WorldWideScience

Sample records for fillers synthesis rheology

  1. Microstructural and rheological analysis of fillers and asphalt mastics

    International Nuclear Information System (INIS)

    Geber, R; Simon, A; Kocserha, I; Buzimov, A

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (d<0.063 mm) is called filler. This component has an important role in asphalt mixture - it fills the gaps between the aggregates and if mixed with bitumen (which is called asphalt mastics) it sticks the larger particles together. Particle size, microstructure and surface properties of fillers highly affect the cohesion with bitumen, therefore the aim of our research was to investigate the microstructure of mineral fillers (limestone, dolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics. (paper)

  2. Rheology of cement mixtures with dolomite filler

    Directory of Open Access Journals (Sweden)

    Martínez de la Cuesta, P. J.

    2000-06-01

    Full Text Available This experimental program has studied the behavior of fresh paste made up from cements mixed with dolomite filler. Through prior experiments the starting point is obtained for the designs 22 and 23 factorials. With these designs the governing equations are established that influence the specific surface of the filler, the filler percentage and the ratio water/(cement + filler, used as objective functions: test probe penetration, flow on table and shear stress in viscometer. Also the type of rheological conduct is determined and the influence over initial and final setting is observed.

    Este programa experimental estudia el comportamiento de las pastas frescas fabricadas a partir de cementos mezclados con filler dolomítico. En los experimentos previos se obtiene el punto central para los diseños 22 y 23 factoriales. Con estos diseños se establecen las ecuaciones que rigen la influencia de la superficie específica del filler, el porcentaje de filler y la relación agua/(cemento + filler, utilizando como funciones objetivos la penetración de sonda, la mesa de sacudidas y la tensión de corte en el viscosímetro. También se determina el tipo de conducta reológica y la influencia sobre el principio y fin de fraguado.

  3. Chitosan solutions as injectable systems for dermal filler applications: Rheological characterization and biological evidence.

    Science.gov (United States)

    Halimi, C; Montembault, A; Guerry, A; Delair, T; Viguier, E; Fulchiron, R; David, L

    2015-01-01

    A new generation of dermal filler for wrinkle filler based on chitosan was compared to current hyaluronic acid-based dermal fillers by using a new rheological performance criterion based on viscosity during injection related to Newtonian viscosity. In addition an in vivo evaluation was performed for preclinical evidence of chitosan use as dermal filler. In this way, biocompatibility and dermis reconstruction was evaluated on a pig model.

  4. Influence of mineral fillers on the rheological response of polymer-modified bitumens and mastics

    Directory of Open Access Journals (Sweden)

    F. Cardone

    2015-12-01

    Full Text Available The rheological properties of the bituminous components (bitumen and bituminous mastic within asphalt mixtures contribute significantly to the major distresses of flexible pavements (i.e. rutting, fatigue and low temperature cracking. Asphalt mixtures are usually composed of mastic-coated aggregates rather than pure bitumen-coated aggregates. The purpose of this study is to investigate the effects of mineral fillers on the rheological behaviour of several polymer-modified bitumens (PMBs through laboratory mixing. A neat bitumen and two types of polymers (elastomeric and plastomeric were used to produce PMBs, and two fillers with different minerals (limestone and basalt were selected to obtain mastics. The dynamic shear rheometer (DSR and bending beam rheometer (BBR were used to characterize the rheological properties of PMBs and mastics. In particular, multiple stress creep recovery (MSCR tests were performed to evaluate the rutting potential at high temperatures, whereas BBR tests were carried out to investigate the low temperature behaviour of these materials. BBR results for unmodified mastics show that the increase of stiffness is similar regardless of the filler type, whereas results for polymer-modified mastics indicate that the degree of stiffening depends on the combination of filler/polymer types. MSCR results show that adding filler leads to a reduced susceptibility of permanent deformation and an enhanced elastic response, depending on the combination of filler/polymer types. Overall results suggest that a physical–chemical interaction between the filler and bitumen occurs, and that the interaction level is highly dependent on the type of polymer modification.

  5. Shape Effect of Crushed Sand Filler on Rheology: A Preliminary Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Cepuritis, Rolands; Hovad, Emil

    2016-01-01

    Two types of filler from crushed sand were mixed with cement paste with constant superplasticizer dosage per mass of cement to investigate how their shape affects the rheology. The fillers were mylonitic quartz diorite and limestone produced using Vertical Shaft Impact (VSI) crusher and air...... was quantified with the slump flow test (i.e. mini cone). The shape effect was isolated in the experiments by the use of non overlapping bimodal particle distributions of cement particles with a number average diameter of approximate to 0.01 mm and filler particles with a number average diameter of approximate...... to 0.1 mm. The two filler types were tested with a range of chi-values (volume of cement divided by total volume of solids). The flowability of the matrix increased with decreasing aspect ratios of the filler. However, the chi-value at which the maximum volume fraction threshold was obtained varied...

  6. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation

    Directory of Open Access Journals (Sweden)

    Valeria Vignali

    2016-10-01

    Full Text Available In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures.

  7. Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: calcium hydroxylapatite and hyaluronic acid.

    Science.gov (United States)

    Sundaram, Hema; Voigts, Bob; Beer, Kenneth; Meland, Melissa

    2010-11-01

    Two types of soft tissue filler that are in common use are those formulated primarily with calcium hydroxylapatite (CaHA) and those with cross-linked hyaluronic acid (cross-linked HA). To provide physicians with a scientific rationale for determining which soft tissue fillers are most appropriate for volume replacement. Six cross-linked HA soft tissue fillers (Restylane and Perlane from Medicis, Scottsdale, AZ; Restylane SubQ from Q-Med, Uppsala, Sweden; and Juvéderm Ultra, Juvéderm Ultra Plus, and Juvéderm Voluma from Allergan, Pringy, France) and a soft tissue filler consisting of CaHA microspheres in a carrier gel containing carboxymethyl cellulose (Radiesse, BioForm Medical, Inc., San Mateo, CA). METHODS The viscosity and elasticity of each filler gel were quantified according to deformation oscillation measurements conducted using a Thermo Haake RS600 Rheometer (Newington, NH) using a plate and plate geometry with a 1.2-mm gap. All measurements were performed using a 35-mm titanium sensor at 30°C. Oscillation measurements were taken at 5 pascal tau (τ) over a frequency range of 0.1 to 10 Hz (interpolated at 0.7 Hz). Researchers chose the 0.7-Hz frequency because it elicited the most reproducible results and was considered physiologically relevant for stresses that are common to the skin. RESULTS The rheological measurements in this study support the concept that soft tissue fillers that are currently used can be divided into three groups. CONCLUSION Rheological evaluation enables the clinician to objectively classify soft tissue fillers, to select specific filler products based on scientific principles, and to reliably predict how these products will perform--lifting, supporting, and sculpting--after they are appropriately injected. © 2010 by the American Society for Dermatologic Surgery, Inc.

  8. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  9. Magnetic and physical-mechanical properties of polymer composites with soft magnetic fillers

    International Nuclear Information System (INIS)

    Usakova, M.; Usak, E.; Olah, V.; Rekosova, J.

    2013-01-01

    In this paper the influence of soft magnetic ferrite fillers on magnetic and physical-mechanical properties of the prepared composite samples based in natural rubber matrix was studied. The soft magnetic ferrite materials with the chemical composition Mn_0_._3_7Zn_0_._5_7Fe_2_._0_6O_4 and Ni_0_._3_3Zn_0_._6_7Fe_2O_4 were used as magnetic filler in various concentrations. Further, the effect of thermo-oxidative ageing on the prepared composite materials was investigated. Magneto-rheological elastomers are solid analogues to magneto-rheological fluids. These materials are considered as smart materials comprising of micro- or submicro-sized magnetic particles dispersed in non-magnetic matrix. (authors)

  10. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications

    Science.gov (United States)

    Kádár, Roland; Abbasi, Mahdi; Figuli, Roxana; Rigdahl, Mikael; Wilhelm, Manfred

    2017-01-01

    The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate) (EBA) nanocomposite hybrids containing graphite nanoplatelets (GnP) and carbon black (CB). The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests. PMID:28336857

  11. Linear and Nonlinear Rheology Combined with Dielectric Spectroscopy of Hybrid Polymer Nanocomposites for Semiconductive Applications

    Directory of Open Access Journals (Sweden)

    Roland Kádár

    2017-01-01

    Full Text Available The linear and nonlinear oscillatory shear, extensional and combined rheology-dielectric spectroscopy of hybrid polymer nanocomposites for semiconductive applications were investigated in this study. The main focus was the influence of processing conditions on percolated poly(ethylene-butyl acrylate (EBA nanocomposite hybrids containing graphite nanoplatelets (GnP and carbon black (CB. The rheological response of the samples was interpreted in terms of dispersion properties, filler distortion from processing, filler percolation, as well as the filler orientation and distribution dynamics inside the matrix. Evidence of the influence of dispersion properties was found in linear viscoelastic dynamic frequency sweeps, while the percolation of the nanocomposites was detected in nonlinearities developed in dynamic strain sweeps. Using extensional rheology, hybrid samples with better dispersion properties lead to a more pronounced strain hardening behavior, while samples with a higher volume percentage of fillers caused a drastic reduction in strain hardening. The rheo-dielectric time-dependent response showed that in the case of nanocomposites containing only GnP, the orientation dynamics leads to non-conductive samples. However, in the case of hybrids, the orientation of the GnP could be offset by the dispersing of the CB to bridge the nanoplatelets. The results were interpreted in the framework of a dual PE-BA model, where the fillers would be concentrated mainly in the BA regions. Furthermore, better dispersed hybrids obtained using mixing screws at the expense of filler distortion via extrusion processing history were emphasized through the rheo-dielectric tests.

  12. Synthesis of mesh-shaped calcia partially stabilized zirconia using eggshell membrane template as filler composite

    Directory of Open Access Journals (Sweden)

    Gema Gempita

    2017-08-01

    Full Text Available This experiment was conducted experimentally to synthesize Calcia Partially Stabilized Zirconia (Ca-PSZ by sol-gel method using eggshell membrane template as a composite filler. The eggshell membrane was used to produce a mesh shaped structure, which hopefully can improve the mechanical properties of the composite. Ca-PSZ filler was synthesized from ZrOCl2 precursor and Ca(NO32 stabilizer with a 24 hours immersion time. Ca-PSZ of synthesis then mixed with the resin matrix to test its composite hardness. The EDS characterization results suggested that the sample contained elements of zirconia, calcium, and oxygen. Whereas, the XRD characterization identified that crystal structures that formed in the sample were nano scale tetragonal. Characterization of SEM showed Ca-PSZ with mesh structured. The average composite hardness value was 15.79 VHN. The composites with Ca-PSZ-synthesized filler could be prepared and its hardness value was higher than the composite with Ca-PSZ filler in spherical particles, but the hardness was still below the composite on the market.

  13. Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites

    Science.gov (United States)

    Anju Gupta; William Simmons; Gregory T. Schueneman; Donald Hylton; Eric A. Mintz

    2017-01-01

    Improving the processability and physical properties of sustainable biobased polymers and biobased fillers is essential to preserve its biodegradability and make them suitable for different end user applications. Herein, we report the use of spray-dried lignin-coated cellulose nanocrystals (L-CNCs), a biobased filler, to modify the rheological and thermos-mechanical...

  14. Alternative Fillers for the Production of Bituminous Mixtures: A Screening Investigation on Waste Powders

    Directory of Open Access Journals (Sweden)

    Cesare Sangiorgi

    2017-06-01

    Full Text Available There has been a significant increase in the demand for using recycled materials in construction because of the lack and limitation of available natural resources. A number of industrial and domestic waste products are being used in the replacement of traditional materials for road construction, and many studies have been carried out in recent years on the use of different recycled materials in substitution of conventional fillers in Asphalt Concretes (AC. The aim of this laboratory research is to analyze the physical characteristics of three different recycled fillers and compare them with those of a traditional limestone filler. The alternative fillers presented in this paper are: a waste bleaching clay that comes from two consecutive stages in the industrial process for decolouring vegetable oils and producing biogas (Ud filler, a dried mud waste from a tungsten mine (MW filler and a recycled glass powder (Gl filler. Results show significant differences between the fillers, and, in particular, Rigden Voids (RV seem to have the largest potential influence on the rheology of ACs.

  15. Effect of gamma irradiation on mechanical, thermal and rheological behavior of HDPE filled with seaweed residues

    International Nuclear Information System (INIS)

    Catano, L.; Albano, C.; Karam, A.; Dominguez, N.; Sanchez, Y.; Gonzalez, J.

    2005-01-01

    The present work shows the results obtained during the investigation of the influence of gamma irradiation on mechanical, thermal and rheological properties of high-density polyethylene (HDPE) filled with seaweed residues (SR). The SR used was located on Venezuelan coastlines and they are composed mainly by CaCO 3 in aragonite phase. The HDPE was extruded along with the filler at different compositions (20, 30 and 40 wt.%). The composites were exposed to a 60 Co source irradiated at 25 and 100 kGy. From the obtained results, it was noticed that Young modulus remained constant with filler content. Moreover, the influence of filler content was found to be more prominent on properties like tensile stress and elongation at break. On the other hand, thermal analysis showed that filler content had no significant influence on thermal stability. Still, it is necessary to point out that low radiation doses improved thermal stability of the composites. From rheological studies it was observed a decreasing of melt flow index (MFI) by increasing the SR amount and radiation. Therefore, was determinate that high filler content composites are the best choice to be considered for biomedical and industrial applications

  16. Rheology of Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels

    Science.gov (United States)

    Lombardi, Jack; Xu, Di; Bhatnagar, Divya; Gersappe, Dilip; Sokolov, Jonathan; Rafailovich, Miriam

    2015-03-01

    The stiffness of PNIPA Gels has been reported could be significant improved by gelation with clay fillers. Here we conducted systematic rheology study of synthesized PNIPA-Clay Composites at different clay concentration, in a range from fluid to strong gel, where G'' dominant changed to G' dominant. Molecular dynamics simulation was employed to analyze the structure of composites and corresponding mechanical changes with increased clays. Where we found viscoelastic behavior become significant only 1.5 times above percolation threshold. The yield stress extrapolated from our rheology results shows good fitting to modified Mooney's theory of suspension viscosity.

  17. Rheology and extrusion of low-grade paper and sludge

    Science.gov (United States)

    C. Tim Scott; Stefan Zauscher; Daniel J. Klingenberg

    1999-01-01

    This paper discusses efforts to characterize the rheological properties of pulps that include low-grade wastepapers and papermill sludges to determine their potential for extrusion and conversion into useful products. We investigated apparent changes in viscosity associated with the addition of typical inorganic paper fillers (calcium carbonate, kaolin clay, and...

  18. Analysis of filler--fibre interaction in fly ash filled short fibre-epoxy ...

    Indian Academy of Sciences (India)

    Size and aspect ratio are believed to influence the rheology or the flow in the mixture and in turn the mechanical performance of the composites. Fillers and fibres when used in combination are expected to complement each other's performance resulting in better properties for the composite. They also reduce the extent of ...

  19. Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers

    Science.gov (United States)

    Buczyński, Przemyslaw; Iwański, Marek

    2017-10-01

    The article presents the results of a cold recycled mix test with a foam bitumen including the addition of the inactive mineral filler as a dust of basalt. Basalt dust was derived from dedusting system by extraction of aggregates in the mine. Assessment of the impact of a basalt dust on the properties of a recycled base layer was carried out in terms of the amount of mineral filler (basalt) in the composition of the mineral mixture. This experiment involved a dosing of mineral filler in range from 5 to 20% with steps of 7.5% in the mineral mixture composition. The foamed bitumen was performed at optimum foaming process settings (ie. bitumen temperature, air pressure) and at 2.5% of the water content. The amount of a hydraulic binder as a Portland cement was 2.0%. The evaluation of rheological properties allowed to determine whether the addition of inactive mineral fillers can act as a stiffness modulus controller in the recycled base layer. The analysis of the rheological properties of a recycled base layer in terms of the amount of inactive fillers was performed in accordance with given standard EN 12697-26 Annex D. The study was carried out according to the direct tension-compression test methodology on cylindrical samples. The sample was subjected to the oscillatory sinusoidal strain ε0 < 25με. Studies carried out at a specific temperature set-points: - 7°C, 5°C, 13°C, 25°C and 40°C and at the frequency 0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz and 20 Hz. The obtained results allow to conclude that the use of an inactive filler can reduce the stiffness of an appropriate designed mixes of the cold recycled foundation. In addition, the analysis of the relation E‧-E″ showed a similar behaviour of a recycled base, regardless of the amount of inactive fillers in the mix composition, at high temperatures/high frequency of induced load.

  20. Synthesis, rheology and forming of Y-Ba-Cu-O ceramics

    International Nuclear Information System (INIS)

    Green, T.M.

    1993-07-01

    A chemical synthesis route is discussed which results in a low- temperature precursor to Y-Ba-Cu-O ceramics; it is based on use of molten Ba(OH) 2 ·8H 2 O flux. Two different chemical systems have been examined; the first one, based on nitrate salts, has been demonstrated to be a viable precursor material for tape casting and extrusion; the second, made from acetate salts, has been used for powder synthesis and extrusion. Rheology of pastes shows that their flow may be fit to either Bingham Plastic or Hershel- Bulkley models. Yield stress is controlled in both pastes by volume fraction solids. Viscosity also follows solids loading in the paste. Shear thinning is controlled by colloidal nature of precursor. The paste has colloidal microstructure. Comparison of concentric cylinder rheometry and piston extrusion rheometry shows order of magnitude differences in yield stress, resulting from the test method and paste dilation

  1. Evaluation of rice husk ash as filler in tread compounds

    International Nuclear Information System (INIS)

    Fernandes, M. R. S.; Furtado, C. R. G.; Sousa, A. M. F. de

    2014-01-01

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  2. Evaluation of rice husk ash as filler in tread compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M. R. S., E-mail: monica.fernandes@lanxess.com [Lanxess Elastômeros do Brasil S.A., Brasil and Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ) (Brazil); Furtado, C. R. G., E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de, E-mail: russi@globo.com, E-mail: ana.furtado.sousa@gmail.com [Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ) (Brazil)

    2014-05-15

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  3. Thermoconductive Thermosetting Composites Based on Boron Nitride Fillers and Thiol-Epoxy Matrices

    Directory of Open Access Journals (Sweden)

    Isaac Isarn

    2018-03-01

    Full Text Available In this work, the effect of the addition of boron nitride (BN fillers in a thiol-cycloaliphatic epoxy formulation has been investigated. Calorimetric studies put into evidence that the kinetics of the curing has been scarcely affected and that the addition of particles does not affect the final structure of the network. Rheologic studies have shown the increase in the viscoelastic properties on adding the filler and allow the percolation threshold to be calculated, which was found to be 35.5%. The use of BN agglomerates of bigger size increases notably the viscosity of the formulation. Glass transition temperatures are not affected by the filler added, but Young’s modulus and hardness have been notably enhanced. Thermal conductivity of the composites prepared shows a linear increase with the proportion of BN particle sheets added, reaching a maximum of 0.97 W/K·m. The addition of 80 μm agglomerates, allowed to increase this value until 1.75 W/K·m.

  4. Evaluation of the filler packing structures in dental resin composites: From theory to practice.

    Science.gov (United States)

    Wang, Ruili; Habib, Eric; Zhu, X X

    2018-07-01

    The aim of this study is to evaluate the packing properties of uniform silica particles and their mixture with secondary particles yielding maximally loaded dental composites. We intend to verify the difference between the idealized models (the close-packed structures and the random-packed structures) and the actual experimental results, in order to provide guidance for the preparation of dental composites. The influence of secondary particle size and the resin composition on the physical-mechanical properties and the rheological properties of the experimental dental composites was also investigated. Silica particles (S-920, S-360, and S-195) with average diameters of 920, 360, and 195nm were synthesized via the Stöber process. Their morphology and size distribution were determined by field-emission scanning electron microscopy and laser particle sizer. A series of silica fillers, S-920, S-920+195, S-920+360, and S-920+360+195, were then formulated with two Bis-GMA/TEGDMA resins (weight ratios of 70:30 and 50:50). For these experimental dental composites, their maximum filler loadings were assessed and compared to the theory. The mechanical properties, degree of conversion, depth of cure, and polymerization shrinkage of these composites were then evaluated. Their rheological behaviors were measured with a rheometer. Unimodal S-920 had the maximally filler loading of 70.80wt% with the 5B5T resin, close to the theoretical estimation of the random loose packing (71.92wt%). The maximum loading of the S-920+360+195 filled composite was 72.92wt% for the same resin, compared to the theoretical estimation of 89.29wt% obtained for the close-packed structures. These findings indicate that random loose packing matches more closely to the real packing state for the filler formulations used. When maximally loaded, the composite with S-920+360+195 produced the best mechanical properties and the lowest polymerization shrinkage. The degree of conversion and depth of cure were

  5. Mixing process influence on thermal and rheological properties of NBR/SiO2 from rice husk ash

    Directory of Open Access Journals (Sweden)

    Ana Maria Furtado de Sousa

    Full Text Available Abstract Silica was extracted from rice husk ash (RHA by a sequence of reactions to produce nanosilica. Two laboratory routes, co-coagulation and spray drying, were used to incorporate the nanosilica into the rubber matrix. Samples were characterized regarding filler incorporation efficiency, thermal stability, rheological behavior and morphology. Thermogravimetric analysis showed that spray-drying was the most efficient filler incorporation process and also the presence of silica increased the thermal resistance of the rubber compound when compared to the unfilled rubber. The rheological behavior showed that NBR filled with silica presented higher elastic torque (S’, storage modulus (G’ and complex viscosity (η* than unfilled rubber. The Payne effect was also observed for the composites produced by spray-drying. In addition, the thermal behavior and Payne effect results were supported by the comparison of morphology observed by FEG-SEM analysis.

  6. Study of piezoelectric filler on the properties of PZT-PVDF composites

    Science.gov (United States)

    Matei, Alina; Å¢ucureanu, Vasilica; Vlǎzan, Paulina; Cernica, Ileana; Popescu, Marian; RomaniÅ£an, Cosmin

    2017-12-01

    The ability to obtain composites with desired functionalities is based on advanced knowledge of the processes synthesis and of the structure of piezoceramic materials, as well the incorporation of different fillers in selected polymer matrix. Polyvinylidene fluoride (PVDF) is a fluorinated polymer with excellent mechanical and electric properties, which it was chosen as matrix due to their applications in a wide range of industrial fields [1-4]. The present paper focuses on the development of composites based on PZT particles as filler obtained by conventional methods and PVDF as polymer matrix. The synthesis of PVDF-PZT composites was obtained by dispersing the ceramic powders in a solution of PVDF in N-methyl-pyrrolidone (NMP) under mechanical mixing and ultrasonication, until a homogenous mixture is obtained. The properties of the piezoceramic fillers before and after embedding into the polymeric matrix were investigated by Fourier transform infrared spectrometry, field emission scanning electron microscopy and X-ray diffraction. In the FTIR spectra, appear a large number of absorption bands which are exclusive of the phases from PVDF matrix confirming the total embedding of PZT filler into matrix. Also, the XRD pattern of the composites has confirmed the presence of crystalline phases of PVDF and the ceramic phase of PZT. The SEM results showed a good distribution of fillers in the matrix.

  7. Effect of carbon black on electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate composites

    Directory of Open Access Journals (Sweden)

    H. Oxfall

    2015-01-01

    Full Text Available The effect of adding carbon black on the electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate copolymer composites produced via melt or solution mixing was studied. By adding a small amount of low- or high-structured carbon black to the nanocomposite, the electrical percolation threshold decreased and the final conductivity (at higher filler contents increased. The effect on the percolation threshold was significantly stronger in case of the high-structured carbon black where replacing 10 wt% of the total filler content with carbon black instead of graphite nanoplatelets reduced the electrical percolation threshold from 6.9 to 4.6 vol%. Finally, the solution mixing process was found to be more efficient leading to a lower percolation threshold. For the composites containing high-structured carbon black, graphite nanoplatelets and their hybrids there was a quite reasonable correlation between the electrical and rheological percolation thresholds.

  8. What About the Rheological Properties of PRP/Microfat Mixtures in Fat Grafting Procedure?

    Science.gov (United States)

    Ghazouane, R; Bertrand, B; Philandrianos, C; Veran, J; Abellan, M; Francois, P; Velier, M; Orneto, C; Piccerelle, P; Magalon, J

    2017-10-01

    Fat grafting has emerged as a reference procedure in daily plastic surgery practice. Unpredictable fat resorption is the main clinical problem. For this purpose, the addition of PRP to enhance fat revascularization is now an easy and popular procedure. However, no consensus exists regarding the respective volume of fat and PRP used to obtain the ideal mixture. This study investigated the rheological properties of microfat mixed with different proportions of PRP. Results obtained were compared with commercialized hyaluronic acid fillers. Microfat and PRP preparations were performed using standardized techniques. Lipoaspirate residue and blood were obtained from six patients undergoing aesthetic facial microlipofilling. Elastic modulus G' and tan δ (proportion of elasticity versus fluidity) were obtained for the following conditions: microfat alone and microfat mixed with 10, 30 or 50% of PRP. An expected decrease in elastic modulus was observed by adding increase volumes of PRP. Two groups of products with different rheological properties were considered based on statistical differences highlighted regarding the value of G'. Mean tan δ varied from 0.20 ± 0.04 (microfat alone) to 0.28 ± 0.08 (50% microfat/50% PRP). Microfat mixed with 10% of PRP presents consistency comparable to stiffer fillers, whereas microfat mixed with 30 or 50% corresponds to softer fillers. Rheological differences were highlighted given the proportion of PRP added to the microfat. Further studies assessing the impact of increased doses of platelets in microfat/PRP mixtures on clinical outcomes should also be investigated. Our findings will help clinicians to choose a mixture that meets their specific needs for a given indication. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  9. Wrinkle Fillers

    Science.gov (United States)

    ... your health care provider about their training and experience injecting dermal fillers in the face. Do not inject yourself with dermal fillers. Do not purchase dermal filler products online, because they could be ...

  10. Facial rejuvenation with fillers: The dual plane technique

    Directory of Open Access Journals (Sweden)

    Giovanni Salti

    2015-01-01

    Full Text Available Background: Facial aging is characterized by skin changes, sagging and volume loss. Volume is frequently addressed with reabsorbable fillers like hyaluronic acid gels. Materials and Methods: From an anatomical point of view, the deep and superficial fat compartments evolve differently with aging in a rather predictable manner. Volume can therefore be restored following a technique based on restoring first the deep volumes and there after the superficial volumes. We called this strategy "dual plane". A series of 147 consecutive patients have been treated with fillers using the dual plane technique in the last five years. Results: An average of 4.25 session per patient has been carried out for a total of 625 treatment sessions. The average total amount of products used has been 12 ml per patient with an average amount per session of 3.75 ml. We had few and limited adverse events with this technique. Conclusion: The dual plane technique is an injection technique based on anatomical logics. Different types of products can be used according to the plane of injection and their rheology in order to obtain a natural result and few side effects.

  11. Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes

    International Nuclear Information System (INIS)

    Fombuena, V.; Bernardi, L.; Fenollar, O.; Boronat, T.; Balart, R.

    2014-01-01

    Highlights: • Calcium carbonate from seashell is an attractive bio-filler in polymeric industry. • We examine composition and thermal properties of calcium carbonate from seashell. • Used with eco-friendly epoxy matrices provides a high renewable content material. • Addition of 30 wt.% of seashell bio-filler increase of over 50% in flexural modulus. • Calcium carbonate from seashell leads higher thermal stability materials. - Abstract: The seashells, a serious environmental hazard, are composed mainly by calcium carbonate, which can be used as filler in polymer matrix. The main objective of this work is the use of calcium carbonate from seashells as a bio-filler in combination with eco-friendly epoxy matrices thus leading to high renewable contents materials. Previously obtaining calcium carbonate, the seashells were washed and grinded. The powder obtained and the resin was characterized by DSC, TGA, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and rheology plate-plate. The results show that addition of 30 wt.% of seashell bio-filler increase mechanical properties as flexural modulus (over 50%) and hardness Shore D (over 6%) and thermal properties as an increase around 13% in glass transitions temperature. The results show that the addition of calcium carbonate from seashells is an effective method to increase mechanical properties of bio-composite and to reduce the residue of seashells from industrial production

  12. Effect of Modified and Nonmodified Carbon Nanotubes on the Rheological Behavior of High Density Polyethylene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Adewunmi A. Ahmad

    2013-01-01

    Full Text Available This paper reports the results of studies on the rheological behavior of nanocomposites of high density polyethylene (HDPE with pristine multiwall carbon nanotubes (CNT as well as phenol and 1-octadecanol (C18 functionalized CNT at 1, 2, 3, 4, 5, and 7 wt% loading. The viscosity reduction at 1 wt% CNT follows the order, pristine CNT < phenol functionalized CNT < C18 functionalized CNT. As the filler loading increases from 1 to 2, 3, and 4 wt%, neat HDPE and filled HDPE systems show similar moduli and viscosity, particularly in the low frequency region. As the filler loading increases further to 5 and 7 wt%, the viscosity and moduli become greater than the neat HDPE. The storage modulus, tan, and the Cole-Cole plots show that CNT network formation occurs at higher CNT loading. The critical CNT loading or the rheological percolation threshold, where network formation occurs is found to be strongly dependant on the functionalization of CNT. For pristine CNT, the rheological percolation threshold is around 4 wt%, but for functionalized CNT it is around 7 wt%. The surface morphologies of CNT and functionalized CNT at 1 wt% loading showed good dispersion while at 7 wt% loading, dispersion was also achieved, but there are few regions with agglomeration of CNT.

  13. Lip Injection Techniques Using Small-Particle Hyaluronic Acid Dermal Filler.

    Science.gov (United States)

    Chiu, Annie; Fabi, Sabrina; Dayan, Steven; Nogueira, Alessandra

    2016-09-01

    The shape and fullness of the lips have a significant role in facial aesthetics and outward appearance. The corrective needs of a patient can range from a subtle enhancement to a complete recontouring including correction of perioral rhytides. A comprehensive understanding of the lower face anatomical features and injection site techniques are foundational information for injectors. Likewise, the choice of filler material contributes to the success of the injection techniques used, and facilitates a safe, effective, and natural appearing outcome. The small-particle HA 20 mg/mL with lidocaine 0.3% (SP-HAL, Restylane® Silk; Galderma Laboratories, Fort Worth, Texas) is indicated for submucosal implantation for lip augmentation and dermal implantation for correction of perioral rhytides. Due to its rheological properties and smaller particle size, SP-HAL is a well-suited filler for the enhancement and correction of lip shape and volume, as well as for the correction of very fine perioral rhytides. This work is a combined overview of techniques found in the current literature and recommendations provided by contributing authors. J Drugs Dermatol. 2016;15(9):1076-1082.

  14. Dumbbell shaped polystyrene : synthesis and solution rheology

    NARCIS (Netherlands)

    Rajan, M.

    2006-01-01

    Polymeric additives profoundly influence fluid rheological properties; hence finding applications in fuels, lubricants, coatings, sprays, enhanced oil recovery, turbulent drag reduction etc. Several of these applications are based on the coil-stretch transition and subsequent stretching of polymer

  15. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    Energy Technology Data Exchange (ETDEWEB)

    Machovsky, Michal; Kuritka, Ivo, E-mail: ivo@kuritka.net; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-08-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites.

  16. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites

    International Nuclear Information System (INIS)

    Machovsky, Michal; Kuritka, Ivo; Bazant, Pavel; Vesela, Daniela; Saha, Petr

    2014-01-01

    Three different ZnO-based antibacterial fillers having different morphologies in microscale region were prepared by the use of the microwave assisted synthesis protocol created in our laboratory with additional annealing in one case. Further, PVC composites containing 0.5–5 wt.% of ZnO based antibacterial fillers were prepared by melt mixing and characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Mechanical testing showed no adverse effect on the working of polymer composites due to either of the fillers used or the applied processing conditions in comparison with the neat medical grade PVC. The surface antibacterial activity of the compounded PVC composites was assessed against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538P according to ISO 22196: 2007 (E). All materials at almost all filler loading levels were efficient against both species of bacteria. The material with the most expanding morphology assuring the largest contact between filler and matrix achieved an excellent level of more than 99.9999% reduction of viable cells of E. coli in comparison to untreated PVC and performed very well against S. aureus, too. A correlation between the morphology and efficacy of the filler was observed and, as a result, a general rule was formulated which links the proneness of the microparticles to perform well against bacteria to their shape and morphology. - Highlights: • ZnO-based nanostructured microparticles were prepared by microwave synthesis. • Prepared ZnO imparts excellent antibacterial activity to PVC composites. • The microparticulate character of filler makes it processable as common powders. • The inevitable disadvantages of nanoparticles are circumvented. • General rule of proneness of microparticles for antibacterial composites

  17. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  18. Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives.

    Science.gov (United States)

    Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch

    2013-10-01

    The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Thermal Conductivity of Aluminosilicate- and Aluminum Oxide-Filled Thermosets for Injection Molding: Effect of Filler Content, Filler Size and Filler Geometry

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2018-04-01

    Full Text Available In this study, epoxy molding compounds (EMCs with aluminosilicate (AlS and aluminum oxide (AlO were fabricated as fillers by a twin-screw-extruder (TSE and shaped to plate samples using injection molding. AlS and AlO, electrical insulating mineral materials, were used as fillers to improve the thermal conductivity (λc of composites. Composites with different filler particle sizes, filler contents and filler geometry were fabricated and the influence of these variables on the λc was studied. The λc of composites was measured with the hot-disk method. The distribution of fillers in composites was observed using scanning electron microscopy (SEM. Using the Lewis-Nielsen equation, experimental values of λc were compared with those predicted. The predicted results fit the experimental values well. The result showed that λc increases significantly when the filler content of composites is approximately over 50 vol %.

  20. Use of waste from the marble industry as filler for the production of self-compacting concretes

    Directory of Open Access Journals (Sweden)

    Valdez, P.

    2011-03-01

    Full Text Available This study evaluates the possibilities of using residual slurry from the cutting and superficial treatment of marble for the production of self-compacting concrete (SCC. The study considers the replacement of 30% of cement by the waste material, and assessed the effects on SCC properties in fresh and hardened states. Rheological characteristics were evaluated at the paste and concrete levels. Physical-mechanical characterization considers the rate of shrinkage and compressive strength gain. Pastes and concrete properties using waste marble as filler are compared with mixtures that include limestone filler, either added to the concrete or the cement. For the same dosage, an improvement in the flowability was observed in SCC with waste marble filler. The mechanical properties of the SCC adopting marble waste are equivalent to the SCC with limestone filler. The study shows that residual slurry from the processing of marble can represents an appropriate filler to be used in SCC.

    El presente estudio evalúa las posibilidades de utilización de lodos residuo de la industria del corte y tratamiento superficial del mármol para la producción de hormigón autocompactante (HAC. Se estudia el efecto del remplazo de un 30% del cemento por el residuo. Se valoran las características reológicas a nivel pasta y hormigón. La caracterización físico-mecánica contempla la evolución de la retracción y de la resistencia a compresión. Se comparan las prestaciones de pastas y hormigones empleando el residuo con mezclas que incorporan filler calizo, ya sea adicionado al hormigón o presente en el cemento. Se observa una mejora de la fluidez en el caso de los HAC que contienen el residuo estudiado; las propiedades mecánicas de éstos resultan equivalentes a las de los HAC con filler calizo. Se concluye que los lodos residuo del procesamiento del mármol pueden representan un filler adecuado para su uso en HAC.

  1. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Morphological characterization of ceramic fillers made from Indonesian natural sand as restorative dental materials

    Science.gov (United States)

    Karlina, E.; Susra, S.; Fatmala, Y.; Hartoyo, H. M.; Takarini, V.; Usri, K.; Febrida, R.; Djustiana, N.; Panatarani, C.; Joni, I. M.

    2018-02-01

    Dental composite as restorative dental materials can be reinforced using ceramic fillers. Homogeneous distribution of filler particles shall improve its mechanical properties. This paper presents the results of the preliminary study on the ZrO2-Al2O3-SiO2 ceramic fillers made from Indonesian natural sand that can increase the mechanical properties of dental composite. The synthesis was done using zirconium silicate sand (ZrSiO4) and aluminium oxide (Al2O3) precursors, which dissolved together with 70:30 weight ratios. Two types of sand were used: (1) manufactured sand (mesh #80) and (2) natural sand (mesh #400). The samples then heated in the furnace at 1100 °C for 8 hours. The morphological characterization was then evaluated using JEOL Scanning Electron Microscope (SEM) for the surface structure that analyze particles size and distribution. Ceramic fillers made from natural sand is homogenous, well distributed with average particle size of 5-10 µm. Comparably, ceramic filler made from the manufactured sand is heterogeneous, poorly distributed and appear as agglomerates with average particle size are 30-50 µm. The results suggest that ceramic fillers made from natural sand demonstrate better character to represent as a functional restorative dental material.

  3. Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites

    KAUST Repository

    Amr, Issam Thaher

    2014-09-04

    The results of the studies on the functionalization of multi-walled carbon nanotubes (MWCNT) with 1-octadecanol and its usage as reinforcing filler in the bulk polymerization of styrene are reported in this article. Both unmodified and modified CNTs were utilized in different loadings, however, without any initiator. The resulting composites were characterized by using mechanical testing, differential scanning calorimetry, thermogravimetric analysis and melt rheology. The tensile tests show the addition of 0.5wt% of CNT-C18 results in 19.5% increment of Young\\'s modulus. The DSC study shows a decrease in T-g values of prepared PS/CNT nanocomposite. The rheological study was conducted at 190 degrees C and shows that addition of pure CNT increased the viscoelastic behavior of the PS matrices, while the CNT-C18 act as plasticizer. Thermogravimetric analysis shows that the incorporation of CNT into PS enhanced the thermal properties significantly.

  4. Synthesis and characterization of polymer matrix composite material with combination of ZnO filler and nata de coco fiber as a candidate of semiconductor material

    Science.gov (United States)

    Saputra, Asep Handaya; Anindita, Hana Nabila

    2015-12-01

    Synthesis of semiconductor composite using acrylic matrix filled with ZnO and nata de coco fiber has been conducted in this research. The purpose of this research is to obtain semiconductor composite material that has a good mechanical strength and thermal resistance. In situ polymerization method is used in this research and the composites are ready to be characterized after 12 hours. The main parameter that is characterized is the electric conductivity of the composite. Additional parameters are also characterized such as composite's elastic modulus and glass transition temperature. The composites that has been made in this research can be classified as semiconductor material because the conductivity is in the range of 10-8-103 S/cm. In general the addition of ZnO and nata de coco filler can increase the conductivity of the composite. The highest semiconductor characteristic in acrylic/ZnO composite is obtained from 30% volume filler that reach 3.4 x 10-7 S/cm. Similar with acrylic/ZnO composite, in acrylic/nata de coco fiber composite the highest semiconductor characteristic is also obtained from 30% volume filler that reach 1.15 x 10-7 S/cm. Combination of 20% volume of ZnO, 10% volume of nata de coco, and 70% volume of acrylic resulting in composite with electric conductivity of 1.92 x 10-7 S/cm. In addition, combination of ZnO and nata de coco fiber as filler in composite can also improve the characteristic of composite where composite with 20% volume of ZnO filler and 10% volume of nata de coco fiber resulting in composite with elastic modulus of 1.79 GPa and glass transition temperature of 175.73°C which is higher than those in acrylic/ZnO composite.

  5. Research progress of composite fillers

    Directory of Open Access Journals (Sweden)

    Yixuan ZHAO

    2015-08-01

    Full Text Available Using composite filler is a very potential way to braze dissimilar material, especially braze metals with ceramics. The composite filler which is added varieties of high temperature alloy, carbon fiber and ceramic particles has a suitable coefficient of thermal expansion. The application of composite filler can release the residual stress caused by mismatch of thermal expansion coefficient in the brazing joints and improve the overall performance significantly. According to the traditional classification method of composite materials, the composite filler is divided into micron-reinforced composite filler and nano-reinforced composite filler, of which the feature and research status are discussed in this text. According to the influence of different size reinforced phases on microstructure and mechanical property of the brazing joints, nano-reinforced composite filler has more uniform and better structure compared with micron-reinforced composite filler, and higher joint strengh can be obtained by using it. However, the reinforced mechanism is still an open question, and will become the key area of the future research work.

  6. Rheology and Morphology of PP/ionomer/clay Nancomposites Depending on Selective Dispersion of Organoclays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Doohyun; Ock, Hyun Geun; Ahn, Kyung Hyun; Lee, Seung Jong [Seoul National University, Seoul (Korea, Republic of)

    2015-12-15

    In this study, structural developments of polypropylene / ionomer / clay ternary composites were investigated depending on the dispersion and localization of clay. The changes in physical properties were observed adding organoclays 1-10wt% to 90% polypropylene and 10% ionomer blends. The organoclays were localized inside of the dispersed phase under the composition of 3wt%, however, over that composition, clay particles formed stiff network structure in the dispersed phase and additional clays were localized at the interface between two phases. According to the developments of microstructure, the interaction of ternary composites changed from polypropylene-ionomer to polypropylene- ionomer and ionomer-clay which affected rheological properties. The storage modulus (G') of the composites was similar to the blends when clays were localized inside of dispersed phase but increased when clays were localized at interface. Also, the fractured morphology of the composites showed phase boundary and growing radius of dispersed phase depending on addition of fillers when clays were found inside. However, when fillers found at the interface between blends, the radius of the dispersed phase decreased and compatibilized morphology were observed. The interfacial interaction of the ternary composite was quantified depending on the structural development of dispersed phase and localization of clay particles by the rheological properties. The interaction of composites at solid state which was measured through peel adhesion strength increased by growth of interfacial interaction of each component. Furthermore, the crystallinity of the composites was decreased when the clay particles were localized at the interface.

  7. Rheology and Morphology of PP/ionomer/clay Nancomposites Depending on Selective Dispersion of Organoclays

    International Nuclear Information System (INIS)

    Kim, Doohyun; Ock, Hyun Geun; Ahn, Kyung Hyun; Lee, Seung Jong

    2015-01-01

    In this study, structural developments of polypropylene / ionomer / clay ternary composites were investigated depending on the dispersion and localization of clay. The changes in physical properties were observed adding organoclays 1-10wt% to 90% polypropylene and 10% ionomer blends. The organoclays were localized inside of the dispersed phase under the composition of 3wt%, however, over that composition, clay particles formed stiff network structure in the dispersed phase and additional clays were localized at the interface between two phases. According to the developments of microstructure, the interaction of ternary composites changed from polypropylene-ionomer to polypropylene- ionomer and ionomer-clay which affected rheological properties. The storage modulus (G') of the composites was similar to the blends when clays were localized inside of dispersed phase but increased when clays were localized at interface. Also, the fractured morphology of the composites showed phase boundary and growing radius of dispersed phase depending on addition of fillers when clays were found inside. However, when fillers found at the interface between blends, the radius of the dispersed phase decreased and compatibilized morphology were observed. The interfacial interaction of the ternary composite was quantified depending on the structural development of dispersed phase and localization of clay particles by the rheological properties. The interaction of composites at solid state which was measured through peel adhesion strength increased by growth of interfacial interaction of each component. Furthermore, the crystallinity of the composites was decreased when the clay particles were localized at the interface.

  8. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition

    International Nuclear Information System (INIS)

    Benchabane, A.

    2006-11-01

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  9. Magnetic nanoparticles based nano-composites: synthesis, contribution of the fillers dispersion and the chains conformation on the reinforcement properties

    International Nuclear Information System (INIS)

    Robbes, Anne-Sophie

    2011-01-01

    The mechanical properties of polymeric nano-composite films can be considerably enhanced by the inclusion of inorganic nanoparticles due to two main effects: (i) the local structure of fillers dispersion and (ii) the potential modification of the chains conformation and dynamics in the vicinity of the filler/polymer interface. However, the precise mechanisms which permit to correlate these contributions at nano-metric scale to the macroscopic mechanical properties of the materials are actually poorly described. In such a context, we have synthesized model nano-composites based on magnetic nanoparticles of maghemite γ-Fe 2 O 3 (naked or grafted with a polystyrene (PS) corona by radical controlled polymerization) dispersed in a PS matrix, that we have characterized by combining small angle scattering (X-Ray and neutron) and transmission electronic microscopy. By playing on different parameters such as the particle size, the concentration, or the size ratio between the grafted chains and the ones of the matrix in the case of the grafted fillers, we have obtained nano-composite films a large panel of controlled and reproducible controlled filler structures, going from individual nanoparticles or fractal aggregates up to the formation of a connected network of fillers. By applying an external magnetic field during the film processing, we succeeded in aligning the different structures along the direction of the field and we obtained materials with remarkable anisotropic reinforcement properties. The conformation of the chains of the matrix, experimentally determined thanks to the specific properties of neutron contrast of the system, is not affected by the presence of the fillers, whatever their confinement, the dispersion the fillers or their chemical state surface. The alignment of the fillers along the magnetic field has allowed us to describe precisely the evolution of the reinforcement modulus of the materials with the structural reorganization of the fillers and

  10. Ultrafine Magnetite Nanopowder: Synthesis, Characterization, and Preliminary Use as Filler of Polymethylmethacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2012-01-01

    Full Text Available Magnetite (Fe3O4 nanoparticles prepared by microwave-assisted hydrothermal synthesis have been characterized in terms of morphological and structural features. Electron micrographs collected in both scanning (SEM and transmission (TEM modes and evaluations of X-ray powder diffraction (XRD patterns have indicated the achievement of a monodispersed crystallite structure with particles having an average size around 15–20 nm. Structural investigations by Micro-Raman spectroscopy highlighted the obtainment of magnetite nanocrystals with a partial surface oxidation to maghemite (γ-Fe3O4. Preliminary attention has been also paid to the use of these magnetite nanoparticles as filler for a commercial polymethylmethacrylate resin. Hybrid formulations containing up to 3 wt% of nanoparticles were prepared by melt blending and characterized by calorimetric and thermogravimetric tests. For sake of comparison, same formulations containing commercial Fe3O4 nanoparticles are also reported. Calorimetric characterization indicates an increase of both glass transition temperature and thermal stability of the nanocomposite systems when loaded with the synthesized magnetite nanoparticles rather then loaded with the same amount of commercial Fe3O4. This first observation represents just one aspect of the promising potentiality offered by the novel magnetic nanoparticles when mixed with PMMA.

  11. Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method

    International Nuclear Information System (INIS)

    Tan, Long; Luo, Zhimei; Liu, Haowen; Yu, Ying

    2010-01-01

    For the first time, rheological phase method, a simple and effective route, is applied to synthesize novel cathode material LiCoPO 4 . X-ray diffraction spectrometer (XRD), X-ray photoelectron spectrometer (XPS), transmission electron microscope (TEM) and electrochemical impedance spectroscopy (EIS) are taken to investigate this material, respectively. XRD figure shows that the rheological sample is better crystallized than the solid-state one. XPS result of the rheological sample exhibits that the valence of Co is 2+. TEM images show that better dispersed particles with smaller size can be formed by rheological method comparing to the solid-state route. Charge-discharge test is carried out in the range of 3.0-5.0 V at 0.2 mA cm -2 . The initial discharge capacity for rheological phase and solid-state powder is 71.5 and 30.9 mAh g -1 , respectively. The better electrochemical property should be ascribed to the better crystallized rheological phase production with better dispersed and smaller particles, which can greatly facilitate the diffusion of Li + .

  12. MODIFICATION OF PAPERMAKING GRADE FILLERS: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2009-08-01

    Full Text Available The use of fillers in paper products can provide cost and energy savings, improved paper properties, increased productivities, and specifically desired paper functionalities. There are many problems associated with the use of fillers, such as unsuitability of calcium carbonate fillers in acid papermaking, negative effects of filler loading on paper strength, sizing, and retention, and tendencies of fillers to cause abrasion and dusting. In order to solve these problems and to make better use of fillers, many methods have been proposed, among which filler modification has been a hot topic. The available technologies of filler modification mainly include modification with inorganic substances, modification with natural polymers or their derivatives, modification with water-soluble synthetic polymers, modification with surfactants, modification with polymer latexes, hydrophobic modification, cationic modification, surface nano-structuring, physical modification by compressing, calcination or grinding, and modification for use in functional papers. The methods of filler modification can provide improved acid tolerant and optical properties of fillers, enhanced fiber-filler bonding, improved filler retention and filler sizabilities, alleviated filler abrasiveness, improved filler dispersability, and functionalization of filled papers. Filler modification has been an indispensable way to accelerate the development of high filler technology in papermaking, which is likely to create additional benefits to papermaking industry in the future.

  13. The application of silicon sol-gel technology to forensic blood substitute development: Mimicking aspects of whole human blood rheology.

    Science.gov (United States)

    Stotesbury, Theresa; Illes, Mike; Wilson, Paul; Vreugdenhil, Andrew J

    2017-01-01

    Solution-gelation chemistry has promising applications in forensic synthetic blood substitute development. This research offers a silicon-based sol-gel approach to creating stable materials that share similar rheological properties to that of whole human blood samples. Room temperature, high water content, silicon sol-gels were created using the organosilane precursors 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate along with various concentrations of filler and pigment. Shear-thinning non-Newtonian properties were observed within most formulations of the presented materials. The effects of colloidal concentration, temperature, age and filler addition on the viscosity of the sol-gels were investigated. SEM-EDS analysis was used to identify the behavior of the fillers within the film and support their inclusion for basic bloodstain pattern simulation. A final proposed candidate sol-gel was assessed using a previously reported passive drip simulation test on a hard, dry surface and passed. This works represents encouraging development in providing safe material alternatives to using whole human blood for forensic training and research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Soy-based fillers for thermoset composites

    Science.gov (United States)

    Watt, Paula

    Considerable work has been done with bio-based fillers in thermoplastics. Wood dust has been used for decades in wood plastic composites in conjunction with recycled high HDPE and PET. In recent years rapidly renewable fillers derived from dried distillery grains and from wood have been introduced commercially for thermoset polymers. These fillers provide bio-content and weight reduction to thermoset molding compounds but issues with moisture absorption and polymerization inhibition have limited their commercial acceptance. The intent of this research was to develop a bio-based filler suitable for thermoset composites. This filler would provide a low density alternative to mined mineral filler, such as CaCO3 or clay. Composites made with these fillers would be lighter in weight, which is desirable for many markets, particularly transportation. Cost parity to the mineral fillers, on a volume basis, was desirable and the use of green chemistry principles was a key objective of the project. This work provides a basis from which further development of modified soy flours as fillers for thermoset composites will continue. Biomass has been evaluated as fillers for thermoset composites since the early 1980s but failed to gain commercial acceptance due to excessive water absorption and inhibition issues with free radical curing. Biomass, with a large percentage of carbohydrates, are very hydrophilic due to their abundance of hydroxyl groups, while biomass, high in lignin, resulted in inhibition of the free radical cure of the unsaturated styrenated polyester matrix systems. Generally protein use as a filler is not desirable due to its food value. Torrefaction has proved to be a good, cost effective, process to reduce hydrophilicity of high cellulose feedstock. Surprising, however, some levels of torrefaction were found to induce the inhibition effect of the filler. Scientific inquiry into this problem proved that aromatics form during the torrefaction process and can

  15. SYNTHESIS AND CHARACTERIZATION OF HDPE PLASTIC FILM FOR HERBICIDE CONTAINER USING FLY ASH CLASS F AS FILLER

    Directory of Open Access Journals (Sweden)

    Yatim Lailun Ni’mah

    2010-06-01

    Full Text Available High Density Polyethylene (HDPE plastic plays an important role in various applications, for example, it can be used as a container (bottle. Petrokimia Kayaku Company, a branch of Petrokimia Company of Gresik, produces herbicides using HDPE plastic bottles as their container. Those plastic bottles undergo degradation (kempot for certain period of time. The aim of this research is to characterize and to synthesize the HDPE plastic film with class F fly ash as filler. The results expected from this research are producing the plastic with a better properties and durability. This research was initiated by taking the sample of HDPE plastic bottle and herbicides (containing Gramakuat, on active material parakuat dichloride at Petrokimia Kayaku Company. Both the initial HDPE and the degraded bottles was analyzed their tensile strength and Fourier Transform-Infra Red (FTIR spectral. The next step was to synthesize the HDPE plastic film using class F fly ash as filler and a coupling agent. The filler concentrations were 0%, 5%, 10%, 15%, and 20wt %. The best result was 5% filler concentration with tensile strength of 27.7 lbs. This HDPE film was then subjected to degradation test using pyridine solution with various concentrations (1%, 3% and 5% for two weeks, thermal degradation at 100 °C for two weeks and chemical resistance by xylene with soak time variation of 24 h, 98 h and 168 h. The result of degradations test show that the value of tensile strength was decreased with the increase of filler consentration. The chemical resistance, however, was increased.   Keywords: degradation, filler, fly ash, HDPE, Herbicide

  16. Sifat filler kayu keruing terhadap vulkanisat karet

    Directory of Open Access Journals (Sweden)

    Herminiwati Herminiwati

    1999-12-01

    Full Text Available The purpose of this research was to investigate the properties of keruing wood filler in their application on vulacanized rubber of shoes soles. To know its suitability for rubber goods filler, the properties of keruing wood filler was investigated by comparing with carbon black N330. Keruing wood filler were made by carbonization process at temperature 450oC for one hour and activation process with NaCl 4% for twenty four hours, followed by pyrolisis at temperature 500oC for one hour. Filler were milled and sieved by 400 mesh siefter. The standard compound formula was prepared base on ASTM D 3192 with various filler level of keruing wood filler, carbon black N330 either separately formulated of combination. The research showed that using keruing wood filler in the amount of 30-70 phr could meet 75% the requirements of SNI. 12-0172-1987 : Canvas shoes for general purpose, where as carbon black N330 in the amount of 30-70 phr could meet 87,5% the requirements of SNI. 12-0172-1987. Combination of keruing wood filler and carbon black showed that keruing wood filler could substitute 25-57 phr of carbon black.

  17. Morphology, microstructure and rheological properties of SAN (styrene-acrylonitrile)/EPDM (ethylene-propylene-diene monomer) nanocomposites: Investigating the role of organoclay type and order of mixing

    Energy Technology Data Exchange (ETDEWEB)

    Jeddi, Javad; Yousefzade, Omid [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, 15875-4413 (Iran, Islamic Republic of); Babaei, Amir, E-mail: a.babaei@gu.ac.ir [Polymer Engineering Department, Faculty of Engineering, Golestan University, 4918888369, Gorgan (Iran, Islamic Republic of); Ghanbar, Sadegh; Rostami, Amir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Mahshahr Campus, Mahshahr, 6351716178 (Iran, Islamic Republic of)

    2017-02-01

    The object of this work was to investigate the preferential localization of nanoclay platelets in SAN/EPDM (80/20) blend in terms of thermodynamic and kinetic considerations. In this way, effects of two organoclay types and mixing sequences on the morphology, microstructure and rheological properties of prepared blends were studied. Calculations based on the thermodynamic point of view suggested both nanoclay types should be localized in the SAN phase. The XRD results demonstrated that SAN phase as a matrix played a more significant role in the intercalation/exfoliation of organoclays rather than dispersed EPDM phase. Linear viscoelastic studies showed a high tendency for both of organoclays to be localized in the SAN component as well as better dispersion state of cloisite 30B organoclay. The results of creep and creep-recovery experiments revealed the reversible deformation of nanocomposites decreased with increasing degree of organoclay dispersion. The calculated retardation spectrums indicated the dominant role of fillerfiller interaction on the melt viscoelastic response of ternary nanocomposites. In addition, scanning electron microscopy (SEM) was employed to study the correlation between the rheological properties, and microstructure and morphological features of blends. - Highlights: • SAN/EPDM/organoclay nanocomposite was prepared with different mixing sequences. • The location of organoclay in SAN/EPDM blend controlled by thermodynamic parameters. • The dispersed phase size decreased in presence of organoclay. • Correlation between rheological properties and microstructure has been established.

  18. Synthesis of LiNi0.65Co0.25Mn0.1O2 as cathode material for lithium-ion batteries by rheological phase method

    International Nuclear Information System (INIS)

    Cheng Cuixia; Tan Long; Hu Anzheng; Liu Haowen; Huang Xintang

    2010-01-01

    Research highlights: → In this paper, for the first time, rheological phase method, a simple and effective route, was applied to synthesis high capacity cathode material LiNi 0.65 Co 0.25 Mn 0.1 O 2 . → All of the results obtained by X-ray diffraction spectrometer, X-ray photoelectron spectrometer, charge-discharge tests and electrochemical impedance spectroscopy show that the rheological phase production have better properties than that of the report. - Abstract: Rheological phase (RP) method has been successfully applied to synthesize a promising cathode material LiNi 0.65 Co 0.25 Mn 0.1 O 2 . X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma and transmission electron microscope are used to investigate the structure, composition and morphology, respectively. XRD result shows that the as-prepared powder has a layered α-NaFeO 2 structure. XPS pattern reveals that the Ni ions have valences of 2+ and 3+, and the Co and Mn are 3+, 4+, respectively. The electrode consisting of the obtained powder presents the better electrochemical properties, which is attributed to the fewer amounts of Ni 2+ ions and the smaller particles. All the results suggest that the rheological phase method is a promising technique for the preparation of LiNi 0.65 Co 0.25 Mn 0.1 O 2 cathode material of lithium-ion batteries.

  19. Temporal fossa defects: techniques for injecting hyaluronic acid filler and complications after hyaluronic acid filler injection.

    Science.gov (United States)

    Juhász, Margit Lai Wun; Marmur, Ellen S

    2015-09-01

    Facial changes with aging include thinning of the epidermis, loss of skin elasticity, atrophy of muscle, and subcutaneous fat and bony changes, all which result in a loss of volume. As temporal bones become more concave, and the temporalis atrophies and the temporal fat pad decreases, volume loss leads to an undesirable, gaunt appearance. By altering the temporal fossa and upper face with hyaluronic acid filler, those whose specialty is injecting filler can achieve a balanced and more youthful facial structure. Many techniques have been described to inject filler into the fossa including a "fanned" pattern of injections, highly diluted filler injection, and the method we describe using a three-injection approach. Complications of filler in the temporal fossa include bruising, tenderness, swelling, Tyndall effect, overcorrection, and chewing discomfort. Although rare, more serious complications include infection, foreign body granuloma, intravascular necrosis, and blindness due to embolization into the ophthalmic artery. Using reversible hyaluronic acid fillers, hyaluronidase can be used to relieve any discomfort felt by the patient. Injectors must be aware of the complications that may occur and provide treatment readily to avoid morbidities associated with filler injection into this sensitive area. © 2015 Wiley Periodicals, Inc.

  20. Analogy between dynamics of thermo-rheological and piezo-rheological pendulums

    International Nuclear Information System (INIS)

    Hedrih, K

    2008-01-01

    The constitutive stress-strain relations of the standard thermo-rheological and piezo-rheological hereditary element in differential form as well as in two different integro-differential forms are defined. The considered problem of a thermo-rheological hereditary discrete system nonlinear dynamics in the form of thermo-rheological double pendulum system with coupled pendulums gets the significance of two constrained bodies in plane motion problem, as a problem important for studying a sensor dynamics or actuator dynamics in active structure dynamics. System of the averaged equations in the first approximation for amplitudes and phases are derived and qualitatively analyzed. Analogy between nonlinear dynamics of the double pendulum systems with thermo-rheological and piezo-rheological properties between pendulums is pointed out

  1. Does filler database size influence identification accuracy?

    Science.gov (United States)

    Bergold, Amanda N; Heaton, Paul

    2018-06-01

    Police departments increasingly use large photo databases to select lineup fillers using facial recognition software, but this technological shift's implications have been largely unexplored in eyewitness research. Database use, particularly if coupled with facial matching software, could enable lineup constructors to increase filler-suspect similarity and thus enhance eyewitness accuracy (Fitzgerald, Oriet, Price, & Charman, 2013). However, with a large pool of potential fillers, such technologies might theoretically produce lineup fillers too similar to the suspect (Fitzgerald, Oriet, & Price, 2015; Luus & Wells, 1991; Wells, Rydell, & Seelau, 1993). This research proposes a new factor-filler database size-as a lineup feature affecting eyewitness accuracy. In a facial recognition experiment, we select lineup fillers in a legally realistic manner using facial matching software applied to filler databases of 5,000, 25,000, and 125,000 photos, and find that larger databases are associated with a higher objective similarity rating between suspects and fillers and lower overall identification accuracy. In target present lineups, witnesses viewing lineups created from the larger databases were less likely to make correct identifications and more likely to select known innocent fillers. When the target was absent, database size was associated with a lower rate of correct rejections and a higher rate of filler identifications. Higher algorithmic similarity ratings were also associated with decreases in eyewitness identification accuracy. The results suggest that using facial matching software to select fillers from large photograph databases may reduce identification accuracy, and provides support for filler database size as a meaningful system variable. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Molecular rheology of branched polymers: Decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling

    KAUST Repository

    Van Ruymbeke, Evelyne

    2014-01-01

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched

  3. Molecular rheology of branched polymers: decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling.

    Science.gov (United States)

    van Ruymbeke, E; Lee, H; Chang, T; Nikopoulou, A; Hadjichristidis, N; Snijkers, F; Vlassopoulos, D

    2014-07-21

    An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched

  4. Examination of High Frequency MHz Rheology of Filled Polymer Composites and Photopolymers

    Science.gov (United States)

    Yeh, Chyi-Huey Joshua

    nanofillers on the high frequency viscoelastic behavior of polydimethylsiloxane (PDMS) melt is discussed. The amount of filler varied from pure PDMS to pure filler, highlighting the advantage of using an acoustic rheometer to measure properties of films exhibiting viscous to highly brittle behavior. An empirical mixing law is proposed in describing the changes in visceolasticity as a function of filler content, so that the critical filler content at the liquid to solid transition can be estimated. The liquid to solid transition is qualitatively explained by percolation rigidity of the polysilicate nanofillers. The QCM is also extended as a photorheometer, capable of measuring in situ rheology of fast radical photopolymerizations. A model acrylate system is examined as a means to demonstrate the value of the QCM and to provide context for the examination of a more interesting thiol-ene photopolymer system. Due to insensitivity of thiol-ene chemical kinetics towards oxygen inhibition during curing, the impact of oxygen incorporation on the crosslinked viscoelastic network is investigated. In addition to studying thiol-ene reactions, photoinitiated copper catalyzed alkyne azide cycloaddition is also explored. The effects of plasticization on the curing kinetics and mechanical properties are presented. Altogether, this dissertation serves to contribute to the fundamental development of the QCM as a quantitative MHz rheometer. By thoroughly presenting a quantitative approach towards error analysis and providing successful QCM case studies, the barrier of entrance for using the QCM is substantially lowered. Future researchers will be able to efficiently conduct QCM experiments and analysis at a higher level of operation. Several ideas are also briefly proposed in which the QCM can provide valuable insights and contributions.

  5. The impact of fillers on lineup performance.

    Science.gov (United States)

    Wetmore, Stacy A; McAdoo, Ryan M; Gronlund, Scott D; Neuschatz, Jeffrey S

    2017-01-01

    Filler siphoning theory posits that the presence of fillers (known innocents) in a lineup protects an innocent suspect from being chosen by siphoning choices away from that innocent suspect. This mechanism has been proposed as an explanation for why simultaneous lineups (viewing all lineup members at once) induces better performance than showups (one-person identification procedures). We implemented filler siphoning in a computational model (WITNESS, Clark, Applied Cognitive Psychology 17:629-654, 2003), and explored the impact of the number of fillers (lineup size) and filler quality on simultaneous and sequential lineups (viewing lineups members in sequence), and compared both to showups. In limited situations, we found that filler siphoning can produce a simultaneous lineup performance advantage, but one that is insufficient in magnitude to explain empirical data. However, the magnitude of the empirical simultaneous lineup advantage can be approximated once criterial variability is added to the model. But this modification works by negatively impacting showups rather than promoting more filler siphoning. In sequential lineups, fillers were found to harm performance. Filler siphoning fails to clarify the relationship between simultaneous lineups and sequential lineups or showups. By incorporating constructs like filler siphoning and criterial variability into a computational model, and trying to approximate empirical data, we can sort through explanations of eyewitness decision-making, a prerequisite for policy recommendations.

  6. Polyurethane Filler for Electroplating

    Science.gov (United States)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  7. Bioactive glass particulate filler composite: Effect of coupling of fillers and filler loading on some physical properties.

    Science.gov (United States)

    Oral, Onur; Lassila, Lippo V; Kumbuloglu, Ovul; Vallittu, Pekka K

    2014-05-01

    The aim of this study was to investigate the effect of silanization of biostable and bioactive glass fillers in a polymer matrix on some of the physical properties of the composite. The water absorption, solubility, flexural strength, flexural modulus and toughness of different particulate filler composite resins were studied in vitro. Five different specimen groups were analyzed: A glass-free control, a non-silanized bioactive glass, a silanized bioactive glass, a non-silanized biostable glass and a silanized biostable glass groups. All of these five groups were further divided into sub-groups of dry and water-stored materials, both of them containing groups with 3wt%, 6wt%, 9wt% or 12wt% of glass particles (n=8 per group). The silanization of the glass particles was carried out with 2% of gamma-3-methacryloxyproyltrimethoxysilane (MPS). For the water absorption and solubility tests, the test specimens were stored in water for 60 days, and the percentages of weight change were statistically analyzed. Flexural strength, flexural modulus and toughness values were tested with a three-point bending test and statistically analyzed. Higher solubility values were observed in non-silanized glass in proportion to the percentage of glass particles. Silanization, on the other hand, decreased the solubility values of both types of glass particles and polymer. While 12wt% non-silanized bioactive glass specimens showed -0.98wt% solubility, 12wt% silanized biostable glass specimens were observed to have only -0.34wt% solubility. The three-point bending results of the dry specimens showed that flexural strength, toughness and flexural modulus decreased in proportion to the increase of glass fillers. The control group presented the highest results (106.6MPa for flexural strength, 335.7kPA for toughness, 3.23GPa for flexural modulus), whereas for flexural strength and toughness, 12wt% of non-silanized biostable glass filler groups presented the lowest (70.3MPa for flexural strength

  8. Mechanical properties and filler distribution as a function filler content in silica filled PDMS samples

    International Nuclear Information System (INIS)

    Hawley, Marilyn E.; Wrobleski, Debra A.; Orler, E. Bruce; Houlton, Robert J.; Chitanvis, Kiran E.; Brown, Geoffrey W.; Hanson, David E.

    2004-01-01

    Atomic force microscopy (AFM) phase imaging and tensile stress-strain measurements are used to study a series of model compression molded fumed silica filled polydimethysiloxane (PDMS) samples with filler content of zero, 20, 35, and 50 parts per hundred (phr) to determine the relationship between filler content and stress-strain properties. AFM phase imaging was used to determine filler size, degree of aggregation, and distribution within the soft PDMS matrix. A small tensile stage was used to measure mechanical properties. Samples were not pulled to break in order to study Mullins and aging effects. Several identical 35 phr samples were subjected to an initial stress, and then one each was reevaluated over intervals up to 26 weeks to determine the degree to which these samples recovered their initial stress-strain behavior as a function of time. One sample was tested before and after heat treatment to determine if heating accelerated recovery of the stress-strain behavior. The effect of filler surface treatment on mechanical properties was examined for two samples containing 35 phr filler treated or untreated with hexamethyldisilazane (HMDZ), respectively. Fiduciary marks were used on several samples to determine permanent set. 35 phr filler samples were found to give the optimum mechanical properties. A clear Mullins effect was seen. Within experimental error, no change was seen in mechanical behavior as a function of time or heat-treatment. The mechanical properties of the sample containing the HDMZ treated silica were adversely affected. AFM phase images revealed aggregation and nonuniform distribution of the filler for all samples. Finally, a permanent set of about 3 to 6 percent was observed for the 35 phr samples.

  9. Synthesis and characterization of magneto-rheological (MR fluids for MR brake application

    Directory of Open Access Journals (Sweden)

    Bhau K. Kumbhar

    2015-09-01

    Full Text Available Magneto rheological (MR fluid technology has been proven for many industrial applications like shock absorbers, actuators, etc. MR fluid is a smart material whose rheological characteristics change rapidly and can be controlled easily in presence of an applied magnetic field. MR brake is a device to transmit torque by the shear stress of MR fluid. However, MR fluids exhibit yield stress of 50–90 kPa. In this research, an effort has been made to synthesize MR fluid sample/s which will typically meet the requirements of MR brake applications. In this study, various electrolytic and carbonyl iron powder based MR fluids have been synthesized by mixing grease as a stabilizer, oleic acid as an antifriction additive and gaur gum powder as a surface coating to reduce agglomeration of the MR fluid. MR fluid samples based on sunflower oil, which is bio-degradable, environmentally friendly and abundantly available have also been synthesized. These MR fluid samples are characterized for determination of magnetic, morphological and rheological properties. This study helps identify most suitable localized MR fluid meant for MR brake application.

  10. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    Science.gov (United States)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  11. Joint Workplan on Filler Investigations for DPCs.

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    This workplan addresses filler attributes (i.e., possible requirements), assumptions needed for analysis, selection of filler materials, testing needs, and a long-range perspective on R&D activities leading to filler demonstration and a safety basis for implementation.

  12. Standard guidelines for the use of dermal fillers

    Directory of Open Access Journals (Sweden)

    Vedamurthy Maya

    2008-03-01

    Full Text Available Currently used fillers vary greatly in their sources, efficacy duration and site of deposition; detailed knowledge of these properties is essential for administering them. Indications for fillers include facial lines (wrinkles, folds, lip enhancement, facial deformities, depressed scars, periocular melanoses, sunken eyes, dermatological diseases-angular cheilitis, scleroderma, AIDS lipoatrophy, earlobe plumping, earring ptosis, hand, neck, dιcolletι rejuvenation. Physicians′ qualifications : Any qualified dermatologist may use fillers after receiving adequate training in the field. This may be obtained either during postgraduation or at any workshop dedicated to the subject of fillers. The physicians should have a thorough knowledge of the anatomy of the area designated to receive an injection of fillers and the aesthetic principles involved. They should also have a thorough knowledge of the chemical nature of the material of the filler, its longevity, injection techniques, and any possible side effects. Facility: Fillers can be administered in the dermatologist′s minor procedure room. Preoperative counseling and informed consent: Detailed counseling with respect to the treatment, desired effects, and longevity of the filler should be discussed with the patient. Patients should be given brochures to study and adequate opportunity to seek information. Detailed consent forms need to be completed by the patients. A consent form should include the type of filler, longevity expected and possible postoperative complications. Preoperative photography should be carried out. Choice of the filler depends on the site, type of defect, results needed, and the physician′s experience. Injection technique and volume depend on the filler and the physician′s preference, as outlined in these guidelines.

  13. Chocolate rheology

    Directory of Open Access Journals (Sweden)

    Estela Vidal Gonçalves

    2010-12-01

    Full Text Available Rheology is the science that studies the deformation and flow of solids and fluids under the influence of mechanical forces. The rheological measures of a product in the stage of manufacture can be useful in quality control. The microstructure of a product can also be correlated with its rheological behavior allowing for the development of new materials. Rheometry permits attainment of rheological equations applied in process engineering, particularly unit operations that involve heat and mass transfer. Consumer demands make it possible to obtain a product that complies with these requirements. Chocolate industries work with products in a liquid phase in conching, tempering, and also during pumping operations. A good design of each type of equipment is essential for optimum processing. In the design of every process, it is necessary to know the physical characteristics of the product. The rheological behavior of chocolate can help to know the characteristics of application of the product and its consumers. Foods are generally in a metastable state. Their texture depends on the structural changes that occur during processing. Molten chocolate is a suspension with properties that are strongly affected by particle characteristics including not only the dispersed particles but also the fat crystals formed during chocolate cooling and solidification. Chocolate rheology is extensively studied, and it is known that chocolate texture and stability is strongly affected by the presence of specific crystals

  14. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics.

    Science.gov (United States)

    Poulose, Anesh Manjaly; Elnour, Ahmed Yagoub; Anis, Arfat; Shaikh, Hamid; Al-Zahrani, S M; George, Justin; Al-Wabel, Mohammad I; Usman, Adel R; Ok, Yong Sik; Tsang, Daniel C W; Sarmah, Ajit K

    2018-04-01

    The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900°C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (T c ) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G') compared to the neat (PP). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites.

    Science.gov (United States)

    Khoshkava, Vahid; Kamal, Musa R

    2014-06-11

    Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the spray-dried and freeze-dried CNCs. Rheological measurements, including linear and nonlinear viscoelastic tests, were performed on PP/CNC samples. The microscopy results were supported by small-amplitude oscillatory shear tests, which showed substantial rises in the magnitudes of key rheological parameters of PP samples containing CNCSFD. Steady-shear results revealed a strong shear thinning behavior of PP samples containing CNCSFD. Moreover, PP melts containing CNCSFD exhibited a yield stress. The magnitude of the yield stress and the degree of shear thinning behavior increased with CNCSFD concentration. It was found that CNCSFD agglomerates with a weblike structure were more effective in modifying the rheological properties. This effect was attributed to better dispersion of the agglomerates with the weblike structure. Dynamic mechanical analysis showed considerable improvement in the modulus of samples containing CNCSFD agglomerates. The percolation mechanical model with modified volume percolation threshold and filler network strength values and the Halpin-Kardos model were used to fit the experimental results.

  16. Optimizing outcomes with polymethylmethacrylate fillers.

    Science.gov (United States)

    Gold, Michael H; Sadick, Neil S

    2018-03-30

    The ideal filler should be long-lasting, biocompatible, chemically inert, soft and easy to use, and have a long history of safety. This review focuses on the evolution and development of the PMMA-collagen gel, Bellafill, and the 10 years of postmarketing experience of Bellafill since it received premarket approval (PMA) from the FDA as Artefill in 2006. Artefill was rebranded to Bellafill in 2015. The authors conducted a literature search on PubMed for key articles describing the steps in which Arteplast, a PMMA filler developed in 1989, led to the development of Bellafill, the only PMMA filler approved by the US FDA for the treatment of nasolabial folds and acne scar correction. The factors governing efficacy and safety were also evaluated for the major PMMA fillers available in the world. The process of manufacturing and purifying PMMA has played a major role in minimizing adverse events for Bellafill. Postmarketing surveillance data for the 2007-2016 period show that for more than 530 000 Bellafill syringes distributed worldwide, 11 confirmed granulomas (excluding clinical trial data) (0.002% of syringes sold) have been reported. Data on other PMMA fillers are limited and inconsistent. The authors suggest that adverse events are often attributable to lack of proficiency in treatment technique and other factors. Bellafill has demonstrated an excellent safety and effectiveness profile in multiple clinical studies, customer feedback, and 10 years of postmarketing surveillance experience. Adverse events occur with all fillers for a variety of reasons. In addition to quality of the product, injector skill and technique are critical to ensuring good clinical outcomes. © 2018 Wiley Periodicals, Inc.

  17. Effect of pyrophyllite filler treatment toward water absorbance rate of SAPC and its application test

    International Nuclear Information System (INIS)

    Jadigia Ginting

    2015-01-01

    An optimization treatment to pyrophyllite filler has been done to synthesis super absorbent polymers composite (SAPC) with copolymerization of acrylic. Pyrophyllite is one of a silicate mineral with chemical formula Al 2 Si 4 O 10 (OH) 2 having a reactive functional group -OH that easily making a bonding and therefore it is suitable for water absorbance materials. The pyrophyllite were studied as its weight composition and its powder-size in the SAPC preparation. To obtain the fine-size, the filler pyrophyllite were milled with high energy mechanical milling (HEMM) into divers hours of milling. The syntheses were carried out by using the settle method from Chemicals Engineering group of ITB Bandung. The samples of SAPC-prflt were then characterized with fourier-transform infra red spectroscopy (FTIR), Xray diffraction (XRD) and scanning electron microscopy(SEM). Effect of filler treatment toward water absorbance rate is the SAPC-prflt with 0.5 gr filler having the highest gradient absorbance 1,610; SAPC prflt which milled for 9 hours has gradient absorbance 1,526; SAPC-prflt after hot water test at 40°C has gradient absorbence 2,241 and SAPC-prflt as pampers test has the gradient absorbance 1,607. XRD data analysis showed a broad peak 2 θ at scale 5 w which correspond to the micrographs picture of the sample which has 0.5 gr filler pyrophyllite and sample after milled for 9 hours, that proposed increase the sample strength and stability which induce the increasing of its water absorbance.

  18. Branched polyacrylamides : Synthesis and effect of molecular architecture on solution rheology

    NARCIS (Netherlands)

    Wever, D. A. Z.; Picchioni, F.; Broekhuis, A. A.

    2013-01-01

    Linear, star and comb-like polyacrylamides (PAM) have been prepared by atomic transfer radical polymerization (ATRP) in aqueous media at room temperature. The influence of the molecular architecture of PAM on the rheological properties in aqueous solution has been investigated. The well-known theory

  19. Influence of processing temperature on the rheological behavior of PCL/MMT nanocomposites

    International Nuclear Information System (INIS)

    Marini, Juliano; Beatrice, Cesar A.G.; Favaro, Marcia M.; Bretas, Rosario E.S.; Branciforti, Marcia C.

    2009-01-01

    Polycaprolactone (PCL) is a biodegradable polymer; however, this polymer had low mechanical strength, limiting its applications. The addition of a lamellar silicate (MMT) can alter this behavior, especially when the filler is well dispersed and distributed thru the polymeric matrix. In this work the influence of the processing temperature in the structure of PCL/MMT nanocomposites was studied. The nanocomposites were obtained by melt intercalation in a Haake rheometer at two temperatures: 80 and 120 deg C. Wide angle X-ray analysis showed that the intercalation of the polymer chains into the clay's galleries was not influenced by the processing temperature. However, the steady state and dynamic rheological properties showed that the higher the processing temperature the better the dispersion and distribution of the clay thru the matrix, without having polymer degradation. (author)

  20. Thermal Analysis of Filler Reinforced Polymeric Composites

    Science.gov (United States)

    Ghadge, Mahesh Devidas

    Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is

  1. Rheological behavior of oil and biodiesel from Moringa oleifera

    International Nuclear Information System (INIS)

    Díaz Domínguez, Yosvany; Tabio García, Danger; Rondón Macías, Maylin; Fernández Santana, Elina; Rodríguez Muñoz, Susana; Piloto‐Rodríguez, Ramón

    2017-01-01

    The seeds of Moringa oleifera contain between 30 and 45% of oil, which has motivated the development of investigations with a view to their possible use. The present work aims to determine the rheological behavior of Moringa oleifera oil and biodiesel. The synthesis of biodiesel from crude Moringa oleifera oil was made using methanol with presence of sodium hydroxide. The average yield of this stage was 93%. The results of the rheological study shown that the viscosity at 40°C of Moringa oleifera oil is independent of the shear rate, which corresponds to the behavior of a Newtonian fluid. However, for biodiesel it was demonstrated that there is a dependence of the viscosity with the shear rate (non-Newtonian fluid). This result is corroborated by the fluidity curve, assuring that Moringa oleifera biodiesel behaves as a dilating fluid. (author)

  2. Characteristic Asphalt Concrete Wearing Course (ACWC) Using Variation Lime Filler

    Science.gov (United States)

    Permana, R. A.; Pramesti, F. P.; Setyawan, A.

    2018-03-01

    This research use of lime filler Sukaraja expected add durability layers of concrete pavement is asphalt damage caused by the weather and load traffic. This study attempts to know how much value characteristic Marshall on a mixture of concrete asphalt using lime filler. This research uses experimental methods that is with a pilot to get results, thus will look filler utilization lime on construction concrete asphalt variation in filler levels 2 %, 3 %, 4 %.The results showed that the use of lime filler will affect characteristic a mixture of concrete asphalt. The more filler chalk used to increase the value of stability. On the cretaceous filler 2 % value of stability is 1067,04 kg. When lime filler levels added to the levels of filler 4 %, the value of stability increased to 1213,92 kg. The flexibility increased the number of filler as levels lime 2 % to 4 % suggests that are conducted more stiff mix.

  3. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  4. Synthesis of polymeric additives based on itaconic acid and their evaluation as pour point depressants for lube oil in relation to rheological flow properties

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2012-06-01

    Full Text Available Modification of the wax crystal habit practical interest during transportation processing of lube oil at low temperature. Various pour point depressant (PPD additives can facilitate this modification by different mechanisms. Comb shaped polymer additives are known to depress the pour point of lube oil by providing different nucleation sites for the precipitation of wax. This paper describes performance based design, synthesis, characterization and evaluation of comb shaped polymeric additives. Alkyl itaconates were prepared by the esterification of itaconic acid with different saturated alcohols C16/C18/NAFOL 20+A (Cav = 20/NAFOL 1822 B (Cav = 22. The four synthesized monomers were characterized and copolymerized with styrene in different molar ratios. All the products were characterized by infra-red (FTIR, Nuclear Magnetic Resonance (NMR Spectroscopy and Gel permeation chromatography (GPC. Rheological properties of lube oil (with and without additives were studied by Brookfield viscometer. In this study the additives based on itaconic acid were evaluated as good PPD and rheology modifiers.

  5. Intraoral approach: A newer technique for filler injection

    Directory of Open Access Journals (Sweden)

    Chytra V Anand

    2010-01-01

    Full Text Available Filler injections are the most common aesthetic procedures used for volume correction. Various techniques have been described in the use of fillers. This article reviews the available literature on a new technique using the intraoral approach for injection of fillers.

  6. Effect of synthesized zinc stearate on the properties of natural rubber vulcanizates in the absence and presence of some fillers

    International Nuclear Information System (INIS)

    Helaly, F.M.; El Sabbagh, S.H.; El Kinawy, O.S.; El Sawy, S.M.

    2011-01-01

    Research highlights: → The mechanical properties of NR were enhanced through partial and complete replacement of zinc stearate. → The effect of adding different concentrations of zinc stearate on the physic-mechanical and SEM properties has been investigated. → Zinc stearate was found to play dual role, it reinforces the matrix blow its melting point and higher temperature it plasticizers the system. → Zinc stearate can be used as activator for sulfur vulcanization process of rubber instead of ZnO and stearic acid; in absence and presence of fillers. -- Abstract: Zinc stearate was synthesized by precipitation method through two steps; neutralization of stearic acid by sodium hydroxide then double decomposition using zinc sulphate to precipitate zinc stearate. Mass balances of the two steps were calculated and the physical properties of the prepared zinc stearate were measured and compared to standard. It was characterized and incorporated it into natural rubber in the absence and presence of some filler through mixing process of rubber. The vulcanization process was carried out at 142 o C. The rheological properties of natural rubber mixes were measured using oscillating disc rheometer. The plysico-mechanical properties of the vulcanizates were determined using tensile testing machine. It was found that, partial and complete replacement of synthesized zinc stearate instead of the conventional zinc oxide and stearic acid; enhanced the physico-mechanical properties of natural rubber. The measured reinforcing parameter value α f can be arranged according to the type of filler as follows: HAF>Hisil>CaCO 3 >Ca 3 (PO 4 ) 2 >BaSO 4 >Talc The highest value of α f represents the strength of filler and consequently the reinforcing effect of carbon black (HAF) filler while the lowest value of α f was observed for Talc which show moderate reinforcing effect of Talc. The scanning electron microscope study showed high surface homogenity and good dispersion of zinc

  7. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    Science.gov (United States)

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  8. The impact of fillers on lineup performance

    OpenAIRE

    Wetmore, Stacy A.; McAdoo, Ryan M.; Gronlund, Scott D.; Neuschatz, Jeffrey S.

    2017-01-01

    Filler siphoning theory posits that the presence of fillers (known innocents) in a lineup protects an innocent suspect from being chosen by siphoning choices away from that innocent suspect. This mechanism has been proposed as an explanation for why simultaneous lineups (viewing all lineup members at once) induces better performance than showups (one-person identification procedures). We implemented filler siphoning in a computational model (WITNESS, Clark, Applied Cognitive Psychology 17:629...

  9. Rheological Principles for Food Analysis

    Science.gov (United States)

    Daubert, Christopher R.; Foegeding, E. Allen

    Food scientists are routinely confronted with the need to measure physical properties related to sensory texture and processing needs. These properties are determined by rheological methods, where rheology is a science devoted to the deformation and flow of all materials. Rheological properties should be considered a subset of the textural properties of foods, because the sensory detection of texture encompasses factors beyond rheological properties. Specifically, rheological methods accurately measure "force," "deformation," and "flow," and food scientists and engineers must determine how best to apply this information. For example, the flow of salad dressing from a bottle, the snapping of a candy bar, or the pumping of cream through a homogenizer are each related to the rheological properties of these materials. In this chapter, we describe fundamental concepts pertinent to the understanding of the subject and discuss typical examples of rheological tests for common foods. A glossary is included as Sect. 30.6 to clarify and summarize rheological definitions throughout the chapter.

  10. 5th European Rheology Conference

    CERN Document Server

    1998-01-01

    Global sustainable development of the world economy requires better understanding and utilization of natural recourses. In this endeavor rheology has an indispensable role. The Rheology Conferences are therefore always an important event for science and technology. The Fifth European Rheology Conference, held from September 6 to 11 in the Portoro-z, Slovenia, will be the first AlI-European rheology meeting after the formal constitution of the European Society ofRheology. As such it will be a special historical event. At this meeting the European Society of Rheology will introduce the Weissenberg Medal, to be bestowed every four years to an individual for hislhers contribution to the field of Rheology. The recipient ofthe first award will be professor G. Marrucci ofthe Universita degli Studi di Napoli, Italy. Two mini Symposia will be part of the Conference. The first, on Industrial Rheology, will commemorate the late professor G. Astarita. The second will honor the eightieth birthday of professor N.W. Tschoeg...

  11. Morphological and Rheological Characterization of Gold Nanoparticles Synthesized Using Pluronic P103 as Soft Template

    Directory of Open Access Journals (Sweden)

    Nancy Tepale

    2016-01-01

    Full Text Available The synthesis of gold nanoparticles (Au-NPs, using Pluronic® P103 as soft template to design tuned hybrid gold/P103 nanomaterials, is reported here. The effect of the concentration of P103 and the synthesis temperature on the growth, size, and morphology of Au-NPs were studied. The rheological properties of these hybrid nanomaterials at different measured temperatures were studied as well. By increasing the concentration of P103, the micelles progressively grew due to an increase in the number of surface cavities. These cavities came together causing large nucleation centers and developing larger Au-NPs. The synthesis temperature was varied to induce significant dehydration of the P103 micelles. Below the cloud point temperature micelles underwent distinct changes related to spherical-to-polymer-like micelles transitions. Two nanostructures were formed: (1 small Au-NPs arranged on the surface of micelles, which acted as soft templates, and (2 large and independent Au-NPs. Above the cloud point temperature, Au-NPs were related to the shape and size of the P103 micellar aggregates. Rheological measurements showed that viscosity was sensitive to the concentration of P103. Also, it was demonstrated that synthesis temperature had a considerable influence on viscosity of the produced nanomaterials.

  12. 7 CFR 58.514 - Container fillers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Container fillers. 58.514 Section 58.514 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....514 Container fillers. Shall comply with the 3-A Sanitary Standards for Equipment for Packaging Frozen...

  13. Processing of oil palm empty fruit bunch as filler material of polymer recycles

    Science.gov (United States)

    Saepulloh, D. R.; Nikmatin, S.; Hardhienata, H.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) is waste from crude palm oil (CPO) processing plants. This research aims to process OPEFB to be a reinforcement polymer recycle with the mechanical milling method and identify each establishment molecular with the orbital hybridization theory. OPEFB fibers were synthesized using a mechanical milling until the size shortfiber and microfiber. Then do the biocomposite granular synthesis with single screw extruder. TAPPI chemical test shows levels of α-cellulose fibers amounted 41.68%. Based on density, the most optimum composition contained in the filler amounted 15% with the size is the microfiber. The test results of morphology with SEM showed deployment of filler OPEFB fiber is fairly equitable distributed. Regarding the molecular interaction between matrix with OPEFB fiber, described by the theory of orbital hybridization. But the explanation establishment of the bond for more complex molecules likes this from the side of the molecular orbital theory is necessary complete information of the hybrid levels.

  14. Rheology in Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Aho, Johanna; Hvidt, Søren; Baldursdottir, Stefania

    2016-01-01

    Rheology is the science of flow and deformation of matter. Particularly gels and non-Newtonian fluids, which exhibit complex flow behavior, are frequently encountered in pharmaceutical engineering and manufacturing, or when dealing with various in vivo fluids. Therefore understanding rheology......, together with the common measurement techniques and their practical applications. Examples of the use of rheological techniques in the pharmaceutical field, as well as other closely related fields such as food and polymer science, are also given....... is important, and the ability to use rheological characterization tools is of great importance for any pharmaceutical scientist involved in the field. Flow can be generated by shear or extensional deformations, or a combination of both. This chapter introduces the basics of both shear and extensional rheology...

  15. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    Science.gov (United States)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  16. Self Compacting Concrete with Chalk Filler

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    2007-01-01

    Utilisation of Danish chalk filler has been investigated as a means to produce self compacting concrete (SCC) at lower strength levels for service in non aggressive environments. Stable SCC mixtures were prepared at chalk filler contents up to 60% by volume of binder to yield compressive strengths...

  17. Reversible vs. nonreversible fillers in facial aesthetics: concerns and considerations.

    Science.gov (United States)

    Smith, Kevin Christopher

    2008-08-15

    Soft-tissue augmentation of the face is an increasingly popular cosmetic procedure. In recent years, the number of available filling agents has also increased dramatically, improving the range of options available to physicians and patients. Understanding the different characteristics, capabilities, risks, and limitations of the available dermal and subdermal fillers can help physicians improve patient outcomes and reduce the risk of complications. The most popular fillers are those made from cross-linked hyaluronic acid (HA). A major and unique advantage of HA fillers is that they can be quickly and easily reversed by the injection of hyaluronidase into areas in which elimination of the filler is desired, either because there is excess HA in the area or to accelerate the resolution of an adverse reaction to treatment or to the product. In general, a lower incidence of complications (especially late-occurring or long-lasting effects) has been reported with HA fillers compared with the semi-permanent and permanent fillers. The implantation of nonreversible fillers requires more and different expertise on the part of the physician than does injection of HA fillers, and may produce effects and complications that are more difficult or impossible to manage even by the use of corrective surgery. Most practitioners use HA fillers as the foundation of their filler practices because they have found that HA fillers produce excellent aesthetic outcomes with high patient satisfaction, and a low incidence and severity of complications. Only limited subsets of physicians and patients have been able to justify the higher complexity and risks associated with the use of nonreversible fillers.

  18. Advanced Laser Techniques for Filler-Induced Complications

    DEFF Research Database (Denmark)

    Cassuto, D.; Marangoni, O.; Santis, G. De

    2009-01-01

    discomfort and pain. RESULTS All 20 patients experienced reduction or complete resolution, the latter increasing with repeated treatments. CONCLUSION Laser-assisted treatment offers a successful solution for patients who have been suffering from disfiguring nodules from injected fillersFoften for many years......BACKGROUND The increasing use of injectable fillers has been increasing the occurrence of disfiguring anaerobic infection or granulomas. This study presents two types of laser-assisted evacuation of filler material and inflammatory and necrotic tissue that were used to treat disfiguring facial...... nodules after different types of gel fillers. MATERIALS AND METHODS Infectious lesions after hydrogels were drained using a lithium triborate laser at 532 nm, with subsequent removal of infected gel and pus (laser assisted evacuation). Granuloma after gels containing microparticles were treated using...

  19. Fillers as Signs of Distributional Learning

    Science.gov (United States)

    Taelman, Helena; Durieux, Gert; Gillis, Steven

    2009-01-01

    A longitudinal analysis is presented of the fillers of a Dutch-speaking child between 1;10 and 2;7. Our analysis corroborates familiar regularities reported in the literature: most fillers resemble articles in shape and distribution, and are affected by rhythmic and positional constraints. A novel finding is the impact of the lexical environment:…

  20. Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites

    Science.gov (United States)

    Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman

    2018-02-01

    Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.

  1. Selecting fillers on emotional appearance improves lineup identification accuracy.

    Science.gov (United States)

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Mechanical properties of epoxy/coconut shell filler particle composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Harimi, M.; Maleque, M.A.

    2003-01-01

    This paper presents the tensile and flexural properties of composites made from coconut shell filler particles and epoxy resin. The tensile and flexural tests of composites based on coconut shell filler particles at three different filler contents viz., 5%, 0% and 15%were carried out using universal tensile testing machine according to ASTM D 3039/D M-95a and ASTM D790-90 tensile respectively and their results were presented. Experimental results showed that tensile and flexural properties of the composites increased with the increase of the filler particle content. The composite materials demonstrate somewhat linear behavior and sharp structure for tensile and slight nonlinear behavior and sharp fracture of flexural testing. The relation between stress and percentage of filler for tensile and flexural tests were found to b linear with correlation factors of 0.9929 and 0.9973 respectively. Concerning the relation between the modulus and percentage of filler for tensile and flexural tests, it was found to be a quadratic relation with the same correlation factor approximated to 1. The same behavior was observed for the strain versus percentage of filler tensile and flexural tests, with the same correlation factor. (author)

  3. Potential of utilizing asphalt dust waste as filler material in the production of sustainable self compacting concrete (SCC)

    Science.gov (United States)

    Ismail, Isham; Shahidan, Shahiron; Bahari, Nur Amira Afiza Saiful

    2017-12-01

    Waste materials from many industries are widely used in the production of sustainable green concrete. Utilizing asphalt dust waste (ADW) as a filler material in the development of self-compacting concrete (SCC) is one of the alternative solutions for reducing environmental waste. SCC is an innovative concrete that does not require vibration for placing and compaction. However, there is limited information on the effects of utilizing ADW in the development of SCC. Therefore, this research study examines the effects of various w/b ratios (0.2, 0.3 and 0.4) and differing amounts of ADW (0% to 50%) on the rheological properties of fresh state concrete. The compressive strength of the SCC was tested only for 7 and 28 days as preliminary studies. The results revealed that mixtures MD730, MD740 and MD750 showed satisfactory results for the slump flow, J-Ring, L-Box and V-Funnel test during the fresh state. The compressive strength values obtained after 28 days for MD730, MD740 and MD750 were 35.1 MPa, 36.8 MPa and 29.4 MPa respectively. In conclusion, the distribution of materials in mixtures has significant effect in achieving rheological properties and compressive strength of SCC.

  4. Filler migration and extensive lesions after lip augmentation: Adverse effects of polydimethylsiloxane filler.

    Science.gov (United States)

    Abtahi-Naeini, Bahareh; Faghihi, Gita; Shahmoradi, Zabihollah; Saffaei, Ali

    2018-01-07

    Polydimethylsiloxane (PDMS), also called liquid silicone, belongs to a group of polymeric compounds that are commonly referred to as silicones. These filling agents have been used as injectable filler for soft tissue augmentation. There are limited experiences about management of the severe complications related to filler migration associated with PDMS injection. We present a 35-year-old female with severe erythema, edema over her cheeks and neck, and multiple irregularities following cosmetic lip augmentation with PDMS. Further studies are required for management of this complicated case of PDMS injection. © 2018 Wiley Periodicals, Inc.

  5. Bio-based fillers for environmentally friendly composites

    CSIR Research Space (South Africa)

    Mokhothu, Thabang H

    2017-03-01

    Full Text Available The use of bio-based fillers as alternative replacement for synthetic fillers has been dictated by increasing ecological concerns as well as depleting petroleum resources. The other aspect is a growing need for eco-friendly, renewable...

  6. Silk Electrogel Rheology

    Science.gov (United States)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2014-03-01

    We present experimental results on the rheology on electrogels derived from aqueous solutions of reconstituted Bombyx Mori silk fibroin protein. Through electrochemistry, the silk protein solution develops local pH changes resulting in the assembly of protein into a weak gel. We determine the physical properties of the electrogels by performing rheology and observe that they exhibit the characteristics of a crosslinked biopolymer network. Interestingly, we find that these silk gels exhibit linear elasticity over a range of up to two orders of magnitude larger than most crosslinked biopolymer networks. Moreover, the nonlinear rheology exhibits a strain-stiffening behavior that is fundamentally different than the strain-stiffening observed in crosslinked biopolymers. Through rheological techniques we aim to understand this distinctive material that cannot be explained by current polymeric models. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  7. Influence of reactive fillers on concrete corrosion resistance

    Science.gov (United States)

    Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.

    2018-03-01

    Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.

  8. Morphological and Rheological Characterization of Gold Nanoparticles Synthesized Using Pluronic P103 as Soft Template

    OpenAIRE

    Nancy Tepale; Victor V. A. Fernández-Escamilla; Carlos Álvarez; Eric Flores-Aquino; Valeria J. González-Coronel; Daniel Cruz; Manuel Sánchez-Cantú

    2016-01-01

    The synthesis of gold nanoparticles (Au-NPs), using Pluronic® P103 as soft template to design tuned hybrid gold/P103 nanomaterials, is reported here. The effect of the concentration of P103 and the synthesis temperature on the growth, size, and morphology of Au-NPs were studied. The rheological properties of these hybrid nanomaterials at different measured temperatures were studied as well. By increasing the concentration of P103, the micelles progressively grew due to an increase in the numb...

  9. The effect of nanoclay on the rheology and dynamics of polychlorinated biphenyl.

    Science.gov (United States)

    Roy, D; Casalini, R; Roland, C M

    2015-12-28

    The thermal, rheological, and mechanical and dielectric relaxation properties of exfoliated dispersions of montmorillonite clay in a molecular liquid, polychlorobiphenyl (PCB), were studied. The viscosity enhancement at low concentrations of clay (≤5%) exceeded by a factor of 50 the increase obtainable with conventional fillers. However, the effect of the nanoclay on the local dynamics, including the glass transition temperature, was quite small. All materials herein conformed to density-scaling of the reorientation relaxation time of the PCB for a common value of the scaling exponent. A new relaxation process was observed in the mixtures, associated with PCB molecules in proximity to the clay surface. This process has an anomalously high dielectric strength, suggesting a means to exploit nanoparticles to achieve large electrical energy absorption. This lower frequency dispersion has a weaker dependence on pressure and density, consistent with dynamics constrained by interactions with the particle surface.

  10. Ultrasound detection and identification of cosmetic fillers in the skin

    DEFF Research Database (Denmark)

    Wortsman, X.; Wortsman, J.; Orlandi, C.

    2012-01-01

    Background While the incidence of cosmetic filler injections is rising world-wide, neither exact details of the procedure nor the agent used are always reported or remembered by the patients. Thus, although complications are reportedly rare, availability of a precise diagnostic tool to detect...... cutaneous filler deposits could help clarify the association between the procedure and the underlying pathology. Objectives The aim of this study was to evaluate cutaneous sonography in the detection and identification of cosmetic fillers deposits and, describe dermatological abnormalities found associated...... with the presence of those agents. Methods We used ultrasound in a porcine skin model to determine the sonographic characteristics of commonly available filler agents, and subsequently applied the analysis to detect and identify cosmetic fillers among patients referred for skin disorders. Results Fillers...

  11. Rheological studies of creams. I. Rheological functions and structure of creams.

    Science.gov (United States)

    Erös, I; Thaleb, A

    1994-05-01

    Large number of washable (o/w type) creams were prepared for rheological investigation. The rheological functions known from the literature were determined in our studies. Rheological constants were determined by measurements and calculations. From these, we selected those ones which were applicable to characterize the energy status of the coherent structure and which gave the most information for practical work, elaboration of composition and evaluation of stability. These functions and parameters are the following: flow curves, viscosity vs shear time and viscosity vs temperature functions, Bingham-type yield value, plastic viscosity, structure breakdown rate constant, activation energy.

  12. Adverse reactions to injectable soft tissue fillers

    DEFF Research Database (Denmark)

    Requena, Luis; Requena, Celia; Christensen, Lise

    2011-01-01

    In recent years, injections with filler agents are often used for wrinkle-treatment and soft tissue augmentation by dermatologists and plastic surgeons. Unfortunately, the ideal filler has not yet been discovered and all of them may induce adverse reactions. Quickly biodegradable or resorbable ag...

  13. Managing complications of fillers: Rare and not-so-rare

    Directory of Open Access Journals (Sweden)

    Eckart Haneke

    2015-01-01

    Full Text Available Fillers belong to the most frequently used beautifying products. They are generally well tolerated, but any one of them may occasionally produce adverse side effects. Adverse effects usually last as long as the filler is in the skin, which means that short-lived fillers have short-term side effects and permanent fillers may induce life-long adverse effects. The main goal is to prevent them, however, this is not always possible. Utmost care has to be given to the prevention of infections and the injection technique has to be perfect. Treatment of adverse effects is often with hyaluronidase or steroid injections and in some cases together with 5-fluorouracil plus allopurinol orally. Histological examination of biopsy specimens often helps to identify the responsible filler allowing a specific treatment to be adapted.

  14. Utilization of Swedish fly ash from bio fuel fired power plants as a filler material in concrete; Anvaendning av svenska flygaskor som fillermaterial i betong

    Energy Technology Data Exchange (ETDEWEB)

    Sundblom, Hillevi [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2006-03-15

    The tested Swedish fly ashes (FA) (FA from bio combustion) in this project proved to have good filler qualities such as improving the stability and the rheological behavior of the concrete. One of tested FA could directly replace the compared limestone filler in the concrete recipes in booth laboratory investigation and in full-scale demonstration. The other FA demanded more water. The recipes were modified in the laboratory investigation to get a functional recipe for full-scale demonstration. The process to investigate the Swedish FA has been following (this project is one part of several investigation): Basic characterization; Characterization as a filler material; Full-scale demonstration; Certification, regularly quality assurance; Continuous use of Swedish FA in the Swedish Concrete Industry. Three representatives Swedish FA have been investigated in step 1-3 according to the process above. There were two FA in a full-scale demonstration a FA from bio fuel/paper sludge fired circulated fluidized bed boiler (at a paper mill) and a FA from a peat fired pulverized boiler. The test made was basic chemical and physical characterization, investigation as a filler material and strength development of a crushed aggregate self-compacting concrete in laboratory and in a full-scale demonstration. The conclusion were following: FA from the paper mill CFB boiler changes in strength development depending on the combustion temperature. It seems the reason is in the way CaO is distribute into different chemical compounds. Higher compressive strength with higher free CaO (analyzed in XRD) Higher content of reactive SiO{sub 2} and free lime in the CFB FA comparing with the PF FA. The soundness of the FA have been tested in early research projects. The sieves curves demonstrated that the FA from the CFB boiler coarser than the other FA tested and the limestone filler compared. The coarser grain fraction could explain why the FA demanded more water in the laboratory and full

  15. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  16. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  17. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study

    Directory of Open Access Journals (Sweden)

    Nurazwa Ishak

    2018-02-01

    Full Text Available The synthesis of kojic acid derivative (KAD from kojic and palmitic acid (C16:0 in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM, was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT experiments, a high reaction rate (30.6 × 10−3 M·min−1 of KAD synthesis was recorded using acetone, enzyme loading of 1.25% (w/v, reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM whereby the optimized molar ratio (fatty acid: kojic acid, enzyme loading, reaction temperature and reaction time were 6.74, 1.97% (w/v, 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%. This condition was reevaluated in a 0.5 L stirred tank reactor (STR where the agitation effects of two impellers; Rushton turbine (RT and pitch-blade turbine (PBT, were investigated. In the STR, a very high yield of KAD synthesis (84.12% was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.

  18. Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study.

    Science.gov (United States)

    Ishak, Nurazwa; Lajis, Ahmad Firdaus B; Mohamad, Rosfarizan; Ariff, Arbakariya B; Mohamed, Mohd Shamzi; Halim, Murni; Wasoh, Helmi

    2018-02-24

    The synthesis of kojic acid derivative (KAD) from kojic and palmitic acid (C16:0) in the presence of immobilized lipase from Rhizomucor miehei (commercially known as Lipozyme RMIM), was studied using a shake flask system. Kojic acid is a polyfunctional heterocycles that acts as a source of nucleophile in this reaction allowing the formation of a lipophilic KAD. In this study, the source of biocatalyst, Lipozyme RMIM, was derived from the lipase of Rhizomucor miehei immobilized on weak anion exchange macro-porous Duolite ES 562 by the adsorption technique. The effects of solvents, enzyme loading, reaction temperature, and substrate molar ratio on the reaction rate were investigated. In one-factor-at-a-time (OFAT) experiments, a high reaction rate (30.6 × 10 -3 M·min -1 ) of KAD synthesis was recorded using acetone, enzyme loading of 1.25% ( w / v ), reaction time of 12 h, temperature of 50 °C and substrate molar ratio of 5:1. Thereafter, a yield of KAD synthesis was optimized via the response surface methodology (RSM) whereby the optimized molar ratio (fatty acid: kojic acid), enzyme loading, reaction temperature and reaction time were 6.74, 1.97% ( w / v ), 45.9 °C, and 20 h respectively, giving a high yield of KAD (64.47%). This condition was reevaluated in a 0.5 L stirred tank reactor (STR) where the agitation effects of two impellers; Rushton turbine (RT) and pitch-blade turbine (PBT), were investigated. In the STR, a very high yield of KAD synthesis (84.12%) was achieved using RT at 250 rpm, which was higher than the shake flask, thus indicating better mixing quality in STR. In a rheological study, a pseudoplastic behavior of KAD mixture was proposed for potential application in lotion formulation.

  19. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    Science.gov (United States)

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterization of Early Age Curing and Shrinkage of Metakaolin-Based Inorganic Binders with Different Rheological Behavior by Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Palumbo, Giovanna; Iadicicco, Agostino; Messina, Francesco; Ferone, Claudio; Campopiano, Stefania; Cioffi, Raffaele; Colangelo, Francesco

    2017-12-22

    This paper reports results related to early age temperature and shrinkage measurements by means fiber Bragg gratings (FBGs), which were embedded in geopolymer matrices. The sensors were properly packaged in order to discriminate between different shrinkage behavior and temperature development. Geopolymer systems based on metakaolin were investigated, which dealt with different commercial aluminosilicate precursors and siliceous filler contents. The proposed measuring system will allow us to control, in a very accurate way, the early age phases of the binding systems made by metakaolin geopolymer. A series of experiments were conducted on different compositions; moreover, rheological issues related to the proposed experimental method were also assessed.

  1. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this.......Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling......, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have...

  2. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  3. Effect of three filler types on mechanical properties of dental composite

    Directory of Open Access Journals (Sweden)

    Pahlavan A.

    2005-06-01

    Full Text Available Statement of Problem: Despite the improvements achieved in the field of dental composites, their strength, longevity, and service life specially in high stress areas is not confirmed. Finding better fillers can be a promising step in this task. Purpose: The purpose of this study was to investigate the effect of the filler type on the mechanical properties of a new experimental dental composite and compare these with the properties of composite containing conventional glass filler. Materials and Methods: Experimental composites were prepared by mixing silane-treated fillers with monomers, composed of 70% Bis-GMA and 30% TEGDMA by weight. Fillers were different among the groups. Glass, leucite ceramic and lithium disilicate were prepared as different filler types. All three groups contained 73% wt filler. Comphorquinone and amines were chosen as photo initiator system. Post curing was done for all groups. Diametral tensile strength (DTS, flexural strength and flexural modulus were measured and compared among groups. Data were analyzed with SPSS package using one-way ANOVA test with P<0.05 as the limit of significance. Results: The results showed that the stronger ceramic fillers have positive effect on the flexural strength. Ceramic fillers increased the flexural strength significantly. No significant differences could be determined in DTS among the groups. Flexural modulus can be affected and increased by using ceramic fillers. Conclusion: Flexural strength is one of the most significant properties of restorative dental materials. The higher flexural strength and flexural modulus can be achieved by stronger ceramic fillers. Any further investigation in this field would be beneficial in the development of restorative dental materials.

  4. Nano-fillers to tune Young’s modulus of silicone matrix

    International Nuclear Information System (INIS)

    Xia Lijin; Xu Zhonghua; Sun Leming; Caveney, Patrick M.; Zhang Mingjun

    2013-01-01

    In this study, we investigated nanoparticles, nanofibers, and nanoclays for their filler effects on tuning the Young’s modulus of silicone matrix, a material with broad in vivo applications. Nano-fillers with different shapes, sizes, and surface properties were added into silicone matrix, and then their filler effects were evaluated through experimental studies. It was found that spherical nanoparticles could clearly improve Young’s modulus of the silicone matrix, while nanoclays and carbon nanofibers had limited effects. Smaller spherical nanoparticles were better in performance compared to larger nanoparticles. In addition, enhanced distribution of the nanoparticles in the matrix has been observed to improve the filler effect. In order to minimize toxicity of the nanoparticles for in vivo applications, spherical nanoparticles coated with amine, acid, or hydroxide groups were also investigated, but they were found only to diminish the filler effect of nanoparticles. This study demonstrated that spherical nanoparticles could serve as fillers to tune Young’s modulus of silicone matrix for potential applications in medicine.

  5. The Kinetics of Reversible Hyaluronic Acid Filler Injection Treated With Hyaluronidase.

    Science.gov (United States)

    Juhász, Margit L W; Levin, Melissa K; Marmur, Ellen S

    2017-06-01

    Hyaluronidase is an enzyme capable of dissolution of hyaluronic acid (HA). There is a lack of evidence-based research defining time- and concentration-dependent reversal of HA filler using hyaluronidase. To explore the efficacy of different concentrations of hyaluronidase in digesting commercially available HA-based reversible fillers-Belotero Balance (BEL), Juvederm Ultra XC (JUVXC), Juvederm Ultra Plus (JUVX+), Juvederm Voluma XC (JUVV), Restylane-L (RESL), Restylane Silk (RESS), and Perlane/Restylane Lyft (RESLYFT). This was a blinded randomized study involving 15 participants. Participants received HA filler injection into their back, followed by no secondary injection, or injection with normal saline, 20 or 40 units of hyaluronidase. Using a 5-point palpation scale, the degradation of HA filler was monitored over 14 days. In the authors' study, there is a significant decrease in HA filler degradation using 20 and 40 units of hyaluronidase compared with no secondary injection or normal saline. There is no significant difference in HA filler dissolution when comparing 20 to 40 units of hyaluronidase. Lower concentrations of hyaluronidase may be just as effective as higher concentrations to degrade HA filler in situations where the reversal of cutaneous augmentation with HA filler arises.

  6. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  7. Complications caused by injection of dermal filler in Danish patients

    DEFF Research Database (Denmark)

    Uth, Charlotte Caspara; Elberg, Jens Jørgen; Zachariae, Claus

    2016-01-01

    Background: The usage of dermal fillers has increased significantly in recent years. Soft tissue augmentation with fillers helps to diminish the facial lines and to restore volume and fullness in the face at a relatively low cost. With the increasing number of treatments, the number of complicati......Background: The usage of dermal fillers has increased significantly in recent years. Soft tissue augmentation with fillers helps to diminish the facial lines and to restore volume and fullness in the face at a relatively low cost. With the increasing number of treatments, the number...

  8. Glass transition temperature of polymer nano-composites with polymer and filler interactions

    Science.gov (United States)

    Hagita, Katsumi; Takano, Hiroshi; Doi, Masao; Morita, Hiroshi

    2012-02-01

    We systematically studied versatile coarse-grained model (bead spring model) to describe filled polymer nano-composites for coarse-grained (Kremer-Grest model) molecular dynamics simulations. This model consists of long polymers, crosslink, and fillers. We used the hollow structure as the filler to describe rigid spherical fillers with small computing costs. Our filler model consists of surface particles of icosahedra fullerene structure C320 and a repulsive force from the center of the filler is applied to the surface particles in order to make a sphere and rigid. The filler's diameter is 12 times of beads of the polymers. As the first test of our model, we study temperature dependence of volumes of periodic boundary conditions under constant pressures through NPT constant Andersen algorithm. It is found that Glass transition temperature (Tg) decrease with increasing filler's volume fraction for the case of repulsive interaction between polymer and fillers and Tg weakly increase for attractive interaction.

  9. Ductility dip cracking susceptibility of Inconel Filler Metal 52 and Inconel Alloy 690

    International Nuclear Information System (INIS)

    Kikel, J.M.; Parker, D.M.

    1998-01-01

    Alloy 690 and Filler Metal 52 have become the materials of choice for commercial nuclear steam generator applications in recent years. Filler Metal 52 exhibits improved resistance to weld solidification and weld-metal liquation cracking as compared to other nickel-based filler metals. However, recently published work indicates that Filler Metal 52 is susceptible to ductility dip cracking (DDC) in highly restrained applications. Susceptibility to fusion zone DDC was evaluated using the transverse varestraint test method, while heat affected zone (HAZ) DDC susceptibility was evaluated using a newly developed spot-on-spot varestraint test method. Alloy 690 and Filler Metal 52 cracking susceptibility was compared to the DDC susceptibility of Alloy 600, Filler Metal 52, and Filler Metal 625. In addition, the effect of grain size and orientation on cracking susceptibility was also included in this study. Alloy 690, Filler Metal 82, Filler Metal 52, and Filler Metal 625 were found more susceptible to fusion zone DDC than Alloy 600. Filler Metal 52 and Alloy 690 were found more susceptible to HAZ DDC when compared to wrought Alloy 600, Filler Metal 82 and Filler Metal 625. Filler Metal 52 exhibited the greatest susceptibility to HAZ DDC of all the weld metals evaluated. The base materials were found much more resistant to HAZ DDC in the wrought condition than when autogenously welded. A smaller grain size was found to offer greater resistance to DDC. For weld metal where grain size is difficult to control, a change in grain orientation was found to improve resistance to DDC

  10. Microvascular complications associated with injection of cosmetic facelift dermal fillers

    Science.gov (United States)

    Yousefi, Siavash; Prendes, Mark; Chang, Shu-Hong; Wang, Ruikang K.

    2015-02-01

    Minimally-invasive cosmetic surgeries such as injection of subdermal fillers have become very popular in the past decade. Although rare, some complications may follow injections such as tissue necrosis and even blindness. There exist two hypothesis regarding source of these complications both of which include microvasculature. The first hypothesis is that fillers in between the tissue structures and compress microvasculature that causes blockage of tissue neutrition and oxygen exchange in the tissue. In another theory, it is hypothesized that fillers move inside major arteries and block the arteries/veins. In this paper, we study these hypotheses using optical coherence tomography and optical microangiography technologies with different hyaluronic-acid fillers in a mouse ear model. Based on our observations, the fillers eventually block arteries/veins if injected directly into them that eventually causes tissue necrosis.

  11. Rheology of waxy oils

    Energy Technology Data Exchange (ETDEWEB)

    Alicke, Alexandra A.; Marchesini, Flavio H.; Mendes, Paulo R. de Souza [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)], e-mails: fhmo@puc-rio.br, pmendes@puc-rio.br; Ziglio, Claudio [Petrobras Research Center, Rio de Janeiro, RJ (Brazil)], e-mail: ziglio@petrobras.com.br

    2010-07-01

    It is well known that below the crystallization temperature the rheology of waxy oils changes from Newtonian to an extremely complex non-Newtonian behavior, which is shear-rate and temperature-history dependent. Along the last decades a lot of effort has been put into obtaining reliable rheological measurements from different oils so as to understand the yielding of waxy oils as well as the effects of shear and temperature histories on rheological properties, such as viscosity, yield stress, storage and loss moduli. In this paper we examine in detail the related literature, discussing the main reasons for some disagreements concerning the history effects on the flow properties of waxy oils. In addition, we performed temperature ramps and stress-amplitude-sweep tests and compared the results obtained with the main trends observed, highlighting the effects of cooling and shear on the microstructure and consequently on the rheological properties of these oils. (author)

  12. Analysis of filler particle levels and sizes in dental alginates

    Directory of Open Access Journals (Sweden)

    Hugo Lemes Carlo

    2010-06-01

    Full Text Available The aim of this study was to determine the inorganic filler fractions and sizes of commercially alginates. The inorganic particles volumetric fractions of five alginates - Jeltrate(J, Jeltrate Plus(JP, Jeltrate Chromatic Ortho(JC, Hydrogum(H and Ezact Krom(E were accessed by weighing a previously determined mass of each material in water before and after burning samples at 450 °C for 3 hours. Unsettled materials were soaked in acetone and chloroform and sputter-coated with gold for SEM evaluation of fillers' morphology and size. The results for the volumetric inorganic particle content were (%: J - 48.33, JP - 48.33, JC - 33.79, H - 37.55 and E - 40.55. The fillers presented a circular appearance with helical form and various perforations. Hydrogum fillers looked like cylindrical, perforated sticks. The mean values for fillers size were (μm: J - 12.91, JP - 13.67, JC - 13.44, E - 14.59 and H - 9 (diameter, 8.81 (length. The results of this study revealed differences in filler characteristics that could lead to different results when testing mechanical properties.

  13. 14 CFR 25.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 25.973 Section 25.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.973 Fuel tank filler...

  14. 14 CFR 29.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 29.973 Section 29.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.973 Fuel tank filler...

  15. Rheological behavior of mammalian cells.

    Science.gov (United States)

    Stamenović, D

    2008-11-01

    Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models.

  16. Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries

    International Nuclear Information System (INIS)

    Kurc, Beata

    2014-01-01

    Highlights: • Paper describes properties of gel electrolyte based on PAN with TMS and TiO 2 -SiO 2 . • The TiO 2 -SiO 2 oxide composite was precipitated in the emulsion system and used as the fillers. • The capacity of the graphite anode depends on the current rate and the amount of TiO 2 -SiO 2 . • For PE3 electrolyte was obtained practical capacity more than 90% of the theoretical capacity. - Abstract: This paper describes the synthesis and properties of a new type of ceramic fillers for composite polymer gel electrolytes. Hybrid TiO 2 -SiO 2 ceramic powders have been obtained by co-precipitation from titanium(IV) sulfate solution using sodium silicate as the precipitating agent. The resulting submicron-size powders have been applied as fillers for composite polymer gel electrolytes for Li-ion batteries based on polyacrylonitrile (PAN) membranes. The powders and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells

  17. Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology

    International Nuclear Information System (INIS)

    Wittmar, Alexandra; Ruiz-Abad, David; Ulbricht, Mathias

    2012-01-01

    The colloidal stabilities of dispersions of unmodified and surface-functionalized SiO 2 nanoparticles in hydrophobic and hydrophilic imidazolium-based ionic liquids were studied with advanced rheology at three temperatures (25, 100, and 200 °C). The rheological behavior of the dispersions was strongly affected by the ionic liquids hydrophilicity, by the nanoparticles surface, by the concentration of the nanoparticles in the dispersion as well as by the temperature. The unmodified hydrophilic nanoparticles showed a better compatibility with the hydrophilic ionic liquid. The SiO 2 surface functionalization with hydrophobic groups clearly improved the colloidal stability of the dispersions in the hydrophobic ionic liquid. The temperature increase was found to lead to a destabilization in all studied systems, especially at higher concentrations. The results of this study imply that ionic liquids with tailored properties could be used in absorbers directly after reactors for gas-phase synthesis of nanoparticles or/and as solvents for their further surface functionalization without agglomeration or aggregation.

  18. Rheology of Biopolymer Solutions and Gels

    Directory of Open Access Journals (Sweden)

    David R. Picout

    2003-01-01

    Full Text Available Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi-dilute and gel properties is described.

  19. 14 CFR 27.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 27.973 Section 27.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.973 Fuel tank filler connection...

  20. Hyaluronic acid gel fillers in the management of facial aging

    Directory of Open Access Journals (Sweden)

    Fredric S Brandt

    2008-03-01

    Full Text Available Fredric S Brandt1, Alex Cazzaniga21Private Practice in Coral Gables, Florida, USA and Manhattan, NY, USA, and Dermatology Research Institute, Coral Gables, FL, USA; 2Dermatology Research Institute, Coral Gables, Florida, USAAbstract: Time affects facial aging by producing cellular and anatomical changes resulting in the consequential loss of soft tissue volume. With the advent of new technologies, the physician has the opportunity of addressing these changes with the utilization of dermal fillers. Hyaluronic acid (HA dermal fillers are the most popular, non-permanent injectable materials available to physicians today for the correction of soft tissue defects of the face. This material provides an effective, non invasive, non surgical alternative for correction of the contour defects of the face due to its enormous ability to bind water and easiness of implantation. HA dermal fillers are safe and effective. The baby-boomer generation, and their desire of turning back the clock while enjoying an active lifestyle, has expanded the popularity of these fillers. In the US, there are currently eight HA dermal fillers approved for commercialization by the Food and Drug Administration (FDA. This article reviews the innate properties of FDA-approved HA fillers and provides an insight on future HA products and their utilization for the management of the aging face.Keywords: hyaluronic acid, aging face, dermal filler, wrinkles, Restylane, Perlane, Juvéderm

  1. Comparative Effects of MMT Clay Modified with Two Different Cationic Surfactants on the Thermal and Rheological Properties of Polypropylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Meshal Al-Samhan

    2017-01-01

    Full Text Available Polypropylene montmorillonite (MMT nanocomposites were prepared by melt blending using two different organoclays modified with imidazolium and alkylammonium surfactants. The imidazolium and ammonium modified organoclays were characterized by the FTIR and SEM analysis. The effect of organic clay (MMT on the physical properties of polypropylene was evaluated, thermal and rheological properties with different filler weight percentage. Differential scanning calorimetric results showed that imidazolium modified clay (IMMT exhibits low melting temperature compared to the ammonium modified clay (AMMT. The crystallinity analysis showed that crystallization improved in all nanocomposites irrespective of surface modification; the thermogravimetric analysis showed that the imidazolium modified polymer composites are more thermally stable than conventional ammonium modified composites. The Transmission Electron Microscopy (TEM analyses indicated that the PP-IMMT composites displayed exfoliated morphologies compared with the intercalated structure in PP-AMMT, and the rheological analysis at 180°C showed an enhancement in the viscoelastic properties as the clay concentration increases. The melt viscosity, crossover modulus, and relaxation times were comparable for both the surface modified composites with two different cations. The imidazolium based surfactant was found to be an effective organic modification for MMT to prepare thermally stable PP/MMT nanocomposites.

  2. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition; Etude du comportement rheologique de melanges argiles - polymeres. Effets de l'ajout de polymeres

    Energy Technology Data Exchange (ETDEWEB)

    Benchabane, A

    2006-11-15

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  3. Cyclic Macromolecules: Dynamics and Nonlinear Rheology, Final Report DOE Award # DE-FG02-05ER46218, Texas Tech University

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Gregory B.; Grubbs, Robert H.; Kornfield, Julia A.

    2012-04-25

    The work described in the present report had the original goal to produce large, entangled, ring polymers that were uncontaminated by linear chains and to characterize by rheological methods the dynamics of these rings. While the work fell short of this specific goal, the outcomes of the research performed under support from this grant provided novel macromolecular synthesis methods, new separation methods for ring and linear chains, and novel rheological data on bottle brush polymers, wedge polymers and dendron-based ring molecules. The grant funded a total of 8 archival manuscripts and one patent, all of which are attached to the present report.

  4. Biocomposites from polyhydroxybutyrate and bio-fillers by solvent ...

    Indian Academy of Sciences (India)

    Biocomposites from polyhydroxybutyrate (PHB) and some bio-fillers such as lignin (L), alpha cellulose (AC) and cellulose nanofibrils (CNFs) were prepared to investigate the effect of the bio-fillers on the properties of PHB by a solvent casting method. The thermal properties by thermogravimetry analysis (TGA–DTG and ...

  5. Treatment of Soft Tissue Filler Complications: Expert Consensus Recommendations.

    Science.gov (United States)

    Urdiales-Gálvez, Fernando; Delgado, Nuria Escoda; Figueiredo, Vitor; Lajo-Plaza, José V; Mira, Mar; Moreno, Antonio; Ortíz-Martí, Francisco; Del Rio-Reyes, Rosa; Romero-Álvarez, Nazaret; Del Cueto, Sofía Ruiz; Segurado, María A; Rebenaque, Cristina Villanueva

    2018-04-01

    Dermal fillers have been increasingly used in minimally invasive facial esthetic procedures. This widespread use has led to a rise in reports of associated complications. The aim of this expert consensus report is to describe potential adverse events associated with dermal fillers and to provide guidance on their treatment and avoidance. A multidisciplinary group of experts in esthetic treatments convened to discuss the management of the complications associated with dermal fillers use. A search was performed for English, French, and Spanish language articles in MEDLINE, the Cochrane Database, and Google Scholar using the search terms "complications" OR "soft filler complications" OR "injectable complications" AND "dermal fillers" AND "Therapy". An initial document was drafted by the Coordinating Committee, and it was reviewed and modified by the experts, until a final text was agreed upon and validated. The panel addressed consensus recommendations about the classification of filler complications according to the time of onset and about the clinical management of different complications including bruising, swelling, edema, infections, lumps and bumps, skin discoloration, and biofilm formation. Special attention was paid to vascular compromise and retinal artery occlusion. Clinicians should be fully aware of the signs and symptoms related to complications and be prepared to confidently treat them. Establishing action protocols for emergencies, with agents readily available in the office, would reduce the severity of adverse outcomes associated with injection of hyaluronic acid fillers in the cosmetic setting. This document seeks to lay down a set of recommendations and to identify key issues that may be useful for clinicians who are starting to use dermal fillers. Additionally, this document provides a better understanding about the diagnoses and management of complications if they do occur. This journal requires that authors assign a level of evidence to each

  6. Reactive Diazonium-Modified Silica Fillers for High-Performance Polymers.

    Science.gov (United States)

    Sandomierski, Mariusz; Strzemiecka, Beata; Chehimi, Mohamed M; Voelkel, Adam

    2016-11-08

    We describe a simple way of modification of three silica-based fillers with in situ generated 4-hydroxymethylbenzenediazonium salt ( + N 2 -C 6 H 4 -CH 2 OH). The rationale for using a hydroxyl-functionalized diazonium salt is that it provides surface-functionalized fillers that can react with phenolic resins. The modification of silica by diazonium salts was assessed using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy permitted the tracking of benzene ring breathing and C-C. The absence of the characteristic N≡N stretching vibration in the 2200-2300 cm -1 range indicates the loss of the diazonium group. XPS results indicate a higher C/Si atomic ratio after the diazonium modification of fillers and the presence of π-π* C1s satellite peaks characteristic of the surface-tethered aromatic species. Adhesion of aryl layers to the silicas is excellent because they withstand harsh thermal and organic solvent treatments. Phenolic resins (used, for example, as binders in abrasive products) were filled with diazonium-modified silicas at 10-25 wt %. The reactivity of the fillers toward phenolic resins was evaluated by the determination of the flow distance. After annealing at 180 °C, the diazonium-modified silica/phenolic resin composites were mechanically tested using the three-point flexural method. The flexural strength was found to be up to 35% higher than that of the composites prepared without any diazonium salts. Diazonium-modified silica with surface-bound -CH 2 -OH groups is thus ideal reactive filler for phenolic resins. Such filler ensures interfacial chemical reactions with the matrix and imparts robust mechanical properties to the final composites. This specialty diazonium-modified silica will find potential application as fillers in the composites for the abrasive industry. More generally, aryl diazonium salts are a unique new series of compounds for tailoring the surface properties of fillers

  7. Hardness of model dental composites - the effect of filler volume fraction and silanation.

    Science.gov (United States)

    McCabe, J F; Wassell, R W

    1999-05-01

    The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers

  8. Update on botulinum toxin and dermal fillers.

    Science.gov (United States)

    Berbos, Zachary J; Lipham, William J

    2010-09-01

    The art and science of facial rejuvenation is an ever-evolving field of medicine, as evidenced by the continual development of new surgical and nonsurgical treatment modalities. Over the past 10 years, the use of botulinum toxin and dermal fillers for aesthetic purposes has risen sharply. Herein, we discuss properties of several commonly used injectable products and provide basic instruction for their use toward the goal of achieving facial rejuvenation. The demand for nonsurgical injection-based facial rejuvenation products has risen enormously in recent years. Used independently or concurrently, botulinum toxin and dermal filler agents offer an affordable, minimally invasive approach to facial rejuvenation. Botulinum toxin and dermal fillers can be used to diminish facial rhytides, restore facial volume, and sculpt facial contours, thereby achieving an aesthetically pleasing, youthful facial appearance.

  9. Rheology v.3 theory and applications

    CERN Document Server

    Eirich, Frederick

    1960-01-01

    Rheology: Theory and Applications, Volume 3 is a collection of articles contributed by experts in the field of rheology - the science of deformation and flow. This volume is composed of specialized chapters on the application of normal coordinate analysis to the theory of high polymers; principles of rheometry; and the rheology of cross-linked plastics, poly electrolytes, latexes, inks, pastes, and clay. Also included are a series of technological articles on lubrication, spinning, molding, extrusion, and adhesion and a survey of the general features of industrial rheology. Materials scientist

  10. The development of brazing filler for ITER thermal anchor attachment

    International Nuclear Information System (INIS)

    Lee, P.Y.; Sun, Z.C.; Pan, C.J.; Hou, B.L.; Han, S.L.; Pei, Y.Y.; Long, W.M.

    2011-01-01

    Magnet supports is one of the key components to sustain the ITER superconductor magnet coils, which operate at several K low temperature. Cooling of the supports is needed for maintaining temperature balance. It is suggested to use brazing connection to attach the thermal anchor to the support which made from SS 316LN plates. In this study, several kinds of brazing filler were developed as candidates, including Sn-Pb brazing filler, Ag-based and Cu-based brazing filler. The test result shows that Ag-based brazing filler has the best weldability with 316LN, but Cu-based alloy shows the best mechanical properties at both room temperature and 77 K. Even though the Sn-Pb alloy shows the lowest strength, it can be easily brazed due to the low brazing temperature. Detail of the brazing filler selection is suggested and discussed in this article.

  11. 7 CFR 58.229 - Filler and packaging equipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filler and packaging equipment. 58.229 Section 58.229....229 Filler and packaging equipment. All filling and packaging equipment shall be of sanitary... equipment should comply with the 3-A Sanitary Standards for equipment for Packaging Dry Milk and Dry Milk...

  12. Caracterização das propriedades reológicas e dinâmicas de composições de borracha natural com resíduo de EVA Characterization of rheological and dynamic properties of natural rubber compositions with waste EVA

    Directory of Open Access Journals (Sweden)

    Marcia G. Oliveira

    2004-12-01

    Full Text Available O resíduo de EVA oriundo das indústrias calçadistas é um material reticulado, que apresenta grande potencial de uso como carga em composições elastoméricas. Neste trabalho, foram avaliadas as propriedades reológicas e dinâmicas das composições de borracha natural (NR com resíduo de EVA (EVAR, determinadas com o auxílio do analisador de processamento de borracha (RPA. As composições não-vulcanizadas tiveram a sua viscosidade aumentada pela adição de teores crescentes de EVAR. Após a vulcanização essas composições apresentaram menor elasticidade que a NR pura, como evidenciado nas maiores taxas de relaxamento do módulo e nos maiores valores de tan delta. Este comportamento foi confirmado pelos resultados de tensão e alongamento na ruptura.The EVA waste (EVAR is a crosslinked material, which can be used as filler in rubber compositions. In this work, rheological and dynamic properties of natural rubber (NR compositions with EVAR were investigated before and after vulcanization with the help of a rubber processing analyzer (RPA. The filler content varied from 0 to 60 phr. The results showed that rheological properties of nonvulcanized compositions were clearly modified by the addition of EVAR, which contributed to an increase in viscosity. The modulus relaxation and the dynamic properties such as tan delta of vulcanized compositions were also affected, by the reduction of the elasticity of the compositions. The mechanical properties corroborated the behavior revealed by RPA analysis and indicated that EVAR acted as a non-reinforcing filler.

  13. Effects of fillers on the properties of liquid silicone rubbers (LSRs)

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    these additives, the use of multiple titanium dioxides as filler potentially suits to special applications. In the present study, a series of TiO2 fillers were blended into LSRs, such as hydrophilic/ hydrophobic, micro/ nano scale, anatase/ rutile crystal, sphere/ core-shell structure. The results indicate...... of inorganic fillers. The property improvement of the filled LSRs depends on filler concentration, filler morphology, such as particle size and structure, the degree of dispersion and orientation in the matrix, and also the degree of adhesion with the polymer chains, as well as the properties of the inorganic...

  14. Rheological behavior study of a clay-polymer mixture: effects of the polymer addition; Etude du comportement rheologique de melanges argiles - polymeres. Effets de l'ajout de polymeres

    Energy Technology Data Exchange (ETDEWEB)

    Benchabane, A

    2006-11-15

    The aim of the present work is to establish a bibliographical synthesis on the microstructure, the colloidal and rheological characterization of bentonite suspensions with and without polymer/surfactant addition; to lead to a rheological characterization of clay-additive mixtures and to understand the interaction between the clay particles and polymer/surfactants. Different experimental measurements: rheology, particle sizing, and x-ray diffraction were used to study the rheological character of the water-bentonite-anionic additive mixtures (CMC, SDS, xanthane) as well as the nature of the particle-particle interactions and particle-additive. The modeling part led to the adoption of Tiu and Boger's model to predict the thixotropy of the bentonite suspensions without additive. Thus, a new model is proposed with physical parameters for a better correlation of the rheological behavior of the various studied mixtures. (author)

  15. An investigation of tendon sheathing filler migration into concrete

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1998-03-01

    During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age

  16. New Manufacturing Method for Paper Filler and Fiber Material

    Energy Technology Data Exchange (ETDEWEB)

    Doelle, Klaus [SUNY College of Environmental Science and Forestry

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually

  17. Influence of inert fillers on shrinkage cracking of meta-kaolin geo-polymers

    International Nuclear Information System (INIS)

    Kuenzel, C.; Boccaccini, A.R.

    2012-01-01

    Geo-polymers contain a network of tetrahedral coordinated aluminate and silicate, and are potential materials to immobilize/encapsulate nuclear wastes. They can exhibit shrinkage cracking when water is removed by drying, and in order to use geo-polymers for waste encapsulation this effect needs to be investigated and controlled. In this study, six different fillers were mixed with meta-kaolin and sodium silicate solution at high pH to form geo-polymers, and the influence of filler addition on mechanical properties has been determined. The fillers used were Fe 2 O 3 , Al 2 O 3 , CaCO 3 , sand, glass and rubber and these do not react during geo-polymerisation reactions. Geo-polymers were prepared containing 30 weight percent of filler. The mechanical properties of the geo-polymers were influenced by the type of filler, with low density fillers increasing mortar viscosity. Geo-polymer samples containing fine filler particles exhibited shrinkage cracking on drying. This was not observed when coarser particles were added and these samples also had significantly improved mechanical properties. (authors)

  18. Ultrasound and Histologic Examination after Subcutaneous Injection of Two Volumizing Hyaluronic Acid Fillers: A Preliminary Study

    Science.gov (United States)

    Besse, Stéphanie; Sarazin, Didier; Quinodoz, Pierre; Elias, Badwi; Safa, Marva; Vandeputte, Joan

    2017-01-01

    Background: This study examined the influence of hyaluronic acid (HA) crosslinking technology on the ultrasound and histologic behavior of HA fillers designed for subcutaneous injection. Methods: One subject received subcutaneous injections of 0.25 ml Cohesive Polydensified Matrix (CPM) and Vycross volumizing HA in tissue scheduled for abdominoplasty by bolus and retrograde fanning techniques. Ultrasound analyses were performed on days 0 and 8 and histologic analyses on days 0 and 21 after injection. A series of simple rheologic tests was also performed. Results: Day 0 ultrasound images after bolus injection showed CPM and Vycross as hypoechogenic papules in the hypodermis. CPM appeared little changed after gentle massage, whereas Vycross appeared more hyperechogenic and diminished in size. Ultrasound images at day 8 were similar. On day 0, both gels appeared less hypoechogenic after retrograde fanning than after bolus injection. Vycross was interspersed with hyperechogenic areas (fibrous septa from the fat network structure) and unlike CPM became almost completely invisible after gentle massage. On day 8, CPM appeared as a hypoechogenic pool and Vycross as a long, thin rod. Day 0 histologic findings confirmed ultrasound results. Day 21 CPM histologic findings showed a discrete inflammatory reaction along the injection row after retrograde fanning. Vycross had a more pronounced inflammatory reaction, particularly after retrograde fanning, with macrophages and giant cells surrounding the implant. Rheologic tests showed CPM to have greater cohesivity and resistance to traction forces than Vycross. Conclusions: CPM HA volumizer appears to maintain greater tissue integrity than Vycross after subcutaneous injection with less inflammatory activity. PMID:28280664

  19. Surface rheology and interface stability.

    Energy Technology Data Exchange (ETDEWEB)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D. (Carnegie Mellon University, Pittsburgh, PA); Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk

  20. Brazing of Cu with Pd-based metallic glass filler

    Energy Technology Data Exchange (ETDEWEB)

    Terajima, Takeshi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)], E-mail: terajima@jwri.osaka-u.ac.jp; Nakata, Kazuhiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Yuji [Materials and Structures Laboratory, Tokyo Institute of Technology (Japan); Zhang, Wei; Kimura, Hisamichi; Inoue, Akihisa [Institute for Materials Research, Tohoku University (Japan)

    2008-02-25

    Metallic glass has several unique properties, including high mechanical strength, small solidification shrinkage, small elastic modulus and supercooling state, all of which are well suited as a residual stress buffer for metal and ceramic joining. In the present preliminary study, we demonstrated brazing of Cu rods with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} metallic glass filler. The brazing was carried out at 873 K for 1 min in a vacuum atmosphere (1 x 10{sup -3} Pa), and then the specimens were quenched at the rate of 30 K/s by blowing He. The metallic glass brazing of Cu using Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler was successful, with the exception that several voids remained in the filler. According to micro-focused X-ray diffraction, no diffraction patterns were observed at both the center of the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler and the Cu/Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} interface. The result showed that the Cu specimens were joined with Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler in the glassy state. The tensile fracture strength of the brazed specimens ranged from 20 to 250 MPa. The crack extension from the voids in the Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} filler may have caused the results to be uneven and very low compared to the strength of Pd-based bulk metallic glass.

  1. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  2. Late-Onset Inflammatory Response to Hyaluronic Acid Dermal Fillers

    Directory of Open Access Journals (Sweden)

    Tahera Bhojani-Lynch, MRCOphth, CertLRS, MBCAM, DipCS

    2017-12-01

    Conclusion:. Late-onset inflammatory reactions to HA fillers may be self-limiting but are easily and rapidly treatable with oral steroids, and with hyaluronidase in the case of lumps. It is likely these reactions are due to a Type IV delayed hypersensitivity response. Delayed inflammation associated with HA fillers is nonbrand specific. However, the case where 2 different brands were injected during the same session, but only 1 brand triggered a hypersensitivity reaction, suggests that the technology used in the manufacturing process, and the subsequent differing products of degradation, may have an influence on potential allergic reactions to HA fillers.

  3. Applications and Emerging Trends of Hyaluronic Acid in Tissue Engineering, as a Dermal Filler, and in Osteoarthritis Treatment

    Science.gov (United States)

    Fakhari, Amir; Berkland, Cory

    2013-01-01

    Hyaluronic acid (HA) is a naturally occurring biodegradable polymer with a variety of applications in medicine including scaffolding for tissue engineering, dermatological fillers, and viscosupplementation for osteoarthritis treatment. HA is available in most connective tissues in body fluids such as synovial fluid and the vitreous humor of the eye. HA is responsible for several structural properties of tissues as a component of extracellular matrix (ECM) and is involved in cellular signaling. Degradation of HA is a step-wise process that can occur via enzymatic or non-enzymatic reactions. A reduction in HA mass or molecular weight via degradation or slowing of synthesis affects physical and chemical properties such as tissue volume, viscosity, and elasticity. This review addresses the distribution, turnover, and tissue-specific properties of HA. This information is used as context for considering recent products and strategies for modifying the viscoelastic properties of HA in tissue engineering, as a dermal filler, and in osteoarthritis treatment. PMID:23507088

  4. Recommendations for Filler Material Composition and Delivery Method for Bench-Scale Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-03-01

    This report supplements Joint Workplan on Filler Investigations for DPCs (SNL 2017) providing new and some corrected information for use in planning Phase 1 laboratory testing of slurry cements as possible DPC fillers. The scope description is to "Describe a complete laboratory testing program for filler composition, delivery, emplacement in surrogate canisters, and post-test examination. To the extent possible specify filler material and equipment sources." This report includes results from an independent expert review (Dr. Arun Wagh, retired from Argonne National Laboratory and contracted by Sandia) that helped to narrow the range of cement types for consideration, and to provide further guidance on mix variations to optimize injectability, durability, and other aspects of filler performance.

  5. Use of hyaluronic acid fillers for the treatment of the aging face

    Directory of Open Access Journals (Sweden)

    Michael H Gold

    2007-10-01

    Full Text Available Michael H GoldGold Skin Care Center, Tennessee Clinical Research Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical School,Vanderbilt University Nursing School, Nashville, TN, USA; Huashan Hospital, Fudan University, Shanghai, ChinaAbstract: Hyaluronic acid fillers have become popular soft tissue filler augmentation agents over the past several years. They have helped revolutionize the filler market with a number of new products available for use for our patients. The purpose of this manuscript is to review the characteristics of the HA fillers and to review each of the current products currently available for use in the US.Keywords: hyaluronic acid, fillers, soft tissue augmentation, expression lines, aging face, collagen

  6. Autonomous Slat-Cove-Filler Device for Reduction of Aeroacoustic Noise Associated with Aircraft Systems

    Science.gov (United States)

    Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)

    2016-01-01

    A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.

  7. Influence of fillers on the alkali activated chamotte

    Science.gov (United States)

    Dembovska, L.; Bumanis, G.; Vitola, L.; Bajare, D.

    2017-10-01

    Alkali-activated materials (AAM) exhibit remarkable high-temperature resistance which makes them perspective materials for high-temperature applications, for instance as fire protecting and insulating materials in industrial furnaces. Series of experiments were carried out to develop optimum mix proportions of AAM based on chamotte with quartz sand (Q), olivine sand (OL) and firebrick sawing residues (K26) as fillers. Aluminium scrap recycling waste was considered as a pore forming agent and 6M NaOH alkali activation solution has been used. Lightweight porous AAM have been obtained with density in range from 600 to 880 kg/m3 and compressive strength from 0.8 to 2.7 MPa. The XRD and high temperature optical microscopy was used to characterize the performance of AAM. The mechanical, physical and structural properties of the AAM were determined after the exposure to elevated temperatures at 800 and 1000°C. The results indicate that most promising results for AAM were with K26 filler where strength increase was observed while Q and OL filler reduced mechanical properties due to structure deterioration caused by expansive nature of selected filler.

  8. Stress-Strain Relation of Tire Rubber Consist of Entangled Polymers, Fillers and Crosslink

    Science.gov (United States)

    Hagita, Katsumi; Bito, Y.; Minagawa, Y.; Omiya, M.; Morita, H.; Doi, M.; Takano, H.

    2009-03-01

    We presented a preliminary result of large scale coarse-grained Molecular Dynamics simulation of filled polymer melts with Sulfur-crosslink under an uni-axial deformation by using the Kremer-Grest Model. The size of simulation box under periodic boundary conditions (PBC) is set to about 66nm to consider length of entangled polymer chains, size and structure of fillers, and non-uniform distribution of crosslink. We put 640 polymer chains of 1024 particles and 32 fillers into the PBC box. Each filler consists of 1280 particles of the C1280 fullerene structure. A repulsive force from the center of the filler is applied to the particles. Here, the particles of the fillers are chosen to be the same as the particles of the polymers and the diameter of the filler is about 15nm. The distribution of the fillers used in this simulation is provided by the result of 2d pattern RMC analysis for 2D-USAXS experiments at SPring-8. Sulfur crosslink are randomly distributed in the system. It is found that stress-strain curves estimated by applying a certain uni-axial deformation to the system in simulations are in good agreement with those in experiments. It is successful to show difference on the S-S curve between existence / absence of fillers and qualitative dependence of attractive force between polymer and filler.

  9. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  10. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  11. Bio-based polyurethane composite foams with inorganic fillers studied by thermogravimetry

    International Nuclear Information System (INIS)

    Hatakeyema, Hyoe; Tanamachi, Noriko; Matsumura, Hiroshi; Hirose, Shigeo; Hatakeyama, Tatsuko

    2005-01-01

    Bio-based polyurethane (PU) composite foams filled with various inorganic fillers, such as barium sulfate (BaSO 4 ), calcium carbonate (CaCO 3 ) and talc were prepared using polyols, such as diethylene glycol, triethylene glycol and polyethylene glycol (molecular weight ca. 200) containing molasses and lignin. Reactive hydroxyl groups in plant components and above polyols were used as reaction sites. Morphological observation of fracture surface of composites was carried out by scanning electron microscopy. Thermal properties of bio-based PU composites were examined by thermogravimetry. It was found that the above composites decompose in two stages reflecting decomposition of organic components. Decomposition temperature increased with increasing filler content, when plant components were homogenously mixed with inorganic fillers. Activation energy calculated by Ozawa-Wall-Flynn method was ca. 150 kJ mol -1 . The durability of composites was predicted using kinetic data. Calculated values indicate that composites with fillers are more durable than that of those without fillers at a moderate temperature region

  12. Facial soft-tissue fillers conference: assessing the state of the science.

    Science.gov (United States)

    Rohrich, Rod J; Hanke, C William; Busso, Mariano; Carruthers, Alastair; Carruthers, Jean; Fagien, Steven; Fitzgerald, Rebecca; Glogau, Richard; Greenberger, Phyllis E; Lorenc, Z Paul; Marmur, Ellen S; Monheit, Gary D; Pusic, Andrea; Rubin, Mark G; Rzany, Berthold; Sclafani, Anthony; Taylor, Susan; Weinkle, Susan; McGuire, Michael F; Pariser, David M; Casas, Laurie A; Collishaw, Karen J; Dailey, Roger A; Duffy, Stephen C; Edgar, Elizabeth Jan; Greenan, Barbara L; Haenlein, Kelly; Henrichs, Ronald A; Hume, Keith M; Lum, Flora; Nielsen, David R; Poulsen, Lisle; Shoaf, Lori; Schoaf, Lori; Seward, William; Begolka, Wendy Smith; Stanton, Robert G; Svedman, Katherine J; Thomas, J Regan; Sykes, Jonathan M; Wargo, Carol; Weiss, Robert A

    2011-04-01

    : The American Society of Plastic Surgeons and the American Academy of Dermatology, with the support of other sister societies, conducted the Facial Soft-Tissue Fillers: Assessing the State of the Science conference in December of 2009. The American Society of Plastic Surgeons and the American Academy of Dermatology established a panel of leading experts in the field of soft-tissue fillers-from researchers to clinicians-and other stakeholders for the conference to examine and discuss issues of patient safety, efficacy, and effectiveness in relation to the approved and off-label use of soft-tissue fillers, and other factors, including the training and level of experience of individuals administering fillers. This report represents the systematic literature review that examines comprehensively the available evidence and gaps in the evidence related to soft-tissue fillers, to inform and support the work of the state-of-the-science conference panel. This evidence-based medicine review will serve as the foundation for future evidence-based medicine reports in this growing field.

  13. Fluoride release, recharge and flexural properties of polymethylmethacrylate containing fluoridated glass fillers.

    Science.gov (United States)

    Al-Bakri, I A; Swain, M V; Naoum, S J; Al-Omari, W M; Martin, E; Ellakwa, A

    2014-06-01

    The purpose of this study was to investigate the effect of fluoridated glass fillers on fluoride release, recharge and the flexural properties of modified polymethylmethacrylate (PMMA). Specimens of PMMA denture base material with various loading of fluoridated glass fillers (0%, 1%, 2.5%, 5% and 10% by weight) were prepared. Flexural properties were evaluated on rectangular specimens (n = 10) aged in deionized water after 24 hours, 1 and 3 months. Disc specimens (n = 10) were aged for 43 days in deionized water and lactic acid (pH 4.0) and fluoride release was measured at numerous intervals. After ageing, specimens were recharged and fluoride re-release was recorded at 1, 3 and 7 days after recharge. Samples containing 2.5%, 5% and 10% glass fillers showed significantly (p glass fillers specimens. All experimental specimens exhibited fluoride release in both media. The flexural strength of specimens decreased in proportion to the percentage filler inclusion with the modulus of elasticity values remaining within ISO Standard 1567. The modified PMMA with fluoridated glass fillers has the ability to release and re-release fluoride ion. Flexural strength decreased as glass filler uploading increased. © 2014 Australian Dental Association.

  14. Suspect filler similarity in eyewitness lineups: a literature review and a novel methodology.

    Science.gov (United States)

    Fitzgerald, Ryan J; Oriet, Chris; Price, Heather L

    2015-02-01

    Eyewitness lineups typically contain a suspect (guilty or innocent) and fillers (known innocents). The degree to which fillers should resemble the suspect is a complex issue that has yet to be resolved. Previously, researchers have voiced concern that eyewitnesses would be unable to identify their target from a lineup containing highly similar fillers; however, our literature review suggests highly similar fillers have only rarely been shown to have this effect. To further examine the effect of highly similar fillers on lineup responses, we used morphing software to create fillers of moderately high and very high similarity to the suspect. When the culprit was in the lineup, a higher correct identification rate was observed in moderately high similarity lineups than in very high similarity lineups. When the culprit was absent, similarity did not yield a significant effect on innocent suspect misidentification rates. However, the correct rejection rate in the moderately high similarity lineup was 20% higher than in the very high similarity lineup. When choosing rates were controlled by calculating identification probabilities for only those who made a selection from the lineup, culprit identification rates as well as innocent suspect misidentification rates were significantly higher in the moderately high similarity lineup than in the very high similarity lineup. Thus, very high similarity fillers yielded costs and benefits. Although our research suggests that selecting the most similar fillers available may adversely affect correct identification rates, we recommend additional research using fillers obtained from police databases to corroborate our findings.

  15. Effect of mechanical properties of fillers on the grindability of composite resin adhesives.

    Science.gov (United States)

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Yuasa, Toshihiro; Uechi, Jun; Mizoguchi, Itaru

    2010-10-01

    The purpose of this study was to investigate the effect of filler properties on the grindability of composite resin adhesives. Six composite resin products were selected: Transbond XT (3M Unitek, Monrovia, Calif), Transbond Plus (3M Unitek), Enlight (Ormco, Glendora, Calif), Kurasper F (Kuraray Medical, Tokyo, Japan), Beauty Ortho Bond (Shofu, Kyoto, Japan), and Beauty Ortho Bond Salivatect (Shofu). Compositions and weight fractions of fillers were determined by x-ray fluorescence analysis and ash test, respectively. The polished surface of each resin specimen was examined with a scanning electron microscope. Vickers hardness of plate specimens (15 × 10 × 3 mm) was measured, and nano-indentation was performed on large filler particles (>10 μm). Grindability for a low-speed tungsten-carbide bur was estimated. Data were compared with anlaysis of variance (ANOVA) and the Tukey multiple range test. Relationships among grindability, filler content, filler nano-indentation hardness (nano-hardness), filler elastic modulus, and Vickers hardness of the composite resins were investigated with the Pearson correlation coefficient test. Morphology and filler size of these adhesives showed great variations. The products could be divided into 2 groups, based on composition, which affected grindability. Vickers hardness of the adhesives did not correlate (r = 0.140) with filler nano-hardness, which showed a significant negative correlation (r = -0.664) with grindability. Filler nano-hardness greatly influences the grindability of composite resin adhesives. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Are functional fillers improving environmental behavior of plastics? A review on LCA studies.

    Science.gov (United States)

    Civancik-Uslu, Didem; Ferrer, Laura; Puig, Rita; Fullana-I-Palmer, Pere

    2018-06-01

    The use of functional fillers can be advantageous in terms of cost reduction and improved properties in plastics. There are many types of fillers used in industry, organic and inorganic, with a wide application area. As a response to the growing concerns about environmental damage that plastics cause, recently fillers have started to be considered as a way to reduce it by decreasing the need for petrochemical resources. Life cycle assessment (LCA) is identified as a proper tool to evaluate potential environmental impacts of products or systems. Therefore, in this study, the literature regarding LCA of plastics with functional fillers was reviewed in order to see if the use of fillers in plastics could be environmentally helpful. It was interesting to find out that environmental impacts of functional fillers in plastics had not been studied too often, especially in the case of inorganic fillers. Therefore, a gap in the literature was identified for the future works. Results of the study showed that, although there were not many and some differences exist among the LCA studies, the use of fillers in plastics industry may help to reduce environmental emissions. In addition, how LCA methodology was applied to these materials was also investigated. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Skin Necrosis with Oculomotor Nerve Palsy Due to a Hyaluronic Acid Filler Injection

    Directory of Open Access Journals (Sweden)

    Jae Il Lee

    2017-07-01

    Full Text Available Performing rhinoplasty using filler injections, which improve facial wrinkles or soft tissues, is relatively inexpensive. However, intravascular filler injections can cause severe complications, such as skin necrosis and visual loss. We describe a case of blepharoptosis and skin necrosis caused by augmentation rhinoplasty and we discuss the patient’s clinical progress. We describe the case of a 25-year-old female patient who experienced severe pain, blepharoptosis, and decreased visual acuity immediately after receiving a filler injection. Our case suggests that surgeons should be aware of nasal vascularity before performing an operation, and that they should avoid injecting fillers at a high pressure and/or in excessive amounts. Additionally, filler injections should be stopped if the patient complains of severe pain, and appropriate measures should be taken to prevent complications caused by intravascular filler injections.

  18. Influência da adição no comportamento reológico da pasta autoadensável de alto desempenho = Influence of admixture on the rheological behavior of high performance self-compacting paste

    Directory of Open Access Journals (Sweden)

    Igor André Rodrigues Piovezam

    2008-07-01

    Full Text Available Esta pesquisa propõe o estudo da influência da área específica, forma e textura superficial das adições no comportamento reológico da pasta autoadensável de alto desempenho (PAAD. As adições selecionadas são o filer calcário e o filer basalto, por se tratarem de subprodutos industriais a fim de contribuir, desta forma, para o desenvolvimento sustentável. A pasta em estudo é constituída de cimento, sílica ativa, filer calcário ou filer basalto, água e aditivo superplastificante de última geração. São fixadas as relações água/cimento = 0,40 L kg-1, sílica ativa/cimento = 0,10 kg kg-1, e as relações filer/cimento e superplastificante/cimento são determinadas por meio de ensaios de cone de Marsh e de “mini-slump”. Os resultados mostram que, para as mesmas relações de filer/cimento, os teores de superplastificante para pasta com filer calcário são significativamente inferiores ao da pasta com filer basalto. A análise dos resultados permite concluir que a área específica, forma e textura superficial das adições influenciam significativamente o comportamento reológico das PAADs.This research proposes to study the influence of the specific area, mould and surface texture of admixtures on the rheological behavior ofhigh performance self-compacting paste (HPSCP. The selected admixtures are calcareous filler and basalt filler, which are industrial residues, thus contributing to sustainabledevelopment. The paste is made up of cement, silica fume, calcareous filler or basalt filler, water and superplasticizer additive. For this study, the water/cement ratios are fixed = 0.40L kg-1; silica fume/cement = 0.10 kg kg-1; the filler/cement and superplasticizer/cement ratios are determined through Marsh cone and mini-slump tests. The results show that for same filler/cement ratios, the ratios of superplasticizer to paste with calcareous filler are significantly lower than those of paste with basalt filler. The results show

  19. [Ideas about registration for sodium hyaluronate facial derma fillers].

    Science.gov (United States)

    Zhao, Peng; Shi, Xinli; Liu, Wenbo; Lu, Hong

    2012-09-01

    To review the registration and technical data for sodium hyaluronate facial derma fillers. Recent literature concerning registration for sodium hyaluronate facial derma fillers was reviewed and analyzed. The aspects on registration for sodium hyaluronate facial derma fillers include nominating the product, dividing registration unit, filling in a registration application form, preparing the technical data, developing the standard, and developing a registration specification. The main difficulty in registration is how to prepare the research data of that product, so the manufacturers need to enhance their basic research ability and work out a scientific technique routing which could ensure the safety and effectiveness of the product, also help to set up the supportive documents to medical device registration.

  20. Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate

    Science.gov (United States)

    Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki

    2014-08-01

    Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.

  1. rice husk as filler rice husk as filler in the production of bricks using

    African Journals Online (AJOL)

    eobe

    block [1].The effect of palm fruit fibre in clay bricks was also investigated by Akinyele and Abdulraheem,. [2], they observed ... the Rice Husk ash at 8% improves the compressive ... that 5% mix of the material acts as a filler in concrete because ...

  2. Rheology v.2 theory and applications

    CERN Document Server

    Eirich, Frederick

    1958-01-01

    Rheology: Theory and Applications, Volume II deals with the specific rheological subjects, such as deformational behavior in relation to the classic subjects and topics of rheology. This volume is divided into 13 chapters. Considerable chapters are devoted to the theory and aspects of viscoelastic and relaxation phenomena, as well as the applied theory concerning substances related to these phenomena, including elastomers, gelatins, and fibers. Other chapters cover the general principles of geological deformations derived from the study of less """"immobile"""" objects. The remaining chapt

  3. Rheological properties of disintegrated sewage sludge

    Science.gov (United States)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  4. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    Science.gov (United States)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2017-02-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  5. Avoiding and Treating Blindness From Fillers: A Review of the World Literature.

    Science.gov (United States)

    Beleznay, Katie; Carruthers, Jean D A; Humphrey, Shannon; Jones, Derek

    2015-10-01

    As the popularity of soft tissue fillers increases, so do the reports of adverse events. The most serious complications are vascular in nature and include blindness. To review the cases of blindness after filler injection, to highlight key aspects of the vascular anatomy, and to discuss prevention and management strategies. A literature review was performed to identify all the cases of vision changes from filler in the world literature. Ninety-eight cases of vision changes from filler were identified. The sites that were high risk for complications were the glabella (38.8%), nasal region (25.5%), nasolabial fold (13.3%), and forehead (12.2%). Autologous fat (47.9%) was the most common filler type to cause this complication, followed by hyaluronic acid (23.5%). The most common symptoms were immediate vision loss and pain. Most cases of vision loss did not recover. Central nervous system complications were seen in 23.5% of the cases. No treatments were found to be consistently successful in treating blindness. Although the risk of blindness from fillers is rare, it is critical for injecting physicians to have a firm knowledge of the vascular anatomy and to understand key prevention and management strategies.

  6. Dermal fillers in aesthetics: an overview of adverse events and treatment approaches.

    Science.gov (United States)

    Funt, David; Pavicic, Tatjana

    2015-01-01

    The ever-expanding range of dermal filler products for aesthetic soft tissue augmentation is of benefit for patients and physicians, but as indications and the number of procedures performed increase, the number of complications will likely also increase. To describe potential adverse events associated with dermal fillers and to provide structured and clear guidance on their treatment and avoidance. Reports of dermal filler complications in the medical literature were reviewed and, based on the publications retrieved and the authors' extensive experience, recommendations for avoiding and managing complications are provided. Different dermal fillers have widely varying properties, associated risks, and injection requirements. All dermal fillers have the potential to cause complications. Most are related to volume and technique, though some are associated with the material itself. The majority of adverse reactions are mild and transient, such as bruising and trauma-related edema. Serious adverse events are rare, and most are avoidable with proper planning and technique. For optimum outcomes, aesthetic physicians should have a detailed understanding of facial anatomy; the individual characteristics of available fillers; their indications, contraindications, benefits, and drawbacks; and ways to prevent and avoid potential complications.

  7. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    Directory of Open Access Journals (Sweden)

    Witold Brostow

    2017-03-01

    Full Text Available Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs. We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  8. Rheological Characterization of Unusual DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Koopman, D. C.

    2005-01-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  9. Influence of the filler material on the pitting corrosion in welded duplex stainless

    International Nuclear Information System (INIS)

    Munez, C. J.; Utrilla, M. V.; Urena, A.; Otero, E.

    2007-01-01

    In this work, it has been studied the pitting corrosion resistance of welding duplex stainless steel 2205. Unions were made by GMAW process with different fillers: duplex ER 2209 and two austenitic (ER 316LSi and ER 308LSi). the microstructure obtained with the duplex ER 2209 filler is similar to the duplex 2205 base material, but the unions produced with the austenitic fillers cause a decrease of the phases relationα/γ. To evaluate the influence of the filler on the weld, the pitting corrosion resistance was determined by electrochemical critical pitting temperature test (TCP) and the mechanical properties by the hardness. The phases imbalance produced for the dissimilar fillers bring out a variation of the pitting corrosion resistance and the mechanical properties. (Author)

  10. Synthesis and electrochemical properties of tin oxide-based composite by rheological technique

    International Nuclear Information System (INIS)

    He Zeqiang; Li Xinhai; Xiong Lizhi; Wu Xianming; Xiao Zhuobing; Ma Mingyou

    2005-01-01

    Novel rheological technique was developed to synthesize tin oxide-based composites. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscopy and electrochemical methods. The particles of tin oxide-based materials form an inactive matrix. The average size of the particles is about 150 nm. The material delivers a charge capacity of more than 570 mAh g -1 . The capacity loss per cycle is about 0.15% after being cycled 30 times. The good electrochemical performance indicates that this kind of tin oxide-based material is promising anode for lithium-ion battery

  11. Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Mirko Sgambetterra

    2016-04-01

    Full Text Available In this communication we present a detailed study of Nafion™ composite membranes containing different amounts of nanosized sulfated titania particles, synthesized through an optimized one-step synthesis procedure. Functional membrane properties, such as ionic exchange capacity and water uptake (WU ability will be described and discussed, together with thermal analysis, atomic force microscopy and Raman spectroscopy data. Also electrochemical properties such as proton conductivity and performances in hydrogen fuel cells will be presented. It has been demonstrated that a critical concentration of filler particles can boost the fuel cell performance at low humidification, exhibiting a significant improvement of the maximum power and current density delivered under 30% low-relative humidity (RH and 70 °C with respect to bare Nafion™-based systems.

  12. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  13. High filler concrete using fly ash. Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  14. High filler concrete using fly ash : Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  15. Effect of Coconut Fillers on Hybrid Coconut Kevlar Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S. P. Jani

    2015-12-01

    Full Text Available This project focuses on the conversion of naturally available coconut fibers and shells into a useful composite. In addition to it, some mechanical properties of the resultant composite is determined and also the effect of coconut shell fillers on the composite is also investigated. The few portion of the composite is incorporated with synthetic Kevlar fiber, thus the coconut fiber is hybridized to enhance the mechanical properties of coconut. In this work two types of composite is fabricate, kevelar coconut fibre (kc composite and kevelarcoco nut fibre coconut shell filler (kccsf composite. Coconut fibers have low weight and considerable properties among the natural fibers, while coconut fillers have a good ductile and impact property. The natural fibers and fillers are treated with Na-OH to make it free of organic impurities. Epoxy resin is used as the polymer matrix. Two composite are produced one with fillers and the other without the fillers using compression molding method. Mechanical properties like tensile strength, flexural strength and water absorption tests are done with ASTM standard. It is observed that that the addition of filler materials improves the adhesiveness of the fibers leading to the increase in the above mentioned properties. The density of the composite is also low hence the strength to weight ratio is very high. The water absorption test also showed that the resultant composite had a small adhesion to water and absorption of water.

  16. Comparison of TT-F-1098 Solvent-Thinned Block Fillers with Water-Thinnable Block Fillers.

    Science.gov (United States)

    1985-03-01

    saved money , because the latex is less roller were visible. The appearance of the surface expensive than the epoxy it replaced. In both cases...a previous coating. A kit manu- The appearance of all the fillers was satisfactory. factured b, Paul N. Gardner Company, Inc., Lauder - Voids were

  17. Organic filler from golden apple snails shells to improve the silicone rubber insulator properties

    Science.gov (United States)

    Tepsila, Sujirat; Suksri, Amnart

    2018-02-01

    This paper investigates the effect of an addition of filler compound using golden apple snail shell as an organic filler to the silicone rubber insulator. The filler obtained from golden apple snail shell is found mostly contained calcium carbonate. The organic calcium carbonate (CaCO3) with particle size of 45, 75, 100 and 300 micron were prepared. Sample of silicone rubber that were filled with fillers were tested under ASTM D638-02a type standard for mechanical test. Also, electrical test such as I-V characteristics (ASTM D257-07) and dry arc test according to ASTM D495-14 have been performed. The results revealed that using larger particle size of organic filler obtained from the golden apple snail shell resulted to higher value of dielectric constant as well as higher dielectric strength. Also, the filler helps slow down the tracking activity at an insulator surface due to its crystals of calcium carbonate. However, when using excessive amount of filler, the sample will have a drawbacks in mechanical properties. By using agriculture waste as a filler compound, one can reduced the usage of commercial CaCO3 as an inorganic materials and to lower the investment cost to a final silicone rubber product.

  18. Volume correction in the aging hand: role of dermal fillers

    Directory of Open Access Journals (Sweden)

    Rivkin AZ

    2016-08-01

    Full Text Available Alexander Z Rivkin David Geffen/UCLA School of Medicine Los Angeles, CA, USA Abstract: The hands, just like the face, are highly visible parts of the body. They age at a similar rate and demonstrate comparable changes with time, sun damage, and smoking. Loss of volume in the hands exposes underlying tendons, veins, and bony prominences. Rejuvenation of the hands with dermal fillers is a procedure with high patient satisfaction and relatively low risk for complications. This study will review relevant anatomy, injection technique, clinical safety, and efficacy of dermal filler volumization of the aging hand. Keywords: dermal fillers, hands, volumization, hyaluronic acid, calcium hydroxylapatite

  19. Effect of different carbon fillers and dopant acids on electrical ...

    Indian Academy of Sciences (India)

    The nature of both the carbon filler and the dopant acid can significantly influence the conductivity of these nanocomposites. This paper describes the effects of carbon fillers like carbon black (CB), graphite (GR) and muti-walled carbon nanotubes (MWCNT) and of dopant acids like methane sulfonic acid (MSA), camphor ...

  20. Silica-filled elastomers polymer chain and filler characterization by a SANS-SAXS approach

    CERN Document Server

    Botti, A; Richter, D; Urban, V; Ipns, A 6 4; Kohlbrecher, J; Straube, E

    2002-01-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  1. Silica-filled elastomers: polymer chain and filler characterization by a SANS-SAXS approach

    International Nuclear Information System (INIS)

    Botti, A.; Pyckhout-Hintzen, W.; Richter, D.; Urban, V.; Kohlbrecher, J.; Straube, E.

    2002-01-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  2. Influencia de la adición del filler calizo sobre el fraguado del cemento

    Directory of Open Access Journals (Sweden)

    Menéndez, Ignacio

    1993-09-01

    Full Text Available The present paper deals about the infuence that addition of calcareous "filler" has on the set of portland cement which rates are from 0 up to 50% of filler.

    En el presente artículo se estudia la influencia que la adición de "filler" calizo ejerce sobre el fraguado del cemento portland, al que se le añaden porcentajes desde O al 50% en filler.

  3. Development of compatibilized SBR and EPR nanocomposites containing dual filler system

    International Nuclear Information System (INIS)

    Rajasekar, R.; Nayak, G.C.; Malas, A.; Das, C.K.

    2012-01-01

    Highlights: ► Nanoclay is dispersed in non-polar rubbers by utilizing a polar compatibilizer. ► Effect of dual fillers [nanoclay and carbon black] on the rubber properties. ► Comparison of the results of single and dual filler containing rubber compounds. -- Abstract: The study described in this paper is an analysis of the role of a compatibilizer for dispersing organically modified nanoclay in styrene butadiene rubber (SBR) and ethylene propylene rubber (EPR) matrices. The normal mixing of non-polar rubbers and organically modified nanoclay may not lead to improved distribution of the nanofiller in the rubbery matrix. Hence, a polar rubber such as epoxidized natural rubber (ENR) can be used as a compatibilizer for dispersing nanoclay in the non-polar rubber matrices. ENR–organically modified nanoclay composites (EC) were prepared by solution mixing. The nanoclay used in this study is Cloisite 20A. The obtained ENR–nanoclay composites were incorporated in SBR and EPR matrices along with carbon black. The morphological studies proved the intercalation of nanoclay platelets in ENR and further incorporation of EC in SBR and EPR matrices leads to partial exfoliation of nanoclay platelets. A curing study demonstrated faster scorch time, cure time and increased maximum torque for the compatibilized SBR and EPR nanocomposites containing a dual filler system compared to the control. Dynamic mechanical thermal analysis showed increase in storage modulus for the SBR and EPR compounds containing dual fillers compared to rubber compounds containing pure and single filler. The same compounds show substantial improvement in mechanical properties. The tensile fractured surface of the rubber compounds containing single and dual filler observed by scanning electron microscopy, (SEM) showed highly rough and irregular fracture paths, which proved the physical interaction between filler and rubber.

  4. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    Science.gov (United States)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  5. Effect of monopolar radiofrequency treatment over soft-tissue fillers in an animal model: part 2.

    Science.gov (United States)

    Shumaker, Peter R; England, Laura J; Dover, Jeffrey S; Ross, E Victor; Harford, Robert; Derienzo, Damian; Bogle, Melissa; Uebelhoer, Nathan; Jacoby, Mark; Pope, Karl

    2006-03-01

    Monopolar radiofrequency (RF) treatment is used by physicians to heat skin and promote tissue tightening and contouring. Cosmetic fillers are used to soften deep facial lines and wrinkles. Patients who have had dermal fillers implanted may also benefit from or are candidates for monopolar RF skin tightening. This study examined the effect of RF treatment on various dermal filler substances. This is the second part of a two-part study. A juvenile farm pig was injected with dermal fillers including cross-linked human collagen (Cosmoplast), polylactic acid (PLA) (Sculptra), liquid injectable silicone (Silikon 1000), calcium hydroxylapatite (CaHA) (Radiesse), and hyaluronic acid (Restylane). Skin injected with dermal fillers was RF-treated using a 1.5-cm2 treatment tip and treatment levels typically used in the clinical setting. Fillers were examined histologically 5 days, 2 weeks, or 1 month after treatment. Histological specimens were scored for inflammatory response, foreign body response, and fibrosis in order to assess the effect of treatment on early filler processes, such as inflammation and encapsulation. Each filler substance produced a characteristic inflammatory response. No immediate thermal effect of RF treatment was observed histologically. RF treatment resulted in statistically significant increases in the inflammatory, foreign body, and fibrotic responses associated with the filler substances. Monopolar RF treatment levels that are typically used in the clinical setting were employed in this animal study. RF treatment resulted in measurable and statistically significant histological changes associated with the various filler materials. Additional clinical and histological studies are required to determine the optimal timing of monopolar RF treatment and filler placement for maximal potential aesthetic outcome. 2006 Wiley-Liss, Inc.

  6. Influence of different fillers on the properties of an experimental vinyl polysiloxane

    Directory of Open Access Journals (Sweden)

    Débora Könzgen MEINCKE

    2016-01-01

    Full Text Available Abstract The aim of the study was to evaluate the effect of the incorporation of different fillers on an experimental vinyl polysiloxane (VPS at two different concentrations, 20% and 40%. Different fillers were added to an experimental VPS. The study was developed in two stages: (i incorporation of fillers in different concentrations: (a 20 wt% fillers, and (b 40 wt%. The fillers were added to experimental VPS and mixed with a speed mixer; (ii characterization of experimental VPS; after the base paste and catalyst paste were mixed, the experimental VPS was used to make specimens specifically for each test, which were stored at 23°C for 24 hours. The tests were designed according to the specific standardization for the analysis of tensile strength, detail reproduction, Shore A hardness, and elastic recovery. For analysis of filler size pattern, scanning electron microscopy at 1500× magnification was used. The aerosil OX-50 40% (AE, and pure aluminum hydroxide 40% (PAH groups presented the highest tensile strength and Shore A hardness values. However, those were the only groups that did not present continuous detail reproduction of an intersection of 20 μm line. The elastic recovery was not statistically significant. The undesirable characteristics of VPS (lowest Shore A hardness and tensile strength were observed when it was added to the composition of acrylic polymer (AP and fiberglass (FG in both concentrations, 20% and 40%. In groups AE and PAH, agglomerates of nanofillers were shown in SEM micrography, while the other groups presented different shapes and fillers sizes.

  7. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  8. Modification of montmorillonite fillers by ionizing radiation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.; Mirkowski, K.

    2006-01-01

    The mineral fillers can be modified by using unsaturated compounds: styrene, methacrylic acid and maleic anhydride (MA), following by irradiation with high energy electron beam. In presented paper the authors have used this method to change properties of bentonite S pecjal , containing about 70% of pure montmorillonite. It has been shown that: (a) the particles obtained in this process can be good fillers for the production of composites; (b) maleic anhydride reacts via anhydride group with active ionic sites of bentonite, forming a salt-like compound. Irradiation with electron beam leads to the breakage of double bond in maleic anhydride and to the production of new organic phases

  9. Novel Double-Needle System That Can Prevent Intravascular Injection of Any Filler

    Directory of Open Access Journals (Sweden)

    Hsiang Huang, MD

    2017-09-01

    Full Text Available Summary:. A new type of needle system combines 2 parts, an inner needle and an outer needle. The inner needle is used for filler injection and the outer needle acts as a guiding needle that can observe blood reflow when inserting into the vessel lumen during injection process. This new needle system can be used for all kinds of filler, providing real time monitoring for physician and preventing intravascular injection of any filler.

  10. EFFECT OF FILLER LOADING ON PHYSICAL AND FLEXURAL PROPERTIES OF RAPESEED STEM/PP COMPOSITES

    Directory of Open Access Journals (Sweden)

    Seyed Majid Zabihzadeh

    2011-03-01

    Full Text Available The objective of the study is to develop a new filler for the production of natural filler thermoplastic composites using the waste rapeseed stalks. The long-term water absorption and thickness swelling behaviors and flexural properties of rapeseed filled polypropylene (PP composites were investigated. Three different contents of filler were tested: 30, 45, and 60 wt%. Results of long-term hygroscopic tests indicated that by the increase in filler content from 30% to 60%, water diffusion absorption and thickness swelling rate parameter increased. A swelling model developed by Shi and Gardner can be used to quantify the swelling rate. The increasing of filler content reduced the flexural strength of the rapeseed/PP composites significantly. In contrast to the flexural strength, the flexural modulus improved with increasing the filler content. The flexural properties of these composites were decreased after the water uptake, due to the effect of the water molecules.

  11. Labia Majora Augmentation with Hyaluronic Acid Filler: Technique and Results.

    Science.gov (United States)

    Fasola, Elena; Gazzola, Riccardo

    2016-11-01

    External female genitalia lose elasticity and volume with age. In the literature several techniques address the redundancy of the labia minora, but only few reports describe the augmentation of labia majora with fat grafting. At present, no studies describe the augmentation of the labia majora with hyaluronic acid. This study aims to present our technique of infiltration of hyaluronic acid filler, analyzing effectiveness, patient satisfaction, and complications. We retrospectively analyzed 54 patients affected by hypotrophy of the labia majora; they were treated with hyaluronic acid filler between November 2010 and December 2014. The Global Aesthetic Improvement Scale (GAIS) filled out by the doctor and the patients was used to evaluate the results 12 months after the infiltration. Complications were recorded. A total of 31 patients affected by mild to moderate labia majora hypotrophy were treated with 19 mg/mL HA filler; 23 patients affected by severe labia majora hypotrophy were treated with 21 mg/mL HA filler. Among the first group of patients, one underwent a second infiltration 6 months later with 19 mg/mL HA filler (maximum 1 mL). A significant improvement (P labia majora is able to provide a significant rejuvenation with a simple outpatient procedure. We achieved significant improvements with one infiltration in all cases. The treatment is repeatable, has virtually no complications and it is reversible. 4 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  12. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    Science.gov (United States)

    Russell, C.

    2001-01-01

    The objective of this research was to assess the B218 weld filler wire for Super Lightweight External Tank production, which could improve current production welding and repair productivity. We took the following approaches: (1) Perform a repair weld quick look evaluation between 4043/B218 and B218/B218 weld filler wire combinations and evaluation tensile properties for planished and unplanished conditions; and (2) Perform repair weld evaluation on structural simulation panel using 4043-B218 and B218/B218 weld filler wire combinations and evaluation tensile and simulated service fracture properties for planished and unplanished conditions.

  13. The effect of mixing order of fillers on the physical properties of EPDM

    International Nuclear Information System (INIS)

    Gul, J.; Saleemi, A.R.

    2007-01-01

    In this research the effect of mixing order of fillers on the physical properties of EPDM (Ethylene Propylene Diene Monomer) vulcanizates was studied. EPDM was compounded with other ingredients i.e. fillers, process aid, curing package etc in order to get the needed physical properties for thermal insulation. All the factors, which could affect the physical properties of EPDM vulcanizates such as quality and quantity of raw materials, storage conditions of ingredients and vulcanizates, compounding and testing facilities, mixing time, process parameters etc were kept constant except mixing order of addition of filler to EPDM. Different batches of EPDM vulcanizates with different mixing order/sequence of filler to EPDM were prepared and tested for physical properties like density, hardness, tensile strength and elongation. It was concluded that mixing order of filler to EPDM affects tensile strength, elongation and hardness and does not affect density of the EPDM vulcanizate. (author)

  14. Nickel-chromium-silicon brazing filler metal

    Science.gov (United States)

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  15. Rheological measurements on cement grouts

    International Nuclear Information System (INIS)

    Dalton, M.J.

    1986-06-01

    This report describes the techniques which have been developed at Winfrith for assessing the rheological properties of cement grouts. A discussion of the theory of rheology and its application to cement is given and the methodology for calibrating a special paddle measuring system for a commercial viscometer is described. The use of the system for determining flow curves, equilibrium viscosity, viscosity as a function of shearing time and structure changes is also discussed. (author)

  16. Fillers in the skin of color population.

    Science.gov (United States)

    Heath, Candrice R; Taylor, Susan C

    2011-05-01

    The skin of color population in the United States is rapidly growing and the cosmetic industry is responding to the demand for skin of color targeted treatments. The aging face in skin of color patients has a unique pattern that can be successfully augmented by dermal fillers. Though many subjects with skin of color were not included in the pre-market dermal filler clinical trials, some post-market studies have examined the safety and risks of adverse events in this population. The safety data from a selection of these studies was examined. Though pigmentary changes occurred, there have been no reports of keloid development. Developing a patient-specific care plan and instituting close follow up is emphasized.

  17. The basic science of dermal fillers: past and present Part II: adverse effects.

    Science.gov (United States)

    Gilbert, Erin; Hui, Andrea; Meehan, Shane; Waldorf, Heidi A

    2012-09-01

    The ideal dermal filler should offer long-lasting aesthetic improvement with a minimal side-effect profile. It should be biocompatible and stable within the injection site, with the risk of only transient undesirable effects from injection alone. However, all dermal fillers can induce serious and potentially long-lasting adverse effects. In Part II of this paper, we review the most common adverse effects related to dermal filler use.

  18. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    International Nuclear Information System (INIS)

    Sicinski, M; Gozdek, T; Bielinski, D M; Kleczewska, J; Szymanowski, H; Piatkowska, A

    2015-01-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied. (paper)

  19. Optimization of cement composites with the use of fillers from the Chechen Republic fields

    Directory of Open Access Journals (Sweden)

    Balatkhanova Elita Mahmudovna

    Full Text Available The fillers together with binders take part in microstructure formation of matrix basis and contact zones of a composite. The advantage of cement matrix structure with a filler is that inner defects are localized in it - microcracks, macropores and capillary pores, as well as that their quantity, their sizes and stress concentration decrease. Structure formation of filled cement composites is based on the processes taking place in the contact of liquid and stiff phases, which means, it depends on the quantitative relation of the cement, fillers and water, and also dispersivity and physical and chemical activity of the fillers. In the article the authors offer research results of the processes of hydration and physical-mechanical properties of cement composites with fillers from the fields of the Chechen Republic. Research results of heat cement systems are presented, modified by fine fillers. Optimal composition of cement composites filled with powders of quartz, sandstone, river and a mountain limestone of different particle size composition, characterized by a high strength, are obtained.

  20. Modification of Sorghum Starch-Cellulose Bioplastic with Sorghum Stalks Filler

    Directory of Open Access Journals (Sweden)

    Yuli Darni

    2017-05-01

    Full Text Available This study evaluated the feasibility of bioplastics production by various ratio of sorghum starch and cellulose from red seaweed Eucheuma spinossum, and the use of glycerol as plasticizer and sorghum stalks as filler. Solid-liquid matrix transition should be far over the operating temperature of gelatinization and extracted at 95oC in order to avoid the loss of conductivity. The analyzed variables were starch and cellulose seaweed Eucheuma spinossum and the addition of variation of filler. Sorghum stalk could be expected to affect the mechanical and physical properties of bioplastics. A thin sheet of plastic (plastic film was obtained as a result that have been tested mechanically to obtain the best condition for the formulation of starch-cellulose 8.5:1.5 (g/g. From the result of morphological studies, the fillers in the mixture composites were more randomly in each product and the addition of filler can increase mechanical properties of bioplastics. Chemical modification had a major effect on the mechanical properties. The phenomena of degradation and thermoplasticization were visible at chemical changes that can be observed in FTIR spectrum test results.

  1. PROCESS TIME OPTIMIZATION IN DEPOSITOR AND FILLER

    Directory of Open Access Journals (Sweden)

    Jesús Iván Ruíz-Ibarra

    2017-07-01

    Full Text Available As in any industry, in soft drink manufacturing demand, customer service and production is of great importance that forces this production to have their equipment and production machines in optimal conditions for the product to be in the hands of the consumer without delays, therefore it is important to have the established times of each process, since the syrup is elaborated, packaged, distributed, until it is purchased by the consumer. After a chronometer analysis, the most common faults were detected in each analyzed process. In the filler machine the most frequent faults are: accumulation of bottles in the subsequent and previous processes to filling process, which in general the cause of the collection of bottles is due to failures in the other equipment of the production line. In the process of unloading the most common faults are: boxes jammed in bump and pusher (pushing boxes; boxes fallen in rollers and platforms transporter. According to observations in each machine, the actions to be followed are presented to solve the problems that arise. Also described the methodology to obtain results, to data analyze and decisions. Firstly an analysis of operations is done to know each machine, supported by the manuals of the machines and the operators themselves a study of times is done by chronometer to determine the standard time of the process where also they present the most common faults, then observations are made on the machines according to the determined sample size, thus obtaining the information necessary to take measurements and to make the study of optimization of the production processes. An analysis of the predetermined process times is also performed by the MTM methods and the MOST time analysis. The results of operators with MTM: Fault Filler = 0.846 minutes, Faultless Filler = 0.61 minutes, Fault Breaker = 0.74 minutes and Fault Flasher = 0.45 minutes. The results of MOST operators are: Fault Filler = 2.58 minutes, Filler Fails

  2. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    Energy Technology Data Exchange (ETDEWEB)

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  3. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  4. Blindness caused by cosmetic filler injection: a review of cause and therapy.

    Science.gov (United States)

    Carruthers, Jean D A; Fagien, Steve; Rohrich, Rod J; Weinkle, Susan; Carruthers, Alastair

    2014-12-01

    Vascular occlusion causing blindness is a rare yet greatly feared complication of the use of facial aesthetic fillers. The authors performed a review of the aesthetic literature to ascertain the reported cases of blindness and the literature reporting variations in the vascular anatomy of the human face. The authors suggest a small but potentially helpful addition to the accepted management of the acute case. Cases of blindness, mostly irreversible, from aesthetic filler injections have been reported from Asia, Europe, and North America. Autologous fat appears to be the most frequent filler causing blindness. Some cases of partial visual recovery have been reported with hyaluronic acid and calcium hydroxylapatite fillers. The sudden profusion of new medical and nonmedical aesthetic filler injectors raises a new cause for alarm about patient safety. The published reports in the medical literature are made by experienced aesthetic surgeons and thus the actual incidence may be even higher. Also, newer injectors may not be aware of the variations in the pattern of facial vascular arborization. The authors present a summary of the relevant literature to date and a suggested helpful addition to the protocols for urgent management.

  5. Rheology for chemists an introduction

    CERN Document Server

    Goodwin, J W

    2008-01-01

    Rheology is primarily concerned with materials: scientific, engineering and everyday products whose mechanical behaviour cannot be described using classical theories. From biological to geological systems, the key to understanding the viscous and elastic behaviour firmly rests in the relationship between the interactions between atoms and molecules and how this controls the structure, and ultimately the physical and mechanical properties. Rheology for Chemists An Introduction takes the reader through the range of rheological ideas without the use of the complex mathematics. The book gives particular emphasis on the temporal behaviour and microstructural aspects of materials, and is detailed in scope of reference. An excellent introduction to the newer scientific areas of soft matter and complex fluid research, the second edition also refers to system dimension and the maturing of the instrumentation market. This book is a valuable resource for practitioners working in the field, and offers a comprehensive int...

  6. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. Chaoui

    2015-07-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (f/fg-1n, where fg captures the strength of particle interaction and n the microstructure. The scaling variable (fp/fpc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (f/fg-1 these gels are rheologically identical.

  7. RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS

    Directory of Open Access Journals (Sweden)

    S. CHAOUI

    2012-12-01

    Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (/g-1n, where g captures the strength of particle interaction and n the microstructure.The scaling variable (p/pc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (/g-1 these gels are rheologically identical.

  8. Effect of using fly ash as alternative filler in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    Raja Mistry

    2016-09-01

    Full Text Available This study investigates the effect of using fly ash (FA in asphalt mixture as replacement of common filler. In view of the same, samples were prepared for different bitumen content (3.5−6.5% at 0.5% increments by using 2% hydrated lime (HL in control mix as well as varying percentage of FA ranging from 2 to 8% as alternative filler in modified mixes. The optimum bitumen content (OBC was then determined for all the mix by Marshall mix design. Experimental results indicated higher stability value with lower OBC for the mixture having 4% FA as optimum filler content in comparison with conventional mix and standard specification. So this study discuss the feasibility of using FA as alternative filler instead of HL in asphalt concrete mix by satisfying the standard specification.

  9. Wear resistance of layers hard faced by the high-alloyed filler metal

    OpenAIRE

    Dušan Arsić; Vukić Lazić; Ruzica R. Nikolic; Milan Mutavdžić; Srbislav Aleksandrović; Milan Djordjević

    2016-01-01

    The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by ...

  10. Rheological behaviour of self-compacting micro-concrete

    Indian Academy of Sciences (India)

    Workability; viscosity; cement paste; high range water reducing admixture. Abstract. The rheological behaviour of Self-Compacting Micro-Concrete (SCMC) mixtures has been investigated within the scope of this paper. Rheological measurements have been performed using a novel rheometer equipped with a ball ...

  11. Influence of silane content and filler distribution on chemical-mechanical properties of resin composites

    Directory of Open Access Journals (Sweden)

    Tathy Aparecida XAVIER

    2015-01-01

    Full Text Available This study investigated the influence of silane concentration and filler size distribution on the chemical-mechanical properties of experimental composites. Experimental composites with silane contents of 0%, 1% and 3% (in relation to filler mass and composites with mixtures of barium glass particles (median size = 0.4, 1 and 2 μm and nanometric silica were prepared for silane and filler analyses, respectively. The degree of conversion (DC was analyzed by FTIR. Biaxial flexural strength (BFS was tested after 24-h or 90-d storage in water, and fracture toughness, after 24 h. The data were subjected to ANOVA and Tukey’s test (p = 0.05. The DC was not significantly affected by the silane content or filler distribution. The 0% silane group had the lowest immediate BFS, and the 90-d storage time reduced the strength of the 0% and 3% groups. BFS was not affected by filler distribution, and aging decreased the BFS of all the groups. Silanization increased the fracture toughness of both the 1% and 3% groups, similarly. Significantly higher fracture toughness was observed for mixtures with 2 μm glass particles. Based on the results, 3% silane content boosted the initial strength, but was more prone to degradation after water storage. Variations in the filler distribution did not affect BFS, but fracture toughness was significantly improved by increasing the filler size.

  12. Review Of Rheology Models For Hanford Waste Blending

    International Nuclear Information System (INIS)

    Koopman, D. C.; Stone, M.

    2013-01-01

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations

  13. Synthesis of new dental nanocomposite with glass nanoparticles

    Directory of Open Access Journals (Sweden)

    Alireza Khavandi

    2013-09-01

    Full Text Available Objective(s: The aim of this study was to synthesis new dental nanocomposites reinforced with fabricated glass nanoparticles and compare two methods for fabrication and investigate the effect of this filler on mechanical properties. Materials and Methods : The glass nanoparticles were produced by wet milling process. The particle size and shape was achieved using PSA and SEM. Glass nanoparticles surface was modified with MPTMS silane. The composite was prepared by mixing these silane-treated nanoparticles with monomers. The resin composition was UDMA /TEGDMA (70/30 weight ratio. Three composites were developed with 5, 7.5 and 10 wt% glass fillers in each group. Two preparation methods were used, in dispersion in solvent method (group D glass nanoparticles were sonically dispersed in acetone and the solution was added to resin, then acetone was evaporated. In non-dispersion in solvent method (group N the glass nanoparticles were directly added to resin. Mechanical properties were investigated included flexural strength, flexural modulus and Vickers hardness. Results: Higher volume of glass nanoparticles improves mechanical properties of composite. Group D has batter mechanical properties than group N. Flexural strength of composite with 10%w filler of group D was 75Mpa against 59 Mpa of the composite with the same filler content of group N. The flexural modulus and hardness of group D is more than group N. Conclusion: It can be concluded that dispersion in solvent method is the best way to fabricate nanocomposites and glass nanoparticles is a significant filler to improve mechanical properties of dental nanocomposite.

  14. Effect of Mineral Filler Type and Particle Size on the Engineering Properties of Stone Mastic Asphalt Pavements

    Directory of Open Access Journals (Sweden)

    R Muniandy

    2013-12-01

    Full Text Available This study examines four types of industrial and by-product waste fillers, namely limestone dust (LSD, which was the reference filler; ceramic waste dust (CWD; coal fly ash (CFA, and steel slag mixture (SSD. The filler consisted of an aggregate (10% of total weight with three proportions: 100% passing 75μm, 50% passing 75μm/20μm, and 100% passing 20μm. Comprehensive laboratory tests were performed to determine the impact of different types and particle sizes of fillers on the engineering and mechanical properties of fine mastics and stone mastic asphalt mixture. The results indicate that the application of industrial by-products used as fillers improves the engineering properties of stone mastic asphalt mixtures. The increased stiffness due to the addition of the filler is represented by an increase in the softening point, viscosity, stability, and resilient modulus, as well as a decrease in penetration. The optimum asphalt content increased with the decrease in filler particle size for LSD and SSD, and decreased for CWD and CFA. It was also determined that the filler type and particle size has a significant effect on the mixture properties. Among these three proportions, the samples prepared with the filler size proportion of 50/50 gave the best value in terms of stability, Marshall quotient, and resilient modulus than the other filler size proportions.

  15. Novel synthesis of Eu-doped SiAlON luminescent materials from a preceramic polymer and nano-sized fillers

    Directory of Open Access Journals (Sweden)

    E. Bernardo

    2014-06-01

    The reduction of Eu3+ into Eu2+ incorporated in SiAlON was favored by the presence of carbon derived from the pyrolysis of the preceramic polymers. The nanometric distribution of filler materials and the high yield of the selected preceramic polymers in terms of Si and N atoms led to the formation of the desired phases at relatively low firing temperatures (e.g. 3 h at 1550–1600 °C in pure nitrogen.

  16. Use of filler materials to aid spent nuclear fuel dry storage

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1981-09-01

    The use of filler materials (also known as stabilizer or encapsulating materials) was investigated in conjunction with the dry storage of irradiated light water reactor (LWR) fuel. The results of this investigation appear to be equally valid for the wet storage of fuel. The need for encapsulation and suitable techniques for closing was also investigated. Various materials were reviewed (including solids, liquids, and gases) which were assumed to fill the void areas within a storage can containing either intact or disassembled spent fuel. Materials were reviewed and compared on the basis of cost, thermal characteristics, and overall suitability in the proposed environment. A thermal analysis was conducted to yield maximum centerline and surface temperatures of a design basis fuel encapsulated within various filler materials. In general, air was found to be the most likely choice as a filler material for the dry storage of spent fuel. The choice of any other filler material would probably be based on a desire, or need, to maximize specific selection criteria, such as surface temperatures, criticality safety, or confinement

  17. Effect of the filler on radiolysis of filled elastomers

    International Nuclear Information System (INIS)

    Komarov, S.A.; Erastov, A.Kh.; Kolesnikov, A.A.; Gostikina, A.V.; Mal'kov, A.M.; Korovkin, V.V.

    1987-01-01

    The effect of the type and concentration of filler (A-175 Aerosil, PM-75 technical carbon, BS-100 white black, kaolin, titanium oxide) on the radiation yield of elastomers of different chemical nature was studied. The extreme character of the dependence of the radiation yield of paramagnetic centers on the concentration of filler, common to the systems studied, was established; it was due to the features of the colloid chemical structure of the filled elastomers and particularly to processes of cross-linking of the filter

  18. Rheology for chemists an introduction

    CERN Document Server

    Goodwin, J W

    2000-01-01

    Rheology is an integral part of life, from decorative paint and movement of volcanic lava to the flow of blood in our veins. This book describes, without the use of complex mathematics, how atoms and molecules interact to control the handling properties of materials ranging from simple ionic crystals through polymers to colloidal dispersions.Beginning with an introduction to essential terminology, Rheology for Chemists goes on to discuss limiting behaviour, temporal behaviour and non-linear behaviour. Throughout, examples of everyday experiments are provided to illustrate the theory, which increases in complexity with each discrete chapter. Ideas are developed in a systematic fashion so that the mechanisms responsible for the elastic, viscous or viscoelastic behaviour of systems are understood. The text thus progresses in a manner that makes it an ideal introduction to rheology for any scientist who needs to use the ideas to modify systems.Comprehensive and unique in approach, this book will provide the neces...

  19. Fly ashes from co-combustion as a filler material in concrete production; Anvaendning av energiaskor som fillermaterial vid betongtillverkning

    Energy Technology Data Exchange (ETDEWEB)

    Sundblom, Hillevi

    2004-01-01

    The Swedish concrete producers have decided to work towards a common goal to limit the production of concrete with naturally rounded aggregate. A consequence is when use of a substitute, crushed aggregate, the demand of filler material increases. During the last years ashes form the CFB boiler in Perstorp has been utilised as a filler material, with success, in concrete production at Sydsten, Malmoe, Sweden. To examine the potential of using Swedish fly ashes as a filler material in concrete production, have different Swedish fly ashes above been studied to see if they fit the requirements for a filler material. The fly ashes studied in the project can be divided into four different groups, considering fuel mix and boiler type; 1. Bio and sludge fired CFB/BFB boiler from the paper industry, 2. Bio and peat fired CFB/BFB boiler, 3. Pulverized peat/coal firing furnace, 4.Bio and peat fired grate-fired boiler. From Sydsten experiences of using Swedish fly ashes two demands have emerged concerning the chemical composition of the ashes. The total amount of chloride in the concrete should not be higher than 0,1% and the LOI, (Loss Of Ignition) must be less than 10 %. The different ash analyses showed that the fluidised bed boilers and pulverized firing furnaces, in this study, passed all the chemical requirements but the grate fire boilers had difficulties to fulfil the requirement of LOI. The ashes chosen to be studied in further rheological investigations in different fresh concrete mixtures were, Category 1 (Hallstavik's and Hyltebruk's papermill), Category 2 (Vaesteraas Vaermeverk och Vaertaverket) and from Category 3 (Vattenfall Vaerme Uppsala). The results presented an increased water consumption of ashes from paper mills comparing with the other ashes, a probable reason could be the shape of the ash grains. The experiments also showed that all ashes contributed to the final strength of the hardened concrete, the paper mill ashes also contributed to the

  20. Effect of filler type on 3-body abrasion of dental composite

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-06-01

    Full Text Available Statement of Problem: The relatively poor wear resistance of dental composite in stress bearing posterior situations has restricted wider clinical application of this restorative material. Purpose: The aim of this study was to evaluate the three body abrasive wear of a dental composite based on a new filler (leucite: KAl Si2O6 and to compare it with the wear resistance of a composite based on commonly used Aluminium – Barium Silicate filler. Materials and Methods: This research was an interventional study done in Iran polymer institute. Five specimens were considered in each group. All ceramic IPS Empress® (Ivoclar- Vivadent ingots based on leucite crystals were ball milled, passed through an 800 sieve and used as filler. Experimental composites were prepared by mixing the silane- treated fillers with monomers (BisGMA and TEGDMA. Camphorquinone and amine were used as photoinitiator system. Degree of conversion of the light-cured and post-cured composites was measured using FTIR spectroscopy. The prepared pastes were inserted into plexy-glass mold and light cured (700 mw/cm2, 40 s. Then for maximum degree of conversion specimens were post- cured (120ºC, 5 hours. Three body abrasion wear testing was performed using a wear machine with 50 rpm rotational movement. In this machine, pumice (150 meshes was used as the third body. Weight loss of specimens in each group was measured by balance after each 50 hours. After wear testing SEM examination was made specimens in each group. The data were analyzed and compared using ANOVA and Tukey HSD tests (P<0.05. Tetric Ceram was tested as commercial composite. Results: There were significantly differences between three body abrasive wear of composites. The ranking from lowest to highest was as follows: leucite composite (19% < Tetric Ceram (22% < glass composite (28%. leucite composite showed the highest wear resistance value, propably due to the crystalliniy and hardness of filler. Conclusion

  1. Novel encapsulation technique for incorporation of high permittivity fillers into silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Hvilsted, Søren; Skov, Anne Ladegaard

    2014-01-01

    permittivity fillers, 2) Grafting of high permittivity molecules onto the polymer backbone in the elastomer, and 3) Encapsulation of high permittivity fillers. The approach investigated here is a new type of encapsulation which does not interfere with the mechanical properties to the same content...

  2. Effect of waste rubber powder as filler for plywood application

    Directory of Open Access Journals (Sweden)

    Ong Huei Ruey

    2015-03-01

    Full Text Available The study investigated the suitability of waste rubber powder (WRP use as filler in adhesive formulation for plywood application. Melamine Urea Formaldehyde (MUF was employed as resin for formulating the wood adhesive. To improve chemical properties and bonding quality of adhesive, WRP was treated by different chemicals like 20% nitric acid, 30% hydrogen peroxide and acetone solution. The treated WRP were analysed by XRD and it showed that inorganic compounds were removed and carbon was remained as major component under the treatment of 20% HNO3. The treatment improved the mechanical properties like shear strength and formaldehyde emission of plywood (high shear strength and low formaldehyde emission. The physico-chemical interaction between the wood, resin and filler was investigated using fourier transform infrared spectroscopic (FTIR technique and the interactions among N-H of MUF and C=O of wood and WRP were identified. The morphology of wood-adhesive interface was studied by field emission scanning electron microscope (FESEM and light microscope (LM. It showed that the penetration of adhesives and fillers through the wood pores was responsible for mechanical interlocking. Therefore, chemically treated WRP proved its potential use as filler in MUF based adhesive for making plywood.

  3. Attenuation of seismic waves and the universal rheological model of the Earth's mantle

    Science.gov (United States)

    Birger, B. I.

    2007-08-01

    Analysis of results of laboratory studies on creep of mantle rocks, data on seismic wave attenuation in the mantle, and rheological micromechanisms shows that the universal, i.e., relevant to all time scales, rheological model of the mantle can be represented as four rheological elements connected in series. These elements account for elasticity, diffusion rheology, high temperature dislocation rheology, and low temperature dislocation rheology. The diffusion rheology element is described in terms of a Newtonian viscous fluid. The high temperature dislocation rheology element is described by the rheological model previously proposed by the author. This model is a combination of a power-law non-Newtonian fluid model for stationary flows and the linear hereditary Andrade model for flows associated with small strains. The low temperature dislocation rheology element is described by the linear hereditary Lomnitz model.

  4. Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete

    Directory of Open Access Journals (Sweden)

    Hafez E. Elyamany

    2014-06-01

    Full Text Available The objective of this study is to evaluate the effect of various filler types on the fresh and hardened properties of self-compacting concrete (SCC and Flow-able concrete. For this purpose, two groups of fillers were selected. The first group was pozzolanic fillers (silica fume and metakaolin while the second group was non-pozzolanic fillers (limestone powder, granite dust and marble dust. Cement contents of 400 kg/m3 and 500 kg/m3 were considered while the used filler material was 7.5%, 10% and 15%. Slump and slump flow, T50, sieve stability and bleeding tests were performed on fresh concrete. The studied hardened properties included unit weight, voids ratio, porosity, and water absorption and cube compressive strength. In addition, thermo-gravimetric analysis, X-ray diffraction analysis and scanning electronic microscope were performed. The test results showed that filler type and content have significant effect on fresh concrete properties where non-pozzolanic fillers improve segregation and bleeding resistance. Generally, filler type and content have significant effect on unit weight, water absorption and voids ratio. In addition, non-pozzolanic fillers have insignificant negative effect on concrete compressive strength. Finally, there was a good correlation between fresh concrete properties and hardened concrete properties for SCC and Flow-able concrete.

  5. A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers

    International Nuclear Information System (INIS)

    Seyedin, Shayan; Razal, Joselito M; Innis, Peter C; Wallace, Gordon G

    2016-01-01

    Electrically conductive elastomeric fibres prepared using a wet-spinning process are promising materials for intelligent textiles, in particular as a strain sensing component of the fabric. However, these fibres, when reinforced with conducting fillers, typically result in a compromise between mechanical and electrical properties and, ultimately, in the strain sensing functionality. Here we investigate the wet-spinning of polyurethane (PU) fibres with a range of conducting fillers such as carbon black (CB), single-walled carbon nanotubes (SWCNTs), and chemically converted graphene. We show that the electrical and mechanical properties of the composite fibres were strongly dependent on the aspect ratio of the filler and the interaction between the filler and the elastomer. The high aspect ratio SWCNT filler resulted in fibres with the highest electrical properties and reinforcement, while the fibres produced from the low aspect ratio CB had the highest stretchability. Furthermore, PU/SWCNT fibres presented the largest sensing range (up to 60% applied strain) and the most consistent and stable cyclic sensing behaviour. This work provides an understanding of the important factors that influence the production of conductive elastomer fibres by wet-spinning, which can be woven or knitted into textiles for the development of wearable strain sensors. (paper)

  6. Effects of SiO 2 and TiO 2 fillers on thermal and dielectric properties ...

    Indian Academy of Sciences (India)

    The microstructures and distribution of fillers in the glass matrix have been analyzed by SEM images. It is observed that the fillers have partially dissolved in the glass at the firing temperature leaving some unreacted filler as residue which results in ceramic–glass microcomposites. In consideration of the desired properties of ...

  7. Structure and rheology of nanoparticle–polymer suspensions

    KAUST Repository

    Srivastava, Samanvaya

    2012-01-01

    Structure and rheology of oligomer-tethered nanoparticles suspended in low molecular weight polymeric host are investigated at various particle sizes and loadings. Strong curvature effects introduced by the small size of the nanoparticle cores are found to be important for understanding both the phase stability and rheology of the materials. Small angle X-ray scattering (SAXS) and transmission electron microscopy measurements indicate that PEG-SiO 2/PEG suspensions are more stable against phase separation and aggregation than expected from theory for interacting brushes. SAXS and rheology measurements also reveal that at high particle loadings, the stabilizing oligomer brush is significantly compressed and produces jamming in the suspensions. The jamming transition is accompanied by what appears to be a unique evolution in the transient suspension rheology, along with large increments in the zero-shear, Newtonian viscosity. The linear and nonlinear flow responses of the jammed suspensions are discussed in the framework of the Soft Glassy Rheology (SGR) model, which is shown to predict many features that are consistent with experimental observations, including a two-step relaxation following flow cessation and a facile method for determining the shear-thinning coefficient from linear viscoelastic measurements. Finally, we show that the small sizes of the particles have a significant effect on inter-particle interactions and rheology, leading to stronger deviations from expectations based on planar brushes and hard-sphere suspension theories. In particular, we find that in the high volume fraction limit, tethered nanoparticles interact in their host polymer through short-range forces, which are more analogous to those between soft particles than between spherical polymer brushes. © 2012 The Royal Society of Chemistry.

  8. Electro-mechanical properties of hydrogel composites with micro- and nano-cellulose fillers

    International Nuclear Information System (INIS)

    Shahid U N, Mohamed; Deshpande, Abhijit P; Rao, C Lakshmana

    2015-01-01

    Stimuli responsive cross-linked hydrogels are of great interest for applications in diverse fields such as sensors and biomaterials. In this study, we investigate polymer composites filled with cellulose fillers. The celluloses used in making the composites were a microcrystalline cellulose of commercial grade and cellulose nano-whiskers obtained through acid hydrolysis of microcrystalline cellulose. The filler concentration was varied and corresponding physical, mechanical and electro-mechanical characterization was carried out. The electro-mechanical properties were determined using a quasi-static method. The fillers not only enhance the mechanical properties of the composite by providing better reinforcement but also provide a quantitative electric potential in the composite. The measurements reveal that the polymer composites prepared from two different cellulose fillers possess a quantitative electric potential which can be utilized in biomedical applications. It is argued that the mechanism behind the quantitative electric potential in the composites is due to streaming potentials arising due to electrical double layer formation. (paper)

  9. Influence of Hybrid Fillers on Thermal Conductivity of Nylon-6/Graphene Composites

    Directory of Open Access Journals (Sweden)

    SONG Na

    2018-03-01

    Full Text Available The thermal insulating properties of polymer greatly restrict the application of polymer as the thermal conductivity materials in industry. Multilayer graphene was chosen as a filler due to its unique thermal transfer property. The effect of alumina oxide (Al2O3 and silicon carbide (SiC with graphene as hybrid fillers on thermal conductivity of polymers was also explored. The thermal conductivity of the composites enhances 161% with 3%(mass fraction graphene content compared to pure nylon-6(PA6. The thermal conductivity of PA6 composites is within 0.653-4.307W·m-1·K-1 by adjusting hybrid fillers content and the ratio of graphene with Al2O3 and SiC. The best thermal conductivity is 20 times higher than the pure PA6. It is no doubt that the exploration can provide valuable experimental basis for extending the utilization of graphene as thermal conductivity filler and the application of PA6 thermal conductivity materials in industry.

  10. Synthesis, rheological characterization, and constitutive modeling of polyhydroxy triglycerides derived from milkweed oil.

    Science.gov (United States)

    Harry-O'kuru, R E; Carriere, C J

    2002-05-22

    Asclepias syriaca L., the common milkweed, is a new industrial crop. The seed contains about 20-30 wt % of a highly unsaturated oil having unusual fatty acids. Exploring value-added products from the oil, milkweed triglycerides have been oxidized by in situ performic acid to the polyoxirane and polyhydroxy triglycerides (PHTG). The rheological properties of milkweed PHTG were characterized in various shear flows. Milkweed PHTG displayed nonlinear viscoelastic behavior at applied strains greater than 1%. Milkweed PHTG was found to obey time-strain separability. A nonlinear Wagner constitutive model was used successfully to qualitatively predict the behavior of milkweed PHTG in both start-up and cessation of steady-state shear flow.

  11. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid).

    Science.gov (United States)

    Liu, Xingxun; Wang, Tongxin; Chow, Laurence C; Yang, Mingshu; Mitchell, James W

    Addition of filler to polylactic acid (PLA) may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA) on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline) have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC), scanning electron microscope (SEM), instron tensile tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  12. Application of amorphous filler metals in production of fusion reactor high heat flux components

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, B A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Fedotov, V T [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Grigoriev, A E [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Sevriukov, O N [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Pliushev, A N [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Skuratov, L A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Polsky, V I [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Yakushin, V L [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation); Virgiliev, Yu S [State Research Institute of Graphite, Electrodnaya St. 2, 115524 Moscow (Russian Federation); Vasiliev, V L [TRINITI, Troitsk, 142092 Moscow District (Russian Federation); Tserevitinov, S S [TRINITI, Troitsk, 142092 Moscow District (Russian Federation)

    1995-03-01

    Amorphous ribbon-type filler metals represent a promising facility for fastening heterogeneous materials together. The advantage results from the homogeneity of element and phase compositions and the strictly specified geometrical dimensions of such fillers. Amorphous fillers Zr-Ti-Fe-Be, Zr-Ti-Ni-Cu and Ti-Zr-Ni-Cu and microcrystalline fillers Al-Si and Cu-Sn-Mn-In-Ni were produced by quenching at a rate of about 10{sup 6}Ks{sup -1}. Brazing of graphite with metals (Cu+MPG-6, Cu+RGT, Mo+MIG-1, V+MIG-1, V+RGT) was accomplished using ribbon-type fillers. Two types of metal-based samples were produced in the form of plates and rakes. The rakes were made by brazing three small graphite bars to the metal, the 2mm space between the bars being 0.25 of the bar height. The results of metallographic studies of the brazing zone and of tests on brazed structures treated by pulsed energy fluxes are discussed. (orig.).

  13. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xingxun Liu

    2014-01-01

    Full Text Available Addition of filler to polylactic acid (PLA may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC, scanning electron microscope (SEM, instron tensile tester, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, and dynamic mechanical analysis (DMA. It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  14. Molecular Rheology of Complex Fluids

    DEFF Research Database (Denmark)

    Huang, Qian; Rasmussen, Henrik Koblitz

    following a stress maximum were reported for two LDPE melts. However the rheological significance of the stress maximum as well as the existence of steady flow conditions following the maximum is still a matter of some debate. This thesis focuses on the experimental study of extensional rheology of linear...... and branched polymer melts. We report the stress–strain measurements in extensional flows using a unique Filament Stretching Rheometer (FSR) in controlled strain rate mode and controlled stress mode. Extensional flow is difficult to measure reliably in Laboratory circumstances. In this thesis we first present...

  15. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    Supramolecular polymers are a broad class of materials that include all polymerscapable of associating via secondary interactions. These materials represent an emerging class of systems with superior versatility compared to classical polymers with applications in food stuff, coatings, cost...... efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening...

  16. Delayed-onset complications of facial soft tissue augmentation with permanent fillers in 85 patients.

    Science.gov (United States)

    Kadouch, Jonathan A; Kadouch, Daniel J; Fortuin, Shai; van Rozelaar, Leo; Karim, Refaat B; Hoekzema, Rick

    2013-10-01

    To evaluate factors influencing the onset and type of adverse events in patients injected with permanent fillers in the face and to propose a therapeutic strategy for these complications. A prospectively attained series of 85 patients with delayed-onset complications after facial injection with permanent fillers underwent clinical follow-up and treatment of the complications. Lag times until onset and type of delayed-onset complication varied according to filler material. In 28% (n = 24) of the cases, patients reported the onset of complications after dental procedures, additional injections with fillers, or other invasive treatments in the facial area. Forty-eight (57%) patients required invasive treatment. Abscess formation was significantly more frequent in patients with human immunodeficiency virus infection and facial lipoatrophy (p = .001). The intrinsic characteristics of the injected filler and the immune status of the patient play important roles in the diversity of time of onset and type of delayed-onset adverse events observed. It seems that invasive facial or oral procedures in the vicinity of filler depots can provoke such complications. We propose a strategy for treating these complications and advise great caution when using permanent filling agents. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  17. Cookbook for rheological models - asphalt binders : final report.

    Science.gov (United States)

    2016-05-01

    Rheology is defined as the science of the deformation and flow of matter (Hackley and Ferraris, : 2001). The measurement of rheological properties of matter has become very important in various : fields, especially the construction industry, where pr...

  18. Review Of Rheology Models For Hanford Waste Blending

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to

  19. [Influences of composition on brush wear of composite resins. Influences of particle size and content of filler].

    Science.gov (United States)

    Yuasa, S

    1990-07-01

    The influences of the composition on abrasion resistance of composite resins were examined using various experimental composite resins which had various matrix resin, filler size and content. The abrasion test was conducted by the experimental toothbrush abrasion testing machine developed in our laboratory. Three series of heat-curing composite resins were tested. One series was made from a Bis-MPEPP or UDMA monomer, and a silica filler with an average particle size of 0.04, 1.9, 3.8, 4.3, 7.5, 13.8 and 14.1 microns. The filler content of this series was constant at 45 wt%. The second series contained a silica filler of 4.3 microns in a content ranging from 35 to 75 wt%. The third series contained a microfiller (0.04 microns) and macrofiller (4.3 microns) in total content of 45 wt%. In this series, the microfiller was gradually replaced by 5, 15, 25 and 45 wt% of the macrofiller. The results obtained for these three series indicated that the abrasion resistance of composite resins was controlled by the inorganic filler, mainly filler size and content. The abrasion loss did not vary with the difference of matrix resin. When the particle size of the filler was below about 5 microns, the abrasion resistance decreased markedly with the decrease in filler size. The composite resin which contained a 0.04 or 1.9 micron filler was less resistant to toothbrush wear than the unfilled matrix resin. However, the microfiller also contributed to abrasion resistance when used in combination with the macrofiller, although abrasion resistance decreased with the increase in the microfiller concentration. The increase of filler content clearly improved the abrasion resistance when used the macrofiller. The analysis of these results and SEM observations of the brushed surfaces of samples suggested that the toothbrush abrasion was three-body abrasion caused by the abrasive in the toothpaste, and affected by the difference in the particle size between abrasive and filler, and between

  20. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    Science.gov (United States)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  1. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.

    Science.gov (United States)

    Bhanushali, Sushrut; Jason, Naveen Noah; Ghosh, Prakash; Ganesh, Anuradda; Simon, George P; Cheng, Wenlong

    2017-06-07

    Nanofluids are colloidal dispersions that exhibit enhanced thermal conductivity at low filler loadings and thus have been proposed for heat transfer applications. Here, we systematically investigate how particle shape determines the thermal conductivity of low-cost copper nanofluids using a range of distinct filler particle shapes: nanospheres, nanocubes, short nanowires, and long nanowires. To exclude the potential effects of surface capping ligands, all the filler particles are kept with uniform surface chemistry. We find that copper nanowires enhanced the thermal conductivity up to 40% at 0.25 vol % loadings; while the thermal conductivity was only 9.3% and 4.2% for the nanosphere- and nanocube-based nanofluids, respectively, at the same filler loading. This is consistent with a percolation mechanism in which a higher aspect ratio is beneficial for thermal conductivity enhancement. To overcome the surface oxidation of the copper nanomaterials and maintain the dispersion stability, we employed polyvinylpyrrolidone (PVP) as a dispersant and ascorbic acid as an antioxidant in the nanofluid formulations. The thermal performance of the optimized fluid formulations could be sustained for multiple heating-cooling cycles while retaining stability over 1000 h.

  2. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Directory of Open Access Journals (Sweden)

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20°C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90°C. All rheological parameters measured at 90°C were significantly higher at pH 4.5 compared to pH 7.0.

  3. Biogas of sanitary fillers

    International Nuclear Information System (INIS)

    Serrano Camacho, Ciro

    2007-01-01

    The author proposes a methodology for the preliminary estimation of the energetic potential and environmental improvement derivates of the implementation of these technologies that allows to make the first estimative of biogas generation of sanitary fillers with base in the results of the simulation of three predictive model: One Mexican, other denominated Scholl-Canyon of North American origin and the designed by the EPA. The three models use different versions and constants for a differential equation of degradation of first degree

  4. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  5. Rheological properties of crumb rubber modified bitumen containing antioxidant

    International Nuclear Information System (INIS)

    Mohamed, A. A; Omar, Husaini; Hamzah, M.O; Ismail, H.

    2009-01-01

    Rheology has become a useful tool in the characterization of the bitumen performance on the pavement. Visco-elastic properties of crumb rubber modified bitumen with antioxidants (CR30) were determined by the means of rheological measurement. This measurement led to a better knowledge of bitumen behavior that occurs when subjected to different thermal and mechanical conditions, as seen during road construction and services in the field. Dynamic Shear Rheometer (DSR) was used to characterize the rheology of the binders before and after oven aging. The binders were aged for 3 and 9 days. Results of a compatibility test showed that the addition of CR30 modified bitumen is compatible with the base bitumen. The results of unaged samples indicated that the addition of 1% CR30 and 5% CR30 modified binders caused an increase in G value as a result of the rheological changes. Results showed that aging has significant influence on bitumen rheology, by increasing complex modulus and decreasing phase angle. (author)

  6. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  7. EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites.

    Science.gov (United States)

    Angelov, Verislav; Velichkova, Hristiana; Ivanov, Evgeni; Kotsilkova, Rumiana; Delville, Marie-Hélène; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca

    2014-11-11

    With the aim to obtain new materials with special properties to be used in various industrial and biomedical applications, ternary "gold-clay-epoxy" nanocomposites and their nanodispersions were prepared using clay decorated with gold nanoparticles (AuNPs), at different gold contents. Nanocomposites structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Rheology and electron paramagnetic resonance (EPR) techniques were used in order to evaluate the molecular dynamics in the nanodispersions, as well as dynamics at interfaces in the nanocomposites. The percolation threshold (i.e., the filler content related to the formation of long-range connectivity of particles in the dispersed media) of the gold nanoparticles was determined to be ϕp = 0.6 wt % at a fixed clay content of 3 wt %. The flow activation energy and the relaxation time spectrum illustrated the presence of interfacial interactions in the ternary nanodispersions around and above the percolation threshold of AuNPs; these interfacial interactions suppressed the global molecular dynamics. It was found that below ϕp the free epoxy polymer chains ratio dominated over the chains attracted on the gold surfaces; thus, the rheological behavior was not significantly changed by the presence of AuNPs. While, around and above ϕp, the amount of the bonded epoxy polymer chains on the gold surface was much higher than that of the free chains; thus, a substantial increase in the flow activation energy and shift in the spectra to higher relaxation times appeared. The EPR signals of the nanocomposites depended on the gold nanoparticle contents and the preparation procedure thus providing a fingerprint of the different nanostructures. The EPR results from spin probes indicated that the main effect of the gold nanoparticles above ϕp, was to form a more homogeneous, viscous and polar clay-epoxy mixture at the nanoparticle surface. The knowledge

  8. Determining Rheological Parameters of Generalized Yield-Power-Law Fluid Model

    Directory of Open Access Journals (Sweden)

    Stryczek Stanislaw

    2004-09-01

    Full Text Available The principles of determining rheological parameters of drilling muds described by a generalized yield-power-law are presented in the paper. Functions between tangent stresses and shear rate are given. The conditions of laboratory measurements of rheological parameters of generalized yield-power-law fluids are described and necessary mathematical relations for rheological model parameters given. With the block diagrams, the methodics of numerical solution of these relations has been presented. Rheological parameters of an exemplary drilling mud have been calculated with the use of this numerical program.

  9. Waste-wood-derived fillers for plastics

    Science.gov (United States)

    Brent English; Craig M. Clemons; Nicole Stark; James P. Schneider

    1996-01-01

    Filled thermoplastic composites are stiffer, stronger, and more dimensionally stable than their unfilled counterparts. Such thermoplastics are usually provided to the end-user as a precompounded, pelletized feedstock. Typical reinforcing fillers are inorganic materials like talc or fiberglass, but materials derived from waste wood, such as wood flour and recycled paper...

  10. Effects of fillers on the properties of liquid silicone rubbers (LSRs)

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    low viscosities, which is favorable for loading of inorganic fillers [5]. In this study, commercially available fillers, such as fumed silica (SiO2), titanium dioxide (TiO2), barium titanate (BaTiO3), copper calcium titanate (CaCu3Ti4O12, CCTO), multi-walled carbon nanotubes (MWCNTs) were added...

  11. A comparative study of the thermal interface materials with graphene and boron nitride fillers

    Science.gov (United States)

    Kargar, F.; Salgado, R.; Legedza, S.; Renteria, J.; Balandin, A. A.

    2014-09-01

    We report the results of an experimental study that compares the performance of graphene and boron nitride flakes as fillers in the thermal interface materials. The thickness of both fillers varied from a single atomic plane to about a hundred. The measurements have been conducted using a standard TIM tester. Our results show that the addition of a small fraction of graphene (f=4 wt%) to a commercial thermal interface material increases the resulting apparent thermal conductivity substantially stronger than the addition of boron nitride. The obtained data suggest that graphene and fewlayer graphene flakes couple better to the matrix materials than the boron nitride fillers. A combination of both fillers can be used to increase the thermal conductivity while controlling the electrical conduction.

  12. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  13. Study of tetrapodal ZnO-PDMS composites: a comparison of fillers shapes in stiffness and hydrophobicity improvements.

    Directory of Open Access Journals (Sweden)

    Xin Jin

    Full Text Available ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers.

  14. Study of tetrapodal ZnO-PDMS composites: a comparison of fillers shapes in stiffness and hydrophobicity improvements.

    Science.gov (United States)

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here. The tensile elastic modulus and water contact angle, which are important parameters for bio-mimetic applications, of fabricated composites with different fillers have been measured and compared. Among all three types of fillers, tetrapodal shaped ZnO microparticles showed the best performance in terms of increase in hydrophobicity of material cross-section as well as the stiffness of the composites. It has been demonstrated that the tetrapodal shaped microparticles gain their advantage due to the special shape, which avoids agglomeration problems as in the case for nanoparticles, and the difficulty of achieving truly random distribution for whisker fillers.

  15. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  16. Property of filler-loaded magnetic ferrite from plastic waste bottle used to treat municipal domestic sewage.

    Science.gov (United States)

    Zhao, Ru-Jin; Gong, Li-Ying; Zhu, Hai-Dong; Liu, Qiao; Xu, Li-Xia; Lu, Lu; Yang, Qi-Zhi

    2018-06-01

    The present work investigates the properties of self-made magnetic filler from plastic waste bottle and explores a new technology approach of waste plastic resource utilization. The magnetic filler was prepared by air plasma modification and loading magnetic ferrite on the plastic strip from waste plastic bottle. The surface properties of magnetic filler were characterized by Atomic Force Microscope (AFM), contact angle system and Fourier Transform Infrared (FTIR). AFM images of original and modified plastic strip showed that low-temperature plasma treatment markedly increased the surface roughness of plastic strip. The mean roughness (Ra) of plastic strip rose from 1.116 to 5.024 nm. FTIR spectra indicated that a lot of polar oxygenic groups were introduced onto the surface of plastic by plasma modification. Modification by low-temperature plasma increased the hydrophilicity of plastic strip surface. When treatment time is 40 s, water contact angle of plastic strip surface reduced from 78.2° of original plastic strip to 25.3°. When used in bioreactor, magnetic filler had very favorable microenvironment for microorganism growth. Magnetic filler was more efficient for removing chemical oxygen demand (COD) and [Formula: see text] in sewage than nonmagnetic filler. The resource utilization of plastic wastes will become reality if the magnetic filler is applied widely.

  17. Differential Rheology Among ABO Blood Group System In Nigerians

    African Journals Online (AJOL)

    Research Article. Differential Rheology ... alterations in membrane and cytoskeletal properties that could affect the rheology of blood. This study was ... depending on the concentration of plasma proteins especially ... Laboratory Analysis:.

  18. Effect of Filler Concentration on Thermal Stability of Vinyl Copolymer Elastomer (VCE) Composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devlin, David James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Kevin C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pacheco, Robin Montoya [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-06

    To study the thermal stability of vinyl copolymer elastomer (VCE) in its composite form, systematic TGA characterizations were conducted in both nonisothermal and isothermal modes. The effects of filler concentration on the aging behaviors of the VCE/filler composites were investigated under nitroplasticizer (NP) environment. FTIR characterization was used to probe the structural changes in the VCE polymer before and after the thermal treatments. This study suggests that the filler concentration significantly deteriorates the thermal stability of NP at a moderate temperature (< 70 °C). The degradation of NP, in turn, accelerates the aging process of the VCE polymer in its composite form.

  19. Influence of fillers on mechanical properties of filled rubbers during ageing by irradiation

    International Nuclear Information System (INIS)

    Planes, Emilie

    2008-01-01

    The understanding of the evolution of mechanical properties and the prediction of the lifetime of material environment is a recurring problem. This question is very important to develop polymer formulations used for electrical cables in nuclear power plants. Thus it is important to know the evolution of materials when they are submitted to usual conditions in nuclear power plants. There are in literature some studies concerning the ageing by gamma irradiation of unfilled elastomer but the addition of fillers in the material can have consequences on the evolution of the mechanical properties during irradiation. Thus this work concerns the study of the ageing by gamma irradiation of filled rubbers and the identification of the role of fillers in the degradation mechanisms. The studied matrix, which commonly used for the type of application is EPDM. The fillers are: nano-scopic silica and aluminium trihydrate. Their surfaces have been treated in order to understand the role of filler-matrix interfaces during ageing. To evaluate the influence of fillers on the degradation mechanisms and on the evolution of the mechanical properties, the evolution during ageing of these materials filled or not has been studied for an ageing by irradiation: they have been physico-chemically, micro-structurally and mechanically characterized at various levels of ageing [fr

  20. Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites.

    Science.gov (United States)

    D'Alpino, Paulo Henrique Perlatti; Svizero, Nádia da Rocha; Bim Júnior, Odair; Valduga, Claudete Justina; Graeff, Carlos Frederico de Oliveira; Sauro, Salvatore

    2016-06-01

    The aim of this study is to evaluate the distribution of the filler size along with the zeta potential, and the integrity of silane-bonded filler surface in different types of restorative dental composites as a function of the material age condition. Filtek P60 (hybrid composite), Filtek Z250 (small-particle filled composite), Filtek Z350XT (nanofilled composite), and Filtek Silorane (silorane composite) (3M ESPE) were tested at different stage condition (i.e., fresh/new, aged, and expired). Composites were submitted to an accelerated aging protocol (Arrhenius model). Specimens were obtained by first diluting each composite specimen in ethanol and then dispersed in potassium chloride solution (0.001 mol%). Composite fillers were characterized for their zeta potential, mean particle size, size distribution, via poly-dispersion dynamic light scattering. The integrity of the silane-bonded surface of the fillers was characterized by FTIR. The material age influenced significantly the outcomes; Zeta potential, filler characteristics, and silane integrity varied both after aging and expiration. Silorane presented the broadest filler distribution and lowest zeta potential. Nanofilled and silorane composites exhibited decreased peak intensities in the FTIR analysis, indicating a deficiency of the silane integrity after aging or expiry time. Regardless to the material condition, the hybrid and the small-particle-filled composites were more stable overtime as no significant alteration in filler size distribution, diameter, and zeta potential occurred. A deficiency in the silane integrity in the nanofilled and silorane composites seems to be affected by the material stage condition. The materials conditions tested in this study influenced the filler size distribution, the zeta potential, and integrity of the silane adsorbed on fillers in the nanofilled and silorane composites. Thus, this may result in a decrease of the clinical performance of aforementioned composites, in

  1. Study of Tetrapodal ZnO-PDMS Composites: A Comparison of Fillers Shapes in Stiffness and Hydrophobicity Improvements

    OpenAIRE

    Jin, Xin; Deng, Mao; Kaps, Sören; Zhu, Xinwei; Hölken, Iris; Mess, Kristin; Adelung, Rainer; Mishra, Yogendra Kumar

    2014-01-01

    ZnO particles of different size and structures were used as fillers to modify the silicone rubber, in order to reveal the effect of the filler shape in the polymer composites. Tetrapodal shaped microparticles, short microfibers/whiskers, and nanosized spherical particles from ZnO have been used as fillers to fabricate the different ZnO-Silicone composites. The detailed microstructures of the fillers as well as synthesized composites using scanning electron microscopy have been presented here....

  2. Structural analysis of gluten-free doughs by fractional rheological model

    Science.gov (United States)

    Orczykowska, Magdalena; Dziubiński, Marek; Owczarz, Piotr

    2015-02-01

    This study examines the effects of various components of tested gluten-free doughs, such as corn starch, amaranth flour, pea protein isolate, and cellulose in the form of plantain fibers on rheological properties of such doughs. The rheological properties of gluten-free doughs were assessed by using the rheological fractional standard linear solid model (FSLSM). Parameter analysis of the Maxwell-Wiechert fractional derivative rheological model allows to state that gluten-free doughs present a typical behavior of viscoelastic quasi-solid bodies. We obtained the contribution dependence of each component used in preparations of gluten-free doughs (either hard-gel or soft-gel structure). The complicate analysis of the mechanical structure of gluten-free dough was done by applying the FSLSM to explain quite precisely the effects of individual ingredients of the dough on its rheological properties.

  3. Synthesis and Rheological Properties of an Associative Star Polymer in Aqueous Solutions

    DEFF Research Database (Denmark)

    Hietala, Sami; Mononen, Pekka; Strandman, Satu

    2007-01-01

    synthesised by atom transfer radical. polymerization (ATRP) was found to fonn hydrogels at room temperature at polymer concentrations. Cp, over 22 gIL due to the interpolymer drophobic association of the PS blocks. Increasing Cp leads to stronger elastic networks at room temperature that show a gel......Rheological properties of aqueous solutions and hydrogels fonned by an amphiphiIic star block copolymer poly(acrylic acid)-blockpolystyrene (PAAS4-b-PS6)4. were investigated as a function of the polymer concentration (Cp), temperature, and added saIt concentration. The water-soluble polymer......-to-solution transition with increasing temperature. Increase of ionic strength decreases the moduli compared with the pure hydrogel but did not affect the gel-sol transition temperature significantly. Small-angle X-ray experiments showed two distinct scattering correlation peaks for samples above the gelling Cp, which...

  4. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus

    International Nuclear Information System (INIS)

    Wang, Xiang; Su, Heng; Lv, Weiyang; Du, Miao; Song, Yihu; Zheng, Qiang

    2015-01-01

    The functions and structures of biological mucus are closely linked to rheology. In this article, the skin mucus of loach (Misgurnus anguillicaudatus) was proved to be a weak hydrogel susceptible to shear rate, time, and history, exhibiting: (i) Two-region breakdown of its gel structure during oscillatory strain sweep; (ii) rate-dependent thickening followed by three-region thinning with increased shear rate, and straight thinning with decreased shear rate; and (iii) time-dependent rheopexy at low shear rates, and thixotropy at high shear rates. An interesting correlation between the shear rate- and time-dependent rheological behaviors was also revealed, i.e., the rheopexy-thixotropy transition coincided with the first-second shear thinning region transition. Apart from rheology, a structure of colloidal network was observed in loach skin mucus using transmission electron microscopy. The complex rheology was speculated to result from inter- and intracolloid structural alterations. The unique rheology associated with the colloidal network structure, which has never been previously reported in vertebrate mucus, may play a key role in the functions (e.g., flow, reannealing, lubrication, and barrier) of the mucus

  5. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang, E-mail: 11229036@zju.edu.cn; Su, Heng, E-mail: shtdyso@163.com; Lv, Weiyang, E-mail: 3090103369@zju.edu.cn; Du, Miao, E-mail: dumiao@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Zheng, Qiang, E-mail: zhengqiang@zju.edu.cn [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-01-15

    The functions and structures of biological mucus are closely linked to rheology. In this article, the skin mucus of loach (Misgurnus anguillicaudatus) was proved to be a weak hydrogel susceptible to shear rate, time, and history, exhibiting: (i) Two-region breakdown of its gel structure during oscillatory strain sweep; (ii) rate-dependent thickening followed by three-region thinning with increased shear rate, and straight thinning with decreased shear rate; and (iii) time-dependent rheopexy at low shear rates, and thixotropy at high shear rates. An interesting correlation between the shear rate- and time-dependent rheological behaviors was also revealed, i.e., the rheopexy-thixotropy transition coincided with the first-second shear thinning region transition. Apart from rheology, a structure of colloidal network was observed in loach skin mucus using transmission electron microscopy. The complex rheology was speculated to result from inter- and intracolloid structural alterations. The unique rheology associated with the colloidal network structure, which has never been previously reported in vertebrate mucus, may play a key role in the functions (e.g., flow, reannealing, lubrication, and barrier) of the mucus.

  6. Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler

    Directory of Open Access Journals (Sweden)

    Ján Kruželák

    2016-01-01

    Full Text Available Rubber magnetic composites were prepared by incorporation of unmodified and surface modified strontium ferrite into rubber matrices based on NBR and NBR/PVC. Strontium ferrite was dosed to the rubber matrices in concentration scale ranging from 0 to 100 phr. The main goal was to investigate the influence of the type of ferrite on the curing process, physical-mechanical and magnetic properties of composites. The mutual interactions between the filler and rubber matrices were investigated by determination of cross-link density and SEM analysis. The incorporation of magnetic fillers leads to the increase of cross-link density and remanent magnetic induction of composites. Moreover, the improvement of physical-mechanical properties was achieved in dependence on the content of magnetic fillers. Surface modification of ferrite contributed to the enhancement of adhesion on the interphase filler-rubber. It can be stated that ferrite exhibits reinforcing effect in the composite materials and this reinforcing behavior was emphasized with the increase in polarity of the rubber matrix.

  7. Case Reports of Adipose-derived Stem Cell Therapy for Nasal Skin Necrosis after Filler Injection

    Directory of Open Access Journals (Sweden)

    Ha Min Sung

    2012-01-01

    Full Text Available With the gradual increase of cases using fillers, cases of patients treated by non-medical professionals or inexperienced physicians resulting in complications are also increasing. We herein report 2 patients who experienced acute complications after receiving filler injections and were successfully treated with adipose-derived stem cell (ADSCs therapy. Case 1 was a 23-year-old female patient who received a filler (Restylane injection in her forehead, glabella, and nose by a non-medical professional. The day after her injection, inflammation was observed with a 3×3 cm skin necrosis. Case 2 was a 30-year-old woman who received a filler injection of hyaluronic acid gel (Juvederm on her nasal dorsum and tip at a private clinic. She developed erythema and swelling in the filler-injected area A solution containing ADSCs harvested from each patient's abdominal subcutaneous tissue was injected into the lesion at the subcutaneous and dermis levels. The wounds healed without additional treatment. With continuous follow-up, both patients experienced only fine linear scars 6 months postoperatively. By using adipose-derived stem cells, we successfully treated the acute complications of skin necrosis after the filler injection, resulting in much less scarring, and more satisfactory results were achieved not only in wound healing, but also in esthetics.

  8. Rheological characterization of addition polyimide matrix resins and prepregs

    Science.gov (United States)

    Maximovich, M. G.; Galeos, R. M.

    1984-01-01

    Although graphite-reinforced polyimide matrix composites offer outstanding specific strength and stiffness, together with high thermal oxidative stability, processing problems connected with their rheological behavior remain to be addressed. The present rheological studies on neat polyimide resin systems encountered outgassing during cure. A staging technique has been developed which can successfully handle polyimide samples, and novel methods were applied to generate rheological curves for graphite-reinforced prepregs. The commercial graphite/polyimide systems studied were PRM 15, LARC 160, and V378A.

  9. ZnO as a cheap and effective filler for high breakdown strength elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    . In this article, we explore the use of a cheap and abundant metal oxide filler, namely ZnO, as a filler in silicone-based dielectric elastomers. The electro-mechanical properties of the elastomer composites are investigated, and their performance is evaluated by means of figures of merit. Various commercial...

  10. Comparative study of sea ice dynamics simulations with a Maxwell elasto-brittle rheology and the elastic-viscous-plastic rheology in NEMO-LIM3

    Science.gov (United States)

    Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme

    2017-04-01

    Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.

  11. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  12. Influencia del filler calizo en las propiedades de los morteros a resistencia constante

    Directory of Open Access Journals (Sweden)

    Hernández, Francisco

    1994-03-01

    Full Text Available This article studies the effects produced by the lime filler on the Portugal cement used with additions in the production of mortars. The starting point is a Portland cement to which different ratios of lime filler, ranging from 0-50%, are added. The next step consists of preparing mortar specimens using standardized sand as aggregate, curing them up to the age of 28 days when they are put to flexo-tensile and compression tests. The mortar strength is fixed at the age of 28 days, making it coincide with the strength of a pattern cement mortar (cement without additions of the same age. Then the effects of the filler on the slump and the water cement relation are observed for fixed strength.

    En este artículo se estudian los efectos producidos por el "filler" calizo en el cemento portland al utilizar este cemento con adiciones, en la fabricación de morteros. Se parte de un cemento portland al que se le añaden proporciones de "filler" calizo desde O hasta el 50%, y se preparan probetas de mortero utilizando como árido arena normalizada, curándose a continuación hasta la edad de 28 días, fecha en la que se someten a rotura por flexotracción y compresión. La resistencia de los morteros se fija a la edad de 28 días, haciéndola coincidir con la de un mortero de cemento patrón (cemento sin adiciones a la misma edad, y se observan, a resistencia fija, los efectos del "filler" sobre el escurrimiento y relación agua/cemento.

  13. Characterization of granite and limestone powders for use as fillers in bituminous mastics dosage

    Directory of Open Access Journals (Sweden)

    BRENO BARRA

    2014-06-01

    Full Text Available This paper discusses the importance of studies on materials known as fillers from different mineral origins, used in asphalt mixes, specifically in the formulation of mastics. The research was carried out on samples of limestone and granite rock filler and asphalt binder (50/70. The samples were evaluated through semiquantitative chemical analyses by X-ray fluorescence, granulometry by low angle laser emission, scanning electron microscopy, softening point tests, penetration tests, and aggregate-asphalt binder and aggregate-mastic adhesion tests. The results highlighted convergent trends, indicating that the active behavior of the fillers in the mastic formulation is not related to the size of the particles, but rather to their form, surface texture, specific surface area and mineralogical nature, allowing the filler activity concept to be divided into two components: physical (hardening and chemical (adhesion.

  14. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  15. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  16. Rheological study of chitosan in solution

    International Nuclear Information System (INIS)

    Silva, Italo Guimaraes Medeiros da; Alves, Keila dos Santos; Balaban, Rosangela de Carvalho

    2009-01-01

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1 H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  17. Investigation of Properties of Asphalt Concrete Containing Boron Waste as Mineral Filler

    Directory of Open Access Journals (Sweden)

    Cahit GÜRER

    2016-05-01

    Full Text Available During the manufacture of compounds in the boron mining industry a large quantity of waste boron is produced which has detrimental effects on the environment. Large areas have to be allocated for the disposal of this waste. Today with an increase in infrastructure construction, more efficient use of the existing sources of raw materials has become an obligation and this involves the recycling of various waste materials. Road construction requires a significant amount of raw materials and it is possible that substantial amounts of boron-containing waste materials can be recycled in these applications. This study investigates the usability of boron wastes as filler in asphalt concrete. For this purpose, asphalt concrete samples were produced using mineral fillers containing 4%, 5%, 6%, 7% and 8% boron waste as well as a 6% limestone filler (6%L as the control sample. The Marshall Design, mechanical immersion and Marshall Stability test after a freeze-thaw cycle and indirect tensile stiffness modulus (ITSM test were performed for each of the series. The results of this experimental study showed that boron waste can be used in medium and low trafficked asphalt concrete pavements wearing courses as filler.

  18. Glans Penis Augmentation Using Hyaluronic Acid Gel as an Injectable Filler

    OpenAIRE

    Moon, Du Geon; Kwak, Tae Il; Kim, Je Jong

    2015-01-01

    Glans penis augmentation (GPA) has received little attention from experts despite the existence of a subset of patients who may be dissatisfied with a small glans or poor tumescence of the glans during erection. Recently, GPA using an injectable filler or implantation of a graft or filler has been developed. Despite a demanding injection technique and inevitable uneven undulation of the glandular surface, GPA using injectable hyaluronic acid (HA) gel is a novel and useful therapy and an effec...

  19. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    Science.gov (United States)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K. S. S.; Majali, A. B.; Tikku, V. K.

    2002-12-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer.

  20. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    International Nuclear Information System (INIS)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K.S.S.; Majali, A.B.; Tikku, V.K.

    2002-01-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer

  1. The basic science of dermal fillers: past and present Part I: background and mechanisms of action.

    Science.gov (United States)

    Gilbert, Erin; Hui, Andrea; Waldorf, Heidi A

    2012-09-01

    Dermal fillers have provided a safe and effective means for aesthetic soft tissue augmentation, and have experienced a dramatic increase in popularity during the past 10 years. Much focus has been placed upon filler technique and patient outcomes. However, there is a relative lack of literature reviewing the basic science of dermal fillers, which is vital to a physician's understanding of how each product behaves in vivo. Part I of this article reviews the basic science and evolution of both historical and contemporary dermal fillers; Part II examines their adverse effects. We endeavor to provide the physician with a practical approach to choosing products that maximize both aesthetic outcome and safety.

  2. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    Science.gov (United States)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  3. The effect of chemical composition and granulation of Fe - based fillers on properties of metal resinous composite

    International Nuclear Information System (INIS)

    Janecki, J.; Dasiewicz, J.; Pawelec, Z.

    2000-01-01

    In this paper the authors present metal-resinous composites with Fe based fillers of various element constitution and granulation. The analysis of influence of filler type on coefficient of linear thermal expansion of composite materials was performed. Friction and wear tests (composite-bronze and composite-steel pairs) were carried out. It was stated that the thinner granulation of main filler has a positive effect on coefficient of linear thermal expansion and friction/wear characteristics. The presence of copper, nickel and molybdenum in the filler is beneficial for some properties of the composite. (author)

  4. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  5. Rheology of organoclay suspension

    CSIR Research Space (South Africa)

    Hato, MJ

    2011-05-01

    Full Text Available The authors have studied the rheological properties of clay suspensions in silicone oil, where clay surfaces were modified with three different types of surfactants. Dynamic oscillation measurements showed a plateau-like behavior for all...

  6. Role of interfacial rheological properties in oil field chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos-Szabo, J.; Lakatos, I.; Kosztin, B.

    1996-12-31

    Interfacial rheological properties of different Hungarian crude oil/water systems were determined in wide temperature and shear rate range and in presence of inorganic electrolytes, tensides, alkaline materials and polymers. The detailed laboratory study definitely proved that the interfacial rheological properties are extremely sensitive parameters towards the chemical composition of inmiscible formation liquids. Comparison and interpretation of the interfacial rheological properties may contribute significantly to extension of the weaponry of the reservoir characterization, better understanding of the displacement mechanism, development of the more profitable EOR/IOR methods, intensification of the surface technologies, optimization of the pipeline transportation and improvement of the refinery operations. It was evidenced that the interfacial rheology is an efficient and powerful detection technique, which may enhance the knowledge on formation, structure, properties and behaviour of interfacial layers. 17 refs., 18 figs., 2 tabs.

  7. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  8. Rheology of Active Fluids

    Science.gov (United States)

    Saintillan, David

    2018-01-01

    An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

  9. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS2) nanofluids

    International Nuclear Information System (INIS)

    Gu, Shu-Ying; Gao, Xie-Feng; Zhang, Yi-Han

    2015-01-01

    A development of the novel and stable solvent-free ionic MoS 2 nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS 2 from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, 1 H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS 2 nanofluids show that inorganic MoS 2 cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS 2 nanofluids is presented. • The rheological behaviors can be tailored by

  10. Complications After Facial Injections With Permanent Fillers: Important Limitations and Considerations of MRI Evaluation

    NARCIS (Netherlands)

    Kadouch, Jonathan A.; Tutein Nolthenius, Charlotte J.; Kadouch, Daniel J.; van der Woude, Henk-Jan; Karim, Refaat B.; Hoekzema, Rick

    2014-01-01

    Background: Soft-tissue fillers have become more prevalent for facial augmentation in the last 2 decades, even though complications of permanent fillers can be challenging to treat. An investigative imaging tool could aid in assessing the nature and extent of these complications when clinical

  11. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  12. Enhancing the Ductility of Laser-Welded Copper-Aluminum Connections by using Adapted Filler Materials

    Science.gov (United States)

    Weigl, M.; Albert, F.; Schmidt, M.

    Laser micro welding of direct copper-aluminum connections typically leads to the formation of intermetallic phases and an embrittlement of the metal joints. By means of adapted filler materials it is possible to reduce the brittle phases and thereby enhance the ductility of these dissimilar connections. As the element silicon features quite a well compatibility with copper and aluminum, filler materials based on Al-Si and Cu-Si alloys are used in the current research studies. In contrast to direct Cu-Al welds, the aluminum filler alloy AlSi12 effectuates a more uniform element mixture and a significantly enhanced ductility.

  13. Evaluation on construction quality of pit filler material of cavern type radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Takechi, Shin-ichi; Yokozeki, Kosuke; Shimbo, Hiroshi; Terada, Kenji; Akiyama, Yoshihiro; Yada, Tsutomu; Tsuji, Yukikazu

    2014-01-01

    The pit filler material of the underground cavern-type radioactive waste disposal facility, which is poured directly around the radioactive waste packages where high temperature environment is assumed by their decay heat, is concerned to be adversely affected on the filling behavior and its hardened properties. There also are specific issues that required quality of construction must be achieved by unmanned construction with remote operation, because the pit filler construction shall be done under radiation environment. In this paper, the mix proportion of filler material is deliberated with filling experiments simulating high temperature environment, and also the effect of temperature on hardened properties are confirmed with high temperature curing test. Subsequently, the feasibility of unmanned construction method of filler material by pumping, and by movable bucket, are comparatively discussed through a real size demonstration. (author)

  14. Lower Face: Clinical Anatomy and Regional Approaches with Injectable Fillers.

    Science.gov (United States)

    Braz, André; Humphrey, Shannon; Weinkle, Susan; Yee, G Jackie; Remington, B Kent; Lorenc, Z Paul; Yoelin, Steve; Waldorf, Heidi A; Azizzadeh, Babak; Butterwick, Kimberly J; de Maio, Mauricio; Sadick, Neil; Trevidic, Patrick; Criollo-Lamilla, Gisella; Garcia, Philippe

    2015-11-01

    The use of injectable fillers enables facial sculpting through treatment of volume depletion and modeling of facial contours. Injectable fillers are among the most frequently performed minimally invasive cosmetic procedures.However, treatment of the lower third of the face can be challenging and requires expertise in facial anatomy. In this article, the authors provide a comprehensive review of the anatomy of the lower third of the face, highlighting danger zones. In addition, the authors describe their preferred approach and detailed technique used in the treatment of each specific area, namely the jawline, prejowl sulcus, melomental folds, and lips.

  15. A systematic review of filler agents for aesthetic treatment of HIV facial lipoatrophy (FLA).

    Science.gov (United States)

    Jagdeo, Jared; Ho, Derek; Lo, Alex; Carruthers, Alastair

    2015-12-01

    HIV facial lipoatrophy (FLA) is characterized by facial volume loss. HIV FLA affects the facial contours of the cheeks, temples, and orbits, and is associated with social stigma. Although new highly active antiretroviral therapy medications are associated with less severe FLA, the prevalence of HIV FLA among treated individuals exceeds 50%. The goal of our systematic review is to examine published clinical studies involving the use of filler agents for aesthetic treatment of HIV FLA and to provide evidence-based recommendations based on published efficacy and safety data. A systematic review of the published literature was performed on July 1, 2015, on filler agents for aesthetic treatment of HIV FLA. Based on published studies, poly-L-lactic acid is the only filler agent with grade of recommendation: B. Other reviewed filler agents received grade of recommendation: C or D. Poly-L-lactic acid may be best for treatment over temples and cheeks, whereas calcium hydroxylapatite, with a Food and Drug Administration indication of subdermal implantation, may be best used deeply over bone for focal enhancement. Additional long-term randomized controlled trials are necessary to elucidate the advantages and disadvantages of fillers that have different biophysical properties, in conjunction with cost-effectiveness analysis, for treatment of HIV FLA. Published by Elsevier Inc.

  16. Synthesis of polypropylene/graphite nanocomposites by means of in situ polymerization

    International Nuclear Information System (INIS)

    Montagna, Larissa S.; Basso, Nara R.S.

    2009-01-01

    The nanotechnology presents a large field for research and development of new polymeric materials based in nanocomposites. This work is related to the synthesis of nanocomposites of polypropylene with graphite as filler. The sheets of graphite in nanometer dimensions were made by means of the chemical exfoliation and thermal treatment. The synthesis of the nanocomposites was carried through by means of the in situ polymerization using a metallocene catalyst and with different amounts of inorganic load (0,5; 1 and 2%). The synthesized nanocomposites were characterized by scanning electron microscopy (SEM) and X-Ray diffraction (XRD). (author)

  17. Lymphedema Fat Graft: An Ideal Filler for Facial Rejuvenation

    Directory of Open Access Journals (Sweden)

    Fabio Nicoli

    2014-09-01

    Full Text Available Lymphedema is a chronic disorder characterized by lymph stasis in the subcutaneous tissue. Lymphatic fluid contains several components including hyaluronic acid and has many important properties. Over the past few years, significant research has been performed to identify an ideal tissue to implant as a filler. Because of its unique composition, fat harvested from the lymphedema tissue is an interesting topic for investigation and has significant potential for application as a filler, particularly in facial rejuvenation. Over a 36-month period, we treated and assessed 8 patients with lymphedematous limbs who concurrently underwent facial rejuvenation with lymphedema fat (LF. We conducted a pre- and post-operative satisfaction questionnaire survey and a histological assessment of the harvested LF fat. The overall mean general appearance score at an average of 6 months after the procedure was 7.2±0.5, demonstrating great improvement. Patients reported significant improvement in their skin texture with a reading of 8.5±0.7 and an improvement in their self-esteem. This study demonstrates that LF as an ideal autologous injectable filler is clinically applicable and easily available in patients with lymphedema. We recommend the further study and clinical use of this tissue as it exhibits important properties and qualities for future applications and research.

  18. Properties of concrete containing coconut shell powder (CSP) as a filler

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.

    2017-11-01

    Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.

  19. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Science.gov (United States)

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  20. Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Alfonso, J.E.; Valencia, C.; Sanchez, M.C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Franco, J.M., E-mail: franco@uhu.es [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain); Gallegos, C. [Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus Universitario del Carmen, 21071 Huelva (Spain)

    2011-08-15

    Highlights: {yields} Evaluation of different polyolefins as modifiers of the rheological properties and mechanical stability of lithium lubricating greases. {yields} The type of polymer, molecular weight, cristallinity degree and vinyl acetate content influences the rheological and thermal response of lubricating greases. {yields} The crystallinity degree, mainly dependent on the nature of the polymer, is the most highly influencing parameter on the rheology of lubricating greases. {yields} The rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. - Abstract: The purpose of the present work is to evaluate the effect that different polyolefins, used as additives in small proportions, exert on the rheological properties of standard lithium lubricating greases. Grease formulations containing several polyolefins, differing in nature and molecular weight, were manufactured and rheologically characterized. The influence of the type of polymer, molecular weight, crystallinity degree and vinyl acetate content has been analyzed. Small-amplitude oscillatory shear (SAOS) and viscous flow measurements, as well as calorimetric (DSC) and thermogravimetric (TGA) analysis, were carried out. In general, the addition of polymers such as HDPE, LDPE, LLDPE and PP to lithium lubricating greases significantly increases the values of the rheological parameters analyzed, consistency and mechanical stability. However, the use of polyolefins as rheology modifiers does not significantly affect the friction coefficient determined in a tribological contact. The crystallinity degree, mainly dependent on the nature of the polymer, has been found the most highly influencing parameter on the rheology of the lubricating greases studied. However, the rheological modification exerted by EVA copolymers mainly depends on the vinyl acetate content. Thus, a negative effect in both apparent viscosity and linear viscoelastic functions of greases was obtained when

  1. Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles

    International Nuclear Information System (INIS)

    Gao, Zhifang; Zhao, Lei

    2015-01-01

    Highlights: • Nano-fillers were synthesized by a simple urea process. • Ternary filler system with synthesized nano-hybrid fillers was investigated. • Using of nano-hybrid filler for prevent nanofiller aggregation was presented. - Abstract: Nano-AlN particles, AlN/graphene nano-hybrids (AlN/GE) and AlN/carbon nanotubes nano-hybrids (AlN/CNTs) were prepared. The structures, morphologies of synthesized nano-materials were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the morphologies of the synthesized nano-materials were obviously different. In addition, the thermal conductivity of epoxy composites could be effectively improved by adding the produced nano-fillers. Especially, the epoxy composite with AlN/GE nano-hybrids had the highest enhancement in thermal conductivity comparison to the pure epoxy. Moreover, the density of epoxy composites with the synthesized nano-fillers was decreased and the corresponding thermal stability was enhanced

  2. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    Science.gov (United States)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  3. The Influence of Unusual Materials as Prospective Fillers in the Hot Mix Asphalt

    Science.gov (United States)

    Cavalcate Ferrão, Wallace; Moizinho, Joel Carlos

    2017-10-01

    Among the factors that influence directly the durability of the asphaltic layer on pavements, the type and percentage of filler in the hot mix asphalt pavement (HMA) is a great player. The most traditional fillers, the Portland cement and the hydrated lime, are well known for resisting to weather variations and adding extra features to the hot mixtures. The glass powder, the cladding waste (gotten from clay bricks), the ashes of rice husks and laterite powder are proposed as substitutes to the traditional ones. The materials have been sieved and classified by fitting the powder on the filler grain size required by Brazilian Rules, eventually they have been tested with asphalt 50/70. The glass powder performed a Thermic Susceptibility Index (IST) of -0.69 for 5% in weight of filler and -0.75 for 10% in weight of filler, proving that this material satisfies the Brazilian specification DNIT-EM 095/2006; on the other hand, the laterite powder presented an IST of -0.61 for 5% and 0.32 for 10%. After executing the Softening Point, Penetration and Flash Point tests, it has been confirmed that the glass and laterite powder are recommended materials as potential substitutes to the Portland cement, however the first one performs better under balmy temperatures due to its negative IST; the cladding powder and the rice husks turns the mixtures too rigid and breakable on percentages close to 10%.

  4. Influence of heat conductivity on the performance of RTV SIR coatings with different fillers

    Energy Technology Data Exchange (ETDEWEB)

    Siderakis, K [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, GR-26110 Patras (Greece); Agoris, D [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Greece, GR-26500, Rion, Greece (Greece); Gubanski, S [High Voltage Laboratory, Department of Electric Power Engineering, Chalmers University of Technology, S-41296, Gothenburg (Sweden)

    2005-10-07

    Room temperature vulcanized silicone rubber (RTV SIR) coatings are employed in order to improve the pollution performance of high voltage ceramic insulators by imparting surface hydrophobicity. In this paper, the performance of three RTV SIR coatings containing different fillers is investigated in a salt-fog test. Alumina trihydrate (ATH) and silica are the fillers included in the formulation, aiming to increase the material endurance to the energy supplied by the surface electrical activity during periods of hydrophobicity loss. The primary action of these fillers is to increase the material heat conductivity, i.e. the amount of energy conducted to the substrate. In addition, in the case of ATH relief is also achieved due to particle decomposition. The results indicate that for the compositions commercially available, where low amounts of fillers are used, and under the conditions of the test, ATH filled coatings performed better than the silica filled ones. This is attributed to ATH decomposition which further relieves the material structure and therefore decelerates material aging.

  5. Treatment of a traumatic atrophic depressed scar with hyaluronic acid fillers: a case report

    Directory of Open Access Journals (Sweden)

    Hussain SN

    2017-08-01

    Full Text Available Syed Nazim Hussain,1 Greg J Goodman,2,3 Eqram Rahman4 1Royal Lush Skin Hair & Laser Clinic, Saket, New Delhi, India; 2Department of Primary Care, Monash University, Clayton, 3Skin and Cancer Foundation Inc, Carlton, VIC, Australia; 4Faculty of Medical Science, Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford, UK Background: Hyaluronic acid filler has been documented in the treatment of atrophic depressed acne scars relatively frequently in the literature but rarely in chronic depressed traumatic atrophic facial scars.Methods: This case report discusses the use of hyaluronic acid fillers in the correction of a post-traumatic facial atrophic scar on the right cheek.Results: The right cheek scar was substantially corrected with one session of two different hyaluronic acids injected in a deep and superficial plane.Conclusion: Relatively accurate, simple and effective correction of this atrophic traumatic scar may suggest that fillers are a suitable alternative to surgery for such scars. Keywords: scarring, scar correction, filler, hyaluronic acid, facial scar

  6. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    Science.gov (United States)

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  7. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers.

    Science.gov (United States)

    Domun, Nadiim; Paton, Keith R; Hadavinia, Homayoun; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-10-19

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G IC , by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  8. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

    Directory of Open Access Journals (Sweden)

    Nadiim Domun

    2017-10-01

    Full Text Available In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs and boron nitride nanotubes (BNNTs were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  9. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-11-23

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  10. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    Science.gov (United States)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  11. Rubber materials from elastomers and nanocellulose powders: filler dispersion and mechanical reinforcement.

    Science.gov (United States)

    Fumagalli, Matthieu; Berriot, Julien; de Gaudemaris, Benoit; Veyland, Anne; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Heux, Laurent

    2018-04-04

    Rubber materials with well-dispersed fillers and large mechanical reinforcement have been obtained by melt-processing a diene elastomer matrix and tailored nanocellulose powders having both a high specific surface area and a modified interface. Such filler powders with a specific surface area of 180 m2 g-1 and 100 m2 g-1 have been obtained by freeze-drying suspensions of short needle-like cellulose nanocrystals (CNCs) and entangled networks of microfibrillated cellulose (MFC) in tert-butanol/water, respectively. A quantitative and toposelective filler surface esterification was performed using a gas-phase protocol either with palmitoyl chloride (PCl) to obtain a hydrophobic but non-reactive nanocellulose interface, or with 3,3'-dithiopropionic acid chloride (DTACl) to introduce reactive groups that can covalently bind the nanocellulose interface to the dienic matrix in a subsequent vulcanization process. A set of filled materials was prepared varying the filler morphology, interface and volume fraction. Transmission electron microscopy images of ultrathin cryo-sections showed that modified nanocellulose fillers presented a relatively homogeneous distribution up to a volume fraction of 20%. The materials also exhibited a significant modulus increase, while keeping an extensibility in the same range as that of the neat matrix. Strikingly, in the case of the reactive interface, a strong stress-stiffening behavior was evidenced from the upward curvature of the tensile curve, leading to a large increase of the ultimate stress (up to 7 times that of the neat matrix). Taken together, these properties, which have never been previously reported for nanocellulose-filled elastomers, match well the mechanical characteristics of industrial carbon black or silica-loaded elastomers.

  12. Textural Properties of Agarose Gels described by FT-Rheology

    NARCIS (Netherlands)

    Klein, C.O.; Venema, P.; Sagis, L.M.C.; Linden, van der E.

    2008-01-01

    Large Amplitude Oscillatory Shear was used to determine the non-linear rheological properties of agarose gels. The analysis was performed with the characteristic functions method based on FT-Rheology, that gives access to a physical interpretation of the non-linear regime. This analysis was then

  13. Effects of trace fillers on the radiation-induced crosslinking of polyethylene

    International Nuclear Information System (INIS)

    Chappas, W.J.; Silverman, J.

    1979-01-01

    Silica-filled samples of low-density polyethylene were subjected to γ and electron irradiation. The insoluble fraction determined by Soxhlet extraction was found to be independent of filler concentrations up to 0.5% by volume. The results show no evidence to support the previously reported work by Gordiyenko et al. of a sharp increase in the gel fraction of irradiated samples with filler concentrations of 0.2%. Substantial changes in the conditions of irradiation and of sample preparation and treatment do not affect gel yields strongly

  14. Rheological study of chitosan and its blends: An overview

    Directory of Open Access Journals (Sweden)

    Esam A. El-hefian

    2010-06-01

    Full Text Available Chitosan, a modified natural carbohydrate polymer derived from carapaces of crabs and shrimps, has received a great deal of attention for its applications in diverse fields owing to its biodegradability, biocompatibility, non-toxicity and anti-bacterial property. The wide-ranging applications involve a broad spectrum of characterisation techniques and rheology represents one technique of growing importance in this field. This paper is an attempt to review the latest development in the rheology of chitosan, either on its own or associated with other materials, including the parameters that strongly influence its rheological behaviour such as concentration, pH and temperature.

  15. Study of cement pastes rheological behavior using dynamic shear rheometer

    Directory of Open Access Journals (Sweden)

    J. E. S. L. Teixeira

    Full Text Available Concrete, in its fresh state, has flow characteristics that are crucial to its proper launch and densification. These characteristics are usually measured through empirical testing as the slump test, but this test does not quantify completely the material behavior. Since this material is characterized as a Bingham fluid, it is essential the study of its rheological behavior to verify its properties even in fresh state. The use of classical rheology has been employed by the scientific community to obtain rheological parameters determinants to characterize this material, such as yield stress, plastic viscosity and evolution of shear stress to shear rate. Thus, this present study aims to determine the rheological behavior of different cement pastes produced with cement CP III 40 RS, varying between them the hydration periods (20 and 60 min, the water-cement ratio (0.40, 0.45 and 0.50 and the use or not of additive. Samples were assayed by flow test to determine the rheological parameters showing the effect of the variables mentioned above in these parameters.

  16. Relation between sensory analysis and rheology of body lotions.

    Science.gov (United States)

    Moravkova, T; Filip, P

    2016-12-01

    Evaluation of sensory attributes of cosmetic products is traditionally based on sensory panels. However, in some cases, a suitable candidate method that can reduce time and costs is the use of instrumental analysis that can detect relatively very small changes of entry ingredients. Such approach has been already applied for emollients, salt content, stabilizers, etc. The aim of this contribution is to apply the relations between sensory analysis and rheology to a series of body lotions differing in the contents of emulsifiers and viscosity regulators. Sensory and rheological analyses are related. Rheological analysis can represent a good alternative to basic orientation in chosen customer's feelings. A rotational rheometer is the only instrumental device required for the measurements. An empirical rheological model was proposed by means of which the selected sensory attributes were evaluated using the numerical values of adjustable model parameters. This approach exhibited a very good agreement with the results obtained by the sensory panel. It was shown that a description of chosen sensory attributes can be responsibly carried out by rheological measurements, that is through the attained numerical values of the parameters appearing in a proposed empirical model characterizing shear viscosity of body lotions. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Morphology and rheology in filamentous cultivations.

    Science.gov (United States)

    Wucherpfennig, T; Kiep, K A; Driouch, H; Wittmann, C; Krull, R

    2010-01-01

    Because of their metabolic diversity, high production capacity, secretion efficiency, and capability of carrying out posttranslational modifications, filamentous fungi are widely exploited as efficient cell factories in the production of metabolites, bioactive substances, and native or heterologous proteins, respectively. There is, however, a complex relationship between the morphology of these microorganisms, transport phenomena, the viscosity of the cultivation broth, and related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass, every growth form having a distinct influence on broth rheology. Hence, the advantages and disadvantages for mycelial or pellet cultivation have to be balanced out carefully. Because of the still inadequate understanding of the morphogenesis of filamentous microorganisms, fungal morphology is often a bottleneck of productivity in industrial production. To obtain an optimized production process, it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the relevant approaches in biochemical engineering. In this chapter, morphology and growth of filamentous fungi are described, with special attention given to specific problems as they arise from fungal growth forms; growth and mass transfer in fungal biopellets are discussed as an example. To emphasize the importance of the flow behavior of filamentous cultivation broths, an introduction to rheology is also given, reviewing important rheological models and recent studies concerning rheological parameters. Furthermore, current knowledge on morphology and productivity in relation to the environom is outlined in the last section of this review. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Effect of the fructose and glucose concentration on the rheological ...

    African Journals Online (AJOL)

    Jose Luis Montañez Soto

    2013-03-20

    Mar 20, 2013 ... Key words: High fructose syrups, viscosity, rheological behavior, Newtonian fluids. ... shear rate; ºBrix, soluble solids %; K, consistency index; n, flow behavior index. ... the correlations between rheological measurements and.

  19. Synthesis and rheological properties of poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Lee, Jung Kyung; Lee, Hyang Aee; Kim, Keyng Yi

    2001-01-01

    Vinyl acetate usually used in PVA resin preparation was converted to PVAc by bulk poly-merization using AIBN as a initiator and PVA was synthesized by changing the concentration of NaOH added for saponification subsequently. As a result of estimating molecular weight using GPC, molecular weight increased as the NaOH concentration increased to 2.5 N, 5.0 N, 7.5 N and 10.0 N and polydispersity had similar values of 2.1∼2.3, however, showed slightly decreasing tendency. In addition, PVA saponificated by 10.0 N-NaOH showed high syndiotacticity in observation of tacticity using NMR spectroscopy. From this fact, the degree of tacticity was predicted to be high and it was in good agreement with the tendency of polydisperisity by GPC. Also, from the result of FT-IR spectroscopy, it might be known that hydrolysis was more promoted in the PVA with 10.0 N-NaOH than other NaOH concentration. Intrinsic viscosity measured using Ubbelohde viscometer, which increased as the concentration of NaOH added for saponification increased. The change of shear strength with the change of shear rate was investigated using Brookfield viscometer, in consequence, viscosity of PVA synthesized decreased as shear rate increased. PVA solution confirmed to show the shear thinning behavior by Casson plot and PVA with 10.0 N-NaOH had the largest yield value. DSC measurement was performed to know the thermal properties of PVA. Tp had nearly constant value of 214 .deg. C in all cases except for adding 2.5 N-NaOH and ΔH was increased as the concentration of NaOH increased. From this properties, it was concluded that the degree of hydrogen bonding was proportional to the added concentration of NaOH and the increase of the degree of hydrogen bonding and hydrophobic interaction could affect the rheological and thermal properties of title compound

  20. Production of refractory chamotte particle-reinforced geopolymer composite

    Science.gov (United States)

    Kovářík, T.; Kullová, L.; Rieger, D.

    2016-04-01

    Geopolymer resins are obtained by alkaline activation of aluminosilicate sources where raw calcined clays are one of the suitable potentialities. Besides the fact that chemical composition has an essential effect on final properties of the geopolymer binder, the type of filler strongly affected resulting properties of such granular composite. However, very few comparative studies have been done on detail description of composite systems: binder - granular filler, in relation to aggregate gradation design and rheology properties of the mixture. The aim of this work is to develop and describe granular composite concerning workability of the mixture and kinetics of geopolymerization/polycondensation through flow behaviour. The rheological measurements indicated that initial viscosities of the mixtures and their evolution are different for various proportions of the filler. Moreover, it was demonstrated that increase in complex viscosity responds to the creation of chemical bonds and the formation of structural network. Finally, a correlation of the mechanism of geopolymer formation was carried out by differential scanning calorimetry (DSC).

  1. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  2. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  3. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.

    2003-01-01

    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  4. Foreign Body Granulomas after the Use of Dermal Fillers: Pathophysiology, Clinical Appearance, Histologic Features, and Treatment

    Directory of Open Access Journals (Sweden)

    Jeong Min Lee

    2015-03-01

    Full Text Available A foreign body granuloma is a non-allergic chronic inflammatory reaction that is mainly composed of multinucleated giant cells. Foreign body granulomas may occur after the administration of any dermal filler. Factors such as the volume of the injection, impurities present in the fillers, and the physical properties of fillers affect granuloma formation. The formation of granulomas involves five phases: protein adsorption, macrophage adhesion, macrophage fusion, and crosstalk. The clinical and pathologic features of granulomas vary depending on the type of filler that causes them. Foreign body granulomas can be treated effectively with intralesional corticosteroid injections. Surgical excisions of granulomas tend to be incomplete because granulomas have ill-defined borders and moreover, surgical excisions may leave scars and deformities.

  5. Contribution of fine filler particles to energy dissipation during wet sliding of elastomer compounds on a rough surface

    International Nuclear Information System (INIS)

    Pan Xiaodong

    2007-01-01

    Elastomer compounds reinforced with precipitated silica can exhibit elevated wet sliding friction on a rough surface in comparison with corresponding compounds filled with carbon black particles. The underlying mechanism is currently not well understood. To unravel this puzzling observation, the variation of wet sliding friction with filler volume fraction is examined at the sliding speed of the order of 1 m s -1 under different lubrication conditions. Depending on the lubrication liquid-water or ethanol-a compound that shows both higher bulk hysteretic loss and lower modulus does not always exhibit a higher wet sliding friction. A thorough characterization of the bulk rheology of the compounds investigated fails to provide the rationale for such behaviour, thus constituting an apparent violation of the conventional viscoelastic understanding of rubber friction on a rough surface. On the other hand, the detected lowering of friction when the lubrication liquid is changed from water to ethanol resembles the effect of liquid medium on interfacial adhesion reported in the literature. Hence, it is suggested that a stronger interfacial attractive interaction should exist in water between the road surface and silica particles on the compound surface immediately next to the road surface. This should be related to the elevated wet sliding friction detected for silica-filled compounds under water lubrication

  6. Improved natural rubber composites reinforced with a complex filler network of biobased nanoparticles and ionomer

    Science.gov (United States)

    Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...

  7. A statistical investigation of the rheological properties of magnesium phosphate cement

    OpenAIRE

    Yue, Y.; Bai, Y.; Hu, W.; You, C.; Qian, J.; McCague, C.; Jin, F.; Al-Tabbaa, A.; Mo, L.; Deng, M.

    2016-01-01

    Magnesium phosphate cement (MPC) is a promising material applied for rapid patch repairing in civil engineering and waste immobilisation in nuclear industry. However, the rheological properties of this new binder material which highly affects its engineering application, is to be explored. The current work aims at investigating the rheological properties of MPC along 98 with determining the optimum conditions to obtain MPC materials with desirable rheological performances. ...

  8. (Methacrylic Acid-Co-Divinylbenzene) Resin as Filler- Binder for ...

    African Journals Online (AJOL)

    Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand. Abstract ... Methods: Powder properties of PMD and MCC were characterized. Tablets ... with the widely used filler-binder, ... Gravimetric swelling was determined by.

  9. Yielding behavior and temperature-induced on-field oscillatory rheological studies in a novel MR suspension containing polymer-capped Fe{sub 3}Ni alloy microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Injamamul, E-mail: arif.inji.chem1986@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Mukhopadhyay, P.K. [LCMP, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700 106 (India)

    2017-05-01

    Magnetic Bimetallic alloy nanoparticles of 3d elements are known for their tunable shape, size and magnetic anisotropy and find extensive applications ranging from magneto-mechanical to biomedical devices. This paper reports the polyol-mediated synthesis of Fe-rich polyacrylic acid (PAA)-Fe{sub 3}Ni alloyed microspheres and its morphological and structural characterizations with scanning electron microscopy and X-ray diffraction studies. Magnetorheological fluid was prepared by dispersing the 10 vol% microparticles in silicone oil. The room temperature viscoelastic characterization of the fluid was performed under different magnetic fields. The field-dependent yield stresses were scaled using Klingenberg model and found that static yield stress was more accurately described by an ~M{sup 3} dependence, where M is particle magnetization. We proposed a multipolar contribution and ascertained the fact that simple dipolar description was insufficient to describe the trend in a complex rheological fluid. Temperature-dependent oscillatory rheological studies under various fields were also investigated. This demonstrated a strong temperature-induced thinning effect. The temperature-thinning in complex moduli and viscosity were more pronounced for the samples at higher magnetic field owing to quasi-solid behavior. - Highlights: • Novel one-pot chemical synthesis of Fe-rich PAA-Fe{sub 3}Ni microspheres. • Room temperature steady shear magnetorheology revealed viscoelastic behavior. • Rheometer magnetic fields can be replaced by powder particle magnetization (M) for better stress scaling. • Higher order scaling relations (~M{sup 3}) to particle magnetization (M) were observed for static yield stress. • Temperature-induced, field-dependent oscillatory rheology indicated pronounced thinning behavior, owing to predominantly quasi-solid behavior at high field density.

  10. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Saba, N., E-mail: naheedchem@gmail.com [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Paridah, M.T. [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abdan, K. [Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang Selangor (Malaysia); Ibrahim, N.A. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-12-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  11. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    International Nuclear Information System (INIS)

    Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A.

    2016-01-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  12. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  13. License application design selection feature report: Additive and fillers design feature 19

    International Nuclear Information System (INIS)

    Massari, J.R.

    1999-01-01

    The estimated additional total system life-cycle cost for each of the filler options in 1999 dollars is as follows: $923.4 million for the iron oxide option, $42.4 million to $966.4 million (depending on the extent of surface facility involvement required) for the partial iron shot fill option, $1,012 million for the complete iron shot fill option, and $134.7 million for the integral filler option (Appendix A). All of the filler options evaluated showed improvements in some aspects of pre- and post-closure waste package and repository performance. However, all of the options, except for the integral filler option, negatively impacted other areas of performance, required modification to surface facility design and operations, and invoked additional uncertainty. The iron oxide filler option will require further testing to measure thermal conductivity to ensure that peak cladding temperatures will not exceed the 350 C limit. The complete iron shot fill option may require structural improvements to the waste package design (use of partial shot fill may eliminate this concern). Both the iron shot and iron oxide options will also require further testing to confirm that the conceptual loading strategy will efficiently load a waste package in a timely manner. In addition, both shot and oxide options will require further testing to develop models for their potential to provide resistance to water flow, and, in the case of iron shot, act as an oxygen getter. Finally, uncertainty also exists as to whether the iron shot option will damage the cladding if sufficient corrosion of the shot occurs. Based on the results presented in this evaluation, the integral filler option appears to be the simplest and most cost efficient method for achieving modest improvements in pre- and post-closure performance. Since unqualified inputs were used in the development of this evaluation, they should be considered TBV (to be verified). This document will not directly support any construction

  14. Synthesis and characterization of dental composites

    Science.gov (United States)

    Djustiana, Nina; Greviana, Nadia; Faza, Yanwar; Sunarso

    2018-02-01

    During the last few decades, the increasing demands in esthetic dentistry have led to the development of dental composites material that provide similar appearance to the natural teeth. Recently, esthetic trend was an issue which increase the demand for teeth restorations that is similar with the origin. The esthetics of dental composite are more superior compared to amalgam, since its color look similar with natural teeth. Various dental composites have been developed using many type of fillers such as amorphous silica, quartz), borosilicate, Li-Sr-Ba-Al glass and oxide: zirconia and alumina. Researchers in Faculty of Dentistry University of Padjadjaran have prepared dental composites using zirconia-alumina-silica (ZAS) system as the filler. The aim is to improve the mechanical properties and the esthetic of the dental composites. The ZAS was obtained from chemical grade purity chemicals and Indonesia's natural sand as precursors its characterization were also presented. This novel method covers the procedure to synthesis and characterize dental composites in Padjadjaran University and some review about dental composites in global research.

  15. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    Science.gov (United States)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  16. Study of the geopolymer restructuration by impulse rheology

    International Nuclear Information System (INIS)

    Rouyer, J.; Frizon, F.; Poulesquen, A.

    2015-01-01

    The aim of the study is to describe the evolution of the microstructure during the setting process of the geo-polymer using an original rheological method named Optimal Fourier Rheology (OFR). The alkali activation of meta-kaolin enables physicochemical transformation from a fresh paste to a hard meso-porous matrix. Classically, oscillatory rheology technique provides viscoelastic moduli spectrum and enables to determine rheological comportment of the material under investigation. However the duration to perform a complete spectrum (more than 2.5 h) makes useless this technique in the case of changing material. The OFR technique decreases the measurement duration under 10 minutes and enables to perform several snapshots of the evolving rheological behaviour. Contrary to monochromatic iterations, here the applied stress takes the form of a chirp function which contains the full usable bandwidth. Interpretations of spectrums provide efficient access to structural evolution along the setting. Results show that the number of oligomers increases into the solution due to the dissolution of the meta-kaolin leading to a constant increase of the viscoelastic parameters until the gradual appearance of the percolating networks. The gelling time was rigorously assessed by using the Winter and Chambon criterion. A fractal percolating network is formed inside the material after a reaction time depending on the formulation parameters; corresponding fractal dimensions were established. After the gel point, the viscoelastic moduli grow rapidly until geo-polymers reach a classic viscoelastic state. Structural unit size were determined using moduli curves crossover and equalled to 2.1 nm in the case of Na geo-polymer; this value fits extremely well with value previously obtained by SAXS. Finally, the elasticity becomes constant in a large frequency range and the viscous parameter strongly decreases which means that the solid porous network is under formation. In conclusion, this

  17. Coarse-grained simulation of polymer-filler blends

    Science.gov (United States)

    Legters, Gregg; Kuppa, Vikram; Beaucage, Gregory; Univ of Dayton Collaboration; Univ of Cincinnati Collaboration

    The practical use of polymers often relies on additives that improve the property of the mixture. Examples of such complex blends include tires, pigments, blowing agents and other reactive additives in thermoplastics, and recycled polymers. Such systems usually exhibit a complex partitioning of the components. Most prior work has either focused on fine-grained details such as molecular modeling of chains at interfaces, or on coarse, heuristic, trial-and-error approaches to compounding (eg: tire industry). Thus, there is a significant gap in our understanding of how complex hierarchical structure (across several decades in length) develops in these multicomponent systems. This research employs dissipative particle thermodynamics in conjunction with a pseudo-thermodynamic parameter derived from scattering experiments to represent polymer-filler interactions. DPD simulations will probe how filler dispersion and hierarchical morphology develops in these complex blends, and are validated against experimental (scattering) data. The outcome of our approach is a practical solution to compounding issues, based on a mutually validating experimental and simulation methodology. Support from the NSF (CMMI-1636036/1635865) is gratefully acknowledged.

  18. Effect of Fibers and Filler Types on Fresh and Hardened Properties of Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Saeed K. Rejeb* , Majid Kh . N. Ayad A. M.

    2014-04-01

    Full Text Available This paper deals with studying the fresh and hardened properties of self-compacting concrete, by using three types of filler (silica fume, clinker powder & lime stone powder, and two types of fibers (steel & glass fibers with volume fractions of (0.5% and (0.1% respectively. For each type of fillers, the fresh properties are measured by using Slump test, J- ring and V- funnel, while hardened properties include the compressive strength, splitting tensile strength and flexural strength. The results show that adding fibers to the self-compacting concrete (SCC well reduces the workability and improves the hardened properties. Also, the study concluded that better workability is obtained by using (lime stone, silica fume and clinker powder as fillers, respectively. While the higher hardened properties are gained by using silica fume were rather than those of other types of fillers 

  19. Clay-cement suspensions - rheological and functional properties

    Science.gov (United States)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  20. Cerebral Angiographic Findings of Cosmetic Facial Filler-related Ophthalmic and Retinal Artery Occlusion

    OpenAIRE

    Kim, Yong-Kyu; Jung, Cheolkyu; Woo, Se Joon; Park, Kyu Hyung

    2015-01-01

    Cosmetic facial filler-related ophthalmic artery occlusion is rare but is a devastating complication, while the exact pathophysiology is still elusive. Cerebral angiography provides more detailed information on blood flow of ophthalmic artery as well as surrounding orbital area which cannot be covered by fundus fluorescein angiography. This study aimed to evaluate cerebral angiographic features of cosmetic facial filler-related ophthalmic artery occlusion patients. We retrospectively reviewed...

  1. Effect of Particle Size Distribution on Slurry Rheology: Nuclear Waste Simulant Slurries

    International Nuclear Information System (INIS)

    Chun, Jaehun; Oh, Takkeun; Luna, Maria L.; Schweiger, Michael J.

    2011-01-01

    Controlling the rheological properties of slurries has been of great interest in various industries such as cosmetics, ceramic processing, and nuclear waste treatment. Many physicochemical parameters, such as particle size, pH, ionic strength, and mass/volume fraction of particles, can influence the rheological properties of slurry. Among such parameters, the particle size distribution of slurry would be especially important for nuclear waste treatment because most nuclear waste slurries show a broad particle size distribution. We studied the rheological properties of several different low activity waste nuclear simulant slurries having different particle size distributions under high salt and high pH conditions. Using rheological and particle size analysis, it was found that the percentage of colloid-sized particles in slurry appears to be a key factor for rheological characteristics and the efficiency of rheological modifiers. This behavior was shown to be coupled with an existing electrostatic interaction between particles under a low salt concentration. Our study suggests that one may need to implement the particle size distribution as a critical factor to understand and control rheological properties in nuclear waste treatment plants, such as the U.S. Department of Energy's Hanford and Savannah River sites, because the particle size distributions significantly vary over different types of nuclear waste slurries.

  2. Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions

    Science.gov (United States)

    Izak, Piotr; Ogłaza, Longin; Mozgawa, Włodzimierz; Mastalska-Popławska, Joanna; Stempkowska, Agata

    2018-05-01

    To avoid agglomeration and sedimentation of grains, ceramic slurries should be modified by stabilizers in order to increase the electrostatic interactions between the dispersed particles. In this study we present the spectral analysis of aqueous sodium silicates obtained by different synthesis methods and their influence on the rheological properties of kaolin based slurries. Infrared and Raman spectra can be used to describe the structure of silicate structural units present in aqueous sodium silicates. It was confirmed that the best stabilization results possess aqueous sodium silicates of the silicate moduli of about 2 and the optimal concentration of the used fluidizer is 0.3 wt% to the kaolin clay dry mass. One of the most important conclusions is that the synthesis method of the fluidizer has no significant effect on its stabilization properties but used medium does create adequate stabilization mechanism depending on the silicate structures present in the sodium silicate solution.

  3. Rheological Investigation on the Effect of Shear and Time Dependent Behavior of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Japper-Jaafar A.

    2014-07-01

    Full Text Available Rheological measurements are essential in transporting crude oil, especially for waxy crude oil. Several rheological measurements have been conducted to determine various rheological properties of waxy crude oil including the viscosity, yield strength, wax appearance temperature (WAT, wax disappearance temperature (WDT, storage modulus and loss modulus, amongst others, by using controlled stress rheometers. However, a procedure to determine the correct parameters for rheological measurements is still unavailable in the literature. The paper aims to investigate the effect of shear and time dependent behaviours of waxy crude oil during rheological measurements. It is expected that the preliminary work could lead toward a proper rheological measurement guideline for reliable rheological measurement of waxy crude oil.

  4. Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates

    Directory of Open Access Journals (Sweden)

    Ricardo Danil Guiraldo

    2014-01-01

    Full Text Available Energy dispersive X-ray spectroscopy microanalysis (EDX, scanning electron microscopy (SEM, and Archimedes’ Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C, Hydrogum 5 (H5, Hydrogum (H, Orthoprint (O, and Jeltrate Plus (JP. The different alginate powders (0.5 mg were fixed on plastic stubs (n=5 and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt. The filler fractions in volume (vt were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  5. Comparison between rice husk ash and commercial silica as filler in polymeric composites

    International Nuclear Information System (INIS)

    Fernandes, I.J.; Calheiro, D.; Santos, E.C.A. dos; Oliveira, R.; Rocha, T.L.A.C.; Moraes, C.A.M.

    2014-01-01

    The use of rice husk ash (RHA) as filler in polymeric materials has been studied in different polymers. Research reported that RHA may successfully replace silica. The silica production process using ore demands high energy input and produces considerable amounts of waste. Therefore, the replacement of silica by RHA may be economically and environmentally advantageous, reducing environmental impact and adding value to a waste material. In this context, this study characterizes and compares RHA of different sources (travelling grate reactor and fluidized bed reactor) with commercially available silicas to assess performance as filler in polymeric materials. Samples were characterized by X-ray fluorescence, loss on ignition, X-ray diffraction, grain size, specific surface area and specific weight. The results show that RHA may be used as a filler in several polymeric materials.(author)

  6. Effect of graphene oxide nano filler on dynamic behaviour of GFRP composites

    Science.gov (United States)

    Pujar, Nagabhushan V.; Nanjundaradhya, N. V.; Sharma, Ramesh S.

    2018-04-01

    Nano fillers like Alumina oxide, Titanium oxide, Carbon nano tube, Nano clay have been used to improve the mechanical and damping properties of fiber reinforced polymer composites. In the recent years Graphene oxide nano filler is receiving considerable attention for its outstanding properties. Literature available shows that Graphene oxide nano filler can be used to improve the mechanical properties. The use of Graphene oxide in vibration attenuation by enhancing the passive damping in fiber reinforced polymer composite has not been fully explored. The objective of this work is to investigate the dynamic behaviour of Glass fiber-reinforced composite embedded with Graphene oxide nano filler. Graphene oxide is dispersed in epoxy resin with various concentration (0.1%, 0.5% and 1%wt) using ultra-sonification process. Composite laminates were made using the traditional hand-lay-up followed by vacuum bag process. Experimental modal analysis using traditional `strike method' is used to evaluate modal parameters using FFT analyzer and Data Acquisition System. Experiments were carried out for two different fiber orientations viz 0 ➙ & 45 ➙ and two boundary conditions (Free-Free and Cantilever). The modal parameters such as natural frequency, mode shape, damping ratio were studied. This research work demonstrates the vibration damping behaviour with incorporation of Graphene oxide and provides a basic understanding of the damping characteristics in design and manufacture of high performance composites.

  7. Drying shrinkage of mortars with limestone filler and blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Carrasco, M. F.

    2003-12-01

    Full Text Available During the 1990's the use of cements made with port land clinker and two mineral admixtures, called ternary or blended cements, has grown considerably. Nowadays, cements containing several combinations of fly ash and silica fume, blast-furnace slag and silica fume or blast-furnace slag and limestone filler are commonly used. There are numerous works on the influence of blended cements on the fresh state and mechanical properties of mortar and concrete, but the their deformations due to drying shrinkage are not so well described. Analysis of drying shrinkage is relevant because this property influences the possibility of cracking occurrence and, hence, the deterioration of mechanical and durable properties of concrete structures. This paper evaluates the influence on the drying shrinkage of mortars of variable contents of limestone filler and/or blast-furnace slag in Portland cement. Additionally, flexion strength and non evaporable water content were evaluated. Test results show that the inclusion of these mineral admixtures, Joint or separately, increments drying shrinkage of mortars at early ages. Despite this fact, mortars made with limestone filler cement are less susceptible to cracking than mortars made with cements incorporating blast-furnace slag or both admixtures.

    Durante los años 90 el uso de cementos fabricados con clínker Portland y dos adiciones suplementarias (cementos ternarios o compuestos se ha incrementado en forma considerable. En la práctica, es cada vez más común el empleo de estos cementos conteniendo combinaciones de ceniza volante y humo de sílice, escoria y humo de sílice o escoria y filler calcáreo. En la actualidad existen numerosos estudios sobre la influencia de los cementos compuestos en las características en estado fresco y las propiedades mecánicas de morteros y hormigones, pero las deformaciones que estos materiales sufren debido a la retracción por secado no son tan conocidas. El análisis de

  8. 14 CFR 23.973 - Fuel tank filler connection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank filler connection. 23.973 Section 23.973 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23...

  9. A case of cellulitis-like foreign body reaction after hyaluronic acid dermal filler injection

    Directory of Open Access Journals (Sweden)

    Yo Sup Shin

    2018-03-01

    Full Text Available A 58-year-old female presented with 3 weeks history of painful skin lesion on the right cheek. Diagnosis was cellulitis based on the clinical manifestation and laboratory test. However, skin lesion did not improve with antibiotics, and as a consequence, biopsy was performed. Based on histopathological findings and additional information of her previous history of intradermal filler injection, the lesion was diagnosed to be foreign body reaction. Previous reported cases of foreign body reaction induced by hyaluronic acid dermal filler typically manifested as nodular lesions, but cellulitis-like cutaneous manifestation has not been reported. Therefore, we report this interesting case of foreign body reaction after hyaluronic acid dermal filler injection.

  10. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    Science.gov (United States)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  11. PREFACE: 1st International Conference on Rheology and Modeling of Materials

    Science.gov (United States)

    Gömze, László A.

    2015-04-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive knowledge, materials, equipment and technology processes. The idea to organize in Hungary the 1st International Conference on Rheology and Modeling of Materials we have received from prospective scientists, physicists, chemists, mathematicians and engineers from Asia, Europe, North and South America including India, Korea, Russia, Turkey, Estonia, France, Italy, United Kingdom, Chile, Mexico and USA. The goals of ic-rmm1 the 1st International Conference on Rheology and Modeling of Materials are the following: • Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications. • Change information between the theoretical and applied sciences as well as technical and technological implantations. • Promote the communication between the scientists of different disciplines, nations, countries and continents. The international conference ic-rmm1 provides a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among the major fields of interest are the influences of material structures, mechanical stresses temperature and deformation speeds on rheological and physical properties, phase transformation of

  12. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    International Nuclear Information System (INIS)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-01-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating 'smart' electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported

  13. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    Science.gov (United States)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-07-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating "smart" electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported.

  14. Rheological Study of Ageing Soft Glasses of Laponite

    Indian Academy of Sciences (India)

    Table of contents. Rheological Study of Ageing Soft Glasses of Laponite · Colloidal glasses · Laponite Na+0.7[(Si8Mg5.5Li0.3)O20(OH)4]–0.7 · Effect of salt (NaCl) · Arrested state · Relaxation dynamics · Rheology of aging system · Slide 8 · Experimental Protocol · Ageing and Creep experiments · Slide 11 · Slide 12.

  15. Comparative assessment of filler wires for argon-arc welding of refractory alloys

    International Nuclear Information System (INIS)

    Sorokin, L.I.; Bagdasarov, Yu.S.; Tupikin, V.I.

    1993-01-01

    It is recommended to use wires of similar composition as filler material during argon-arc welding of heat resisting alloys, and Sv-08Kh20N57M8V8T3R wire - for welding of dispersion hardening alloys. Sv-06Kh15N60M15, Sv-KhN64KBMYuVF or Kh11N60M23 wires should be used as filler materials to decrease tendency of welded joints to cracking during welding and heat treatment

  16. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  17. Current Concepts in Filler Injection.

    Science.gov (United States)

    Moradi, Amir; Watson, Jeffrey

    2015-11-01

    When evaluating the face in thirds, the upper face, midface, and lower face, one may assume the lateral the temple, midface, and lateral mandible as the pillars of these subdivisions. Many of our facial aesthetic procedures address these regions, including the lateral brow lift, midface lift, and lateral face lift. As the use of facial fillers has advanced, more emphasis is placed on the correction of the temples, midlateral face, and lateral jaw line. This article is dedicated to these facial aesthetic pillars. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of smectite clays storage in their rheological properties

    International Nuclear Information System (INIS)

    Silva, I.A. da; Sousa, F.K.A. de; Neves, G. de A.; Ferreira, H.C.; Ferreira, H.S.; Ferreira, H.S.

    2017-01-01

    This work investigates the storage influence of natural and industrial smectite clays in their rheological properties, since the salt metathesis reaction that occurs following treatment of polycationic clays with Na_2 CO_3 is reversible. The phenomena involved in this reaction are not yet fully known and previous studies show improvement in some properties. The rheological properties were determined in sodium-clays in 1995 and polycationic clays added with sodium carbonate (Na_2 CO_3 ) in 2015. Physical, chemical and mineralogical characterizations of the samples were performed using the following techniques: particle size analysis by laser diffraction, chemical composition by X-ray fluorescence, X-ray diffraction and thermal analysis (DTA and TGA). The rheology of dispersions was determined by the apparent viscosity, plastic viscosity and filtrate volume, which were later considered the oil industry standards only as a benchmark. The results showed that the storage conditions, humidity and particle size of the samples resulted in improvements in their rheological properties over the years, indicating the non-reversibility of the reaction of cation exchange, which is important in their validity after manufacturing. (author)

  19. The addition of nanochitosan suspension as filler in carrageenan-tapioca biocomposite film

    Science.gov (United States)

    Rochima, Emma; Fiyanih, Elisah; Afrianto, Eddy; Subhan, Ujang; Praseptiangga, Danar; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    This research aimed to investigate the effect of nanochitosan (CSNPs) suspension by beads milling method as filler in carrageenan-tapioca biocomposite film. In addition, the antibacterial activity of CSNPs as filler with two food pathogenic bacteria, Staphylococcus aureus and Escherichia coli and then influence of nano fillers for appearance of films were observed. The incorporation of CSNPs suspension with 0.5, 1, 1.5 and 2 (%v/v) in carrageenan-tapioca film exhibited antibacterial activity againts both bacteria. CSNPs had slightly higher antimicrobial activity against E. coli aureus compared to S. aureus at all concentrations due to different mechanisms. Therefore, the best antimicrobial activity was obtained from 1 wt%. Furthermore the best antimicrobial activity was characterized by means of the thickness and transparency. The result showed that the thickness of film was 0.059 mm and the transparency was 87.88. It was concluded that the incorporation of CSNPs suspension 1 wt% in carrageenan-tapioca composite film is suitable for developing active packaging.

  20. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    Science.gov (United States)

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  1. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  2. Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils

    Science.gov (United States)

    Chen, Wen-Shiang; Shiue, Ren-Kae

    2012-07-01

    For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.

  3. Becker and Lomnitz rheological models: A comparison

    Science.gov (United States)

    Mainardi, Francesco; Spada, Giorgio

    2012-07-01

    The viscoelastic material functions for the Becker and the Lomnitz rheological models, sometimes employed to describe the transient flow of rocks, are studied and compared. Their creep functions, which are known in a closed form, share a similar time dependence and asymptotic behavior. This is also found for the relaxation functions, obtained by solving numerically a Volterra equation of the second kind. We show that the two rheologies constitute a clear example of broadly similar creep and relaxation patterns associated with neatly distinct retardation spectra, for which analytical expressions are available.

  4. Rheological properties of polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Camila F. de P.; Demarquette, Nicole R.

    2009-01-01

    In this work, composites of polypropylene with a master batch to obtain clay containing nano composites were obtained. The materials were characterized by X ray diffraction, small angle X-ray scattering and by rheological analysis. (author)

  5. State of the art of medical devices featuring smart electro-rheological and magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    Jong-Seok Oh

    2017-10-01

    Full Text Available Recently, smart fluids have drawn significant attention and growing a great interest in a broad range of engineering applications such as automotive and medical areas. In this article, two smart fluids called electro-rheological (ER fluid and magneto-rheological (MR fluid are reviewed in terms of medical applications. Especially, this article describes the attributes and inherent properties of individual medical and rehabilitation devices. The devices surveyed in this article include multi-degree-of-freedom haptic masters for robot surgery, thin membrane touch panels for braille readers, sponge-like tactile sensors to feel human tissues such as liver, rehabilitation systems such as prosthetic leg, and haptic interfaces for dental implant surgery. The operating principle, inherent characteristics and practical feasibility of each medical device or system are fully discussed in details.

  6. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    Science.gov (United States)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  7. Research on the Hydrophilic Modified of LDPE for the New Biological Suspended Filler

    Directory of Open Access Journals (Sweden)

    Kang Weijia

    2016-01-01

    Full Text Available Urban sewage is one of the main pollution sources of the city, which pollute soil, deteriorate the water quality and increase the water shortages and urban load. LDPE is low cost and widely used as the basic material of wastewater treatment, but LDPE’s hydrophilic is not good enough to meet the need of suspended filler in wastewater treatment. In this paper the hydrophilic modified of LDPE for the new biological suspended filler was studied and the preparation and processing technique based on LDPE was researched. The hydrophilic and mechanic performance of the hydrophilic modified materials was tested. Results shown that the new type of hydrophilic modified materials has good hydrophilic and meets the demand of urban sewage treatment. The research on the new suspended filler materials has great meaning in solving the problem of urban sewage and recycling.

  8. Factors That Influence the Extensional Rheological Property of Saliva.

    Directory of Open Access Journals (Sweden)

    Amrita Vijay

    Full Text Available The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.

  9. A feasibility study of in-line rheological characterisation of a ...

    African Journals Online (AJOL)

    The rheological characteristics of sludge affect transportation, treatment and the disposal processes involved in sludge system design and management operations such as dewatering, including flocculation and filtration. The concentration of solid matter in the sludge has an effect on rheological parameters such as yield ...

  10. The effects of cryopreservation on red blood cell rheologic properties

    NARCIS (Netherlands)

    Henkelman, Sandra; Lagerberg, Johan W. M.; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: In transfusion medicine, frozen red blood cells (RBCs) are an alternative for liquid-stored RBCs. Little is known about the rheologic properties (i.e., aggregability and deformability) of thawed RBCs. In this study the rheologic properties of high-glycerol frozen RBCs and postthaw stored

  11. Braze welding of cobalt with a silver–copper filler

    Directory of Open Access Journals (Sweden)

    Everett M. Criss

    2015-01-01

    Full Text Available A new method of joining cobalt by braze-welding it with a silver–copper filler was developed in order to better understand the residual stresses in beryllium–aluminum/silicon weldments which are problematic to investigate because of the high toxicity of Be. The base and filler metals of this new welding system were selected to replicate the physical properties, crystal structures, and chemical behavior of the Be–AlSi welds. Welding parameters of this surrogate Co–AgCu system were determined by experimentation combining 4-point bending tests and microscopy. Final welds are 5 pass manual TIG (tungsten inert gas, with He top gas and Ar back gas. Control of the welding process produces welds with full penetration melting of the cobalt base. Microscopy indicates that cracking is minimal, and not through thickness, whereas 4-point bending shows failure is not by base-filler delamination. These welds improve upon the original Be–AlSi welds, which do not possess full penetration, and have considerable porosity. We propose that utilization of our welding methods will increase the strength of the Be–AlSi weldments. The specialized welding techniques developed for this study may be applicable not only for the parent Be–AlSi welds, but to braze welds and welds utilizing brittle materials in general. This concept of surrogacy may prove useful in the study of many different types of exotic welds.

  12. Use of Almond Shells and Rice Husk as Fillers of Poly(Methyl Methacrylate) (PMMA) Composites.

    Science.gov (United States)

    Sabbatini, Alessandra; Lanari, Silvia; Santulli, Carlo; Pettinari, Claudio

    2017-07-28

    In recent years, wood fibres have often been applied as the reinforcement of thermoplastic materials, such as polypropylene, whereas their use in combination with thermosetting resin has been less widespread. This study concerns the production of PMMA-based composites by partly replacing alumina trihydrate (ATH) with wood waste fillers, namely rice husks and almond shells, which would otherwise be disposed by incineration. The amount of filler introduced was limited to 10% as regards rice husks and 10 or 15% almond shells, since indications provided by reactivity tests and viscosity measurements did not suggest the feasibility of total replacement of ATH. As a matter of fact, the introduction of these contents of wood waste filler in PMMA-based composite did not result in any significant deterioration of its mechanical properties (Charpy impact, Rockwell M hardness and flexural performance). Some reduction of these properties was only observed in the case of introduction of 15% almond shells. A further issue concerned the yellowing of the organic filler under exposure to UV light. On the other hand, a very limited amount of water was absorbed, never exceeding values around 0.6%, despite the significant porosity revealed by the filler's microscopic evaluation. These results are particularly interesting in view of the application envisaged for these composites, i.e., wood replacement boards.

  13. Influence of enzymes and ascorbic acid on dough rheology and ...

    African Journals Online (AJOL)

    Influence of enzymes and ascorbic acid on dough rheology and wheat bread quality. ... Journal Home > Vol 15, No 3 (2016) >. Log in or ... Seven bread formulations containing different concentrations of these ... The rheological properties of each dough formulation were determined by moisture, gluten and farinograph tests.

  14. Rheology of Cementitious Materials: Alkali-Activated Materials or Geopolymers

    Directory of Open Access Journals (Sweden)

    Puertas F.

    2018-01-01

    Understanding and controlling the rheology of the AAMs systems will ultimately determine whether they can be implemented in the market, and will open up greater competitive possibilities in a crisis-affected sector. A systematic study of the factors that affect the rheological properties of AAMs (pastes, mortars and concretes is therefore necessary in order to ultimately develop more resistant and durable materials.

  15. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    Science.gov (United States)

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.

  16. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    Science.gov (United States)

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.

  17. Laser Brazing Characteristics of Al to Brass with Zn-Based Filler

    Science.gov (United States)

    Tan, Caiwang; Liu, Fuyun; Sun, Yiming; Chen, Bo; Song, Xiaoguo; Li, Liqun; Zhao, Hongyun; Feng, Jicai

    2018-05-01

    Laser brazing of Al to brass in lap configuration with Zn-based filler was performed in this work. The process parameters including laser power, defocused distance were found to have a significant influence on appearance, microstructure and mechanical properties. The process parameters were optimized to be laser power of 2700 W and defocusing distance of + 40 mm from brass surface. In addition, preheating exerted great influence on wetting and spreading ability of Zn filler on brass surface. The microstructure observation showed the thickness of reaction layer (CuZn phase) at the interface of the brass side would grow with the increase in laser power and the decrease in the laser defocusing distance. Moreover, preheating could increase the spreading area of the filler metal and induced the growth of the reaction layer. The highest tensile-shear load of the joint could reach 2100 N, which was 80% of that of Al alloy base metal. All the joints fractured along the CuZn reaction layer and brass interface. The fracture morphology displayed the characteristics of the cleavage fracture when without preheating before welding, while it displayed the characteristics of the quasi-cleavage fracture with preheating before welding.

  18. Preparation of nanocrystalline iron-carbon materials as fillers for polymers

    International Nuclear Information System (INIS)

    Narkiewicz, U; Pelech, I; Roslaniec, Z; Kwiatkowska, M; Arabczyk, W

    2007-01-01

    This paper presents a method of preparing nanocrystalline iron-carbon materials which can be applied as fillers for polymers. Nanocrystalline iron samples were carburized either under ethylene/hydrogen mixture or under pure ethylene. Three kinds of samples were prepared: cementite/carbon (Fe 3 C/C), iron/cementite (Fe/Fe 3 C) and iron/carbon (Fe/C) ones. After carburization the samples were characterized using XRD and SEM methods. The obtained samples of iron-carbon nanoparticles were applied as fillers to polymer nanocomposites prepared in a polycondensation reaction (in situ) in a poly(ether-ester) matrix. The nanofillers were dispersed in monomers (diols) using a sonificator and a high-speed rotary stirrer. The obtained nanocomposites were characterized as regards their structure (SEM method) and mechanical behaviour

  19. Filler segmentation of SEM paper images based on mathematical morphology.

    Science.gov (United States)

    Ait Kbir, M; Benslimane, Rachid; Princi, Elisabetta; Vicini, Silvia; Pedemonte, Enrico

    2007-07-01

    Recent developments in microscopy and image processing have made digital measurements on high-resolution images of fibrous materials possible. This helps to gain a better understanding of the structure and other properties of the material at micro level. In this paper SEM image segmentation based on mathematical morphology is proposed. In fact, paper models images (Whatman, Murillo, Watercolor, Newsprint paper) selected in the context of the Euro Mediterranean PaperTech Project have different distributions of fibers and fillers, caused by the presence of SiAl and CaCO3 particles. It is a microscopy challenge to make filler particles in the sheet distinguishable from the other components of the paper surface. This objectif is reached here by using switable strutural elements and mathematical morphology operators.

  20. Effect of Biomass Waste Filler on the Dielectric Properties of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Yew Been Seok

    2016-07-01

    Full Text Available The effect of biomass waste fillers, namely coconut shell (CS and sugarcane bagasse (SCB on the dielectric properties of polymer composite was investigated. The aim of this study is to investigate the potential of CS and SCB to be used as conductive filler (natural source of carbon in the polymer composite. The purpose of the conductive filler is to increase the dielectric properties of the polymer composite. The carbon composition the CS and SCB was determine through carbon, hydrogen, nitrogen and sulphur (CHNS elemental analysis whereas the structural morphology of CS and SCB particles was examined by using scanning electron microscope. Room temperature open-ended coaxial line method was used to determine the dielectric constant and dielectric loss factor over broad band frequency range of 200 MHz-20 GHz. Based on this study, the results found that CS and SCB contain 48% and 44% of carbon, which is potentially useful to be used as conductive elements in the polymer composite. From SEM morphology, presence of irregular shape particles (size ≈ 200 μm and macroporous structure (size ≈ 2.5 μm were detected on CS and SCB. For dielectric properties measurement, it was measured that the average dielectric constant (ε' is 3.062 and 3.007 whereas the average dielectric loss factor (ε" is 0.282 and 0.273 respectively for CS/polymer and SCB/polymer composites. The presence of the biomass waste fillers have improved the dielectric properties of the polymer based composite (ε' = 2.920, ε" = 0.231. However, the increased in the dielectric properties is not highly significant, i.e. up to 4.86 % increase in ε' and 20% increase in ε". The biomass waste filler reinforced polymer composites show typical dielectric relaxation characteristic at frequency of 10 GHz - 20 GHz and could be used as conducting polymer composite for suppressing EMI at high frequency range.

  1. Effect Assessment the Impact of Filler Types on the Input Design Parameter of Flexible Pavements

    Directory of Open Access Journals (Sweden)

    Sahar S. Neham

    2017-08-01

    Full Text Available To meet the requirements of flexible pavements (safety, economy, limited the stresses on the natural subgrade and a smooth ride, good quality material of surface course must be used so to prevent pavement distresses caused by the different types of loadings (structural and environmental loadings, while the resilient modulus is important input data when flexible pavement was designed, it is selected to show its effect by different types of mineral filler as a partial replacement. In this paving mix, to improve the quality of the mix material and to represent the effect of these replacements materials on the elastic characterization by measuring the resilient modulus of hot mix asphalt (HMA: Fly Ash (FA, Ordinary Portland Cement (OPC, Hydrated Lime (HL and Silica Fume (SF are used as a partial percent of filler (Limestone Dust (LSD replacement, where these materials are locally available including (40-50 penetration grade asphalt binder. To achieve the goal of study; asphalt concrete mixes are prepared at their optimum asphalt content using Marshall Method of mix design. Four replacement percent’s were used; 0, 1.5, 3.0 and 4.5 percent by total weight of aggregate for each filler types. According to ASTM D4123 criteria (Resilient Modulus was tested by UTM¬25. Mixes modified with (FA, (OPC, (HL and (SF were found to have average improvement in the value of Resilient Modulus by (13.37, 9.63, 11.14, 24.00 % at 1.5 percent of filler replacement and by (24.54, 16.63, 18.73, 38.31 % at 3.0 percent of filler replacement also the percent of improvement is: (39.55, 26.36, 29.82, 58.30 at 4.5percent of filler replacement sequentially.

  2. Debris flow rheology: Experimental analysis of fine-grained slurries

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  3. Influence of Calcium Carbonate Fillers on the Properties of Recycled Poly(e-caprolactone Based Thermoplastic Polyurethane

    Directory of Open Access Journals (Sweden)

    Vitalija BETINGYTĖ

    2012-09-01

    Full Text Available In this work the effects of different crystallographic modifications of calcium carbonate (CaCO3 filler on the melt flow, mechanical properties, hydrolytic degradation, and shape memory behaviour of recycled low-temperature poly(e-caprolactone-based polyurethane (rTPU were evaluated. Composites were prepared by two-roll milling varying filler content from 2 wt % to 6 wt %. It was found that at temperature range from 20 °C to 50 °C CaCO3 fillers do not change Young’s modulus, they decrease tensile stress and deformation of rTPU, but improve its mechanical properties at elevated temperatures (up to 65 °C. rTPU melt flow index increases due to chain scission during the recycling and filler mixing with mill. Therefore, destruction temperature of rTPU is 20 °C lower than that of TPU. The CaCO3 does not change shape memory properties independently of filler type and transition from secondary shape to the primary shape at 70 °C temperature is completed within 17 s for both filled and unfilled rTPU. The investigation of hydrolytic degradation shows that CaCO3 only slightly increases degradation rate of rTPU.DOI: http://dx.doi.org/10.5755/j01.ms.18.3.2433

  4. Influence of filler alignment in the mechanical and electrical properties of carbon nanotubes/epoxy nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Felisberto, M. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Arias-Duran, A. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Ramos, J.A.; Mondragon, I. [Dep. Ingenieria Quimica y M. Ambiente. Esc. Politecnica. UPV/EHU, Pza. Europa 1, Donostia-San Sebastian 20018 (Spain); Candal, R. [INQUIMAE-CONICET-UBA, Pab II Ciudad Universitaria, Buenos Aires 1428 (Argentina); Escuela de Ciencia y Tecnologia-UNSAM, San Martin, Prov. De Buenos Aires (Argentina); Goyanes, S. [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Rubiolo, G.H., E-mail: rubiolo@cnea.gov.ar [LPyMC, FCEyN-UBA and IFIBA-CONICET, Pab I Ciudad Universitaria, Buenos Aires 1428 (Argentina); Dep. Materiales, Comision Nacional de Energia Atomica (CNEA-CAC), Avda Gral Paz 1499, B1650KNA San Martin (Argentina)

    2012-08-15

    In this work, we report the mechanical and electrical properties of carbon nanotubes/epoxy composites prepared with aligned and randomly oriented nanotubes as filler. The samples are disks of 30 mm in diameter and 3 mm in thickness. To obtain the carbon nanotubes alignment, an external electric field (250 VAC; 50 Hz) was applied through the thickness of the sample during all the cure process. The AC electrical current was measured, during the cure, as a strategy to determine the optimum time in which the alignment reaches the maximum value. DC conductivity measured after the cure shows a percolation threshold in the filler content one order of magnitude smaller for composites with aligned nanotubes than for composites with randomly oriented filler (from 0.06 to 0.5 wt%). In the percolation threshold, the achieved conductivity was 1.4 Multiplication-Sign 10{sup -5} Sm{sup -1}. In both cases, aligned and randomly distributed carbon nanotube composites, the wear resistance increases with the addition of the filler while the Rockwell hardness decreases independently of the nanotubes alignment.

  5. Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Galimberti

    2014-06-01

    Full Text Available Interactive effects of carbon allotropes on the mechanical reinforcement of polymer nanocomposites were investigated. Carbon nanotubes (CNT and nano-graphite with high shape anisotropy (nanoG were melt blended with poly(1,4-cis-isoprene, as the only fillers or in combination with carbon black (CB, measuring the shear modulus at low strain amplitudes for peroxide crosslinked composites. The nanofiller was found to increase the low amplitude storage modulus of the matrix, with or without CB, by a factor depending on nanofiller type and content. This factor, fingerprint of the nanofiller, was higher for CNT than for nanoG. The filler-polymer interfacial area was able to correlate modulus data of composites with CNT, CB and with the hybrid filler system, leading to the construction of a common master curve.

  6. On-line determination of vertical distribution of filler materials in paper using x-ray techniques

    International Nuclear Information System (INIS)

    Kuusi, J.; Kumpulainen, H.

    1983-01-01

    Optimizing the use of mineral filler and coating materials in paper production is a significant technical and economic problem. These compounds improve the printability, opacity and finish of papers and may even be cheaper than fibres. Since good printing paper should display the least possible two-sidedness, the distribution of filler and coating materials is also of great importance. This paper describes principles and feasibility studies of a method which enables even on-line determination and thus also control of vertical distribution and content of filler materials in paper using X-ray techniques. The method is much faster than the ones presently used in paper industry and offers potential for considerable technical and economical benefits

  7. Effect of particle stiffness on contact dynamics and rheology in a dense granular flow

    Science.gov (United States)

    Bharathraj, S.; Kumaran, V.

    2018-01-01

    Dense granular flows have been well described by the Bagnold rheology, even when the particles are in the multibody contact regime and the coordination number is greater than 1. This is surprising, because the Bagnold law should be applicable only in the instantaneous collision regime, where the time between collisions is much larger than the period of a collision. Here, the effect of particle stiffness on rheology is examined. It is found that there is a rheological threshold between a particle stiffness of 104-105 for the linear contact model and 105-106 for the Hertzian contact model above which Bagnold rheology (stress proportional to square of the strain rate) is valid and below which there is a power-law rheology, where all components of the stress and the granular temperature are proportional to a power of the strain rate that is less then 2. The system is in the multibody contact regime at the rheological threshold. However, the contact energy per particle is less than the kinetic energy per particle above the rheological threshold, and it becomes larger than the kinetic energy per particle below the rheological threshold. The distribution functions for the interparticle forces and contact energies are also analyzed. The distribution functions are invariant with height, but they do depend on the contact model. The contact energy distribution functions are well fitted by Gamma distributions. There is a transition in the shape of the distribution function as the particle stiffness is decreased from 107 to 106 for the linear model and 108 to 107 for the Hertzian model, when the contact number exceeds 1. Thus, the transition in the distribution function correlates to the contact regime threshold from the binary to multibody contact regime, and is clearly different from the rheological threshold. An order-disorder transition has recently been reported in dense granular flows. The Bagnold rheology applies for both the ordered and disordered states, even though

  8. Clinical Application of Earlobe Augmentation with Hyaluronic Acid Filler in the Chinese Population.

    Science.gov (United States)

    Qian, Wei; Zhang, Yan-Kun; Cao, Qian; Hou, Ying; Lv, Wei; Fan, Ju-Feng

    2017-02-01

    Larger earlobes, which are a symbol of "richness" in traditional Chinese culture, are favored by Chinese patients. The objective of this paper is to investigate the application of earlobe augmentation with hyaluronic acid (HA) filler injection and its clinical effects in the Chinese population. A total of 19 patients (38 ears) who received earlobe augmentation with HA filler injections between March 2013 and March 2015 were included. The clinical effects, duration, and complications of these cases were investigated. All patients who received earlobe HA injections showed immediate postoperative effects with obvious morphological improvement of their earlobes. The volume of HA filler injected into each ear was 0.3-0.5 ml. The duration of the effect was 6-9 months. Two of the 19 cases (3 ears) demonstrated mild bruising at the injection site, but the bruising completely disappeared within 7 days after the injection. No vascular embolism, infection, nodule, or granuloma complications were observed in the studied group. The application of earlobe augmentation with HA filler injection is a safe, effective, simple procedure for earlobe shaping. It has an easy clinical application with good clinical prospects. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  9. Rheological measurements on artifical muds

    NARCIS (Netherlands)

    De Wit, P.J.

    1992-01-01

    The rheological behaviour of three artificial muds was determined using a rotational viscometer. First some characteristics of the viscometer used were rneasured. For want of an appropriate calibration tluid, the viscosity of demineralized water was determined. The result agreed very well with what

  10. Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid polymer matrix

    Directory of Open Access Journals (Sweden)

    Pilić Branka M.

    2016-01-01

    Full Text Available Properties of poly (lactic acid (PLA and its nanocomposites, with silica nanoparticles (SiO2, as filler were investigated. Neat PLA films and PLA films with different percentage of hydrophobic fumed silica nanoparticles (0.2, 0.5, 1, 2, 3 and 5 wt. % were prepared by solution casting method. Several tools were used to characterize the influence of different silica content on crystalline behavior, and thermal, mechanical and barrier properties of PLA/SiO2 nanocomposites. Results from scanning electron microscope (SEM showed that the nanocomposite preparation and selection of specific hydrophobic spherical nano filler provide a good dispersion of the silica nanoparticles in the PLA matrix. Addition of silica nanoparticles improved mechanical properties, the most significant improvement being observed for lowest silica content (0.2wt.%. Barrier properties were improved for all measured gases at all loadings of silica nanoparticles. The degree of crystallinity for PLA slightly increased by adding 0.2 and 0.5 wt. % of nano filler. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  11. Utilization of Durian Seed Flour as Filler Ingredient of Meatball

    Directory of Open Access Journals (Sweden)

    D. R. Malini

    2016-12-01

    Full Text Available Durian seed flour contains starch consisted of amylose and amylopectin like tapioca flour, so it can be utilized as a filler in meatball production. The purposes of this research were to evaluate the nutrient content and quality of durian seed flour, the best level of durian seed flour addition to the meatball production, and the quality of beef meatball during storage in room temperature and refrigerator. Complete randomized design (CRD was used with 3 treatments and 3 replications. The treatments used different filler ingredients consisted of: 1 100% tapioca, 2 50% tapioca + 50% durian seed flour, and 3 100% durian seed flour utilization. The results showed that durian seed flour could affect the protein levels and hardness of beef meatballs. In the organoleptic test, the addition of durian seed flour had no effect on the appearance of the color, flavor, aroma, and texture. The meatballs with 100% durian seed flour had the lowest hardness. The protein content of the meatballs with 100% durian seed flour was the highest. The used of 50% durian seed flour gave the best effect to beef meatball during storage. Meatball could be stored up to 8 h in room temperature while refrigerator could keep it longer up to 12 d. It was concluded that the addition 50% durian seed flour may substitute tapioca flour as filler ingredient of beef meatball.

  12. Synthesis and characterization of non halogen fire retardant composite through combination of epoxy resin, Al(OH)3 additive and filler

    Science.gov (United States)

    Saputra, Asep Handaya; Sungkar, Faraj

    2017-11-01

    Epoxy has a wide range of applications in many sectors, but it still has deficiency in fire retardancy. Therefore, it is combined with fire retardant additives. Fire retardant additive commonly contains halogen compounds that causes environmental and health problems. Therefore Al (OH)3 additive is used to improve the fire retardancy properties of composite through decomposition that produced water vapour and formation of oxide layer on its surface. In this research, synthesis of fire retardant composite has been conducted by varying filler carbon black and silica (1%, 2.5%, 5%, 7.5%, 10%wt) with composition of Al (OH)3 50%wt and epoxy 50%wt. Fire retardancy of composite was observed by UL-94V standard, while thermal degradation behaviour of composite was analyzed by thermal gravimetric analysis and differential scanning calorimetry. Whereas, mechanical properties was studied based on its tensile strength and hardness. It was found that the best concentration for carbon black and silica is 1%wt and 2.5%wt respectively. The addition of carbon black 1%wt and silica 2.5%wt could improve the flame retardancy and gives V-0 flammability rating. Besides that, the addition of carbon black 1%wt is able to increase the thermal stability of composite by reducing mass loss rate until 10.75%/minute and total mass loss until 53.76%. While adding silica 2.5%wt could also enhance its thermal stability by decreasing mass loss rate until 9.32%/minute and total mass loss until 51.06%. Furthermore, the addition of carbon black and silica could decrease its tensile strength and hardness. The addition of carbon black 1%wt yields composite with 6.59 MPa for tensile strength and 65.8 shore D for hardness. Whereas the addition of of silica 2.5%wt produces composite with the tensile strength up to 9.89MPa and hardness up to71.2 shore D.

  13. Dataset for acrylate/silica nanoparticles formulations and photocured composites: Viscosity, filler dispersion and bulk Poisson׳s ratio

    Directory of Open Access Journals (Sweden)

    Hubert Gojzewski

    2017-06-01

    Full Text Available UV-curable polymer composites are of importance in industry, biomedical applications, scientific fields, and daily life. Outstanding physical properties of polymer composites were achieved with nanoparticles as filler, primarily in enhancing mechanical strength or barrier properties. Structure-property relationships of the resulting nanocomposites are dictated by the polymer-filler molecular architecture, i.e. interactions between polymer matrix and filler, and high surface area to volume ratio of the filler particles. Among monomers, acrylates and methacrylates attracted wide attention due to their ease of polymerization and excellent physicochemical and mechanical properties of the derived polymers. We prepared and photopolymerized two series of formulations containing hydrophobized silica nanofiller (Aerosil R7200 dispersed in 2-hydroxyethyl acrylate (HEA or polyethylene glycol diacrylate (PEGDA monomers. We compared selected physical properties of the formulations, both before and after photocuring; specifically the viscosity of formulations and dispersion of the filler in the polymer matrices. Additionally, we estimated the bulk Poisson׳s ratio of the investigated nanocomposites. This article contains data related to the research article entitled “Nanoscale Young׳s modulus and surface morphology in photocurable polyacrylate/nanosilica composites” (Gojzewski et al., 2017 [1].

  14. Rheological and microbiological study of flour treated by irradiation

    International Nuclear Information System (INIS)

    Laabidi, Othmen

    2007-01-01

    the aim this work is to study the effectiveness of radio treatment and its effect on the conservation of flour and their various parameters (physico-chemical and rheological). The flour has been treated with different doses (0, 0.75, 1.5 and 3 kGy), physico-chemical, rheological, microbiological and sensory analyses were made.The results show that the irradiation as a treatment for decontamination gave a highly effective. Indeed, a dose of 1.5 kGy allows a total destruction of yeasts and molds. Thus, from the point of view physico-chemical, increasing the dose of radiation causes a change in physical and chemical properties and rheological of flour. for the characteristics of bread, increasing the dose of radiation affects the quality of bread. (Author). 38 refs

  15. Renovation and Strengthening of Wooden Beams With CFRP Bands Including the Rheological Effects

    Directory of Open Access Journals (Sweden)

    Kula Krzysztof

    2016-09-01

    Full Text Available The paper presents a work analysis of wooden beams reinforced with glued composite bands from the top and resin inclusions, taking into account the rheology of materials. The paper presents numerical model of the multimaterial beam work including rheological phenomena described by linear equations of viscoelasticity. For the construction of this model one used MES SIMULIA ABAQUS environment in which were prepared its own procedures containing rheological models. The calculation results were compared with the literature data. One has done an analysis of the advisability of the use of CFRP reinforcements bands in terms of rheological phenomena.

  16. Prevention of microcracking by REM addition to alloy 690 filler metal in laser clad welds

    International Nuclear Information System (INIS)

    Okauchi, Hironori; Saida, Kazuyoshi; Nishimoto, Kazutoshi

    2011-01-01

    Effect of REM addition to alloy 690 filler metal on microcracking prevention was verified in laser clad welding. Laser clad welding on alloy 132 weld metal or type 316L stainless steel was conducted using the five different filler metals of alloy 690 varying the La content. Ductility-dip crack occurred in laser clad welding when La-free alloy 690 filler metal was applied. Solidification and liquation cracks occurred contrarily in the laser cladding weld metal when the 0.07mass%La containing filler metal was applied. In case of laser clad welding on alloy 132 weld metal and type 316L stainless steel, the ductility-dip cracking susceptibility decreased, and solidification/liquation cracking susceptibilities increased with increasing the La content in the weld metal. The relation among the microcracking susceptibility, the (P+S) and La contents in every weld pass of the laser clad welding was investigated. Ductility-dip cracks occurred in the compositional range (atomic ratio) of La/(P+S) 0.99(on alloy 132 weld metal), >0.90 (on type 316L stainless steel), while any cracks did not occur at La/(P+S) being between 0.21-0.99 (on alloy 132 weld metal) 0.10-0.90 (on type 316L stainless steel). Laser clad welding test on type 316L stainless steel using alloy 690 filler metal containing the optimum La content verified that any microcracks did not occurred in the laser clad welding metal. (author)

  17. Rheology modification in mixed shape colloidal dispersions. Part I: pure components

    NARCIS (Netherlands)

    ten Brinke, A.J.W.; Bailey, L.; Lekkerkerker, H.N.W.; Matiland, G.C.

    2007-01-01

    The flow behaviour and rheology of colloidal dispersions are of considerable interest in many applications, for example colloidal clay particles find applications in oilfield and constructiondrilling fluids. The rheological properties of such fluids can be enhanced significantly by adding colloidal

  18. Rheology of oil sands slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Zhou, J. [Alberta Research Council, Edmonton, AB (Canada). Mineral Oil Sands Unit; Wallace, D. [Dean Wallace Consulting Inc., Beaumont, AB (Canada)

    2006-07-01

    This study focused on integrating rheology and colloid science to improve recovery of bitumen in surface mined oil sands. Factors that influence recovery, such as conditions of particle interaction, solids concentration and shear rate, were reviewed. In an effort to understand the rheological behaviour of clay-in-water suspensions, an elaborate procedure was developed to separate an inter-bedded clay layer from a site at Albian Sands Energy Inc. The variables were water chemistry, solids concentration, and shear rate. The research study was conducted at the Alberta Research Council with the support of the CONRAD Extraction Group. A controlled stress rheometer was used to provide the quantitative evaluations of the clay slurry properties. The research results indicate that the viscoelastic properties of the slurry are highly influenced by the shear history of the slurry, solids content, calcium concentration, and sample aging. Shear thinning behaviour was observed in all slurry samples, but the slurry viscosity increased with test time for a given shear rate. In order to classify the slurries, a method was developed to distinguish the gel strength. The slurries were then classified into 3 distinct patterns, including no gel, weak gel and strong gel. The evolution of the experimental protocols were described along with the current stability maps that correlate the domains of the gel strength according to the solids concentration, calcium ion content, and shear rate. It was concluded that the rheological properties of oil sands slurries influence bitumen recovery in commercial surface-mined oil sands operations. tabs., figs.

  19. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    LENUS (Irish Health Repository)

    Curtis, Andrew R

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.

  20. Theoretical and practical aspects of aqueous solution sodium silicate modifying

    Directory of Open Access Journals (Sweden)

    Mizuryaev Sergey

    2016-01-01

    Full Text Available This research deals with the use of liquid glass in industry particularly for porous filler production. The aim of this paper is to show the necessity liquid glass modification for the purpose of its rheological characteristics change for raw granules formation and providing given structure after porization. Data on chemical liquid glass modification are provided by adding sodium chloride. Moreover, inert mineral additives influence on porous filler properties are shown in this paper. The basic principles of light concrete composition selection are specified. Test results of light concrete on the developed porous sodium silicate filler are given.

  1. Synthesis and characterization of solvent-free ionic molybdenum disulphide (MoS{sub 2}) nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Shu-Ying, E-mail: gushuying@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Gao, Xie-Feng; Zhang, Yi-Han [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China)

    2015-01-15

    A development of the novel and stable solvent-free ionic MoS{sub 2} nanofluids by a facile and scalable hydrothermal method is presented. The nanofluids were synthesized by surface functionalizing nanoscale MoS{sub 2} from hydrothermal synthesis with a charged corona, and ionically tethering with oligomeric chains as a canopy. The structures and properties of the nanofluids were characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR, {sup 1}H), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and ARES rheometer. The obtained solvent-free nanofluids are homogeneous, stable amber-like fluids with no evidence of phase separation. The nanofluids could be easily dispersed in both aqueous and organic solvents to form transparent and stable liquids due to the ionic nature and the presence of oligomeric polymer chains. It was found that the solvent-free nanofluids with up to 32 wt% inorganic content show Newtonian rheological behaviors due to the high graft density and uniform dispersion of inorganic cores, indicating that the nanofluids would have a stable lubricating performance. As reported in our previous communication, the nanofluids showing lower, more stable friction coefficients of less than 0.1 with self-healing lubricating behaviors. For deeper understanding of the nanofluids, the details of synthesis, chemical structures, rheological behaviors and molecular dynamics of the nanofluids were investigated in details. The rheological behaviors can be tailored by varying the grafting density of the canopy. Dynamic results of the canopy of the MoS{sub 2} nanofluids show that inorganic MoS{sub 2} cores have hindrance effect on the canopy segmental motions above 253 K due to their effect to the mobility of anions and the departing-recombining motions between the paired cations and anions. - Highlights: • A development of the novel synthesis of solvent-free MoS{sub 2} nanofluids is presented. • The rheological

  2. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  3. Bacterial biofilm formation and treatment in soft tissue fillers

    DEFF Research Database (Denmark)

    Alhede, Morten; Er, Ozge; Eickhardt, Steffen

    2014-01-01

    that once the bacteria had settled (into biofilms) within the gels, even succesive treatments with high concentrations of relevant antibiotics were not effective. Our data substantiate bacteria as a cause of adverse reactions reported when using tissue fillers, and the sustainability of these infections...

  4. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy

    Science.gov (United States)

    Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.

    2018-03-01

    Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.

  5. Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour

    Directory of Open Access Journals (Sweden)

    Manuel Torres-Carrasco

    2015-03-01

    The findings show that AAS paste behaviour of rheology when the activator was a commercial waterglass solution or NaOH/Na2CO3 with waste glass was similar, fit the Herschel-Bulkley model. The formation of primary C-S-H gel in both cases were confirmed. However, the rheological behaviour in standard cements fit the Bingham model. The use of the waste glass may be feasible from a rheological point of view in pastes can be used.

  6. Utilization of rice husk ash as filler for polyamide 6 and ionizing radiation effect studies on this composite

    International Nuclear Information System (INIS)

    Ferro, Waldir Pedro

    2009-01-01

    In order to improve the dimensional stability, as well as, electrical, mechanical and thermal properties of polymers, new filler to this purpose has been developed. The mos applied filler to propitiate the features previously mentioned are the glass and carbon fibers, the mineral filler as the calcium carbonate, the talc and the micro glass sphere. The main aim of this work was to study the rice husk ash as filler for polyamide 6 and ionizing radiation effect studies on this composite, irradiated by electron beam at different doses, since it is constituted of at least 90% of silicon dioxide, and compared with the talc which is the most applied mineral filler. This comparison was made from a compound made through the refined rice husk ash and the polyamide 6 (PA 6), which is one of the main engineering plastic with applications in several productive areas. The samples were injected and irradiated in a electron accelerator. Afterwards, their mechanical and thermal properties were measured. It was also inject automotive parts to verify the processing of the PA 6 with CCA. The results showed that the use of the rice husk ash as filler for polyamide 6 composite is technically and economically viable. The irradiation of the studied composite (PA 6 with 30% of rice husk ash) did not provide any improvement for the mechanical and thermal properties previously appraised. (author)

  7. Effect of Some Biopolymers on the Rheological Behavior of Surimi Gel

    Directory of Open Access Journals (Sweden)

    Takahiro Noda

    2012-05-01

    Full Text Available The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC, on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.

  8. Rheological study of feed stock for NiTi alloy molded parts

    International Nuclear Information System (INIS)

    Subuki, I; Abdullah, Z; Razali, R; Ismail, M H

    2015-01-01

    A rheological behaviour of the powder-binder mixture is one of essential analysis upon to success of Metal Injection Moulding (MIM) process. The purpose of this experimental work is to investigate the rheological behavior of feedstock containing mixtures of elemental Ni and Ti powders mixed with composite binder of palm stearin (PS) and polyethylene (PE) binder system. An equiatomic Ni-Ti (50-50) ratio was used in the present work for all formulations owing to excellent shape memory behaviour. The experimental rheological result indicated that all the feedstocks exhibited pseudo plastic flow behaviour; viscosity decreasing with temperature and shear rate. Increasing the powder loading resulted in higher viscosity, particularly at the low-range of shear rate. Owing to pseudo-plastic flow, it was found that the feedstock prepared exhibit promising rheological properties, thus resulting successfully injection moulding at an optimum temperature of 130°C. (paper)

  9. Capillary levelling as a probe of rheology in polymer thin films

    Science.gov (United States)

    McGraw, Joshua D.; Jago, Nick M.; Dalnoki-Veress, Kari

    2011-03-01

    While measuring the rheology of bulk polymer systems is routine, when the size of a system becomes comparable to the molecular size, flow properties are poorly understood and hard to measure. Here, we present the results of experiments that are easily performed and can probe the rheological properties of polymer films that are mere tens of nanometres in thickness. We prepare glassy bilayer polymer films with height profiles well approximated by a step function. Upon annealing above the glass transition, broadening of the height profiles due to gradients in the Laplace pressure is observed. By validating the technique as a probe of the rheology with a range of molecular weights, we will show that this robust technique can be used to investigate the effects of confinement and interfaces on the rheology of ultrathin polymer films. Financial support from NSERC of Canada is gratefully acknowledged.

  10. Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor

    Science.gov (United States)

    Hübl, J.; Steinwendtner, H.

    2000-09-01

    Rheological parameters of viscous debris flows are influenced by a great amount of factors and are therefore extremely difficult to estimate. Because of this uncertainties a belt conveyor (conveyor channel) was constructed to measure flow behaviour and rheological properties of natural debris flow material. The upward movement of the smooth rubberised belt between fixed lateral plastic walls causes a stationary wave relative to these bends. This special experimental design enables to study behaviour of viscous ebris flow material with maximum grain diameters up to 20 mm within several minutes and to hold measuring equipment very simple. The conveyor channel was calibrated first with Xanthan, a natural polysaccharide used as thickener in food technology, whose rheological properties are similar to viscous debris flow material. In a second step natural debris flow material was investigated. Velocities and rheological parameters were measured with varying solid concentration and slope of the channel. In cases where concentration of coarse particles exceed around 15% by volume the conveyor channel obtains an alternative to expensive commercial viscometers for determination of rheological parameters of viscous debris flows.

  11. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials

    International Nuclear Information System (INIS)

    Velu, M.; Bhat, Sunil

    2013-01-01

    Highlights: ► Optical and scanning electron microscopy show defect free weld interfaces. ► Energy dispersive spectroscopy shows low dilution level of the weld by Fe. ► XRD studies show no brittle intermetallic phases in the weld interfaces. ► Weld interfaces did not fail during tensile, transverse bending and impact tests. ► The joint exhibits superior strength properties than that of bronze filler. - Abstract: The paper presents metallurgical and mechanical examinations of joints between dissimilar metals viz. copper (UNSC11000) and alloy steel (En31) obtained by Shielded Metal Arc Welding (SMAW) using two different filler materials, bronze and nickel-base super alloy. The weld bead of the joint with bronze-filler displayed porosity, while that with nickel-filler did not. In tension tests, the weldments with bronze-filler fractured in the centre of the weld, while those with nickel-filler fractured in the heat affected zone (HAZ) of copper. Since the latter exhibited higher strength than the former, all the major tests were undertaken over the joints with nickel-filler alone. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) indicated corrugated weld interfaces and favorable elemental diffusions across them. X-ray diffraction (XRD) studies around the weld interfaces did not reveal any detrimental intermetallic compounds. Transverse bending tests showed that flexural strengths of the weldments were higher than the tensile strengths. Transverse side bend tests confirmed good ductility of the joints. Shear strength of the weld-interface (Cu–Ni or Ni–steel) was higher than the yield strength of weaker metal. Microhardness and Charpy impact values were measured at all the important zones across the weldment

  12. Rheological Behaviour of a Bitumen Modified with Metal Oxides Obtained by Regeneration Processes

    Directory of Open Access Journals (Sweden)

    Tullio Giuffrè

    2018-02-01

    Full Text Available Nowadays, one important challenge is to demonstrate an innovative and integrated approach for the sustainable construction of roads considering the whole life cycle of the infrastructure. Road pavements with multiple asphalt layers generally undergo prolonged environmental exposure and the alternation between solar irradiation and low temperatures. As a result, relaxation or progressive removal of the material with a negative impact on the resistance to plastic deformation occur, also leading to the formation of slits and to dimensional variations, which are commonly defined as thermal cracking. This suggests the use of suitable bitumen modifiers. For these, important parameters are the optimal mixing time and mixing temperature, in order to reduce problems related to the stability of the bitumen. Therefore, the behaviour, upon changing the temperature, of bituminous mixtures containing (as fillers a series of metal oxides coming, as secondary products, from spent acid solutions regeneration processes, was investigated. This is intended in order to recover and reuse those otherwise dangerous wastes coming from several industrial (especially, metallurgical processes. The study was aimed at evaluating the properties of bituminous blends by performing rheological tests under dynamic shear regime. More specifically, five different bitumen matrices were prepared (70/100 bitumen and blends with metal oxides and/or SBS copolymer. Results showed that the addition of iron oxides leads to an increase of the softening point and the complex modulus. The increase is even more emphasized when SBS is added to the blend.

  13. Influence of Natural, Synthetic Polymers and Fillers on sustained release matrix tablets of Pregabalin

    OpenAIRE

    Vijaya Durga. K; Ashok Kumar. P; Suresh V Kulkarni

    2013-01-01

    The objective of the present study was to develop sustained release matrix tablets of Pregabalin for the treatment of neuropathic pain and epilepsy. The tablets were prepared by wet granulation and formulated using drug with Hydrophilic, hydrophobic, synthetic, natural polymers and 4 different fillers were used. The effect of Polymer concentration, combination and fillers on drug release rate was analyzed for the formulations F-1 to F-17. The tablets were subjected to physicochemical studies,...

  14. Effect of filler loading of characteristic natural rubber latex (NRL) film filled with nanocrystal cellulose (NCC) and dipersion agent polyvinylpyrrolidone (PVP)

    Science.gov (United States)

    Harahap, Hamidah; Lubis, Yuni Aldriani; Taslim, Iriany, Nasution, Halimatuddahliana; Agustini, Hamda Eka

    2018-04-01

    A study has been conducted on the effect of filler loading on NRL films filled with NCC from corn cob waste. This study reviews on the filler loading of NRL film characteristics. The process begins with the production of NCC filler and then proceed with the production NRL film which is processed by coagulant dipping method. NRL is filled with NCC and PVP as dispersion agent of 2, 4, 3, 8 grams (filler loading) and 1% PVP by weight. The production of NRL film started with pre-vulcanization process at 70 °C and followed by vulcanization process at 110 °C for 20 minutes. The results showed that higher filler loading improved the higher crosslink density and mechanical properties of NRL film.

  15. Rheology of sediment transported by a laminar flow

    Science.gov (United States)

    Houssais, M.; Ortiz, C. P.; Durian, D. J.; Jerolmack, D. J.

    2016-12-01

    Understanding the dynamics of fluid-driven sediment transport remains challenging, as it occurs at the interface between a granular material and a fluid flow. Boyer, Guazzelli, and Pouliquen [Phys. Rev. Lett. 107, 188301 (2011)], 10.1103/PhysRevLett.107.188301 proposed a local rheology unifying dense dry-granular and viscous-suspension flows, but it has been validated only for neutrally buoyant particles in a confined and homogeneous system. Here we generalize the Boyer, Guazzelli, and Pouliquen model to account for the weight of a particle by addition of a pressure P0 and test the ability of this model to describe sediment transport in an idealized laboratory river. We subject a bed of settling plastic particles to a laminar-shear flow from above, and use refractive-index-matching to track particles' motion and determine local rheology—from the fluid-granular interface to deep in the granular bed. Data from all experiments collapse onto a single curve of friction μ as a function of the viscous number Iv over the range 3 ×10-5 ≤Iv≤2 , validating the local rheology model. For Ivcreeping regime where we observe a continuous decay of the friction coefficient μ ≤μs as Iv decreases. The rheology of this creep regime cannot be described by the local model, and more work is needed to determine whether a nonlocal rheology model can be modified to account for our findings.

  16. Historical evolution of oil painting media: A rheological study

    Science.gov (United States)

    de Viguerie, Laurence; Ducouret, Guylaine; Lequeux, François; Moutard-Martin, Thierry; Walter, Philippe

    2009-09-01

    Rheology is the science of flow, which is a phenomenon found in every painting operation, such as decorative paintings or protective coatings. In this article, the principles of rheology as applied to paintings and coatings are recalled in a first part and the rheological criteria required in the paint industry presented. Indeed, different flow behaviours leads to different finishes. The same procedure and techniques as in industry can be employed to explain some evolutions in oil painting aspects over the centuries. The first recipes for oil painting indicate the use of treated oil, resins and spirits. This article deals with the evolution of the composition of these systems as media for oil painting, according to rheological clues. During the Renaissance period, the media used were Newtonian or slightly shear thinning and allowed one a perfect levelling. Then techniques changed, paints became more opaque with less addition of oil/resin media, and brushstrokes appeared visible. Some preparations containing lead, oil and mastic resin, whose flow behaviour is closed to those required in industry, may have appeared during the 17th century and are still used and sold today. To cite this article: L. de Viguerie et al., C. R. Physique 10 (2009).

  17. How to Prepare SMC and BMC-like Compounds to Perform Relevant Rheological Experiments?

    Science.gov (United States)

    Guiraud, Olivier; Dumont, Pierre J. J.; Orgéas, Laurent

    2013-04-01

    The study of the rheology of injected or compression moulded compounds like SMC or BMC is made particularly difficult by the high content and the intricate arrangement of their fibrous reinforcement. For these two types of compounds, inappropriate rheological testing protocols and rheometers are often used, which leads to a very large scatter of the experimental data. This study describes specific sampling and specimen's preparation methods, as well as dedicated rheometry devices to test their rheology. Following the proposed protocols, it is possible to obtain rheological measurements showing low scatter of the recorded stress values: about ±10% for SMC and about ±15% for BMC-like compounds.

  18. Ceramic-like open-celled geopolymer foam as a porous substrate for water treatment catalyst

    Science.gov (United States)

    Kovářík, T.; Křenek, T.; Pola, M.; Rieger, D.; Kadlec, J.; Franče, P.

    2017-02-01

    This paper presents results from experimental study on microstructural and mechanical properties of geopolymer-based foam filters. The process for making porous ceramic-like geopolymer body was experimentally established, consists of (a) geopolymer paste synthesis, (b) ceramic filler incorporation, (c) coating of open-celled polyurethane foam with geopolymer mixture, (d) rapid setting procedure, (e) thermal treatment. Geopolymer paste was based on potassium silicate solution n(SiO2)/n(K2O)=1.6 and powder mixture of calcined kaolin and precipitated silica. Various types of ceramic granular filler (alumina, calcined schistous clay and cordierite) were tested in relation to aggregate gradation design and particle size distribution. The small amplitude oscillatory rheometry in strain controlled regime 0.01% with angular frequency 10 rad/s was applied for determination of rheology behavior of prepared mixtures. Thermal treatment conditions were applied in the temperature range 1100 - 1300 °C. The developed porous ceramic-like foam effectively served as a substrate for highly active nanoparticles of selected Fe+2 spinels. Such new-type of nanocomposite was tested as a heterogeneous catalyst for technological process of advanced oxidative degradation of resistive antibiotics occurring in waste waters.

  19. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Gu, E-mail: jglee88@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 44610 (Korea, Republic of); Lee, Gyoung-Ja; Park, Jin-Ju [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of); Lee, Min-Ku, E-mail: leeminku@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 34057 (Korea, Republic of)

    2017-05-15

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  20. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    International Nuclear Information System (INIS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-01-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments. - Highlights: •Corrosion of Zircaloy-4 joints brazed with Zr-Cu-X filler alloys was investigated. •Alloyed Al deteriorated the overall nobility of joints by microgalvanic reaction. •Compositional gradient of Al in joints was the driving force for galvanic corrosion. •Cu and Fe did not influence the electrochemical stability of joints. •Zr-Cu-Fe filler alloy yielded excellent high-temperature corrosion resistance.

  1. Impact of Aggregate Gradation and Filler Type on Marshall Properties of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2015-09-01

    Full Text Available As asphalt concrete wearing course (ACWC is the top layer in the pavement structure, the material should be able to sustain stresses caused by direct traffic loading. The objective of this study is to evaluate the influence of aggregate gradation and mineral filler type on Marshall Properties. A detailed laboratory study is carried out by preparing asphalt mixtures specimens using locally available materials including asphalt binder (40-50 penetration grade, two types of aggregate gradation representing SCRB and ROAD NOTE 31 specifications and two types of mineral filler including limestone dust and coal fly ash. Four types of mixtures were prepared and tested. The first type included SCRB specification and limestone dust, the second type included SCRB specification and coal fly ash, the third types included ROAD NOTE 31 specification and limestone dust and the fourth type included ROAD NOTE 31 specification and coal fly ash. The optimum asphalt content of each type of mixtures was determined using Marshall Method of mix design. 60 specimen were prepared and tested with dimension of 10.16 cm in diameter and 6.35 cm in height. Results of this study indicated that aggregate gradation and filler type have a significant effect on optimum asphalt content and Marshall Properties. From the experimental data, it was observed that the value of Marshall Stability is comparatively higher when using fly ash as filler as compared to limestone dust.

  2. Rheological considerations for the modelling of submarine sliding at Rockall Bank, NE Atlantic Ocean

    Science.gov (United States)

    Salmanidou, D. M.; Georgiopoulou, A.; Guillas, S.; Dias, F.

    2018-03-01

    Recent scientific research indicates that the Rockall Bank Slide Complex in the NE Atlantic Ocean has formed as the result of repetitive slope failures that can be distinguished in at least three major phases. These sliding episodes took place during and before the Last Glacial Maximum. This work attempts the modelling of each sliding episode with the incorporation of the landslide's rheological properties. The objective is to study the landslide kinematics and final deposition of each episode under a rheological framework that comes in agreement with the field observations. To do so in the present work, we use different types of rheological models to compute the total retarding stress and simulate submarine failure. The Bingham rheology and the frictional rheology are used to model the flow behavior. The scope of this approach is to understand the effect of the two classical laws in landslide kinematics. A rheological model that combines the two regimes is also used. To account for the hydrodynamic drag, the Voellmy model is employed. The results are validated against the field observations on the seabed of the Rockall Trough. The simulations show that for this particular case the Bingham rheology with a small or negligible basal friction produces the best results. The tsunamigenic potential of the episodes is also briefly examined.

  3. The effect of sweeteners and milk type on the rheological properties ...

    African Journals Online (AJOL)

    Administrator

    The aim of the study was, to determine effects of sweeteners and milk type on the rheological and sensorial properties of reduced ... Key words: Rheology, artifical sweeteners, low-calorie, power-law model, salep drink. INTRODUCTION ... to several adverse health effects including cardiovascular diseases, diabetes and ...

  4. Co-spray Drying with HPMC as a Platform to Improve Direct Compaction Properties of Various Tablet Fillers.

    Science.gov (United States)

    Li, JinZhi; Zhao, LiJie; Lin, Xiao; Shen, Lan; Feng, Yi

    2017-11-01

    Many commonly used tablet fillers are not suitable for direct compaction process due to insufficient properties, mainly of flowability and compactability. This work therefore aimed to use co-spray drying with HPMC as a platform to improve direct compaction properties of various tablet fillers. Starch, calcium hydrogen phosphate dihydrate (DCPD), and mannitol were chosen as a representative of three types of commonly used fillers (i.e. organic macromolecules, water-insoluble inorganic salts, and water-soluble small molecular carbohydrates), respectively. The five-level central composite design-response surface methodology was used (i) to investigate the effects of HPMC level and solid content of the feed on various powder, tableting, and tablet properties of composite excipients, and (ii) to optimize the composition. The results showed that the impacts of the two factors on various properties of composite excipients showed great similarity, despite of significantly different primary properties of the parent fillers, and the HPMC level was the main contributor to the majority of the impacts. An increase in HPMC level significantly improved tablet tensile strength and various tableting parameters. For all the three fillers, their optimized composite excipients provided by the established models showed excellent performances as predicted. The platform suggested is confirmed to be effective and promising.

  5. Modification of alternative additives and their effect on the rubber properties

    Directory of Open Access Journals (Sweden)

    Ondrušová Darina

    2018-01-01

    Full Text Available The present paper deals with a targeted modification of two kinds of alternative additives - waste from glass production and natural mineral filler and explores their effect on the properties of polymeric materials. In the function of first alternative filler was used sludge from weighing the ingredients of glass batch in the glass production. The second used was natural aluminosilicate material based on zeolite (clinoptilolite. These alternative fillers have been modified in order to increase its efficiency, using the silanes: 3-aminopropyl-triethoxysilane, bis(triethoxysilylpropyl-tetrasulfide and 3-(triethoxysilylpropyl-methacrylate. In the case of alternative filler based on zeolite the influence of silanization conditions on the filler efficiency have been also studied. Prepared modified fillers were mixed into rubber compounds as partial replacement of commonly used filler – carbon black. The influence of prepared fillers on rheology and curing characteristics of rubber compounds and also on physical and mechanical properties of vulcanizates has been studied. Obtained results of measured characteristics of polymeric systems containing prepared alternative fillers were compared with the results obtained in the case of reference rubber compound with a commertially used filler – carbon black.

  6. Anatomic and mechanical considerations in restoring volume of the face with use of hyaluronic acid fillers with a novel layered technique.

    Science.gov (United States)

    Thomas, Mohan K; Dsilva, James A; Borole, Ateesh J; Naik, Sudhir M; Sarkar, Soma G

    2014-01-01

    Facial fillers have revolutionized the field of cosmetic facial rejuvenation as it has become the prime sought - after rejuvenation procedure offering youthful, 3-dimensional look with minimal invasiveness. Fillers are expensive and need to be redone periodically hence a sound understanding of structural basis on which they are laid is important in reducing the quantity of filler required in each sitting as well as increasing the longevity of results. The aim of the following study is to analyse a novel method of facial filling "The pillars pyramids and tie beams (PPT)" technique and its advantages over the conventional methods. A novel technique of injecting the facial fillers was employed on 67 patients visiting our clinic. These patients were followed-up for a period of 3 years. We observed that the amount of filler material required in initial sitting remains the same, however the frequency of touch up visits is decreased and so is the amount of filler material required for follow-up injections. Facial contour remodelling is being revolutionised by the new filler materials for volume augmentation and no uniform consensus has been reached on the techniques currently used in clinical practice. We advocate this novel PPT technique of facial filling in facial rejuvenation to restore a youthful look as a primary goal.

  7. Applications of Monte Carlo method to nonlinear regression of rheological data

    Science.gov (United States)

    Kim, Sangmo; Lee, Junghaeng; Kim, Sihyun; Cho, Kwang Soo

    2018-02-01

    In rheological study, it is often to determine the parameters of rheological models from experimental data. Since both rheological data and values of the parameters vary in logarithmic scale and the number of the parameters is quite large, conventional method of nonlinear regression such as Levenberg-Marquardt (LM) method is usually ineffective. The gradient-based method such as LM is apt to be caught in local minima which give unphysical values of the parameters whenever the initial guess of the parameters is far from the global optimum. Although this problem could be solved by simulated annealing (SA), the Monte Carlo (MC) method needs adjustable parameter which could be determined in ad hoc manner. We suggest a simplified version of SA, a kind of MC methods which results in effective values of the parameters of most complicated rheological models such as the Carreau-Yasuda model of steady shear viscosity, discrete relaxation spectrum and zero-shear viscosity as a function of concentration and molecular weight.

  8. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  9. Numerical simulation of TIG welding with filler of steel pieces of high thickness

    International Nuclear Information System (INIS)

    Carmignani, B.; Toselli, G.

    1999-01-01

    The problem of the numerical simulation of welding process with filler, in particular TIG (tungsten inert gas) with cold filler, has been approached with ABAQUS/S code. Reference has been made to some experimental models studied and prepared ad hoc in order to better know the physical phenomena involved in the TIG welding technique and to validate the computation methodologies and results obtained. This numerical simulation has been required in order to assist the fabrication development and QA for TF (toroidal field) coil case, an important component of ITER (international thermonuclear experimental reactor) machine [it

  10. Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures

    Directory of Open Access Journals (Sweden)

    López-López, E.

    2015-06-01

    Full Text Available This study focuses on the characterization of bottom ash (PCC-BA and determining the mechanical characteristics of hot mix asphalt (HMA using PCC-BA and hydrated lime (HL as filler. Physical and chemical characterization of the bottom ash was carried out to evaluate its eventual reutilization as filler substitute. The materials tested in this study were made using 0%, 25%, 50%, 70% and 100% of PCC-BA combined with HL. HMA mixes were evaluated in terms of their engineering properties, namely: air voids in the mixes, water sensitivity, stiffness modulus, performance in wheel tracking test and fatigue resistance. The results obtained indicate that HMA mixes with a filler blend of 70% PCC-BA and 30% HL fulfil European standards and are suitable for light traffic or small infrastructures.Este estudio se centra en la caracterización de las cenizas de fondo (PCC-BA y la determinación de las características mecánicas de mezclas bituminosas en caliente (HMA, utilizando cenizas de fondo y la cal hidratada (HL como filler. Se realizó la caracterización física y química de las cenizas de fondo para evaluar su empleo como sustituto de filler. Las mezclas ensayadas en este estudio se realizaron utilizando 0%, 25%, 50%, 70% y 100% de cenizas de fondo combinadas con cal hidratada. Se evaluaron propiedades ingenieriles de las mezclas bituminosas, tales como los huecos de aire en las mezclas, la sensibilidad al agua, el módulo de rigidez, el ensayo de pista y la resistencia a la fatiga. Los resultados obtenidos indican que las mezclas bituminosas fabricadas con una combinación de filler del 70% de cenizas de fondo y el 30% cal hidratada, cumplen con las normas europeas y son adecuados para su aplicación con tráficos ligeros o en pequeñas infraestructuras.

  11. Assessing the microstructural and rheological changes induced by food additives on potato puree.

    Science.gov (United States)

    Dankar, Iman; Haddarah, Amira; El Omar, Fawaz; Sepulcre, Francesc; Pujolà, Montserrat

    2018-02-01

    The effects of agar, alginate, lecithin and glycerol on the rheological properties of commercial potato puree were investigated and interpreted in terms of starch microstructural changes, and the applicability of the Cox-Merz rule was evaluated. Each additive was applied separately at two concentrations (0.5 and 1%). Microscopic observations revealed more swollen starch aggregations in lecithin and glycerol compared with those of potato puree and agar, consequently affecting the rheological properties of potato puree. All samples exhibited shear thinning non-Newtonian behaviour. Rheological measurements were strongly concentration dependent. At 0.5% concentration, additives exerted decreases in all the rheological properties of potato puree in the order of glycerol>alginate>lecithin>agar, while at 1% concentration, the order changed to glycerol>lecithin>alginate, whereas 1% agar behaved differently, increasing all rheological values. This study also showed that agar and alginate in addition to potato puree could be valuable and advantageous for further technological processes, such as 3D printing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dermal fillers for facial soft tissue augmentation.

    Science.gov (United States)

    Dastoor, Sarosh F; Misch, Carl E; Wang, Hom-Lay

    2007-01-01

    Nowadays, patients are demanding not only enhancement to their dental (micro) esthetics, but also their overall facial (macro) esthetics. Soft tissue augmentation via dermal filling agents may be used to correct facial defects such as wrinkles caused by age, gravity, and trauma; thin lips; asymmetrical facial appearances; buccal fold depressions; and others. This article will review the pathogenesis of facial wrinkles, history, techniques, materials, complications, and clinical controversies regarding dermal fillers for soft tissue augmentation.

  13. Long-term performance of thermoplastic composite material with cotton burr and stem (CBS) as a partial filler

    Science.gov (United States)

    Rationale: Cotton burr and stem (CBS) fraction of cotton gin byproducts has shown promise as a fiber filler in thermoplastic composites, with physical and mechanical properties comparable to that made with wood fiber fillers. However, the long-term performance of this composite material is not known...

  14. Wear resistance of layers hard faced by the high-alloyed filler metal

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2016-10-01

    Full Text Available The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by high hardness and wear resistance. In experiments, the sliding speed and the normal loading were varied and the wear scar was monitored, based on which the volume of the worn material was calculated analytically. The contact duration time was monitored over the sliding path of 300 mm. The most intensive wear was established for the loading force of 100 N and the sliding speed of 1 m.s-1, though the significant wear was also noticed in conditions of the small loading and speed of 0.25 m.s-1, which was even greater that at larger speeds.

  15. Rheological properties of a nematic cell oriented in a planar manner

    International Nuclear Information System (INIS)

    Barbero, G.; Meyer, C.; Lelidis, I.

    2010-01-01

    We propose a simple model to investigate the rheological properties of a nematic cell oriented in a planar manner. The storage and loss modulus are evaluated in the case of strong and weak anchoring conditions. The contribution of the surface viscosity to the rheological parameters is also considered.

  16. Penggunaan precipitated calcium carbonate (PCC sebagai filler untuk sol karet sepatu olah raga

    Directory of Open Access Journals (Sweden)

    Herminiwati

    2010-12-01

    Full Text Available Abstract The objective of the research was to investigate the utilization of Precipitated Calcium Carbonate (PCC as filler in producing sport shoe rubber soles. PCC is a white filler needed for production of nonblack colour rubber products. There are four types of PCC that have been used including two local PCC from Wonosari and East Java, and two imported PCC from Japan and Taiwan. The amount of PCC added into the sport shoe sole rubber compound was varied in 30,45,60,75 and 90 per hundred rubber (phr. The compounding was carried-out by using two roll mills machine, and the compound was subsequently measured their optimum vulcanization time by using rheometer. The produced compound was then subjected to vulcanistion process by using hydrolic press at temperature 1500C and pressure 150 kg/ cm2. The quality of shoes sole vulcanisates were compare to standard quality of SNI. 12-7075-2005 about cemented system sport shoes. The results indicated that the best formula of rubber compound for sport shoes sole were made by using NR 80 phr, NBR 20 phr, paraffinic oil 10 phr, aluminium silicate 30 phr, ZnO 5 phr, TiO2 10 phr, stearic acid 1 phr, vulkanox SP 1 phr, paraffin wax 1 phr, TMTD 0,5 phr, CBS 2 phr, sulphur 1,2 phr with the amount of PCC Actifort 700 of 45 phr. The best formula meet the requirement SNI 12-7075-2005 and they were characterized by tensile sterength 16,79 N/mm2, elongation at break 529,92% tear resistance 9,06 N/mm2, specific gravity 1,28 g/cm3, hardness 55 shore A, Grasselli absrassion resistancing filler. The local PCC from Wonosari can be used for substitution of the imported PCC as the white filler for the production of rubber compound sport shoes sole. However, particle size reduction and coating or surface treatment of local PCC were needed for improving the quality and the role of reinforcing filler.

  17. Rotation of magnetic particles inside the polymer matrix of magnetoactive elastomers with a hard magnetic filler

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, G.V., E-mail: gstepanov@mail.ru [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation); Borin, D.Yu. [TU Dresden, Magnetofluiddynamics, Measuring and Automation Technology, Dresden 01062 (Germany); Storozhenko, P.A. [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation)

    2017-06-01

    We propose the results of research on the magnetic properties of magnetoactive elastomers containing particles of a hard magnetic filler. According to our understanding, the mechanism of re-magnetizing of the composite is based on two competing processes, being the re-magnetizing of the magnetic filler and mechanical rotation of particles inside of the polymer matrix.

  18. Rheological properties of kaolin and chemically simulated waste

    International Nuclear Information System (INIS)

    Selby, C.L.

    1981-12-01

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature

  19. Development of brazing process for W-EUROFER joints using Cu-based fillers

    Science.gov (United States)

    de Prado, J.; Sánchez, M.; Ureña, A.

    2016-02-01

    A successful joint between W and EUROFER using high temperature brazing technique has been achieved for structural application in future fusion power plants. Cu-based powder alloy mixed with a polymeric binder has been used as filler. Microstructural analysis of the joints revealed that the joint consisted mainly of primary phases and acicular structures in a Cu matrix. Interaction between EUROFER and filler took place at the interface giving rise to several Cu-Ti-Fe rich layers. A loss of hardness at the EUROFER substrate close to the joint due to a diffusion phenomenon during brazing cycle was measured; however, the joints had an adequate shear strength value.

  20. Novel design of a self powered and self sensing magneto-rheological damper

    International Nuclear Information System (INIS)

    Ferdaus, Mohammad Meftahul; Rashid, M M; Bhuiyan, M M I; Muthalif, Asan Gani Bin Abdul; Hasan, M R

    2013-01-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered and self sensing MR damper is theoretically calculated and evaluated in the frequency domain

  1. Novel design of a self powered and self sensing magneto-rheological damper

    Science.gov (United States)

    Meftahul Ferdaus, Mohammad; Rashid, M. M.; Bhuiyan, M. M. I.; Muthalif, Asan Gani Bin Abdul; Hasan, M. R.

    2013-12-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered & self sensing MR damper is theoretically calculated and evaluated in the frequency domain.

  2. Shear and elongational rheology of photo-oxidative degraded HDPE and LLDPE

    Science.gov (United States)

    Wagner, Manfred Hermann; Zheng, Wang; Wang, Peng; Talamante, Sebastián Ramos; Narimissa, Esmaeil

    2017-05-01

    The effect of photo-oxidative degradation of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) was investigated by linear and non-linear rheological measurements. The linear-viscoelastic rheological measurements were performed at different temperatures, while the elongational viscosity was measured at 170°C and at different strain rates. The rheological data are indicative of structural changes caused by photo-oxidative degradation including formation of long-chain branches (LCB), cross-linking, and chain scission, and they revealed a cyclic and continuing competition between chain scission and LCB/gel formation. These findings are supported by additional FTIR measurements and direct measurements of the gel content of the degraded samples.

  3. Reversible pH-Sensitive Chitosan-Based Hydrogels. Influence of Dispersion Composition on Rheological Properties and Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nieves Iglesias

    2018-04-01

    Full Text Available The present work deals with the synthesis of micro-structured biomaterials based on chitosan (CTS for their applications as biocompatible carriers of drugs and bioactive compounds. Twelve dispersions were prepared by means of functional cross-linking with tricarballylic acid (TCA; they were characterized by Fourier transform infrared spectroscopy (FT-IR, modulated temperature differential scanning calorimetry (MTDSC and scanning electron microscopy (SEM, and their rheological properties were studied. To the best of the authors’ knowledge, no study has been carried out on the influence of CTS concentration, degree of cross-linking and drug loading on chitosan hydrogels for drug delivery systems (DDS and is investigated herein for the first time. The influence of dispersion composition (polymer concentration and degree of cross-linking revealed to exert a marked impact on its rheological properties, going from liquid-like to viscoelastic gels. The release profiles of a model drug, diclofenac sodium (DCNa, as well as their relationships with polymer concentration, drug loading and degree of cross-linking were evaluated. Similar to the findings on rheological properties, a wide range of release profiles was encountered. These formulations were found to display a well-controlled drug release strongly dependent on the formulation composition. Cumulative drug release under physiological conditions for 96 h ranged from 8% to 67%. For comparative purpose, Voltaren emulgel® from Novartis Pharmaceuticals was also investigated and the latter was the formulation with the highest cumulative drug release (85%. Some formulations showed similar spreadability values to the commercial hydrogel. The comparative study of three batches confirmed the reproducibility of the method, leading to systems particularly suitable for their use as drug carriers.

  4. Novel phthalocyanine crystals as a conductive filler in crosslinked epoxy materials: Fractal particle networks and low percolation thresholds

    NARCIS (Netherlands)

    Chen, Zhe; Brokken-Zijp, J.C.M.; Michels, M.A.J.

    2006-01-01

    Novel nanosized crystals of aquocyanophthalocyaninatocobalt (III) (Phthalcon 11) were used as a conductive filler in crosslinked epoxy materials. The crosslinked composite materials had a very low percolation threshold (c 0.9 vol %). The relationship between the volume conductivity and the filler

  5. Impact of lithospheric rheology on surface topography

    Science.gov (United States)

    Liao, K.; Becker, T. W.

    2017-12-01

    The expression of mantle flow such as due to a buoyant plume as surface topography is a classical problem, yet the role of rheological complexities could benefit from further exploration. Here, we investigate the topographic expressions of mantle flow by means of numerical and analytical approaches. In numerical modeling, both conventional, free-slip and more realistic, stress-free boundary conditions are applied. For purely viscous rheology, a high viscosity lithosphere will lead to slight overestimates of topography for certain settings, which can be understood by effectively modified boundary conditions. Under stress-free conditions, numerical and analytical results show that the magnitude of dynamic topography decreases with increasing lithosphere thickness (L) and viscosity (ηL), as L-1 and ηL-3. The wavelength of dynamic topography increases linearly with L and (ηL/ ηM) 1/3. We also explore the time-dependent interactions of a rising plume with the lithosphere. For a layered lithosphere with a decoupling weak lower crust embedded between stronger upper crust and lithospheric mantle, dynamic topography increases with a thinner and weaker lower crust. The dynamic topography saturates when the decoupling viscosity is 3-4 orders lower than the viscosity of upper crust and lithospheric mantle. We further explore the role of visco-elastic and visco-elasto-plastic rheologies.

  6. PHYSICOCHEMICAL AND RHEOLOGICAL CHARACTERIZATION OF AVOCADO OILS

    Directory of Open Access Journals (Sweden)

    Tamara de Souza Jorge

    2015-08-01

    Full Text Available Avocado oil is rich in bioactive compounds, which can improve human health by acting as an antioxidant. It may be extracted from different varieties of avocado, such as Margarida and Hass varieties, each of them with particular characteristics. Aiming to evaluate the differences between them, avocado fruits and pulps from these were analyzed according to their physicochemical characteristics. After extracted, the oils had their bioactive characteristics studied and rheological behavior determined through a rotational rheometer. They were then compared to commercial avocado oil. The fruits of Margarida variety had greater size, higher weight (664.51 g, and higher pulp yield (72.19% than Hass variety, which showed higher lipid content (65.29 g/100 g dry basis. The commercial oil showed less primary oxidative degradation, whereas Margarida variety had a lower level of secondary degradation products as well as a higher content of bioactive compounds, such as phytosterols (999.60 mg/kg and tocopherols (36.73 mg/kg. The rheological behaviors of both oils were appropriately described through Newton model, with R2 > 0.999 for all temperatures. By an Arrhenius type equation, it was verified that Hass's rheological parameters are more influenced by temperature than Margarida and commercial oil, presenting activation energy of 33.6 kJ/mol.

  7. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Roes, A. L., E-mail: a.l.roes@uu.nl; Tabak, L. B.; Shen, L.; Nieuwlaar, E.; Patel, M. K. [Utrecht University, Copernicus Institute, Department of Science, Technology and Society (Netherlands)

    2010-08-15

    The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the 'functionality-based NREU'. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

  8. Mechanical and electrical properties of a polyester resin reinforced with clay-based fillers

    Energy Technology Data Exchange (ETDEWEB)

    Buncianu, Dorel; Jadaneant, Mihai [UPT Timisoara, Timisoara (Romania); Tessier-Doyen, Nicolas; Absi, Joseph [Centre Européen de la Céramique, Limoges Cedex (France); Courreges, Fabien [Laboratoire XLIM, 123, Limoges Cedex (France)

    2017-03-15

    In this study, composite polymer-based materials were fabricated, in which a significant proportion of polyester resin was substituted by low-cost and environmentally-friendly clay-based raw materials. The main objective is to improve mechanical properties while maintaining a reasonable electrical insulating behavior. A homogenized distribution of fillers within the matrix compatible with the processing parameters was obtained up to a maximum added fraction of 20 vol%. Mechanical characterization using uniaxial traction tests and Charpy impact pendulum machine showed that stress-to-rupture can be enhanced of approximately 25 %. In addition, fracture energy was doubled for the best formulation. Dielectric constant was decreased and loss factor was slightly increased when electrical resistivity remained almost constant. In general, the composite materials with metakaolin fillers exhibited higher mechanical properties and greater electrical insulating behavior. Microstructural observation showed the presence of decohesive agglomerates of particles at the interface with the matrix. The mechanical properties were found to be more sensitive than electrical properties to the homogeneity of filler dispersion in the matrix.

  9. Introducing Students to Rheological Classification of Foods, Cosmetics, and Pharmaceutical Excipients Using Common Viscous Materials

    Science.gov (United States)

    Faustino, Ce´lia; Bettencourt, Ana F.; Alfaia, Anto´nio; Pinheiro, Lídia

    2015-01-01

    Rheological measurements are very important tools for the characterization of the flow and deformation of a material, as well as for optimization of the rheological parameters. The application and acceptance of pharmaceutical formulations, cosmetics, and foodstuffs depends upon their rheological characteristics, such as texture, consistency, or…

  10. Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation

    International Nuclear Information System (INIS)

    Belgin, E.E.; Aycik, G.A.

    2017-01-01

    Filler particle size is an important particle that effects radiation attenuation performance of a composite shielding material but the effects of it have not been exploited so far. In this study, two mineral (hematite-ilmenite) with different particle sizes were used as fillers in a polymer-matrix composite and effects of particle size on shielding performance was investigated within a widerange of radiation energy (0-2000 keV). The thermal and structural properties of the composites were also examined. The results showed that as the filler particle size decreased the shielding performance increased. The highest shielding performance reached was 23% with particle sizes being between <7 and <74 µm. (author)

  11. FlowCyl: one-parameter characterisation of matrix rheology

    DEFF Research Database (Denmark)

    Cepuritis, Rolands; Ramenskiy, Evgeny; Mørtsell, Ernst

    The FlowCyl is a simple flow viscometer – a modification of the Marsh Cone test apparatus developed to characterize cement pastes and grouts. The FlowCyl gives a one parameter characterisation of rheology called the flow resistance ratio or λQ for use in the Particle-Matrix concrete proportioning...... Model (PMM) as a description of the viscous phase of the concrete, while another parameter related to packing density is used to describe the particle phase. There have been numerous studies which have shown how the matrix λ Qvalues affect the rheological parameters of concretes with a given particle...

  12. Anatomic and mechanical considerations in restoring volume of the face with use of hyaluronic acid fillers with a novel layered technique

    Directory of Open Access Journals (Sweden)

    Mohan K Thomas

    2014-01-01

    Full Text Available Context: Facial fillers have revolutionized the field of cosmetic facial rejuvenation as it has become the prime sought - after rejuvenation procedure offering youthful, 3-dimensional look with minimal invasiveness. Fillers are expensive and need to be redone periodically hence a sound understanding of structural basis on which they are laid is important in reducing the quantity of filler required in each sitting as well as increasing the longevity of results. Aim: The aim of the following study is to analyse a novel method of facial filling "The pillars pyramids and tie beams (PPT" technique and its advantages over the conventional methods. Subjects and Methods: A novel technique of injecting the facial fillers was employed on 67 patients visiting our clinic. These patients were followed-up for a period of 3 years. Results: We observed that the amount of filler material required in initial sitting remains the same, however the frequency of touch up visits is decreased and so is the amount of filler material required for follow-up injections. Conclusion: Facial contour remodelling is being revolutionised by the new filler materials for volume augmentation and no uniform consensus has been reached on the techniques currently used in clinical practice. We advocate this novel PPT technique of facial filling in facial rejuvenation to restore a youthful look as a primary goal.

  13. The Classification and Prognosis of Periocular Complications Related to Blindness following Cosmetic Filler Injection.

    Science.gov (United States)

    Myung, Yujin; Yim, Sangjun; Jeong, Jae Hoon; Kim, Baek-Kyu; Heo, Chan-Yeong; Baek, Rong-Min; Pak, Chang-Sik

    2017-07-01

    Common side effects during hyaluronic acid filler injections are typically mild and reversible, but several reports of blindness have received attention. The present study focused on orbital symptoms combined with blindness, aiming to classify affected patients and predict their disease course and prognosis. From September of 2012 to August of 2015, nine patients with vision loss after filler injection were retrospectively reviewed. Ptosis, ophthalmoplegia, and enophthalmos were recorded over a 6-month follow-up, and patients were classified into four types according to periocular symptom manifestation. Two patients were categorized as type I (blindness without ptosis or ophthalmoplegia), two patients as type II (blindness and ptosis without ophthalmoplegia), two patients as type III (blindness and ophthalmoplegia without ptosis), and three patients as type IV (blindness with ptosis and ophthalmoplegia). The present study includes previously unpublished information about orbital symptom manifestations and prognosis combined with blindness caused by retinal artery occlusion after cosmetic filler injection. Therapeutic, V.

  14. High-temperature performance of a new nickel-based filler metal for power generation application

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, J.; Coleman, K. [Electric Power Research Institute, Charlotte, NC (United States); Siefert, J.; Tanzosh, J. [Babcok and Wilcox Research Center, Barberton, OH (United States); Newell, W. [Euroweld, Mooresville, NC (United States)

    2010-07-01

    A new nickel-based weld filler metal, EPRI P87, has been developed as a superior alternative to ERNiCr-3 for use in dissimilar metal welds (DMW) between ferritic and austenitic materials. EPRI P87 has a low coefficient of thermal expansion more closely matching alloys such as Grade 91 and 92 than other available filler metals. Additionally, the size of the carbon denuded region adjacent to the weld in the heat-affected-zone is minimized/eliminated by proper control of weld metal composition. In this work the high-temperature mechanical behavior of DMWs utilizing EPRI P87 (GTAW and GMAW processes) was characterized through tensile and long-term creep-rupture testing. Microstructure analysis was also conducted on tested specimens to evaluate the HAZ regions and failure modes. Performance of the weld metal and welded joints is discussed and compared with ERNiCr-3 and typical 9%Cr-MoV filler metals. (orig.)

  15. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Directory of Open Access Journals (Sweden)

    Kwang Liang Koh

    2017-07-01

    Full Text Available This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay and polydopamine-coated carbon nanofibres (D-CNF were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out.

  16. Fracture Toughness and Elastic Modulus of Epoxy-Based Nanocomposites with Dopamine-Modified Nano-Fillers

    Science.gov (United States)

    Koh, Kwang Liang; Ji, Xianbai; Lu, Xuehong; Lau, Soo Khim; Chen, Zhong

    2017-01-01

    This paper examines the effect of surface treatment and filler shape factor on the fracture toughness and elastic modulus of epoxy-based nanocomposite. Two forms of nanofillers, polydopamine-coated montmorillonite clay (D-clay) and polydopamine-coated carbon nanofibres (D-CNF) were investigated. It was found that Young’s modulus increases with increasing D-clay and D-CNF loading. However, the fracture toughness decreases with increased D-clay loading but increases with increased D-CNF loading. Explanations have been provided with the aid of fractographic analysis using electron microscope observations of the crack-filler interactions. Fractographic analysis suggests that although polydopamine provides a strong adhesion between the fillers and the matrix, leading to enhanced elastic stiffness, the enhancement prohibits energy release via secondary cracking, resulting in a decrease in fracture toughness. In contrast, 1D fibre is effective in increasing the energy dissipation during fracture through crack deflection, fibre debonding, fibre break, and pull-out. PMID:28773136

  17. Comparison of Rheological Properties of Hopped Wort and Malt Wort

    Directory of Open Access Journals (Sweden)

    Petr Trávníček

    2015-01-01

    Full Text Available The aim of this work is determination rheological properties of hopped wort and malt wort and their comparison. In the paper following rheological properties has been described: the dependence of viscosity on a temperature of a sample and hysteresis loop test. The time dependence test was performed for a confirmation thixotropic behaviour. Based on measured values Arrhenius mathematical model has been applied. The activation energy was determined by using of this model. Tests have been carried out in the temperature range from 5 °C to 40 °C. Rheological tests proved that malt wort behaves as Newtonian fluid in all temperatures and hopped wort behaves as non-Newtonian fluid at low temperatures. Thixotropic behaviour is caused by the content of the rests of hops heads or malt scraps.

  18. Cerebral Angiographic Findings of Cosmetic Facial Filler-related Ophthalmic and Retinal Artery Occlusion.

    Science.gov (United States)

    Kim, Yong-Kyu; Jung, Cheolkyu; Woo, Se Joon; Park, Kyu Hyung

    2015-12-01

    Cosmetic facial filler-related ophthalmic artery occlusion is rare but is a devastating complication, while the exact pathophysiology is still elusive. Cerebral angiography provides more detailed information on blood flow of ophthalmic artery as well as surrounding orbital area which cannot be covered by fundus fluorescein angiography. This study aimed to evaluate cerebral angiographic features of cosmetic facial filler-related ophthalmic artery occlusion patients. We retrospectively reviewed cerebral angiography of 7 patients (4 hyaluronic acid [HA] and 3 autologous fat-injected cases) showing ophthalmic artery and its branches occlusion after cosmetic facial filler injections, and underwent intra-arterial thrombolysis. On selective ophthalmic artery angiograms, all fat-injected patients showed a large filling defect on the proximal ophthalmic artery, whereas the HA-injected patients showed occlusion of the distal branches of the ophthalmic artery. Three HA-injected patients revealed diminished distal runoff of the internal maxillary and facial arteries, which clinically corresponded with skin necrosis. However, all fat-injected patients and one HA-injected patient who were immediately treated with subcutaneous hyaluronidase injection showed preserved distal runoff of the internal maxillary and facial arteries and mild skin problems. The size difference between injected materials seems to be associated with different angiographic findings. Autologous fat is more prone to obstruct proximal part of ophthalmic artery, whereas HA obstructs distal branches. In addition, hydrophilic and volume-expansion property of HA might exacerbate blood flow on injected area, which is also related to skin necrosis. Intra-arterial thrombolysis has a limited role in reconstituting blood flow or regaining vision in cosmetic facial filler-associated ophthalmic artery occlusions.

  19. Effect of filler geometry on coefficient of thermal expansion in carbon nanofiber reinforced epoxy composites.

    Science.gov (United States)

    Cho, M; Jang, J; Suhr, J

    2011-02-01

    This study involves the investigation of the geometry effect of nano-fillers on thermally induced dimensional stability of epoxy composites by experimentally evaluating the linear coefficient of thermal expansion (CTE). Carbon nanofibers (CNF) were chosen as the filler in epoxy matrix to investigate the effect of an aspect ratio on the CTE of the nanocomposites at three different volume fractions of 0.5, 1, and 2% of the nano-filler. The composites were fabricated using a mechanical mixing method. The CTE values were evaluated by measuring thermal strains of the composites and also compared with a micromechanics model. It was observed that the composites with short CNF (average L/d = 10) show better thermal stability than one of the composites with long CNF (average L/d = 70), and the thermal stability of the composites was proportional to the volume fraction of the filler in each composite. In addition, the CTE of mutliwalled carbon nanotubes (MWNT) reinforced epoxy composites was evaluated and compared with the CTE of the CNF reinforced composites. Interestingly, the MWNT reinforced composites show the greatest thermal stability with an 11.5% reduction in the CTE over the pure epoxy. The experimental data was compared with micromechanics model.

  20. Influence of filler charge on gloss of composite materials before and after in vitro toothbrushing.

    Science.gov (United States)

    Jassé, Fernanda Ferreira; de Campos, Edson Alves; Lefever, Dorien; Di Bella, Enrico; Salomon, Jean Pierre; Krejci, Ivo; Ardu, Stefano

    2013-11-01

    This study evaluated the gloss behaviour of experimental resin composites loaded with different filler percentages, immediately after polishing and after toothbrushing simulation. Sixteen disc-shaped specimens were fabricated for each different-charged composite (40%, 50%, 60%, 70% and 75%) and polished with SiC abrasive papers. Gloss measurements were made prior to simulated toothbrushing. The specimens were subjected to the simulation for 5, 15, 30 and 60 min using an electrical toothbrush with a standardized pressure while being immersed in a toothpaste/artificial saliva slurry. Baseline composite gloss values ranged from 69.7 (40%) to 81.3 (75%) GU (gloss units) and from 18.1 (40%) to 32.3 (75%) GU after 1h of brushing. Highest gloss values were obtained by 75%-charged resin, while the lowest values were obtained by the 40%-charged one. All tested materials showed a gloss decrease. However, the higher filler load a composite resin has, the higher gloss it can achieve. Gloss of resin composite materials is an important factor in determining aesthetic success of anterior restorations, and this property may vary according to the filler charge of the restorative material. Higher filler load of a composite resin results in higher gloss values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Repair Mortars and New Concretes with Coal Bottom and Biomass Ashes Using Rheological Optimisation

    International Nuclear Information System (INIS)

    Bras, A.; Faustino, P.

    2016-01-01

    The objective of the present work is to analyse the potential of using non-classical additions in concrete and mortar compositions such as coal bottom ash and biomass ash (Bio), as partial replacing binder of ordinary Portland cement. It is intended to deal with production of these type of wastes and its accumulation and contribute to the minimisation of carbon and embodied energy in construction materials. The aim is to identify the concrete and mortars formulation types where it is possible to get more benefit by incorporating bottom ash and Bio. Based on the optimisation of the rheological properties of cement-based materials, mortars with repair function and concrete compositions were developed including 0%, 10%, 15% and 20% of bottom ash and Bio as cement replacement. An assessment of the evolution of relative concrete compressive strength was calculated as a function of the relative solid volume fraction of several concretes. bottom ash compositions present low resistance to high flow rates, increasing the ease of placement and vibration. bottom ash seems to present more filler and pozzolanic effect when compared with Bio. bottom ash mortars fulfil the compressive strength and stiffness requirements to be used as repair mortars, allowing the replacement of 15% or 20% of cement by an industrial waste. This by-product is able to work in the development of the mortar and concrete microstructure strength adopting a much more sustainable solution for the environment.

  2. [Facial injections of hyaluronic acid-based fillers for malformations. Preliminary study regarding scar tissue improvement and cosmetic betterment].

    Science.gov (United States)

    Franchi, G; Neiva-Vaz, C; Picard, A; Vazquez, M-P

    2018-02-02

    Cross-linked hyaluronic acid-based fillers have gained rapid acceptance for treating facial wrinkles, deep tissue folds and sunken areas due to aging. This study evaluates, in addition to space-filling properties, their effects on softness and elasticity as a secondary effect, following injection of 3 commercially available cross-linked hyaluronic acid-based fillers (15mg/mL, 17,5mg/mL and 20mg/mL) in patients presenting with congenital or acquired facial malformations. We started injecting gels of cross-linked hyaluronic acid-based fillers in those cases in 2013; we performed 46 sessions of injections in 32 patients, aged from 13-32. Clinical assessment was performed by the patient himself and by a plastic surgeon, 15 days after injections and 6-18 months later. Cross-linked hyaluronic acid-based fillers offered very subtle cosmetic results and supplemented surgery with a very high level of satisfaction of the patients. When injected in fibrosis, the first session enhanced softness and elasticity; the second session enhanced the volume. Cross-linked hyaluronic acid-based fillers fill sunken areas and better softness and elasticity of scar tissues. In addition to their well-understood space-filling function, as a secondary effect, the authors demonstrate that cross-linked hyaluronic acid-based fillers improve softness and elasticity of scarring tissues. Many experimental studies support our observations, showing that cross-linked hyaluronic acid stimulates the production of several extra-cellular matrix components, including dermal collagen and elastin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  4. The effects of fillers on polyurethane resin-based electrical insulators

    Directory of Open Access Journals (Sweden)

    Altafim Ruy Alberto Corrêa

    2003-01-01

    Full Text Available The increasingly widespread use of polymeric insulators in vehicle distributors and transmission systems has led to an ongoing quest for quality and low costs. This quest has, in turn, resulted in improved performance and cost benefits, brought about by the use of new polymeric and composite resins. Occasionally, however, while some properties are improved, others may show a loss of optimal performance. Therefore, to understand the behavior of fillers, such as carbon black, silica and mica added to castor oil-derived polyurethane resins, several thermal, mechanical and electrical tests were conducted on samples and insulators produced specifically for this purpose, using these new materials. The results of these tests clearly demonstrated that this type of resin and its composites can be used to manufacture indoor electrical insulators and that the fillers analyzed in this study improve or maintain the characteristics of the pure resins.

  5. Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler

    OpenAIRE

    M. E. Ali Mohsin; Agus Arsad; Othman Y. Alothman

    2014-01-01

    This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increas...

  6. Rheology of unstable mineral emulsions

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2013-01-01

    Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.

  7. Effects of Temperature on Time Dependent Rheological Characteristics of Koumiss

    Directory of Open Access Journals (Sweden)

    Serdal Sabancı

    2016-04-01

    Full Text Available The rheological properties of koumiss were investigated at different temperatures (4, 10, and 20°C. Experimental shear stress–shear rate data were fitted to different rheological models. The consistency of koumiss was predicted by using the power-law model since it described the consistency of koumiss best with highest regression coefficient and lowest errors (root mean square error and chi-square. Koumiss exhibited shear thinning behavior (n

  8. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    Science.gov (United States)

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers

    International Nuclear Information System (INIS)

    Thenepalli, Thriveni; Ahn, Ji Whan; Ahn, Young Jun; Han, Choon; Ramakrishna, Chilakala

    2015-01-01

    A wide variety of fillers are currently used in more than twenty types of polymer resins, although four of them alone (polypropylene, polyamides, thermoplastic polyesters, and polyvinyl chloride) account for 90% of the market of mineral fillers in plastics. Polypropylene (PP) and PVC dominate the market for calcium carbonate. PP is a versatile reinforcement material that can meet engineering and structural specifications and is widely used for automotive components, home appliances, and industrial applications. Talc, mica, clay, kaolin, wollastonite, calcium carbonates, feldspar, aluminum hydroxide, glass fibers, and natural fibers are commonly used in fillers. Among these, calcium carbonate (both natural and synthetic) is the mos abundant and affords the possibility of improved surface finishing, control over the manufacture of products, and increased electric resistance and impact resistance. Meeting the global challenge to reduce the weight of vehicles by using plastics is a significant issue. The current the global plastic and automobile industry cannot survive without fillers, additives, and reinforcements. Polypropylene is a major component of the modern plastic industry, and currently is used in dashboards, wheel covers, and some engine parts in automobiles. This article reports that the use of calcium carbonate fillers with polypropylene is the best choice to enhance the mechanical properties of plastic parts used in automobiles

  10. Using natural laboratories and modeling to decipher lithospheric rheology

    Science.gov (United States)

    Sobolev, Stephan

    2013-04-01

    Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of

  11. RHEOLOGIC BEHAVIOR OF PASTRY CREAMS

    Directory of Open Access Journals (Sweden)

    Camelia Vizireanu

    2012-03-01

    Full Text Available The increased social and economic importance of ready–made food production, together with the complexity of production technology, processing, handling and acceptance of these fragile and perishable products requires extensive knowledge of their physical properties. Viscoelastic properties play an important role in the handling and quality attributes of creams.Our study was to investigate the rheological properties of different confectionary creams, by scanning the field of shear rates at constant temperature and frequency, angular frequency scanning at small deformations and quantification of rheological changes during application of deformation voltages. The creams tested were made in the laboratory using specific concentrates as fine powders, marketed by the company “Dr. Oetker” compared with similar creams based on traditional recipes and techniques. Following the researches conducted we could conclude that both traditional creams and the instant ones are semi fluid food products with pseudoplastic and thixotropic shear flow behavior, with structural viscosity. Instant and traditional creams behaved as physical gels with links susceptible to destruction, when subjected to deformation forces.

  12. Rheological behaviour of fibre-rich plant materials in fat-based food systems

    NARCIS (Netherlands)

    Bonarius, G.A.; Vieira, J.B.; Goot, van der A.J.; Bodnar, I.

    2014-01-01

    The potential use of fibre-rich materials as bulking agents to replace sucrose in chocolate confectionary products is investigated. Since the rheological behaviour of the molten chocolate mass is key in chocolate production, the rheology of fibre-rich materials in medium chain triglycerides (MCT) is

  13. Preliminary data on rheological limits for grouts in the Transportable Grout Facility

    International Nuclear Information System (INIS)

    Gilliam, T.M.; McDaniel, E.W.; Dole, L.R.; West, G.A.

    1987-04-01

    This report describes a method for establishing rheological limits for grouts that can be pumped in the Hanford Transportable Grout Facility (TGF). This method is based on two models that require determining two key parameters - gel strength and density. This work also presents rheological data on grouts prepared with simulated customer phosphate wastes (CPW) and double shell slurry (DSS) from the Hanford complex. These data can be used to make preliminary estimates of operating rheological limits of the TFG grouts. The suggested design limits will include safety factors that will increase these limits significantly. 4 refs

  14. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites

    Energy Technology Data Exchange (ETDEWEB)

    Goc, K., E-mail: Kamil.Goc@fis.agh.edu.pl [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Gaska, K.; Klimczyk, K.; Wujek, A.; Prendota, W.; Jarosinski, L. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland); Rybak, A.; Kmita, G. [ABB Corporate Research Center, 13A Starowislna Street, 31-038 Krakow (Poland); Kapusta, Cz. [Department of Solid State Physics, AGH University of Science and Technology, 30 Mickiewicza Street, 30-059 Krakow (Poland)

    2016-12-01

    Epoxy resins are materials commonly used for insulations and encapsulations due to their easy processing process and mechanical strength. For their applications in power industry and electronics the effective heat dissipation is essential, thus their thermal conductivity is one of the most important properties. Introduction of appropriate dielectric powders, preferably in an ordered way, can increase the thermal conductivity of the polymer while keeping its good electrical insulation properties. In this work we used strontium ferrite as a filler to study the evolution of the filler particles distribution in the fluid before curing. Magnetic ferrite particles were dispersed in liquid epoxy resin and formation of chain-like or more complex structures under applied external magnetic field was observed and investigated. Computer simulations made show that with increasing magnetic field these structures are characterized by longer chains, higher speed of particles displacement and stronger structural anisotropy. However, for highly-filled systems, stronger inter-particle interactions make the alignment process less effective. The effective thermal conductivity simulated with FEM methods increases with increasing filler content and the percolation threshold in aligned systems is achieved at lower filler concentrations than for reference isotropic samples. The results are compared with the experimental data and a good qualitative agreement is obtained. - Highlights: • Influence of magnetic field on the particle chains in epoxy composites is analysed. • Strontium ferrite fillers with good thermal and low electrical conductivity. • Influence of interparticle interactions for agglomeration efficiency. • The impact of chains formed on the heat transfer by creating conductive paths. • Connection between structural anisotropy and transport properties anisotropy.

  15. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Yu, Liyun; Skov, Anne Ladegaard

    of the composite. In combination with very low cost and easy preparation, the two property enhancements lead to a very attractive dielectric elastomer material. Experimental permittivity data are compared to various theoretical models that predict relative-permittivity changes as a function of filler loading...

  16. Physical Metallurgy, Weldability, and in-Service Performance of Nickel-Chromium Filler Metals Used in Nuclear Power Systems

    Science.gov (United States)

    Young, George A.; Etien, Robert A.; Hackett, Micah J.; Tucker, Julie D.; Capobianco, Thomas E.

    Wrought Alloy 690 is well established for corrosion resistant nuclear applications but development continues to improve the weldability of a filler metal that retains the corrosion resistance and phase stability of the base metal. High alloy Ni-Cr filler metals are prone to several types of welding defects and new alloys are emerging for commercial use. This paper uses experimental and computational methods to illustrate key differences among welding consumables. Results show that solidification segregation is critical to understanding the weldability and environmentally-assisted cracking resistance of these alloys. Primary water stress corrosion cracking tests show a marked decrease in crack growth rates near 21 wt. % Cr at the grain boundary. While filler metals with 21-29 wt.% grain boundary Cr show similar PWSCC resistance, the higher alloyed grades are more prone to solidification cracking. Modeling and aging studies indicate that in some filler metals minor phase formation (e.g., Laves and σ) and long range order (LRO) must be assessed to ensure adequate weldability and inservice performance.

  17. Effect of filler loading and silane modification on the biodegradability of SBR composites reinforced with peanut shell powder

    Science.gov (United States)

    Shaniba, V.; Balan, Aparna K.; Sreejith, M. P.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    The development of biocomposites and their applications are important in material science due to environmental and sustainability issues. The extent of degradation depends on the nature of reinforcing filler, particle size and their modification. In this article, we tried to focus on the biodegradation of composites of Styrene Butadiene Rubber (SBR) reinforced with Peanut Shell Powder (PSP) by soil burial test. The composites of SBR with untreated PSP (UPSP) and silane modified PSP (SPSP) of 10 parts per hundred rubber (phr) and 20 phr filler loading in two particle size were buried in the garden soil for six months. The microbial degradation were assessed through the measurement of weight loss, tensile strength and hardness at definite period. The study shows that degradation increases with increase in filler loading and particle size. The chemical treatment of filler has been found to resist the degradation. The analysis of morphological properties by the SEM also confirmed biodegradation process by the microorganism in the soil.

  18. Aging and nonlinear rheology of thermoreversible colloidal gels

    Science.gov (United States)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  19. Rheological behavior of drilling fluids under low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lomba, Rosana F.T.; Sa, Carlos H.M. de; Brandao, Edimir M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: rlomba, chsa, edimir@cenpes.petrobras.com.br

    2000-07-01

    The so-called solid-free fluids represent a good alternative to drill through productive zones. These drill-in fluids are known to be non-damaging to the formation and their formulation comprise polymers, salts and acid soluble solids. Xanthan gum is widely used as viscosifier and modified starch as fluid loss control additive. The salts most commonly used are sodium chloride and potassium chloride, although the use of organic salt brines has been increasing lately. Sized calcium carbonate is used as bridging material, when the situation requires. The low temperatures encountered during deep water drilling demand the knowledge of fluid rheology at this temperature range. The rheological behavior of drill-in fluids at temperatures as low as 5 deg C was experimentally evaluated. Special attention was given to the low shear rate behavior of the fluids. A methodology was developed to come up with correlations to calculate shear stress variations with temperature. The developed correlations do not depend on a previous choice of a rheological model. The results will be incorporated in a numerical simulator to account for temperature effects on well bore cleaning later on. (author)

  20. Effect of ?-cyclodextrin on Rheological Properties of some Viscosity Modifiers

    OpenAIRE

    Rao, G. Chandra Sekhara; Ramadevi, K.; Sirisha, K.

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers ...