WorldWideScience

Sample records for film ceramic strain

  1. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  2. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  3. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Otto J. Gregory

    2013-11-01

    Full Text Available Temperatures of hot section components in today’s gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today’s engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire thermocouples.

  4. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  5. Method for fabrication of ceramic dielectric films on copper foils

    Science.gov (United States)

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2015-03-10

    The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.

  6. Strain quantification in epitaxial thin films

    International Nuclear Information System (INIS)

    Cushley, M

    2008-01-01

    Strain arising in epitaxial thin films can be beneficial in some cases but devastating in others. By altering the lattice parameters, strain may give a thin film properties hitherto unseen in the bulk material. On the other hand, heavily strained systems are prone to develop lattice defects in order to relieve the strain, which can cause device failure or, at least, a decrease in functionality. Using convergent beam electron diffraction (CBED) and high-resolution transmission electron microscopy (HRTEM), it is possible to determine local strains within a material. By comparing the results from CBED and HRTEM experiments, it is possible to gain a complete view of a material, including the strain and any lattice defects present. As well as looking at how the two experimental techniques differ from each other, I will also look at how results from different image analysis algorithms compare. Strain in Si/SiGe samples and BST/SRO/MgO capacitor structures will be discussed.

  7. Laser deposition and analysis of biocompatible ceramic films - experiences andoverview

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Dostálová, T.; Fotakis, C.; Studnička, Václav; Jastrabík, Lubomír; Havránek, V.; Grivas, C.; Pospíchal, M.; Kadlec, J.; Peřina, Vratislav

    1996-01-01

    Roč. 6, č. 1 (1996), s. 144-149 ISSN 1054-660X Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : laser deposition * hydroxyapatite * ceramic films Subject RIV: BM - Solid Matter Physics ; Magnetism

  8. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  9. Hot Films on Ceramic Substrates for Measuring Skin Friction

    Science.gov (United States)

    Noffz, Greg; Leiser, Daniel; Bartlett, Jim; Lavine, Adrienne

    2003-01-01

    Hot-film sensors, consisting of a metallic film on an electrically nonconductive substrate, have been used to measure skin friction as far back as 1931. A hot film is maintained at an elevated temperature relative to the local flow by passing an electrical current through it. The power required to maintain the specified temperature depends on the rate at which heat is transferred to the flow. The heat transfer rate correlates to the velocity gradient at the surface, and hence, with skin friction. The hot-film skin friction measurement method is most thoroughly developed for steady-state conditions, but additional issues arise under transient conditions. Fabricating hot-film substrates using low-thermal-conductivity ceramics can offer advantages over traditional quartz or polyester-film substrates. First, a low conductivity substrate increases the fraction of heat convected away by the fluid, thus increasing sensitivity to changes in flow conditions. Furthermore, the two-part, composite nature of the substrate allows the installation of thermocouple junctions just below the hot film, which can provide an estimate of the conduction heat loss.

  10. Far infrared and Raman response in tetragonal PZT ceramic films

    Energy Technology Data Exchange (ETDEWEB)

    Buixaderas, E.; Kadlec, C.; Vanek, P.; Drnovsek, S.; Ursic, H.; Malic, B.

    2015-07-01

    PbZr{sub 0}.38Ti{sub 0}.62O{sub 3} and PbZr{sub 0}.36Ti{sub 0}.64{sub O}3 thick films deposited by screen printing on (0 0 0 1) single crystal sapphire substrates and prepared at two different sintering temperatures, were studied by Fourier-transform infrared reflectivity, time-domain TH{sub z} transmission spectroscopy and micro-Raman spectroscopy. The dielectric response is discussed using the Lichtenecker model to account for the porosity of the films and to obtain the dense bulk dielectric functions. Results are compared with bulk tetragonal PZT 42/58 ceramics. The dynamic response in the films is dominated by an overdamped lead-based vibration in the TH{sub z} range, as known in PZT, but its evaluated dielectric contribution is affected by the porosity and roughness of the surface. (Author)

  11. Strain-induced properties of epitaxial VOx thin films

    NARCIS (Netherlands)

    Rata, AD; Hibma, T

    We have grown VOx thin films on different substrates in order to investigate the influence of epitaxial strain on the transport properties. We found that the electric conductivity is much larger for films grown under compressive strain on SrTiO3 substrates, as compared to bulk material and VOx films

  12. Microstructural properties of BaTiO3 ceramics and thin films

    International Nuclear Information System (INIS)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M.

    2000-01-01

    A microstructural study of BaTiO 3 ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO 3 thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO 3 ceramic samples and thin films, as deposited and after an annealing process. (Author)

  13. Properties of zirconium ceramics and film stabilized by yttrium

    International Nuclear Information System (INIS)

    Korobova, N.

    2004-01-01

    Full text: Unstable zirconium dioxide phase transformation can be eliminated by stabilization of the cubic phase with an addition of a selected alkaline earth or rare-earth oxide. Stabilized ZrO 2 has been widely utilized in various high-temperature refractory applications. These stabilized ZrO 2 -base solid solutions also possess rather unique electrical properties, and as a result have considerable potential as solid electrolytes in galvanic and fuel cells and, possibly, as heating elements in high-temperature furnaces. The complex study of synthesis processes, structure and properties of metal alkoxide organic sols have been developed. These have allowed to create main principles of their formation and to show the practical realization of obtained theoretical and experimental results. The correlation between hydrolysis conditions of (Zr+Y) metal alkoxide sols and synthesis of stable colloid multi-component systems has been established. Systematic research of zirconium and yttrium bi-alkoxide electrophoretic deposition was conducted for the first time. The formation mechanism of electrophoretic deposits has been offered and general scientific principles of the electrophoretic process have been formulated. The model of gel deposits structure was proposed. It has enabled to analyze the main (for example, cluster) effects, which have been exhibited in technological procedure for thin film preparation. The structure investigation of stabilized zirconium dioxide thin films and ceramics has been studied. The researches were based on the comparative analysis of the initial gel microstructure and dried gel by the various drying methods. The new approach for drying of gel electrophoretic deposits was formulated theoretically and experimentally has been proved. The modeling of the aggregate kinetics as a type of 'cluster-cluster' has been proposed like a qualitative description of the process. The data of fractal dimensions of aggregates which have been formed at the

  14. Multiphase nanodomains in a strained BaTiO3 film on a GdScO3 substrate

    Science.gov (United States)

    Kobayashi, Shunsuke; Inoue, Kazutoshi; Kato, Takeharu; Ikuhara, Yuichi; Yamamoto, Takahisa

    2018-02-01

    Controlling the crystal structure of ferroelectric materials via epitaxial strain, which is a well-known technique in strain engineering, can lead to the formation of unique domain structures generating non-intrinsic phenomena such as electronic conductivity, photovoltages, and enhanced piezoelectric characteristics. Strained BaTiO3 films are promising ferroelectric materials as theoretical modeling predicts that different domain morphologies can introduce additional properties not observed in conventional BaTiO3 ceramics. To rationally design materials for practical application, a thorough understanding of the formation mechanisms and stabilities of different domain structures in strained BaTiO3 films is required. However, there have been very few experimental reports on this topic, and details about the domain structures in strained BaTiO3 films are currently lacking. In this paper, we report multiphase nanodomains in a strained BaTiO3 film deposited on an orthorhombic GdScO3 substrate. The phase-transition behavior of the strained BaTiO3 film reveals that it contains multiple phases at room temperature; the film first undergoes a phase-transition upon heating at around 550 K, and then a paraelectric phase forms at temperatures above 690 K. A picometer-scale analysis of the Ti ion displacements, using an advanced scanning transmission electron microscopy technique, is used to characterize the complex multiphase nanodomains, providing useful insights into the control of domain structures in BaTiO3 films by applying epitaxial strain.

  15. Nonlinear Stress-Strain Behavior of Plasma Sprayed Ceramic Coatings

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří; Kroupa, František

    2005-01-01

    Roč. 50, č. 3 (2005), s. 251-262 ISSN 0001-7043 R&D Projects: GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * ceramic coatings * Young’s modulus * nonlinear behavior * microcracks Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  16. Ceramic stove eases strain on African forests | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-10-28

    Oct 28, 2010 ... IDRC began supporting research that led to the marketing of the ceramic Jiko stove in the ... IDRC Communications ... Informal sector workers producing the traditional stoves were sent designs and convinced to switch to this ...

  17. Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films

    International Nuclear Information System (INIS)

    Khamseh, S.; Ghahari, M.; Araghi, H.; Faghihi Sani, M.A.

    2016-01-01

    W-doped VO 2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VO X -WO X -VO X ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO 2 (M) and VO 2 (B) was formed in VO X -WO X -VO X ceramic thin films. Tungsten content of VO X -WO X -VO X ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance (R sq ) of VO X -WO X -VO X ceramic thin films increased from 65 to 86 kΩ/sq. The VO X -WO X -VO X ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness. (orig.)

  18. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    International Nuclear Information System (INIS)

    Gruber, W.; Chakravarty, S.; Schmidt, H.; Baehtz, C.; Leitenberger, W.; Bruns, M.; Kobler, A.; Kuebel, C.

    2011-01-01

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  19. Microstructural properties of BaTiO{sub 3} ceramics and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fundora C, A.; Portelles, J.J.; Siqueiros, J.M. [Posgrado en Fisica de Materiales, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Apartado Postal 2861, 22800 Ensenada, Baja California (Mexico)

    2000-07-01

    A microstructural study of BaTiO{sub 3} ceramics obtained by the conventional ceramic method is presented. Targets were produced to grow BaTiO{sub 3} thin films by pulsed laser deposition on Pt/Ti/Si (100) substrates. X-ray diffraction, Auger Electron Spectroscopy, X-ray Photon Spectroscopy and Scanning Electron Microscopy were used to study the properties of the BaTiO{sub 3} ceramic samples and thin films, as deposited and after an annealing process. (Author)

  20. Ceramic substrate including thin film multilayer surface conductor

    Science.gov (United States)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.

  1. Indium tin oxide thin film strain gages for use at elevated temperatures

    Science.gov (United States)

    Luo, Qing

    A robust ceramic thin film strain gage based on indium-tin-oxide (ITO) has been developed for static and dynamic strain measurements in advanced propulsion systems at temperatures up to 1400°C. These thin film sensors are ideally suited for in-situ strain measurement in harsh environments such as those encountered in the hot sections of gas turbine engines. A novel self-compensation scheme was developed using thin film platinum resistors placed in series with the active strain element (ITO) to minimize the thermal effect of strain or apparent strain. A mathematical model as well as design rules were developed for the self-compensated circuitry using this approach and close agreement between the model and actual static strain results has been achieved. High frequency dynamic strain tests were performed at temperatures up to 500°C and at frequencies up to 2000Hz to simulate conditions that would be encountered during engine vibration fatigue. The results indicated that the sensors could survive extreme test conditions while maintaining sensitivity. A reversible change in sign of the piezoresistive response from -G to +G was observed in the vicinity of 950°C, suggesting that the change carrier responsible for conduction in the ITO gage had been converted from a net "n-carrier" to a net "p-carrier" semiconductor. Electron spectroscopy for chemical analysis (ESCA) of the ITO films suggested they experienced an interfacial reaction with the Al2O3 substrate at 1400°C. It is likely that oxygen uptake from the substrate is responsible for stabilizing the ITO films to elevated temperatures through the interfacial reaction. Thermo gravimetric analysis of ITO films on alumina at elevated temperatures showed no sublimation of ITO films at temperature up to 1400°C. The surface morphology of ITO films heated to 800, 1200 and 1400°C were also evaluated by atomic force microscopy (AFM). A linear current-voltage (I--V) characteristic indicated that the contact interface

  2. Polymer film strain gauges for measuring large elongations

    Science.gov (United States)

    Kondratov, A. P.; Zueva, A. M.; Varakin, R. S.; Taranec, I. P.; Savenkova, I. A.

    2018-02-01

    The paper shows the possibility to print polymer strain gages, microstrip lines, coplanar waveguides, and other prints for avionics using printing technology and equipment. The methods of screen and inkjet printing have been complemented by three new operations of preparing print films for application of an electrically conductive ink layer. Such additional operations make it possible to enhance the conductive ink layer adhesion to the film and to manufacture strain gages for measuring large elongations.

  3. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.

    Science.gov (United States)

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-11-29

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  4. Engineered high expansion glass-ceramics having near linear thermal strain and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu; Rodriguez, Mark A.; Lyon, Nathanael L.

    2018-01-30

    The present invention relates to glass-ceramic compositions, as well as methods for forming such composition. In particular, the compositions include various polymorphs of silica that provide beneficial thermal expansion characteristics (e.g., a near linear thermal strain). Also described are methods of forming such compositions, as well as connectors including hermetic seals containing such compositions.

  5. Strain engineering of perovskite thin films using a single substrate

    International Nuclear Information System (INIS)

    Janolin, P-E; Guiblin, N; Dkhil, B; Anokhin, A S; Mukhortov, V M; Golovko, Yu I; Gui, Z; Bellaiche, L; Ravy, S; El Marssi, M; Yuzyuk, Yu I

    2014-01-01

    Combining temperature-dependent x-ray diffraction, Raman spectroscopy and first-principles-based effective Hamiltonian calculations, we show that varying the thickness of (Ba 0.8 Sr 0.2 )TiO 3 (BST) thin films deposited on the same single substrate (namely, MgO) enables us to change not only the magnitude but also the sign of the misfit strain. Such previously overlooked control of the strain allows several properties of these films (e.g. Curie temperature, symmetry of ferroelectric phases, dielectric response) to be tuned and even optimized. Surprisingly, such desired control of the strain (and of the resulting properties) originates from an effect that is commonly believed to be detrimental to functionalities of films, namely the existence of misfit dislocations. The present study therefore provides a novel route to strain engineering, as well as leading us to revisit common beliefs. (fast track communication)

  6. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.

    Science.gov (United States)

    Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei

    2012-12-01

    In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.

  7. Nucleation versus instability race in strained films

    Science.gov (United States)

    Liu, Kailang; Berbezier, Isabelle; David, Thomas; Favre, Luc; Ronda, Antoine; Abbarchi, Marco; Voorhees, Peter; Aqua, Jean-Noël

    2017-10-01

    Under the generic term "Stranski-Krastanov" are grouped two different growth mechanisms of SiGe quantum dots. They result from the self-organized Asaro-Tiller-Grinfel'd (ATG) instability at low strain, while at high strain, from a stochastic nucleation. While these regimes are well known, we elucidate here the origin of the transition between these two pathways thanks to a joint theoretical and experimental work. Nucleation is described within the master equation framework. By comparing the time scales for ATG instability development and three-dimensional (3D) nucleation onset, we demonstrate that the transition between these two regimes is simply explained by the crossover between their divergent evolutions. Nucleation exhibits a strong exponential deviation at low strain while ATG behaves only algebraically. The associated time scale varies with exp(1 /x4) for nucleation, while it only behaves as 1 /x8 for the ATG instability. Consequently, at high (low) strain, nucleation (instability) occurs faster and inhibits the alternate evolution. It is then this different kinetic evolution which explains the transition from one regime to the other. Such a kinetic view of the transition between these two 3D growth regimes was not provided before. The crossover between nucleation and ATG instability is found to occur both experimentally and theoretically at a Ge composition around 50% in the experimental conditions used here. Varying the experimental conditions and/or the system parameters does not allow us to suppress the transition. This means that the SiGe quantum dots always grow via ATG instability at low strain and nucleation at high strain. This result is important for the self-organization of quantum dots.

  8. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates

    International Nuclear Information System (INIS)

    Eryilmaz, O L; Johnson, J A; Ajayi, O O; Erdemir, A

    2006-01-01

    As an element, carbon is rather unique and offers a range of rare opportunities for the design and fabrication of zero-, one-, two-, and three-dimensional nanostructured novel materials and coatings such as fullerenes, nanotubes, thin films, and free-standing nano-to-macroscale structures. Among these, carbon-based two-dimensional thin films (such as diamond and diamond-like carbon (DLC)) have attracted an overwhelming interest in recent years, mainly because of their exceptional physical, chemical, mechanical, electrical, and tribological properties. In particular, certain DLC films were found to provide extremely low friction and wear coefficients to sliding metallic and ceramic surfaces. Since the early 1990s, carbon has been used at Argonne National Laboratory to synthesize a class of novel DLC films that now provide friction and wear coefficients as low as 0.001 and 10 -11 -10 -10 mm 3 N -1 m -1 , respectively, when tested in inert or vacuum test environments. Over the years, we have optimized these films and applied them successfully to all kinds of metallic and ceramic substrates and evaluated their friction and wear properties under a wide range of sliding conditions. In this paper, we will provide details of our recent work on the deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates. We will also provide chemical and structural information about these films and describe the fundamental tribological mechanisms that control their unusual friction and wear behaviour

  9. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film

    KAUST Repository

    Lai, K.; Nakamura, M.; Kundhikanjana, W.; Kawasaki, M.; Tokura, Y.; Kelly, M. A.; Shen, Z.-X.

    2010-01-01

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd 1/2Sr1/2MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  10. Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film

    KAUST Repository

    Lai, K.

    2010-07-08

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd 1/2Sr1/2MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  11. Mesoscopic percolating resistance network in a strained manganite thin film.

    Science.gov (United States)

    Lai, Keji; Nakamura, Masao; Kundhikanjana, Worasom; Kawasaki, Masashi; Tokura, Yoshinori; Kelly, Michael A; Shen, Zhi-Xun

    2010-07-09

    Many unusual behaviors in complex oxides are deeply associated with the spontaneous emergence of microscopic phase separation. Depending on the underlying mechanism, the competing phases can form ordered or random patterns at vastly different length scales. By using a microwave impedance microscope, we observed an orientation-ordered percolating network in strained Nd(1/2)Sr(1/2)MnO3 thin films with a large period of 100 nanometers. The filamentary metallic domains align preferentially along certain crystal axes of the substrate, suggesting the anisotropic elastic strain as the key interaction in this system. The local impedance maps provide microscopic electrical information of the hysteretic behavior in strained thin film manganites, suggesting close connection between the glassy order and the colossal magnetoresistance effects at low temperatures.

  12. Residual stress estimation of ceramic thin films by X-ray diffraction and indentation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Erdem; Sarioglu, Cevat; Demirler, Ugur; Sabri Kayali, E.; Cimenoglu, Huseyin

    2003-05-15

    The residual stresses in ceramic thin films obtained by the indentation method have been found to be three times higher than those of the X-ray diffraction method. This discrepancy can be eliminated by setting the geometrical factor for the Vickers pyramid indenter to 1 in the relevant equation of the indentation method.

  13. Residual stress estimation of ceramic thin films by X-ray diffraction and indentation techniques

    International Nuclear Information System (INIS)

    Atar, Erdem; Sarioglu, Cevat; Demirler, Ugur; Sabri Kayali, E.; Cimenoglu, Huseyin

    2003-01-01

    The residual stresses in ceramic thin films obtained by the indentation method have been found to be three times higher than those of the X-ray diffraction method. This discrepancy can be eliminated by setting the geometrical factor for the Vickers pyramid indenter to 1 in the relevant equation of the indentation method

  14. Electrically Induced Strain and Polarization Fatigue in Lead-Free Ceramics

    Science.gov (United States)

    Sommer, Daniel

    Piezoelectric ceramics have traditionally been used in commercial applications such as actuators and sensors. By far the most popular piezoceramics currently in use are Pb(Zr,Ti)O3-based (PZT) ceramics. PZT ceramics are able to produce large strain and polarization with the application of an electric field, and this is due to the Morphotropic phase boundary (MPB). A MPB is associated with the boundary between tetragonal and rhombohedral perovskite phases. A disadvantage of PZT ceramics is that they contain ? 60 wt. % of lead. Since lead is toxic, this poses an environmental and health hazard because lead is released into the surroundings during fabrication and disposal. Because of this, there is a push to discover lead-free alternatives that have comparable properties to PZT but none of the health risks. One possibility is Bi 1/2(Na0.8K0.2)1/2Ti0.985 Ta0.015O3 (BNKT-1.5Ta). In addition to comparable electrical properties, any lead-free alternatives must have decent fatigue resistance to be useful for applications. This thesis focuses on the fatigue properties of BNKT-1.5Ta. The composition demonstrates high strain for a given applied electric field. To determine the fatigue resistance of BNKT-1.5Ta, data was gathered on how strain and polarization changed over number of cycles. Furthermore, fatigue tests at different temperatures were performed to ascertain if temperature affected fatigue life. X-ray diffraction (XRD) patterns and dielectric measurements were also collected to further examine any change in crystal structure and relative permittivity, respectively, before and after cycling.

  15. Capillary assisted deposition of carbon nanotube film for strain sensing

    Science.gov (United States)

    Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping

    2017-10-01

    Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.

  16. On the modification of metal/ceramic interfaces by low energy ion/atom bombardment during film growth

    International Nuclear Information System (INIS)

    Rigsbee, J.M.; Scott, P.A.; Knipe, R.K.; Hock, V.F.

    1986-01-01

    Elemental Cu and Ti films have been deposited onto ceramic substrates with a plasma-aided physical vapor deposition (ion-plating) process. This paper discusses how the structure and chemistry of the metallic film and the metal/ceramic interface are modified by low energy ion and neutral atom bombardment. Emphasis is placed on determining how low energy ion/neutral atom bombardment affects the strength of the metal/ceramic interface. Analyses of the film, interface and substrate regions have employed scanning Auger microprobe, secondary ion mass spectroscopy, SEM/STEM-energy dispersive X-ray and TEM/STEM imaging and microdiffraction techniques. (Auth.)

  17. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  18. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    Energy Technology Data Exchange (ETDEWEB)

    Louaer, Seif-Eddine; Wang, Yao, E-mail: yao@buaa.edu.cn; Guo, Lin, E-mail: guolin@buaa.edu.cn

    2014-11-14

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work.

  19. Topotactic preparation of textured alumina ceramics from dehydroxylation of gibbsite films

    International Nuclear Information System (INIS)

    Louaer, Seif-Eddine; Wang, Yao; Guo, Lin

    2014-01-01

    In this paper, textured alumina ceramics were prepared from dehydroxylation of gibbsite films and the pseudomorphic and topotactic nature of the dehydroxylation of textured gibbsite films has been investigated. First, the precursor film with a (001)-textured structure was obtained via vacuum filtration deposition of diluted aqueous suspensions of gibbsite nanoplatelets. Subsequently, (001)-textured α-alumina ceramics were successfully achieved by sintering of the deposited gibbsite films without addition of α-alumina seeds. The Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) results show that, during the phase transition from gibbsite to α-alumina, both layered morphology and crystal's axis orientation have been retained to a considerable extent. For the first time, a direct XRD evidence of gibbsite topotactic dehydroxylation to the α-alumina phase is presented. It is believed that the method described here exploits gibbsite's pseudomorphic and topotactic dehydroxylation, not on individual particles scale but on a bulk form. The resulting structure can be considered as inorganic scaffolds which can have applications for fabrication of dense, textured alumina-based ceramics and other layered/textured nanocomposites. - Highlights: • Gibbsite nanoplatelets were assembled on their basal plane to form (001)-textured films. • Textured alumina ceramics were prepared by sintering textured gibbsite films without addition of α-alumina seeds. • Both pseudomorphic and topotactic aspects were exploited in bulk form instead of individual nanoparticulate size. • Direct XRD evidence of the topotactic dehydroxylation from gibbsite to α-alumina is presented in this work

  20. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates.

    Science.gov (United States)

    Nguyen, Minh D; Houwman, Evert P; Rijnders, Guus

    2017-10-10

    Thin films of PbZr 0 . 52 Ti 0 . 48 O 3 (PZT) with largely detached columnar grains, deposited by pulsed laser deposition (PLD) on amorphous glass substrates covered with Ca 2 Nb 3 O 10 nanosheets as growth template and using LaNiO 3 electrode layers, are shown to exhibit very high unipolar piezoelectric strain and ultra-low strain hysteresis. The observed increase of the piezoelectric coefficient with increasing film thickness is attributed to the reduction of clamping, because of the increasingly less dense columnar microstructure (more separation between the grains) with across the film thickness. A very large piezoelectric coefficient (490 pm/V) and a high piezoelectric strain (~0.9%) are obtained in 4-µm-thick film under an applied electric field of 200 kV/cm, which is several times larger than in usual PZT ceramics. Further very low strain hysteresis (H≈2-4%) is observed in 4 to 5 µm thick films. These belong to the best values demonstrated so far in piezoelectric films. Fatigue testing shows that the piezoelectric properties are stable up to 10 10 cycles. The growth of high quality PZT films with very large strain and piezoelectric coefficients, very low hysteresis and with long-term stability on a technologically important substrate as glass is of great significance for the development of practical piezo driven microelectromechanical actuator systems.

  1. Strain-enhanced optical absorbance of topological insulator films

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias

    2018-01-01

    Topological insulator films are promising materials for optoelectronics due to a strong optical absorption and a thickness-dependent band gap of the topological surface states. They are superior candidates for photodetector applications in the THz-infrared spectrum, with a potential performance...... thickness, the surface-state band gap, and thereby the optical absorption, can be effectively tuned by the application of uniaxial strain epsilon(zz), leading to a divergent band-edge absorbance for epsilon(zz) greater than or similar to 6%. Shear strain breaks the crystal symmetry and leads...

  2. Microstructure and thermochromic properties of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khamseh, S.; Ghahari, M. [Institute for Color Science and Technology, Department of Nanomaterial and Nanocoatings, Tehran (Iran, Islamic Republic of); Araghi, H. [Islamic Azad University, Department of Materials Engineering, Science and Research Branch, Tehran (Iran, Islamic Republic of); Faghihi Sani, M.A. [Sharif University of Technology, Department of Materials Science and Engineering, Tehran (Iran, Islamic Republic of)

    2016-03-15

    W-doped VO{sub 2} films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO{sub 2} (M) and VO{sub 2} (B) was formed in VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films. Tungsten content of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance (R{sub sq}) of VO{sub X}-WO{sub X}-VO{sub X} ceramic thin films increased from 65 to 86 kΩ/sq. The VO{sub X}-WO{sub X}-VO{sub X} ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness. (orig.)

  3. High energy X-ray diffraction analysis of strain and residual stress in silicon nitride ceramic diffusion bonds

    International Nuclear Information System (INIS)

    Vila, M.; Prieto, C.; Miranzo, P.; Osendi, M.I.; Terry, A.E.; Vaughan, G.B.M.

    2005-01-01

    High resolution X-ray scanning diffractometry is used to study the residual stress in binary metal/ceramic (Ni/Si 3 N 4 ) diffusion bonds fabricated by simultaneous high temperature heating and uniaxial pressing. In order to diminish the experimental error on the stress determination, the method consists of three steps: (i) to measure the axial and radial strains following some selected lines at the inner volume of the ceramic; (ii) to fit the strain data using finite element method (FEM) analysis and (iii) to determinate stresses by using the results obtained from the FEM method in the strain calculation

  4. Electro-physical properties of superconducting ceramic thick film prepared by partial melting method.

    Science.gov (United States)

    Lee, Sang Heon

    2013-05-01

    BiSrCaCuO superconductor thick films were prepared at several curing temperatures, and their electro-physical properties were determined to find an optimum fabrication conditions. Critical temperatures of the superconductors were decreased with increasing melting temperature, which was related to the amount of equilibrium phases of the superconducting materials with temperature. The critical temperature of BiSrCaCuO bulk and thick film superconductors were 107 K and 96 K, respectively. The variation of susceptibility of the superconductor thick film formed at 950 degrees C had multi-step-type curve for 70 G externally applied field, whereas, a superconductor thick film formed at 885 degrees C had a single step-type curve like a bulk BiSrCaCuO ceramic superconductor in the temperature-susceptibility curves. A partial melting at 865 degrees C is one of optimum conditions for making a superconductor thick film with a relatively homogeneous phase.

  5. Epitaxially grown strained pentacene thin film on graphene membrane.

    Science.gov (United States)

    Kim, Kwanpyo; Santos, Elton J G; Lee, Tae Hoon; Nishi, Yoshio; Bao, Zhenan

    2015-05-06

    Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. In vitro studies of osteoblasts response onto zinc aluminate ceramic films

    Directory of Open Access Journals (Sweden)

    Marco Antonio Alvarez-Pérez

    2009-01-01

    Full Text Available Zinc based or doped ceramics have shown to be capable of increasing osteoblasts proliferation, biomineralization and bone formation. However, studies regarding the biological applications processes in ZnAl2O4 ceramic films are very scarce. For this reason, the objective of this in vitro study was to investigate the response of osteoblasts cells cultured onto ZnAl2O4 films. Our results showed a good biological response related to attachment and viability, with good cell morphology attached to the semi-spherical grains of the ceramic and the analysis of mineral-like tissue showed a high quantity of mineral deposited and organized as tiny spherical-like nodules attached to nanostructure surface of ZnAl2O4 material films. Based in our results, ZnAl2O4 films stimulated the bioactivity of osteoblasts cells and provide a microenvironment that favors cell differentiation and mineralization processes, suggesting their potential use as osteoconductive coating onto currently orthopedic and dental implants.

  7. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  8. Investigation on the minimum film boiling temperature on metallic and ceramic heaters

    International Nuclear Information System (INIS)

    Ladisch, R.

    1980-06-01

    The minimum film boiling temperature on ceramic and metallic heaters has been experimentally studied. The knowledge of this temperature boundary is important in safety considerations on all liquid cooled nuclear reactors. The experiments have been carried out by quenching a hot metal cylinder with and without ceramic coating of aluminium in water. Results show that the minimum film boiling temperature Tsub(min) increases with water subcooling and is dependend upon the thermophysical properties of the heating surface. The roughness of the heater does not affect Tsub(min). At low subcoolings the vapour film is more stable and seems to break down when the specific heatflux upon liquid solid contact is lower than a threshold value above which film boiling can be reestablished. At higher subcoolings instead the vapour film is thinner and more stable. In this case the surface temperature decreases beyond the value by which the specific heatflux upon liquid solid contact would be lower than the threshold value. As soon as the vapour film becomes unstable, it collapses. (orig.) [de

  9. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here......, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x...... heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials....

  10. Numerical Simulation of the Dynamic Performance of the Ceramic Material Affected by Different Strain Rate and Porosity

    International Nuclear Information System (INIS)

    Wang Zhen; Mei, H; Lai, X; Liu, L S; Zhai, P C; Cao, D F

    2013-01-01

    Ceramic materials are frequently used in protective armor applications for its low-density, high elastic modulus and high strength. It may be subject to different ballistic impacts in many situations, thus many studies have been carried out to explore the approach to improve the mechanical properties of the ceramic material. However, the materials manufactured in real world are full of defects, which would involve in variable fractures or damage. Therefore, the defects should be taken into account while the simulations are performed. In this paper, the dynamic properties of ceramic materials (Al 2 O 3 ) affected by different strain rate (500–5000) and porosity (below 5%) are investigated. Foremost, the effect of strain rate was studied by using different load velocities. Then, compression simulations are performed by setting different porosities and random distribution of pores size and location in ceramic materials. Crack extensions and failure modes are observed to describe the dynamic mechanical behavior.

  11. Surface preparation for the heteroepitactic growth of ceramic thin films

    International Nuclear Information System (INIS)

    Norton, M.G.; Summerfelt, S.R.; Carter, C.B.

    1990-01-01

    The morphology, composition, and crystallographic orientation of the substrate influence the nucleation and growth of deposited thin films. A method for the preparation of controlled, characteristic surfaces is reported. The surfaces are suitable for the heteroepitactic growth of thin films. When used in the formation of electron-transparent thin foils, the substrates can be used to investigate the very early stages of film growth using transmission electron microscopy. The substrate preparation involves the cleaning and subsequent annealing to generate a surface consisting of a series of steps. The step terraces are formed on the energetically stable surface, and controlled nucleation and growth of films at step edges is found. The substrate materials prepared using this technique include (001) MgO, (001) SrTiO 3 , and (001) LaAlO 3

  12. Method for fabrication of crack-free ceramic dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan

    2017-12-05

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  13. Method for fabrication of crack-free ceramic dielectric films

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj

    2014-02-11

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  14. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic

    Science.gov (United States)

    Lian, Jianyun; Ponchel, Freddy; Tiercelin, Nicolas; Chen, Ying; Rémiens, Denis; Lasri, Tuami; Wang, Genshui; Pernod, Philippe; Zhang, Wenbin; Dong, Xianlin

    2018-04-01

    In this paper, the converse magnetoelectric (CME) effect by electric field tuning of magnetization in an original heterostructure composed of a polycrystalline yttrium iron garnet (YIG) film and a lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramic is presented. The magnetic performances of the YIG films with different thicknesses under a DC electric field applied to the PMN-PZT ceramics and a bias magnetic field are investigated. All the magnetization-electric field curves are found to be in good agreement with the butterfly like strain curve of the PMN-PZT ceramic. Both the sharp deformation of about 2.5‰ of PMN-PZT and the easy magnetization switching of YIG are proposed to be the reasons for the strongest CME interaction in the composite at the small electric coercive field of PMN-PZT (4.1 kV/cm) and the small magnetic coercive field of YIG (20 Oe) where the magnetic susceptibility reaches its maximum value. A remarkable CME coefficient of 3.1 × 10-7 s/m is obtained in the system with a 600 nm-thick YIG film. This heterostructure combining multiferroics and partially magnetized ferrite concepts is able to operate under a small or even in the absence of an external bias magnetic field and is more compact and power efficient than the traditional magnetoelectric devices.

  15. Evaluation of unencapsulated ceramic monolithic and MOS thin-film capacitors (25 to 3000C)

    International Nuclear Information System (INIS)

    Nance, W.R.

    1982-01-01

    Several commercial monolithic ceramic and thin-film MOS chip capacitors were evaluated for use in high temperature (300 0 C) geothermal instrumentation. Characteristics of the commonly used dielectric materials (NPO, X7R, BX) and temperature dependence of the insulation resistance are briefly discussed. Some ceramic capacitors with NPO dielectric materials had insulation resistances above 10 megohms at 300 0 C and less than 2% change in capacitance from 25 0 C to 300 0 C, while the X7R and BX dielectric materials exhibited insulation resistances below 10 megohm and changes in capacitance greater then 50%. The thin-film capacitors showed good stability at 300 0 C. However, during aging, bonds and bond pads presented a problem causing intermittently open circuits for some of the devices

  16. Two-phase behavior in strained thin films of hole-doped manganites

    OpenAIRE

    Biswas, Amlan; Rajeswari, M.; Srivastava, R. C.; Li, Y. H.; Venkatesan, T.; Greene, R. L.; Millis, A. J.

    1999-01-01

    We present a study of the effect of biaxial strain on the electrical and magnetic properties of thin films of manganites. We observe that manganite films grown under biaxial compressive strain exhibit island growth morphology which leads to a non-uniform distribution of the strain. Transport and magnetic properties of these films suggest the coexistence of two different phases, a metallic ferromagnet and an insulating antiferromagnet. We suggest that the high strain regions are insulating whi...

  17. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  18. Origin of the Strain Sensitivity for an Organic Heptazole Thin-Film and Its Strain Gauge Application

    Science.gov (United States)

    Bae, Heesun; Jeon, Pyo Jin; Park, Ji Hoon; Lee, Kimoon

    2018-04-01

    The authors report on the origin of the strain sensitivity for an organic C26H16N2 (heptazole) thinfilm and its application for the detection of tensile strain. From the electrical characterization on the thin-film transistor adopting a heptazole channel, heptazole film exhibits p-channel conduction with a relatively low value of field-effect mobility (0.05 cm2/Vs), suggesting a hopping conduction behavior via hole carriers. By analyzing the strain and temperature dependences of the electrical conductivity, we reveal that the electrical conduction for a heptazole thin-film is dominated by the variable range hopping process with quite a large energy separation (224.9 meV) between the localized states under a relatively long attenuation length (10.46 Å). This indicates that a change in the inter-grain spacing that is much larger than the attenuation length is responsible for the reversible modification of electrical conductivity depending on strain for the heptazole film. By utilizing our heptazole thin-film both as a strain sensitive passive resistor and an active semiconducting channel layer, we can achieve a strain gauge device exhibiting reversible endurance for tensile strains up to 2.12%. Consequently, this study advances the understanding of the fundamental strain sensing mechanism in a heptazole thin-film toward finding a promise material with a strain gauge for applications as potential flexible devices and/or wearable electronics.

  19. Misfit strain phase diagrams of epitaxial PMN–PT films

    Energy Technology Data Exchange (ETDEWEB)

    Khakpash, N.; Khassaf, H.; Rossetti, G. A. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Alpay, S. P., E-mail: p.alpay@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Department of Physics, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2015-02-23

    Misfit strain–temperature phase diagrams of three compositions of (001) pseudocubic (1 − x)·Pb (Mg{sub l/3}Nb{sub 2/3})O{sub 3} − x·PbTiO{sub 3} (PMN–PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN–PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN–PT compared to barium strontium titanate and lead zirconate titanate films.

  20. Strain profiles in ion implanted ceramic polycrystals: An approach based on reciprocal-space crystal selection

    Energy Technology Data Exchange (ETDEWEB)

    Palancher, H., E-mail: herve.palancher@cea.fr; Martin, G.; Fouet, J. [CEA, DEN, DEC, F-13108 Saint Paul lez Durance (France); Goudeau, P. [Institut Pprime, CNRS-Université de Poitiers–ENSMA, SP2MI, F-86360 Chasseneuil (France); Boulle, A. [Science des Procédés Céramiques et Traitements de Surface (SPCTS), CNRS UMR 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges (France); Rieutord, F. [CEA, DSM, INAC, F-38054 Grenoble Cedex 9 (France); Favre-Nicolin, V. [Université Grenoble-Alpes, F-38041 Grenoble, France, Institut Universitaire de France, F-75005 Paris (France); Blanc, N. [Institut NEEL, CNRS-Univ Grenoble Alpes, F-38042 Grenoble (France); Onofri, C. [CEA, DEN, DEC, F-13108 Saint Paul lez Durance (France); CEMES, CNRS UPR 8011, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4 (France)

    2016-01-18

    The determination of the state of strain in implanted materials is a key issue in the study of their mechanical stability. Whereas this question is nowadays relatively easily solved in the case of single crystals, it remains a challenging task in the case of polycrystalline materials. In this paper, we take benefit of the intense and parallel beams provided by third generation synchrotron sources combined with a two-dimensional detection system to analyze individual grains in polycrystals, hence obtaining “single crystal-like” data. The feasibility of the approach is demonstrated with implanted UO{sub 2} polycrystals where the in-depth strain profile is extracted for individual grains using numerical simulations of the diffracted signal. The influence of the implantation dose is precisely analyzed for several diffracting planes and grains. This work suggests that, at low fluences, the development of strain is mainly due to ballistic effects with little effect from He ions, independently from the crystallographic orientation. At higher fluences, the evolution of the strain profiles suggests a partial and anisotropic plastic relaxation. With the present approach, robust and reliable structural information can be obtained, even from complex polycrystalline ceramic materials.

  1. Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition

    DEFF Research Database (Denmark)

    Bodea, M. A.; Sbarcea, G.; Naik, G. V.

    2013-01-01

    Aluminum and gallium doped zinc oxide thin films with negative dielectric permittivity in the near infrared spectral range are grown by pulsed laser deposition. Composite ceramics comprising ZnO and secondary phase Al2O3 or Ga2O3 are employed as targets for laser ablation. Films deposited on glass...

  2. Evolution of microstructure, strain and physical properties in oxide nanocomposite films.

    Science.gov (United States)

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; Zhang, Wenrui; Lü, Xuejie; Dowden, Paul; MacManus-Driscoll, Judith L; Wang, Haiyan; Jia, Quanxi

    2014-06-24

    We, using LSMO:ZnO nanocomposite films as a model system, have studied the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures, strain states, and functionalities. It further shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.

  3. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    Science.gov (United States)

    Siegal, Michelle F.; Martínez-Miranda, L. J.; Santiago-Avilés, J. J.; Graham, W. R.; Siegal, M. P.

    1994-02-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 Å. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 Å. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films.

  4. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    International Nuclear Information System (INIS)

    Siegal, M.F.; Martinez-Miranda, L.J.; Santiago-Aviles, J.J.; Graham, W.R.; Siegal, M.P.

    1994-01-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 A. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 A. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films

  5. Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics

    International Nuclear Information System (INIS)

    Hall, D.A.; Steuwer, A.; Cherdhirunkorn, B.; Mori, T.; Withers, P.J.

    2006-01-01

    The elastic strain and crystallographic texture of a rhombohedral lead zirconate titanate ceramic have been characterised in the remanent state, after poling, using high-energy synchrotron X-ray diffraction as a function of the grain orientation ψ relative to the poling direction. It is observed that the (2 0 0) diffraction peak exhibits pronounced shifts as a function of ψ, indicating an elastic lattice strain, while others ({1 1 1}, {1 1 2} and {2 2 0}) show marked changes in intensity as a result of preferred ferroelectric domain orientation. It is shown that the (2 0 0) peak is not affected by the domain switching itself but rather acts like an elastic macrostrain sensor. A simple Eshelby analysis is used to demonstrate that both the elastic strain and texture vary systematically with ψ according to the factor (3cos 2 ψ - 1). This angular dependence is evaluated through micromechanics modelling. The physical meaning of the texture variations with ψ is also discussed

  6. Thick-film processing of Pb5Ge3O11-based ferroelectric glass-ceramics

    International Nuclear Information System (INIS)

    Cornejo, I.A.; Haun, M.J.

    1996-01-01

    Processing techniques were investigated to produce c-axis orientation, or texture, of ferroelectric Pb 5 Ge 3 O 11 -based glass-ceramic compositions during crystallization of amorphous thick-film printed samples from the Pb 5 Ge 3 O 11 -PbTiO 3 (PG-PT) and Pb 5 Ge 3 O 11 -Pb(Zr 1/2 Ti 1/2 )O 3 (PG-PZT) systems. In these systems the PG crystallized into a ferroelectric phase, producing a multiple ferroelectric phase composite at low temperatures, PG-PT or PG-PZT. In this way the non-ferroelectric component of traditional ferroelectric glass-ceramics was eliminated

  7. Thin film production of ceramic high-Tc-superconductors (targets)

    International Nuclear Information System (INIS)

    1992-01-01

    Presently high-quality thin superconducting films having high T c 's may prepared by the sputtering technique. However, a large-area coating is required for an industrial application. One requirement is the availability of sputter targets with controlled and reproducible properties. By means of basic experiments with respect to powder processing, shaping and the densification process superconducting targets up to 200 mm in diameter were prepared in the Y-Ba-Cu-O- system. Additionally, targets from other systems with different geometries (e.g. ring targets) were prepared. These targets were submitted to the project partners as well as to other institutes and companies. During the course of this project the foundations for an industrial-type coating of large-area substrates were elaborated. (orig.). 9 refs., 5 tabs., 15 figs [de

  8. Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications.

    Science.gov (United States)

    Escorihuela, Sara; Tena, Alberto; Shishatskiy, Sergey; Escolástico, Sonia; Brinkmann, Torsten; Serra, Jose Manuel; Abetz, Volker

    2018-03-07

    Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84 ® , Matrimid 5218 ® , and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order to tackle the poor compatibility between ceramic support and polymer, and to get defect-free thin films, the effect of the viscosity of the polymer solution was studied, giving the entanglement concentration (C*) for each polymer. The C* values were 3.09 wt. % for the 6FDA-6FpDA, 3.52 wt. % for Matrimid ® , and 4.30 wt. % for P84 ® . A minimum polymer solution concentration necessary for defect-free film formation was found for each polymer, with the inverse order to the intrinsic viscosities (P84 ® ≥ Matrimid ® > 6FDA-6FpDA). The effect of the temperature on the permeance of prepared membranes was studied for H₂, CH₄, N₂, O₂, and CO₂. As expected, activation energy of permeance for hydrogen was higher than for CO₂, resulting in H₂/CO₂ selectivity increase with temperature. More densely packed polymers lead to materials that are more selective at elevated temperatures.

  9. Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sara Escorihuela

    2018-03-01

    Full Text Available Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84®, Matrimid 5218®, and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order to tackle the poor compatibility between ceramic support and polymer, and to get defect-free thin films, the effect of the viscosity of the polymer solution was studied, giving the entanglement concentration (C* for each polymer. The C* values were 3.09 wt. % for the 6FDA-6FpDA, 3.52 wt. % for Matrimid®, and 4.30 wt. % for P84®. A minimum polymer solution concentration necessary for defect-free film formation was found for each polymer, with the inverse order to the intrinsic viscosities (P84® ≥ Matrimid® >> 6FDA-6FpDA. The effect of the temperature on the permeance of prepared membranes was studied for H2, CH4, N2, O2, and CO2. As expected, activation energy of permeance for hydrogen was higher than for CO2, resulting in H2/CO2 selectivity increase with temperature. More densely packed polymers lead to materials that are more selective at elevated temperatures.

  10. Misfit strain-film thickness phase diagrams and related electromechanical properties of epitaxial ultra-thin lead zirconate titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Q.Y.; Mahjoub, R. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Alpay, S.P. [Materials Science and Engineering Program and Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Nagarajan, V., E-mail: nagarajan@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2010-02-15

    The phase stability of ultra-thin (0 0 1) oriented ferroelectric PbZr{sub 1-x}Ti{sub x}O{sub 3} (PZT) epitaxial thin films as a function of the film composition, film thickness, and the misfit strain is analyzed using a non-linear Landau-Ginzburg-Devonshire thermodynamic model taking into account the electrical and mechanical boundary conditions. The theoretical formalism incorporates the role of the depolarization field as well as the possibility of the relaxation of in-plane strains via the formation of microstructural features such as misfit dislocations at the growth temperature and ferroelastic polydomain patterns below the paraelectric-ferroelectric phase transformation temperature. Film thickness-misfit strain phase diagrams are developed for PZT films with four different compositions (x = 1, 0.9, 0.8 and 0.7) as a function of the film thickness. The results show that the so-called rotational r-phase appears in a very narrow range of misfit strain and thickness of the film. Furthermore, the in-plane and out-of-plane dielectric permittivities {epsilon}{sub 11} and {epsilon}{sub 33}, as well as the out-of-plane piezoelectric coefficients d{sub 33} for the PZT thin films, are computed as a function of misfit strain, taking into account substrate-induced clamping. The model reveals that previously predicted ultrahigh piezoelectric coefficients due to misfit-strain-induced phase transitions are practically achievable only in an extremely narrow range of film thickness, composition and misfit strain parameter space. We also show that the dielectric and piezoelectric properties of epitaxial ferroelectric films can be tailored through strain engineering and microstructural optimization.

  11. Ceramic thick film humidity sensor based on MgTiO3 + LiF

    International Nuclear Information System (INIS)

    Kassas, Ahmad; Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand; Lakiss, Hassan; Hamieh, Tayssir

    2013-01-01

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO 3 + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO 3 /LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time

  12. Ceramic thick film humidity sensor based on MgTiO{sub 3} + LiF

    Energy Technology Data Exchange (ETDEWEB)

    Kassas, Ahmad, E-mail: a.kassas.mcema@ul.edu.lb [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand [Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Lakiss, Hassan [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Faculty of Engineering, Section III, Hariri Campus, Hadath, Beirut (Lebanon); Hamieh, Tayssir [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon)

    2013-10-15

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO{sub 3} + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO{sub 3}/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time.

  13. Broad-band tunable visible emission of sol-gel derived SiBOC ceramic thin films

    International Nuclear Information System (INIS)

    Karakuscu, Aylin; Guider, Romain; Pavesi, Lorenzo; Soraru, Gian Domenico

    2011-01-01

    Strong broad band tunable visible emission of SiBOC ceramic films is reported and the results are compared with one of boron free SiOC ceramic films. The insertion of boron into the SiOC network is verified by Fourier-Transform Infrared Spectroscopy. Optical properties are studied by photoluminescence and ultraviolet-visible spectroscopy measurements. Boron addition causes a decrease in the emission intensity attributed to defect states and shifts the emission to the visible range at lower temperatures (800-900 o C) leading to a very broad tunable emission with high external quantum efficiency.

  14. Role of scaffold network in controlling strain and functionalities of nanocomposite films.

    Science.gov (United States)

    Chen, Aiping; Hu, Jia-Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, Towfiq; Enriquez, Erik; Weigand, Marcus; Su, Qing; Wang, Haiyan; Zhu, Jian-Xin; MacManus-Driscoll, Judith L; Chen, Long-Qing; Yarotski, Dmitry; Jia, Quanxi

    2016-06-01

    Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface-strain-properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.

  15. Strain-Induced Ferromagnetism in Antiferromagnetic LuMnO3 Thin Films

    Science.gov (United States)

    White, J. S.; Bator, M.; Hu, Y.; Luetkens, H.; Stahn, J.; Capelli, S.; Das, S.; Döbeli, M.; Lippert, Th.; Malik, V. K.; Martynczuk, J.; Wokaun, A.; Kenzelmann, M.; Niedermayer, Ch.; Schneider, C. W.

    2013-07-01

    Single phase and strained LuMnO3 thin films are discovered to display coexisting ferromagnetic and antiferromagnetic orders. A large moment ferromagnetism (≈1μB), which is absent in bulk samples, is shown to display a magnetic moment distribution that is peaked at the highly strained substrate-film interface. We further show that the strain-induced ferromagnetism and the antiferromagnetic order are coupled via an exchange field, therefore demonstrating strained rare-earth manganite thin films as promising candidate systems for new multifunctional devices.

  16. A search for strain gradients in gold thin films on substrates using x-ray diffraction

    International Nuclear Information System (INIS)

    Leung, O. S.; Munkholm, A.; Brennan, S.; Nix, W. D.

    2000-01-01

    The high strengths of gold thin films on silicon substrates have been studied with particular reference to the possible effect of strain gradients. Wafer curvature/thermal cycling measurements have been used to study the strengths of unpassivated, oxide-free gold films ranging in thickness from 0.1 to 2.5 μm. Films thinner than about 1 μm in thickness appear to be weakened by diffusional relaxation effects near the free surface and are not good candidates for the study of strain gradient plasticity. Our search for plastically induced strain gradients was thus limited to thicker films with correspondingly larger grain sizes. Three related x-ray diffraction techniques have been used to investigate the elastic strains in these films. The standard d hkl vs sin2 Ψ technique has been used to find the average strain through the thickness of the films. The results are consistent with wafer curvature measurements. We have also measured a number of d hkl 's as a function of penetration depth to construct depth-dependent d hkl vs sin2 Ψ plots. These data show that the residual elastic strain is essentially independent of depth in the film. Finally, a new technique for sample rotation has been used to measure the d hkl 's for a fixed set of grains in the film as a function of penetration depth. Again, no detectable gradient in strain has been observed. These results show that the high strengths of unpassivated gold films relative to the strength of bulk gold cannot be rationalized on the basis of strain gradients through the film thickness. However, a sharp gradient in strain close to the film substrate interface cannot be ruled out. (c) 2000 American Institute of Physics

  17. Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain

    International Nuclear Information System (INIS)

    Glushko, O.; Marx, V.M.; Kirchlechner, C.; Zizak, I.; Cordill, M.J.

    2014-01-01

    Substantial recovery (decrease) of electrical resistance during and after unloading is demonstrated for copper films on polyethylene terephthalate substrates subjected to a tensile strain with different peak values. Particularly, the films strained to 5% exhibit full resistance recovery after unloading despite clearly visible plastic deformation of the film. The recovery of electrical resistance in connection with the mechanical behavior of film/substrate couple is discussed with the help of in situ scanning electron microscopy and X-ray diffraction analysis. - Highlights: • Tensile tests on 200 nm Cu films on PET substrate are performed. • Electrical resistance is recorded in-situ during loading and unloading. • Significant recovery (decrease) of resistance is observed during and after unloading. • Films strained to 5% demonstrate full resistance recovery. • Viscoelastic relaxation of PET is responsible for recovery of Cu film resistance

  18. Flexible Mixed-Potential-Type (MPT) NO₂ Sensor Based on An Ultra-Thin Ceramic Film.

    Science.gov (United States)

    You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong

    2017-07-29

    A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO₂ detection from 0 to 500 ppm at 200 °C. An ultra-thin Y₂O₃-doped ZrO₂ (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor's sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO₂ sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO₂ emissions and improve fuel efficiency.

  19. Strain Effect on Electronic Structure and Work Function in α-Fe2O3 Films

    Directory of Open Access Journals (Sweden)

    Li Chen

    2017-03-01

    Full Text Available We investigate the electronic structure and work function modulation of α-Fe2O3 films by strain based on the density functional method. We find that the band gap of clean α-Fe2O3 films is a function of the strain and is influenced significantly by the element termination on the surface. The px and py orbitals keep close to Fermi level and account for a pronounced narrowing band gap under compressive strain, while unoccupied dz2 orbitals from conduction band minimum draw nearer to Fermi level and are responsible for the pronounced narrowing band gap under tensile strain. The spin polarized surface state, arising from localized dangling-bond states, is insensitive to strain, while the bulk band, especially for pz orbital, arising from extended Bloch states, is very sensitive to strain, which plays an important role for work function decreasing (increasing under compressive (tensile strain in Fe termination films. In particular, the work function in O terminated films is insensitive to strain because pz orbitals are less sensitive to strain than that of Fe termination films. Our findings confirm that the strain is an effective means to manipulate electronic structures and corrosion potential.

  20. Electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices

    Science.gov (United States)

    Hung, Chen-Jen

    This dissertation presents an investigation of the electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices. All of the films were deposited from aqueous solution at room temperature with no subsequent heat treatment needed to effect crystallization. Thallium(III) oxide defect chemistry superlattices were electrodeposited by pulsing the applied overpotential during deposition. The defect chemistry of the oxide is dependent on the applied overpotential. High overpotentials favor oxygen vacancies, while low overpotentials favor cation interstitials. Nanometer-scale holes were formed in thin thallium(III) oxide films using the scanning tunneling microscope in humid ambient conditions. Both cathodic and anodic etching reactions were performed on this metal oxide surface. The hole formation was attributed to localized electrochemical etching reactions beneath the STM tip. The scanning tunneling microscope (STM) was also used to both induce local surface modifications and image cleaved Pb-Tl-O superlattices. A trench of 100 nm in width, 32 nm in depth, and over 1 μm in length was formed after sweeping a bias voltage of ±2.5 V for 1 minute using a fixed STM tip. It has been suggested that STM results obtained under ambient conditions must be evaluated with great care because of the possibility of localized electrochemcial reactions. A novel synthesis method for the production of Cu(II) oxide from an alkaline solution containing Cu(II) tartrate was developed. Rietveld refinement of the cupric oxide films reveals pure Cu(II) oxide with no Cu(I) oxide present in the film.

  1. Robustness and Versatility of Thin Films on Low Temperature Cofired Ceramic (LTCC)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J. Ambrose; Vianco, P. T.; Johnson, M. H.; Goldammer, S.

    2011-10-09

    Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC). The ruggedness of a multipurpose Ti-Cu-Pt-Au stack has continued to benefit fabrication and reliability in state-of-theart modules. Space optimization is described, preserving miniaturization of critical spaces and component pads. Additional soldering details are also presented, including trends with solder-stop materials. Feature compensation becomes a simple step in the normal manufacturing flow which enables exact targeting of desired feature sizes. In addition, fine details of the manufacturing process, including ion milling, will be discussed. We will discuss full long-term aging results and structural details that reinforce the reliability and function. Different thin film materials for specific applications can be exploited for additional capabilities such as filters and other integral components. Cross sections verify the results shown. This successful integration of thin films on LTCC points to higher frequencies which require finer lines and spaces. Advancements of these applications become possible due to the associated progression of smaller skin depth and thinner metallic material.

  2. Thermal Vapor Deposition and Characterization of Polymer-Ceramic Nanoparticle Thin Films and Capacitors

    Science.gov (United States)

    Iwagoshi, Joel A.

    Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V

  3. Atomistic Structure, Strength, and Kinetic Properties of Intergranular Films in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garofalini, Stephen H

    2015-01-08

    Intergranular films (IGFs) present in polycrystalline oxide and nitride ceramics provide an excellent example of nanoconfined glasses that occupy only a small volume percentage of the bulk ceramic, but can significantly influence various mechanical, thermal, chemical, and optical properties. By employing molecular dynamics computer simulations, we have been able to predict structures and the locations of atoms at the crystal/IGF interface that were subsequently verified with the newest electron microscopies. Modification of the chemistry of the crystal surface in the simulations provided the necessary mechanism for adsorption of specific rare earth ions from the IGF in the liquid state to the crystal surface. Such results had eluded other computational approaches such as ab-initio calculations because of the need to include not only the modified chemistry of the crystal surfaces but also an accurate description of the adjoining glassy IGF. This segregation of certain ions from the IGF to the crystal caused changes in the local chemistry of the IGF that affected fracture behavior in the simulations. Additional work with the rare earth ions La and Lu in the silicon oxynitride IGFs showed the mechanisms for their different affects on crystal growth, even though both types of ions are seen adhering to a bounding crystal surface that would normally imply equivalent affects on grain growth.

  4. The effect of tape casting operational parameters on the quality of adjacently graded ceramic film

    DEFF Research Database (Denmark)

    Bulatova, Regina; Gudik-Sørensen, Mads; Della Negra, Michela

    2016-01-01

    For small length tape casting of ceramic slurries varying green film thickness is often a problem. To optimise this, the following parameters were investigated: single blade, double blade, using a pump system and a modelled speed change mode have been analysed. Advantages and limitations of every...... method are described here. The tape casting experiments were built to be generic in order to allow the control of various processing conditions. From these results, the single-blade technique was chosen for a study of side-by-side tape casting. The influence of the geometric parameters of partitioning...... the casting tank into chambers, on the quality of graded tape was studied. Tape casting experiments at different speeds and partition tongue lengths in combination with rheological tests revealed that high casting speeds and absence of the partition under the blade are detrimental to the formation...

  5. Study of grain boundary tunneling in barium-titanate ceramic films

    CERN Document Server

    Wong, H; Poon, M C

    1999-01-01

    The temperature and the electric-field dependences of the current-voltage characteristics and the low-frequency noise of barium-titanate ceramic films are studied. An abnormal field dependence is observed in the resistivity of BaTiO sub 3 materials with a small average grain size. In addition, experiments show that the low-frequency noise behaviors are governed by grain-boundary tunneling at room temperature and by trapping-detrapping of grain-boundary states at temperatures above the Curie point. Physical models for the new observations are developed. Results suggest that grain-boundary tunneling of carriers is as important as the double Schottky barrier in the current conduction in BaTiO sub 3 materials with small grain sizes.

  6. Inhomogeneous strain states in sputter deposited tungsten thin films

    International Nuclear Information System (INIS)

    Noyan, I.C.; Shaw, T.M.; Goldsmith, C.C.

    1997-01-01

    The results of an x-ray diffraction study of dc-magnetron sputtered tungsten thin films are reported. It is shown that the phase transformation from the β to α W can cause multilayered single-phase films where the layers have very different stress states even if the films are in the 500 nm thickness range. copyright 1997 American Institute of Physics

  7. Nucleation and strain-stabilization during organic semiconductor thin film deposition.

    Science.gov (United States)

    Li, Yang; Wan, Jing; Smilgies, Detlef-M; Bouffard, Nicole; Sun, Richard; Headrick, Randall L

    2016-09-07

    The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C.

  8. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    Science.gov (United States)

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Film-based Sensors with Piezoresistive Molecular Conductors as Active Components Strain Damage and Thermal Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Laukhina

    2011-02-01

    Full Text Available The article is addressed to the development of flexible all-organic bi layer (BL film-based sensors being capable of measuring strain as a well-defined electrical signal in a wide range of elongations and temperature. The purpose was achieved by covering polycarbonate films with the polycrystalline layer of a high piezoresistive organic molecular conductor. To determine restrictions for sensor applications, the effect of monoaxial strain on the resistance and texture of the sensing layers of BL films was studied. The experiments have shown that the maximum strain before fracture is about 1 %. A thermal regeneration of the sensing layer of the BL film-based sensors that were damaged by cyclic load is also described. These sensors are able to take the place of conventional metal-based strain and pressure gages in low cost innovative controlling and monitoring technologies.

  10. Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ebner, C. [Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Sarkar, R. [Department of Materials Science and Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe 85287 (United States); Rajagopalan, J. [Department of Materials Science and Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe 85287 (United States); Department of Mechanical and Aerospace Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe 85287 (United States); Rentenberger, C., E-mail: christian.rentenberger@univie.ac.at [Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria)

    2016-06-15

    A novel technique is used to measure the atomic-level elastic strain tensor of amorphous materials by tracking geometric changes of the first diffuse ring of selected area electron diffraction patterns (SAD). An automatic procedure, which includes locating the centre and fitting an ellipse to the diffuse ring with sub-pixel precision is developed for extracting the 2-dimensional strain tensor from the SAD patterns. Using this technique, atomic-level principal strains from micrometre-sized regions of freestanding amorphous Ti{sub 0.45}Al{sub 0.55} thin films were measured during in-situ TEM tensile deformation. The thin films were deformed using MEMS based testing stages that allow simultaneous measurement of the macroscopic stress and strain. The calculated atomic-level principal strains show a linear dependence on the applied stress, and good correspondence with the measured macroscopic strains. The calculated Poisson’s ratio of 0.23 is reasonable for brittle metallic glasses. The technique yields a strain accuracy of about 1×10{sup −4} and shows the potential to obtain localized strain profiles/maps of amorphous thin film samples. - Highlights: • A TEM method to measure elastic strain in metallic glass films is proposed. • Method is based on tracking geometric changes in TEM diffraction patterns. • An automatic procedure is developed for extracting the local strain tensor. • Atomic-level strain in amorphous TiAl film was analysed during in-situ deformation. • Capability of the method to obtain micrometer scale strain profiles/maps is shown.

  11. Strain effect on the magnetic and transport properties of LaCoO3 thin films

    Science.gov (United States)

    Li, Y.; Peng, S. J.; Wang, D. J.; Wu, K. M.; Wang, S. H.

    2018-05-01

    LaCoO3 (LCO) has attracted much attention due to the unique magnetic transition and spin transition of Co3+ ions. Epitaxial LCO film exhibits an unexpected ferromagnetism, in contrast to the non-magnetism of bulk LCO. An in-depth study on the property of strained LCO film is of great importance. We have fabricated 30 nm LCO films on various substrates and studied the magnetic and transport properties of films in different strain states (compressed strain for LCO/LaAlO3, tensile strain for LCO/(LaAlO3)0.3(Sr2TaAlO6)0.35, SrTiO3). The in-plane tensiled LCO films exhibit ferromagnetic ground state at 5K and magnetic transition with TC around 85K, while compressed LCO/LaAlO3 film has a negligibly small moment signal. Our results reveal that in-plane tensile strain and tetragonal distortion are much more favorable for stabilizing the FM order in LCO films.

  12. Modulation of magnetic coercivity in Ni thin films by reversible control of strain

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Chin, E-mail: wclin@ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Huang, Chia-Wei; Ting, Yi-Chieh; Lo, Fang-Yuh [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Chern, Ming-Yau [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-05-01

    In this study, we demonstrated the magnetoelectric control of magnetic thin films. (111)-textured Pd/Ni/Pd thin films were prepared on mica/lead zirconium titanate (PZT) substrates for the investigation. The reversible modulation of magnetic coercivity in Ni films was observed through the electric-voltage-controlled strain variation from the PZT substrate. For 14 nm Ni film, the applied electric field of ±350 V/m led to ±0.5% strain variation of PZT, which was transferred to ±0.4% strain variation of Pd/Ni/Pd thin films on mica, and resulted in ∓17 Oe (∓5% of the preliminary magnetic coercivity). The reversible modulation of magnetic coercivity is supposed to be caused by the voltage-controlled strain through the magneto-elastic effect. - Highlights: • The magnetoelectric control of the magnetic coercivity of Pd/Ni/Pd thin films was demonstrated. • The ±0.4% strain variation of 14 nm Ni thin films resulted in ±17 Oe change of H{sub c}. • The reversible modulation of H{sub c} is supposed to be caused by the magneto-elastic effect.

  13. Strain Induced Magnetism in SrRuO3 Epitaxial Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Grutter, A.; Wong, F.; Arenholz, E.; Liberati, M.; Suzuki, Y.

    2010-01-10

    Epitaxial SrRuO{sub 3} thin films were grown on SrTiO{sub 3}, (LaAlO{sub 3}){sub 0.3}(SrAlO{sub 3}){sub 0.7} and LaAlO{sub 3} substrates inducing different biaxial compressive strains. Coherently strained SrRuO{sub 3} films exhibit enhanced magnetization compared to previously reported bulk and thin film values of 1.1-1.6 {micro}{sub B} per formula unit. A comparison of (001) and (110) SrRuO{sub 3} films on each substrate indicates that films on (110) oriented have consistently higher saturated moments than corresponding (001) films. These observations indicate the importance of lattice distortions in controlling the magnetic ground state in this transitional metal oxide.

  14. Strain transfer through film-substrate interface and surface curvature evolution during a tensile test

    Science.gov (United States)

    He, Wei; Han, Meidong; Goudeau, Philippe; Bourhis, Eric Le; Renault, Pierre-Olivier; Wang, Shibin; Li, Lin-an

    2018-03-01

    Uniaxial tensile tests on polyimide-supported thin metal films are performed to respectively study the macroscopic strain transfer through an interface and the surface curvature evolution. With a dual digital image correlation (DIC) system, the strains of the film and the substrate can be simultaneously measured in situ during the tensile test. For the true strains below 2% (far beyond the films' elastic limit), a complete longitudinal strain transfer is present irrespective of the film thickness, residual stresses and microstructure. By means of an optical surface profiler, the three-dimensional (3D) topography of film surface can be obtained during straining. As expected, the profile of the specimen center remains almost flat in the tensile direction. Nevertheless, a relatively significant curvature evolution (of the same order with the initial curvature induced by residual stresses) is observed along the transverse direction as a result of a Poisson's ratio mismatch between the film and the substrate. Furthermore, finite element method (FEM) has been performed to simulate the curvature evolution considering the geometric nonlinearity and the perfect strain transfer at the interface, which agrees well with the experimental results.

  15. The Effects of Strain on the Electrical Properties of Thin Evaporated Films of Semiconductor Compounds

    Science.gov (United States)

    Steel, G. G.

    1970-01-01

    Reports on project intended to establish how electrical resistance, Hall voltage, and magnetoresistance change when a thin film specimen is subjected to mechanical strain. Found resistance of semiconducting film of indium arsenide and indium antimonide decreases with tension and increases with compression. (LS)

  16. Supercapacitors: Ferroelectric Polymer-Ceramic Nanoparticle Composite Films for Use in the Capacitive Storage of Electrical Energy

    Science.gov (United States)

    Parsons, Dana; Pierce, Andrew; Porter, Tim; Dillingham, Randy; Cornelison, David

    2010-03-01

    Most new alternative energy solutions including wind and solar power, will require short term energy storage for widespread implementation. One means of storage would be the use of capacitors owing to their rapid delivery of power and longevity compared to chemical batteries. Capacitor materials exhibiting high dielectric permittivity and breakdown strength, as well as light weight and environmental safety are most desirable. Recently, new classes of capacitor dielectric materials, consisting of ferroelectric polymer matrices containing ceramic nanoparticles have attracted renewed interest due to their high potential energy storage, charge and discharge properties and lightweight. In this study, polyvinylidene flouride (PVDF) thin films containing nanoparticles of the ceramic titanium dioxide created using a physical vapor deposition process, are analyzed for use as dielectrics for a supercapacitor. Measured results of the film parameters including dielectric properties and breakdown voltages will be presented. These parameters will be analyzed with respect to film characteristics such as, dispersion of the ceramic particles, thickness of the films and composition ratios.

  17. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  18. First-principles study of the effects of halogen dopants on the properties of intergranular films in silicon nitride ceramics

    International Nuclear Information System (INIS)

    Painter, Gayle S.; Becher, Paul F.; Kleebe, H.-J.; Pezzotti, G.

    2002-01-01

    The nanoscale intergranular films that form in the sintering of ceramics often occur as adherent glassy phases separating the crystalline grains in the ceramic. Consequently, the properties of these films are often equal in importance to those of the constituent grains in determining the ceramic's properties. The measured characteristics of the silica-rich phase separating the crystalline grains in Si 3 N 4 and many other ceramics are so reproducible that SiO 2 has become a model system for studies of intergranular films (IGF's). Recently, the influence of fluorine and chlorine dopants in SiO 2 -rich IGF's in silicon nitride was precisely documented by experiment. Along with the expected similarities between the halogens, some dramatically contrasting effects were found. But the atomic-scale mechanisms distinguishing the effects F and Cl on IGF behavior have not been well understood. First-principles density functional calculations reported here provide a quantum-level description of how these dopant-host interactions affect the properties of IGF's, with specific modeling of F and Cl in the silica-rich IGF in silicon nitride. Calculations were carried out for the energetics, structural changes, and forces on the atoms making up a model cluster fragment of an SiO 2 intergranular film segment in silicon nitride with and without dopants. Results show that both anions participate in the breaking of bonds within the IGF, directly reducing the viscosity of the SiO 2 -rich film and promoting decohesion. Observed differences in the way fluorine and chlorine affect IGF behavior become understandable in terms of the relative stabilities of the halogens as they interact with Si atoms that have lost one if their oxygen bridges

  19. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites

    Science.gov (United States)

    Chiu, Hsien T.; Sukachonmakul, Tanapon; Wang, Chen H.; Wattanakul, Karnthidaporn; Kuo, Ming T.; Wang, Yu H.

    2014-02-01

    Amorphous silicon oxycarbide (SiOC) and silicon oxynitrocarbide (SiONC) ceramic films coated aluminum nitride (AlN) were prepared by using preceramic-polysilazane (PSZ) with dip-coating method, followed by pyrolysis at 700 °C in different (air, Ar, N2 and NH3) atmospheres to converted PSZ into SiOCair and SiONC(Ar,N2andNH3) ceramic. The existence of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. This present work provided an alternative surface modification of thermally conductive fillers to improve the thermal conductivity of silicon rubber composites by coating with amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films.

  20. Thin film growth behaviors on strained fcc(111) surface by kinetic Monte Carlo

    International Nuclear Information System (INIS)

    Doi, Y; Matsunaka, D; Shibutani, Y

    2009-01-01

    We study Ag islands grown on strained Ag(111) surfaces using kinetic Monte Carlo (KMC) simulations. We employed KMC parameters of activation energy and attempt frequency estimated by nudged elastic band (NEB) method and vibration analyses. We investigate influences of surface strain and substrate temperature on film growth. As the biaxial surface strain increases, the island density increases. As temperature increases, the shape of the island changes from dendric to hexagonal and the island density increases.

  1. Novel texturing method for sputtered zinc oxide films prepared at high deposition rate from ceramic tube targets

    Directory of Open Access Journals (Sweden)

    Hüpkes J.

    2011-10-01

    Full Text Available Sputtered and wet-chemically texture etched zinc oxide (ZnO films on glass substrates are regularly applied as transparent front contact in silicon based thin film solar cells. In this study, chemical wet etching in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl on aluminum doped zinc oxide (ZnO:Al films deposited by magnetron sputtering from ceramic tube targets at high discharge power (~10 kW/m target length is investigated. Films with thickness of around 800 nm were etched in diluted HCl acid and HF acid to achieve rough surface textures. It is found that the etching of the films in both etchants leads to different surface textures. A two steps etching process, which is especially favorable for films prepared at high deposition rate, was systematically studied. By etching first in diluted hydrofluoric acid (HF and subsequently in diluted hydrochloric acid (HCl these films are furnished with a surface texture which is characterized by craters with typical diameter of around 500 − 1000 nm. The resulting surface structure is comparable to etched films sputtered at low deposition rate, which had been demonstrated to be able to achieve high efficiencies in silicon thin film solar cells.

  2. Method of depositing thin films of high temperature Bi-Sr-Ca-Cu-O-based ceramic oxide superconductors

    International Nuclear Information System (INIS)

    Budd, K.D.

    1991-01-01

    This patent describes a method. It comprises preparing a liquid precursor of a Bi-Sr-Ca-Cu-O- based ceramic oxide superconductor phase, wherein the liquid precursor comprises an alkoxyalkanol, copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate, wherein the liquid precursor has a cation ratio sufficient to form the desired stoichiometry in the ceramic oxide superconductor phase when the liquid precursor is heated to a temperature and for a time sufficient to provide the desired ceramic oxide superconductor phase, and wherein the copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate are mutually soluble in the alkoxyalkanol; applying the liquid precursor to a substrate, wherein the substrate is one of an oxide ceramic, a metal selected from the group consisting of Ag and Ni, and Si; and heating the substrate in an oxygen-containing atmosphere with the liquid precursor applied thereon to a temperature and for a time sufficient to form a thin film comprising at least one Bi-Sr- Ca-Cu-O-based high temperature ceramic oxide superconductor phase

  3. Strategies towards controlling strain-induced mesoscopic phase separation in manganite thin films

    Science.gov (United States)

    Habermeier, H.-U.

    2008-10-01

    Complex oxides represent a class of materials with a plethora of fascinating intrinsic physical functionalities. The intriguing interplay of charge, spin and orbital ordering in these systems superimposed by lattice effects opens a scientifically rewarding playground for both fundamental as well as application oriented research. The existence of nanoscale electronic phase separation in correlated complex oxides is one of the areas in this field whose impact on the current understanding of their physics and potential applications is not yet clear. In this paper this issue is treated from the point of view of complex oxide thin film technology. Commenting on aspects of complex oxide thin film growth gives an insight into the complexity of a reliable thin film technology for these materials. Exploring fundamentals of interfacial strain generation and strain accommodation paves the way to intentionally manipulate thin film properties. Furthermore, examples are given for an extrinsic continuous tuning of intrinsic electronic inhomogeneities in perovskite-type complex oxide thin films.

  4. Strategies towards controlling strain-induced mesoscopic phase separation in manganite thin films

    International Nuclear Information System (INIS)

    Habermeier, H-U

    2008-01-01

    Complex oxides represent a class of materials with a plethora of fascinating intrinsic physical functionalities. The intriguing interplay of charge, spin and orbital ordering in these systems superimposed by lattice effects opens a scientifically rewarding playground for both fundamental as well as application oriented research. The existence of nanoscale electronic phase separation in correlated complex oxides is one of the areas in this field whose impact on the current understanding of their physics and potential applications is not yet clear. In this paper this issue is treated from the point of view of complex oxide thin film technology. Commenting on aspects of complex oxide thin film growth gives an insight into the complexity of a reliable thin film technology for these materials. Exploring fundamentals of interfacial strain generation and strain accommodation paves the way to intentionally manipulate thin film properties. Furthermore, examples are given for an extrinsic continuous tuning of intrinsic electronic inhomogeneities in perovskite-type complex oxide thin films.

  5. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    Directory of Open Access Journals (Sweden)

    Francisca Guadalupe Cabrera-Covarrubias

    2016-12-01

    Full Text Available The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε; therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%, such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content are those of: σ (elastic ranges and failure maximum, ε (elastic ranges and failure maximum, and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  6. Conformation of LSM/YSZ and LSM ceramic films obtained by the citrate and solid mixture techniques; Conformacao de filmes ceramicos de LSM e LSM/YSZ obtidos pelas tecnicas citratos e mistura de solidos

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, R.; Vargas, R.A.; Andreoli, M.; Seo, E.S.M., E-mail: rchiba@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de SOFC - Insumos e Componentes

    2009-07-01

    In this work, the ceramic films of LSM/YSZ (strontium-doped lanthanum manganite/Yttria-stabilized zirconia) and LSM used as cathodes of the solid oxide fuel cells (SOFC) are conformed by the wet powder spraying technique. The composite LSM/YSZ was obtained by the solid mixture technique and LSM by the citrate technique. For the formation of the LSM/YSZ and LSM ceramic films was necessary the preparation of dispersed ceramic suspensions for the deposition in YSZ substrate, used as electrolyte of the CaCOS. These powders were conformed using an aerograph for the deposition of the LSM/YSZ and LSM thin films of approximately 40 microns. The half-cells had been characterized by X-ray diffractometry (XRD), identifying the phases hexagonal (LSM) and cubica (YSZ). And electronic scanning electron microscopy (SEM) was used to evaluate the adherence and porosity of the ceramic films according to the characteristics of the cathode. (author)

  7. Topological Insulator State in Thin Bismuth Films Subjected to Plane Tensile Strain

    Science.gov (United States)

    Demidov, E. V.; Grabov, V. M.; Komarov, V. A.; Kablukova, N. S.; Krushel'nitskii, A. N.

    2018-03-01

    The results of experimental examination of galvanomagnetic properties of thin bismuth films subjected to plane tensile strain resulting from the difference in thermal expansion coefficients of the substrate material and bismuth are presented. The resistivity, the magnetoresistance, and the Hall coefficient were studied at temperatures ranging from 5 to 300 K in magnetic fields as strong as 0.65 T. Carrier densities were calculated. A considerable increase in carrier density in films thinner than 30 nm was observed. This suggests that surface states are more prominent in thin bismuth films on mica substrates, while the films themselves may exhibit the properties of a topological insulator.

  8. Fracture Resistance of Lithium Disilicate Ceramics Bonded to Enamel or Dentin Using Different Resin Cement Types and Film Thicknesses.

    Science.gov (United States)

    Rojpaibool, Thitithorn; Leevailoj, Chalermpol

    2017-02-01

    To investigate the influence of cement film thickness, cement type, and substrate (enamel or dentin) on ceramic fracture resistance. One hundred extracted human third molars were polished to obtain 50 enamel and 50 dentin specimens. The specimens were cemented to 1-mm-thick lithium disilicate ceramic plates with different cement film thicknesses (100 and 300 μm) using metal strips as spacers. The cements used were etch-and-rinse (RelyX Ultimate) and self-adhesive (RelyX U200) resin cements. Compressive load was applied on the ceramic plates using a universal testing machine, and fracture loads were recorded in Newtons (N). Statistical analysis was performed by multiple regression (p enamel showed the highest mean fracture load (MFL; 1591 ± 172.59 N). The RelyX Ultimate groups MFLs were significantly higher than the corresponding RelyX U200 groups (p enamel (p enamel. Reduced resin film thickness could reduce lithium disilicate restoration fracture. Etch-and-rinse resin cements are recommended for cementing on either enamel or dentin, compared with self-adhesive resin cement, for improved fracture resistance. © 2015 by the American College of Prosthodontists.

  9. Aggregate linear properties of ferroelectric ceramics and polycrystalline thin films: Calculation by the method of effective piezoelectric medium

    Science.gov (United States)

    Pertsev, N. A.; Zembilgotov, A. G.; Waser, R.

    1998-08-01

    The effective dielectric, piezoelectric, and elastic constants of polycrystalline ferroelectric materials are calculated from single-crystal data by an advanced method of effective medium, which takes into account the piezoelectric interactions between grains in full measure. For bulk BaTiO3 and PbTiO3 polarized ceramics, the dependences of material constants on the remanent polarization are reported. Dielectric and elastic constants are computed also for unpolarized c- and a-textured ferroelectric thin films deposited on cubic or amorphous substrates. It is found that the dielectric properties of BaTiO3 and PbTiO3 polycrystalline thin films strongly depend on the type of crystal texture. The influence of two-dimensional clamping by the substrate on the dielectric and piezoelectric responses of polarized films is described quantitatively and shown to be especially important for the piezoelectric charge coefficient of BaTiO3 films.

  10. Strain dependent microstructural modifications of BiCrO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Vijayanandhini, E-mail: kvnandhini@gmail.com [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Arredondo, Miryam; Johann, Florian; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Labrugere, Christine [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); CeCaMA, University of Bordeaux, ICMCB, F-33600 Pessac (France); Maglione, Mario [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Vrejoiu, Ionela [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany)

    2013-10-31

    Strain-dependent microstructural modifications were observed in epitaxial BiCrO{sub 3} (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCO{sub STO} [BCO grown on buffered SrTiO{sub 3} (001)] and in-plane compressive strain, BCO{sub NGO} [BCO grown on buffered NdGaO{sub 3} (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCO{sub STO}, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCO{sub STO} films with d ≥ 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCO{sub NGO} films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ∼ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film. - Highlights: • Phase pure

  11. Enhanced photovoltaic currents in strained Fe-doped LiNbO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ryotaro [Division of Physics, Institute of Liberal Education, School of Medicine, Nihon University, 31-10, Ooyaguchi-kamicho, Itabashi-ku, Tokyo 173-8601 (Japan); Takahashi, Shusuke; Kitanaka, Yuuki; Oguchi, Takeshi; Noguchi, Yuji; Miyayama, Masaru [Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2015-12-15

    We investigate the impact of strain on photovoltaic current (J{sub z}) characteristics for iron-doped LiNbO{sub 3} (Fe-LN) under visible light illumination by thin-film experiments. The J{sub z} values are demonstrated to be dramatically enhanced for the film with a tensile strain along the P{sub s} direction, which is over 500 times as large as that of the bulk (strain-free) Fe-LN crystals. Density functional theory (DFT) calculations show that the tensile strain increases an off-center displacement of Fe{sup 2+} that is opposite to the P{sub s} direction. Our experimental and DFT study demonstrates that the control of the lattice strain is effective in enhancing the photovoltaic effect in the Fe-LN system. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Strain induced room temperature ferromagnetism in epitaxial magnesium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenghe; Kim, Ki Wook [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nori, Sudhakar; Lee, Yi-Fang; Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kumar, D. [Department of Mechanical Engineering, North Carolina A & T State University, Greensboro, North Carolina 27411 (United States); Wu, Fan [Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08540 (United States); Prater, J. T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States)

    2015-10-28

    We report on the epitaxial growth and room-temperature ferromagnetic properties of MgO thin films deposited on hexagonal c-sapphire substrates by pulsed laser deposition. The epitaxial nature of the films has been confirmed by both θ-2θ and φ-scans of X-ray diffraction pattern. Even though bulk MgO is a nonmagnetic insulator, we have found that the MgO films exhibit ferromagnetism and hysteresis loops yielding a maximum saturation magnetization up to 17 emu/cc and large coercivity, H{sub c} = 1200 Oe. We have also found that the saturation magnetization gets enhanced and that the crystallization degraded with decreased growth temperature, suggesting that the origin of our magnetic coupling could be point defects manifested by the strain in the films. X-ray (θ-2θ) diffraction peak shift and strain analysis clearly support the presence of strain in films resulting from the presence of point defects. Based on careful investigations using secondary ion mass spectrometer and X-ray photoelectron spectroscopy studies, we have ruled out the possibility of the presence of any external magnetic impurities. We discuss the critical role of microstructural characteristics and associated strain on the physical properties of the MgO films and establish a correlation between defects and magnetic properties.

  13. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films

    International Nuclear Information System (INIS)

    Chen, Aiping; Bi, Zhenxing; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2013-01-01

    Vertically aligned nanocomposite (VAN) oxide thin films have recently stimulated a significant amount of research interest owing to their novel architecture, vertical interfacial strain control and tunable material functionalities. In this work, the growth mechanisms of VAN thin films have been investigated by varying the composite material system, the ratio of the two constituent phases, and the thin film growth conditions including deposition temperature and oxygen pressure as well as growth rate. It has been shown that thermodynamic parameters, elastic and interfacial energies and the multiple phase ratio play dominant roles in the resulting microstructure. In addition, vertical interfacial strain has been observed in BiFeO 3 (BFO)- and La 0.7 Sr 0.3 MnO 3 (LSMO)-based VAN thin film systems; the vertical strain could be tuned by the growth parameters and selection of a suitable secondary phase. The tunability of physical properties such as dielectric loss in BFO:Sm 2 O 3 VAN and low-field magnetoresistance in LSMO-based VAN systems has been demonstrated. The enhancement and tunability of those physical properties have been attributed to the unique VAN architecture and vertical strain control. These results suggest that VAN architecture with novel microstructure and unique vertical strain tuning could provide a general route for tailoring and manipulating the functionalities of oxide thin films

  14. Boosting the Recoverable Energy Density of Lead-Free Ferroelectric Ceramic Thick Films through Artificially Induced Quasi-Relaxor Behavior.

    Science.gov (United States)

    Peddigari, Mahesh; Palneedi, Haribabu; Hwang, Geon-Tae; Lim, Kyung Won; Kim, Ga-Yeon; Jeong, Dae-Yong; Ryu, Jungho

    2018-06-08

    Dielectric ceramic film capacitors, which store energy in the form of electric polarization, are promising for miniature pulsed power electronic device applications. For a superior energy storage performance of the capacitors, large recoverable energy density, along with high efficiency, high power density, fast charge/discharge rate, and good thermal/fatigue stability, is desired. Herein, we present highly dense lead-free 0.942[Na 0.535 K 0.480 NbO 3 ]-0.058LiNbO 3 (KNNLN) ferroelectric ceramic thick films (∼5 μm) demonstrating remarkable energy storage performance. The nanocrystalline KNNLN thick film fabricated by aerosol deposition (AD) process and annealed at 600 °C displayed a quasi-relaxor ferroelectric behavior, which is in contrast to the typical ferroelectric nature of the KNNLN ceramic in its bulk form. The AD film exhibited a large recoverable energy density of 23.4 J/cm 3 , with an efficiency of over 70% under the electric field of 1400 kV/cm. Besides, an ultrahigh power density of 38.8 MW/cm 3 together with a fast discharge speed of 0.45 μs, good fatigue endurance (up to 10 6 cycles), and thermal stability in a wide temperature range of 20-160 °C was also observed. Using the AD process, we could make a highly dense microstructure of the film containing nano-sized grains, which gave rise to the quasi-relaxor ferroelectric characteristics and the remarkable energy storage properties.

  15. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    Science.gov (United States)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a

  16. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  17. Synthesis and characterization of electrolyte-grade 10%Gd-doped ceria thin film/ceramic substrate structures for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Bharadwaj, S. R.; Jadhav, L. D.

    2010-01-01

    In the present research, spray pyrolysis technique is employed to synthesize 10%Gd-doped ceria (GDC) thin films on ceramic substrates with an intention to use the "film/substrate" structure in solid oxide fuel cells. GDC films deposited on GDC substrate showed enhanced crystallite formation....... In case of NiO-GDC composite substrate, the thickness of film was higher (∼ 13 μm) as compared to the film thickness on GDC substrate (∼ 2 μm). The relative density of the films deposited on both the substrates was of the order of 95%. The impedance measurements revealed that ionic conductivity of GDC...

  18. Liquid spreading on ceramic-coated carbon nanotube films and patterned microstructures

    Science.gov (United States)

    Zhao, Hangbo; Hart, A. John

    2015-11-01

    We study the capillary-driven liquid spreading behavior on films and microstructures of ceramic-coated vertically aligned carbon nanotubes (CNTs) fabricated on quartz substrates. The nanoscale porosity and micro-scale dimensions of the CNT structures, which can be precisely varied by the fabrication process, enable quantitative measurements that can be related to analytical models of the spreading behavior. Moreover, the conformal alumina coating by atomic layer deposition (ALD) prevents capillary-induced deformation of the CNTs upon meniscus recession, which has complicated previous studies of this topic. Washburn-like liquid spreading behavior is observed on non-patterned CNT surfaces, and is explained using a scaling model based on the balance of capillary driving force and the viscous drag force. Using these insights, we design patterned surfaces with controllable spreading rates and study the contact line pinning-depinning behavior. The nanoscale porosity, controllable surface chemistry, and mechanical stability of coated CNTs provide significantly enhanced liquid-solid interfacial area compared to solid microstructures. As a result, these surface designs may be useful for applications such as phase-change heat transfer and electrochemical energy storage. Funding for this project is provided by the National Institutes of Health and the MIT Center for Clean Water and Clean Energy supported by the King Fahd University of Petroleum and Minerals.

  19. Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte.

    Science.gov (United States)

    Ahn, Junsung; Jang, Ho Won; Ji, Hoil; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2018-05-09

    Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd 0.2 Ce 0.8 O 1.9-δ (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.

  20. Growth of strained, ferroelectric NaNbO{sub 3} thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sellmann, Jan; Schwarzkopf, Jutta; Duk, Andreas; Kwasniewski, Albert; Schmidbauer, Martin; Fornari, Roberto [IKZ, Berlin (Germany)

    2012-07-01

    Due to its promising ferro-/piezoelectric properties and high Curie temperature NaNbO{sub 3} has attracted much attention. In contrast to bulk crystals, thin epitaxial films may incorporate and maintain a certain compressive or tensile lattice strain, depending on the used substrate/film combination. This deformation of the crystal lattice is known to strongly influence the ferroelectric properties of perovskites. In the case of NaNbO{sub 3} compressive strain is achieved in films deposited on NdGaO{sub 3} and SrTiO{sub 3} substrates while deposition on DyScO{sub 3} and TbScO{sub 3} leads to tensile in-plane strain. In order to characterize and practically apply the ferroelectric films, it is necessary to embed them in a capacitor structure for which we use pseudomorphically grown SrRuO{sub 3} as bottom electrodes. We report on the deposition of SrRuO{sub 3} and NaNbO{sub 3} single layers on SrTiO{sub 3}, DyScO{sub 3}, TbScO{sub 3} and NbGaO{sub 3} substrates by means of pulsed laser deposition. By adjusting the substrate temperature, the oxygen partial pressure and the laser frequency we have successfully deposited smooth, strained, single phase NaNbO{sub 3} thin films. Investigations of the films by atomic force microscopy and high resolution X-ray diffraction reveal the dependence of the surface morphology and the incorporated lattice strain on the deposition parameters and the lattice mismatch, respectively. All films exhibit piezoelectric properties, as proven by piezoresponse force microscopy.

  1. Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment

    KAUST Repository

    Jahangir, Daniyal

    2017-12-01

    Membrane fouling, which is caused by deposition/adsorption of foulants on the surface or within membrane pores, still remains a bottleneck that hampers the widespread application of membrane bioreactor (MBR) technology for wastewater treatment. Recently membrane surface modification has proved to be a useful method in water/wastewater treatment to improve the surface hydrophilicity of membranes to obtain higher water fluxes and to reduce fouling. In this study, membrane modification was investigated by depositing a thin film of same thickness of TiO2 on the surface of an ultrafiltration alumina membrane. Various thin-film deposition (TFD) methods were employed, i.e. electron-beam evaporation, sputter and atomic layer deposition (ALD), and a comparative study of the methods was conducted to assess fouling inhibition performance in a lab-scale anaerobic MBR (AnMBR) fed with synthetic municipal wastewater. Thorough surface characterization of all modified membranes was carried out along with clean water permeability (CWP) tests and fouling behavior by bovine serum albumin (BSA) adsorption tests. The study showed better fouling inhibition performance of all modified membranes; however the effect varied due to different surface characteristics obtained by different deposition methods. As a result, ALD-modified membrane showed a superior status in terms of surface characteristics and fouling inhibition performance in AnMBR filtration tests. Hence ALD was determined to be the best TFD method for alumina membrane surface modification for this study. ALD-modified membranes were further characterized to determine an optimum thickness of TiO2-film by applying different ALD cycles. ALD treatment significantly improved the surface hydrophilicity of the unmodified membrane. Also ALD-TiO2 modification was observed to reduce the surface roughness of original alumina membrane, which in turn enhanced the anti-fouling properties of modified membranes. Finally, a same thickness of ALD

  2. High-Performance Flexible Single-Crystalline Silicon Nanomembrane Thin-Film Transistors with High- k Nb2O5-Bi2O3-MgO Ceramics as Gate Dielectric on a Plastic Substrate.

    Science.gov (United States)

    Qin, Guoxuan; Zhang, Yibo; Lan, Kuibo; Li, Lingxia; Ma, Jianguo; Yu, Shihui

    2018-04-18

    A novel method of fabricating flexible thin-film transistor based on single-crystalline Si nanomembrane (SiNM) with high- k Nb 2 O 5 -Bi 2 O 3 -MgO (BMN) ceramic gate dielectric on a plastic substrate is demonstrated in this paper. SiNMs are successfully transferred to a flexible polyethylene terephthalate substrate, which has been plated with indium-tin-oxide (ITO) conductive layer and high- k BMN ceramic gate dielectric layer by room-temperature magnetron sputtering. The BMN ceramic gate dielectric layer demonstrates as high as ∼109 dielectric constant, with only dozens of pA current leakage. The Si-BMN-ITO heterostructure has only ∼nA leakage current at the applied voltage of 3 V. The transistor is shown to work at a high current on/off ratio of above 10 4 , and the threshold voltage is ∼1.3 V, with over 200 cm 2 /(V s) effective channel electron mobility. Bending tests have been conducted and show that the flexible transistors have good tolerance on mechanical bending strains. These characteristics indicate that the flexible single-crystalline SiNM transistors with BMN ceramics as gate dielectric have great potential for applications in high-performance integrated flexible circuit.

  3. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    Science.gov (United States)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  4. Electrical Transport and Magnetoresistance Properties of Tensile-Strained CaMnO3 Thin Films

    Science.gov (United States)

    Ullery, Dustin; Lawson, Bridget; Zimmerman, William; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Yong, Grace; Smolyaninova, Vera; Kolagani, Rajeswari

    We will present our studies of the electrical transport and magnetoresistance properties of tensile strained CaMnO3 thin films. We observe that the resistivity decreases significantly as the film thickness decreases which is opposite to what is observed in thin films of hole doped manganites. The decrease in resistivity is more pronounced in the films on (100) SrTiO3, with resistivity of the thinnest films being about 3 orders of magnitude lower than that of bulk CaMnO3. Structural changes accompanying resistivity changes cannot be fully explained as due to tensile strain, and indicate the presence of oxygen vacancies. These results also suggest a coupling between tensile strain and oxygen deficiency, consistent with predictions from models based on density functional theory calculations. We observe a change in resistance under the application of moderate magnetic field. Experiments are underway to understand the origin of the magnetoresistance and its possible relation to the tensile strain effects. We acknowledge support from: Towson Office of University Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grants from the Fisher College of Science and Mathematics, and Seed Funding Grant from the School of Emerging technologies.

  5. Strain dependent magnetic properties of LSMO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Prajapat, C.L.; Gupta, N.; Singh, M.R.; Mishra, P.K.; Gupta, S.K.; Ravikumar, G.; Bhattacharya, D.; Singh, Surendra; Basu, S.; Roul, B.K.

    2014-01-01

    Perovskite manganites exhibiting colossal magnetoresistance (CMR) are ideal candidates for growth of epitaxial multilayers with oxide high temperature superconductors owing to their structural similarity and comparable growth conditions. They are widely employed in studies on superconductor/ferromagnet-superlattices. Among the manganites, La 2/3 Sr 1/3 MnO 3 (LSMO) has one of the highest FM transition temperatures (above 300K). Magnetic properties of films that are dependent on strain (such as coercivity) can be tuned by varying deposition conditions, by using different substrates and varying thickness of films in nano range. Lattice mismatch between LSMO with STO and MgO substrates are 0.6% and 8% respectively. This mismatch produces tensile strain in LSMO films and changes its magnetic properties. We study the change in magnetic properties of epitaxial LSMO thin films on MgO (100) and STO (100) substrates with varying thickness to change the strain in the film. LSMO films are prepared by pulsed laser deposition

  6. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films

    International Nuclear Information System (INIS)

    Park, Myounggu; Kim, Hyonny; Youngblood, Jeffrey P

    2008-01-01

    The strain-dependent electrical resistance characteristics of multi-walled carbon nanotube (MWCNT)/polymer composite films were investigated. In this research, polyethylene oxide (PEO) is used as the polymer matrix. Two representative volume fractions of MWCNT/PEO composite films were selected: 0.56 vol% (near the percolation threshold) and 1.44 vol% (away from the percolation threshold) of MWCNT. An experimental setup which can measure electrical resistance and strain simultaneously and continuously has been developed. Unique and repeatable relationships in resistance versus strain were obtained for multiple specimens with different volume fractions of MWCNT. The overall pattern of electrical resistance change versus strain for the specimens tested consists of linear and nonlinear regions. A resistance change model to describe the combination of linear and nonlinear modes of electrical resistance change as a function of strain is suggested. The unique characteristics in electrical resistance change for different volume fractions imply that MWCNT/PEO composite films can be used as tunable strain sensors and for application into embedded sensor systems in structures

  7. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  8. Cooperative photoinduced metastable phase control in strained manganite films

    Science.gov (United States)

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S. W.; Post, K. W.; Jin, Feng; Nelson, K. A.; Basov, D. N.; Wu, Wenbin; Averitt, R. D.

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

  9. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  10. Piezo films with adjustable anisotropic strain for bending actuators with tunable bending profiles

    International Nuclear Information System (INIS)

    Wapler, Matthias C; Stürmer, Moritz; Brunne, Jens; Wallrabe, Ulrike

    2014-01-01

    We present a method to produce in-plane polarized piezo films with a freely adjustable ratio of the strains in orthogonal in-plane directions. They can be used in piezo bending actuators with a tunable curvature profile. The strains are obtained as mean strains from a periodic polarization pattern produced by a suitable doubly interdigitated electrode structure. This mechanism is demonstrated for several examples using PZT sheets. We further discuss how this tuning and the parameters of the electrode layout affect the overall magnitude of the displacement. (paper)

  11. Necking of anisotropic micro-films with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2008-01-01

    Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco......-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening...... exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress....

  12. Effect of shear strain on the deflection of a clamped magnetostrictive film-substrate system

    International Nuclear Information System (INIS)

    Ming Zhenghui; Ming Li; Bo Zou; Xia Luo

    2011-01-01

    The effect of in-plane shear strain of a clamped bimorph on the deflection produced by magnetization of the film is investigated. The deflection is found by minimizing the Gibbs free energy with respect to four parameters, strains and curvatures along x and y directions at the interface, by assuming that the curvature in the y direction varies as a function of aspect ratio w/l along x. A set of standard linear equations of four parameters are obtained and the deflection is expressed in terms of the four parameters by solving the equations using Cramer rules. The inconsistencies pointed out by previous authors are also reviewed. For actuators made of thick and short clamped film-substrate system, the in-plane shear deformation should not be omitted. The present calculation model can give a relatively simple and accurate prediction of deflection for thick and short specimens of aspect ratio w/l<10, which supports the results obtained by finite element modeling. - Highlights: → We model the deflection of a thick magnetostrictive film-substrate cantilever plate. → Total stress along z from magnetic field is not zero without external force. → Effect of in-plane shear strain in calculating deflection examined. → Analytical solution of deflection obtained by assuming a curvature function. → Shear strain for short cantilever film-substrate plate considered.

  13. Generation of localized strain in a thin film piezoelectric to control individual magnetoelectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jizhai; Liang, Cheng-Yen; Sepulveda, Abdon; Carman, Gregory P.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095 (United States); Paisley, Elizabeth A.; Ihlefeld, Jon F. [Electronic, Optical, and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-08-31

    Experimental results demonstrate the ability of a surface electrode pattern to produce sufficient in-plane strain in a PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) thin film clamped by a Si substrate to control magnetism in a 1000 nm diameter Ni ring. The electrode pattern and the Ni ring/PZT thin film heterostructure were designed using a finite element based micromagnetics code. The magnetoelectric heterostructures were fabricated on the PZT film using e-beam lithography and characterized using magnetic force microscopy. Application of voltage to the electrodes moved one of the “onion” state domain walls. This method enables the development of complex architectures incorporating strain-mediated multiferroic devices.

  14. Enhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering.

    Science.gov (United States)

    Han, Hyeon; Kim, Donghoon; Chu, Kanghyun; Park, Jucheol; Nam, Sang Yeol; Heo, Seungyang; Yang, Chan-Ho; Jang, Hyun Myung

    2018-01-17

    Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 4 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E g ). Here, we present a promising FPV based on hexagonal YbFeO 3 (h-YbFO) thin-film heterostructure by exploiting its narrow E g . More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al 2 O 3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.

  15. X-ray diffraction from thin films : Size/strain analysis and whole pattern fitting

    Energy Technology Data Exchange (ETDEWEB)

    Scardi, P [Trento Univ. (Italy). Dept. of Materials Engineering

    1996-09-01

    Line Profile Analysis (LPA) and whole pattern fitting may be used with success for the characterization of thin films from XRD data collected with the traditional Bragg-Brentano geometry. The size/strain analysis was conducted by an integrated procedure of profile modelling-assisted Fourier analysis, in order to measure the content of lattice imperfections and crystalline domain size along the growth direction in heteroepitaxial thin films. The microstructure of these films is typical of several PVD processes for the production of highly textured and low-defect thin crystalline layers. The same analysis could be conducted on random thin films as well, and in this case it is possible to determine an average crystallite size and shape. As will be shown in the paper, structural and microstructural parameters obtained by these methods may be correlated with thin film properties of technological interest. The whole pattern analysis may be used to obtain the information contained in a wide region of the diffraction pattern. This approach, currently used for the quantitative analysis of phase mixtures in traditional powder samples, was modified to account both for the size/strain effects, according to a simplified LPA, and for the structure of thin films and multi-layer systems. In this way, a detailed analysis based on a structural model for the present phases can be performed considering the real geometry of these samples. In particular, the quantitative phase analysis could be conducted in terms of layer thickness instead of volume or weight fractions.

  16. X-ray diffraction from thin films : Size/strain analysis and whole pattern fitting

    International Nuclear Information System (INIS)

    Scardi, P.

    1996-01-01

    Line Profile Analysis (LPA) and whole pattern fitting may be used with success for the characterization of thin films from XRD data collected with the traditional Bragg-Brentano geometry. The size/strain analysis was conducted by an integrated procedure of profile modelling-assisted Fourier analysis, in order to measure the content of lattice imperfections and crystalline domain size along the growth direction in heteroepitaxial thin films. The microstructure of these films is typical of several PVD processes for the production of highly textured and low-defect thin crystalline layers. The same analysis could be conducted on random thin films as well, and in this case it is possible to determine an average crystallite size and shape. As will be shown in the paper, structural and microstructural parameters obtained by these methods may be correlated with thin film properties of technological interest. The whole pattern analysis may be used to obtain the information contained in a wide region of the diffraction pattern. This approach, currently used for the quantitative analysis of phase mixtures in traditional powder samples, was modified to account both for the size/strain effects, according to a simplified LPA, and for the structure of thin films and multi-layer systems. In this way, a detailed analysis based on a structural model for the present phases can be performed considering the real geometry of these samples. In particular, the quantitative phase analysis could be conducted in terms of layer thickness instead of volume or weight fractions

  17. Thickness dependence of magnetoelectric response for composites of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on CoFe{sub 2}O{sub 4} ceramic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: wang-jing@nuaa.edu.cn; Zhu, Kongjun [State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wu, Xia; Deng, Chaoyong [School of Electronics and Information Engineering, Guizhou University, Guiyang 550025 (China); Peng, Renci; Wang, Jianjun [School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2014-08-15

    Using chemical solution spin-coating we grew Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films of different thicknesses on highly dense CoFe{sub 2}O{sub 4} ceramics. X-ray diffraction revealed no other phases except Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} and CoFe{sub 2}O{sub 4}. In many of these samples we observed typical ferroelectric hysteresis loops, butterfly-shaped piezoelectric strains, and the magnetic-field-dependent magnetostriction. These behaviors caused appreciable magnetoelectric responses based on magnetic-mechanical-electric coupling. Our results indicated that the thickness of the Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} film was important in obtaining strong magnetoelectric coupling.

  18. Structural analysis of LaVO3 thin films under epitaxial strain

    Directory of Open Access Journals (Sweden)

    H. Meley

    2018-04-01

    Full Text Available Rare earth vanadate perovskites exhibit a phase diagram in which two different types of structural distortions coexist: the strongest, the rotation of the oxygen octahedra, comes from the small tolerance factor of the perovskite cell (t = 0.88 for LaVO3 and the smaller one comes from inter-site d-orbital interactions manifesting as a cooperative Jahn-Teller effect. Epitaxial strain acts on octahedral rotations and crystal field symmetry to alter this complex lattice-orbit coupling. In this study, LaVO3 thin film structures have been investigated by X-ray diffraction and scanning transmission electron microscopy. The analysis shows two different orientations of octahedral tilt patterns, as well as two distinct temperature behaviors, for compressive and tensile film strain states. Ab initio calculations capture the strain effect on the tilt pattern orientation in agreement with experimental data.

  19. Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic

    Science.gov (United States)

    Abdel-Khalek, E. K.; Mohamed, E. A.; Kashif, I.

    2018-02-01

    Glass-nanocomposite (GNCs) sample of the composition [90Li2B4O7-10SrTiO3] (mol %) was prepared by conventional melt quenching technique. The glassy phase and the amorphous nature of the GNCs sample were identified by Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies, respectively. DTA of the GNCs exhibits sharp and broad exothermic peaks which represent the crystallization of Li2B4O7 and SrTiO3, respectively. The tetragonal Li2B4O7 and tetragonal SrTiO3 crystalline phases in glass-ceramic (GC) were identified by XRD and scanning electron microscopic (SEM). The strain tetragonal SrTiO3 phase in GNCs and GC has been confirmed by SEM. The values of crystallization activation energies (Ec1 and Ec2) for the first and second exothermic peaks are equal to 174 and 1452 kJ/mol, respectively. The Ti3+ ions in tetragonal distorted octahedral sites in GNCs were identified by optical transmission spectrum. GNCs and GC samples exhibit broad dielectric anomalies at 303 and 319 K because of strained SrTiO3 ferroelectric, respectively.

  20. The origin of local strain in highly epitaxial oxide thin films.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Chen, Chonglin; Lin, Yuan; Li, Yanrong; Horwitz, J S; Jiang, Jiechao; Meletis, E I; Zhang, Qingyu

    2013-10-31

    The ability to control the microstructures and physical properties of hetero-epitaxial functional oxide thin films and artificial structures is a long-sought goal in functional materials research. Normally, only the lattice misfit between the film and the substrate is considered to govern the physical properties of the epitaxial films. In fact, the mismatch of film unit cell arrangement and the Surface-Step-Terrace (SST) dimension of the substrate, named as "SST residual matching", is another key factor that significantly influence the properties of the epitaxial film. The nature of strong local strain induced from both lattice mismatch and the SST residual matching on ferroelectric (Ba,Sr)TiO3 and ferromagnetic (La,Ca)MnO3 thin films are systematically investigated and it is demonstrated that this combined effect has a dramatic impact on the physical properties of highly epitaxial oxide thin films. A giant anomalous magnetoresistance effect (~10(10)) was achieved from the as-designed vicinal surfaces.

  1. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes.

    Science.gov (United States)

    Lipomi, Darren J; Vosgueritchian, Michael; Tee, Benjamin C-K; Hellstrom, Sondra L; Lee, Jennifer A; Fox, Courtney H; Bao, Zhenan

    2011-10-23

    Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics, implantable medical devices and robotic systems with human-like sensing capabilities. The availability of conducting thin films with these properties could lead to the development of skin-like sensors that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays and solar cells, and also wrap around non-planar and biological surfaces such as skin and organs, without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm(-1) in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors.

  2. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.

    Science.gov (United States)

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R

    2015-08-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  3. Flexible Mixed-Potential-Type (MPT NO2 Sensor Based on An Ultra-Thin Ceramic Film

    Directory of Open Access Journals (Sweden)

    Rui You

    2017-07-01

    Full Text Available A novel flexible mixed-potential-type (MPT sensor was designed and fabricated for NO2 detection from 0 to 500 ppm at 200 °C. An ultra-thin Y2O3-doped ZrO2 (YSZ ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor’s sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO2 sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO2 emissions and improve fuel efficiency.

  4. Improved critical current of YBaCuO thick-films and ceramics by the addition of Ag

    International Nuclear Information System (INIS)

    Dwir, B.; Kellett, B.; Mieville, L.; Pavuna, D.

    1991-01-01

    In a series of papers we have discussed the importance of Ag for contacts and analyzed the resistivity, magnetization, critical current density and percolation properties of YBCO-Ag ceramics. This work has been followed by investigation of electrical and structural properties of thick-films containing Ag in their composition. Here we summarize the most important of our results: In YBCO-Ag ceramic compounds, silver fills the intergranular space (voids), improving the YBaCuO compactness and enhancing the critical current density. These properties are mostly enhanced at 10-20% wt% Ag. The reduction in normal-state resistivity can be described well by 3D percolation theory with a critical concentration of ≅20%. In thick films, prepared by spinning YBaCuO powders on a substrate, adding silver (in the form of Ag 2 O) to the powder mixture improves both T c and J c (by up to 50%), as well as resistivity and resistivity slope. The structural properties, like amount of secondary phases and micro-crack density, are also improved by the addition of Ag. (orig.)

  5. Kirigami-based PVDF thin-film as stretchable strain sensor

    Science.gov (United States)

    Hu, Nan; Chen, Dajing; Hao, Nanjing; Huang, Shicheng; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi

    Kirigami, as the sister of the origami, involves cutting of 2D sheets to form complex 3D geometries with out-of-plane patterns. Motivated by the development of the high-stretchable biomedical devices, we explore the stretchability of the kirigami-based PVDF thin film under tension. Our structural prototypes include a set of 2D geometry with kirigami-based pattern cutting on PVDF thin films. We first used paper models to generate a wide range of cutting patterns to study the deformation under compression tests, the results of which are compared with finite element simulations. We then proceeded to test different kirigami-based designs to identify geometric parameters that can tune the post-buckling response and strain distribution. Next, we fabricated and tested the PVDF thin film with kirigami pattern. Experiments showed that the PVDF film in the absence of cutting can be stretched to a limited extent and will break upon further stretching. In contrast, the kirigami-based films can be stretched up to 100% without failure. Our designs demonstrate the ability to significantly improve the strain range of the structure and sensing ability of a sensor. We envision a promising future to use this class of structural elements to develop highly stretchable materials, structures, and devices. Z.C. acknowledges the Society in Science-Branco Weiss fellowship, administered by ETH Zürich. J.X.J.Z. acknowledges the NIH Director's Transformative Research Award (1R01 OD022910-01).

  6. Spin ice Thin Film: Surface Ordering, Emergent Square ice, and Strain Effects

    Science.gov (United States)

    Jaubert, L. D. C.; Lin, T.; Opel, T. S.; Holdsworth, P. C. W.; Gingras, M. J. P.

    2017-05-01

    Motivated by recent realizations of Dy2 Ti2 O7 and Ho2 Ti2 O7 spin ice thin films, and more generally by the physics of confined gauge fields, we study a model spin ice thin film with surfaces perpendicular to the [001] cubic axis. The resulting open boundaries make half of the bonds on the interfaces inequivalent. By tuning the strength of these inequivalent "orphan" bonds, dipolar interactions induce a surface ordering equivalent to a two-dimensional crystallization of magnetic surface charges. This surface ordering may also be expected on the surfaces of bulk crystals. For ultrathin films made of one cubic unit cell, once the surfaces have ordered, a square ice phase is stabilized over a finite temperature window. The square ice degeneracy is lifted at lower temperature and the system orders in analogy with the well-known F transition of the 6-vertex model. To conclude, we consider the addition of strain effects, a possible consequence of interface mismatches at the film-substrate interface. Our simulations qualitatively confirm that strain can lead to a smooth loss of Pauling entropy upon cooling, as observed in recent experiments on Dy2 Ti2 O7 films.

  7. Geometric pre-patterning based tuning of the period doubling onset strain during thin film wrinkling

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourabh K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-16

    Wrinkling of supported thin films is an easy-to-implement and low-cost fabrication technique for generation of stretch-tunable periodic micro and nano-scale structures. However, the tunability of such structures is often limited by the emergence of an undesirable period doubled mode at high strains. Predictively tuning the onset strain for period doubling via existing techniques requires one to have extensive knowledge about the nonlinear pattern formation behavior. Herein, a geometric pre-patterning based technique is introduced to delay the onset of period doubling that can be implemented to predictively tune the onset strain even with limited system knowledge. The technique comprises pre-patterning the film/base bilayer with a sinusoidal pattern that has the same period as the natural wrinkle period of the system. The effectiveness of this technique has been verified via physical and computational experiments on the polydimethylsiloxane/glass bilayer system. It is observed that the period doubling onset strain can be increased from the typical value of 20% for flat films to greater than 30% with a modest pre-pattern aspect ratio (2∙amplitude/period) of 0.15. In addition, finite element simulations reveal that (i) the onset strain can be increased up to a limit by increasing the amplitude of the pre-patterns and (ii) the delaying effect can be captured entirely by the pre-pattern geometry. As a result, one can implement this technique even with limited system knowledge, such as material properties or film thickness, by simply replicating pre-existing wrinkled patterns to generate prepatterned bilayers. Thus, geometric pre-patterning is a practical scheme to suppress period doubling that can increase the operating range of stretch-tunable wrinkle-based devices by at least 50%.

  8. A theoretical investigation of the influence of the surface effect on the ferroelectric property of strained barium titanate film

    Science.gov (United States)

    Fang, Chao; Liu, Wei Hua

    2017-07-01

    The influence of the surface effect on the ferroelectric property of strained barium titanate film has been investigated. In this study, based on time-dependent Ginsburg-Landau-Devonshire thermodynamic theory, the surface effects have been simulated by introducing a surface constant, which leads to the strained BaTiO3 film consisting of inner tetragonal core and gradient lattice strain layer. Further, surface effects produce a depolarization field which has a dominant effect on the ferroelectric properties of the films. The spontaneous polarization, dielectric properties and ferroelectric hysteresis loop of BaTiO3 film are calculated under different boundary conditions. Theoretical and experimental results for strained BaTiO3 film are compared and discussed.

  9. Remarkable strain-induced magnetic anisotropy in epitaxial Co2MnGa (0 0 1) films

    International Nuclear Information System (INIS)

    Pechan, Michael J.; Yu, Chengtao; Carr, David; Palmstroem, Chris J.

    2005-01-01

    Remarkably large, strain-induced anisotropy is observed in the thin-film Heusler alloy Co 2 MnGa. 30 nm Co 2 MnGa (0 0 1) films have been epitaxially grown on different interlayers/substrates with varied strain, and investigated with ferromagnetic resonance. The film grown on ErAs/InGaAs/InP experiences tension strain, resulting in an out-of-plane strain-induced anisotropy (∼1.1x10 6 erg/cm 3 ) adding to the effects of shape anisotropy. In contrast, the film grown on ScErAs/GaAs, experiences a compression strain, resulting in an out-of-plane strain-induced anisotropy (∼3.3x10 6 erg/cm 3 ) which almost totally cancels the effects of shape anisotropy, thus rendering the film virtually isotropic. This results in the formation of stripe domains in remanence. In addition, small, but well-defined 2-fold and 4-fold in-plane anisotropy coexist in each sample with weak, but interesting strain dependence. Transport measurement shows small (<1%) magnetoresistance effects in the compression film, but negligible magnetoresistance in the relaxed and tension strained samples

  10. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  11. Strain-delocalizing effect of a metal substrate on nanocrystalline Ni film

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Dexing [Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009 (China); Zhou, Jianqiu, E-mail: zhouj@njut.edu.cn [Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009 (China); Department of Mechanical Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province 430070 (China); Liu, Hongxi; Dong, Shuhong [Department of Mechanical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009 (China); Wang, Ying [Department of Mechanical and Electronic Engineering, Suzhou Institute of Industrial Technology, Suzhou, Jiangsu 215104 (China)

    2015-07-29

    Uniaxial tensile test and scanning electron microscopy (SEM) are introduced to study the tensile properties of electrodeposited nanocrystalline nickel/coarse-grained copper (N/C) composite in this paper. Compared to the stress strain response of pure nanocrystalline (NC) nickel (Ni), the tensile ductility of N/C composite is enhanced significantly. Based on the experimental results, a multi-phase composite model is proposed to investigate the micromechanical behaviors of the NC Ni film and N/C composite plate. The constitutive models are implemented into ABAQUS/Explicit in the form of VUMAT subroutine. A series of numerical simulations are carried out and the predications were in good agreement with experimental results. It can be concluded that the coarse-grained (CG) substrate work well in suppressing the strain localization in the NC Ni film.

  12. Micro-strain, dislocation density and surface chemical state analysis of multication thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jayaram, P., E-mail: jayarampnair@gmail.com [Department of Physics, MES Ponnani College Ponnani, Kerala (India); Pradyumnan, P.P. [Department of Physics, University of Calicut, Kerala 673 635 (India); Karazhanov, S.Zh. [Department for Solar Energy, Institute for Energy Technology, Kjeller (Norway)

    2016-11-15

    Multication complex metal oxide thin films are rapidly expanding the class of materials with many technologically important applications. Herein this work, the surface of the pulsed laser deposited thin films of Zn{sub 2}SnO{sub 4} and multinary compounds obtained by substitution/co-substitution of Sn{sup 4+} with In{sup 3+} and Ga{sup 3+} are studied by X-ray photoelectron emission spectroscopy (X-PES) method. Peaks corresponding to the elements of Zn, Sn, Ga, In and O on the film surface has been identified and contribution of the elements has been studied by the computer aided surface analysis (CASA) software. Binding energies, full-width at half maximum (FWHM), spin-orbit splitting energies, asymmetric peak-shape fitting parameters and quantification of elements in the films are discussed. Studies of structural properties of the films by x-ray diffraction (XRD) technique showed inverse spinel type lattice with preferential orientation. Micro-strain, dislocation density and crystallite sizes in the film surface have been estimated.

  13. Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation

    International Nuclear Information System (INIS)

    Pant, P.; Budai, J.D.; Narayan, J.

    2010-01-01

    Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 -2 0) a-plane ZnO epitaxy on (1 -1 0 2) r-plane sapphire, where the in-plane misfit ranges from -1.5% for the [0 0 0 1]ZnO-parallel [1 -1 0 -1]sapphire to -18.3% for the [-1 1 0 0]ZnO-parallel [-1 -1 2 0]sapphire direction. For the large misfit [-1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [-1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.

  14. Phage type and sensitivity to antibiotics of Staphylococcus aureus film-forming strains isolated from airway mucosa

    Directory of Open Access Journals (Sweden)

    O. S. Voronkova

    2014-10-01

    Full Text Available Today film-forming strains of bacteria play very important role in clinical pathology. Staphylococci are ones of most dangerous of them. This bacteria can determine different pathological processes, for example, complication of airway mucosa. The ability to form a biofilm is one of the main properties of nosocomial strains. These strains should be monitored and their carriers are to be properly treated. To determine the origin of staphylococci strains we used bacteriophages from the International kit. The aim of research was to determine the phage type of staphylococci film-forming strains, that were isolated from naso-pharingial mucosa. Phage typing has been carried out for 16 film-forming strains of S. aureus. To solve this problem, we used the International phage kit by Fisher’s method. As a result, sensitivity to phages from the International kit showed 53.8% of studied strains of S. aureus. 64.3% of sensitivity strains were lysed by one of the phage, 21.4% – were by two of the phages, 14.3% – by three of the phages. Isolates were sensitive to phages: 81 – 42.9%, 75 – 35.7%, 28.6% were sensitive to phages 47 and 53. All cases of detection of sensitivity to phage 47 coincided with the ability to form biofilm. Among non-film-forming strains there was no sensitive strains for this phage. Film-forming strains resist to erythromycin (62.5%, ciprofloxacin (43.8%, gentamicin (56.3%, tetracycline (87.5%, amoxicillin (93.8%, and cefuroxime (37.5%. All cases of sensitivity to phage 47 coincided with resistance to erythromycin, amoxicillin and tetracycline. For two of these strains, we also defined resistance to gentamicin and for one of them – to ciprofloxacin. Results of research allowed to relate the bacterial cultures for determining the type. This may have implications for studying of film-forming ability, because surface structures of bacterial cell take place in this process. Belonging of an isolate to specific phage type may

  15. Epitaxial strain-engineered self-assembly of magnetic nanostructures in FeRh thin films

    International Nuclear Information System (INIS)

    Witte, Ralf; Kruk, Robert; Molinari, Alan; Wang, Di; Brand, Richard A; Hahn, Horst; Schlabach, Sabine; Provenzano, Virgil

    2017-01-01

    In this paper we introduce an innovative bottom–up approach for engineering self-assembled magnetic nanostructures using epitaxial strain-induced twinning and phase separation. X-ray diffraction, 57 Fe Mössbauer spectroscopy, scanning tunneling microscopy, and transmission electron microscopy show that epitaxial films of a near-equiatomic FeRh alloy respond to the applied epitaxial strain by laterally splitting into two structural phases on the nanometer length scale. Most importantly, these two structural phases differ with respect to their magnetic properties, one being paramagnetic and the other ferromagnetic, thus leading to the formation of a patterned magnetic nanostructure. It is argued that the phase separation directly results from the different strain-dependence of the total energy of the two competing phases. This straightforward relation directly enables further tailoring and optimization of the nanostructures’ properties. (paper)

  16. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.

    Science.gov (United States)

    Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L

    2017-12-06

    We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations

  17. Sol–Gel-Derived Glass-Ceramic Photorefractive Films for Photonic Structures

    Directory of Open Access Journals (Sweden)

    Anna Lukowiak

    2017-02-01

    Full Text Available Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2 glass-ceramic waveguides activated by europium ions (Eu3+. The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV-induced refractive index change (Δn ~ −1.6 × 10−3, the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm, that make this glass-ceramic an interesting photonic material for smart optical applications.

  18. Growth and characterization of red-green-blue cathodoluminescent ceramic films

    Science.gov (United States)

    Gozzi, Daniele; Latini, Alessandro; Salviati, Giancarlo; Armani, Nicola

    2006-06-01

    Gd2O3 and Y2O3 films, respectively, doped with Eu3+, Tb3+, and Tm3+ have been grown by the electron beam physical vapor codeposition technique on optically polished quartz substrates. The film samples have been doped at different concentrations by the corresponding rare-earth oxides. The concentration range explored is from 0.9% to 9.8% on 18 samples. For each film sample an extended characterization has been performed by thin film-x-ray diffraction, scanning electron microscopy, energy dispersion spectroscopy, cathodoluminescence spectroscopy, and color coordinate analysis. Y2O3 films display the most intense red-green-blue (RGB) emission and their film morphology and structure are more compact and crystalline with respect to Gd2O3 monoclinic films. Eu3+ and Tb3+ doped Y2O3 films grow oriented along the (222) direction. The ratios between the intensities of the electric dipole and magnetic dipole transitions have been also evaluated. The blue emission of Tm3+ doped Gd2O3 is lacking in the dopant concentration range from 1.6% to 7.6%, whereas it is present in Tm3+ doped Y2O3 films, at approximately the same dopant concentration range (1.9%-9.8%). Commission Internationale de l'Eclairage plot of the color coordinates of all the RGB film samples has been reported together with the RGB phosphor standard used in cathodic ray tube TV screens.

  19. Temperature dependence of microstructure and strain evolution in strained ZnO films on Al2O3(0001)

    International Nuclear Information System (INIS)

    Kim, In-Woo; Lee, Kyu-Mann

    2008-01-01

    We have studied the temperature dependence of the growth mode and microstructure evolution in highly mismatched sputter-grown ZnO/Al 2 O 3 (0001) heteroepitaxial films. The growth mode was studied by real-time synchrotron x-ray scattering. We find that the growth mode changes from a two-dimensional (2D) layer to a 3D island in the early growth stage with temperature (300-600 deg. C), in sharp contrast to the reported transition from three dimensions to two dimensions in metal-organic vapor phase epitaxy. At around 400 deg. C intermediate 2D platelets nucleate in the early stage, which act as nucleation cores of 3D islands and transform to a misaligned state during further growth. Meanwhile, at high temperature (above 500 deg. C), the spinel structure of ZnAl 2 O 4 grows in the early stage, and it undergoes a transition to wurtzite-ZnO (w-ZnO) with thickness. The spinel formation is presumably driven by high temperature and large incident energy of impacting atoms during sputtering. The results of the strain evolution as functions of temperature and thickness during growth suggest that the surface diffusion is a major factor determining the microstructural properties in the strained ZnO/Al 2 O 3 (0001) heteroepitaxy

  20. High resolution x-ray scattering studies of strain in epitaxial thin films of yttrium silicide grown on silicon (111)

    International Nuclear Information System (INIS)

    Marthinez-Miranda, L.J.; Santiago-Aviles, J.J.; Siegal, M.P.; Graham, W.R.; Heiney, P.A.

    1990-01-01

    The authors have used high resolution grazing incidence x-ray scattering (GIXS) to study the in- plane and out-of-plane structure of epitaxial YSi 2-x films grown on Si(111), with thicknesses ranging from 85 Angstrom to 510 Angstrom. Their results indicate that the films are strained, and that film strain increases as a function of thickness, with lattice parameters varying from a = 3.846 Angstrom/c = 4.142 Angstrom for the 85 Angstrom film to a = 3.877 Angstrom/c = 4.121 Angstrom for the 510 Angstrom film. The authors correlate these results with an increase in pinhole areal coverage as a function of thickness. In addition, the authors' measurements show no evidence for the existence of ordered silicon vacancies in the films

  1. Effect of lattice disorder and strain on T/sub c/ in sputtered Nb3Ge thin films

    International Nuclear Information System (INIS)

    Roy, R.; Rogoski, D.A.

    1976-01-01

    Disorder and strain introduced into sputtered ''Nb 3 Ge'' films by mechanical polishing slightly lowers the onset temperature and/or very markedly broadens the width of the superconducting transition. The structural damage is reversible and annealing restores the superconducting behavior of the film very nearly to its initial state

  2. Tribology of silicon-thin-film-coated SiC ceramics and the effects of high energy ion irradiation

    International Nuclear Information System (INIS)

    Kohzaki, Masao; Noda, Shoji; Doi, Harua

    1990-01-01

    The sliding friction coefficients and specific wear of SiC ceramics coated with a silicon thin film (Si/SiC) with and without subsequent Ar + irradiation against a diamond pin were measured with a pin-on-disk tester at room temperature in laboratory air of approximately 50% relative humidity without oil lubrication for 40 h. The friction coefficient of Ar + -irradiated Si/SiC was about 0.05 with a normal load of 9.8 N and remained almost unchanged during the 40 h test, while that of SiC increased from 0.04 to 0.12 during the test. The silicon deposition also reduced the specific wear of SiC to less than one tenth of that of the uncoated SiC. Effectively no wear was detected in Si/SiC irradiated to doses of over 2x10 16 ions cm -2 . (orig.)

  3. Stranski-Krastanow islanding initiated on the stochastic rough surfaces of the epitaxially strained thin films

    International Nuclear Information System (INIS)

    Tarik Ogurtani, Omer; Celik, Aytac; Emre Oren, Ersin

    2014-01-01

    Quantum dots (QD) have discrete energy spectrum, which can be adjusted over a wide range by tuning composition, density, size, lattice strain, and morphology. These features make quantum dots attractive for the design and fabrication of novel electronic, magnetic and photonic devices and other functional materials used in cutting-edge applications. The formation of QD on epitaxially strained thin film surfaces, known as Stranski-Krastanow (SK) islands, has attracted great attention due to their unique electronic properties. Here, we present a systematic dynamical simulation study for the spontaneous evolution of the SK islands on the stochastically rough surfaces (nucleationless growth). During the development of SK islands through the mass accumulation at randomly selected regions of the film via surface drift-diffusion (induced by the capillary and mismatch stresses) with and/or without growth, one also observes the formation of an extremely thin wetting layer having a thickness of a few Angstroms. Above a certain threshold level of the mismatch strain and/or the size of the patch, the formation of multiple islands separated by shallow wetting layers is also observed as metastable states such as doublets even multiplets. These islands are converted into a distinct SK islands after long annealing times by coalescence through the long range surface diffusion. Extensive computer simulation studies demonstrated that after an initial transient regime, there is a strong quadratic relationship between the height of the SK singlet and the intensity of the lattice mismatch strain (in a wide range of stresses up to 8.5 GPa for germanium thin crystalline films), with the exception at those critical points where the morphological (shape change with necking) transition takes place.

  4. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    Science.gov (United States)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  5. Strain and Defect Engineering for Tailored Electrical Properties in Perovskite Oxide Thin Films and Superlattices

    Science.gov (United States)

    Hsing, Greg Hsiang-Chun

    still suggest strong coupling between structure and electronic structure of the material. Our goal is to establish the growth parameters necessary to achieve high-quality and single-phase epitaxial SCO films. Well-defined SCO films were deposited on different substrates to change the structural properties and epitaxial strain. Temperature-dependent resistivity measurements using the Van der Pauw method were performed to identify the metallicity of the films. The results showed a difference in the electrical properties of SCO films under different epitaxial strains.

  6. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    International Nuclear Information System (INIS)

    Vakiv, M; Hadzaman, I; Klym, H; Shpotyuk, O; Brunner, M

    2011-01-01

    Temperature sensitive thick films based on spinel-type NiMn 2 O 4 -CuMn 2 O 4 -MnCo 2 O 4 manganites with p- and p + -types of electrical conductivity and their multilayer p + -p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p + -conductive films. Some part of the p + -p structures were of high stability, the relative electrical drift being no more than 1 %.

  7. Site Directed Nucleation and Growth of Ceramic Films on Metallic Surfaces

    Science.gov (United States)

    2009-04-30

    microporous membrane that is a tortuous medium having pores with size distributions and no well-defined geometry. 16 The resistance measurement using...shape carrying a uniformly distributed charge, however it has been validated in the case of a ceramic microporous membrane that is a tortuous medium...000 °C. The data are presented in Figure 3. As can be seen, the oyster shell material acts as an insulator from approximately -80 oc to 1000 °C. This

  8. Effect of deposition temperature & oxygen pressure on mechanical properties of (0.5) BZT-(0.5)BCT ceramic thin films

    Science.gov (United States)

    Sailaja, P.; Kumar, N. Pavan; Rajalakshmi, R.; Kumar, R. Arockia; Ponpandian, N.; Prabahar, K.; Srinivas, A.

    2018-05-01

    Lead free ferroelectric thin films of {(0.5) BZT-(0.5) BCT} (termed as BCZT) were deposited on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition at four deposition temperatures 600, 650, 700, 750°C and at two oxygen pressures viz. 75mtorr and 100 mtorr using BCZT ceramic target (prepared by solid state sintering method). The effect of deposition temperature and oxygen pressure on the structure, microstructure and mechanical properties of BCZT films were studied. X-ray diffraction patterns of deposited films confirm tetragonal crystal symmetry and the crystallinity of the films increases with increasing deposition temperature. Variation in BCZT grain growth was observed when the films are deposited at different temperatures andoxygen pressures respectively. The mechanical properties viz. hardness and elastic modulus were also found to be high with increase in the deposition temperature and oxygen pressure. The results will be discussed.

  9. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    International Nuclear Information System (INIS)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-01-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO 3 film grown on (La 0.3 Sr 0.7 )(Al 0.65 Ta 0.35 )O 3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ∼12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness

  10. Antioxidative activity, moisture retention, film formation, and viscosity stability of Auricularia fuscosuccinea, white strain water extract.

    Science.gov (United States)

    Liao, Wayne C; Hsueh, Chiu-Yen; Chan, Chin-Feng

    2014-01-01

    This study showed that both water extracts (WAF-W) and ethanol extracts (EAF-W) of Auricularia fuscosuccinea (Montagne) Farlow, white strain (AF-W) demonstrated significantly stronger antioxidative effects than did commercially available Tremella fuciformis sporocarp extracts (WSK; with the exception of EAF-W in terms of superoxide radical scavenging activity levels). The moisture retention capacity of WAF-W is as potent as that of sodium hyaluronate (SHA), but less than that of WSK. No corrugation or fissures were observed in WAF-W film; only the SHA and WSK films demonstrated such effects in low-moisture conditions. The WAF-W solution also exhibited stable viscosity at high temperatures, indicating that the WAF-W film was more stable compared with the SHA and WSK films. WAF-W induced no adverse effects when a hen's egg test was performed on the chorioallantoic membrane (CAM). This study demonstrated that WAF-W exhibits excellent potential as a topical material for skin moisturizing and anti-aging effects.

  11. Unique Piezoelectric Properties of the Monoclinic Phase in Pb (Zr ,Ti )O3 Ceramics: Large Lattice Strain and Negligible Domain Switching

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-01

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  12. Unique Piezoelectric Properties of the Monoclinic Phase in Pb(Zr,Ti)O_{3} Ceramics: Large Lattice Strain and Negligible Domain Switching.

    Science.gov (United States)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-15

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200  pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  13. Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application

    Science.gov (United States)

    Hu, Yingying; Wen, Zhaoyin; Wu, Xiangwei; Jin, Jun

    2012-12-01

    Porous carbon films with tunable pore structure to modify the β″-alumina electrolyte surface are fabricated through a low-cost and direct wet chemistry method with glucose and poly(methyl-methacrylate) (PMMA) as precursors. FTIR analysis confirms the effective connection between the carbohydrate and the pore-forming agent PMMA through hydrogen bonds. The experimental results indicate that the structural parameters of the porous carbon films, including mean pore size and film thickness, can be tuned simply by adjusting the amount of PMMA in the glucose/PMMA composite. This soft-template-assisted method could be readily extended to modify any other ceramic surfaces. The porous carbon films are demonstrated to greatly improve the wettability of the β″-alumina ceramics by molten sodium. Na/β″-alumina/Na cells are used to investigate the interfacial properties between sodium and the β″-alumina electrolyte. The results obtained at 350 °C reveal that the polarization behavior of the cell is alleviated by the porous coating. This work represents a successful method to coat ceramics with porous carbon and offers a promising solution to overcome the polarization problems of the sodium/β″-alumina interface in Na-based batteries.

  14. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    Science.gov (United States)

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  15. Sol-gel preparation of ion-conducting ceramics for use in thin films

    International Nuclear Information System (INIS)

    Steinhauser, M.I.

    1992-12-01

    A metal alkoxide sol-gel solution suitable for depositing a thin film of La 0.6 Sr 0.4 CoO 3 on a porous substrate has been developed; such films should be useful in fuel cell electrode and oxygen separation membrane manufacture. Crack-free films have been deposited on both dense and porous substrates by dip-coating and spin-coating techniques followed by a heat treatment in air. Fourier transform infrared spectroscopy was used to determine the chemical structure of metal alkoxide solution system. X-ray diffraction was used to determine crystalline phases formed at various temperatures, while scanning electron microscopy was used to determine physical characteristics of the films. Surface coatings have been successfully applied to porous substrates through the control of the substrate pore size, deposition parameters, and firing parameters. Conditions have been defined for which films can be deposited, and for which the physical and chemical characteristics of the film can be improved. A theoretical discussion of the chemical reactions taking place before and after hydrolysis in the mixed alkoxide solutions is presented, and the conditions necessary for successful synthesis are defined. Applicability of these films as ionic and electronic conductors is discussed

  16. Basic Strain Gradient Plasticity Theories with Application to Constrained Film Deformation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, John W.

    2011-01-01

    films: the compression or extension of a finite layer joining rigid platens. Full elastic-plastic solutions are obtained for the same problem based on a finite element method devised for the new class of flow theories. Potential difficulties and open issues associated with the new class of flow theories......A family of basic rate-independent strain gradient plasticity theories is considered that generalize conventional J(2) deformation and flow theories of plasticity to include a dependence on strain gradients in a simple way. The theory builds on three recent developments: the work of Gudmundson (J....... Mech. Phys. Solids 52 (2004), 1379-1406) and Gurtin and Anand (J. Mech. Phys. Solids 57 (2009), 405-421), proposing constitutive relations for flow theories consistent with requirements of positive plastic dissipation; the work of Fleck and Willis (J. Mech. Phys. Solids 57 (2009), 161-177 and 1045...

  17. Deposition of thin film of titanium on ceramic substrate using the discharge for hollow cathode for Al2O3/Al2O3 indirect brazing

    Directory of Open Access Journals (Sweden)

    Mary Roberta Meira Marinho

    2009-01-01

    Full Text Available Thin films of titanium were deposited onto Al2O3 substrate by hollow cathode discharge method for the formation of a ceramic-ceramic joint using indirect brazing method. An advantage of using this technique is that a relatively small amount of titanium is required for the metallization of the ceramic surface when compared with other conventional methods. Rapidly solidified brazing filler of Cu49Ag45Ce6 in the form of ribbons was used. The thickness of deposited titanium layer and the brazing temperature/time were varied. The quality of the brazed joint was evaluated through the three point bending flexural tests. The brazed joints presented high flexural resistance values up to 176 MPa showing the efficiency of the technique.

  18. Multifunctional thick-film structures based on spinel ceramics for environment sensors

    Energy Technology Data Exchange (ETDEWEB)

    Vakiv, M; Hadzaman, I; Klym, H; Shpotyuk, O [Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, 79031 (Ukraine); Brunner, M, E-mail: shpotyuk@novas.lviv.ua, E-mail: klymha@yahoo.com [Fachhochschule Koeln/University of Applied Sciences, 2 Betzdorfer str., Koeln, 50679 (Germany)

    2011-04-01

    Temperature sensitive thick films based on spinel-type NiMn{sub 2}O{sub 4}-CuMn{sub 2}O{sub 4}-MnCo{sub 2}O{sub 4} manganites with p- and p{sup +}-types of electrical conductivity and their multilayer p{sup +}-p structures were studied. These thick-film elements possess good electrophysical characteristics before and after long-term ageing test at 170 deg. C. It is shown that degradation processes connected with diffusion of metallic Ag into film grain boundaries occur in one-layer p-and p{sup +}-conductive films. Some part of the p{sup +}-p structures were of high stability, the relative electrical drift being no more than 1 %.

  19. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    Science.gov (United States)

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  20. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    Science.gov (United States)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  1. Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications

    Science.gov (United States)

    Guddala, S.; Chiappini, A.; Armellini, C.; Turell, S.; Righini, G. C.; Ferrari, M.; Narayana Rao, D.

    2015-02-01

    Glass-ceramics are a kind of two-phase materials constituted by nanocrystals embedded in a glass matrix and the respective volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. Among these properties transparency is crucial in particular when confined structures, such as, dielectric optical waveguides, are considered. Moreover, the segregation of dopant rare-earth ions, like erbium, in low phonon energy crystalline medium makes these structures more promising in the development of waveguide amplifiers. Here we are proposing a new class of low phonon energy tin oxide semiconductor medium doped silicate based planar waveguides. Er3+ doped (100-x) SiO2-xSnO2 (x= 10, 20, 25 and 30mol%), glass-ceramic planar waveguide thin films were fabricated by a simple sol-gel processing and dip coating technique. XRD and HRTEM studies indicates the glass-ceramic phase of the film and the dispersion of ~4nm diameter of tin oxide nanocrystals in the amorphous phase of silica. The spectroscopic assessment indicates the distribution of the dopant erbium ions in the crystalline medium of tin oxide. The observed low losses, 0.5±0.2 dB/cm, at 1.54 μm communication wavelength makes them a quite promising material for the development of high gain integrated optical amplifiers.

  2. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  3. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    International Nuclear Information System (INIS)

    Malek, M.F.; Mamat, M.H.; Musa, M.Z.; Soga, T.; Rahman, S.A.; Alrokayan, Salman A.H.; Khan, Haseeb A.; Rusop, M.

    2015-01-01

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T a ) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T a was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T a . All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T a temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T a temperature

  4. Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Malek, M.F., E-mail: firz_solarzelle@yahoo.com [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia); Mamat, M.H. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Musa, M.Z. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Pulau Pinang, Jalan Permatang Pauh, 13500 Permatang Pauh, Pulau Pinang (Malaysia); Soga, T. [Department of Frontier Materials, Nagoya Institute of Technology (NITech), Nagoya 466-8555 (Japan); Rahman, S.A. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, Universiti Malaya (UM), 50603 Kuala Lumpur (Malaysia); Alrokayan, Salman A.H.; Khan, Haseeb A. [Department of Biochemistry, College of Science, King Saud University (KSU), Riyadh 11451 (Saudi Arabia); Rusop, M. [NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre (NST), Institute of Science (IOS), Universiti Teknologi MARA UiTM, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-15

    We report on the growth of Al-doped ZnO (ZAO) thin films prepared by the sol–gel technique associated with dip-coating onto Corning 7740 glass substrates. The influence of varying thermal annealing (T{sub a}) temperature on crystallisation behaviour, optical and electrical properties of ZAO films has been systematically investigated. All films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction 〈0 0 2〉. The metamorphosis of strain/stress effects in ZAO thin films has been investigated using X-ray diffraction. The as growth films have a large compressive stress of 0.55 GPa, which relaxed to 0.25 GPa as the T{sub a} was increased to 500 °C. Optical parameters such as optical transmittance, absorption coefficient, refractive index and optical band gap energy have been studied and discussed with respect to T{sub a}. All films exhibit a transmittance above 80–90% along the visible–NIR range up to 1500 nm and a sharp absorption onset below 400 nm corresponding to the fundamental absorption edge of ZnO. Experimental results show that the tensile stress in the films reveals an incline pattern with the optical band gap energy, while the compressive stress shows opposite relation. - Highlights: • Minimum stress of highly c-axis oriented ZAO was grown at suitable T{sub a} temperature. • The ZAO crystal orientation was influenced by strain/stress of the film. • Minimum stress/strain of ZAO film leads to lower defects. • Bandgap and defects were closely intertwined with strain/stress. • We report additional optical and electrical properties based on T{sub a} temperature.

  5. Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter

    International Nuclear Information System (INIS)

    Druffel, Thad; Geng Kebin; Grulke, Eric

    2006-01-01

    Thin-film filters on optical components have been in use for decades and, for those industries utilizing a polymer substrate, the mismatch in mechanical behaviour has caused problems. Surface damage including scratches and cracks induces haze on the optical filter, reducing the transmission of the optical article. An in-mold anti-reflective (AR) filter incorporating 1/4-wavelength thin films based on a polymer nanocomposite is outlined here and compared with a traditional vacuum deposition AR coating. Nanoindentation and nanoscratch techniques are used to evaluate the mechanical properties of the thin films. Scanning electron microscopy (SEM) images of the resulting indentations and scratches are then compared to the force deflection curves to further explain the phenomena. The traditional coatings fractured by brittle mechanisms during testing, increasing the area of failure, whereas the polymer nanocomposite gave ductile failure with less surface damage

  6. Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter.

    Science.gov (United States)

    Druffel, Thad; Geng, Kebin; Grulke, Eric

    2006-07-28

    Thin-film filters on optical components have been in use for decades and, for those industries utilizing a polymer substrate, the mismatch in mechanical behaviour has caused problems. Surface damage including scratches and cracks induces haze on the optical filter, reducing the transmission of the optical article. An in-mold anti-reflective (AR) filter incorporating 1/4-wavelength thin films based on a polymer nanocomposite is outlined here and compared with a traditional vacuum deposition AR coating. Nanoindentation and nanoscratch techniques are used to evaluate the mechanical properties of the thin films. Scanning electron microscopy (SEM) images of the resulting indentations and scratches are then compared to the force deflection curves to further explain the phenomena. The traditional coatings fractured by brittle mechanisms during testing, increasing the area of failure, whereas the polymer nanocomposite gave ductile failure with less surface damage.

  7. Operando SXRD of E-ALD deposited sulphides ultra-thin films: Crystallite strain and size

    Science.gov (United States)

    Giaccherini, Andrea; Russo, Francesca; Carlà, Francesco; Guerri, Annalisa; Picca, Rosaria Anna; Cioffi, Nicola; Cinotti, Serena; Montegrossi, Giordano; Passaponti, Maurizio; Di Benedetto, Francesco; Felici, Roberto; Innocenti, Massimo

    2018-02-01

    Electrochemical Atomic Layer Deposition (E-ALD), exploiting surface limited electrodeposition of atomic layers, can easily grow highly ordered ultra-thin films and 2D structures. Among other compounds CuxZnyS grown by means of E-ALD on Ag(111) has been found particularly suitable for the solar energy conversion due to its band gap (1.61 eV). However its growth seems to be characterized by a micrometric thread-like structure, probably overgrowing a smooth ultra-thin films. On this ground, a SXRD investigation has been performed, to address the open questions about the structure and the growth of CuxZnyS by means of E-ALD. The experiment shows a pseudo single crystal pattern as well as a powder pattern, confirming that part of the sample grows epitaxially on the Ag(111) substrate. The growth of the film was monitored by following the evolution of the Bragg peaks and Debye rings during the E-ALD steps. Breadth and profile analysis of the Bragg peaks lead to a qualitative interpretation of the growth mechanism. This study confirms that Zn lead to the growth of a strained Cu2S-like structure, while the growth of the thread-like structure is probably driven by the release of the stress from the epitaxial phase.

  8. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films

    OpenAIRE

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-01-01

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite cr...

  9. Noise origin of Co-Cr-Ta films on ultra-flat glass-ceramic and Si substrates for longitudinal recording disks

    International Nuclear Information System (INIS)

    Noda, Kohki; Kadokura, Sadao; Naoe, Masahiko

    2001-01-01

    Co 85 Cr 13 Ta 2 /Cr bilayered films for longitudinal recording disks were deposited by plasma-enhanced facing targets sputtering apparatus on 2.5 in and ultra-flat disk substrates of glass-ceramic and single-crystal silicon. Their noise and read/write characteristics were almost comparable with those of the high-performance disks using Co-Cr-Pt films, with coercivity H c of 2.4 kOe, as a reference disk, even though the Co-Cr-Ta films exhibited macroscopic H c of only 800 Oe. Co 85 Cr 13 Ta 2 films are known as low-noise media. This study addresses the problem of how to obtain low-noise media, using excellent sputtering apparatus and disk substrate materials, to allow practical applications in ultra-high-density recording systems, including 1 in microdrives for mobile applications

  10. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Ozmanyan, Kh.R.; Sandomirskij, B.B.

    1988-01-01

    A superconducting transition with T c0 =82-95 K and T c (R=0)=82-72 K was observed in volumetric and film Bi(Sr 1-x Ca x ) 2 Cu 3 O y samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured

  11. Superconductivity in Bi-Sr-Ca-Cu-O bulk and film ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A A; Ozmanian, KH R; Sandomirskii, B B

    1988-07-01

    A superconducting transition with Tc0 = 82-95 K and Tc(R = 0) = 82-72 K was observed in Bi(Sr/1-x/Ca/x/)2Cu3O(y) bulk and film specimens obtained via a solid-phase reaction. Temperature dependences of the resistance, critical current, and magnetic susceptibility were measured.

  12. Strain-mediated magnetic and transport properties of epitaxial LuxFe3-xO4 films

    Science.gov (United States)

    Wang, P.; Jin, C.; Zheng, D. X.; Bai, H. L.

    2015-10-01

    Strain mediated structure, magnetic, and transport properties of spinel ferrites were investigated by growing epitaxial LuxFe3-xO4 (LFO, 0 ≤ x ≤ 0.26 ) films on SrTiO3 and MgO substrates with in-plane compressive and tensile strains, respectively. The lattice parameter of LFO films decreases on SrTiO3 substrates, while increases on MgO substrates with the increasing Lu content. The LFO films on SrTiO3 substrates exhibit larger saturation magnetization and smaller exchange bias and coercive field. Phase shift of anisotropic magnetoresistance is also observed in the LFO films on SrTiO3 substrates. In addition, the nonmagnetic Lu3+ ions in spinel ferrites enhance the spin canting, which further increases the exchange bias and coercive field and strengthens the four-fold symmetry of anisotropic magnetoresistance and the two-fold symmetry of planar Hall effect.

  13. New strain measurement method at axial tensile test of thin films through direct imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jong-Eun [Department of Automotive Engineering, Seoul National Uinversity of Technolgy, 172 Gongneung-2 Dong, Nowon-Gu, Seoul (Korea, Republic of); Park, Jun-Hyub [Department of Mechatronics Engineering, College of Engineering, Tongmyong University, 535, Yongdang-Dong, Nam-Gu, Busan 608-711 (Korea, Republic of); Kang, Dong-Joong [School of Mechanical Eng., Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)], E-mail: jhyubpark@korea.com

    2008-09-07

    This paper proposes a new method for measuring strain during a tensile test of the specimen with micrometre size through direct imaging. A specimen was newly designed for adoption of direct imaging which was the main contribution of the proposed system. The structure of the specimen has eight indicators that make it possible to adopt direct imaging and it is fabricated using the same process of microelectromechanical system (MEMS) devices to guarantee the feasibility of the tensile test. We implemented a system for non-contact in situ measurement of strain with the specimen, the image-based displacement measurement system. Extension of the gauge length in the specimen could be found robustly by computing the positions of the eight rectangular-shape indicators on the image. Also, for an easy setup procedure, the region of interest was found automatically through the analysis of the edge projection profile along the horizontal direction. To gain confidence in the reliability of the system, the tensile test for the Al-3%Ti thin film was performed, which is widely used as a material in MEMS devices. Tensile tests were performed and displacements were measured using the proposed method and also the capacitance type displacement sensor for comparison. It is demonstrated that the new strain measurement system can be effectively used in the tensile test of the specimen at microscale with easy setup and better accuracy.

  14. Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries

    International Nuclear Information System (INIS)

    Wang, Jing; Hu, Zhiyu; Yin, Xiunan; Li, Yunchao; Huo, Hong; Zhou, Jianjun; Li, Lin

    2015-01-01

    Highlights: • PEK-C (T g : ∼230 °C) was used as binder to prepare ceramic coated composite PP separator. • The composite PP separator was stable and showed low thermal shrinkage in the electrolyte solvent. • The composite PP separator was helpful for high current density discharge. • The composite PP separator improved the safety performance of the coin cells. - Abstract: One way to obtain the lithium ion power battery with better safety performance was to increase the thermal shrinkage resistance of the separator at higher temperature. Phenolphthalein polyetherketone (PEK-C) is a polymer that can withstand high temperature to about 230 °C. Here, we developed a new Al 2 O 3 coated composite polypropylene (PP) separator with PEK-C as binder. The coating layer was formed on the surface of the PP separator and both ceramic particles and binder did not infiltrated into the separator along the thickness direction. The composite separator with 4 μm coating layer provided balanced permeability and thermal shrinkage properties. The composite separator was stable at the electrochemical window for lithium ion battery. The coin cells with composite separator showed better charge/discharge performance than that of the cells with the PP separator. It seemed that the composite separator was helpful for high current density discharge. Also, the battery safety performance test had verified that the Al 2 O 3 coated composite separator with PEK-C as binder had truly improved the safety performance of the coin cells. So, the newly developed Al 2 O 3 coated composite PP separator was a promising safety product for lithium ion power batteries with high energy density

  15. Thickness dependence of the poling and current-voltage characteristics of paint films made up of lead zirconate titanate ceramic powder and epoxy resin

    Science.gov (United States)

    Egusa, Shigenori; Iwasawa, Naozumi

    1995-11-01

    A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.

  16. Studies on Various Functional Properties of Titania Thin Film Developed on Glazed Ceramic Wall Tiles

    Science.gov (United States)

    Anil, Asha; Darshana R, Bangoria; Misra, S. N.

    A sol-gel based TiO2 thin film was applied on glazed wall tiles for studying its various functional properties. Thin film was deposited by spin coating on the substrate and subjected to curing at different temperatures such as 600°C, 650, 700°C, 750°C and 800°C with 10 minutes soaking. The gel powder was characterized by FTIR, DTA/TG and XRD. Microstructure of thin film was analyzed by FESEM and EDX. Surface properties of the coatings such as gloss, colour difference, stain resistance, mineral hardness and wettability were extensively studied. The antibacterial activity of the surface of coated substrate against E. coli was also examined. The durability of the coated substrate in comparison to the uncoated was tested against alkali in accordance with ISO: 10545 (Part 13):1995 standard. FESEM images showed that thin films are dense and homogeneous. Coated substrates after firing results in lustre with high gloss, which increased from 330 to 420 GU as the curing temperature increases compared to that of uncoated one (72 GU). Coated substrate cured at 800°C shows higher mineral hardness (5 Mohs’) compared to uncoated one (4 Mohs’) and films cured at all temperatures showed stain resistance. The experimental results showed that the resistance towards alkali attack increase with increase in curing temperature and alkali resistance of sample cured at 800 °C was found to be superior compared to uncoated substrate. Contact angle of water on coated surface of substrates decreased with increase in temperature. Bacterial reduction percentages of the coated surface was 97% for sample cured at 700°C and it decreased from 97% to 87% as the curing temperature increased to 800 °C when treated with E. coli bacteria.

  17. Thickness dependent properties of CMR Manganite thin films on lattice mismatched substrates: Distinguishing Strain and Interface Effects

    Science.gov (United States)

    Davidson, Anthony, III; Kolagani, Rajeswari; Bacharova, Ellisaveta; Yong, Grace; Smolyaninova, Vera; Schaefer, David; Mundle, Rajeh

    2007-03-01

    Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La0.67Ca0.33MnO3 (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO3 and (001) oriented NdCaAlO4 both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.

  18. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.I. [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal); Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal)

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  19. Superconductivity in volumetric and film ceramics Bi-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A A; Ozmanyan, Kh R; Sandomirskij, B B

    1988-07-10

    A superconducting transition with T/sub c0/=82-95 K and T/sub c/(R=0)=82-72 K was observed in volumetric and film Bi(Sr/sub 1-x/Ca/sub x/)/sub 2/Cu/sub 3/O/sub y/ samples obtained by solid-phase reaction. Temperature dependences of resistance critical current and magnetic susceptibility are measured.

  20. Anisotropic strain relaxation in (Ba0.6Sr0.4)TiO3 epitaxial thin films

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2005-05-01

    We have studied the evolution of anisotropic epitaxial strains in ⟨110⟩-oriented (Ba0.60Sr0.40)TiO3 paraelectric (m3m) thin films grown on orthorhombic (mm2) ⟨100⟩-oriented NdGaO3 by high-resolution x-ray diffractometry. All the six independent components of the three-dimensional strain tensor were measured in films with 25-1200-nm thickness, from which the principal stresses and strains were obtained. Pole figure analysis indicated that the epitaxial relations are [001]m3m‖[001]mm2 and [1¯10]m3m‖[010]mm2 in the plane of the film, and [110]m3m‖[100]mm2 along the growth direction. The dislocation system responsible for strain relief along [001] has been determined to be ∣b ∣(001)=3/4∣b∣. Strain relief along the [1¯10] direction, on the other hand, has been determined to be due to a coupled mechanism given by ∣b∣(1¯10)=∣b∣ and ∣b∣(1¯10)=√3 /4∣b∣. Critical thicknesses, as determined from nonlinear regression using the Matthews-Blakeslee equation, for misfit dislocation formation along [001] and [1¯10] direction were found to be 5 and 7 nm, respectively. The residual strain energy density was calculated as ˜2.9×106J/m3 at 25 nm, which was found to relax an order of magnitude by 200 nm. At 200 nm, the linear dislocation density along [001] and [1¯10] are ˜6.5×105 and ˜6×105cm-1, respectively. For films thicker than 600 nm, additional strain relief occurred through surface undulations, indicating that this secondary strain-relief mechanism is a volume effect that sets in upon cooling from the growth temperature.

  1. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    Science.gov (United States)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  2. Polycrystalline Ba0.6Sr0.4TiO3 thin films on r-plane sapphire: Effect of film thickness on strain and dielectric properties

    Science.gov (United States)

    Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Akdogan, E. K.; Simon, W. K.; Safari, A.; Wang, J. Y.

    2006-10-01

    Polycrystalline Ba0.6Sr0.4TiO3 (BST) films grown on r-plane sapphire exhibit strong variation of in-plane strain over the thickness range of 25-400nm. At a critical thickness of ˜200nm, the films are strain relieved; in thinner films, the strain is tensile, while compressive strain was observed in the 400nm film. Microwave properties of the films were measured from 1to20GHz by the interdigital capacitor method. A capacitance tunability of 64% was observed in the 200nm film, while thinner films showed improved Q factor. These results demonstrate the possibility of incorporating frequency agile BST-based devices into the silicon on sapphire process.

  3. Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery

    Directory of Open Access Journals (Sweden)

    Kevin J. Maloney

    2013-08-01

    Full Text Available Ordered periodic microlattices with densities from 0.5 mg/cm3 to 500 mg/cm3 are fabricated by depositing various thin film materials (Au, Cu, Ni, SiO2, poly(C8H4F4 onto sacrificial polymer lattice templates. Young's modulus and strength are measured in compression and the density scaling is determined. At low relative densities, recovery from compressive strains of 50% and higher is observed, independent of lattice material. An analytical model is shown to accurately predict the transition between recoverable “pseudo-superelastic” and irrecoverable plastic deformation for all constituent materials. These materials are of interest for energy storage applications, deployable structures, and for acoustic, shock, and vibration damping.

  4. Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics

    International Nuclear Information System (INIS)

    Hussain, Ali; Rahman, Jamil Ur; Zaman, Arif; Malik, Rizwan Ahmed; Kim, Jin Soo; Song, Tae Kwon; Kim, Won Jeong; Kim, Myong Ho

    2014-01-01

    The structure, field-induced strain, polarization and dielectric response of lead-free SrZrO 3 -modified Bi 1/2 (Na 0.80 K 0.20 ) 1/2 TiO 3 (abbreviated as BNKT–SZ100x, with x = 0–0.05) ceramics were investigated. The X-ray diffraction analysis of BNKT–SZ100x ceramics reveals no remarkable change in the crystal structure within the studied composition range. Around critical composition (x = 0.03) at a driving field of 6 kV mm −1 , large unipolar strain of 0.37% (S max /E max = 617) was obtained at room temperature. The ferroelectric and piezoelectric properties of BNKT ceramics were significantly increased at 2 mol%. At x = 0.02, remnant polarization reached a maximum value of 34 μC cm −2 , while the piezoelectric constant (d 33 ) attained maximum value of 190 pC/N. These results indicate that BNKT–SZ100x ceramics can be considered as promising candidate materials for lead-free piezoelectric actuator applications. - Highlights: • BNKT–SZ ceramics were synthesized by a conventional solid state reaction process. • Field-induced strain and piezoelectric constant were increased at critical composition. • BNKT–SZ100x ceramics at x = 0.03 exhibit a large field induced dynamic piezoelectric coefficient. • BNKT–SZ100x ceramics at x = 0.02 exhibit a high static piezoelectric constant. • The depolarization temperature of BNKT–SZ100x ceramics decrease with increase in SZ content

  5. The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films

    Science.gov (United States)

    Khan, Asif Islam; Yu, Pu; Trassin, Morgan; Lee, Michelle J.; You, Long; Salahuddin, Sayeef

    2014-07-01

    We study the effects of strain relaxation on the dielectric properties of epitaxial 40 nm Pb(Zr0.2Ti0.8)TiO3 (PZT) films. A significant increase in the defect and dislocation density due to strain relaxation is observed in PZT films with tetragonality c/a fatigue in ferroelectric materials.

  6. Effects of pre-strain applied at a polyethylene terephthalate substrate before the coating of TiO2 film on the coating film quality and optical performance

    International Nuclear Information System (INIS)

    Li, Tse-Chang; Wu, Bo-Hsiung; Lin, Jen-Fin

    2011-01-01

    A mold was designed to create various strains in polyethylene terephthalate (PET) substrates before the deposition of TiO 2 film to simulate deposition process on a cylindrical drum. The residual stress of the PET substrate with TiO 2 film significantly increased with increasing strain, decreasing the radius of curvature. Compared to the as-received PET substrate, there was a noticeable increase in the surface roughness in the PET/TiO 2 specimens when a large strain was applied. The formation of voids or cavities in the TiO 2 layer significantly increased the roughness of the specimen. The mean cavity size and depth increased with increasing strain. For strains ≤ 4%, the specimen's hardness and Young's modulus factored by the voids/cavities increased with increasing surface roughness. The optical absorption increased with increasing surface roughness before becoming asymptotic to a constant value. The strain applied to the PET substrate before TiO 2 deposition greatly affects the optical reflection, transmittance, and absorption.

  7. Structural and electrochemical behavior of sol-gel ZrO2 ceramic film on chemically pre-treated AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Li Qing; Chen Bo; Xu Shuqiang; Gao Hui; Zhang Liang; Liu Chao

    2009-01-01

    In the present investigation sol-gel-based ZrO 2 ceramic film was obtained using zirconium acetate as the precursor material. The film was deposited on AZ91D magnesium alloy by a dip-coating technique. An uniform stannate conversion coating as chemical pretreatment was employed as an intermediate layer prior to deposition of the ZrO 2 film in order to provide advantage for the formation of sol-gel-based ZrO 2 layer. The corrosion properties, structure, composition and morphology of these coatings on AZ91D magnesium alloy were studied by potentiodynamic polarization tests, EIS, XRD, SEM, respectively. According to the electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environment-friendly surface treatment.

  8. The magnetic transition temperature tuned by strain in YMn0.9Ru0.1O3 thin films

    Directory of Open Access Journals (Sweden)

    L. P. Yang

    2018-05-01

    Full Text Available Epitaxial orthorhombic YMn0.9Ru0.1O3 films with different thickness have been grown on (001-SrTiO3 substrates by pulsed laser deposition (PLD. The crystal structure is well investigated by X-ray Diffraction. It is found that the out-of-plane parameter c slowly increases with decreasing thickness of samples because of the tensile strain between the films and substrates along c axis. The lengths of in-plane Mn-O bonds expand with the enhancement of strains, which is proved by Raman scatting. The magnetic measurements reveal that there exist two magnetic transition temperatures TN1 and TN2. The TN1 is close to that of orthorhombic YMnO3 bulk. With decreasing thickness of the films, TN1 keeps almost constant because of the small stain along c-axis. TN2, however, obviously increases from 117 K to 134 K, which could be related to the expansion of in-plane Mn-O bonds. Results show that the magnetic transition temperature of YMn0.9Ru0.1O3 films can be sensitively manipulated by the strain of the films.

  9. Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films

    Science.gov (United States)

    Nguyen, Minh D.; Dekkers, Matthijn; Houwman, Evert; Steenwelle, Ruud; Wan, Xin; Roelofs, Andreas; Schmitz-Kempen, Thorsten; Rijnders, Guus

    2011-12-01

    A study on the effects of the residual strain in Pb(Zr0.52Ti0.48)O3 (PZT) thin films on the ferroelectric and piezoelectric properties is presented. Epitaxial (001)-oriented PZT thin film capacitors are sandwiched between SrRuO3 electrodes. The thin film stacks are grown on different substrate-buffer-layer combinations by pulsed laser deposition. Compressive or tensile strain caused by the difference in thermal expansion of the PZT film and substrate influences the ferroelectric and piezoelectric properties. All the PZT stacks show ferroelectric and piezoelectric behavior that is consistent with the theoretical model for strained thin films in the ferroelectric r-phase. We conclude that clamped (001) oriented Pb(Zr0.52Ti0.48)O3 thin films strained by the substrate always show rotation of the polarization vector.

  10. Effect of plastic strain on shape memory characteristics in sputter-deposited Ti-Ni thin films

    International Nuclear Information System (INIS)

    Nomura, K.

    1995-01-01

    The plastic strain which is introduced during cooling and heating under a constant stress has an influence upon the transformation and deformation characteristics of sputter-deposited Ti-Ni shape memory alloy thin films. With increasing the accumulated plastic strain, Ms rises and recovery strain increases. The changes in such characteristics are due to the internal stress field that is formed by plastic deformation. However, the change in Ms in Ti-50.5at%Ni is larger than that in Ti-48.9at%Ni, although the plastic strain in the former is lower than that in the latter. In order to understand this point, the effective internal stresses were estimated in both alloys; the internal stress in the former is more effectively created by the introduction of plastic strain than in the latter. (orig.)

  11. Strain profile and polarization enhancement in Ba0.5Sr0.5TiO3 thin films

    International Nuclear Information System (INIS)

    Amir, F.Z.; Donner, W.; Aspelmeyer, M.; Noheda, B.; Xi, X.X.; Moss, S.C.

    2012-01-01

    The sensitivity of spontaneous polarization to epitaxial strain for both 10 and 50 nm thick Ba 0.5 Sr 0.5 TiO 3 (BSTO) ferroelectric thin films has been studied. Crystal truncation rod (CTR) profiles in the 00L directions at different wavelengths, and grazing incidence diffraction (GID) in the 0K0 direction on a single crystal have been recorded. Modeling of the CTR data gives a detailed picture of the strain and provides clear evidence of the film out-of-plane expansion at the surface, an increase of the polarization, as well as a contraction at the interface. GID data confirm the fitting of the CTR, showing an in-plane expansion of the BSTO film at the interface and a contraction at the surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Anisotropic strain in YBa2Cu3O7-δ films analysed by deconvolution of two-dimensional intensity data

    International Nuclear Information System (INIS)

    Broetz, J.; Fuess, H.

    2001-01-01

    The influence of the instrumental resolution on two-dimensional reflection profiles of epitaxic YBa 2 Cu 3 O 7-δ films on SrTiO 3 (001) has been studied in order to investigate the strain in the superconducting films. The X-ray diffraction intensity data were obtained by two-dimensional scans in reciprocal space (q-scan). Since the reflection broadening caused by the apparatus differs for each position in reciprocal space, a highly crystalline substrate was used as a standard. Thus it was possible to measure a standard very close to the YBa 2 Cu 3 O 7-δ reflections in reciprocal space. The two-dimensional deconvolution of reflections by a new computer program revealed an anisotropic strain of the two twinning systems of the film. (orig.)

  13. Electrical characteristics of thermal CVD B-doped Si films on highly strained Si epitaxially grown on Ge(100) by plasma CVD without substrate heating

    International Nuclear Information System (INIS)

    Sugawara, Katsutoshi; Sakuraba, Masao; Murota, Junichi

    2010-01-01

    Using an 84% relaxed Ge(100) buffer layer formed on Si(100) by electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (CVD), influence of strain upon electrical characteristics of B-doped Si film epitaxially grown on the Ge buffer have been investigated. For the thinner B-doped Si film, surface strain amount is larger than that of the thicker film, for example, strain amount reaches 2.0% for the thickness of 2.2 nm. It is found that the hole mobility is enhanced by the introduction of strain to Si, and the maximum enhancement of about 3 is obtained. This value is higher than that of the usually reported mobility enhancement by strain using Si 1 -x Ge x buffer. Therefore, introduction of strain using relaxed Ge film formed by ECR plasma enhanced CVD is useful to improve future Si-based device performance.

  14. Strain dependent magnetocaloric effect in La0.67Sr0.33MnO3 thin-films

    Directory of Open Access Journals (Sweden)

    V. Suresh Kumar

    2013-05-01

    Full Text Available The strain dependent magnetocaloric properties of La0.67Sr0.33MnO3 thin films deposited on three different substrates (001 LaAlO3 (LAO, (001 SrTiO3 (STO, and (001 La0.3Sr0.7Al0.65Ta0.35O9 (LSAT have been investigated under low magnetic fields and around magnetic phase transition temperatures. Compared to bulk samples, we observe a remarkable decrease in the ferromagnetic transition temperature that is close to room temperature, closely matched isothermal magnetic entropy change and relative cooling power values in tensile strained La0.67Sr0.33MnO3 films. The epitaxial strain plays a significant role in tuning the peak position of isothermal magnetic entropy change towards room temperature with improved cooling capacity.

  15. Influence of anisotropic strain relaxation on the magnetoresistance properties of epitaxial Fe3O4 (110) films

    Science.gov (United States)

    Sofin, R. G. S.; Wu, Han-Chun; Ramos, R.; Arora, S. K.; Shvets, I. V.

    2015-11-01

    We studied Fe3O4 (110) films grown epitaxially on MgO (110) substrates using oxygen plasma assisted molecular beam epitaxy. The films with thickness of 30-200 nm showed anisotropic in-plane partial strain relaxation. Magneto resistance (MR) measurements with current and magnetic field along ⟨001⟩ direction showed higher MR compared to ⟨1 ¯ 10 ⟩ direction. Maximum value of MR was measured at Verwey transition temperature for both directions. We explain the observed anisotropy in the MR on the basis of the effects of anisotropic misfit strain, and the difference between the density of antiferromagnetically coupled antiphase boundaries formed along ⟨001⟩ and ⟨1 ¯ 10 ⟩ crystallographic directions, suggesting the dependence of spin polarisation on the anisotropic strain relaxation along the said crystallographic directions.

  16. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Science.gov (United States)

    Xie, Yali; Zhan, Qingfeng; Shang, Tian; Yang, Huali; Wang, Baomin; Tang, Jin; Li, Run-Wei

    2017-05-01

    We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO) and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO) displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  17. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Directory of Open Access Journals (Sweden)

    Yali Xie

    2017-05-01

    Full Text Available We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  18. Effects of strain and strain-induced α′-martensite on passive films in AISI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Lv, Jinlong; Luo, Hongyun

    2014-01-01

    In this paper, the effects of strain and heat treatment on strain-induced α′-martensite of AISI 304 stainless steel tubes were measured by X-ray diffraction. Moreover, the effects of strain and content of α′-martensite on passivated property on the surface of the material in borate buffer solution were evaluated by electrochemical technique. The results showed that the volume fraction of α′-martensite increased gradually with the increase of tensile strain for as-received and solid solution samples. However, α′-martensite in as-received sample was more than that in the solid solution sample. The electrochemical impedance spectroscopy results showed that the solid solution treatment improved corrosion resistance of the steel, especially for samples with small strain. Moreover, acceptor densities were always higher than donor densities for as-received and solid solution samples. With the increase of strain, the increase tendency of acceptor density was more significant than that of donor density. We also found that the total density of the acceptor and donor almost increased linearly with the increase of α′-martensite. The present results indicated that the increased acceptor density might lead to the decreased corrosion resistance of the steel. - Highlights: • The solid solution treatment improved corrosion resistance of the stainless steel. • The deteriorated passivated property after strain could be attributed to the increased acceptor density. • The α′-martensite reduced corrosion resistance of the stainless steel

  19. Effect of large compressive strain on low field electrical transport in La0.88Sr0.12MnO3 thin films

    International Nuclear Information System (INIS)

    Prasad, Ravikant; Gaur, Anurag; Siwach, P K; Varma, G D; Kaur, A; Singh, H K

    2007-01-01

    We have investigated the effect of large in-plane compressive strain on the electrical transport in La 0.88 Sr 0.12 MnO 3 in thin films. For achieving large compressive strain, films have been deposited on single crystal LaAlO 3 (LAO, a = 3.798 A) substrate from a polycrystalline bulk target having average in-plane lattice parameter a av = (a b + b b )/2 = 3.925 A. The compressive strain was further relaxed by varying the film thickness in the range ∼6-75 nm. In the film having least thickness (∼6 nm) large increase (c = 3.929 A) in the out-of-plane lattice parameter is observed which gradually decreases towards the bulk value (c bulk = 3.87 A) for ∼75 nm thick film. This shows that the film having the least thickness is under large compressive strain, which partially relaxes with increasing film thickness. The T IM of the bulk target ∼145 K goes up to ∼235 K for the ∼6 nm thin film and even for partially strain relaxed ∼75 nm thick film T IM is as high as ∼200 K. This enhancement in T IM is explained in terms of suppression of Jahn-Teller distortion of the MnO 6 octahedra by the large in-plane compressive strain. We observe a large enhancement in the low field magnetoresistance (MR) just below T IM in the films having partial strain relaxation. Thick films of 6 and 20 nm have MR ∼14% at 3 kOe that almost doubles in 35 nm film to ∼27%. Similar enhancement is also obtained in the case of the temperature coefficient of resistivity. The near doubling of low field MR is explained in terms of delocalization of weakly localized carriers around T IM by small magnetic fields

  20. Substrate-induced strain effects on Pr0.6Ca0.4MnO3 films

    International Nuclear Information System (INIS)

    Nelson, C S; Hill, J P; Gibbs, Doon; Rajeswari, M; Biswas, A; Shinde, S; Greene, R L; Venkatesan, T; Millis, A J; Yokaichiya, F; Giles, C; Casa, D; Venkataraman, C T; Gog, T

    2004-01-01

    We report the characterization of the crystal structure, low-temperature charge and orbital ordering, transport and magnetization of Pr 0.6 Ca 0.4 MnO 3 films grown on LaAlO 3 , NdGaO 3 and SrTiO 3 substrates, which provide compressive (LaAlO 3 ) and tensile (NdGaO 3 and SrTiO 3 ) strain. The films are observed to exhibit different crystallographic symmetries from the bulk material and the low-temperature ordering is found to be more robust under compressive as opposed to tensile strain. In fact, bulk-like charge and orbital ordering is not observed in the film grown on NdGaO 3 , which is the substrate that provides the least amount of measured, but tensile, strain. This result suggests the importance of the role played by the Mn-O--Mn bond angles in the formation of charge and orbital ordering at low temperatures. Finally, in the film grown on LaAlO 3 , a connection between the lattice distortion associated with orbital ordering and the magnetization is reported

  1. Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3 thin films

    Science.gov (United States)

    Ward, T. Zac; Wong, A. T.; Takamura, Yayoi; Herklotz, Andreas

    2015-03-01

    Antiferromagnets (AFM) are a promising alternative to ferromagnets (FM) in spintronic applications. The reason stems from the fact that at high data storage densities stray fields could destroy FM set states while AFMs would be relatively insensitive to this data corruption. This work presents the first ever example of antiferromagnetic La0.4Sr0.6MnO3 thin films stabilized in different strain states. Strain is found to drive different types of AFM ordering, and these variations in ordering type are shown to have a profound impact on both the magnitude and character of the materials' resistive response to magnetic field direction, or anisotropic magnetoresistance (AMR) behavior (one standard of spintronic suitability). The compressively strained film shows the highest recorded AMR response in an ohmic AFM device of 63%, while the tensile strained film shows a typical AFM AMR of 0.6%. These findings demonstrate the necessity of understanding electron ordering in AFM spintronic applications and provide a new benchmark for AMR response. This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

  2. The epitaxial growth and interfacial strain study of VO{sub 2}/MgF{sub 2} (001) films by synchrotron based grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.L. [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Chen, S. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Liu, Q.H. [Science and Technology on Electro-optical Information Security Control Laboratory, Tianjin 300300 (China); Liao, G.M.; Chen, Y.L.; Ren, H. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zou, C.W., E-mail: czou@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2016-09-05

    High quality VO{sub 2} films with different thickness were epitaxially grown on MgF{sub 2} (001) substrates by oxide molecular beam epitaxy method. The evolution of interfacial strain was investigated by synchrotron based grazing incidence X-ray diffraction. By adjusting the incidence angles, the penetration depth of X-ray in VO{sub 2} film could be controlled and the thickness-depend lattice distortion in the epitaxial VO{sub 2} film was investigated. Due to the lattice mismatching, the pronounced tensile strain was observed in ultra-thin VO{sub 2} film. As the film thickness increasing, the interfacial strain relaxed gradually and became fully relaxed for thick VO{sub 2} films. Combined with the electric transport measurement, it was revealed that the phase transition temperature of ultra-thin VO{sub 2} film decreased greatly. The effect of interfacial strain induced phase transition modulation and the intrinsic mechanism was systematically discussed. - Highlights: • We prepared high quality VO{sub 2} epitaxial films on MgF{sub 2} (001) substrates by oxide molecular beam epitaxy method. • Synchrotron radiation grazing incidence X-ray diffraction was employed to detect evolution of strain along depth profile. • Based on a classic band structure model, the mechanism of strain controlled phase transition of VO{sub 2} was discussed.

  3. Self-organized nanocrack networks: a pathway to enlarge catalytic surface area in sputtered ceramic thin films, showcased for photocatalytic TiO2

    Science.gov (United States)

    Henkel, B.; Vahl, A.; Aktas, O. C.; Strunskus, T.; Faupel, F.

    2018-01-01

    Sputter deposited photocatalytic thin films offer high adherence and mechanical stability, but typically are outperformed in their photocatalytic properties by colloidal TiO2 nanostructures, which in turn typically suffer from problematic removal. Here we report on thermally controlled nanocrack formation as a feasible and batch applicable approach to enhance the photocatalytic performance of well adhering, reactively sputtered TiO2 thin films. Networks of nanoscopic cracks were induced into tailored columnar TiO2 thin films by thermal annealing. These deep trenches are separating small bundles of TiO2 columns, adding their flanks to the overall catalytically active surface area. The variation of thin film thickness reveals a critical layer thickness for initial nanocrack network formation, which was found to be about 400 nm in case of TiO2. The columnar morphology of the as deposited TiO2 layer with weak bonds between respective columns and with strong bonds to the substrate is of crucial importance for the formation of nanocrack networks. A beneficial effect of nanocracking on the photocatalytic performance was experimentally observed. It was correlated by a simple geometric model for explaining the positive impact of the crack induced enlargement of active surface area on photocatalytic efficiency. The presented method of nanocrack network formation is principally not limited to TiO2 and is therefore seen as a promising candidate for utilizing increased surface area by controlled crack formation in ceramic thin films in general.

  4. Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films

    Science.gov (United States)

    Zarifi, M.; Kameli, P.; Ehsani, M. H.; Ahmadvand, H.; Salamati, H.

    2016-12-01

    The epitaxial strain can considerably modify the physical properties of thin films compared to the bulk. This paper reports the effects of substrate-induced strain on La0.5Ca0.5MnO3 (LCMO) thin films, grown on (100) SrTiO3 (STO) and LaAlO3 (LAO) substrates by pulsed laser deposition technique. Transport and magnetic properties were found to be strongly dependent on strain type. It is also shown that compressive (tensile) strain leads to the increase (decrease) in the magnetization of the films. Moreover, it was observed that all LCMO films deposited on both LAO and STO substrates behave as an insulator, but LCMO/LAO thin films with compressive strain have lower resistivity than LCMO/STO thin films with tensile strain. Applying magnetic field to LCMO/STO thin films with thickness of 25 and 50 nm leads to very small change in the resistivity, while the effects of magnetic field on the sample with thickness of 125 nm leads to an insulator-metal transition. For LCMO/LAO thin films, the magnetic field has a strong impact on the resistivity of samples. The results show that the magnetoresistance (MR) is enhanced by increasing film thickness for LCMO/LAO samples, due to the relatively stronger phase separation. For LCMO/STO thin films MR is drastically decreased by reduction of film thickness, which is attributed to the enhancement of the charge-orbital order (CO-O) accompanying the complex spin order (the so-called CE type). The changes of the antiferromagnetic structure from the CE to C type and the enhancement of the CE type could be attributed to the in-plane compressive and tensile strain, respectively.

  5. Ultrafast photo-induced hidden phases in strained manganite thin films

    Science.gov (United States)

    Zhang, Jingdi; McLeod, A. S.; Zhang, Gu-Feng; Stoica, Vladimir; Jin, Feng; Gu, Mingqiang; Gopalan, Venkatraman; Freeland, John W.; Wu, Wenbin; Rondinelli, James; Wen, Haidan; Basov, D. N.; Averitt, R. D.

    Correlated transition metal oxides (TMOs) are particularly sensitive to external control because of energy degeneracy in a complex energy landscape that promote a plethora of metastable states. However, it remains a grand challenge to actively control and fully explore the rich landscape of TMOs. Dynamic control with pulsed photons can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. In the past, we have demonstrated that mode-selective single-laser-pulse excitation of a strained manganite thin film La2/3Ca1/3MnO3 initiates a persistent phase transition from an emergent antiferromagnetic insulating ground state to a ferromagnetic metallic metastable state. Beyond the photo-induced insulator to metal transition, we recently discovered a new peculiar photo-induced hidden phase, identified by an experimental approach that combines ultrafast pump-probe spectroscopy, THz spectroscopy, X-ray diffraction, cryogenic near-field spectroscopy and SHG probe. This work is funded by the DOE, Office of Science, Office of Basic Energy Science under Award Numbers DE-SC0012375 and DE-SC0012592.

  6. Robust, high temperature-ceramic membranes for gas separation

    Science.gov (United States)

    Berchtold, Kathryn A.; Young, Jennifer S.

    2014-07-29

    A method of making ceramic membranes, and the ceramic membranes so formed, comprising combining a ceramic precursor with an organic or inorganic comonomer, forming the combination as a thin film on a substrate, photopolymerizing the thin film, and pyrolyzing the photopolymerized thin film.

  7. Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films

    International Nuclear Information System (INIS)

    Zarifi, M.; Kameli, P.; Ehsani, M.H.; Ahmadvand, H.; Salamati, H.

    2016-01-01

    The epitaxial strain can considerably modify the physical properties of thin films compared to the bulk. This paper reports the effects of substrate-induced strain on La 0.5 Ca 0.5 MnO 3 (LCMO) thin films, grown on (100) SrTiO 3 (STO) and LaAlO 3 (LAO) substrates by pulsed laser deposition technique. Transport and magnetic properties were found to be strongly dependent on strain type. It is also shown that compressive (tensile) strain leads to the increase (decrease) in the magnetization of the films. Moreover, it was observed that all LCMO films deposited on both LAO and STO substrates behave as an insulator, but LCMO/LAO thin films with compressive strain have lower resistivity than LCMO/STO thin films with tensile strain. Applying magnetic field to LCMO/STO thin films with thickness of 25 and 50 nm leads to very small change in the resistivity, while the effects of magnetic field on the sample with thickness of 125 nm leads to an insulator–metal transition. For LCMO/LAO thin films, the magnetic field has a strong impact on the resistivity of samples. The results show that the magnetoresistance (MR) is enhanced by increasing film thickness for LCMO/LAO samples, due to the relatively stronger phase separation. For LCMO/STO thin films MR is drastically decreased by reduction of film thickness, which is attributed to the enhancement of the charge–orbital order (CO–O) accompanying the complex spin order (the so-called CE type). The changes of the antiferromagnetic structure from the CE to C type and the enhancement of the CE type could be attributed to the in-plane compressive and tensile strain, respectively. - Highlights: • Epitaxial La 0.5 Ca 0.5 MnO 3 thin films, grown on (100) SrTiO 3 and LaAlO 3 substrates. • The compressive strain leads to the increase in the magnetization of the films. • The tensile strain leads to the decrease in the magnetization of the films. • The magnetoresistance is enhanced by increasing film thickness.

  8. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    Science.gov (United States)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav; Kim, Kwang-Je

    2018-05-08

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.

  9. Tunability of the Quantum Spin Hall Effect in Bi(110) Films: Effects of Electric Field and Strain Engineering.

    Science.gov (United States)

    Li, Sheng-Shi; Ji, Wei-Xiao; Li, Ping; Hu, Shu-Jun; Cai, Li; Zhang, Chang-Wen; Yan, Shi-Shen

    2017-06-28

    The quantum spin Hall (QSH) effect is promising for achieving dissipationless transport devices due to their robust gapless edge states inside insulating bulk gap. However, the currently discussed QSH insulators usually suffer from ultrahigh vacuum or low temperature due to the small bulk gap, which limits their practical applications. Searching for large-gap QSH insulators is highly desirable. Here, the tunable QSH state of a Bi(110) films with a black phosphorus (BP) structure, which is robust against structural deformation and electric field, is explored by first-principles calculations. It is found that the two-monolayer BP-Bi(110) film obtains a tunable large bulk gap by strain engineering and its QSH effect shows a favorable robustness within a wide range of combinations of in-plane and out-of-plane strains, although a single in-plane compression or out-of-plane extension may restrict the topological phase due to the self-doping effect. More interestingly, in view of biaxial strain, two competing physics on band topology induced by bonding-antibonding and p x,y -p z band inversions are obtained. Meanwhile, the QSH effect can be persevered under an electric field of up to 0.9 V/Å. Moreover, with appropriate in-plane strain engineering, a nontrivial topological phase in a four-monolayer BP-Bi(110) film is identified. Our findings suggest that these two-dimensional BP-Bi(110) films are ideal platforms of the QSH effect for low-power dissipation devices.

  10. Tensile strain induced changes in the optical spectra of SrTiO.sub.3./sub. epitaxial thin films

    Czech Academy of Sciences Publication Activity Database

    Dejneka, Alexandr; Tyunina, M.; Narkilahti, J.; Levoska, J.; Chvostová, Dagmar; Jastrabík, Lubomír; Trepakov, Vladimír

    2010-01-01

    Roč. 52, č. 10 (2010), 2082-2089 ISSN 1063-7834 R&D Projects: GA ČR GA202/08/1009; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : SrTiO 3 epitaxial thin films * effect of biaxial tensile strains on optical spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.727, year: 2010

  11. Effects of electric-field-induced piezoelectric strain on the electronic transport properties of La0.9Ce0.1MnO3 thin films

    International Nuclear Information System (INIS)

    Zheng, R.K.; Dong, S.N.; Wu, Y.Q.; Zhu, Q.X.; Wang, Y.; Chan, H.L.W.; Li, X.M.; Luo, H.S.; Li, X.G.

    2012-01-01

    The authors constructed multiferroic structures by growing La 0.9 Ce 0.1 MnO 3 (LCEMO) thin films on piezoelectric 0.68Pb(Mg 1/3 Nb 2/3 )O 3 –0.32PbTiO 3 (PMN-PT) single-crystal substrates. Due to the efficient elastic coupling at the interface, the electric-field-induced piezoelectric strain in PMN-PT substrates is effectively transferred to LCEMO films and thus, leads to a decrease in the resistance and an increase in the magnetoresistance of the films. Particularly, it was found that the resistance-strain coefficient [(ΔR/R) film /(Δε zz ) film ] of the LCEMO film was considerably enhanced by the application of magnetic fields, demonstrating strong coupling between the lattice and the spin degrees of freedom. (ΔR/R) film /(Δε zz ) film at 122 K was enhanced by ∼ 28.8% by a magnetic field of 1.2 T. An analysis of the overall results demonstrates that the phase separation is crucial to understand strain-mediated modulation of electronic transport properties of manganite film/PMN-PT multiferroic structures. - Highlights: ► La 0.9 Ce 0.1 Mn O3 films were epitaxially grown on piezoelectric single crystals. ► Piezoelectric strain influences the electronic transport properties of films. ► Magnetic field enhances the piezoelectric strain effect. ► Phase separation is crucial to understand the piezoelectric strain effect.

  12. Tailoring the physical properties of manganite thin films by tuning the epitaxial strain

    International Nuclear Information System (INIS)

    Zhang, P.X.; Zhang, H.; Cha, L.M.; Habermeier, H.-U.

    2003-01-01

    Through a proper choice of the mismatch between substrate and films, the physical properties of manganite thin films can be tailored We show that two types of manganite thin films of the Ruddlesden-Popper family, n=∞ and n=2, demonstrate a dramatic variation of their physical properties. It is proved that the property variation can be tuned precisely by controlling the lattice mismatch and/or the film thickness

  13. Tunable strain effect and ferroelectric field effect on the electronic transport properties of La0.5Sr0.5CoO3 thin films

    Science.gov (United States)

    Zhu, Q. X.; Wang, W.; Zhao, X. Q.; Li, X. M.; Wang, Y.; Luo, H. S.; Chan, H. L. W.; Zheng, R. K.

    2012-05-01

    Tensiled La0.5Sr0.5CoO3 (LSCO) thin films were epitaxially grown on piezoelectric 0.67Pb (Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) single-crystal substrates. Due to the epitaxial nature of the interface, the lattice strain induced by ferroelectric poling or the converse piezoelectric effect in the PMN-PT substrate is effectively transferred to the LSCO film and thus reduces the tensile strain of the film, giving rise to a decrease in the resistivity of the LSCO film. We discuss these strain effects within the framework of the spin state transition of Co3+ ions and modification of the electronic bandwidth that is relevant to the induced strain. By simultaneously measuring the strain and the resistivity, quantitative relationship between the resistivity and the strain was established for the LSCO film. Both theoretical calculation and experimental results demonstrate that the ferroelectric field effect at room temperature in the LSCO/PMN-PT field-effect transistor is minor and could be neglected. Nevertheless, with decreasing temperature, the ferroelectric field effect competes with the strain effect and plays a more and more important role in influencing the electronic transport properties of the LSCO film, which we interpreted as due to the localization of charge carriers at low temperature.

  14. Influence of tempering on mechanical strains in Mo2Si films

    International Nuclear Information System (INIS)

    Zscheile, H.D.

    1984-01-01

    Amorphous or crystalline MoSi 2 films on (111) silicon wafers, deposited by DC triode sputtering, showed compressive stress. Tensile stress was found in the same films formed by dual electron beam evaporation. By isochronous tempering in the temperature range of 300 to 1270 K the compressive stress of the sputtered films was converted into tensile stress

  15. Highly luminescent, high-indium-content InGaN film with uniform composition and full misfit-strain relaxation

    Science.gov (United States)

    Fischer, A. M.; Wei, Y. O.; Ponce, F. A.; Moseley, M.; Gunning, B.; Doolittle, W. A.

    2013-09-01

    We have studied the properties of thick InxGa1-xN films, with indium content ranging from x ˜ 0.22 to 0.67, grown by metal-modulated epitaxy. While the low indium-content films exhibit high density of stacking faults and dislocations, a significant improvement in the crystalline quality and optical properties has been observed starting at x ˜ 0.6. Surprisingly, the InxGa1-xN film with x ˜ 0.67 exhibits high luminescence intensity, low defect density, and uniform full lattice-mismatch strain relaxation. The efficient strain relaxation is shown to be due to a critical thickness close to the monolayer range. These films were grown at low temperatures (˜400 °C) to facilitate indium incorporation and with precursor modulation to enhance surface morphology and metal adlayer diffusion. These findings should contribute to the development of growth techniques for nitride semiconductors under high lattice misfit conditions.

  16. Development of thermal scanning probe microscopy for the determination of thin films thermal conductivity: application to ceramic materials for nuclear industry

    International Nuclear Information System (INIS)

    David, L.

    2006-10-01

    Since the 1980's, various thermal metrologies have been developed to understand and characterize the phenomena of transport of thermal energy at microscopic and submicroscopic scales. Thermal Scanning Probe Microscopy (SThM) is promising. Based on the analysis of the thermal interaction between an heated probe and a sample, it permits to probe the matter at the level of micrometric size in volumes. Performed in the framework of the development of this technique, this work more particularly relates to the study of thin films thermal conductivity. We propose a new modelling of the prediction of measurement with SThM. This model allows not only the calibration of the method for the measurement of bulk material thermal conductivity but also to specify and to better describe the probe - sample thermal coupling and to estimate, from its inversion, thin films thermal conductivity. This new approach of measurement has allowed the determination of the thermal conductivity of micrometric and sub-micrometric thicknesses of meso-porous silicon thin film in particular. Our estimates for the micrometric thicknesses are in agreement with those obtained by the use of Raman spectrometry. For the lower thicknesses of film, we give new data. Our model has, moreover, allowed a better definition of the in-depth resolution of the apparatus. This one is strongly linked to the sensitivity of SThM and strongly depends on the probe-sample thermal coupling area and on the geometry of the probe used. We also developed the technique by the vacuum setting of SThM. Our first results under this environment of measurement are encouraging and validate the description of the coupling used in our model. Our method was applied to the study of ceramics (SiC, TiN, TiC and ZrC) under consideration in the composition of future nuclear fuels. Because of the limitations of SThM in terms of sensitivity to thermal conductivity and in-depth resolution, measurements were also undertaken with a modulated thermo

  17. DC-magnetron sputtering of ZnO:Al films on (00.1)Al2O3 substrates from slip-casting sintered ceramic targets

    International Nuclear Information System (INIS)

    Miccoli, I.; Spampinato, R.; Marzo, F.; Prete, P.; Lovergine, N.

    2014-01-01

    Highlights: • ZnO:Al was DC-sputtered on sapphire >350 °C by slip-casting sintered AZO target. • Films are highly (00.1)-oriented, smooth and transparent in the NIR–visible range. • Films growth rate decreases with temperature, while their grain size increases. • A high temperature reduction for sticking coefficients of impinging species is proved. • We prove that Thornton model does not apply to high-temperature DC-sputtered ZnO. - Abstract: High (>350 °C) temperature DC-sputtering deposition of ZnO:Al thin films onto single-crystal (00.1) oriented Al 2 O 3 (sapphire) substrates is reported, using a ultrahigh-density, low-resistivity and low-cost composite ceramic target produced by slip-casting (pressureless) sintering of ZnO–Al 2 O 3 (AZO) powders. The original combination of high-angle θ–2θ (Bragg–Brentano geometry) X-ray diffraction with low angle θ–2θ X-ray reflectivity (XRR) techniques allows us to define the AZO target composition and investigate the structural properties and surface/interface roughness of as-sputtered ZnO:Al films; besides, the growth dynamics of ZnO:Al is unambiguously determined. The target turned out composed of the sole wurtzite ZnO and spinel ZnAl 2 O 4 phases. X-ray diffraction analyses revealed highly (00.1)-oriented (epitaxial) ZnO:Al films, the material mean crystallite size being in the 13–20 nm range and increasing with temperature between 350 °C and 450 °C, while the film growth rate (determined via XRR measurements) decreases appreciably. XRR spectra also allowed to determine rms surface roughness <1 nm for present films and showed ZnO:Al density changes by only a few percent between 350 °C and 450 °C. The latter result disproves the often-adopted Thornton model for the description of the sputter-grown ZnO films and instead points out toward a reduction of the sticking coefficients of impinging species, as the main origin of film growth rate and grain size dependence with temperature. Zn

  18. Low-field magnetoresistance anisotropy in strained ultrathin Pr0.67Sr0.33MnO3 films

    International Nuclear Information System (INIS)

    Wang, H.S.; Li, Q.

    1999-01-01

    The authors have studied the anisotropic low-field magnetoresistance (LFMR) in ultrathin Pr 0.67 sr 0.33 MnO 3 (PSMO) films epitaxially grown on LaAlO 3 (LAO), STiO 3 (STO), and NdGaO 3 (NGO) substrates which impose compressive, tensile, and nearly-zero strains in the films. The compressively-strained films show a very large negative LFMR in a perpendicular magnetic field and a much smaller MR in a parallel field, while the tensile-strain films show positive LFMR in a perpendicular field and negative MR in a parallel field. The results are interpreted based on the strain-induced magnetic anisotropy

  19. Structural and electrical characterization of La{sub 0.72}Ca{sub 0.28}MnO{sub 3} ceramic and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ma Ji [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Theingi, Mya [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Department of Chemistry, University of Yangon, Yangon 11181 (Myanmar); Zhang Hui; Ding Xuan [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Chen Qingming, E-mail: chqm99@yahoo.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer La{sub 0.72}Ca{sub 0.28}MnO{sub 3} films were prepared on flat and 15 Degree-Sign vicinal cut LaAlO{sub 3} substrate by pulsed laser deposition method. Black-Right-Pointing-Pointer The target used was fabricated with powders synthesized through sol-gel process. Black-Right-Pointing-Pointer Rocking curve and atomic force microscope images demonstrate the high crystalline quality. Black-Right-Pointing-Pointer The film deposited on tilted substrate shows a more uniform grain size. Black-Right-Pointing-Pointer The film deposited on tilted substrate shows a larger temperature coefficient of resistance value (11.3%). - Abstract: La{sub 1-x}Ca{sub x}MnO{sub 3} bulk ceramic with Ca content of 0.28 was sintered from nano-powders synthesized by sol-gel method. Epitaxial thin films of La{sub 0.72}Ca{sub 0.28}MnO{sub 3} have been prepared on both untilted and 15 Degree-Sign vicinal cut LaAlO{sub 3} (0 0 1) substrates by pulsed laser deposition technique. The structure and surface morphology of LCMO samples (powders, target and films) were investigated by X-ray diffraction, scanning electron microscope and atom force microscope. The temperature dependence of the resistance was also studied. Large temperature coefficient of resistance value of 11.3% at 234.1 K was obtained for the film grown on titled substrate.

  20. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    observations on the fracture surface using an optical microscope and SEM. 4 II. Background 2.1 Ceramics Ceramics are inorganic and nonmetallic... The original uses for ceramic were primarily decorative, until more utilitarian purposes were discovered. Pottery was developed around 9,000...OF THREE OXIDE/OXIDE CERAMIC MATRIX COMPOSITES THESIS Christopher J. Hull, Captain, USAF AFIT-ENY-MS-15-M-228 DEPARTMENT OF THE AIR FORCE

  1. Tuning electro-optic susceptibity via strain engineering in artificial PZT multilayer films for high-performance broadband modulator

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Li, Hongling; Chen, Bensong; Jing, Lin; Tay, Roland Ying Jie; Lin, Jinjun; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-12-01

    A series of Pb(Zr1-xTix)O3 multilayer films alternatively stacked by Pb(Zr0.52Ti0.48)O3 and Pb(Zr0.35Ti0.65)O3 layers have been deposited on corning glass by magnetron sputtering. The films demonstrate pure perovskite structure and good crystallinity. A large tetragonality (c/a) of ∼1.061 and a shift of ∼0.08 eV for optical bandgap were investigated at layer engineered films. In addition, these samples exhibited a wild tunable electro-optic behavior from tens to ∼250.2 pm/V, as well as fast switching time of down to a few microseconds. The giant EO coefficient was attribute the strain-polarization coupling effect and also comparable to that of epitaxial (001) single crystal PZT thin films. The combination of high transparency, large EO effect, fast switching time, and huge phase transition temperature in PZT-based thin films show the potential on electro-optics from laser to information telecommunication.

  2. Anomalous aging and strain induced time dependent phenomena in ultra-thin La0.65Ca0.35MnO3 films

    International Nuclear Information System (INIS)

    Egilmez, M.; Saber, M.M.; Abdelhadi, M.; Chow, K.H.; Jung, J.

    2011-01-01

    We have shown that ultra-thin La 0.65 Ca 0.35 MnO 3 films exhibit strong metastable behavior. The resistance can vary with time significantly, suggesting that a state of dynamic phase separation exists whereby one phase grows at the expense of another. Physical properties associated with the metastable behavior have been investigated on the films grown on different substrates. We have found that ultra-thin films age much faster than the thicker counterparts and more interestingly the metastability in the resistance of these films enhanced when aged. -- Highlights: → Ultra-thin La 0.67 Ca 0.33 MnO 3 films exhibit metastable behavior. → Physical properties associated with metastable behavior have been investigated. → The metastability in resistance of the films enhanced when films are aged. → Relaxation rates were used as a relative measure the metastability. → The metastable behavior is sensitive to the strain state of the film.

  3. Strain Influence on the Oxygen Electrocatalysis of the (100)-Oriented Epitaxial La 2 NiO 4+δ Thin Films at Elevated Temperatures

    KAUST Repository

    Lee, Dongkyu; Grimaud, Alexis; Crumlin, Ethan J.; Mezghani, Khaled; Habib, Mohamed A.; Feng, Zhenxing; Hong, Wesley T.; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2013-01-01

    Ruddlesden-Popper materials such as La2NiO4+δ (LNO) have high activities for surface oxygen exchange kinetics promising for solid oxide fuel cells and oxygen permeation membranes. Here we report the synthesis of the (100)tetragonal-oriented epitaxial LNO thin films prepared by pulsed laser deposition. The surface oxygen exchange kinetics determined from electrochemical impedance spectroscopy (EIS) were found to increase with decreasing film thickness from 390 to 14 nm. No significant change of the surface chemistry with different film thicknesses was observed using ex situ auger electron spectroscopy (AES). Increasing volumetric strains in the LNO films at elevated temperatures determined from in situ high-resolution X-ray diffraction (HRXRD) were correlated with increasing surface exchange kinetics and decreasing film thickness. Volumetric strains may alter the formation energy of interstitial oxygen and influence on the surface oxygen exchange kinetics of the LNO films. © 2013 American Chemical Society.

  4. Strain Influence on the Oxygen Electrocatalysis of the (100)-Oriented Epitaxial La 2 NiO 4+δ Thin Films at Elevated Temperatures

    KAUST Repository

    Lee, Dongkyu

    2013-09-19

    Ruddlesden-Popper materials such as La2NiO4+δ (LNO) have high activities for surface oxygen exchange kinetics promising for solid oxide fuel cells and oxygen permeation membranes. Here we report the synthesis of the (100)tetragonal-oriented epitaxial LNO thin films prepared by pulsed laser deposition. The surface oxygen exchange kinetics determined from electrochemical impedance spectroscopy (EIS) were found to increase with decreasing film thickness from 390 to 14 nm. No significant change of the surface chemistry with different film thicknesses was observed using ex situ auger electron spectroscopy (AES). Increasing volumetric strains in the LNO films at elevated temperatures determined from in situ high-resolution X-ray diffraction (HRXRD) were correlated with increasing surface exchange kinetics and decreasing film thickness. Volumetric strains may alter the formation energy of interstitial oxygen and influence on the surface oxygen exchange kinetics of the LNO films. © 2013 American Chemical Society.

  5. Temperature dependent piezoelectric response and strain-electric-field hysteresis of rare-earth modified bismuth ferrite ceramics

    DEFF Research Database (Denmark)

    Walker, Julian; Ursic, Hana; Bencan, Andreja

    2016-01-01

    with varying amounts of polar rhombohedral R3c and intermediate antipolar orthorhombic Pbam phases as a function of the RE species. During electric-field cycling at electric-fields with amplitudes of 160 kV cm-1, peak-to-peak strains of 0.23-0.27% are reached for all three compositions. However...

  6. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  7. Wet-etching induced abnormal phase transition in highly strained VO{sub 2}/TiO{sub 2} (001) epitaxial film

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hui; Chen, Shi; Chen, Yuliang; Luo, Zhenlin; Zhou, Jingtian; Zheng, Xusheng; Wang, Liangxin; Li, Bowen; Zou, Chongwen [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei (China)

    2018-01-15

    The metal-insulator transition (MIT) behavior in vanadium dioxide (VO{sub 2}) epitaxial film is known to be dramatically affected by interfacial stress due to lattice mismatching. For the VO{sub 2}/TiO{sub 2} (001) system, there exists a considerable strain in ultra-thin VO{sub 2} thin film, which shows a lower T{sub c} value close to room temperature. As the VO{sub 2} epitaxial film grows thicker layer-by-layer along the ''bottom-up'' route, the strain will be gradually relaxed and T{sub c} will increase as well, until the MIT behavior becomes the same as that of bulk material with a T{sub c} of about 68 C. Whereas, in this study, we find that the VO{sub 2}/TiO{sub 2} (001) film thinned by ''top-down'' wet-etching shows an abnormal variation in MIT, which accompanies the potential relaxation of film strain with thinning. It is observed that even when the strained VO{sub 2} film is etched up to several nanometers, the MIT persists, and T{sub c} will increase up to that of bulk material, showing the trend to a stress-free ultra-thin VO{sub 2} film. The current findings demonstrate a facial chemical-etching way to change interfacial strain and modulate the phase transition behavior of ultrathinVO{sub 2} films, which can also be applied to other strained oxide films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals.

    Science.gov (United States)

    Yeo, Seon Ju; Tu, Fuquan; Kim, Seung-hyun; Yi, Gi-Ra; Yoo, Pil J; Lee, Daeyeon

    2015-02-28

    Colloidal photonic crystals (CPCs) provide a convenient way to generate structural colour with high stability against degradation under environmental factors. For a number of applications including flexible electronic and energy devices, it is important to generate flexible structural colour that maintains its colour regardless of the angle of observation and the extent of mechanical deformation. However, it is challenging to simultaneously achieve these goals because anisotropy in typical CPC structures (e.g., CPC films) tends to lead to angle-dependent photonic properties and also changes in the lattice constant due to mechanical deformation lead to changes in the photonic properties of CPCs. To overcome these challenges, we present a means of fabricating large-area free-standing films of CPC structures that exhibit angle- and strain-independent photonic characteristics. First, monodisperse double emulsions encapsulating colloidal crystal arrays are prepared using a microfluidic device. By inducing crystallization of highly charged polystyrene particles in the core of double emulsions using osmotic annealing, we generate angle independent colloidal photonic crystal (CPC) supraparticles. Moreover, the shape and crystallinity of the CPC supraparticles can be tuned by changing the concentration of salt in the solution used for osmotic annealing. Subsequently, an array of CPC supraparticles is embedded inside an elastomeric matrix to form a flexible free-standing film, which exhibits structural colours that are independent of viewing angles and externally applied strain.

  9. Interface strain coupling and its impact on the transport and magnetic properties of LaMnO3 thin films grown on ferroelectrically active substrates

    International Nuclear Information System (INIS)

    Zheng, R.K.; Wang, Y.; Habermeier, H.-U.; Chan, H.L.W.; Li, X.M.; Luo, H.S.

    2012-01-01

    Highlights: ► Strong interface strain coupling in LaMnO 3 /PMN-PT heterostructure. ► In situ dynamic turning of the strain and lattice distortion of LaMnO 3 films. ► Coupling of electrons to lattice strain is crucial to understand the strain effect. - Abstract: Thin films of LaMnO 3 have been epitaxially grown on 〈0 0 1〉 oriented ferroelectric 0.67Pb(Mg 1/3 Nb 2/3 )O 3 -0.33PbTiO 3 (PMN-PT) single-crystal substrates. The poling of the PMN-PT crystal causes a decrease in the resistance and an increase in the magnetization and magnetoresistance of the LaMnO 3 film. In situ X-ray diffraction measurements revealed that these changes arise from the poling-induced strain in the PMN-PT substrate, which reduces the in-plane tensile strain and the Jahn–Teller (JT) distortion of MnO 6 octahedra of the LaMnO 3 film. Moreover, it was found that the transport properties of LaMnO 3 films are much more sensitive to the poling-induced strain than that of CaMnO 3 films for which there is no JT distortion, implying that the electron–lattice coupling is one of the most important ingredients in understanding the strain effect in LaMnO 3 films.

  10. Islanding and strain-induced shifts in the infrared absorption peaks of cubic boron nitride thin films

    International Nuclear Information System (INIS)

    Fahy, S.; Taylor, C.A. II and; Clarke, R.

    1997-01-01

    Experimental and theoretical investigations of the infrared-active, polarization-dependent phonon frequencies of cubic boron nitride films have been performed in light of recent claims that large frequency shifts during initial nucleation are the result of strain caused by highly nonequilibrium growth conditions. We show that the formation of small, separate grains of cubic boron nitride during the initial growth leads to a frequency shift in the infrared-active transverse-optic mode, polarized normal to the substrate, which is opposite in sign and twice the magnitude of the shift for modes polarized parallel to the substrate. In contrast, film strain causes a frequency shift in the mode polarized normal to the substrate, which is much smaller in magnitude than the frequency shift for modes polarized parallel to the substrate. Normal and off-normal incidence absorption measurements, performed at different stages of nucleation and growth, show that large frequency shifts in the transverse-optic-phonon modes during the initial stage of growth are not compatible with the expected effects of strain, but are in large part due to nucleation of small isolated cubic BN grains which coalesce to form a uniform layer. Numerical results from a simple model of island nucleation and growth are in good agreement with experimental results. copyright 1997 The American Physical Society

  11. Probing localized strain in solution-derived YB a2C u3O7 -δ nanocomposite thin films

    Science.gov (United States)

    Guzman, Roger; Gazquez, Jaume; Mundet, Bernat; Coll, Mariona; Obradors, Xavier; Puig, Teresa

    2017-07-01

    Enhanced pinning due to nanoscale strain is unique to the high-Tc cuprates, where pairing may be modified with lattice distortion. Therefore a comprehensive understanding of the defect landscape is required for a broad range of applications. However, determining the type and distribution of defects and their associated strain constitutes a critical task, and for this aim, real-space techniques for atomic resolution characterization are necessary. Here, we use scanning transmission electron microscopy (STEM) to study the atomic structure of individual defects of solution-derived YB a2C u3O7 (YBCO) nanocomposites, where the inclusion of incoherent secondary phase nanoparticles within the YBCO matrix dramatically increases the density of Y1B a2C u4O8 (Y124) intergrowths, the commonest defect in YBCO thin films. The formation of the Y124 is found to trigger a concatenation of strain-derived interactions with other defects and the concomitant nucleation of intrinsic defects, which weave a web of randomly distributed nanostrained regions that profoundly transform the vortex-pinning landscape of the YBCO nanocomposite thin films.

  12. Chemical deposition of La0.7Ca0.3MnO3±δ films on ceramic substrates

    Directory of Open Access Journals (Sweden)

    Cássio Morilla-Santos

    2011-01-01

    Full Text Available In this paper, it is reported the growth of La0.7Ca0.3MnO3±δ films using a chemical solution deposition method (CSD by the spin-coating technique. Such solution was prepared through a route based on modified polymeric precursor method. Spin-coating deposition on different ceramic substrates was performed and analyzed by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. The magnetic response of the prepared specimens was studied using a SQUID magnetometer. The obtained results indicated uniform deposition on SrTiO3 and LaAlO3 substrates with similar characteristics. Furthermore, significant differences were detected in the Mn3+/Mn4+ valence ratio and a corresponding diverse magnetic response was observed. The sample prepared on SrTiO3 and LaAlO3 presented a critical temperature around 270 K as expected.

  13. High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron x-ray diffraction

    Science.gov (United States)

    Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Spolenak, R.; Brown, W. L.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2002-05-01

    The availability of high brilliance synchrotron sources, coupled with recent progress in achromatic focusing optics and large area two-dimensional detector technology, has allowed us to develop an x-ray synchrotron technique that is capable of mapping orientation and strain/stress in polycrystalline thin films with submicron spatial resolution. To demonstrate the capabilities of this instrument, we have employed it to study the microstructure of aluminum thin film structures at the granular and subgranular levels. Due to the relatively low absorption of x-rays in materials, this technique can be used to study passivated samples, an important advantage over most electron probes given the very different mechanical behavior of buried and unpassivated materials.

  14. Misfit strain relaxation in (Ba0.60Sr0.40)TiO3 epitaxial thin films on orthorhombic NdGaO3 substrates

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2006-07-01

    Strain relaxation in (Ba0.60Sr0.40)TiO3 (BST) thin films on ⟨110⟩ orthorhombic NdGaO3 substrates is investigated by x-ray diffractometry. Pole figure analysis indicates a [010]BST∥[1¯10]NGO and [001]BST∥[001]NGO in-plane and [100]BST∥[100]NGO out-of-plane epitaxial relationship. The residual strains are relaxed at h ˜200nm, and for h >600nm, films are essentially strain free. Two independent dislocations mechanisms operate to relieve the anisotropic misfit strains along the principal directions. The critical thickness for misfit dislocation formation along [001] and [010] are 11 and 15nm, respectively. Stress analysis indicates deviation from linear elasticity for h <200. The films with 10

  15. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic TbMnO3 probed by X-ray diffractometry and micro-Raman spectroscopy

    Science.gov (United States)

    Hu, Y.; Stender, D.; Medarde, M.; Lippert, T.; Wokaun, A.; Schneider, C. W.

    2013-08-01

    A detailed structural XRD analysis of (1 1 0)-oriented TbMnO3 thin films grown on (1 1 0)-YAlO3 substrates shows the co-existence of a strained and relaxed "sublayer" within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 -1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 -1 0] and [0 0 1] directions.

  16. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic TbMnO{sub 3} probed by X-ray diffractometry and micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.; Stender, D. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Medarde, M. [Paul Scherrer Institute, Laboratory for Developments and Methods, 5232 Villigen-PSI (Switzerland); Lippert, T., E-mail: thomas.lippert@psi.ch [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland); Wokaun, A.; Schneider, C.W. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen-PSI (Switzerland)

    2013-08-01

    A detailed structural XRD analysis of (1 1 0)-oriented TbMnO{sub 3} thin films grown on (1 1 0)-YAlO{sub 3} substrates shows the co-existence of a strained and relaxed “sublayer” within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 −1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 −1 0] and [0 0 1] directions.

  17. On the Novel Biaxial Strain Relaxation Mechanism in Epitaxial Composition Graded La1−xSrxMnO3 Thin Film Synthesized by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Yishu Wang

    2015-11-01

    Full Text Available We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 and La0.67Sr0.33MnO3 thin films were deposited by radio frequency (RF magnetron sputtering. The crystalline and epitaxy of all films were first studied by symmetric θ–2θ X-ray diffraction (XRD and low angle XRD experiments. Detailed microstructural characterization across the film thickness was conducted by high-resolution transmission electron microscopy and electron diffraction. Four compositional gradient domains were observed in the La1−xSrxMnO3 film ranging from LaMnO3 rich to La0.67Sr0.33MnO3 at the surface. A continuous reduction in the lattice parameter was observed accompanied by a significant reduction in the out-of-plane strain in the film. Fabrication of the composition gradient La1−xSrxMnO3 thin film was found to be a powerful method to relieve biaxial strain under critical thickness. Besides, the coexistence of domains with a composition variance is opening up various new possibilities of designing new nanoscale structures with unusual cross coupled properties.

  18. Ferroelectric properties of Pb(Zr,Ti)O3 films under ion-beam induced strain

    Science.gov (United States)

    Lee, Jung-Kun; Nastasi, Michael

    2012-11-01

    The influence of an ion-beam induced biaxial stress on the ferroelectric and dielectric properties of Pb(Zr,Ti)O3 (PZT) films is investigated using the ion beam process as a novel approach to control external stress. Tensile stress is observed to decrease the polarization, permittivity, and ferroelectric fatigue resistance of the PZT films whose structure is monoclinic. However, a compressive stress increases all of them in monoclinic PZT films. The dependence of the permittivity on stress is found not to follow the phenomenological theory relating external forces to intrinsic properties of ferroelectric materials. Changes in the ferroelectric and dielectric properties indicate that the application of a biaxial stress modulates both extrinsic and intrinsic properties of PZT films. Different degrees of dielectric non-linearity suggests the density and mobility of non-180o domain walls, and the domain switching can be controlled by an applied biaxial stress and thereby influence the ferroelectric and dielectric properties.

  19. Wearable strain sensors based on thin graphite films for human activity monitoring

    Science.gov (United States)

    Saito, Takanari; Kihara, Yusuke; Shirakashi, Jun-ichi

    2017-12-01

    Wearable health-monitoring devices have attracted increasing attention in disease diagnosis and health assessment. In many cases, such devices have been prepared by complicated multistep procedures which result in the waste of materials and require expensive facilities. In this study, we focused on pyrolytic graphite sheet (PGS), which is a low-cost, simple, and flexible material, used as wearable devices for monitoring human activity. We investigated wearable devices based on PGSs for the observation of elbow and finger motions. The thin graphite films were fabricated by cutting small films from PGSs. The wearable devices were then made from the thin graphite films assembled on a commercially available rubber glove. The human motions could be observed using the wearable devices. Therefore, these results suggested that the wearable devices based on thin graphite films may broaden their application in cost-effective wearable electronics for the observation of human activity.

  20. Electric field induced lattice strain in pseudocubic Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-modified BaTiO{sub 3}-BiFeO{sub 3} piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Ichiro, E-mail: ifujii@rins.ryukoku.ac.jp [Department of Materials Chemistry, Ryukoku University, Otsu, Shiga 520-2194 (Japan); Iizuka, Ryo; Ueno, Shintaro; Nakashima, Kouichi; Wada, Satoshi [Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510 (Japan); Nakahira, Yuki; Sunada, Yuya; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro [Department of Physical Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8526 (Japan)

    2016-04-25

    Contributions to the piezoelectric response in pseudocubic 0.3BaTiO{sub 3}-0.1Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-0.6BiFeO{sub 3} ceramics were investigated by synchrotron X-ray diffraction under electric fields. All of the lattice strain determined from the 110, 111, and 200 pseudocubic diffraction peaks showed similar lattice strain hysteresis that was comparable to the bulk butterfly-like strain curve. It was suggested that the hysteresis of the lattice strain and the lack of anisotropy were related to the complex domain structure and the phase boundary composition.

  1. Hierarchy and scaling behavior of multi-rank domain patterns in ferroelectric K0.9Na0.1NbO3 strained films

    Science.gov (United States)

    Braun, Dorothee; Schmidbauer, Martin; Hanke, Michael; Schwarzkopf, Jutta

    2018-01-01

    The formation process of a ferroelectric multi-rank domain pattern in the thickness range of 7-52 nm is investigated for monoclinic K0.9Na0.1NbO3 strained epitaxial films on (110) NdScO3 substrates. Although the elastic strain energy density is degenerated for two pseudocubic orientations, a distinctive hierarchy of domain evolution is observed with exclusive in-plane a1a2 domains for very thin films and the retarded onset of a ferroelectric MC phase at larger film thickness. This is accompanied by a thickness dependent transformation from stripe domains to a herringbone pattern and, eventually, for the thickest film, to a checkerboard-like structure. These transformations in the domain arrangement and width are correlated to energetic aspects as depolarization field and anisotropic strain relaxation in the film. While for the MC domains plastic strain relaxation is throughout observed, the a1a2 domains show a two-step strain relaxation mechanism starting with an in-plane elastic shearing, which is followed by plastic lattice relaxation. Our results highlight a pathway for engineering and patterning of periodic ferroelectric domain structures.

  2. Electromechanical behavior of polyaniline/poly (vinyl alcohol) blend films under static, dynamic and time-dependent strains

    International Nuclear Information System (INIS)

    Akhilesan, S; Lakshmana Rao, C; Varughese, S

    2014-01-01

    We report on the experimentally observed electrical conductivity enhancement in polyaniline/poly (vinyl alcohol) blend films under uniaxial tensile loading. Polyaniline (PANI) is an intrinsically conducting polymer, which does not form stretchable free-standing films easily and hence its electromechanical characterization is a challenge. Blending of PANI with other insulating polymers is a good choice to overcome the processability problem. We report the electromechanical response of solution blended and HCl doped PANI/PVA blends subjected to uniaxial, static, dynamic and time-dependent tensile loading. The demonstrated viscoelastic and morphological contributions of the component polymers to the electrical conductivity behavior in these blends could lead to interesting applications in strain sensors and flexible electronics. The reversibility of the electromechanical response under dynamic strain is found to increase in blends with higher PANI content. Time-dependent conductivity studies during mechanical stress relaxation reveal that variations in the micro-domain ordering and the relative relaxation rate of the individual polymer phases can give rise to interesting electrical conductivity changes in PANI blends. From morphological and electrical conductivity studies, we show that PANI undergoes primary and secondary agglomeration behavior in these blends that contributes to the changes in conductivity behavior during the deformation. A 3D variable range hopping (VRH) process, which uses a deformable core and shell concept based on blend morphology analysis, is used to explain the experimentally observed electromechanical behavior. (papers)

  3. Tensile Strain Effects on the Magneto-transport in Calcium Manganese Oxide Thin Films: Comparison with its Hole-doped Counterpart

    Science.gov (United States)

    Lawson, Bridget; Neubauer, Samuel; Chaudhry, Adeel; Hart, Cacie; Ferrone, Natalie; Houston, David; Yong, Grace; Kolagani, Rajeswari

    Magnetoresistance properties of the epitaxial thin films of doped rare earth manganites are known to be influenced by the effect of bi-axial strain induced by lattice mismatch with the substrate. In hole-doped manganites, the effect of both compressive and tensile strain is qualitatively consistent with the expected changes in unit cell symmetry from cubic to tetragonal, leading to Jahn-Teller strain fields that affect the energy levels of Mn3 + energy levels. Recent work in our laboratory on CaMnO3 thin films has pointed out that tetragonal distortions introduced by tensile lattice mismatch strain may also have the effect of modulating the oxygen content of the films in agreement with theoretical models that propose such coupling between strain and oxygen content. Our research focuses on comparing the magneto-transport properties of hole-doped manganite LaCaMnO3 thin films with that of its electron doped counter parts, in an effort to delineate the effects of oxygen stoichiometry changes on magneto-transport from the effects of Jahn-Teller type strain. Towson University Office of Undergraduate Research, Fisher Endowment Grant and Undergraduate Research Grant from the Fisher College of Science and Mathematics, Seed Funding Grant from the School of Emerging technologies and the NSF Grant ECCS 112856.

  4. Electricity generation coupled with wastewater treatment using a microbial fuel cell composed of a modified cathode with a ceramic membrane and cellulose acetate film.

    Science.gov (United States)

    Seo, Ha Na; Lee, Woo Jin; Hwang, Tae Sik; Park, Doo Hyun

    2009-09-01

    A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99 degrees of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99 degrees similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

  5. Atomic structures of Ruddlesden-Popper faults in LaCoO3/SrRuO3 multilayer thin films induced by epitaxial strain

    Science.gov (United States)

    Wang, Wei; Zhang, Hui; Shen, Xi; Guan, Xiangxiang; Yao, Yuan; Wang, Yanguo; Sun, Jirong; Yu, Richeng

    2018-05-01

    In this paper, scanning transmission electron microscopy is used to study the microstructures of the defects in LaCoO3/SrRuO3 multilayer films grown on the SrTiO3 substrates, and these films have different thickness of SrRuO3 (SRO) layers. Several types of Ruddlesden-Popper (R.P.) faults at an atomic level are found, and these chemical composition fluctuations in the growth process are induced by strain fields originating from the film-film and film-substrate lattice mismatches. Furthermore, we propose four types of structural models based on the atomic arrangements of the R.P. planar faults, which severely affect the functional properties of the films.

  6. UV-Photoreflectance and Raman Characterization of Strain Relaxation in Si on Silicon-Germanium Films

    International Nuclear Information System (INIS)

    Current, Michael; Chism, Will; Yoo, Woo Sik; Vartanian, Victor

    2011-01-01

    Photoreflectance (PR), using a uv (374 nm) diode laser probe beam, and Raman spectroscopy, using a multi-wavelength Ar + laser coupled to a high-resolution multi-wavelength spectrometer, were used to characterize the strain relaxation of Si top layers grown on a graded and relaxed SiGe buffer stack with a final Ge concentration of 20%. The Si top layer thicknesses ranged from 1.6 to 18 nm. Considerable radial variation in the strain relaxation was seen in all sampled wafers, highlighting the need for rapid, local strain characterization. Strong correlation between shift in the Si layer dielectric response, measured by uv-PR, and the Si top layer strain, measured by Raman, is reported.

  7. Strain Distribution of Au and Ag Nanoparticles Embedded in Al2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Honghua Huang

    2014-01-01

    Full Text Available Au and Ag nanoparticles embedded in amorphous Al2O3 matrix are fabricated by the pulsed laser deposition (PLD method and rapid thermal annealing (RTA technique, which are confirmed by the experimental high-resolution transmission electron microscope (HRTEM results, respectively. The strain distribution of Au and Ag nanoparticles embedded in the Al2O3 matrix is investigated by the finite-element (FE calculations. The simulation results clearly indicate that both the Au and Ag nanoparticles incur compressive strain by the Al2O3 matrix. However, the compressive strain existing on the Au nanoparticle is much weaker than that on the Ag nanoparticle. This phenomenon can be attributed to the reason that Young’s modulus of Au is larger than that of Ag. This different strain distribution of Au and Ag nanoparticles in the same host matrix may have a significant influence on the technological potential applications of the Au-Ag alloy nanoparticles.

  8. Preparation and Characterization of PbO-SrO-Na2O-Nb2O5-SiO2 Glass Ceramics Thin Film for High-Energy Storage Application

    Science.gov (United States)

    Tan, Feihu; Zhang, Qingmeng; Zhao, Hongbin; Wei, Feng; Du, Jun

    2018-03-01

    PbO-SrO-Na2O-Nb2O5-SiO2 (PSNNS) glass ceramic thin films were prepared by pulsed laser deposition technology on heavily doped silicon substrates. The influence of annealing temperatures on microstructures, dielectric properties and energy storage performances of the as-prepared films were investigated in detail. X-ray diffraction studies indicate that Pb2Nb2O7 crystallizes at 800°C and disappears at 900°C, while NaNbO3 and PbNb2O6 are formed at the higher temperature of 900°C. The dielectric properties of the glass ceramics thin films have a strong dependence on the phase assemblages that are developed during heat treatment. The maximum dielectric constant value of 171 was obtained for the film annealed at 800°C, owing to the high electric breakdown field strength, The energy storage densities of the PSNNS films annealed at 800°C were as large as 36.9 J/cm3, These results suggest that PSNNS thin films are promising for energy storage applications.

  9. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    International Nuclear Information System (INIS)

    Zhu, X. H.; Defaye, E.; Aied, M.; Guigues, B.; Dubarry, C.

    2009-01-01

    Dielectric properties of Ba 0.7 Sr 0.3 TiO 3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  10. Thermal strain-induced dielectric anisotropy in Ba0.7Sr0.3TiO3 thin films grown on silicon-based substrates

    Science.gov (United States)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-07-01

    Dielectric properties of Ba0.7Sr0.3TiO3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).

  11. Planar Hall effect and magnetic anisotropy in epitaxially strained chromium dioxide thin films

    NARCIS (Netherlands)

    Goennenwein, S.T.B.; Keizer, R.S.; Schink, S.W.; Van Dijk, I.; Klapwijk, T.M.; Miao, G.X.; Xiao, G.; Gupta, A.

    2007-01-01

    We have measured the in-plane anisotropic magnetoresistance of 100?nm thick CrO2 thin films at liquid He temperatures. In low magnetic fields H, both the longitudinal and the transverse (planar Hall) resistance show abrupt switches, which characteristically depend on the orientation of H. All the

  12. Heteroepitaxial strain in alkali halide thin films: KCl on NaCl

    DEFF Research Database (Denmark)

    Baker, J.; Lindgård, Per-Anker

    1999-01-01

    We have pet-formed Monte Carlo simulations of the properties of a NaCl (001) surface covered by full or partial layers of KCl, for coverages up to 5 monolayers (ML). A wide variety of structures of the film is found. For integer ML coverages we find the continuous, so-called floating mode rumple ...

  13. Optical investigation of strain in Si-doped GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Paramo, J.; Calleja, J. M.; Sanchez-Garcia, M. A.; Calleja, E.

    2001-06-25

    The effects of Si doping on the growth mode and residual strain of GaN layers grown on Si(111) substrates by plasma-assisted molecular beam epitaxy are studied by Raman scattering and photoluminescence. As the Si concentration increases a progressive decrease of the high-energy E{sub 2} mode frequency is observed, together with a redshift of the excitonic emission. Both effects indicate an enhancement of the biaxial tensile strain of thermal origin for increasing doping level, which is confirmed by x-ray diffraction measurements. Beyond Si concentrations of 5{times}10{sup 18}cm{sup {minus}3} both the phonon frequency and the exciton emission energy increase again. This change indicates a partial strain relaxation due to a change in the growth mode. {copyright} 2001 American Institute of Physics.

  14. Optical investigation of strain in Si-doped GaN films

    International Nuclear Information System (INIS)

    Sanchez-Paramo, J.; Calleja, J. M.; Sanchez-Garcia, M. A.; Calleja, E.

    2001-01-01

    The effects of Si doping on the growth mode and residual strain of GaN layers grown on Si(111) substrates by plasma-assisted molecular beam epitaxy are studied by Raman scattering and photoluminescence. As the Si concentration increases a progressive decrease of the high-energy E 2 mode frequency is observed, together with a redshift of the excitonic emission. Both effects indicate an enhancement of the biaxial tensile strain of thermal origin for increasing doping level, which is confirmed by x-ray diffraction measurements. Beyond Si concentrations of 5x10 18 cm -3 both the phonon frequency and the exciton emission energy increase again. This change indicates a partial strain relaxation due to a change in the growth mode. [copyright] 2001 American Institute of Physics

  15. Chemical strain engineering of magnetism in PrVO3 thin films

    Science.gov (United States)

    Prellier, Wilfrid; Copie, Olivier; Varignon, Julien; Rotella, Helene; Steciuk, Gwladys; Boullay, Philippe; Pautrat, Alain; David, Adrian; Mercey, Bernard; Ghosez, Philippe

    Transition metal oxides having a perovskite structure present a wide range of functional properties ranging from insulator-to-metal, ferroelectricity, colossal magnetoresistance, high-temperature superconductivity and multiferroicity. Such systems are generally characterized by strong electronic correlations, complex phase diagrams and competing ground states. In addition, small perturbation induced by external stimuli (electric or magnetic field, temperature, strain, pressure..) may change structure, and ultimately modify the physical properties. Here, we synthetize an orthorhombic perovskite praseodymium vanadate (PrVO3), which is grown on strontium titanate substrate. We show that the control of the content of oxygen vacancies, the so-called chemical strain, can indeed result in unexpected properties. We further demonstrate that the Néel temperature can be tuned using the same substrate in agreement with first-principles calculations, and demonstrate that monitoring the concentration of oxygen vacancies through the oxygen partial pressure or the growth temperature can produce a substantial macroscopic tensile strain of a few percents.

  16. Anisotropic-strain-relaxation-induced crosshatch morphology in epitaxial SrTiO{sub 3}/NdGaO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tan, X. L.; Chen, F.; Chen, P. F.; Xu, H. R.; Chen, B. B.; Jin, F.; Gao, G. Y.; Wu, W. B., E-mail: wuwb@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230026 (China)

    2014-10-15

    We investigate the strain relaxation and surface morphology of epitaxial SrTiO{sub 3} (STO) films grown on (001){sub O} and (110){sub O} planes of orthorhombic NdGaO{sub 3} (NGO), and (001) plane of cubic (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT) substrates. Although the average lattice mismatches are similar, strikingly regular crosshatched surface patterns can be found on STO/NGO(001){sub O}[(110){sub O}] films, contrary to the uniform surface of STO/LSAT(001). Based on the orientation and thickness dependent patterns and high-resolution x-ray diffractions, we ascribe the crosshatch morphology to the anisotropic strain relaxation with possibly the 60° misfit dislocation formation and lateral surface step flow in STO/NGO films, while an isotropic strain relaxation in STO/LSAT. Further, we show that the crosshatched STO/NGO(110){sub O} surface could be utilized as a template to modify the magnetotransport properties of epitaxial La{sub 0.6}Ca{sub 0.4}MnO{sub 3} films. This study highlights the crucial role of symmetry mismatch in determining the surface morphology of the perovskite oxide films, in addition to their epitaxial strain states, and offers a different route for designing and fabricating functional perovskite-oxide devices.

  17. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  18. Flexoelectricity: strain gradient effects in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenhui [Department of Physics, Shantou Unversity, Shantou, Guangdong 515063 (China)

    2007-12-15

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 {mu} C m{sup -1} for lead zirconate titanate to 100 {mu} C m{sup -1} for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems.

  19. Effect of strain on the structural and optical properties of Cu-N co-doped ZnO thin films

    International Nuclear Information System (INIS)

    Zhao Yue; Zhou Mintao; Li Zhao; Lv Zhiyong; Liang Xiaoyan; Min Jiahua; Wang Linjun; Shi Weimin

    2011-01-01

    Polycrystalline ZnO thin films co-doped with Cu and N have been obtained by chemical bath deposition. Introduction of Cu and N causes the change of strained stress in ZnO films, which subsequently affects the structural and optical properties. The dependence of structural and optical properties of the ZnO films on lattice strained stress is investigated by XRD measurement, SEM, PL spectrum, optical reflection and Raman spectrum. The result of photoluminescence of Cu-N co-doped ZnO films indicates that the UV emission peaks shift slightly towards higher energy side with decrease in tensile strain and vise versa. The blue-shift of the absorption edge and up-shift of E2 (high) mode of the films can be observed in the optical reflection and Raman spectra. - Highlights: →Cu-N co-doped ZnO is first prepared by the wet chemical method. → Stress is produced by the introduction of Cu and N atoms. → Effect of stress on the structural and optical properties of ZnO film is investigated. → Cu concentration will be used to control the structural and optical properties.

  20. Strain-dependence of the structure and ferroic properties of epitaxial Ni1−xTi1−yO3 thin films grown on sapphire substrates

    International Nuclear Information System (INIS)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Colby, Robert J.; Hu, Dehong; Shelton, William A.; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in compounds MTiO 3 (M = Fe, Mn, Ni) (Fennie, 2008). We set out to stabilize this metastable, distorted perovskite structure by growing NiTiO 3 epitaxially on sapphire Al 2 O 3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni 1−x Ti 1−y O 3 films of different Ni/Ti ratios and thicknesses were deposited on Al 2 O 3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Néel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO 3 thin films by film stoichiometry and thickness. - Highlights: • NiTiO 3 epitaxial thin films with LiNbO 3 -type structure by pulsed laser deposition. • Strain varied by film thickness, stoichiometry, and synthesis temperature. • Systematic study of the effect of strain on film structure and physical properties. • Manipulation of ferroic properties by strain confirmed

  1. Molecular analysis of HIV strains from a cluster of worker infections in the adult film industry, Los Angeles 2004.

    Science.gov (United States)

    Brooks, John T; Robbins, Kenneth E; Youngpairoj, Ae S; Rotblatt, Harlan; Kerndt, Peter R; Taylor, Melanie M; Daar, Eric S; Kalish, Marcia L

    2006-04-04

    In April 2004, 13 susceptible women were exposed to a single acutely HIV-1-infected man while employed to perform various sex acts for the production of adult films; three women were subsequently found to have acquired HIV infection (23% attack rate). As part of the investigation of this infection cluster, we evaluated whether viral strains collected from infected individuals were significantly related. We determined nucleotide sequences from the C2V3C3 and gp41 region of env and the p17 region of gag in viruses from the three infected individuals from whom specimens were available. We then compared these sequences phylogenetically to comparable sequences from available reference strains. Genotypic and phenotypic antiretroviral drug resistance was determined for plasma virus from the male index case and one female contact at a separate commercial laboratory. The env and gag sequences of the HIV strains from the male index case and two of the infected women were 100% similar. Genotyping of the male index case's virus identified 12 mutations, which represented known naturally occurring polymorphisms in the subtype B consensus sequence that are not associated with antiretroviral drug resistance. Genotyping of the virus from the female contact identified 10 mutations, all of which were shared by the virus from the male index case. Phenotyping demonstrated that both viruses were susceptible to all antiretroviral drugs tested. Molecular and virological data strongly support the epidemiological conclusion that these women were infected with an identical strain of HIV through occupational exposure to an individual with an acute HIV infection.

  2. Large piezoelectric strain with ultra-low strain hysteresis in highly c-axis oriented Pb(Zr0.52Ti0.48)O3 films with columnar growth on amorphous glass substrates

    NARCIS (Netherlands)

    Nguyen, Minh D.; Houwman, Evert P.; Rijnders, Guus

    2017-01-01

    Thin films of PbZr0.52Ti0.48O3 (PZT) with largely detached columnar grains, deposited by pulsed laser deposition (PLD) on amorphous glass substrates covered with Ca2Nb3O10 nanosheets as growth template and using LaNiO3 electrode layers, are shown to exhibit very high unipolar piezoelectric strain

  3. A comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications

    Science.gov (United States)

    Wu, Daheng; Ren, Siming; Pu, Jibin; Lu, Zhibin; Zhang, Guangan; Wang, Liping

    2018-05-01

    The tribological behaviors of hydrogenated DLC film sliding against Al2O3, ZrO2, Si3N4 and WC mating balls have been comparatively investigated by a ball-on-disk tribometer at 150 °C under helium and air (RH = 6%) conditions. The results showed that the mating material influenced the friction and wear behavior remarkably in helium atmosphere, where the wear rates were in inversely proportional to the friction coefficients (COF) of those tribo-pairs. Compared to the tests in helium, the tribological performance of DLC film significantly improved in air. Scanning electron microscope (SEM) and Raman spectroscopy were performed to study the friction behavior and wear mechanism of the film under different conditions. It suggested that the severe abrasion was caused by the strong interaction between the tribo-pairs in helium atmosphere at 150 °C, whereas the sufficient passivation of the dangling bonds of carbon atoms at sliding interface by chemically active molecules, such as water and oxygen, dominated the ultralow friction under air condition. Meanwhile, Hertz analysis was used to further elucidate the frictional mechanism of DLC film under helium and air conditions. It showed that the coefficient of friction was consistent with the varied tendency of the contact radius, namely, higher friction coefficient corresponded to the larger contact radius, which was the same with the relationship between the wear rate and the contact pressure. All of the results made better understanding of the essential mechanism of hydrogenated DLC film sliding against different pairs, which were able to guide the further application of DLC film in the industrial fields of helium atmosphere.

  4. Bond-length strain in buried Ga1-xInxAs thin-alloy films grown coherently on InP(001)

    International Nuclear Information System (INIS)

    Woicik, J.C.; Gupta, J.A.; Watkins, S.P.; Crozier, E.D.

    1998-01-01

    The bond lengths in a series of strained, buried Ga 1-x In x As thin-alloy films grown coherently on InP(001) have been determined by high-resolution extended x-ray absorption fine-structure measurements. Comparison with a random-cluster calculation demonstrates that the external in-plane epitaxial strain imposed by pseudomorphic growth opposes the natural bond-length distortions due to alloying.copyright 1998 American Institute of Physics

  5. Investigation of thin films, heterostructures and devices of ceramic superconductors by means of high-resolution electron microscopy

    International Nuclear Information System (INIS)

    Jia Chunlin.

    1993-08-01

    In this thesis a systematic study of the microstructure of YBa 2 Cu 3 O 7 thin films is presented by means of high-resolution electron microscopy (HREM). Most of the efforts are focused on the characterization of heterostructures of superconducting YBa 2 Cu 3 O 7 and non-superconducting PrBa 2 Cu 3 O 7 and on YBa 2 Cu 3 O 7 films deposited on step-edge substrates. These specially designed structures exhibit a great potential for the electronic application of high-Tc superconductors and for the investigation of the basic electric properties of the YBa 2 Cu 3 O 7 superconductor. (orig.) [de

  6. Strain-controlled optical absorption in epitaxial ferroelectric BaTiO.sub.3./sub. films

    Czech Academy of Sciences Publication Activity Database

    Chernova, Ekaterina; Pacherová, Oliva; Chvostová, Dagmar; Dejneka, Alexandr; Kocourek, Tomáš; Jelínek, Miroslav; Tyunina, Marina

    2015-01-01

    Roč. 106, č. 19 (2015), "192903-1"-"192903-4" ISSN 0003-6951 R&D Projects: GA ČR GA15-13778S; GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : thin-films * polarization * evolution * SrTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.142, year: 2015

  7. Ceramic capacitor exhibiting graceful failure by self-clearing, method for fabricating self-clearing capacitor

    Science.gov (United States)

    Kaufman, David Y [Chicago, IL; Saha, Sanjib [Santa Clara, CA

    2006-08-29

    A short-resistant capacitor comprises an electrically conductive planar support substrate having a first thickness, a ceramic film deposited over the support substrate, thereby defining a ceramic surface; and a metallic film deposited over the ceramic surface, said film having a second thickness which is less than the first thickness and which is between 0.01 and 0.1 microns.

  8. Effect of strain on the transport and magnetoresistance properties of La0.8Ca0.2MnO3 epitaxial thin films

    International Nuclear Information System (INIS)

    Zhang, H D; Li, M; An, Y K; Mai, Z H; Gao, J; Hu, F X; Wang, Y; Jia, Q J

    2007-01-01

    The true residual stress in La 0.8 Ca 0.2 MnO 3 (LCMO) thin films of various thicknesses deposited on STO substrates under the same deposition conditions was measured quantitatively by x-ray diffraction sin 2 ψ method. The truly strain-induced effect on the transport and magnetoresistance (MR) properties of LCMO films was investigated. The in-plane residual stress (σ 11 ) in the LCMO film is tensile, while the out-of-plane one (σ 33 ) is compressive. Moreover, the value of σ 33 is larger than that of σ 11 . With increasing film thickness, the crystalline unit cell of the LCMO film reduces; also both the in- and out-of-plane components of the residual stress in the LCMO film decrease. It was found that the resistivity, T MI and MR strongly depend on the in-plane tensile stress σ 11 (or/and the out-of-plane stress σ 33 ). With the increase in the in-plane stress σ 11 (or/and the out-of-plane stress σ 33 ), the values of resistivity and MR increase, while T MI decreases. The truly strain-induced effect on the transport and magnetoresistance properties of LCMO film is discussed briefly

  9. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  10. Impact of repeated uniaxial mechanical strain on flexible a-IGZO thin film transistors with symmetric and asymmetric structures

    Science.gov (United States)

    Liao, Po-Yung; Chang, Ting-Chang; Su, Wan-Ching; Chen, Bo-Wei; Chen, Li-Hui; Hsieh, Tien-Yu; Yang, Chung-Yi; Chang, Kuan-Chang; Zhang, Sheng-Dong; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan

    2017-06-01

    This letter investigates repeated uniaxial mechanical stress-induced degradation behavior in flexible amorphous In-Ga-Zn-O thin-film transistors (TFTs) of different geometric structures. Two types of via-contact structure TFTs are investigated: symmetrical and UI structure (TFTs with I- and U-shaped asymmetric electrodes). After repeated mechanical stress, I-V curves for the symmetrical structure show a significant negative threshold voltage (VT) shift, due to mechanical stress-induced oxygen vacancy generation. However, degradation in the UI structure TFTs after stress is a negative VT shift along with the parasitic transistor characteristic in the forward-operation mode, with this hump not evident in the reverse-operation mode. This asymmetrical degradation is clarified by the mechanical strain simulation of the UI TFTs.

  11. Electric Field-Induced Large Strain in Ni/Sb-co Doped (Bi0.5Na0.5) TiO3-Based Lead-Free Ceramics

    Science.gov (United States)

    Li, Liangliang; Hao, Jigong; Xu, Zhijun; Li, Wei; Chu, Ruiqing

    2018-02-01

    Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1- x (Ni0.5Sb0.5) x O3 (BNBT6.5- xNS) have been fabricated using conventional solid sintering technique. The effect of (Ni, Sb) doping on the phase structure and electrical properties of BNBT6.5 ceramics were systematically investigated. Results show that the addition of (Ni, Sb) destroyed the ferroelectric long-range order of BNBT6.5 and shifted the ferroelectric-relaxor transition temperature ( T F-R) down to room temperature. Thus, this process induced an ergodic relaxor phase at zero field in samples with x = 0.005. Under the electric field, the ergodic relaxor phase could reversibly transform to ferroelectric phase, which promotes the strain response with peak value of 0.38% (at 80 kV/cm, corresponding to d 33 * = 479 pm/V) at x = 0.005. Temperature-dependent measurements of both polarization and strain confirmed that the large strain originated from a reversible field-induced ergodic relaxor to ferroelectric phase transformation. The proposed material exhibits potential for nonlinear actuators.

  12. Stabilized chromium oxide film

    Science.gov (United States)

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  13. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  14. Chemical Synthesis of Porous Barium Titanate Thin Film and Thermal Stabilization of Ferroelectric Phase by Porosity-Induced Strain.

    Science.gov (United States)

    Suzuki, Norihiro; Osada, Minoru; Billah, Motasim; Bando, Yoshio; Yamauchi, Yusuke; Hossain, Shahriar A

    2018-03-27

    Barium titanate (BaTiO3, hereafter BT) is an established ferroelectric material first discovered in the 1940s and still widely used because of its well-balanced ferroelectricity, piezoelectricity, and dielectric constant. In addition, BT does not contain any toxic elements. Therefore, it is considered to be an eco-friendly material, which has attracted considerable interest as a replacement for lead zirconate titanate (PZT). However, bulk BT loses its ferroelectricity at approximately 130 °C, thus, it cannot be used at high temperatures. Because of the growing demand for high-temperature ferroelectric materials, it is important to enhance the thermal stability of ferroelectricity in BT. In previous studies, strain originating from the lattice mismatch at hetero-interfaces has been used. However, the sample preparation in this approach requires complicated and expensive physical processes, which are undesirable for practical applications. In this study, we propose a chemical synthesis of a porous material as an alternative means of introducing strain. We synthesized a porous BT thin film using a surfactant-assisted sol-gel method, in which self-assembled amphipathic surfactant micelles were used as an organic template. Through a series of studies, we clarified that the introduction of pores had a similar effect on distorting the BT crystal lattice, to that of a hetero-interface, leading to the enhancement and stabilization of ferroelectricity. Owing to its simplicity and cost effectiveness, this fabrication process has considerable advantages over conventional methods.

  15. Effects of ferroelectric-poling-induced strain on the electronic transport and magnetic properties of (001)- and (111)-oriented La{sub 0.5}Ba{sub 0.5}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.Y. [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zheng, M.; Zhu, Q.X.; Yang, M.M.; Li, X.M.; Shi, X. [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Yuan, G.L., E-mail: yuanguoliang@mail.njust.edu.cn [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Y.; Chan, H.L.W. [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Li, X.G. [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Luo, H.S. [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zheng, R.K., E-mail: zrk@ustc.edu [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2014-04-01

    We epitaxially grew La{sub 0.5}Ba{sub 0.5}MnO{sub 3} (LBMO) films on (001)- and (111)-oriented ferroelectric single-crystal substrates and reduced the in-plane tensile strain of LBMO films by poling the ferroelectric substrates along the 〈001〉 or 〈111〉 direction. Upon poling, a large decrease in the resistance and a considerable increase in the magnetization, Curie temperature, and magnetoresistance were observed for the LBMO film, which are driven by interface strain coupling. Such strain effects can be significantly enhanced by the application of a magnetic field. An overall analysis of the findings reveals that the mutual interaction between the strain and the magnetic field is mediated by the electronic phase separation which is sensitive to both strain and magnetic field. Our findings highlight that the electronic phase separation is crucial in understanding the electric-field-manipulated strain effects in manganite film/ferroelectric crystal heterostructures. - Highlights: • La{sub 0.5}Ba{sub 0.5}MnO{sub 3} films were epitaxially grown on ternary ferroelectric single crystals. • Ferroelectric poling modifies the strain and physical properties of films. • Magnetic field enhances the strain effects of films. • Phase separation is crucial to understand the magnetic-field-tuned strain effect.

  16. Engineering of nearly strain-free ZnO films on Si(1 1 1) by tuning AlN buffer thickness

    International Nuclear Information System (INIS)

    Venkatachalapathy, Vishnukanthan; Galeckas, Augustinas; Lee, In-Hwan; Kuznetsov, Andrej Yu.

    2012-01-01

    ZnO properties were investigated as a function of AlN buffer layer thickness (0–100 nm) in ZnO/AlN/Si(1 1 1) structures grown by metal organic vapor phase epitaxy. A significant improvement of ZnO film crystallinity by tuning AlN buffer thickness was confirmed by x-ray diffraction, topography and photoluminescence measurements. An optimal AlN buffer layer thickness of 50 nm is defined, which allows for growth of nearly strain-free ZnO films. The presence of free excitons at 10 K suggests high crystal quality for all ZnO samples grown on AlN/Si(1 1 1) templates. The intensities of neutral and ionized donor bound exciton lines are found to correlate with the in-plane and out-of-plane strain in the films, respectively.

  17. Strain profile and polarization enhancement in Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Amir, F.Z. [Physics Department, St John' s University, 8000 Utopia Pkwy, Jamaica, NY 11439 (United States); Donner, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Aspelmeyer, M. [Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Noheda, B. [Department of Chemical Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Xi, X.X. [Physics Department, College of Science and Technology, Temple University, 1900 N.13th Street, Philadelphia, PA 19122 (United States); Moss, S.C. [Department of Physics, University of Houston, 617 Science and Research Building 1, Houston, Texas 77204-5005 (United States)

    2012-11-15

    The sensitivity of spontaneous polarization to epitaxial strain for both 10 and 50 nm thick Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BSTO) ferroelectric thin films has been studied. Crystal truncation rod (CTR) profiles in the 00L directions at different wavelengths, and grazing incidence diffraction (GID) in the 0K0 direction on a single crystal have been recorded. Modeling of the CTR data gives a detailed picture of the strain and provides clear evidence of the film out-of-plane expansion at the surface, an increase of the polarization, as well as a contraction at the interface. GID data confirm the fitting of the CTR, showing an in-plane expansion of the BSTO film at the interface and a contraction at the surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Engineering of nearly strain-free ZnO films on Si(1 1 1) by tuning AlN buffer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalapathy, Vishnukanthan, E-mail: vishnukanthan.venkatachalapathy@smn.uio.no [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Galeckas, Augustinas [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Lee, In-Hwan [School of Advanced Materials Engineering, Research Centre for Advanced Materials Development (RCAMD), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kuznetsov, Andrej Yu. [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway)

    2012-05-15

    ZnO properties were investigated as a function of AlN buffer layer thickness (0-100 nm) in ZnO/AlN/Si(1 1 1) structures grown by metal organic vapor phase epitaxy. A significant improvement of ZnO film crystallinity by tuning AlN buffer thickness was confirmed by x-ray diffraction, topography and photoluminescence measurements. An optimal AlN buffer layer thickness of 50 nm is defined, which allows for growth of nearly strain-free ZnO films. The presence of free excitons at 10 K suggests high crystal quality for all ZnO samples grown on AlN/Si(1 1 1) templates. The intensities of neutral and ionized donor bound exciton lines are found to correlate with the in-plane and out-of-plane strain in the films, respectively.

  19. Long time relaxation of resistance in La0.8Sr0.2MnO3 ceramics and La0.65Ca0.35 MnO3 films on ferroelectric substrates

    International Nuclear Information System (INIS)

    Medvedev, Yu.V.; Mezin, N.I.; Nikolaenko, Yu.M.; Pigur, A.E.; Shishkova, N.V.; Ishchuk, V.M.; Chukanova, I.N.

    2004-01-01

    Galvanomagnetic properties of La 0.65 Ca 0.35 MnO 3 films with a thickness of 0.2 μm on Pb 2.9 Ba 0.05 Sr 0.05 (Zr 0.4 Ti 0.6 )O 3 ferroelectric ceramics substrates have been investigated. We have discovered the monotonic irreversible increase of the film resistance by 3-5 time of value during several hours after multiple inversion of substrate polarization. The long-time relaxation (LTR) of film resistance is explained by dielecrtrization of film intercrystallite boundaries as a result of oxygen redistribution under action of inhomogeneous mechanical stress. In addition, the LTR of resistance of La 0.8 Sr 0.2 MnO 3 and La 0.6 Sr 0.2 Mn 1.2 O 3 ceramic samples has been investigated under action of different kind of mechanical stress: stretch, compression and hydrostatic press. Time dependence of resistance is described by R 0 +ΔRexp(-t/τ). The magnitude of LTR is 5-10 time greater then fast variation of resistance under action of stress. The sign of ΔR is dependent on the kind of stress. The time constant (τ) has the value of 3-9 hours. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. THE THICKNESS DEPENDENCE OF OXYGEN PERMEABILITY IN SOL-GEL DERIVED CGO-COFE2O4 THIN FILMS ON POROUS CERAMIC SUBSTRATES: A SPUTTERED BLOCKING LAYER FOR THICKNESS CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K

    2009-01-08

    Mixed conductive oxides are a topic of interest for applications in oxygen separation membranes as well as use in producing hydrogen fuel through the partial oxidation of methane. The oxygen flux through the membrane is governed both by the oxygen ionic conductivity as well as the material's electronic conductivity; composite membranes like Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO)-CoFe{sub 2}O{sub 4} (CFO) use gadolinium doped ceria oxides as the ionic conducting material combined with cobalt iron spinel which serves as the electronic conductor. In this study we employ {approx} 50 nm sputtered CeO{sub 2} layers on the surface of porous CGO ceramic substrates which serve as solution 'blocking' layers during the thin film fabrication process facilitating the control of film thickness. Films with thickness of {approx} 2 and 4 microns were prepared by depositing 40 and 95 separate sol-gel layers respectively. Oxygen flux measurements indicated that the permeation increased with decreasing membrane thickness; thin film membrane with thickness on the micron level showed flux values an order of magnitude greater (0.03 {micro}mol/cm{sup 2} s) at 800 C as compared to 1mm thick bulk ceramic membranes (0.003 {micro}mol/cm{sup 2}).

  1. Effect of misfit strains on fourth and sixth order permittivity in (Ba0.60,Sr0.40)TiO3 films on orthorhombic substrates

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J.

    2006-03-01

    The in-plane dielectric response of [110] oriented Ba0.60Sr0.40TiO3 epitaxial films grown on [100] NdGaO3 is used to determine the field induced polarization at 10GHz. The nonlinear polarization curve is used to determine the linear and nonlinear permittivity terms for the in-plane principal directions, [001] and [1¯10]. Studied films are in the thickness range of 75-1200nm, and clearly show the influences that drive tunability down with increasing residual strain. The variation of the tunability, along the [001] direction, proves to be less sensitive to residual strain then the [1¯10] direction, although [1¯10] is capable of greater tunability at low residual strains.

  2. Heteroepitaxial growth of strained multilayer thin films of high-temperature superconductors

    International Nuclear Information System (INIS)

    Gross, R.; Gupta, A.; Olsson, E.; Segmueller, A.; Koren, G.

    1991-01-01

    Recently, the heteroepitaxial growth of multilayer structures of different copper oxide superconductors has been reported by several groups. In general, two different types of multilayer structures should be distinguished. The first kind of mulitlayer is formed by high-T c materials having the same crystal structure and almost the same lattice constants, as for example ReBa 2 Cu 3 O 7 (Re=rare earth) multilayers with alternating Re-elements. In these multilayers the two different rare earth copper oxides (Y/Dy, Y/Pr) have the same orthorhombic unit cell. Due to the very similar lattice constants, the misfit strain is easily accommodated without the formation of defects. The second kind of multilayer is formed by layers of materials having different crystal structure and lattice parameters. In these multilayers the misfit can be coherently accommodated below a critical modulation thickness as discussed below. This renders possible the heteroepitaxial growth of strained multilayer structures, both of two copper oxides of different crystal structure, as has been demonstrated recently for the system YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x , and of superconducting copper oxides and insulating materials. For multilayers of different copper oxides, a combination of almost all high-Tc materials should be possible, since the presence of the CuO 2 sheets in these materials results in similar lattice constants in their basal planes ('a' and 'b'). (orig./BHO)

  3. Anomalous misfit strain relaxation in ultrathin YBa2Cu3O7-δ epitaxial films

    International Nuclear Information System (INIS)

    Kamigaki, K.; Terauchi, H.; Terashima, T.; Bando, Y.; Iijima, K.; Yamamoto, K.; Hirata, K.; Hayashi, K.; Nakagawa, I.; Tomii, Y.

    1991-01-01

    Ultrathin YBa 2 Cu 3 O 7-δ epitaxial films were successfully grown in situ on (001) SrTiO 3 and MgO substrates by means of ozone-incorporating activated reactive evaporation. The x-ray-diffraction study was carefully examined to determine the structural properties of the grown films. Excellent crystallinity with no interfacial disorders was revealed by the appearance of the Laue oscillations. It was found that in a well lattice-matched YBa 2 Cu 3 O 7-δ /SrTiO 3 system, the crystallinity was deteriorated due to defect introduction at the critical layer thickness h c ( ∼ 130 A). Interestingly, also in a poorly lattice-matched YBa 2 Cu 3 O 7-δ /MgO system, excellent crystallinity was revealed even at above h c ( 2 Cu 3 O 7-δ /MgO system. In such a system, no crystal imperfection of the MgO substrate caused by defect introduction was elucidated by the grazing incidence x-ray scattering, which indicated that the MgO substrate did not contribute to the anomalous misfit relaxation. The anomalous growth manner was also found in YBa 2 Cu 3 O 7-δ /MgO according to surface morphology investigations. Below 40 A( > h c ), island nucleation growth was found. Above 40 A, it was observed that an atomically smooth surface was obtained and the crystallinity was simultaneously improved. It is suggested that YBa 2 Cu 3 O 7-δ possesses an anomalous misfit relaxation mechanism, and that especially in the growth on MgO, it couples with the characteristic growth behavior at the initial stage

  4. Cracking in Drying Colloidal Films

    Science.gov (United States)

    Singh, Karnail B.; Tirumkudulu, Mahesh S.

    2007-05-01

    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  5. Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti−6Al−4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rahmati, B., E-mail: r.bijan@yahoo.com [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sarhan, Ahmed A.D., E-mail: ah_sarhan@um.edu.my [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Basirun, W. Jeffrey [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia); Abas, W.A.B.W. [Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-15

    In this research, an attempt is made to study the corrosion and wear behavior of TaO{sub 2} thin film coating deposited onto Ti−6Al−4V alloy with the highest adhesion (was achieved in the author's previous experiments using Taguchi statistical method) which leads to increase corrosion resistance, decrease debris generation and improve durability. Accordingly, pure tantalum (Ta) was deposited onto Ti−6Al−4V substrate surface as intermetallic layer then to form a TaO{sub 2} thin film, Ta was deposited onto the sample surface in the presence of oxygen by using physical vapor deposition magnetron sputtering (PVDMS). Corrosion testing was carried out in fetal bovine serum (FBS). The corrosion test in FBS medium confirmed that the corrosion resistance of the TaO{sub 2} – coated Ti−6Al−4V alloys was significantly higher than the uncoated Ti−6Al−4V substrate due to the decrease in corrosion current density (I{sub corr}) for the coated substrate with high thin-film adhesion. Wear testing was carried out on uncoated and coated Ti−6Al−4V substrates in the presence of FBS medium under 15 N load (natural walking load) at 1.09 m/s (simulated medium walking speed). The tests revealed that the specific wear ratio of TaO{sub 2} coating was significantly lower than the uncoated substrate wear ratio. The average friction coefficients obtained were 0.183 and 0.152 for uncoated substrate and TaO{sub 2} thin film coating, respectively. So, due to the noticeable corrosion and wear resistance characteristics of the TaO{sub 2} coating, it is suggested for hip joint implant. - Highlights: • The TaO{sub 2} coating has been created onto the Ti−6Al−4V surface by using PVDMS method. • The TaO{sub 2} coating has been formed on the Ti−6Al−4V sample at the highest adhesion. • The corrosion resistance of the coated Ti−6Al−4V substrate has been improved. • The wear resistance of the coated Ti−6Al−4V substrate has been increased. • The durability

  6. Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films

    KAUST Repository

    Cossu, Fabrizio; Colizzi, G.; Filippetti, A.; Fiorentini, Vincenzo; Schwingenschlö gl, Udo

    2013-01-01

    Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.

  7. Surface antiferromagnetism and incipient metal-insulator transition in strained manganite films

    KAUST Repository

    Cossu, Fabrizio

    2013-06-21

    Using first-principles calculations, we show that the (001) surface of the ferromagnet La0.7Sr0.3MnO3 under an epitaxial compressive strain favors antiferromagnetic (AF) order in the surface layers, coexisting with ferromagnetic (FM) bulk order. Surface antiferromagnetism is accompanied by a very marked surface-related spectral pseudogap, signaling an incomplete metal-insulator transition at the surface. The different relaxation and rumpling of the MnO2 and LaO surface planes in the two competing magnetic phases cause distinct work-function changes, which are of potential diagnostic use. The AF phase is recognized as an extreme surface-assisted case of the combination of in-plane AF super-exchange and vertical FM double-exchange couplings that rules magnetism in manganites under in-plane compression.

  8. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Four Non-Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-06-18

    Ceramics, San Diego, CA, manufactured the SiC/SiNC and C/SiC composites using polymer infiltration and pyrolysis (PIP). The C/HYPR-SiC™ and SiC/HYPR- SiC...research. Thank you to Dr. Kristin Keller (AFRL/RXCCM), Ms. Jennifer Pierce (AFRL/RXCM), Mr. Randall Corns (AFRL/RXCCM), and Dr. Kathleen Shugart (AFRL...with Hi-Nicalon™ SiC fibers in a SiNC matrix derived by polymer infiltration and pyrolysis (PIP) (manufactured by COI Ceramics, San Diego, CA

  9. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    Science.gov (United States)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  10. Development of a Flexible Strain Sensor Based on PEDOT:PSS for Thin Film Structures

    Directory of Open Access Journals (Sweden)

    Alexandra El Zein

    2017-06-01

    Full Text Available The aim of this study was to develop and optimize a reproducible flexible sensor adapted to thin low-density polyethylene (LDPE films and/or structures to enable their deformation measurements. As these deformations are suspected to be weak (less than 10%, the developed sensor needs to be particularly sensitive. Moreover, it is of prime importance that sensor integration and usability do not modify the mechanical behavior of its LDPE substrate. The literature review allowed several materials to be investigated and an elastomer/intrinsically conductive polymer PEDOT:PSS (CleviosTM filled composite was selected to simultaneously combine mechanical properties and electrical conductivity. This composite (made of PEDOT:PSS and silicone Bluesil® presented satisfying compatibilities with piezoresistive effects, negative temperature performances (in a range from −60 °C to 20 °C, as well as elongation properties (until the elastic limit of the substrate was reached. The method used for creating the sensor is fully described, as are the optimization of the sensor manufacture in terms of used materials, the used amount of materials where the percolation theory aspects must be considered, the adhesion to the substrate, and the manufacturing protocol. Electromechanical characterization was performed to assess the gauge factor (K of the sensor on its substrate.

  11. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  12. Extruded blend films of poly(vinyl alcohol) and polyolefins: common and hard-elastic nanostructure evolution in the polyolefin during straining as monitored by SAXS

    International Nuclear Information System (INIS)

    Stribeck, Norbert; Zeinolebadi, Ahmad; Fakirov, Stoyko; Bhattacharyya, Debes; Botta, Stephan

    2013-01-01

    Straining of PVA/PE and PVA/PP blends (70:30) is monitored by small-angle x-ray scattering (SAXS). Sheet-extruded films with different predraw ratio are investigated. The discrete SAXS of predrawn samples originates from polyolefin nanofibrils inside of polyolefin microfibrils immersed in a PVA matrix. PE nanofibrils deform less than the macroscopic strain without volume change. PP nanofibrils experience macroscopic strain. They lengthen but their diameter does not decrease. This is explained by strain-induced crystallization of PP from an amorphous depletion shell around the core of the nanofibril. The undrawn PVA/PE film exhibits isotropic semicrystalline nanostructure. Undrawn PVA/PP holds PP droplets containing oriented stacks of semicrystalline PP like neat precursors of hard-elastic thermoplasts. Respective predrawn films are softer than the undrawn material, indicating conversion into the hard-elastic state. Embedding of the polyolefin significantly retards neck formation. The polyolefin microfibrils can easily be extracted from the water-soluble matrix. (paper)

  13. Effects of anharmonic strain on the phase stability of epitaxial films and superlattices: Applications to noble metals

    International Nuclear Information System (INIS)

    Ozolins, V.; Wolverton, C.; Zunger, A.

    1998-01-01

    Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total-energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%), and Ni/Au (15%). We find that left-angle 001 right-angle is the elastically soft direction for biaxial expansion of Cu and Ni, but it is left-angle 201 right-angle for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along left-angle 111 right-angle and left-angle 001 right-angle behave like phase separating systems, while for left-angle 110 right-angle they behave like ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents. copyright 1998 The American Physical Society

  14. Strain induced ferromagnetism and large magnetoresistance of epitaxial La1.5Sr0.5CoMnO6 thin films

    Science.gov (United States)

    Krishna Murthy, J.; Jyotsna, G.; N, Nileena; Anil Kumar, P. S.

    2017-08-01

    In this study, the structural, magnetic, and magneto-transport properties of La1.5Sr0.5CoMnO6 (LSCMO) thin films deposited on a SrTiO3 (001) substrate were investigated. A normal θ/2θ x-ray diffraction, rocking curve, ϕ-scan, and reciprocal space mapping data showed that prepared LSCMO thin films are single phase and highly strained with epitaxial nature. Temperature vs. magnetization of LSCMO films exhibits strain-induced ferromagnetic ordering with TC ˜ 165 K. In contrast to the bulk samples, there was no exchange bias and canted type antiferromagnetic and spin glass behavior in films having thickness (t) ≤ 26 nm. Temperature dependent resistivity data were explained using Schnakenberg's model and the polaron hopping conduction process. The slope change in resistivity and magnetoresistance maximum (˜65%) around TC indicates the existence of a weak double exchange mechanism between the mixed valence states of transition metal ions. Suppression of spin dependent scattering with the magnetic field is attributed for the large negative magnetoresistance in LSCMO films.

  15. Effect of thermal strain on the ferroelectric phase transition in polycrystalline Ba0.5Sr0.5TiO3 thin films studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Tenne, D.A.; Soukiassian, A.; Xi, X.X.; Taylor, T.R.; Hansen, P.J.; Speck, J.S.; York, R.A.

    2004-01-01

    We have applied Raman spectroscopy to study the influence of thermal strain on the vibrational properties of polycrystalline Ba 0.5 Sr 0.5 TiO 3 films. The films were grown by rf magnetron sputtering on Pt/SiO 2 surface using different host substrates: strontium titanate, sapphire, silicon, and vycor glass. These substrates provide a systematic change in the thermal strain while maintaining the same film microstructure. From the temperature dependence of the ferroelectric A 1 soft phonon intensity, the ferroelectric phase transition temperature, T C , was determined. We found that T C decreases with increasing tensile stress in the films. This dependence is different from the theoretical predictions for epitaxial ferroelectric films. The reduction of the ferroelectric transition temperature with increasing biaxial tensile strain is attributed to the suppression of in-plane polarization due to the small lateral grain size in the films

  16. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  17. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  18. Development of an embedded thin-film strain-gauge-based SHM network into 3D-woven composite structure for wind turbine blades

    Science.gov (United States)

    Zhao, Dongning; Rasool, Shafqat; Forde, Micheal; Weafer, Bryan; Archer, Edward; McIlhagger, Alistair; McLaughlin, James

    2017-04-01

    Recently, there has been increasing demand in developing low-cost, effective structure health monitoring system to be embedded into 3D-woven composite wind turbine blades to determine structural integrity and presence of defects. With measuring the strain and temperature inside composites at both in-situ blade resin curing and in-service stages, we are developing a novel scheme to embed a resistive-strain-based thin-metal-film sensory into the blade spar-cap that is made of composite laminates to determine structural integrity and presence of defects. Thus, with fiberglass, epoxy, and a thinmetal- film sensing element, a three-part, low-cost, smart composite laminate is developed. Embedded strain sensory inside composite laminate prototype survived after laminate curing process. The internal strain reading from embedded strain sensor under three-point-bending test standard is comparable. It proves that our proposed method will provide another SHM alternative to reduce sensing costs during the renewable green energy generation.

  19. Effects of strain on the magnetic and transport properties of the epitaxial La{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, M. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kameli, P., E-mail: kameli@cc.iut.ac.ir [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ehsani, M.H. [Department of Physics, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Ahmadvand, H.; Salamati, H. [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-12-15

    The epitaxial strain can considerably modify the physical properties of thin films compared to the bulk. This paper reports the effects of substrate-induced strain on La{sub 0.5}Ca{sub 0.5}MnO{sub 3} (LCMO) thin films, grown on (100) SrTiO{sub 3} (STO) and LaAlO{sub 3} (LAO) substrates by pulsed laser deposition technique. Transport and magnetic properties were found to be strongly dependent on strain type. It is also shown that compressive (tensile) strain leads to the increase (decrease) in the magnetization of the films. Moreover, it was observed that all LCMO films deposited on both LAO and STO substrates behave as an insulator, but LCMO/LAO thin films with compressive strain have lower resistivity than LCMO/STO thin films with tensile strain. Applying magnetic field to LCMO/STO thin films with thickness of 25 and 50 nm leads to very small change in the resistivity, while the effects of magnetic field on the sample with thickness of 125 nm leads to an insulator–metal transition. For LCMO/LAO thin films, the magnetic field has a strong impact on the resistivity of samples. The results show that the magnetoresistance (MR) is enhanced by increasing film thickness for LCMO/LAO samples, due to the relatively stronger phase separation. For LCMO/STO thin films MR is drastically decreased by reduction of film thickness, which is attributed to the enhancement of the charge–orbital order (CO–O) accompanying the complex spin order (the so-called CE type). The changes of the antiferromagnetic structure from the CE to C type and the enhancement of the CE type could be attributed to the in-plane compressive and tensile strain, respectively. - Highlights: • Epitaxial La{sub 0.5}Ca{sub 0.5}MnO{sub 3} thin films, grown on (100) SrTiO{sub 3} and LaAlO{sub 3} substrates. • The compressive strain leads to the increase in the magnetization of the films. • The tensile strain leads to the decrease in the magnetization of the films. • The magnetoresistance is enhanced by

  20. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  1. Large Piezoelectric Strain with Superior Thermal Stability and Excellent Fatigue Resistance of Lead-Free Potassium Sodium Niobate-Based Grain Orientation-Controlled Ceramics.

    Science.gov (United States)

    Quan, Yi; Ren, Wei; Niu, Gang; Wang, Lingyan; Zhao, Jinyan; Zhang, Nan; Liu, Ming; Ye, Zuo-Guang; Liu, Liqiang; Karaki, Tomoaki

    2018-03-19

    Environment-friendly lead-free piezoelectric materials with high piezoelectric response and high stability in a wide temperature range are urgently needed for various applications. In this work, grain orientation-controlled (with a 90% ⟨001⟩ c -oriented texture) (K,Na)NbO 3 -based ceramics with a large piezoelectric response ( d 33 *) = 505 pm V -1 and a high Curie temperature ( T C ) of 247 °C have been developed. Such a high d 33 * value varies by less than 5% from 30 to 180 °C, showing a superior thermal stability. Furthermore, the high piezoelectricity exhibits an excellent fatigue resistance with the d 33 * value decreasing within only by 6% at a field of 20 kV cm -1 up to 10 7 cycles. These exceptional properties can be attributed to the vertical morphotropic phase boundary and the highly ⟨001⟩ c -oriented textured ceramic microstructure. These results open a pathway to promote lead-free piezoelectric ceramics as a viable alternative to lead-based piezoceramics for various practical applications, such as actuators, transducers, sensors, and acoustic devices, in a wide temperature range.

  2. Microstructure research for ferroelectric origin in the strained Hf0.5Zr0.5O2 thin film via geometric phase analysis

    Science.gov (United States)

    Bi, Han; Sun, Qingqing; Zhao, Xuebing; You, Wenbin; Zhang, David Wei; Che, Renchao

    2018-04-01

    Recently, non-volatile semiconductor memory devices using a ferroelectric Hf0.5Zr0.5O2 film have been attracting extensive attention. However, at the nano-scale, the phase structure remains unclear in a thin Hf0.5Zr0.5O2 film, which stands in the way of the sustained development of ferroelectric memory nano-devices. Here, a series of electron microscopy evidences have illustrated that the interfacial strain played a key role in inducing the orthorhombic phase and the distorted tetragonal phase, which was the origin of the ferroelectricity in the Hf0.5Zr0.5O2 film. Our results provide insight into understanding the association between ferroelectric performances and microstructures of Hf0.5Zr0.5O2-based systems.

  3. Substrate-dependent post-annealing effects on the strain state and electrical transport of epitaxial La{sub 5/8-y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sixia; Wang, Haibo; Dong, Yongqi; Hong, Bing; He, Hao; Bao, Jun [National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Haoliang [CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yang, Yuanjun; Luo, Zhenlin, E-mail: zlluo@ustc.edu.cn; Yang, Mengmeng; Gao, Chen, E-mail: cgao@ustc.edu.cn [National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-06-15

    Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in La{sub 5/8-y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001){sub pc} SrTiO{sub 3} (tensile strain), LaAlO{sub 3} (compressive strain) and NdGaO{sub 3} (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from −1.5% to −0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films.

  4. Substrate-dependent post-annealing effects on the strain state and electrical transport of epitaxial La5/8-yPryCa3/8MnO3 films

    International Nuclear Information System (INIS)

    Hu, Sixia; Wang, Haibo; Dong, Yongqi; Hong, Bing; He, Hao; Bao, Jun; Huang, Haoliang; Yang, Yuanjun; Luo, Zhenlin; Yang, Mengmeng; Gao, Chen

    2014-01-01

    Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in La 5/8-y Pr y Ca 3/8 MnO 3 (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001) pc SrTiO 3 (tensile strain), LaAlO 3 (compressive strain) and NdGaO 3 (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from −1.5% to −0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films

  5. Thermodynamic Properties, Hysteresis Behavior and Stress-Strain Analysis of MgH2 Thin Films, Studied over a Wide Temperature Range

    Directory of Open Access Journals (Sweden)

    Yevheniy Pivak

    2012-06-01

    Full Text Available Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333 K to 545 K. The enthalpy and entropy of hydride decomposition, ∆Hdes = −78.3 kJ/molH2, ∆Sdes = −136.1 J/K molH2, estimated from the Van't Hoff analysis, are in good agreement with bulk results, while the absorption thermodynamics, ∆Habs = −61.6 kJ/molH2, ∆Sabs = −110.9 J/K molH2, appear to be substantially affected by the clamping of the film to the substrate. The clamping is negligible at high temperatures, T > 523 K, while at lower temperatures, T < 393 K, it is considerable. The hysteresis at room temperature in Mg/Ta/Pd films increases by a factor of 16 as compared to MgH2 bulk. The hysteresis increases even further in Mg/Pd films, most likely due to the formation of a Mg-Pd alloy at the Mg/Pd interface. The stress–strain analysis of the Mg/Ta/Pd films at 300–333 K proves that the increase of the hysteresis occurs due to additional mechanical work during the (de-hydrogenation cycle. With a proper temperature correction, our stress–strain analysis quantitatively and qualitatively explains the hysteresis behavior in thin films, as compared to bulk, over the whole temperature range.

  6. Tensile strain induced narrowed bandgap of TiO{sub 2} films: Utilizing the two-way shape memory effect of TiNiNb substrate and in-situ mechanical bending

    Energy Technology Data Exchange (ETDEWEB)

    Du, Minshu, E-mail: dms1223@126.com [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China); Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas, 78712 (United States); Cui, Lishan; Wan, Qiong [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China)

    2016-05-15

    Graphical abstract: - Highlights: • Imposed tensile strain to anatase TiO{sub 2} nanofilm by using the two-way shape memory effect of NiTiNb substrate. • Imposed tensile strain to rutile TiO{sub 2} thin film by in-situ mechanical bending. • Tauc plot based on the PEC-tested auction spectrum was utilized to precisely determine the bandgap of TiO{sub 2}. • Tensile strain narrowed the bandgap of anatase TiO{sub 2} by 60 meV and rutile TiO{sub 2} by 70 meV. • Tensile strain contributes to a 1.5 times larger photocurrent for the water oxidation reaction. - Abstract: Elastic strain is one of the methods to alter the band gap of semiconductors. However, relevant experimental work is limited due to the difficulty in imposing strain. Two new methods for imposing tensile strain to TiO{sub 2} film were introduced here. One is by utilizing the two-way shape memory effect of NiTiNb substrate, and the other method is in-situ mechanical bending. The former method succeeded in imposing 0.4% tensile strain to anatase TiO{sub 2} nanofilm, and strain narrowed the bandgap of TiO{sub 2} by 60 meV. The latter method enabled rutile TiO{sub 2} thin film under the 0.5% biaxially tensile-strained state, which contributes to a narrowed bandgap with ΔE{sub g} of 70 meV. Also, photocurrents of both strained TiO{sub 2} films increased by 1.5 times compared to the strain-free films, which indirectly verified the previous DFT prediction proposed by Thulin and Guerra in 2008 that tensile strain could improve the mobility and separation of photo-excite carriers.

  7. Relaxation of a strained 3C-SiC(1 1 1) thin film on silicon by He+ and O+ ion beam defect engineering

    International Nuclear Information System (INIS)

    Häberlen, M.; Murphy, B.; Stritzker, B.; Lindner, J.K.N.

    2012-01-01

    In this paper we report on the successful reduction of tensile strain in a thin strained ion-beam synthesized 3C-SiC(1 1 1) layer on silicon. The creation of a near-interface defect structure consisting of nanometric voids and stacking fault type defects by He ion implantation and subsequent annealing yields significant relaxation in the top SiC film. The microstructure of the defect layer is studied by transmission electron microscopy, and the strain state of the 3C-SiC layer was studied by high-resolution X-ray diffraction in a parallel beam configuration. Typical process conditions for the growth of GaN films on the SiC layer were emulated by high temperature treatments in a rapid thermal annealer or a quartz tube furnace. It is found that prolonged annealing at high temperatures leads to ripening of the voids and to a weaker reduction of the tensile strain. It is shown that this problem can be overcome by the co-implantation of oxygen ions to form highly thermally stable void/extended defect structures.

  8. Effect of aluminum doping on the high-temperature stability and piezoresistive response of indium tin oxide strain sensors

    International Nuclear Information System (INIS)

    Gregory, Otto J.; You, Tao; Crisman, Everett E.

    2005-01-01

    Ceramic strain sensors based on reactively sputtered indium tin oxide (ITO) thin films doped with aluminum are being considered to improve the high-temperature stability and response. Ceramic strain sensors were developed to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500 deg C. Earlier studies using electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum oxide increase the stability of ITO at elevated temperature. The resulting ESCA depth files showed the presence of two new indium-indium peaks at 448.85 and 456.40 eV, corresponding to the indium 3d5 and 3d3 binding energies. These binding energies are significantly higher than those associated with stoichiometric indium oxide. Based on these studies, a combinatorial chemistry approach was used to screen large numbers of possible concentrations to optimize the stability and performance of Al-doped ceramic strain sensors. Scanning electron microscopy was used to analyze the combinatorial libraries in which varying amounts of aluminum were incorporated into ITO films formed by cosputtering from multiple targets. Electrical stability and piezoresistive response of these films were compared to undoped ITO films over the same temperature range

  9. Heteroepitaxial growth of strained multilayer superconducting thin films of Nd1.83Ce0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gupta, A.; Gross, R.; Olsson, E.; Segmueller, A.; Koren, G.; Tsuei, C.C.

    1990-01-01

    Heteroepitaxial growth of strained multilayer thin films of YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x by pulsed-laser deposition is reported. The coherency strain results in biaxial compression of the tetragonal Nd 1.83 Ce 0.17 CuO x layers, whereas the biaxial tension in the YBa 2 Cu 3 O 7-δ layers removes the orthorhombic distortion and makes the unit cell isotropic in the basal plane (a=b). Depending on their oxygen content, either the YBa 2 Cu 3 O 7-δ or the Nd 1.83 Ce 0.17 CuO x layers are superconducting in these multilayers. The strain-induced structural modification has a significant influence on the superconducting transition temperature of the YBa 2 Cu 3 O 7-δ layers

  10. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  11. Final Report for Award DE-SC0005403. Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, Joshua L. [Univ. of Delaware, Newark, DE (United States); Prasad, Ajay K. [Univ. of Delaware, Newark, DE (United States)

    2015-09-06

    The enclosed document provides a final report to document the research performed at the University of Delaware under Grant DE-SC0005403: Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping. The ultimate goal of this project was to learn how to systematically strain the inter-atomic distance in thin ceramic films and how to use this newfound control to improve the ease by which oxygen ions can conduct through the films. Increasing the ionic conductivity of ceramics holds the promise of drastic improvements in the performance of solid oxide fuel cells, chemical sensors, gas permeation membranes, and related devices. Before this work, the experimental evidence advocating for strain-based techniques was often controversial and poorly characterized. Enabling much of this work was a new method to quickly create a very wide range of ceramic nanostructures that was established during the first phase of the project. Following this initial phase, we created a variety of promising nanostructured epitaxial films and multilayers with systematic variations in lattice mismatch and dopant content. Over the course of the work, a positive effect of tensile atomic strain on the oxygen conductivity was conclusively found using a few different forms of samples and experimental techniques. The samples were built by sputtering, an industrially scalable technique, and thus the technological implementation of these results may be economically feasible. Still, two other results consistently achieved over multiple efforts in this work give pause. The first of these results was that very specific, pristine surfaces upon which to build the nanostructures were strictly required in order to achieve measurable results. The second of these results was that compressively strained films with concomitant reductions in oxygen conductivity are much easier to obtain relative to tensile-strained films with increased conductivity.

  12. Interdiffusion effect on strained La0.8Ba0.2MnO3 thin films by off-axis sputtering on SrTiO3 (100) substrates

    International Nuclear Information System (INIS)

    Chou, Hsiung; Hsu, S. G.; Lin, C. B.; Wu, C. B.

    2007-01-01

    Strained La 0.8 Ba 0.2 MnO 3 thin films on SrTiO 3 (100) substrate are grown by an off-axis sputtering technique. It is found that the ferromagnetic temperature T C increases for thinner films. Secondary ion mass spectroscopy indicates that Sr diffuses partially into the film, making it structurally nonuniform. The region close to the film/substrate interface acts as La 1-x (Sr y Ba 1-y ) x MnO 3 with a near negligible y for the as grown film and a non-negligible amount of y for the high-temperature postannealed film. The enhancement of T C is attributed to the combination of the strain and interdiffusion effects

  13. Interdiffusion effect on strained La0.8Ba0.2MnO3 thin films by off-axis sputtering on SrTiO3 (100) substrates

    Science.gov (United States)

    Chou, Hsiung; Hsu, S. G.; Lin, C. B.; Wu, C. B.

    2007-02-01

    Strained La0.8Ba0.2MnO3 thin films on SrTiO3 (100) substrate are grown by an off-axis sputtering technique. It is found that the ferromagnetic temperature TC increases for thinner films. Secondary ion mass spectroscopy indicates that Sr diffuses partially into the film, making it structurally nonuniform. The region close to the film/substrate interface acts as La1-x(SryBa1-y)xMnO3 with a near negligible y for the as grown film and a non-negligible amount of y for the high-temperature postannealed film. The enhancement of TC is attributed to the combination of the strain and interdiffusion effects.

  14. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  15. Strain in epitaxial high-index Bi{sub 2}Se{sub 3}(221) films grown by molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Chen, Weiguang [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Guo, Xin; Ho, Wingkin [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong); Dai, Xianqi [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang, Henan 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Jia, Jinfeng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures, Department of Physics and Astronomy, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240 (China); Xie, Maohai, E-mail: mhxie@hku.hk [Physics Department, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2017-02-28

    Highlights: • High-index, off c-axis, Bi{sub 2}Se{sub 3} has been grown by molecular beam epitaxy on In{sub 2}Se{sub 3}. • A retarded strain relaxation process in such high-index Bi{sub 2}Se{sub 3} is observed, enabling experimentally probe strain effect on topological insulators. • It has been shown by calculation that the Dirac electrons participate in chemical bonding at the heterointerface. - Abstract: High-index Bi{sub 2}Se{sub 3}(221) film has been grown on In{sub 2}Se{sub 3}-buffered GaAs(001), in which a much retarded strain relaxation dynamics is recorded. The slow strain-relaxation process of in epitaxial Bi{sub 2}Se{sub 3}(221) can be attributed to the layered structure of Bi{sub 2}Se{sub 3} crystal, where the epifilm grown along [221] is like a pile of weakly-coupled quintuple layer slabs stacked side-by-side on substrate. Finally, we reveal strong chemical bonding at the interface of Bi{sub 2}Se{sub 3} and In{sub 2}Se{sub 3} by plotting differential charge contour calculated by first-principle method. This study points to the feasibility of achieving strained TIs for manipulating the properties of topological systems.

  16. Influence of piezoelectric strain on the Raman spectra of BiFeO{sub 3} films deposited on PMN-PT substrates

    Energy Technology Data Exchange (ETDEWEB)

    Himcinschi, Cameliu, E-mail: himcinsc@physik.tu-freiberg.de; Talkenberger, Andreas; Kortus, Jens [TU Bergakademie Freiberg, Institute of Theoretical Physics, 09596 Freiberg (Germany); Guo, Er-Jia [Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Germany); Institute for Metallic Materials, IFW Dresden, 01069 Dresden (Germany); Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Dörr, Kathrin [Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Germany); Institute for Metallic Materials, IFW Dresden, 01069 Dresden (Germany)

    2016-01-25

    BiFeO{sub 3} epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.28PbTiO{sub 3} (PMN-PT) substrates with a conductive buffer layer (La{sub 0.7}Sr{sub 0.3}MnO{sub 3} or SrRuO{sub 3}) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using the Poisson's number for BiFeO{sub 3}, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.

  17. Studies on strain relaxation of La{sub 0.5}Ba{sub 0.5}MnO{sub 3} film by normal and grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiou [Hangzhou Dianzi University, Institute of Materials Physics, Hangzhou (China); Tan, Weishi [Hunan City University, College of Communication and Electronic Engineering, Yiyang (China); Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, Department of Applied Physics, Ministry of Education, Nanjing (China); Liu, Hao [Suzhou Institute of Industrial Technology, Department of Electronic and Communication Engineering, Suzhou (China); Cao, Mengxiong; Wang, Xingyu; Ma, Chunlin [Nanjing University of Science and Technology, Key Laboratory of Soft Chemistry and Functional Materials, Department of Applied Physics, Ministry of Education, Nanjing (China); Jia, Quanjie [The Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2017-03-15

    Perovskite manganite La{sub 0.5}Ba{sub 0.5}MnO{sub 3} (LBMO) films were deposited on (001)-oriented single-crystal SrTiO{sub 3} (STO) substrates by pulsed laser deposition. High-resolution X-ray diffraction and grazing incidence X-ray diffraction techniques were applied to characterize the crystal structure and lattice strain of LBMO films. The in-plane and out-of-plane growth orientations of LBMO films with respect to substrate surface have been studied. The epitaxial orientation relationship LBMO (001) [100] //STO (001) [100] exists at the LBMO/STO interface. The lattice strain of LBMO film begins to relax with the thickness of LBMO film up to 12 nm. When the thickness is further increased up to 43 nm, the film is in fully strain-relaxed state. Jahn-Teller strain plays an important role in LBMO/STO system. The mechanism for strain relaxation is in accordance with that of tetragonal distortion. (orig.)

  18. Thickness dependence of the strain, band gap and transport properties of epitaxial In{sub 2}O{sub 3} thin films grown on Y-stabilised ZrO{sub 2}(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K H L; Oropeza, F E; Egdell, R G [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lazarov, V K [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Veal, T D; McConville, C F [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Walsh, A, E-mail: Russell.egdell@chem.ox.ac.uk [Department of Chemistry, Kathleen Lonsdale Materials Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2011-08-24

    Epitaxial films of In{sub 2}O{sub 3} have been grown on Y-stabilised ZrO{sub 2}(111) substrates by molecular beam epitaxy over a range of thicknesses between 35 and 420 nm. The thinnest films are strained, but display a 'cross-hatch' morphology associated with a network of misfit dislocations which allow partial accommodation of the lattice mismatch. With increasing thickness a 'dewetting' process occurs and the films break up into micron sized mesas, which coalesce into continuous films at the highest coverages. The changes in morphology are accompanied by a progressive release of strain and an increase in carrier mobility to a maximum value of 73 cm{sup 2} V{sup -1} s{sup -1}. The optical band gap in strained ultrathin films is found to be smaller than for thicker films. Modelling of the system, using a combination of classical pair-wise potentials and ab initio density functional theory, provides a microscopic description of the elastic contributions to the strained epitaxial growth, as well as the electronic effects that give rise to the observed band gap changes. The band gap increase induced by the uniaxial compression is offset by the band gap reduction associated with the epitaxial tensile strain.

  19. Absence of low temperature phase transitions and enhancement of ferroelectric transition temperature in highly strained BaTiO{sub 3} epitaxial films grown on MgO Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satish; Kumar, Dhirendra; Sathe, V. G., E-mail: vasant@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Kumar, Ravi; Sharma, T. K. [Semiconductor Physics and Devices Lab, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2015-04-07

    Recently, a large enhancement in the ferroelectric transition temperature of several oxides is reported by growing the respective thin films on appropriate substrates. This phenomenon is correlated with high residual strain in thin films often leading to large increase in the tetragonality of their crystal structure. However, such an enhancement of transition temperature is usually limited to very thin films of ∼10 nm thickness. Here, we report growth of fully strained epitaxial thin films of BaTiO{sub 3} of 400 nm thickness, which are coherently grown on MgO substrates by pulsed laser deposition technique. Conventional high resolution x-ray diffraction and also the reciprocal space map measurements confirm that the film is fully strained with in-plane tensile strain of 5.5% that dramatically increases the tetragonality to 1.05. Raman measurements reveal that the tetragonal to cubic structural phase transition is observed at 583 K, which results in an enhancement of ∼200 K. Furthermore, temperature dependent Raman studies on these films corroborate absence of all the low temperature phase transitions. Numerical calculations based on thermodynamical model predict a value of the transition temperature that is greater than 1500 °C. Our experimental results are therefore in clear deviation from the existing strain dependent phase diagrams.

  20. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    Science.gov (United States)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in certain cases, to have similar energy conversion efficiencies, ceramics are more promising in strain-driven NGs while polymers are more promising for stress-driven NGs

  1. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  2. A-Site Cation Substitutions in Strained Y-Doped BaZrO3 Multilayer Films Leading to Fast Proton Transport Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aruta, Carmela [Univ. of Roma Tor Vergata, Rome (Italy); Han, Chu [Georgia Inst. of Technology, Atlanta, GA (United States); Zhou, Si [Dalian Univ. of Technology, Dalian (China); Cantoni, Claudia [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Nan [Univ. of Roma Tor Vergata, Rome (Italy); Tebano, Antonello [Univ. of Roma Tor Vergata, Rome (Italy); Lee, Tien -Lin [Diamond Light Source Ltd., Didcot (United Kingdom); Schlueter, Christoph [Diamond Light Source Ltd., Didcot (United Kingdom); Bongiorno, Angelo [College of Staten Island, Staten Island, NY (United States); The Graduate Center of the City Univ. of New York, New York, NY (United States)

    2016-03-31

    Proton-conducting perovskite oxides form a class of solid electrolytes for novel electrochemical devices operating at moderate temperatures. Here, we use hard X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory calculations to investigate the structure and elucidate the origin of the fast proton transport properties of strained ultrathin films of Y-doped BaZrO3 grown by pulsed lased deposition on NdGaO3. Our study shows that our BaZr0.8Y0.2O3 films incorporate a significant amount of Y dopants, and to a lesser extent also Zr ions, substituting for Ba2+, and that these substitutional defects agglomerate forming columnar regions crossing vertically from the surface to the interface the entire film. In conclusion, our calculations also show that, in regions rich in Y substitutions for both Zr and Ba, the proton transfer process involves nearly zero-energy barriers, indicating that A-site cation substitutions by Y lead to fast transport pathways and hence are responsible for the previously observed enhanced values of the proton conductivity of these perovskite oxide films.

  3. Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films.

    Science.gov (United States)

    Mukherjee, Anamitra; Cole, William S; Woodward, Patrick; Randeria, Mohit; Trivedi, Nandini

    2013-04-12

    We show that applying strain on half-doped manganites makes it possible to tune the system to the proximity of a metal-insulator transition and thereby generate a colossal magnetoresistance (CMR) response. This phase competition not only allows control of CMR in ferromagnetic metallic manganites but can be used to generate CMR response in otherwise robust insulators at half-doping. Further, from our realistic microscopic model of strain and magnetotransport calculations within the Kubo formalism, we demonstrate a striking result of strain engineering that, under tensile strain, a ferromagnetic charge-ordered insulator, previously inaccessible to experiments, becomes stable.

  4. Structure and switching of in-plane ferroelectric nano-domains in strained PbxSr1-xTiO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Sylivia [University of Groningen, The Netherlands; Nesterov, Okeksiy [ORNL; Rispens, Gregory [University of Groningen, The Netherlands; Heuver, J. A. [University of Groningen, The Netherlands; Bark, C [University of Wisconsin, Madison; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Noheda, Beatriz [University of Groningen, The Netherlands

    2014-01-01

    Nanoscale ferroelectrics, the active elements of a variety of nanoelectronic devices, develop denser and richer domain structures than the bulk counterparts. With shrinking device sizes understanding and controlling domain formation in nanoferroelectrics is being intensely studied. Here we show that a precise control of the epitaxy and the strain allows stabilizing a hierarchical domain architecture in PbxSr1-xTiO3 thin films, showing periodic, purely in-plane polarized, ferroelectric nano-domains that can be switched by a scanning probe.

  5. Critical current density of strained multilayer thin films of Nd1.83Ce0.17CuOx/YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gross, R.; Gupta, A.; Olsson, E.; Segmueller, A.; Koren, G.

    1990-01-01

    The superconducting transport properties of strained multilayer thin films of YBa 2 Cu 3 O 7-δ / Nd 1.83 Ce 0.17 CuO x , grown heteroepitaxially by laser ablation deposition, are reported. For individual layer thicknesses below a critical layer thickness of about 250 A, coherency strain removes the orthorhombic distortion in the YBa 2 Cu 3 O 7-δ layers and makes them twin-free. Zero-field critical current densities as high as 1.1x10 7 A/cm 2 at 77 K have been measured for the YBa 2 Cu 3 O 7-δ layers. Flux pinning energies at zero temperature and zero magnetic field in the range of 80--140 meV have been found

  6. Comparative study on the roles of anisotropic epitaxial strain and chemical doping in inducing the antiferromagnetic insulator phase in manganite films

    Science.gov (United States)

    Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Wang, Lingfei; Gao, Guanyin; Xu, Haoran; Chen, Binbin; Chen, Feng; Lu, Qingyou; Wu, Wenbin

    2017-11-01

    Epitaxial strain and chemical doping are two different methods that are commonly used to tune the physical properties of epitaxial perovskite oxide films, but their cooperative effects are less addressed. Here we try to tune the phase separation (PS) in (La1-xP rx) 2 /3C a1 /3Mn O3 (0 ≤x ≤0.4 , LPCMO) films via cooperatively controlling the anisotropic epitaxial strain (AES) and the Pr doping. These films are grown simultaneously on NdGa O3(110 ) ,(LaAlO3) 0.3(SrAl0.5Ta0.5O3 ) 0.7(001 ) , and NdGa O3(001 ) substrates with progressively increased in-plane AES, and probed by x-ray diffraction, magnetotransport, and magnetic force microscopy (MFM) measurements. Although it is known that for x =0 the AES can enhance the orthorhombicity of the films yielding a phase diagram with the antiferromagnetic charge-ordered insulator (AF-COI) state induced, which is quite different from the bulk one, we illustrate that the Pr doping can further drive the films towards a more robust COI state. This cooperative effect is reflected by the increasing magnetic fields needed to melt the COI phase as a function of AES and the doping level. More strikingly, by directly imaging the phase competition morphology of the LPCMO /NdGa O3(001 ) films via MFM, we find that during COI melting the PS domain structure is subject to both AES and the quenched disorder. However, in the reverse process, as the magnetic field is decreased, the COI phase reappears and the AES dominates leaving a crystalline-orientation determined self-organized microstructure. This finding suggests that the PS states and the domain configurations can be selectively controlled by the AES and/or the quenched disorder, which may shed some light on the engineering of PS domains for device fabrications.

  7. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  8. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  9. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  10. Surface polarization, rumpling, and domain ordering of strained ultrathin BaTiO_3(001) films with in-plane and out-of-plane polarization

    International Nuclear Information System (INIS)

    Dionot, Jelle; Mathieu, Claire; Barrett, Nick; Geneste, Gregory

    2014-01-01

    BaTiO_3 ultrathin films (thickness ≅1.6 nm) with in- and out-of-plane polarization are studied by first-principles calculations. Out-of-plane polarization is simulated using the method proposed by Shimada et al. [Phys. Rev. B 81, 144116 (2010)], which consists in building a supercell containing small domains with alternating up and down polarization. This allows one to investigate the properties of defect free BaTiO_3 ultrathin films with polarization perpendicular to the surface, as a function of in-plane lattice constant, i.e., epitaxial strain. The configurations with polarization perpendicular to the surface (c phase) are found stable under compressive strain, while under tensile strain, the polarization tends to lie in-plane (aa phase), along [110]. In the c phase, the most stable domain width is predicted to be 1 to 2 lattice constants, and the magnitude of the surface rumpling varies according to the direction of the polarization (upwards versus downwards), though its sign is unchanged, the oxygen anions pointing in all cases outwards. Finally, all the surfaces studied are found to be insulating. Analysis of the atom-projected electronic density of states gives insight into the surface contributions to the electronic structure. An important reduction of the Kohn-Sham band gap is predicted at TiO_2 terminations in the c phase (≅1 eV with respect to the aa phase). The Madelung potential at the surface plays the dominant role in modifications of the surface electronic structure. (authors)

  11. Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 wt.% SnO2-doped In2O3 ceramic target

    International Nuclear Information System (INIS)

    Kim, Sang Hyeob; Park, Nae-Man; Kim, TaeYoub; Sung, GunYong

    2005-01-01

    We have investigated the effect of the oxygen pressure and the deposition temperature on the electrical and optical properties of the Sn-doped indium oxide (ITO) films on quartz glass substrate by pulsed laser deposition (PLD) using a 10 wt.% SnO 2 -doped In 2 O 3 target. The resistivity and the carrier concentration of the films were decreased due to the decrease of the oxygen vacancy while increasing the oxygen pressure. With increasing deposition temperature, the resistivity of the films was decreased and the carrier concentration was increased due to the grain growth and the enhancement of the Sn diffusion. We have optimized the PLD process to deposit a highly conductive and transparent ITO film, which shows the optical transmittance of 88% and the resistivity of 2.49x10 -4 Ω cm for the film thickness of 180 nm

  12. Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds.

    Science.gov (United States)

    Romo-Uribe, Angel; Meneses-Acosta, Angelica; Domínguez-Díaz, Maraolina

    2017-12-01

    Sterilization, cytotoxicity and cell viability are essential properties defining a material for medical applications and these characteristics were investigated for poly(β-hydroxybutyrate) (PHB) of 230kDa obtained by bacterial synthesis from a mutant strain of Azotobacter vinelandii. Cell viability was investigated for two types of PHB scaffolds, solution cast films and non-woven electrospun fibrous membranes, and the efficiency was compared against a culture dish. The biosynthesized PHB was sterilized by ultraviolet radiation and autoclave, it was found that the thermal properties and intrinsic viscosity remained unchanged indicating that the sterilization methods did not degrade the polymer. Sterilized scaffolds were then seeded with human embryonic kidney 293 (HEK 293) cells to evaluate the cytotoxic response. The cell viability of these cells was evaluated for up to six days, and the results showed that the cell morphology was normal, with no cytotoxic effects. The films and electrospun membranes exhibited over 95% cell viability whereas the viability in culture dishes reached only ca. 90%. The electrospun membrane, however, exhibited significantly higher cell density than the cast film suggesting that the fibrous morphology enables better nutrients transfer. The results indicate that the biosynthesized PHB stands UV and autoclave sterilization methods, it is biocompatible and non-toxic for cell growth of human cell lines. Furthermore, cell culture for up to 18 days showed that 62% and 90% of mass was lost for the film and fibrous electrospun scaffold, respectively. This is a favorable outcome for use in tissue engineering where material degradation, as tissue regenerates, is desirable. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Giant electroresistance in strained ultrathin La0.67Sr0.33MnO3 films

    Science.gov (United States)

    Kwak, In Hae; Shakya, Ambika; Paykar, Ashkan; Lacera Otalora, Hector; Biswas, Amlan

    We investigated the effect of an electric current on the transport properties of microstructured La0.67Sr0.33MnO3 (LSMO) thin films. Pulsed laser deposition was used to grow atomically smooth thin films of LSMO on singly terminated SrTiO3 (STO) substrates. The microstructure pattern was designed to restrict conduction either in the direction or across the unit cell steps on the atomically smooth surfaces. Previous experiments on these thin films had suggested possible phase separation due to charge ordering near the step edges. We will present evidence that this charge ordered state can be modified by an electric current leading to large electroresistance of upto 95% for a 1 µA current which is comparable to magnetoresistance values at 4 T. Interestingly, the electoresistance was large (about 65 %) even at room temperature when the current was applied along the step directions. Our results suggest possible use of ultrathin LSMO films as resistance switching devices at room temperature. NSF-DMR 1410237.

  14. Metallizing of machinable glass ceramic

    International Nuclear Information System (INIS)

    Seigal, P.K.

    1976-02-01

    A satisfactory technique has been developed for metallizing Corning (Code 9658) machinable glass ceramic for brazing. Analyses of several bonding materials suitable for metallizing were made using microprobe analysis, optical metallography, and tensile strength tests. The effect of different cleaning techniques on the microstructure and the effect of various firing temperatures on the bonding interface were also investigated. A nickel paste, used for thick-film application, has been applied to obtain braze joints with strength in excess of 2000 psi

  15. Applications of sol gel ceramic coatings

    International Nuclear Information System (INIS)

    Barrow, D.

    1996-01-01

    The sol gel method is a chemical technique in which polycrystalline ceramic films are fabricated from a solution of organometallic precursors. The technique is attractive for many industrial applications because it is a simple (films are processed in air), flexible (can be used to coat complex geometries) and cost effective (does not require expensive equipment) process. In addition, dense, high quality coatings can be achieved at much lower temperatures than is generally required for sintering bulk ceramics. In this paper the conventional sol gel method and the new datec process are reviewed and potential applications of sol gel coatings in automotive, aerospace, petrochemical, nuclear and electronic industries are discussed. (orig.)

  16. X-ray diffraction and X-ray absorption of strained CoO and MnO thin films

    NARCIS (Netherlands)

    Csiszár, Szilárd Istvan; Tjeng, L.H

    2005-01-01

    The aim of this project was to study the influence of epitaxial strain on the electronic and magnetic structure of transition metal oxide layers. In the first part of the thesis the discovery of characteristic diffuse X-ray scattering patterns is reported. They are caused by the misfit dislocations,

  17. Industrial ceramics

    International Nuclear Information System (INIS)

    Mengelle, Ch.

    1999-04-01

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO 2 and PuO 2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  18. Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Vaxelaire, N; Labat, S; Thomas, O [Aix-Marseille University, IM2NP, FST avenue Escadrille Normandie Niemen, F-13397 Marseille Cedex (France); Proudhon, H; Forest, S [MINES ParisTech, Centre des materiaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Kirchlechner, C; Keckes, J [Erich Schmid Institute for Material Science, Austrian Academy of Science and Institute of Metal Physics, University of Leoben, Jahnstrasse 12, 8700 Leoben (Austria); Jacques, V; Ravy, S [Synchrotron SOLEIL, L' Orme des merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France)], E-mail: nicolas.vaxelaire@univ-cezanne.fr

    2010-03-15

    Coherent x-ray diffraction is used to investigate the mechanical properties of a single grain within a polycrystalline thin film in situ during a thermal cycle. Both the experimental approach and finite element simulation are described. Coherent diffraction from a single grain has been monitored in situ at different temperatures. This experiment offers unique perspectives for the study of the mechanical properties of nano-objects.

  19. Methodology for studying strain inhomogeneities in polycrystalline thin films during in situ thermal loading using coherent x-ray diffraction

    International Nuclear Information System (INIS)

    Vaxelaire, N; Labat, S; Thomas, O; Proudhon, H; Forest, S; Kirchlechner, C; Keckes, J; Jacques, V; Ravy, S

    2010-01-01

    Coherent x-ray diffraction is used to investigate the mechanical properties of a single grain within a polycrystalline thin film in situ during a thermal cycle. Both the experimental approach and finite element simulation are described. Coherent diffraction from a single grain has been monitored in situ at different temperatures. This experiment offers unique perspectives for the study of the mechanical properties of nano-objects.

  20. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates

    International Nuclear Information System (INIS)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-01-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  1. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  2. Structural and electrical properties of NASICON type solid electrolyte nanoscaled glass-ceramic powder by mechanical milling for thin film batteries.

    Science.gov (United States)

    Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won

    2013-05-01

    During last two decades, lithium-based glasses have been studied extensively as electrolytes for solid-state secondary batteries. For practical use, solid electrolyte must have high ionic conductivity as well as chemical, thermal and electrochemical stability. Recent progresses have focused on glass electrolytes due to advantages over crystalline solid. Glass electrolytes are generally classified into two types oxide glass and sulfide glass. Oxide glasses do not react with electrode materials and this chemical inertness is advantageous for cycle performances of battery. In this study, major effort has been focused on the improvement of the ion conductivity of nanosized LiAlTi(PO4)3 oxide electrolyte prepared by mechanical milling (MM) method. After heating at 1000 degrees C the material shows good crystallinity and ionic conductivity with low electronic conductivity. In LiTi2(PO4)3, Ti4+ ions are partially substituted by Al3+ ions by heat-treatment of Li20-Al2O3-TiO2-P2O5 glasses at 1000 degrees C for 10 h. The conductivity of this material is 1.09 x 10(-3) S/cm at room temp. The glass-ceramics show fast ion conduction and low E(a) value. It is suggested that high conductivity, easy fabrication and low cost make this glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li rechargeable batteries.

  3. Colossal anisotropic resistivity and oriented magnetic domains in strained La{sub 0.325}Pr{sub 0.3}Ca{sub 0.375}MnO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Yang, Shengwei; Liu, Yukuai; Zhao, Wenbo; Feng, Lei; Li, Xiaoguang, E-mail: lixg@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou, Haibiao; Lu, Qingyou [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031 (China)

    2014-05-19

    Magnetic and resistive anisotropies have been studied for the La{sub 0.325}Pr{sub 0.3}Ca{sub 0.375}MnO{sub 3} films with different thicknesses grown on low symmetric (011)-oriented (LaAlO{sub 3}){sub 0.3}(SrAl{sub 0.5}Ta{sub 0.5}O{sub 3}){sub 0.7} substrates. In the magnetic and electronic phase separation region, a colossal anisotropic resistivity (AR) of ∼10{sup 5}% and an anomalous large anisotropic magnetoresistance can be observed for 30 nm film. However, for 120 nm film, the maximum AR decreases significantly (∼2 × 10{sup 3}%) due to strain relaxation. The colossal AR is strongly associated with the oriented formation of magnetic domains, and the features of the strain effects are believed to be useful for the design of artificial materials and devices.

  4. Formulation of nano-ceramic filters used in separation of heavy metals . Part II: Zirconia ceramic filters

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou EI-Nour, F.H.; Abdel-Kbalik, M.

    2007-01-01

    Zirconia ceramic filters are prepared using polymeric sol-gel process. An optimization of synthesis parameters was studied to give cracked free coated nano porous film with high performance quality. Zirconia ceramic filters are characterized to select tbe optimized conditions that give tbe suitable zirconia filter used in heavy metal separation. The ceramic filters were characterized using BET method for surface measurements, mercury porosimeter for pore size distribution analysis and coating thickness measurements, SEM for microstructural studies and atomic absorption spectrophotometer (AAS) for metal analysis. The results indicated that zirconia ceramic filters. show high separation performance for cadmium, cupper, iron, manganese and lead

  5. Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates

    International Nuclear Information System (INIS)

    Lee, Jung-Min; Choi, Byung-Hyun; Ji, Mi-Jung; An, Yong-Tae; Park, Jung-Ho; Kwon, Jae-Hong; Ju, Byeong-Kwon

    2009-01-01

    In this paper, the electrical, structural and optical properties of indium tin oxide (ITO) films deposited on soda lime glass (SLG) haven been investigated, along with high strain point glass (HSPG) substrate, through radio frequency magnetron sputtering using a ceramic target (In 2 O 3 :SnO 2 , 90:10 wt.%). The ITO films deposited on the SLG show a high electrical resistivity and structural defects compared with those deposited on HSPG due to the Na ions from the SLG diffusing to the ITO film by annealing. However, these properties can be improved by intercalating a barrier layer of SiO 2 or Al 2 O 3 between the ITO film and the SLG substrate. SIMS analysis has confirmed that the barrier layer inhibits the Na ion's diffusion from the SLG. In particular, the ITO films deposited on the Al 2 O 3 barrier layer, show better properties than those deposited on the SiO 2 barrier layer.

  6. Dielectric silicone elastomers with mixed ceramic nanoparticles

    International Nuclear Information System (INIS)

    Stiubianu, George; Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian; Ignat, Mircea

    2015-01-01

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles

  7. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  8. Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO{sub 2}-host by Pb-implantation: XPS-and-DFT characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, D.A. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Boukhvalov, D.W., E-mail: danil@hanyang.ac.kr [Department of Chemistry, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Gavrilov, N.V. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 620990 Yekaterinburg (Russian Federation); Zatsepin, A.F. [Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation); Shur, V.Ya.; Esin, A.A. [Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave, 620000 Yekaterinburg (Russian Federation); Kim, S.S. [School of Materials Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Kurmaev, E.Z. [M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, 620002 Yekaterinburg (Russian Federation)

    2017-04-01

    Highlights: • Experiment and theory demonstrate significant difference between patterns of Pb-ion implantation in TiO{sub 2}. • In bulk TiO{sub 2} Pb-impurities leads formation of PbO phase. • On the surface of TiO{sub 2}:Pb occur formation of PbxOy configurations. • In both bulk and surface TiO{sub 2}:Pb occur decreasing of the bandgap by shift of valence band about 1 eV up. - Abstract: The results of combined experimental and theoretical study of substitutional and clustering effects in the structure of Pb-doped TiO{sub 2}-hosts (bulk ceramics and thin-film morphologies) are presented. Pb-doping of the bulk and thin-film titanium dioxide was made with the help of pulsed ion-implantation without posterior tempering (Electronic Structure Modulation Mode). The X-ray photoelectron spectroscopy (XPS) qualification of core-levels and valence bands and Density-Functional Theory (DFT) calculations were employed in order to study the yielded electronic structure of Pb-ion modulated TiO{sub 2} host-matrices. The combined XPS-and-DFT analysis has agreed definitely with the scenario of the implantation stimulated appearance of PbO-like structures in the bulk morphology of TiO{sub 2}:Pb, whereas in thin-film morphology the PbO{sub 2}-like structure becomes dominating, essentially contributing weak O/Pb bonding (Pb{sub x}O{sub y} defect clusters). The crucial role of the oxygen hollow-type vacancies for the process of Pb-impurity “insertion” into the structure of bulk TiO{sub 2} was pointed out employing DFT-based theoretical background. Both experiment and theory established clearly the final electronic structure re-arrangement of the bulk and thin-film morphologies of TiO{sub 2} because of the Pb-modulated deformation and shift of the initial Valence Base-Band Width about 1 eV up.

  9. Creep fracture and creep-fatigue fracture in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Suresh, S.

    1993-01-01

    This paper summarizes recent advances in the areas of subcritical crack growth in ceramics subjected to static and cyclic loads at elevated temperatures. Attention is devoted to the specific role of pre-existing and in-situ-formed glass films in influencing creep fracture and creep-fatigue fracture. Experimental results on the effects of cyclic frequency and load ratio, along with detailed transmission electron microscopy of crack-tip and crack-wake damage are highlighted. Some general conclusions are drawn about the dependence of high-temperature damage tolerance on interfacial glass films and about the susceptibility of ceramic materials to cyclic fatigue fracture

  10. Cracking in thin films of colloidal particles on elastomeric substrates

    Science.gov (United States)

    Smith, Michael; Sharp, James

    2012-02-01

    The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)

  11. Reversible axial-strain effect in Y-Ba-Cu-O coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Cheggour, N [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Ekin, J W [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Thieme, C L H [American Superconductor Corporation, Westborough, MA 01581 (United States); Xie, Y-Y [SuperPower Incorporated, Schenectady, NY 12304 (United States); Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States); Feenstra, R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2005-12-15

    The recently discovered reversible strain effect in Y-Ba-Cu-O (YBCO) coated conductors contrasts with the general understanding that the effect of strain on the critical-current density J{sub c} in practical high-temperature superconductors is determined only by crack formation in the ceramic component. Instead of having a constant J{sub c} as a function of strain before an irreversible drop when cracks form in the superconductor, J{sub c} in YBCO coated conductors can decrease or increase reversibly with strain over a significant strain range up to an irreversible strain limit. This reversible effect is present in samples fabricated either with rolling-assisted biaxially textured Ni-W substrates or with ion-beam-assisted deposition on Hastalloy substrates. The reversibility of J{sub c} with strain is observed for thin as well as thick YBCO films, and at two very different temperatures (76 and 4 K). The reversible effect is dependent on temperature and magnetic field, thus indicating its intrinsic nature. We also report an enhancement of the irreversible strain limit {epsilon}{sub irr} where the reversible strain effect ends and YBCO cracking starts. The value of {epsilon}{sub irr} increases from about 0.4% to more than 0.5% when YBCO coated conductors are fabricated with an additional Cu protection layer.

  12. Reversible axial-strain effect in Y-Ba-Cu-O coated conductors

    International Nuclear Information System (INIS)

    Cheggour, N; Ekin, J W; Thieme, C L H; Xie, Y-Y; Selvamanickam, V; Feenstra, R

    2005-01-01

    The recently discovered reversible strain effect in Y-Ba-Cu-O (YBCO) coated conductors contrasts with the general understanding that the effect of strain on the critical-current density J c in practical high-temperature superconductors is determined only by crack formation in the ceramic component. Instead of having a constant J c as a function of strain before an irreversible drop when cracks form in the superconductor, J c in YBCO coated conductors can decrease or increase reversibly with strain over a significant strain range up to an irreversible strain limit. This reversible effect is present in samples fabricated either with rolling-assisted biaxially textured Ni-W substrates or with ion-beam-assisted deposition on Hastalloy substrates. The reversibility of J c with strain is observed for thin as well as thick YBCO films, and at two very different temperatures (76 and 4 K). The reversible effect is dependent on temperature and magnetic field, thus indicating its intrinsic nature. We also report an enhancement of the irreversible strain limit ε irr where the reversible strain effect ends and YBCO cracking starts. The value of ε irr increases from about 0.4% to more than 0.5% when YBCO coated conductors are fabricated with an additional Cu protection layer

  13. Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2–Cu2O thin films

    International Nuclear Information System (INIS)

    Aytug, Tolga; Paranthaman, Parans M; Simpson, John T; Christen, David K; Bogorin, Daniela F; Mathis, John E

    2014-01-01

    By exploiting phase-separation in oxide materials, we present a simple and potentially low-cost approach to create exceptional superhydrophobicity in thin-film based coatings. By selecting the TiO 2 –Cu 2 O system and depositing through magnetron sputtering onto single crystal and metal templates, we demonstrate growth of nanostructured, chemically phase-segregated composite films. These coatings, after appropriate chemical surface modification, demonstrate a robust, non-wetting Cassie–Baxter state and yield an exceptional superhydrophobic performance, with water droplet contact angles reaching to ∼172° and sliding angles <1°. As an added benefit, despite the photo-active nature of TiO 2 , the chemically coated composite film surfaces display UV stability and retain superhydrophobic attributes even after exposure to UV (275 nm) radiation for an extended period of time. The present approach could benefit a variety of outdoor applications of superhydrophobic coatings, especially for those where exposure to extreme atmospheric conditions is required. (papers)

  14. Ion-plated metal/ceramic interfaces

    International Nuclear Information System (INIS)

    Rigsbee, J.M.; Scott, P.A.; Knipe, R.K.; Ju, C.P.; Hock, V.F.

    1986-01-01

    Elemental Cu and Ti films have been deposited onto magnesia-alumina-silica ceramic substrates with a plasma-aided physical vapour deposition (ion-plating) process. Modifications in the structure and chemistry of the film, interface and substrate regions were investigated as a function of deposition process parameters (eg applied bias, voltage and current). The strength of the Cu/ceramic interface was found to be strongly influenced by both applied substrate bias voltage and substrate roughness. Films deposited with an applied substrate bias showed increasing adhesive strength with increasing bias. Microchemical analysis indicated that this enhanced adhesion is directly correlated with the development of a chemically graded interface region. The adhesive strength of the ion plated Cu films was also found to be improved with increasing substrate smoothness. The behaviour of Ti was found to be quite different from that of Cu. Ti generally has superior adhesion. This adhesion decreased for films deposited with a high bias voltage/current. From interfacial TEM it is shown that this is due to the formation of a compound at the Ti/ceramic interface. The thickness of this compound is important in adhesion. (UK)

  15. Energy harvesting performance of piezoelectric ceramic and polymer nanowires

    International Nuclear Information System (INIS)

    Crossley, Sam; Kar-Narayan, Sohini

    2015-01-01

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients η S and η T , based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  16. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    Science.gov (United States)

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Giant strain with low cycling degradation in Ta-doped [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 lead-free ceramics

    International Nuclear Information System (INIS)

    Liu, Xiaoming; Tan, Xiaoli

    2016-01-01

    Non-textured polycrystalline [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2](Ti_1_−_xTa_x)O_3 ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d_3_3* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater than most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi_1_/_2(Na_0_._8K_0_._2)_1_/_2]TiO_3 ceramics show great potential for large displacement devices.

  18. Ceramic coatings for water-repellent textiles

    Science.gov (United States)

    Colleoni, C.; Esposito, F.; Guido, E.; Migani, V.; Trovato, V.; Rosace, G.

    2017-10-01

    In recent years, ceramic coatings have been widely studied for their potential performance in many scientific and technological fields. Ceramic coatings are also used as a textile-finishing agent to impart several properties such as anti-bacterial, anti-abrasion, flame retardant. In this study, fluoro free water repellent finishings have been developed to assess the features of the silica films on the textile fabrics. The water repellency of the treated samples has been evaluated by different tests such as water contact angle, water uptake and drop test.

  19. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Science.gov (United States)

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  20. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  1. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  2. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network.

    Science.gov (United States)

    Albero, Alberto; Pascual, Agustín; Camps, Isabel; Grau-Benitez, María

    2015-10-01

    The field of dental ceramics for CAD-CAM is enriched with a new innovative material composition having a porous three-dimensional structure of feldspathic ceramic infiltrated with acrylic resins.The aim of this study is to determine the mechanical properties of Polymer-Infiltrated-Ceramic-Network (PICN) and compare its performance with other ceramics and a nano-ceramic resin available for CAD-CAM systems. In this study a total of five different materials for CAD-CAM were investigated. A polymer-infiltrated ceramic (Vita Enamic), a nano-ceramic resin (Lava Ultimate), a feldspathic ceramic (Mark II), a lithium disilicate ceramic (IPS-e max CAD) and finally a Leucite based ceramic (Empress - CAD). From CAD-CAM blocks, 120 bars (30 for each material cited above) were cut to measure the flexural strength with a three-point-bending test. Strain at failure, fracture stress and Weibull modulus was calculated. Vickers hardness of each material was also measured. IPS-EMAX presents mechanical properties significantly better from the other materials studied. Its strain at failure, flexural strength and hardness exhibited significantly higher values in comparison with the others. VITA ENAMIC and LAVA ULTIMATE stand out as the next most resistant materials. The flexural strength, elastic modulus similar to a tooth as well as having less hardness than ceramics make PICN materials an option to consider as a restorative material. Ceramic infiltrated with resin, CAD-CAM, Weibull modulus, flexural strength, micro hardness.

  3. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  4. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  5. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  6. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  7. Effect of stress, strain and optical properties in vacuum and normal annealed ZnO thin films using RF magnetron sputtering

    Science.gov (United States)

    Kumar, B. Santhosh; Purvaja, K.; Harinee, N.; Venkateswaran, C.

    2018-05-01

    Zinc oxide thin films have been deposited on quartz substrate using RF magnetron sputtering. The deposited films were subjected to different annealing atmosphere at a fixed temperature of 500 °C for 5h. The X-ray diffraction (XRD) patterns reveals the shift in the peak of both normal annealed and vacuum annealed thin films when compared to as-deposited ZnO film. The crystallite size, intrinsic stress and other parameters were calculated from XRD data. The surface morphology of the obtained films were studied using Atomic force microscopy (AFM). From Uv-Visible spectroscopy, the peak at 374 nm of all the films is characteristics of ZnO. The structural, thermal stability and optical properties of the annealed ZnO films are discussed in detail.

  8. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  9. High temperature strengthening of zirconium-toughened ceramics

    International Nuclear Information System (INIS)

    Claussen, N.

    1986-01-01

    Transformation-toughened (i.e. ZrO/sub 2/-toughened) ceramics represent a new class of high performance ceramics with spectacular strength properties at low and intermediate temperatures. However, at temperatures above about 700 0 C, most of these tough oxide-base ceramics can no longer be used as load-bearing engineering parts because of characteristic deficiencies. The aim of the present paper is to provide and discuss microstructural design strategies which may enable ZrO/sub 2/-toughened ceramics to be applied at higher temperatures. From the various strategies suggested, three appear to show good prospects, namely (a) the prevention of glassy intergranular films, (b) the addition of hard high modulus particles and (c) whikser or fibre reinforcement. Experimental approaches are presented from some ZrO/sub 2/-toughened ceramics, elg. tetragonal ZrO/sub 2/ polycrystals and ZrO/sub 2/-toughened cordierite, spinel and mullite

  10. End stage renal disease among ceramic workers exposed to silica

    OpenAIRE

    Rapiti, E.; Sperati, A.; Miceli, M.; Forastiere, F.; Di, L; Cavariani, F.; Goldsmith, D. F.; Perucci, C. A.

    1999-01-01

    OBJECTIVES: To evaluate whether ceramic workers exposed to silica experience an excess of end stage renal disease. METHODS: On the basis of a health surveillance programme, a cohort of 2980 male ceramic workers has been enrolled during the period 1974-91 in Civitacastellana, Lazio, Italy. For each worker, employment history, smoking data, and x ray film readings were available. The vital status was ascertained for all cohort members. All 2820 people still alive and resident in the Lazio...

  11. Observation of the strain-driven charge-ordered state in La sub 0 sub . sub 7 sub C a sub 0 sub . sub 3 MnO sub 3 sub - sub d elta thin film with oxygen deficiency

    CERN Document Server

    Prokhorov, V G; Kaminsky, G G; Svetchnikov, V L; Zandbergen, H W; Lee, Y P; Park, J S; Kim, K W

    2003-01-01

    The magnetic and transport properties of La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 3 sub - sub d elta films with an oxygen deficiency (delta approx 0.1) and a La sub 0 sub . sub 9 Ca sub 0 sub . sub 1 MnO sub 3 film with the stoichiometric oxygen content are investigated in a wide temperature range. It is shown that the charge-ordered insulating (COI) state is observed for a La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 2 sub . sub 9 film with thickness d <= 30 nm, which manifests mainly a cubic crystal structure with an anomalously small lattice parameter for this composition. An increase in the film thickness (d approx 60 nm) leads to a structural transition from the lattice-strained cubic to the relaxed rhombohedral phase, is accompanied by a shift of the Curie point (T sub C) to lower temperature and a frustration of the COI state. The magnetic and transport properties of the La sub 0 sub . sub 7 Ca sub 0 sub . sub 3 MnO sub 2 sub . sub 9 film with d approx 60 nm are similar to those exhibi...

  12. Electrostatic micromotor based on ferroelectric ceramics

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2004-11-01

    A new electrostatic micromotor is described that utilizes the electromechanical energy conversion principle earlier described by the authors. The electromechanical energy conversion is based on reversible electrostatic rolling of thin metallic films (petals) on a ferroelectric surface. The motor's active media are layers of ferroelectric ceramics (about 100 µm in thickness). The characteristics of the electrostatic rolling of the petals on different ceramic surfaces are studied, as well as the dynamic characteristics of the micromotors. It is shown that the use of antiferroelectric material allows one to reach a specific energy capacitance comparable to that of the micromotors based on ferroelectric films and to achieve a specific power of 30-300 µW mm-2.

  13. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  14. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  15. Superplastic forging nitride ceramics

    Science.gov (United States)

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  16. Super miniaturization of film capacitor dielectrics

    Science.gov (United States)

    Lavene, B.

    1981-01-01

    The alignment of the stable electrical characteristics of film capacitors in the physical dimensions of ceramic and tantalum capacitors are discussed. The reliability of polycarbonate and mylar capacitors are described with respect to their compatibility with military specifications. Graphic illustrations are presented which show electrical and physical comparisons of film, ceramic, and tantalum capacitors. The major focus is on volumetric efficiency, weight reduction, and electrical stability.

  17. Metallic-fibre-reinforced ceramic-matrix composite

    International Nuclear Information System (INIS)

    Prevost, F.; Schnedecker, G.; Boncoeur, M.

    1994-01-01

    A refractory metal wire cloth is embedded in an oxide ceramic matrix, using a plasma spraying technology, in order to elaborate composite plates. When mechanically tested, the composite fails with a pseudo-ductile fracture mode whereas the ceramic alone is originally brittle. It exhibits a higher fracture strength, and remains in the form of a single piece even when straining is important. No further heat treatment is needed after the original processing to reach these characteristics. (authors). 2 figs., 2 refs

  18. NOVEL EMBEDDED CERAMIC ELECTRODE SYSTEM TO ACTIVATE NANOSTRUCTURED TITANIUM DIOXIDE FOR DEGRADATION OF MTBE

    Science.gov (United States)

    A novel reactor combining a flame-deposited nanostructured titanium dioxide film and a set of embedded ceramic electrodes was designed, developed and tested for degradation of methyl tert-butyl ether (MTBE) in water. On applying a voltage to the ceramic electrodes, a surface coro...

  19. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  20. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  1. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  2. Analysis of the degradation mechanisms in an impacted ceramic

    International Nuclear Information System (INIS)

    Denoual, C.; Cottenot, C. E.; Hild, F.

    1998-01-01

    To analyze the degradation mechanisms in a natural sintered SiC (SSiC) ceramic during impact, three edge-on impact configurations are considered. First, the ceramic is confined by aluminum to allow a post-mortem analysis. In the second configuration, a polished surface of the ceramic is observed each micro-second by a high-speed camera to follow the damage generation and evolution. The third configuration uses a high-speed Moire photography system to measure dynamic 2-D strain fields. Sequences of fringe patterns are analyzed

  3. Dielectric and ferroelectric properties of strain-relieved epitaxial lead-free KNN-LT-LS ferroelectric thin films on SrTiO3 substrates

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    We report the growth of single-phase (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrRuO3 coated ⟨001⟩ oriented SrTiO3 substrates by using pulsed laser deposition. Films grown at 600°C under low laser fluence exhibit a ⟨001⟩ textured columnar grained nanostructure, which coalesce with increasing deposition temperature, leading to a uniform fully epitaxial highly stoichiometric film at 750°C. However, films deposited at lower temperatures exhibit compositional fluctuations as verified by Rutherford backscattering spectroscopy. The epitaxial films of 400-600nm thickness have a room temperature relative permittivity of ˜750 and a loss tangent of ˜6% at 1kHz. The room temperature remnant polarization of the films is 4μC /cm2, while the saturation polarization is 7.1μC/cm2 at 24kV/cm and the coercive field is ˜7.3kV/cm. The results indicate that approximately 50% of the bulk permittivity and 20% of bulk spontaneous polarization can be retained in submicron epitaxial KNN-LT-LS thin film, respectively. The conductivity of the films remains to be a challenge as evidenced by the high loss tangent, leakage currents, and broad hysteresis loops.

  4. [Ceramic inlays and onlays].

    Science.gov (United States)

    van Pelt, A W; de Kloet, H J; van der Kuy, P

    1996-11-01

    Large direct composite restorations can induce shrinkage related postoperative sensitivity. Indirect resin-bonded (tooth colored) restorations may perhaps prevent these complaints. Indirect bonded ceramics are especially attractive because of their biocompatibility and esthetic performance. Several procedures and techniques are currently available for the fabrication of ceramic restorations: firing, casting, heat-pressing and milling. In this article the different systems are described. Advantages, disadvantages and clinical performance of ceramic inlays are compared and discussed.

  5. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  6. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  7. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  8. Piezo-electrostrictive ceramics

    International Nuclear Information System (INIS)

    Kim, Ho Gi; Shin, Byeong Cheol

    1991-09-01

    This book deals with principle and the case of application of piezo-electrostrictive ceramics, which includes definition of piezoelectric materials and production and development of piezoelectric materials, coexistence of Pb(zr, Ti)O 3 ceramics on cause of coexistence in MPB PZT ceramics, electrostrictive effect of oxide type perovskite, practical piezo-electrostrictive materials, and breaking strength, evaluation technique of piezoelectric characteristic, and piezoelectric accelerometer sensor like printer head, ink jet and piezoelectric relay.

  9. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  10. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  11. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  12. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  13. Synthesis, deposition and crystal growth of CZTS nanoparticles onto ceramic tiles

    Directory of Open Access Journals (Sweden)

    Ivan Calvet

    2015-09-01

    Full Text Available The work presents a simple solvothermal method for CZTS nanoparticles preparation using hexadecylamine (HDA as a capping agent. The as-prepared CZTS powder was deposited as ink using Doctor Blade technique onto ceramic tile, as a substrate substituting the typical soda-lime glass. The as-prepared film was thermal treated at different temperatures in order to enhance the thin film crystallinity. CZTS crystal growth onto ceramic tile was obtained successfully for the first time.

  14. Design and implementation of an x-ray strain measurement capability using a rotating anode machine

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.A.; Rangaswamy, P.; Lujan, M. Jr.; Bourke, M.A.M.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Residual stresses close to the surface can improve the reliability and lifetime of parts for technological applications. X-ray diffraction plays a significant role in gaining an exact knowledge of the stresses at the surface and their depth distribution. An x-ray capability at Los Alamos is key to developing and maintaining industrial collaborations in strain effects. To achieve this goal, the authors implemented a residual strain measuring station on the rotating anode x-ray instrument at the Lujan Center. This capability has been used to investigate residual strains in heat treated automotive components, machining effects on titanium alloys, resistance welded steel joints, titanium matrix fiber reinforced composites, ceramic matrix composites, thin films, and ceramic coatings. The overall objective is to combine both x-ray and neutron diffraction measurements with numerical models (e.g., finite element calculations).

  15. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    DEFF Research Database (Denmark)

    Walker, Julian; Simons, Hugh; Alikin, Denis O

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroe......Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb......)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...

  16. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  17. Critical current density of strained multilayer thin films of Nd sub 1. 83 Ce sub 0. 17 CuO sub x /YBa sub 2 Cu sub 3 O sub 7 minus. delta

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.; Gupta, A.; Olsson, E.; Segmueller, A.; Koren, G. (IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))

    1990-07-09

    The superconducting transport properties of strained multilayer thin films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}/ Nd{sub 1.83}Ce{sub 0.17}CuO{sub {ital x}}, grown heteroepitaxially by laser ablation deposition, are reported. For individual layer thicknesses below a critical layer thickness of about 250 A, coherency strain removes the orthorhombic distortion in the YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} layers and makes them twin-free. Zero-field critical current densities as high as 1.1{times}10{sup 7} A/cm{sup 2} at 77 K have been measured for the YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} layers. Flux pinning energies at zero temperature and zero magnetic field in the range of 80--140 meV have been found.

  18. Phase shift of oscillatory magnetoresistance in a double-cross thin film structure of La0.3Pr0.4Ca0.3MnO3 via strain-engineered elongation of electronic domains

    Science.gov (United States)

    Alagoz, H. S.; Prasad, B.; Jeon, J.; Blamire, M. G.; Chow, K. H.; Jung, J.

    2018-02-01

    The subtle balance between the competing electronic phases in manganites due to complex interplay between spin, charge, and orbital degrees of freedom could allow one to modify the properties of electronically phase separated systems. In this paper, we show that the phase shift in the oscillatory magnetoresistance ρ (θ ) can be modified by engineering strain driven elongation of electronic domains in La0.3Pr0.4Ca0.3MnO3 (LPCMO) thin films. Strain-driven elongation of magnetic domains can produce different percolation paths and hence different anisotropic magnetoresistance responses. This tunability provides a unique control that is unattainable in conventional 3 d ferromagnetic metals and alloys.

  19. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  20. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  1. Elastically strained and relaxed La0.67Ca0.33MnO3 films grown on lanthanum aluminate substrates with different orientations

    Science.gov (United States)

    Boikov, Yu. A.; Serenkov, I. T.; Sakharov, V. I.; Claeson, T.

    2016-12-01

    Structure of 40-nm thick La0.67Ca0.33MnO3 (LCMO) films grown by laser evaporation on (001) and (110) LaAlO3 (LAO) substrates has been investigated using the methods of medium-energy ion scattering and X-ray diffraction. The grown manganite layers are under lateral biaxial compressive mechanical stresses. When (110)LAO wafers are used as the substrates, stresses relax to a great extent; the relaxation is accompanied by the formation of defects in a (3-4)-nm thick manganite-film interlayer adjacent to the LCMO-(110)LAO interface. When studying the structure of the grown layers, their electro- and magnetotransport parameters have been measured. The electroresistance of the LCMO films grown on the substrates of both types reached a maximum at temperature T M of about 250 K. At temperatures close to T M magnetoresistance of the LCMO/(110)LAO films exceeds that of the LCMO/(001)LAO films by 20-30%; however, the situation is inverse at low temperatures ( T < 150 K). At T < T M , the magnetotransport in the grown manganite films significantly depends on the spin ordering in ferromagnetic domains, which increase with a decrease in temperature.

  2. Mounting for ceramic scroll

    Science.gov (United States)

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  3. Ceramic heat exchanger

    Science.gov (United States)

    LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.

    1998-01-01

    A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

  4. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    Science.gov (United States)

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  5. Corrosion Behavior of Titanium Based Ceramic Coatings Deposited on Steels

    OpenAIRE

    Ali, Rania

    2016-01-01

    Titanium based ceramic films are increasingly used as coating materials because of their high hardness, excellent wear resistance and superior corrosion resistance. Using electrochemical and spectroscopic techniques, the electrochemical properties of different coatings deposited on different steels under different conditions were examined in this study. Thin films of titanium nitride (TiN), titanium diboride (TiB2), and titanium boronitride with different boron concentrations (TiBN-1&2) w...

  6. Supercritical fluid technologies for ceramic-processing applications

    International Nuclear Information System (INIS)

    Matson, D.W.; Smith, R.D.

    1989-01-01

    This paper reports on the applications of supercritical fluid technologies for ceramic processing. The physical and chemical properties of these densified gases are summarized and related to their use as solvents and processing media. Several areas are identified in which specific ceramic processes benefit from the unique properties of supercritical fluids. The rapid expansion of supercritical fluid solutions provides a technique for producing fine uniform powders and thin films of widely varying materials. Supercritical drying technologies allow the formation of highly porous aerogel products with potentially wide application. Hydrothermal processes leading to the formation of large single crystals and microcrystalline powders can also be extended into the supercritical regime of water. Additional applications and potential applications are identified in the areas of extraction of binders and other additives from ceramic compacts, densification of porous ceramics, the formation of powders in supercritical micro-emulsions, and in preceramic polymer processing

  7. Investigation of the High Mobility IGZO Thin Films by Using Co-Sputtering Method

    OpenAIRE

    Hsu, Chao-Ming; Tzou, Wen-Cheng; Yang, Cheng-Fu; Liou, Yu-Jhen

    2015-01-01

    High transmittance ratio in visible range, low resistivity, and high mobility of IGZO thin films were prepared at room temperature for 30 min by co-sputtering of Zn2Ga2O5 (Ga2O3 + 2 ZnO, GZO) ceramic and In2O3 ceramic at the same time. The deposition power of pure In2O3 ceramic target was fixed at 100 W and the deposition power of GZO ceramic target was changed from 80 W to 140 W. We chose to investigate the deposition power of GZO ceramic target on the properties of IGZO thin films. From the...

  8. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  9. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    Fantozzi, Gilbert; Niepce, Jean-Claude; Bonnefont, Guillaume; Alary, J.A.; Allard, B.; Ayral, A.; Bassat, J.M.; Elissalde, C.; Maglione, M.; Beauvy, M.; Bertrand, G.; Bignon, A.; Billieres, D.; Blanc, J.J.; Blumenfeld, P.; Bonnet, J.P.; Bougoin, M.; Bourgeon, M.; Boussuge, M.; Thorel, A.; Bruzek, C.E.; Cambier, F.; Carrerot, H.; Casabonne, J.M.; Chaix, J.M.; Chevalier, J.; Chopinet, M.H.; Couque, H.; Courtois, C.; Leriche, A.; Dhaler, D.; Denape, J.; Euzen, P.; Ganne, J.P.; Gauffinet, S.; Girard, A.; Gonon, M.; Guizard, C.; Hampshire, S.; Joulin, J.P.; Julbe, A.; Ferrato, M.; Fontaine, M.L.; Lebourgeois, R.; Lopez, J.; Maquet, M.; Marinel, S.; Marrony, M.; Martin, J.F.; Mougin, J.; Pailler, R.; Pate, M.; Petitpas, E.; Pijolat, C.; Pires-Franco, P.; Poirier, C.; Poirier, J.; Pourcel, F.; Potier, A.; Tulliani, J.M.; Viricelle, J.P.; Beauger, A.

    2013-01-01

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  10. Mechanical properties of polymer-infiltrated-ceramic-network materials.

    Science.gov (United States)

    Coldea, Andrea; Swain, Michael V; Thiel, Norbert

    2013-04-01

    To determine and identify correlations between flexural strength, strain at failure, elastic modulus and hardness versus ceramic network densities of a range of novel polymer-infiltrated-ceramic-network (PICN) materials. Four ceramic network densities ranging from 59% to 72% of theoretical density, resin infiltrated PICN as well as pure polymer and dense ceramic cross-sections were subjected to Vickers Indentations (HV 5) for hardness evaluation. The flexural strength and elastic modulus were measured using three-point-bending. The fracture response of PICNs was determined for cracks induced by Vickers-indentation. Optical and scanning electron microscopy (SEM) was employed to observe the indented areas. Depending on the density of the porous ceramic the flexural strength of PICNs ranged from 131 to 160MPa, the hardness values ranged between 1.05 and 2.10GPa and the elastic modulus between 16.4 and 28.1GPa. SEM observations of the indentation induced cracks indicate that the polymer network causes greater crack deflection than the dense ceramic material. The results were compared with simple analytical expressions for property variation of two phase composite materials. This study points out the correlation between ceramic network density, elastic modulus and hardness of PICNs. These materials are considered to more closely imitate natural tooth properties compared with existing dental restorative materials. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  11. Dolomite addition effects on the thermal expansion of ceramic tiles

    International Nuclear Information System (INIS)

    Marino, Luis Fernando Bruno; Boschi, Anselmo Ortega

    1997-01-01

    The thermal expansion of ceramic tiles is of greater importance in engineering applications because the ceramics are relatively brittle and cannot tolerate large internal strain imposed by thermal expansion. When ceramic bodies are produced for glazed ties the compatibility of this property of the components should be considered to avoid damage in the final products. Carbonates are an important constituent of ceramic wall-title bodies and its presence in formulations and the reactions that occur between them and other components modify body properties. The influence in expansivity by additions of calcium magnesium carbonate in a composition of wall tile bodies has been investigated. The relative content of mineralogical components was determined by X-ray diffraction and thermal expansion by dilatometric measurements. The results was indicated that with the effect of calcium-magnesium phases and porosity on thermal expansion of wall tile bodies. (author)

  12. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Science.gov (United States)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  13. Adherent zirconia films by reactive ion implantation

    International Nuclear Information System (INIS)

    Bunker, S.N.; Armini, A.J.

    1993-01-01

    Conventional methods of forming ceramic coatings on metal substrates, such as CVD or plasma spray, typically retain a sharp interface and may have adhesion problems. In order to produce a completely mixed interface for better adhesion, a method using reactive ion implantation was used which can grow a thick stoichiometric film of an oxide ceramic starting from inside the substrate. Zirconium oxide ceramic films have been produced by this technique using a high-energy zirconium ion beam in an oxygen gas ambient. Compositional data are shown based on Auger electron spectroscopy of the film. Tribological properties of the layer were determined from wear and friction measurements using a pin-on-disk test apparatus. The adhesion was measured both by a scratch technique as well as by thermal shock. Results show an extremely adherent ZrO 2 film with good tribological properties

  14. High density microelectronics package using low temperature cofirable ceramics

    International Nuclear Information System (INIS)

    Fu, S.-L.; Hsi, C.-S.; Chen, L.-S.; Lin, W. K.

    1997-01-01

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe 2/3 W 1/3 ) x (Fe l/2 Nb l/2 ) y Ti 2 O 3 was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  15. High density microelectronics package using low temperature cofirable ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S -L; Hsi, C -S; Chen, L -S; Lin, W K [Kaoshiung Polytechnic Institute Ta-Hsu, Kaoshiung (China)

    1998-12-31

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe{sub 2/3}W{sub 1/3}){sub x}(Fe{sub l/2}Nb{sub l/2}){sub y}Ti{sub 2}O{sub 3} was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  16. Thermodynamic properties, hysteresis behavior and stress-strain analysis of MgH2 thin films, studied over a wide temperature range

    NARCIS (Netherlands)

    Pivak, Y.; Schreuders, H.; Dam, B.

    2012-01-01

    Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333 K to 545 K. The enthalpy and entropy of hydride decomposition, ?Hdes = ?78.3 kJ/molH2, ?Sdes = ?136.1 J/K molH2, estimated from the Van't Hoff

  17. A Method for Atomic Layer Deposition of Complex Oxide Thin Films

    Science.gov (United States)

    2012-12-01

    characterization. Fourth, the phase of the crystallized film was analyzed in detail to deter- mine behavior of the films post-annealing. XRD was used extensively for...Schneider. Stacking of ceramic in- verse opals with different lattice constants. Journal of the American Ceramic Society, 95(7):2226–2235, July 2012. [52

  18. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  19. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  20. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  1. Applications of Piezoelectric Ceramics

    Indian Academy of Sciences (India)

    Applications of Piezoelectric Ceramics. Piezoelectric Actuators. Nano and Micropositioners. Vibration Control Systems. Computer Printers. Piezoelectric Transformers,Voltage Generators, Spark Plugs, Ultrasonic Motors,. Ultrasonic Generators and Sensors. Sonars, Medical Diagnostic. Computer Memories. NVFRAM ...

  2. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  3. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  4. Selecting Ceramics - Introduction

    OpenAIRE

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  5. Cavitation damage of ceramics

    International Nuclear Information System (INIS)

    Kovalenko, V.I.; Marinin, V.G.

    1988-01-01

    Consideration is given to results of investigation of ceramic material damage under the effect of cavitation field on their surface, formed in water under the face of exponential concentrator, connected with ultrasonic generator UZY-3-0.4. Amplitude of vibrations of concentrator face (30+-2)x10 -6 m, frequency-21 kHz. It was established that ceramics resistance to cavitation effect correlated with the product of critical of stress intensity factor and material hardness

  6. Barrier heights, polarization switching, and electrical fatigue in Pb(Zr,Ti)O3 ceramics with different electrodes

    Science.gov (United States)

    Chen, Feng; Schafranek, Robert; Wachau, André; Zhukov, Sergey; Glaum, Julia; Granzow, Torsten; von Seggern, Heinz; Klein, Andreas

    2010-11-01

    The influence of Pt, tin-doped In2O3, and RuO2 electrodes on the electrical fatigue of bulk ceramic Pb(Zr,Ti)O3 (PZT) has been studied. Schottky barrier heights at the ferroelectric/electrode interfaces vary by more than one electronvolt for different electrode materials and do not depend on crystallographic orientation of the interface. Despite different barrier heights, hysteresis loops of polarization, strain, permittivity, and piezoelectric constant and the switching kinetics are identical for all electrodes. A 20% reduction in polarization after 106 bipolar cycles is observed for all the samples. In contrast to PZT thin films, the loss of remanent polarization with bipolar switching cycles does not significantly depend on the electrode material.

  7. Ceramic luminescent radiographic materials for medicine and tool construction

    International Nuclear Information System (INIS)

    Winnacker, A.

    1991-01-01

    X-ray recording luminescent materials form the basis of a new concept for X ray imaging. Essential advantages as compared to the conventional film systems are the digitalisation of the X ray as well as the high dynamics of registration. Modern methods of image processing and video recording can be applied. Advantages also show where a very extensive video material must be filed. Compared to the films used up to now, one expects higher sensitivity, higher homogeneity and higher spatial resolution of pictures taken with ceramic films. (BaFBr:Eu, RbJ:Tl). (orig.) [de

  8. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  9. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  10. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  11. Clinical application of bio ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Anu, Sharma, E-mail: issaranu@gmail.com; Gayatri, Sharma, E-mail: sharmagayatri@gmail.com [Department of Chemistry, Govt. College of Engineering & Technology, Bikaner, Rajasthan (India)

    2016-05-06

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  12. The history of ceramic filters.

    Science.gov (United States)

    Fujishima, S

    2000-01-01

    The history of ceramic filters is surveyed. Included is the history of piezoelectric ceramics. Ceramic filters were developed using technology similar to that of quartz crystal and electro-mechanical filters. However, the key to this development involved the theoretical analysis of vibration modes and material improvements of piezoelectric ceramics. The primary application of ceramic filters has been for consumer-market use. Accordingly, a major emphasis has involved mass production technology, leading to low-priced devices. A typical ceramic filter includes monolithic resonators and capacitors packaged in unique configurations.

  13. Clinical application of bio ceramics

    International Nuclear Information System (INIS)

    Anu, Sharma; Gayatri, Sharma

    2016-01-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  14. Inhibition of Streptococcus mutans NS adhesion to glass with and without a salivary conditioning film by biosurfactant-releasing Streptococcus mitis strains

    NARCIS (Netherlands)

    van Hoogmoed, CG; van der Kuijl-Booij, M; van der Mei, HC; Busscher, HJ

    The release of biosurfactants by adhering microorganisms as a defense mechanism against other colonizing strains on the same substratum surface has been described previously for probiotic bacteria in the urogenital tract, the intestines, and the oropharynx but not for microorganisms in the oral

  15. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  16. Ceramic superconductivity research at Alfred Univ

    International Nuclear Information System (INIS)

    Snyder, R.L.

    1990-01-01

    A survey of the science and technology advances made by the research groups at Alfred will be presented. These ranges on the technology side from the first melt-textured and glass ceramic superconductors to recently demonstrating that 123 thin films can be deposited below the superconducting transition at atmospheric pressure using an aerosol plasma deposition technique. On the science side advances in understanding have come from looking at the crystal structures, high and low temperature reactions, phase equilibria, effects of doping and XRD standards. Recent advances will be summarized

  17. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  18. Influence of resin cement shade on the color and translucency of ceramic veneers

    Science.gov (United States)

    HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211

  19. Influence of resin cement shade on the color and translucency of ceramic veneers

    Directory of Open Access Journals (Sweden)

    Daiana Kelly Lopes HERNANDES

    Full Text Available ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3 layer on color change, translucency parameter (TP, and chroma of low (LT and high (HT translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B and white (W background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  20. Influence of resin cement shade on the color and translucency of ceramic veneers.

    Science.gov (United States)

    Hernandes, Daiana Kelly Lopes; Arrais, Cesar Augusto Galvão; Lima, Erick de; Cesar, Paulo Francisco; Rodrigues, José Augusto

    2016-01-01

    This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  1. Testing method for ceramic armour and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2016-01-01

    TNO developed an alternative, more configuration independent ceramic test method than the Depth-of-Penetration test method. In this alternative test ceramic tiles and ceramic based armour are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  2. Testing method for ceramic armor and bare ceramic tiles

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.

    2014-01-01

    TNO has developed an alternative, more configuration independent ceramic test method than the standard Depth-of-Penetration test method. In this test ceramic tiles and ceramic based armor are evaluated as target without a semi-infinite backing layer. An energy approach is chosen to evaluate and rank

  3. A high temperature testing system for ceramic composites

    Science.gov (United States)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  4. Development, Characterization and Piezoelectric Fatigue Behavior of Lead-Free Perovskite Piezoelectric Ceramics

    Science.gov (United States)

    Patterson, Eric Andrew

    Much recent research has focused on the development lead-free perovskite piezoelectrics as environmentally compatible alternatives to lead zirconate titanate (PZT). Two main categories of lead free perovskite piezoelectric ceramic systems were investigated as potential replacements to lead zirconate titanate (PZT) for actuator devices. First, solid solutions based on Li, Ta, and Sb modified (K0.5Na0.5)NbO3 (KNN) lead-free perovskite systems were created using standard solid state methods. Secondly, Bi-based materials a variety of compositions were explored for (1-x)(Bi 0.5Na0.5)TiO3-xBi(Zn0.5Ti0.5)O 3 (BNT-BZT) and Bi(Zn0.5Ti0.5)O3-(Bi 0.5K0.5)TiO3-(Bi0.5Na0.5)TiO 3 (BZT-BKT-BNT). It was shown that when BNT-BKT is combined with increasing concentrations of Bi(Zn1/2i1/2)O3 (BZT), a transition from normal ferroelectric behavior to a material with large electric field induced strains was observed. The higher BZT containing compositions are characterized by large hysteretic strains(> 0.3%) with no negative strains that might indicate domain switching. This work summarizes and analyzes the fatigue behavior of the new generation of Pb-free piezoelectric materials. In piezoelectric materials, fatigue is observed as a degradation in the electromechanical properties under the application of a bipolar or unipolar cyclic electrical load. In Pb-based materials such as lead zirconate titanate (PZT), fatigue has been studied in great depth for both bulk and thin film applications. In PZT, fatigue can result from microcracking or electrode effects (especially in thin films). Ultimately, however, it is electronic and ionic point defects that are the most influential mechanism. Therefore, this work also analyzes the fatigue characteristics of bulk polycrystalline ceramics of the modified-KNN and BNT-BKT-BZT compositions developed. The defect chemistry that underpins the fatigue behavior will be examined and the results will be compared to the existing body of work on PZT. It will

  5. Strain-free GaN thick films grown on single crystalline ZnO buffer layer with in situ lift-off technique

    International Nuclear Information System (INIS)

    Lee, S. W.; Minegishi, T.; Lee, W. H.; Goto, H.; Lee, H. J.; Lee, S. H.; Lee, Hyo-Jong; Ha, J. S.; Goto, T.; Hanada, T.; Cho, M. W.; Yao, T.

    2007-01-01

    Strain-free freestanding GaN layers were prepared by in situ lift-off process using a ZnO buffer as a sacrificing layer. Thin Zn-polar ZnO layers were deposited on c-plane sapphire substrates, which was followed by the growth of Ga-polar GaN layers both by molecular beam epitaxy (MBE). The MBE-grown GaN layer acted as a protecting layer against decomposition of the ZnO layer and as a seeding layer for GaN growth. The ZnO layer was completely in situ etched off during growth of thick GaN layers at low temperature by hydride vapor phase epitaxy. Hence freestanding GaN layers were obtained for the consecutive growth of high-temperature GaN thick layers. The lattice constants of freestanding GaN agree with those of strain-free GaN bulk. Extensive microphotoluminescence study indicates that strain-free states extend throughout the high-temperature grown GaN layers

  6. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  7. Fatigue of dental ceramics.

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  9. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  10. Ceramic impregnated superabrasives

    Science.gov (United States)

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  11. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  12. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    Science.gov (United States)

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  13. High flow ceramic pot filters

    NARCIS (Netherlands)

    van Halem, D.; van der Laan, H.; Soppe, A. I.A.; Heijman, S.G.J.

    2017-01-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more

  14. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  15. Verification of Ceramic Structures

    Science.gov (United States)

    Behar-Lafenetre, Stephanie; Cornillon, Laurence; Rancurel, Michael; De Graaf, Dennis; Hartmann, Peter; Coe, Graham; Laine, Benoit

    2012-07-01

    In the framework of the “Mechanical Design and Verification Methodologies for Ceramic Structures” contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instrument structures. It has been written in order to be applicable to most types of ceramic or glass-ceramic materials - typically Cesic®, HBCesic®, Silicon Nitride, Silicon Carbide and ZERODUR®. The proposed guideline describes the activities to be performed at material level in order to cover all the specific aspects of ceramics (Weibull distribution, brittle behaviour, sub-critical crack growth). Elementary tests and their post-processing methods are described, and recommendations for optimization of the test plan are given in order to have a consistent database. The application of this method is shown on an example in a dedicated article [7]. Then the verification activities to be performed at system level are described. This includes classical verification activities based on relevant standard (ECSS Verification [4]), plus specific analytical, testing and inspection features. The analysis methodology takes into account the specific behaviour of ceramic materials, especially the statistical distribution of failures (Weibull) and the method to transfer it from elementary data to a full-scale structure. The demonstration of the efficiency of this method is described in a dedicated article [8]. The verification is completed by classical full-scale testing activities. Indications about proof testing, case of use and implementation are given and specific inspection and protection measures are described. These additional activities are necessary to ensure the required reliability. The aim of the guideline is to describe how to reach the same reliability level as for structures made of more classical materials (metals, composites).

  16. Cyclic mechanical fatigue in ceramic-ceramic composites: an update

    International Nuclear Information System (INIS)

    Lewis, D. III

    1983-01-01

    Attention is given to cyclic mechanical fatigue effects in a number of ceramics and ceramic composites, including several monolithic ceramics in which significant residual stresses should be present as a result of thermal expansion mismatches and anisotropy. Fatigue is also noted in several BN-containing ceramic matrix-particulate composites and in SiC fiber-ceramic matrix composites. These results suggest that fatigue testing is imperative for ceramics and ceramic composites that are to be used in applications subject to cyclic loading. Fatigue process models are proposed which provide a rationale for fatigue effect observations, but do not as yet provide quantitative results. Fiber composite fatigue damage models indicate that design stresses in these materials may have to be maintained below the level at which fiber pullout occurs

  17. Shockless spalling damage of alumina ceramic

    Science.gov (United States)

    Erzar, B.; Buzaud, E.

    2012-05-01

    Ceramic materials are commonly used to build multi-layer armour. However reliable test data is needed to identify correctly models and to be able to perform accurate numerical simulation of the dynamic response of armour systems. In this work, isentropic loading waves have been applied to alumina samples to induce spalling damage. The technique employed allows assessing carefully the strain-rate at failure and the dynamic strength. Moreover, specimens have been recovered and analysed using SEM. In a damaged but unbroken specimen, interactions between cracks has been highlighted illustrating the fragmentation process.

  18. Poly(vinylidene fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe0.5Ta0.5)O3, for High Energy-Storage Density at Low Electric Field.

    Science.gov (United States)

    Wang, Zhuo; Wang, Tian; Wang, Chun; Xiao, Yujia; Jing, Panpan; Cui, Yongfei; Pu, Yongping

    2017-08-30

    Ba(Fe 0.5 Ta 0.5 )O 3 /poly(vinylidene fluoride) (BFT/PVDF) flexible nanocomposite films are fabricated by tape casting using dopamine (DA)-modified BFT nanopowders and PVDF as a matrix polymer. After a surface modification of installing a DA layer with a thickness of 5 nm, the interfacial couple interaction between BFT and PVDF is enhanced, resulting in less hole defects at the interface. Then the dielectric constant (ε'), loss tangent (tan δ), and AC conductivity of nanocomposite films are reduced. Meanwhile, the value of the reduced dielectric constant (Δε') and the strength of interfacial polarization (k) are introduced to illustrate the effect of DA on the dielectric behavior of nanocomposite films. Δε' can be used to calculate the magnitude of interfacial polarization, and the strength of the dielectric constant contributed by the interface can be expressed as k. Most importantly, the energy-storage density and energy-storage efficiency of nanocomposite films with a small BFT@DA filler content of 1 vol % at a low electric field of 150 MV/m are enhanced by about 15% and 120%, respectively, after DA modification. The high energy-storage density of 1.81 J/cm 3 is obtained in the sample. This value is much larger than the reported polymer-based nanocomposite films. In addition, the outstanding cycle and bending stability of the nanocomposite films make it a promising candidate for future flexible portable energy devices.

  19. The evaluation of integrity and elasticity of thermally sprayed ceramic coatings by ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, P. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-12-31

    Thermally sprayed ceramic coatings are widely used in industrial applications where the coated component is subject to, e.g. high thermal loads or mechanical wear. The mechanical properties of the coating are finally created in the coating process and the chemical composition of the powder used as raw material can only give some hints about the properties of the final coating. Several non-destructive testing techniques are available for the detection of defects in ceramic materials or for the evaluation of density and density variations. In addition to this, ultrasonic techniques can be used for quantitative evaluation of elastic properties of materials. This evaluation is based on the measurement of sound velocities of different wave modes in the material and is normally applied only to relatively simple-shaped specimens having parallel surfaces. Acoustic microscopy operating at very high (> 100 MHz) frequencies has been used to measure the sound velocities in homogeneous and thin coatings. With this type of equipment, reliable and accurate results have been achieved in laboratory measurements. A lot of development work has been carried out world-wide to develop the measurement techniques and acoustic lenses (transducers) used in acoustic microscopy. However, less attention has been paid on the development of techniques for industrial applications on-site. The present work was focused on the development of measurement techniques for industrial applications. A new type of large-aperture low-frequency transducer was designed and constructed for the measurement of sound velocities in thermally sprayed ceramic coatings. The major difference to the lenses used in acoustic microscopy is that in the new transducer no separate lens is needed for focusing the sound beam. The piezoelectric element in the new transducer is a plastic (PVDF)-film that can be shaped to create the required focus. The practical measurement of the sound velocity is based on a modification of the V

  20. Nano/micro particle beam for ceramic deposition and mechanical etching

    International Nuclear Information System (INIS)

    Chun, Doo-Man; Kim, Min-Saeng; Kim, Min-Hyeng; Ahn, Sung-Hoon; Yeo, Jun-Cheol; Lee, Caroline Sunyong

    2010-01-01

    Nano/micro particle beam (NPB) is a newly developed ceramic deposition and mechanical etching process. Additive (deposition) and subtractive (mechanical etching) processes can be realized in one manufacturing process using ceramic nano/micro particles. Nano- or micro-sized powders are sprayed through the supersonic nozzle at room temperature and low vacuum conditions. According to the process conditions, the ceramic powder can be deposited on metal substrates without thermal damage, and mechanical etching can be conducted in the same process with a simple change of process conditions and powders. In the present work, ceramic aluminum oxide (Al 2 O 3 ) thin films were deposited on metal substrates. In addition, the glass substrate was etched using a mask to make small channels. Deposited and mechanically etched surface morphology, coating thickness and channel depth were investigated. The test results showed that the NPB provides a feasible additive and subtractive process using ceramic powders.

  1. Generation of amorphous ceramic capacitor coatings on titanium using a continuous sol-gel process

    International Nuclear Information System (INIS)

    Dixon, B.G.; Walsh, M.A. III; Phillips, P.G.; Morris, R.S.

    1995-01-01

    Thin amorphous films of ceramic capacitor materials were successfully deposited using sol-gel chemistry onto titanium wire using a continuous, computer controlled process. By repeatedly depositing and calcining very thin layers of material, smooth and even coats can be produced. Surface analyses revealed the layered nature of these thin coats, as well as the amorphous nature of the ceramic. The electrical properties of the better coatings, all composed of niobium, bismuth, zinc oxides, were then evaluated. copyright 1995 Materials Research Society

  2. Yield strength of attached copper film

    International Nuclear Information System (INIS)

    Zhang Yan; Zhang Jian-Min

    2011-01-01

    Variation of stress in attached copper film with an applied strain is measured by X-ray diffraction combined with a four-point bending method. A lower slope of the initial elastic segment of the curve of X-ray measured stress versus applied strain results from incomplete elastic strain transferred from the substrate to the film due to insufficiently strong interface cohesion. So the slope of the initial elastic segment of the X-ray stress (or X-ray strain directly) of the film against the substrate applied strain may be used to measure the film-substrate cohesive strength. The yield strength of the attached copper film is much higher than that of the bulk material and varies linearly with the inverse of the film thickness. (condensed matter: structural, mechanical, and thermal properties)

  3. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  4. Distorting the ceramic familiar: materiality and non-ceramic intervention, Conference, Keramik Museum, Germany

    OpenAIRE

    Livingstone, Andrew

    2009-01-01

    Invited conference speaker, Westerwald Keramik Museum, August 2009. Paper title: Distorting the ceramic familiar: materiality and non-ceramic intervention.\\ud \\ud This paper will examine the integration of non-ceramic media into the discourse of ceramics.

  5. Piezoelectric displacement in ceramics

    International Nuclear Information System (INIS)

    Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This Good Practice Guide is intended to aid a user to perform displacement measurements on piezoelectric ceramic materials such as PZT (lead zirconium titanate) in either monolithic or multilayer form. The various measurement issues that the user must consider are addressed, and good measurement practise is described for the four most suitable methods. (author)

  6. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  7. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendfra Nagabhushana

    2001-07-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  8. Dissolution of crystalline ceramics

    International Nuclear Information System (INIS)

    White, W.B.

    1982-01-01

    The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table

  9. Ceramic analysis in Greece

    NARCIS (Netherlands)

    Hilditch, J.

    2016-01-01

    Scientific, analytical or ‘archaeometric’ techniques for investigating ceramic material have been used within archaeology for over 50 years and now constitute an indispensable tool for archaeologists in the Aegean world (see Jones 1986 for a detailed summary of early work in Greece and Italy) and

  10. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  11. Coated ceramic breeder materials

    Science.gov (United States)

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  12. Nanocomposite Strain Gauges Having Small TCRs

    Science.gov (United States)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  13. preparation, characterization and formulation of nano-ceramic materials to be used for the separation of some heavy metals

    International Nuclear Information System (INIS)

    Zayed, S.L.M.

    2006-01-01

    the synthesis of asymmetric composite and monolithic ceramic filters, with high performance quality, to be used in heavy metals separation is the aim of this study. asymmetric composite ceramic filter consisted of a macroporous or mesoporous substrate coated with several layers having lower pore size than the substrate usually microporous film. on the other hand, asymmetric monolithic ceramic filter is monolithic system having dual pore size distribution. ceramic filters synthesis was performed using polymeric sol-gel process. the optimization of synthesis parameters as well as the characterization was achieved to obtain ceramic filters with high separative properties. the synthesized ceramic filters were characterized using mercury porosimeter for pore size distribution analysis, BET method for specific surface areas measurements and BJH pore size distribution analysis, XRD analysis for crystalline phase identification and SEM for microstructure and morphology studies

  14. Porosity and biocompatibility study of ceramic implants based on ZrO2 and Al2O3

    International Nuclear Information System (INIS)

    Litvinova, Larisa; Shupletsova, Valeria; Leitsin, Vladimir; Vasyliev, Roman; Zubov, Dmitry; Buyakov, Ales; Kulkov, Sergey

    2014-01-01

    The work studies ZrO 2 (Me x O y )-based porous ceramics produced from the powders consisting of hollow spherical particles. It was shown that the structure is represented by a cellular framework with bimodal porosity consisting of sphere-like large pores and pores that were not filled with the powder particles during the compaction. For such ceramics, the increase of pore volume is accompanied by the increased strain in an elastic area. It was also shown that the porous ZrO 2 ceramics had no acute or chronic cytotoxicity. At the same time, ceramics possess the following osteoconductive properties: adhesion support, spreading, proliferation and osteogenic differentiation of MSCs

  15. Testing Bonds Between Brittle And Ductile Films

    Science.gov (United States)

    Wheeler, Donald R.; Ohsaki, Hiroyuki

    1989-01-01

    Simple uniaxial strain test devised to measure intrinsic shear strength. Brittle film deposited on ductile stubstrate film, and combination stretched until brittle film cracks, then separates from substrate. Dimensions of cracked segments related in known way to tensile strength of brittle film and shear strength of bond between two films. Despite approximations and limitations of technique, tests show it yields semiquantitative measures of bond strengths, independent of mechanical properties of substrates, with results reproducible with plus or minus 6 percent.

  16. Nuclear techniques in the development of advanced ceramic technologies

    International Nuclear Information System (INIS)

    Axe, J.D.; Hewat, A.W.; Maier, J.; Margaca, F.M.A.; Rauch, H.

    1999-01-01

    The importance of research, development and application of advanced materials is well understood by all developed and most developing countries. Amongst advanced materials, ceramics play a prominent role due to their specific chemical and physical properties. According to performance and importance, advanced ceramics can be classified as structural ceramics (mechanical function) and the so-called functional ceramics. In the latter class of materials, special electrical, chemical, thermal, magnetic and optical properties are of interest. The most valuable materials are multifunctional, for example, when structural ceramics combine beneficial mechanical properties with thermal and chemical sensitivity. Multifunctionality is characteristic of many composite materials (organic/inorganic composite). Additionally, properties of material can be changed by reducing its dimension (thin films, nanocrystalline ceramics). Nuclear techniques, found important applications in research and development of advanced ceramics. The use of neutron techniques has increased dramatically in recent years due to the development of advanced neutron sources, instrumentation and improved data analysis. Typical neutron techniques are neutron diffraction, neutron radiography, small angle neutron scattering and very small angle neutron scattering. Neutrons can penetrate deeply into most materials thus sampling their bulk properties. In determination of the crystal structure of HTSC, YBa 2 Cu 2 O 7 , XRD located the heavy metal atoms, but failed in finding many of the oxygen atoms, while the neutron diffraction located all atoms equally well in the crystal structure. Neutron diffraction is also unique for the determination of the magnetic structure of materials since the neutrons themselves have a magnetic moment. Application of small angle neutron scattering for the determination of the size of hydrocarbon aggregates within the zeolite channels is illustrated. (author)

  17. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects.

    Science.gov (United States)

    Zhitomirsky, I

    2002-03-29

    Electrodeposition of ceramic materials can be performed by electrophoretic (EPD) or electrolytic (ELD) deposition. Electrophoretic deposition is achieved via motion of charged particles towards an electrode under an applied electric field. Electrolytic deposition produces colloidal particles in cathodic reactions for subsequent deposition. Various electrochemical strategies and deposition mechanisms have been developed for electrodeposition of ceramic and organoceramic films, and are discussed in the present article. Electrode-position of ceramic and organoceramic materials includes mass transport, accumulation of particles near the electrode and their coagulation to form a cathodic deposit. Various types of interparticle forces that govern colloidal stability in the absence and presence of processing additives are discussed. Novel theoretical contributions towards an interpretation of particle coagulation near the electrode surface are reviewed. Background information is given on the methods of particle charging, stabilization of colloids in aqueous and non-aqueous media, electrophoretic mobility of ceramic particles and polyelectrolytes, and electrode reactions. This review also covers recent developments in the electrodeposition of ceramic and organoceramic materials.

  18. Characterization of clays used in the red ceramics industry at Itabaianinha-SE (Brazil)

    International Nuclear Information System (INIS)

    Azevedo, T.F.; Andrade, C.E.C. de; Santos, C.R. dos; Barreto, L.S.

    2011-01-01

    The Local Cluster of red ceramic industry in the state of Sergipe comprises Itabaianinha-SE, Itabaiana and Baixo Sao Francisco municipalities (Propria and Santana do Sao Francisco). The city of Itabaianinha concentrates a large number of ceramics and potteries producing ceramic bricks and tiles. The study was conducted in a red ceramic industry of the region. The focus of this work was an incremental innovation in the process and product. It was analyzed three types of clays used for manufacturing of ceramic bricks (barro preto, diamante and jardim). The samples were prepared by pressing and heat treated between 600 ° C - 1100 C °. The samples characterization was by thermogravimetry, X-ray diffraction and physical tests (water absorption, linear retraction and three points flection). The clays are composed mainly of kaolinite, illite-muscovite and quartz. The results showed that the Barro Preto clay showed better results in retraction, absorption and mechanical strain. (author)

  19. High-resolution vector magnetometry: Piezo-spin-polarization effect and in-plane strain-induced dominating uniaxial magnetic anisotropy in a 200-nm-thick Ni thin film

    Science.gov (United States)

    Benito, L.

    2018-04-01

    Owing to its high-sensitivity, reliability, fast, versatile and cost-effective operation, vibrating sample magnetometers (VSM) are massively popular characterization instruments at Magnetism laboratories worldwide. Nevertheless, the inherent appearance of synchronous noise represents a major drawback, which critically limits the fine probing of nanometer-sized media. I here report on an innovative approach to eliminate synchronous noise in VSM. This consists of fitting engineered mechanical devices that absorbs vibration energy, dissipating that into heat. Complementarily, a novel transversal pick-up coil system is also presented and analyzed; this detection system has been engineered to enhance the noise-to-signal ratio and optimized for measuring small size thin film samples. The implementation of a combined mechanical and electromagnetic approach enables to notably enhance the VSM performance, achieving a sensitivity better than 1 ×10-6 emu and a resolution below 5 ×10-8 emu, so that the magnetization vector in nanostructured media can be accurately mapped out down to cryogenic temperatures. I lastly show precision magnetometry measurements carried out in an epitaxial (0 0 1)-oriented 200 nm-thick Ni thin film. The analysis reveals the arising of an in-plane dominating strain-induced uniaxial magnetic anisotropy, K2ef = - 6.455kJ m - 3 , and a stunning piezo-spin-polarization effect resulting in a remarkable 10% modulation of the magnetization vector, ∼ 27 emu/cm3, with respect to the cubic lattice axes. Both effects are attributed to the likely existence of an orthorhombic lattice distortion, i.e.εxx -εyy ≈ - 2 ×10-3 . This categorical link enables to assign the observed anisotropic spin-polarization in the Ni overlayer to a two-ion magnetoelastic coupling effect.

  20. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.