-mail: jrsun@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Peng, Y., E-mail: pengy@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2015-12-14

    Using the technique of aberration-corrected scanning transmission electron microscopy, we performed a systematic analysis for the atomic lattice of the strained La{sub 1−x}Sr{sub x}CoO{sub 3} (0 ≤ x ≤ 0.1) epitaxial films, which have drawn a great attention in recent years because of their anomalous magnetism. Superstructures characterized by dark stripes are observed in the lattice image, evolving with combined Sr-doping and lattice strains. Fascinatingly, we found a close relation between the proportion of the Co ions in dark stripes and the saturation magnetization of the film: the latter grows linearly with the former. This result implies that the magnetism could be exclusively ascribed to the Co ions in dark stripes.

  11. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  12. JPRS Report, Science & Technology, Japan, 28th Ceramics Science Discussion

    Science.gov (United States)

    2007-11-02

    Hiroshi Asakura, Hiroshi Yamamura] .............................. 59 Microstructure, Dielectric Properties of Tungsten Bronze -Type Ceramics [Yoji Ueda...of Strain 60 Microstructure, Dielectric Properties of Tungsten Bronze -Type Ceramics 906C7512 Tokyo SERAMIKKUSU KISO KAGAKU TORONKAI in Japanese 24 Jan...with different microstructures were produced for an oxide of the tungsten bronze type, Ba 0 . 5 Sr 0 . 5 Nb 20 6 , by varying the particle size and

  13. Metallic-fibre-reinforced ceramic-matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-12-31

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs.

  14. Synthesis, deposition and crystal growth of CZTS nanoparticles onto ceramic tiles

    Directory of Open Access Journals (Sweden)

    Ivan Calvet

    2015-09-01

    Full Text Available The work presents a simple solvothermal method for CZTS nanoparticles preparation using hexadecylamine (HDA as a capping agent. The as-prepared CZTS powder was deposited as ink using Doctor Blade technique onto ceramic tile, as a substrate substituting the typical soda-lime glass. The as-prepared film was thermal treated at different temperatures in order to enhance the thin film crystallinity. CZTS crystal growth onto ceramic tile was obtained successfully for the first time.

  15. Strain-induced structural changes in thin YBa2Cu3O7-x films on SrTiO3 substrates

    NARCIS (Netherlands)

    Vonk, V.; van Reeuwijk, S.J.; Dekkers, Jan M.; Harkema, Sybolt; Rijnders, Augustinus J.H.M.; Graafsma, H.; Graafsma, H

    2004-01-01

    High-energy synchrotron radiation is used to obtain reciprocal space maps of thin YBa2Cu3O7−x films grown by pulsed laser deposition on (001) SrTiO3 substrates. The films show a transition from a tetragonal to an orthorhombic structure with increasing film thickness. The critical thickness is found

  16. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  17. Large Field-Induced Strain Properties of Sr(K0.25Nb0.75) O3-Modified Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Piezoelectric Ceramics

    Science.gov (United States)

    Tran, Vu Diem Ngoc; Ullah, Aman; Dinh, Thi Hinh; Lee, Jae-Shin

    2016-05-01

    Lead-free piezoelectric ceramics with compositions of (1 - x)Bi1/2(Na0.82 K0.18)1/2TiO3 + xSr(K0.25Nb0.75)O3, which are abbreviated as (1 - x)BNKT- xSKN with x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05, were synthesized using a conventional solid-state reaction method. The effects of SKN addition on the BNKT system were examined in terms of the phase transition, strain behavior, and ferroelectric and dielectric properties. X-ray diffraction revealed a single perovskite phase for all compositions. The results showed that with increasing SKN content, BNKT-SKN underwent a phase transition from the coexistence of rhombohedral and tetragonal phases to a tetragonal phase. The addition of SKN shifted the depolarization temperature, T d, to a lower temperature and enhanced the diffuseness of the dielectric peaks. The polarization and bipolar strain hysteresis loops of BNKT-SKN showed that the addition of SKN induced a ferroelectric to ergodic relaxor phase transition with a disruption of the ferroelectric order of pure BNKT. As a result, the strain of BNKT-SKN improved significantly with increasing SKN content and reached the highest value of a normalized strain, S max/ E max, of 557 pm/V, when modified with 3 mol.% SKN.

  18. Effect of Lanthanum Doping on Ferroelectric and Strain Properties of 0.96Bi1/2(Na0.84K0.16)1/2TiO3-0.04SrTiO3 Lead-Free Ceramics

    Science.gov (United States)

    Tran, Vu Diem Ngoc; Ullah, Aman; Dinh, Thi Hinh; Lee, Jae-Shin

    2016-05-01

    Lead-free 0.96[Bi1/2(Na0.84K0.16)1/2](1- x)La x TiO3-0.04SrTiO3 (BNKTLa x-ST, with x = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05) ceramics have been synthesized using a conventional solid-state reaction method and their phase transition, dielectric, ferroelectric, and strain properties investigated. X-ray diffraction patterns revealed formation of pure perovskite phase. A phase transition from coexistence of rhombohedral and tetragonal to a pseudocubic phase was observed at x = 0.02. Polarization and bipolar strain hysteresis loops indicated that the ferroelectric order (FE) of BNKT-ST is significantly disrupted by lanthanum doping. The destabilization of the FE order results in degradation of the remanent polarization, coercive field, depolarization temperature ( T d), electromechanical coupling factor ( k p), and static d 33, accompanied by large electric-field-induced strain of 0.34% at 60 kV/cm with normalized strain of d 33 * = S max/ E max = 600 pm/V at a critical composition of around x = 0.02.

  19. Industrial Ceramics: Secondary Schools.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  20. Verification of ceramic structures

    NARCIS (Netherlands)

    Behar-Lafenetre, S.; Cornillon, L.; Rancurel, M.; Graaf, D. de; Hartmann, P.; Coe, G.; Laine, B.

    2012-01-01

    In the framework of the "Mechanical Design and Verification Methodologies for Ceramic Structures" contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instr

  1. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  2. Observation of the strain-driven charge-ordered state in La sub 0 sub . sub 7 sub C a sub 0 sub . sub 3 MnO sub 3 sub - sub d elta thin film with oxygen deficiency

    CERN Document Server

    Prokhorov, V G; Kaminsky, G G; Svetchnikov, V L; Zandbergen, H W; Lee, Y P; Park, J S; Kim, K W

    2003-01-01

    The magnetic and transport properties of La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 sub - sub d elta films with an oxygen deficiency (delta approx 0.1) and a La sub 0 sub . sub 9 Ca sub 0 sub . sub 1 MnO sub 3 film with the stoichiometric oxygen content are investigated in a wide temperature range. It is shown that the charge-ordered insulating (COI) state is observed for a La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 2 sub . sub 9 film with thickness d <= 30 nm, which manifests mainly a cubic crystal structure with an anomalously small lattice parameter for this composition. An increase in the film thickness (d approx 60 nm) leads to a structural transition from the lattice-strained cubic to the relaxed rhombohedral phase, is accompanied by a shift of the Curie point (T sub C) to lower temperature and a frustration of the COI state. The magnetic and transport properties of the La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 2 sub . sub 9 film with d approx 60 nm are similar to those exhibi...

  3. Thin films for material engineering

    Science.gov (United States)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  4. Ceramics As Materials Of Construction

    OpenAIRE

    Zaki, A.; Eteiba, M. B.; Abdelmonem, N.M.

    1988-01-01

    This paper attempts to review the limitations for using the important ceramics in contact with corrosive media. Different types of ceramics are included. Corrosion properties of ceramics and their electrical properties are mentioned. Recommendations are suggested for using ceramics in different media.

  5. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  6. The APS ceramic chambers

    Energy Technology Data Exchange (ETDEWEB)

    Milton, S.; Warner, D.

    1994-07-01

    Ceramics chambers are used in the Advanced Photon Source (APS) machines at the locations of the pulsed kicker and bumper magnets. The ceramic will be coated internally with a resistive paste. The resistance is chosen to allow the low frequency pulsed magnet field to penetrate but not the high frequency components of the circulating beam. Another design goal was to keep the power density experienced by the resistive coating to a minimum. These ceramics, their associated hardware, the coating process, and our recent experiences with them are described.

  7. Design and implementation of an x-ray strain measurement capability using a rotating anode machine

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.A.; Rangaswamy, P.; Lujan, M. Jr.; Bourke, M.A.M.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Residual stresses close to the surface can improve the reliability and lifetime of parts for technological applications. X-ray diffraction plays a significant role in gaining an exact knowledge of the stresses at the surface and their depth distribution. An x-ray capability at Los Alamos is key to developing and maintaining industrial collaborations in strain effects. To achieve this goal, the authors implemented a residual strain measuring station on the rotating anode x-ray instrument at the Lujan Center. This capability has been used to investigate residual strains in heat treated automotive components, machining effects on titanium alloys, resistance welded steel joints, titanium matrix fiber reinforced composites, ceramic matrix composites, thin films, and ceramic coatings. The overall objective is to combine both x-ray and neutron diffraction measurements with numerical models (e.g., finite element calculations).

  8. Advanced Ceramics Property Measurements

    Science.gov (United States)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  9. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  10. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  11. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  13. Degradability of dental ceramics.

    Science.gov (United States)

    Anusavice, K J

    1992-09-01

    The degradation of dental ceramics generally occurs because of mechanical forces or chemical attack. The possible physiological side-effects of ceramics are their tendency to abrade opposing dental structures, the emission of radiation from radioactive components, the roughening of their surfaces by chemical attack with a corresponding increase in plaque retention, and the release of potentially unsafe concentrations of elements as a result of abrasion and dissolution. The chemical durability of dental ceramics is excellent. With the exception of the excessive exposure to acidulated fluoride, ammonium bifluoride, or hydrofluoric acid, there is little risk of surface degradation of virtually all current dental ceramics. Extensive exposure to acidulated fluoride is a possible problem for individuals with head and/or neck cancer who have received large doses of radiation. Such fluoride treatment is necessary to minimize tooth demineralization when saliva flow rates have been reduced because of radiation exposure to salivary glands. Porcelain surface stains are also lost occasionally when abraded by prophylaxis pastes and/or acidulated fluoride. In each case, the solutes are usually not ingested. Further research that uses standardized testing procedures is needed on the chemical durability of dental ceramics. Accelerated durability tests are desirable to minimize the time required for such measurements. The influence of chemical durability on surface roughness and the subsequent effect of roughness on wear of the ceramic restorations as well as of opposing structures should also be explored on a standardized basis.

  14. Clinical application of bio ceramics

    Science.gov (United States)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  15. Development of ceramic-reinforced photopolymers for SLA 3D printing technology

    Science.gov (United States)

    Yun, Ji Sun; Park, Tae-Wan; Jeong, Young Hun; Cho, Jeong Ho

    2016-06-01

    Al2O3 ceramic-reinforced photopolymer samples for SLA 3D printing technology were prepared using a silane coupling agent (VTES, vinyltriethoxysilane). Depending on the method used to coat the VTES onto the ceramic surface, the dispersion of ceramic particles in the photopolymer solution was remarkably improved. SEM, TEM and element mapping images showed Al2O3 particles well wrapped with VTES along with well-distributed Al2O3 particles overall on the cross-sectional surfaces of 3D-printed objects. The tensile properties (stress-strain curves) of 3D-printed objects of the ceramic-reinforced photopolymer were investigated as a function of the Al2O3 ceramic content when it ranged from 0 to 20 wt%. The results demonstrate that an Al2O3 ceramic content of 15 wt% resulted in enhanced tensile characteristics.

  16. Hysteresis Behavior of Capacitance-Voltage Curve in (Ba0.6Sr0.4)TiO3 Thick Films Caused by Strained Heterostructure

    Science.gov (United States)

    Kawae, Takeshi; Fukuda, Yuji; Morito, Kentaro; Munetomo, Kenshiro; Morimoto, Akiharu

    2009-09-01

    (Ba0.6Sr0.4)TiO3 (BST) films with 300-1700 nm thicknesses were deposited on SrTiO3 (STO), 0.5 wt % Nb-doped STO and (La0.5Sr0.5)CoO3-coated STO substrates by pulsed laser deposition. X-ray diffraction analysis results indicate that the deposited BST thick films were epitaxially grown on the substrates and c-lattice parameter of BST was increased compared with that of the bulk material owing to stress in the film. The fabricated film capacitors showed a hysteresis curve in the capacitance-voltage curve at room temperature. Hysteresis width linearly increased with increasing BST c-lattice parameter.

  17. Influence of resin cement shade on the color and translucency of ceramic veneers

    Science.gov (United States)

    HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211

  18. Influence of resin cement shade on the color and translucency of ceramic veneers

    Directory of Open Access Journals (Sweden)

    Daiana Kelly Lopes HERNANDES

    Full Text Available ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3 layer on color change, translucency parameter (TP, and chroma of low (LT and high (HT translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B and white (W background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  19. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  20. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank