WorldWideScience

Sample records for filled silicone elastomer

  1. The characterization of silicone type dielectric elastomer filled with nano sized BaTiO3 particles

    Science.gov (United States)

    Liu, Liwu; Zhang, Wei; Bo, Tao; Zhao, Wei; Lv, Xiongfei; Li, Jinrong; Zhang, Zhen

    2015-04-01

    In this paper, the characterization and electromechanical stability behavior of nano sized BaTiO3 particle filled dielectric elastomer has been analyzed experimentally and theoretically. The free energy function involving a new dielectric energy density function and Mooney-Rivlin elastic strain energy function has been used to carry out the analysis. To give a comprehensive dielectric energy function, the influence of the BaTiO3 weight fraction on the dielectric property of the dielectric elastomer has been considered. The analytical results show that with the increasing weight fraction of BaTiO3 or the electrostrictive factor, the critical electric field of silicone elastomer decreases, i.e. the elastomer's stability is reduced. Meanwhile, with the increasing material constant ratio k which is the ratio of the two material constants appeared in the Mooney-Rivilin elastic strain energy function, the critical nominal electric field will increase. These results are useful in not only helping us to understand the influence of the filled nano-BaTiO3 particles on the electromechanical stability of silicone dielectric elastomer, but also giving great guidance to obtain specific dielectric elastomer actuators to meet the demand of users by changing the dielectric property of the elastomer.

  2. MQ NMR and SPME analysis of nonlinearity in the degradation of a filled silicone elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, S C; Alviso, C T; Berman, E S; Harvey, C A; Maxwell, R S; Wilson, T S; Cohenour, R; Saalwachter, K; Chasse, W

    2008-10-10

    Radiation induced degradation of polymeric materials occurs via numerous, simultaneous, competing chemical reactions. Though degradation is typically found to be linear in adsorbed dose, some silicone materials exhibit non-linear dose dependence due to dose dependent dominant degradation pathways. We have characterized the effects of radiative and thermal degradation on a model filled-PDMS system, Sylgard 184 (commonly used as an electronic encapsulant and in biomedical applications), using traditional mechanical testing, NMR spectroscopy, and sample headspace analysis using Solid Phase Micro-Extraction (SPME) followed by Gas Chromatography/Mass Spectrometry (GC/MS). The mechanical data and {sup 1}H spin-echo NMR indicated that radiation exposure leads to predominantly crosslinking over the cumulative dose range studies (0 to 250 kGray) with a rate roughly linear with dose. {sup 1}H Multiple Quantum NMR detected a bimodal distribution in the network structure, as expected by the proposed structure of Sylgard 184. The MQ-NMR further indicated that the radiation induced structural changes were not linear in adsorbed dose and competing chain scission mechanisms contribute more largely to the overall degradation process in the range of 50 -100 kGray (though crosslinking still dominates). The SPME-GC/MS data were analyzed using Principal Component Analysis (PCA), which identified subtle changes in the distributions of degradation products (the cyclic siloxanes and other components of the material) as a function of age that provide insight into the dominant degradation pathways at low and high adsorbed dose.

  3. MQ NMR and SPME analysis of nonlinearity in the degradation of a filled silicone elastomer.

    Science.gov (United States)

    Chinn, Sarah C; Alviso, Cynthia T; Berman, Elena S F; Harvey, Christopher A; Maxwell, Robert S; Wilson, Thomas S; Cohenour, Rebecca; Saalwächter, Kay; Chassé, Walter

    2010-08-01

    Radiation-induced degradation of polymeric materials occurs through numerous, simultaneous, competing chemical reactions. Although degradation is typically found to be linear in adsorbed dose, some silicone materials exhibit nonlinear dose dependence due to dose-dependent dominant degradation pathways. We have characterized the effects of radiative and thermal degradation on a model filled-PDMS system, Sylgard 184 (commonly used in electronic encapsulation and in biomedical applications), using traditional mechanical testing, NMR spectroscopy, and sample headspace analysis using solid-phase microextraction (SPME) followed by gas chromatography/mass spectrometry (GC/MS). The mechanical data and (1)H spin-echo NMR spectra indicated that radiation exposure leads to predominantly cross-linking over the cumulative dose range studied (0-250 kGy) with a rate roughly linear with dose. (1)H multiple-quantum NMR spectroscopy detected a bimodal distribution in the network structure, as expected from the proposed structure of Sylgard 184. The MQ NMR spectra further indicated that the radiation-induced structural changes were not linear in adsorbed dose and that competing chain scission mechanisms made a greater contribution to the overall degradation process in the range of 50-100 kGy (although cross-linking still dominated). The SPME-GC/MS data were analyzed using principal component analysis (PCA), which identified subtle changes in the distributions of degradation products (the cyclic siloxanes and other components of the material) as a function of age that provide insight into the dominant degradation pathways at low and high adsorbed dose.

  4. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    unimodal refers to that there is one polymer only in the system. As an alternative to unimodal networks there are the bimodal networks where two polymers with significantly different molecular weights are mixed with one crosslinker. [2]Silicone rubber can be divided into condensation type and addition type...... according to the curing reaction. The advantages of condensation silicones compared to addition are the relatively low cost, the curing rate largely being independent of temperature, the excellent adhesion, and the catalyst being nontoxic. [3]In this work, a series of bimodal condensation silicone......, the top and bottom surfaces of the elastomer (7:3) prepared at 23oC and 50% humidity were tested by water contact angle and optical microscope. The results show the bimodal condensation elastomer possesses structural heterogeneity, which may lead to favourable properties for DE applications....

  5. Radiation induced crosslinking in a silica-filled silicone elastomer as investigated by multiple quantum H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R S; Chinn, S C; Solyom, D; Cohenour, R

    2005-05-24

    DC745 is a commercially available silicone elastomer consisting of dimethyl, methylphenyl, and vinyl-methyl siloxane monomers crosslinked with a peroxide vinyl specific curing agent. It is generally considered to age gracefully and to be resistant to chemical and thermally harsh environments. However, little data exists on the radiation resistance of this commonly used silicone elastomer. We report static {sup 1}H NMR studies of residual dipolar couplings in DC745 solid elastomers subject to exposure to ionizing gamma radiation. {sup 1}H spin-echo NMR data shows that with increasing dose, the segmental dynamics decrease is consistent with radiatively induced crosslinking. {sup 1}H multiple quantum NMR was used to assess changes in the network structure and observed the presence of a bimodal distribution of residual dipolar couplings, <{Omega}{sub d}>, that were dose dependent. The domain with the lower <{Omega}{sub d}> has been assigned to the polymer network while the domain with the higher <{Omega}{sub d}> has been assigned to polymer chains interacting with the inorganic filler surfaces. In samples exposed to radiation, the residual dipolar couplings in both reservoirs were observed to increase and the populations were observed to be dose dependent. The NMR results are compared to Differential Scanning Calorimetry (DSC) and a two-step solvent swelling technique. The solvent swelling data lend support to the interpretation of the NMR results and the DSC data show both a decrease in the melt temperature and the heat of fusion with cumulative dose, consistent with radiative crosslinking. In addition, DSC thermograms obtained following a 3 hr isothermal soak at -40 C showed the presence of a second melt feature at T{sub m} {approx} -70 C consistent with a network domain with significantly reduced segmental motion.

  6. Bimodal condensation silicone elastomers as dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    elastomers were prepared by mixing different mass ratios between long polydimethylsiloxane (PDMS) chains and short PDMS chains. The resulting elastomers were investigated with respect to their rheology, dielectric properties, tensile strength, electrical breakdown, thermal stability, as well...

  7. The influence of static pre-stretching on the mechanical ageing of filled silicone rubbers for dielectric elastomer applications

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Yu, Liyun; Kofod, Guggi

    2015-01-01

    Dielectric elastomer (DE) pre-stretching is a key aspect of attaining better actuation performance, as ithelps prevent electromechanical instability (EMI) and usually lowers the Young’s modulus, thus leading toeasier deformation. The pre-stretched DE is not only susceptible to a high risk of tear...

  8. Fouling-release Property of Water-filled Porous Elastomers

    Institute of Scientific and Technical Information of China (English)

    Lai-yong Xie; Fei Hong; Chuan-xin He; Jian-hong Liu; Chi Wu

    2012-01-01

    Since the fouling-releasing ability of silicone elastomers increased as their modulus decreases,we designed and prepared composites with embedded tiny NaCl crytals that were soluble after their immersion in water,resulting in water-filled porous elastomers.The scanning electron microscope images confirmed such a designed water-filling porous structure.The existence of many micro-drops of water in these specially designed elastomers decreased the shear storage modulus and increased the loss factors.The decrease of shear modulus plays a leading role here and is directly related to a lower critical peeling-off stress of a pseudo-barnacle on them.Therefore,such a novel preparation with cheap salts instead of an expensive silicone provides a better way to make fouling-release paints with a lower modulus,a lower critical peeling-off stress and a better fouling-release property without a significant decrease of the cross-linking density.

  9. Theory Of Dewetting In A Filled Elastomer Under Stress

    Science.gov (United States)

    Peng, Steven T. J.

    1993-01-01

    Report presents theoretical study of dewetting between elastomeric binder and filler particles of highly filled elastomer under multiaxial tension and resulting dilatation of elastomer. Study directed toward understanding and predicting nonlinear stress-vs.-strain behavior of filled elastomeric rocket propellant, also applicable to rubber in highly loaded tire or in damping pad.

  10. Silicone elastomers with aromatic voltage stabilizers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Skov, Anne Ladegaard

    and benzene rings in PDMS-PPMS copolymer was measured by UV-vis spectroscopy. The developed elastomers were inherently soft with enhanced electrical breakdown strength due to delocalized pi-electrons of aromatic rings attached to the silicone backbone. The dielectric relative permittivity of PDMS...

  11. Graphene-silicone elastomer nanocomposite

    Science.gov (United States)

    Pan, Shuyang

    The incorporation of fillers to improve the Young's modulus, tensile strength, and elongation at failure of polymeric matrices is ubiquitous. While Young's modulus and tensile strength of the matrix increase with the filler concentration, a threshold filler concentration must be achieved for the elongation at failure to increase. Furthermore, a decrease in elongation at failure has also been observed beyond a critical filler concentration. While the increases in modulus and tensile strength have been attributed to the transfer of mechanical load to the stronger filler, the onset and reversal in elongation at failure are not understood. In this thesis, we use a functionalized graphene sheet (FGS) -- silicone elastomer (SE) nanocomposite as a model system to demonstrate the mechanisms responsible for this observed filler concentration-dependant elongation at failure as well its subsequent reversal. We will also demonstrate the mechanisms that create the continual increase in tensile strength as filler concentration increases. As the lateral size of FGS strongly influences the tensile strength of the resulting composite, in the first part of this thesis, we show that the oxidation path and the mechanical energy input influence the size of graphene oxide sheets derived from graphite oxide. The cross-planar oxidation of graphite from the (0002) plane results in periodic cracking of the uppermost graphene oxide layer, limiting its lateral dimension to less than 30 microm. We use an energy balance between the elastic strain energy associated with the undulation of graphene oxide sheets at the hydroxyl and epoxy sites, the crack formation energy, and the interaction energy between graphene layers to determine the cell size of the cracks. Under both edge-to-center and cross-planar oxidations, the size of graphene oxide sheets is determined by the aspect ratio of graphite and the mechanical energy input in processing the sheets. In the second part of this thesis, we use

  12. Electromechanical response of silicone dielectric elastomers

    Science.gov (United States)

    Cârlescu, V.; Prisăcaru, G.; Olaru, D.

    2016-08-01

    This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.

  13. Self-Healing, High-Permittivity Silicone Dielectric Elastomer

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    or cuts made directly to the material due to the reassembly of the ionic bonds that are broken during damage. The dielectric elastomers presented in this paper pave the way to increased lifetimes and the ability of dielectric elastomers to survive millions of cycles in high-voltage conditions....... possesses high dielectric permittivity and consists of an interpenetrating polymer network of silicone elastomer and ionic silicone species that are cross-linked through proton exchange between amines and acids. The ionically cross-linked silicone provides self-healing properties after electrical breakdown...

  14. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    One prominent method of modifying the properties of dielectric elastomers (DEs) is by adding suitable metal oxide fillers. However, almost all commercially available silicone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting...... metal oxide filled elastomer may contain too much filler. We therefore explore the replacement of silica with titanium dioxide to ensure a relatively low concentration of filler. Liquid silicone rubber (LSR) has relatively low viscosity, which is favorable for loading inorganic fillers. In the present...... study, four commercial LSRs with varying loadings of silica and one benchmark room-temperature vulcanizable rubber (RTV) were investigated. The resulting elastomers were evaluated with respect to their dielectric permittivity, tear and tensile strengths, electrical breakdown, thermal stability...

  15. Iterative and variational homogenization methods for filled elastomers

    Science.gov (United States)

    Goudarzi, Taha

    Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly

  16. Treatment to Control Adhesion of Silicone-Based Elastomers

    Science.gov (United States)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.

  17. Silicone elastomers with superior softness and dielectric properties

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin;

    of electrical breakdown and achievable strain.[2]In this work, three liquid additives - inert silicone oil, chloropropyl-functional silicone oil, and synthesized chloropropyl-functional copolymer - were blended into commercial silicone elastomers, and their properties were investigated.The functional groups......Dielectric elastomers (DEs) change their shape and size under a high voltage or reversibly generate a high voltage when deformed. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young......’s modulus and increasing the dielectric permittivity of silicone elastomers. One such prominent method of modifying the properties is by adding suitable additives.[1] The major drawbacks for adding solid fillers are agglomeration and increasing stiffness which is often accompanied by the decrease...

  18. Silicone elastomers with superior softness and dielectric properties

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin;

    of electrical breakdown and achievable strain.[2] In this work, three liquid additives - inert silicone oil, chloropropyl-functional silicone oil, and synthesized chloropropyl-functional copolymer - were blended into commercial silicone elastomers, and their properties were investigated.The functional groups......Dielectric elastomers (DEs) change their shape and size under a high voltage or reversibly generate a high voltage when deformed. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young......’s modulus and increasing the dielectric permittivity of silicone elastomers. One such prominent method of modifying the properties is by adding suitable additives. [1] The major drawbacks for adding solid fillers are agglomeration and increasing stiffness which is often accompanied by the decrease...

  19. Silicone elastomers with aromatic voltage stabilizers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Skov, Anne Ladegaard

    breakdown strength, the storage modulus and the loss modulus of the elastomer were investigated, as well as the excitation energy from the collision between electron carriers and benzene rings in PDMS-PPMS copolymer was measured by UV-vis spectroscopy. The developed elastomers were inherently soft...

  20. Novel silicone elastomer formulations for DEAPs

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Vudayagiri, Sindhu; Benslimane, Mohamed

    2013-01-01

    We demonstrate that the force output and work density of polydimethylsiloxane (PDMS) based dielectric elastomer transducers can be significantly enhanced by the addition of high permittivity titanium dioxide nanoparticles which was also shown by Stoyanov et al[1] for pre-stretched elastomers...

  1. Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide

    Directory of Open Access Journals (Sweden)

    Liyun Yu

    2015-10-01

    Full Text Available One prominent method of modifying the properties of dielectric elastomers (DEs is by adding suitable metal oxide fillers. However, almost all commercially available silicone elastomers are already heavily filled with silica to reinforce the otherwise rather weak silicone network and the resulting metal oxide filled elastomer may contain too much filler. We therefore explore the replacement of silica with titanium dioxide to ensure a relatively low concentration of filler. Liquid silicone rubber (LSR has relatively low viscosity, which is favorable for loading inorganic fillers. In the present study, four commercial LSRs with varying loadings of silica and one benchmark room-temperature vulcanizable rubber (RTV were investigated. The resulting elastomers were evaluated with respect to their dielectric permittivity, tear and tensile strengths, electrical breakdown, thermal stability and dynamic viscosity. Filled silicone elastomers with high loadings of nano-sized titanium dioxide (TiO2 particles were also studied. The best overall performing formulation had 35 wt.% TiO2 nanoparticles in the POWERSIL® XLR LSR, where the excellent ensemble of relative dielectric permittivity of 4.9 at 0.1 Hz, breakdown strength of 160 V µm−1, tear strength of 5.3 MPa, elongation at break of 190%, a Young’s modulus of 0.85 MPa and a 10% strain response (simple tension in a 50 V μm−1 electric field was obtained.

  2. Synthetic Strategies for High Dielectric Constant Silicone Elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt

    Dielectric electroactive polymers (DEAPs) are a new and promising transducer technology and are often referred to as ‘artificial muscles’, due to their ability to undergo large deformations when stimulated by electric fields. DEAPs consist of a soft and thin elastomeric film (an elastomer...... synthetic strategies were developed in this Ph.D. thesis, in order to create silicone elastomers with high dielectric constants and thereby higher energy densities. The work focused on maintaining important properties such as dielectric loss, electrical breakdown strength and elastic modulus....... The methodology therefore involved chemically grafting high dielectric constant chemical groups onto the elastomer network, as this would potentially provide a stable elastomer system upon continued activation of the material. The first synthetic strategy involved the synthesis of a new type of cross...

  3. Super soft silicone elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Hvilsted, Søren;

    2015-01-01

    Dielectric elastomers (DEs) have many favourable properties. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young’s modulus and increasing the dielectric permittivity of silicone elasto...

  4. Silicone elastomers with aromatic voltage stabilizers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Skov, Anne Ladegaard

    , as well as the excitation energy from the collision between electron carriers and benzene rings in PDMS-PPMS copolymer was measured by UV-vis spectroscopy. The developed elastomers were inherently soft with enhanced electrical breakdown strength due to delocalized pi-electrons of aromatic rings attached...

  5. Effect of environmental stress on Sylgard 170 silicone elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Buckalew, W.H.; Wyant, F.J.

    1985-05-01

    Dow Corning Sylgard 170 Silicone Elastomer has been investigated to characterize its response to accelerated thermal aging, radiation exposure, and its behavior under applied compressive forces. Sylgard 170 response to accelerated thermal aging suggests the material properties are not particularly age dependent. Radiation exposures, however, produce significant, monotonic changes in both elongation and hardness with increasing absorbed radiation dose. Elastomer response to an applied compressive force was strongly dependent on environment temperature and degree of material confinement. Variations in temperature produced large changes in compressive forces applied to confined samples. Attempts to mitigate force fluctuations by means of pressure relief paths resulted in total loss of the applied compressive force. Thus, seal applications employing this elastomer in Class 1E equipment required to function during or following an accident should consider the potential loss of compressive force from long-term aging and potential LOCA-temperature transient conditions.

  6. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede;

    2015-01-01

    High driving voltages currently limit the commercial potential of dielectric elastomers (DEs). One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the synthesis o...

  7. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    High driving voltages currently limit the commercial potential of dielectric elastomers (DEs). One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the synthesis o...

  8. Electrical behaviour of a silicone elastomer under simulated space environment

    Science.gov (United States)

    Roggero, A.; Dantras, E.; Paulmier, T.; Tonon, C.; Balcon, N.; Rejsek-Riba, V.; Dagras, S.; Payan, D.

    2015-04-01

    The electrical behavior of a space-used silicone elastomer was characterized using surface potential decay and dynamic dielectric spectroscopy techniques. In both cases, the dielectric manifestation of the glass transition (dipole orientation) and a charge transport phenomenon were observed. An unexpected linear increase of the surface potential with temperature was observed around Tg in thermally-stimulated potential decay experiments, due to molecular mobility limiting dipolar orientation in one hand, and 3D thermal expansion reducing the materials capacitance in the other hand. At higher temperatures, the charge transport process, believed to be thermally activated electron hopping with an activation energy of about 0.4 eV, was studied with and without the silica and iron oxide fillers present in the commercial material. These fillers were found to play a preponderant role in the low-frequency electrical conductivity of this silicone elastomer, probably through a Maxwell-Wagner-Sillars relaxation phenomenon.

  9. Dielectric silicone elastomers with mixed ceramic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Stiubianu, George, E-mail: george.stiubianu@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, Iasi 700487 (Romania); Ignat, Mircea [National R& D Institute for Electrical Engineering ICPE-CA Bucharest, Splaiul Unirii 313, District 3, Bucharest 030138 (Romania)

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  10. Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Increased electrical breakdown strength and increased dielectric permittivity of silicone-based dielectric elastomers are achieved by means of the addition of so-called voltage-stabilisers prepared from PDMS–PPMS copolymers as well as PDMS–PEG copolymers in order to compensate for the negative...... effect of softness on electrical stability of silicone elastomers. The voltage-stabilised elastomer, incorporating a high-permittivity PDMS–PEG copolymer, possesses increased relative permittivity, high electrical breakdown strength, excellent network integrity and low dielectric loss and paves the way...... towards specialised silicone elastomers for dielectric elastomer transducer products with inherent softness and electrical stability, and thus increased actuation at a given voltage....

  11. Nonlinear viscoelastic response of highly filled elastomers under multiaxial finite deformation

    Science.gov (United States)

    Peng, Steven T. J.; Landel, Robert F.

    1990-01-01

    A biaxial tester was used to obtain precise biaxial stress responses of highly filled, high strain capability elastomers. Stress-relaxation experiments show that the time-dependent part of the relaxation response can be reasonably approximated by a function which is strain and biaxiality independent. Thus, isochronal data from the stress-relaxation curves can be used to determine the stored energy density function. The complex behavior of the elastomers under biaxial deformation may be caused by dewetting.

  12. Effect of Surface Treated Silicon Dioxide Nanoparticles on Some Mechanical Properties of Maxillofacial Silicone Elastomer

    Directory of Open Access Journals (Sweden)

    Sara M. Zayed

    2014-01-01

    Full Text Available Current materials used for maxillofacial prostheses are far from ideal and there is a need for novel improved materials which mimic as close as possible the natural behavior of facial soft tissues. This study aimed to evaluate the effect of adding different concentrations of surface treated silicon dioxide nanoparticles (SiO2 on clinically important mechanical properties of a maxillofacial silicone elastomer. 147 specimens of the silicone elastomer were prepared and divided into seven groups (n=21. One control group was prepared without nanoparticles and six study groups with different concentrations of nanoparticles, from 0.5% to 3% by weight. Specimens were tested for tear strength (ASTM D624, tensile strength (ASTM D412, percent elongation, and shore A hardness. SEM was used to assess the dispersion of nano-SiO2 within the elastomer matrix. Data were analyzed by one-way ANOVA and Scheffe test (α=0.05. Results revealed significant improvement in all mechanical properties tested, as the concentration of the nanoparticles increased. This was supported by the results of the SEM. Hence, it can be concluded that the incorporation of surface treated SiO2 nanoparticles at concentration of 3% enhanced the overall mechanical properties of A-2186 silicone elastomer.

  13. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede;

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permi......-4-nitrobenzene. Here, a high increase in dielectric permittivity (similar to 70%) was obtained without compromising other favourable DE properties such as elastic modulus, gel fraction, dielectric loss and electrical breakdown strength. © 2014 Elsevier Ltd. All rights reserved....

  14. Measurement of Equation of State of Silicone Elastomer

    Science.gov (United States)

    Winter, R. E.; Whiteman, G.; Haining, G. S.; Salisbury, D. A.; Tsembelis, K.

    2004-07-01

    Silicone Elastomer, ("Sylgard 184 ®"), samples were mounted between copper plates. Manganin stress gauges were placed within the front copper plate, halfway through the Sylgard and at the interface between the Sylgard and the rear copper plate. A series of experiments was performed in which the front plate was impacted by copper plates projected at a range of velocities. It was assumed that a Grüneisen Gamma form with a constant Γ could fit the Equation of State of the sample. A trial set of EoS parameters, including Gamma, was entered into a spreadsheet, then the state variables for the different stress jumps were calculated with the aid of a "Goalseek" function. This enabled the stresses and times for each jump to be calculated. Comparing these predictions with the experimentally determined parameters enabled optimum values of the EoS parameters to be identified.

  15. Stronger multilayer acrylic dielectric elastomer actuators with silicone gel coatings

    Science.gov (United States)

    Lau, Gih-Keong; La, Thanh-Giang; Sheng-Wei Foong, Ervin; Shrestha, Milan

    2016-12-01

    Multilayer dielectric elastomer actuators (DEA) perform worst off than single-layer DEAs due to higher susceptibility to electro-thermal breakdown. This paper presents a hot-spot model to predict the electro-thermal breakdown field of DEAs and its dependence on thermal insulation. To inhibit the electrothermal breakdown, silicone gel coating was applied as barrier coating to multilayer acrylic DEA. The gel coating helps suppress the electro-thermally induced puncturing of DEA membrane at the hot spot. As a result, the gel-coated DEAs, in either a single layer or a multilayer stack, can produce 30% more isometric stress change as compared to those none-coated. These gel-coated acrylic DEAs show great potential to make stronger artificial muscles.

  16. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren;

    2015-01-01

    Dielectric elastomers (DEs), which represent an emerging actuator and generator technology, admittedly have many favourable properties, but their high driving voltages are one of the main obstacles to commercialisation. One way to reduce driving voltage is by increasing the ratio between dielectr...... as well as relatively high breakdown strength. All IPNs have higher dielectric losses than pure silicone elastomers, but when accounting for this factor, IPNs still exhibit satisfactory performance improvements....... is demonstrated herein, and a number of many and important parameters, such as dielectric permittivity/loss, viscoelastic properties and dielectric breakdown strength, are investigated. Ionic and silicone elastomer IPNs are promising prospects for dielectric elastomer actuators, since very high permittivities......Dielectric elastomers (DEs), which represent an emerging actuator and generator technology, admittedly have many favourable properties, but their high driving voltages are one of the main obstacles to commercialisation. One way to reduce driving voltage is by increasing the ratio between dielectric...

  17. The Current State of Silicone-Based Dielectric Elastomer Transducers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    2016-01-01

    driving voltages. In this review, the current state of sili- cone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects...

  18. Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle

    Science.gov (United States)

    deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M

    2008-01-01

    Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.

  19. Silicone Gel-Filled Breast Implants: Updated Safety Information

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Silicone Gel-Filled Breast Implants: Updated Safety Information Share Tweet ... When the Food and Drug Administration allowed silicone gel-filled breast implants back on the market in ...

  20. Mechanical and Electrical Ageing Effects on the Long-Term Stretching of Silicone Dielectric Elastomers with Soft Fillers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin; Yu, Liyun

    2016-01-01

    Dielectric elastomer materials for actuators need to be soft and stretchable while possessing high dielectric permittivity. Soft silicone elastomers can be obtained through the use of silicone oils, while enhanced permittivity can be obtained through the use of dipolar groups on the polymer backb...

  1. Mechanical and Electrical Ageing Effects on the Long-Term Stretching of Silicone Dielectric Elastomers with Soft Fillers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Zakaria, Shamsul Bin; Yu, Liyun

    2016-01-01

    Dielectric elastomer materials for actuators need to be soft and stretchable while possessing high dielectric permittivity. Soft silicone elastomers can be obtained through the use of silicone oils, while enhanced permittivity can be obtained through the use of dipolar groups on the polymer backb...

  2. The Current State of Silicone-Based Dielectric Elastomer Transducers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren;

    2016-01-01

    driving voltages. In this review, the current state of sili- cone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects...... class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material devel- opment is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower...... of the elastomer are taken into account, namely dielectric losses, life- time and the very often ignored polymer network integrity and stability....

  3. Anisotropic conductance of the multiwall carbon nanotube array/silicone elastomer composite film

    Energy Technology Data Exchange (ETDEWEB)

    Yao Yuan; Liu Changhong; Fan Shoushan [Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics, Tsinghua University, Beijing 100084 (China)

    2006-09-14

    Multiwall carbon nanotube array/silicone elastomer composite films have been fabricated with an in situ injection modelling method. The transverse conductivity of the composite films is larger than the lateral conductivity because the aligned carbon nanotube array is embedded into the polymer matrix. The nonlinear I-V curve has been analysed and the temperature-dependent transport behaviour has been investigated.

  4. Degradation patterns of silicone-based dielectric elastomers in electrical fields

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2017-01-01

    . This shortcoming has been attempted optimized through different approaches during recent years. Material optimization with the sole purpose of increasing the dielectric permittivity may lead to the introduction of problematic phenomena such as premature electrical breakdown due to high leakage currents of the thin...... elastomer film. Within this work, electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers are investigated. Results showed that different types of polymer backbone chemistries lead to differences in electrical breakdown patterns, which were revealed through SEM imaging...

  5. Effects of RTC-silicone maxillofacial prosthetic elastomers on cell cultures.

    Science.gov (United States)

    Polyzois, G L; Hensten-Pettersen, A; Kullman, A

    1994-05-01

    The use of a wide variety of materials in the construction of maxillofacial prostheses makes biocompatibility testing a necessity. However, the dental literature contains few reports of biocompatibility testing of maxillofacial prosthetic materials. The cytotoxic profiles of five room-temperature cross-linking (RTC)-silicone elastomers were investigated by means of two in vitro cell culture techniques. Mouse fibroblast cells (L929) were used, and the results indicated that RTC-silicone elastomers adversely affected cells in culture and that storage of samples for 1 week in saline solution did not alter this effect. Clinical follow-up of patients wearing prostheses made of these silicone materials is warranted to evaluate host reactions in long-term contact with human mucous membrane and skin tissue.

  6. Monitoring Shore A hardness of silicone facial elastomers: the effect of natural aging and silicone type after 1 year.

    Science.gov (United States)

    Polyzois, Gregory; Lyons, Karl

    2014-07-01

    The purpose of this study was to investigate the effect of natural aging after storage in the dark for 1 year and material type on Shore A hardness of 2 silicone prosthetic elastomers. The silicone elastomers tested were low- and high-temperature vulcanizing materials, namely, Premium and Silasto 30, respectively. Ten samples, 25 × 25 × 10 mm3, from each silicone were made and stored in sealed glass containers in the dark. Shore A hardness was measured according to the American Society for Testing Materials specification D2240. Three recordings were made on each sample at baseline and then weekly for 12 months (quadruplicate per mo). Data were analyzed by general linear modeling for repeated measures and Student-Newman-Keuls test for post hoc comparisons at α = 0.05. General linear modeling analysis indicated a significant influence of either silicone type (F = 229.5, P = 0.0001) or natural aging (F = 105.9, P = 0.0001) or their interaction (F = 27.6, P = 0.0001) on Shore A hardness values. For Premium and Silasto 30, Shore A hardness ranged from 16.9 to 26.0 and 32.0 to 36.3, respectively. The elastomers showed a trend to increase hardness over natural aging, which was significant (Premium) or not (Silasto 30), depending on the material and time intervals. Premium silicone showed a significant hardness increase after 1 year of natural aging in the dark, reaching a convergent value approximately 6 months from the onset, whereas Silasto 30 hardness remained stable during this period. Both elastomers showed Shore A hardness values within clinical acceptable limits after aging.

  7. Leak Rate Performance of Silicone Elastomer O-Rings Contaminated with JSC-1A Lunar Regolith Simulant

    Science.gov (United States)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    Contamination of spacecraft components with planetary and foreign object debris is a growing concern. Face seals separating the spacecraft cabin from the debris filled environment are particularly susceptible; if the seal becomes contaminated there is potential for decreased performance, mission failure, or catastrophe. In this study, silicone elastomer O-rings were contaminated with JSC- 1A lunar regolith and their leak rate performance was evaluated. The leak rate values of contaminated O-rings at four levels of seal compression were compared to those of as-received, uncontaminated, O-rings. The results showed a drastic increase in leak rate after contamination. JSC-1A contaminated O-rings lead to immeasurably high leak rate values for all levels of compression except complete closure. Additionally, a mechanical method of simulant removal was examined. In general, this method returned the leak rate to as-received values.

  8. Modified Silicone Elastomer Vaginal Gels for Sustained Release of Antiretroviral HIV Microbicides

    OpenAIRE

    Forbes, Claire J.; Mccoy, Clare F.; Murphy, Diarmaid J.; David Woolfson, A.; Moore, John P.; Evans, Abbey; Robin J Shattock; Karl Malcolm, R.

    2014-01-01

    We previously reported non-aqueous silicone elastomer gels (SEGs) for sustained vaginal administration of the CCR5-targeted entry inhibitor maraviroc. Here, we describe chemically modified SEGs (h-SEGs) in which the hydrophobic cyclomethicone component was partially replaced with relatively hydrophilic silanol-terminated polydimethylsiloxanes (st-PDMS). Maraviroc and emtricitabine (a nucleoside reverse transcriptase inhibitor), both currently under evaluation as topical microbicides to counte...

  9. Poly(vinylidene fluoride) polymer based nanocomposites with enhanced energy density by filling with polyacrylate elastomers and BaTiO3 nanoparticles

    Science.gov (United States)

    Yu, Ke; Bai, Yuanyuan; Zhou, Yongcun; Niu, Yujuan; Wang, Hong

    2014-02-01

    Polyacrylate elastomers were introduced into poly(vinylidene fluoride) polymer-based nanocomposites filled with BaTiO3 nanoparticles and the three-phase nanocomposite films were prepared. The energy discharged of the nanocomposite with 3 vol. % polyacrylate elastomers is 8.8 J/cm3, approximately 11% higher compared to that of the nanocomposite without adding polyacrylate elastomers. Large elastic deformation of the polyacrylate elastomers increases Maxwell-Wagner-Sillars interfacial polarization and space charge polarization of the nanocomposites with the electric field increasing, which results in increased maximum polarization and energy discharged of the nanocomposites.

  10. Solid Silicone Elastomer Material(DC745U)-Historical Overview and New Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Acosta, Denisse [Los Alamos National Laboratory

    2012-08-08

    DC745U is a silicone elastomer used in several weapon systems. DC745U is manufactured by Dow Corning and its formulation is proprietary. Risk changes without notification to the customer. {sup 1}H and {sup 29}Si{l_brace}{sup 1}H{r_brace} NMR have previously determined that DC745U contains {approx} 98.5% dimethyl siloxane, {approx}1.5% methyl-phenyl siloxane, and a small amount (<1%) of vinyl siloxane repeat units that are converted to crosslinking sites. The polymer is filled with {approx} 38 wt.% of a mixture of fumed silica and quartz. Some conclusions are: (1) DMA shows that crystallization does have an effect on the mechanical properties of DC745U; (2) DMA shows that the crystallization is time and temperature dependent; (3) Mechanical tests show that DC745U undergo a crystalline transition at temperatures below -50 C; (4) Rate and temperature does not have an effect above crystalline transition; (5) Crystalline transition occurs faster at colder temperatures; (6) The material remains responsive and recovers after warming it to temperature above -40 C; (7) We were able to review all previous historical data on DC745U; (8) Identified specific gaps in materials understanding; (9) Developed design of experiments and testing methods to address gaps associated with post-curing and low temperature mechanical behavior; (10) Resolved questions of post-cure and alleviated concerns associated with low temperature mechanical behavior with soak time and temperature; and (11) This work is relevant to mission-critical programs and for supporting programmatic work for weapon research.

  11. Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility.

    Science.gov (United States)

    Ren, T B; Weigel, Th; Groth, Th; Lendlein, A

    2008-07-01

    The microwave plasma surface modification of silicone elastomer with allylamine was studied to improve the biocompatibility of the material. An effort was made to clarify the relationships among plasma conditions and surface chemical composition, physical surface properties and biocompatibility of material, as well as the stability of plasma deposited layers. ATR-IR, XPS, Ellipsometry measurements, and contact angle measurements were used to investigate the changes of surface. The stability of plasma-treated silicone surfaces were also studied. The results demonstrated that the temperature and pressure had a strong influence on the chemical composition and structure of surface-deposited layer. The layer was nearly completely crosslinking when the modification was carried out at 60 degrees C. The polymerization speed decreased linearly with temperature. The XPS analysis results showed that the nitrogen element content in the surface layer was very high, especially under low pressure. The nitrogen/carbon ratio in the layer even greatly surpassed that of the allylamine monomer. The wettability of the silicone surface was greatly improved after plasma modification, and increased with the quantities of amine groups. The plasma-treated surfaces have good storage stability in air up to 3 months. The wettability of the surfaces decreased incipiently and then it dramatically increased with further time. The human skin fibroblasts were used to evaluate biocompatibility of plasma-treated silicone elastomer. The surface biocompatibility was greatly improved after modification; human skin fibroblasts adhered quickly and grew well on the modified silicone surface.

  12. Silicone elastomers capable of large isotropic dimensional change

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, James; Worsley, Marcus A.

    2017-07-18

    Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.

  13. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS

    DEFF Research Database (Denmark)

    Mazurek, P.; Hvilsted, S.; Skov, A. L.

    2016-01-01

    for obtaining elastomeric composites with uniformly distributed glycerol droplets. Various compositions, containing from 0 to 140 parts of glycerol per 100 parts of PDMS by weight, were prepared and investigated in terms of ATR-FTIR, broadband dielectric spectroscopy, mechanical properties as well as optical......A green and cheap silicone-based elastomer has been developed. Through the simple mixing-in of biodiesel-originating glycerol into commercially available polydimethylsiloxane (PDMS) pre-polymer, a glycerol-in-PDMS emulsion was produced. This counterintuitively stable mixture became a basis...... and scanning electron microscopy. The materials were proven additionally to exhibit a strong affinity to water, which was investigated by simple water absorption tests. Incorporating glycerol into PDMS decreased the Young's modulus of the composites yet the ultimate strain of the elastomer was not compromised...

  14. Change in color of a maxillofacial prosthetic silicone elastomer, following investment in molds of different materials

    Science.gov (United States)

    Sethi, Tania; Kheur, Mohit; Coward, Trevor; Patel, Naimesha

    2015-01-01

    Purpose: In the authors’ experience, the color of silicone elastomer following polymerization in molds made of gypsum products is slightly different from the color that was matched in the presence of the patient, before the silicone is packed. It is hypothesized that the investing materials and separating media have an effect on the color during the polymerization process of the silicone. Materials and Methods: This study compares and evaluates the change in color of silicone elastomer packed in three commonly used investing materials - Dental stone (white color), dental stone (green color), and die stone (orange color); coated with three different separating media – Alginate-based medium, soap solution and a resin-based die hardening material. Pigmented silicone samples of dimensions 1.5 cm × 2 cm × 0.5 cm were made from the elastomer in the above-mentioned mold materials using combinations of the mentioned separating media. These served as test group samples. Control group samples were made by packing a mix of the same pigmented elastomer in stainless steel molds. The L*, a*, b* values of the test and control group samples were determined using a spectrophotometer. The change in color (Delta E) was calculated between the control and test groups. Results: The mean L, a, b values for the control group were, 31.8, 26.2, and 36.3, respectively. Average values of change in color (Delta E) for samples packed utilizing alginate-based medium, die hardener, and soap solution, respectively in white dental stone (2.70, 2.74, and 2.88), green dental stone (2.19, 2.23, 2.42), and orange die stone (3.19, 2.72, 2.80) were tabulated. Conclusion: Among the investing materials studied, die stone showed the most color change (3.19), which was statistically significant. Among the separating media, die hardener showed the least color change (2.23). The best combination of an investing material and separating media as per this investigation is a dental stone (green) and alginate

  15. Novel scalable silicone elastomer and poly(2-hydroxyethyl methacrylate) (PHEMA) composite materials for tissue engineering and drug delivery applications

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Hemmingsen, Mette; Wojcik, Magdalena

    2013-01-01

    In recent years hydrogels have received increasing attention as potential materials for applications in regenerative medicine. They can be used for scaffold materials providing structural integrity to tissue constructs, for controlled delivery of drugs and proteins to cell and tissues......, and for support materials in tissue growth. However, the real challenge is to obtain sufficiently good mechanical properties of the hydrogel. The present study shows the combination of two normally non-compatible materials, silicone elastomer and poly(2-hydroxyethyl methacrylate) (PHEMA), into a novel composite...... material with increased hydrophilicity in regard to virgin silicone elastomer, making it suitable as a scaffold for tissue engineering and with the concomitant possibility for delivering drug from the scaffold to the tissue. Interpenetrating polymer networks (IPNs) of silicone elastomer and PHEMA...

  16. Wettability, water sorption and water solubility of seven silicone elastomers used for maxillofacial prostheses.

    Science.gov (United States)

    Hulterström, Anna Karin; Berglund, Anders; Ruyter, I Eystein

    2008-01-01

    The wettability, water sorption and solubility of silicone elastomers used for maxillofacial prostheses were studied. The hypothesis was, that a material that has absorbed water would show an increase in the wettability and thus also the surface free energy of the material. Seven silicone elastomers, both addition- and condensation type polymers, were included. Five specimens of each material were subjected to treatment according to ISO standards 1567:1999 and 10477: 2004 for water sorption and solubility. The volumes of the specimens were measured according to Archimedes principle. The contact angle was measured with a contact angle goniometer at various stages of the sorption/solubility test. Wettability changed over the test period, but not according to theory. The addition type silicones showed little or no sorption and solubility, but two of the condensation type polymers tested had a significant sorption and solubility. This study showed that condensation type polymers may show too large volumetric changes when exposed to fluids, and therefore should no longer be used in prosthetic devices. The results of this study also suggests that it might be of interest to test sorption and solubility of materials that are to be implanted, since most of the materials had some solubility.

  17. 21 CFR 878.3540 - Silicone gel-filled breast prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Silicone gel-filled breast prosthesis. 878.3540...-filled breast prosthesis. (a) Identification—(1) Single-lumen silicone gel-filled breast prosthesis. A single-lumen silicone gel-filled breast prosthesis is a silicone rubber shell made of...

  18. Application of silicone based elastomers for manufacturing of Green Fiber Bottle

    DEFF Research Database (Denmark)

    Saxena, Prateek; Bissacco, Giuliano

    Due to ever-increasing demand of sustainable products, eco-friendly packaging solutions are finding their importance in the paper packaging industry. Green Fiber Bottle (GFB) is an alternative to plastic, glass and metal based packaging for beverages. The tool concept for manufacturing of paper...... bottle uses a silicone based elastomer as the core. The expansion of core in the tool resists shrinkage of paper during drying as well as helps in obtaining good fiber compaction. The feasibility of the tool concept in the production of GFB is discussed in this work....

  19. Effects of Atomic Oxygen and Grease on Outgassing and Adhesion of Silicone Elastomers for Space Applications

    Science.gov (United States)

    deGroh, Henry C., III; Puleo, Bernadette J.; Steinetz, Bruce M.

    2012-01-01

    An investigation of silicone elastomers for seals used in docking and habitat systems for future space exploration vehicles is being conducted at NASA. For certain missions, NASA is considering androgynous docking systems where two vehicles each having a seal would be required to: dock for a period of time, seal effectively, and then separate with minimum push-off forces for undocking. Silicone materials are generally chosen for their wide operating temperatures and low leakage rates. However silicone materials are often sticky and usually exhibit considerable adhesion when mated against metals and silicone surfaces. This paper investigates the adhesion unit pressure for a space rated silicone material (S0383-70) for either seal-on-seal (SoS) or seal-on-aluminum (SoAl) operation modes in the following conditions: as-received, after ground-based atomic-oxygen (AO) pre-treatment, after application of a thin coating of a space-qualified grease (Braycote 601EF), and after a combination of AO pre-treatment and grease coating. In order of descending adhesion reduction, the AO treatment reduced seal adhesion the most, followed by the AO plus grease pre-treatment, followed by the grease treatment. The effects of various treatments on silicone (S0383-70 and ELA-SA-401) outgassing properties were also investigated. The leading adhesion AO pretreatment reduction led to a slight decrease in outgassing for the S0383-70 material and virtually no change in ELA-SA-401 outgassing.

  20. Filled liquid silicone rubbers: Possibilities and challenges

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    2014-01-01

    Liquid silicone rubbers (LSRs) have been shown to possess very favorable properties as dielectric electroactive polymers due to their very high breakdown strengths (up to 170 V/μm) combined with their fast response, relatively high tear strength, acceptable Young’s modulus as well as they can...

  1. Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation.

    Science.gov (United States)

    Shivapooja, Phanindhar; Wang, Qiming; Szott, Lizzy M; Orihuela, Beatriz; Rittschof, Daniel; Zhao, Xuanhe; López, Gabriel P

    2015-01-01

    Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.

  2. Interpenetrated polymer networks based on commercial silicone elastomers and ionic networks with high dielectric permittivity and self-healing properties

    DEFF Research Database (Denmark)

    Ogliani, Elisa; Yu, Liyun; Skov, Anne Ladegaard

    ,1 Hz), and the commercial elastomers RT625 and LR3043/30 provide thebest viscoelastic properties to the systems, since they maintain low viscous losses upon addition of ionic network. The values ofthe breakdown strength in all cases remain higher than that of the reference pure PDMS network (ranging......The dielectric elastomers (DEs) technology can be used in many advanced applications, such as actuators, generators and sensors, showing advantageous and promising properties[1]. However, the main disadvantage is the high driving voltage required for the actuation process which limits...... the applicability. One method used to avoid this limitation is to increase the dielectric permittivity of the material in order to improve the actuation response at a given field. Recently, interpenetrating polymer networks (IPNs) based on covalently cross-linked commercial silicone elastomers and ionic networks...

  3. Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release.

    Science.gov (United States)

    Shivapooja, Phanindhar; Yu, Qian; Orihuela, Beatriz; Mays, Robin; Rittschof, Daniel; Genzer, Jan; López, Gabriel P

    2015-11-25

    We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.

  4. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors.

    Science.gov (United States)

    Hwang, Suk-Won; Lee, Chi Hwan; Cheng, Huanyu; Jeong, Jae-Woong; Kang, Seung-Kyun; Kim, Jae-Hwan; Shin, Jiho; Yang, Jian; Liu, Zhuangjian; Ameer, Guillermo A; Huang, Yonggang; Rogers, John A

    2015-05-13

    Transient electronics represents an emerging class of technology that exploits materials and/or device constructs that are capable of physically disappearing or disintegrating in a controlled manner at programmed rates or times. Inorganic semiconductor nanomaterials such as silicon nanomembranes/nanoribbons provide attractive choices for active elements in transistors, diodes and other essential components of overall systems that dissolve completely by hydrolysis in biofluids or groundwater. We describe here materials, mechanics, and design layouts to achieve this type of technology in stretchable configurations with biodegradable elastomers for substrate/encapsulation layers. Experimental and theoretical results illuminate the mechanical properties under large strain deformation. Circuit characterization of complementary metal-oxide-semiconductor inverters and individual transistors under various levels of applied loads validates the design strategies. Examples of biosensors demonstrate possibilities for stretchable, transient devices in biomedical applications.

  5. Chemical modification of polyvinyl chloride and silicone elastomer in inhibiting adhesion of Aeromonas hydrophila.

    Science.gov (United States)

    Kregiel, Dorota; Berlowska, Joanna; Mizerska, Urszula; Fortuniak, Witold; Chojnowski, Julian; Ambroziak, Wojciech

    2013-07-01

    Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm(2). Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm(-2) and less than 1 c.f.u. cm(-2) were noted. For the native gumosil, the results were 9,375 RLU cm(-2) and 2.5 × 10(8) c.f.u. cm(-2), respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth.

  6. Influence of opacifiers on dimensional stability and detail reproduction of maxillofacial silicone elastomer

    Directory of Open Access Journals (Sweden)

    Moreno Amália

    2010-12-01

    Full Text Available Abstract Background We evaluated the influence of chemical disinfection and accelerated aging on the dimensional stability and detail reproduction of a silicone elastomer containing one of two opacifiers. Methods A total of 90 samples were fabricated from Silastic MDX 4-4210 silicone and divided into groups (n = 10 according to opacifier content (barium sulfate or titanium dioxide and disinfectant solution (neutral soap, Efferdent, or 4% chlorhexidine. The specimens were disinfected 3 times per week during 60 days and then subjected to accelerated aging for 1008 hours. Dimensional stability and detail reproduction tests were performed after specimens' fabrication (baseline, chemical disinfection and periodically during accelerated aging (252, 504, and 1008 hours. The results were analyzed using 3-way repeated-measures ANOVA and the Tukey HSD test (α = 0.05. Results All groups exhibited dimensional changes over time. The opacifier (p = .314, period (p Conclusions Incorporation of opacifiers alters the dimensional stability of silicones used in facial prosthetics, but seems to have no influence on detail reproduction. Accelerated aging is responsible for most of the dimensional changes in Silastic MDX4 4210, but all dimensional changes measured in this study remained within the limits of stability necessary for this application.

  7. Thermal tuning of a silicon photonic crystal cavity infilled with an elastomer

    NARCIS (Netherlands)

    Erdamar, A.K.; Van Leest, M.M.; Picken, S.J.; Caro. J.

    2011-01-01

    Thermal tuning of the transmission of an elastomer infilled photonic crystal cavity is studied. An elastomer has a thermal expansion-induced negative thermo-optic coefficient that leads to a strong decrease of the refractive index upon heating. This property makes elastomer highly suitable for therm

  8. Surface topography study of prepared 3D printed moulds via 3D printer for silicone elastomer based nasal prosthesis

    Science.gov (United States)

    Abdullah, Abdul Manaf; Din, Tengku Noor Daimah Tengku; Mohamad, Dasmawati; Rahim, Tuan Noraihan Azila Tuan; Akil, Hazizan Md; Rajion, Zainul Ahmad

    2016-12-01

    Conventional prosthesis fabrication is highly depends on the hand creativity of laboratory technologist. The development in 3D printing technology offers a great help in fabricating affordable and fast yet esthetically acceptable prostheses. This study was conducted to discover the potential of 3D printed moulds for indirect silicone elastomer based nasal prosthesis fabrication. Moulds were designed using computer aided design (CAD) software (Solidworks, USA) and converted into the standard tessellation language (STL) file. Three moulds with layer thickness of 0.1, 0.2 and 0.3mm were printed utilizing polymer filament based 3D printer (Makerbot Replicator 2X, Makerbot, USA). Another one mould was printed utilizing liquid resin based 3D printer (Objet 30 Scholar, Stratasys, USA) as control. The printed moulds were then used to fabricate maxillofacial silicone specimens (n=10)/mould. Surface profilometer (Surfcom Flex, Accretech, Japan), digital microscope (KH77000, Hirox, USA) and scanning electron microscope (Quanta FEG 450, Fei, USA) were used to measure the surface roughness as well as the topological properties of fabricated silicone. Statistical analysis of One-Way ANOVA was employed to compare the surface roughness of the fabricated silicone elastomer. Result obtained demonstrated significant differences in surface roughness of the fabricated silicone (p<0.01). Further post hoc analysis also revealed significant differences in silicone fabricated using different 3D printed moulds (p<0.01). A 3D printed mould was successfully prepared and characterized. With surface topography that could be enhanced, inexpensive and rapid mould fabrication techniques, polymer filament based 3D printer is potential for indirect silicone elastomer based nasal prosthesis fabrication.

  9. Effects of geometry and temperature on mode I interlaminar fracture of filled polypropylene–elastomer nanocomposite

    Indian Academy of Sciences (India)

    Bishnu P Panda; Smita Mohanty; S K Nayak

    2014-08-01

    In this study, organically modified Na-MMT clay was used for the preparation of blend nanocomposites containing different ratios of polypropylene (PP) and ethylene propylene diene monomer (EPDM) elastomer in a twin screw extruder. Maleic-grafted PP (MAPP) was used as compatibilizer for making PP hydrophilic. Surface modification of Na–MMT was made by using amino propyl trimethoxy silane (APS) and trimethyl amine as coupling agent with surface grafting catalyst, respectively. A fracture mechanics approach has been adopted by mode I test and the effects of specimen geometry have been investigated. Increase in interlaminar fracture energy value, c, was observed as the crack propagated through the composite, i.e. a rising ‘R-curve’ for both blend and nanocomposites. Deep fracture studies were carried out at different temperatures (–60 °C to 60 °C) using Izod impact and SENT tests. Fracture energy, fracture stress and brittle ductile transition were determined from crack initiation and propagation process, which showed significant improvement in impact and fracture energy at positive temperature. The wide-angle X-ray diffraction (XRD) patterns showed increased -spacing of clay layers, indicating enhanced compatibility between PP and clay with the addition of maleated polypropylene (MAPP). Morphology/impact property relationships and an explanation of the toughening mechanisms were made by comparing the impact properties with scanning electron micrographs (SEMs) of fracture surfaces. The transmission electron microscopy (TEM) photomicrographs illustrated the intercalated and partially exfoliated structures of the hybrids with clay, MAPP and elastomer.

  10. Micropatterning hydroxy-PAAm hydrogels and Sylgard 184 silicone elastomers with tunable elastic moduli.

    Science.gov (United States)

    Versaevel, Marie; Grevesse, Thomas; Riaz, Maryam; Lantoine, Joséphine; Gabriele, Sylvain

    2014-01-01

    This protocol describes a simple method to deposit protein micropatterns over a wide range of culture substrate stiffness (three orders of magnitude) by using two complementary polymeric substrates. In the first part, we introduce a novel polyacrylamide hydrogel, called hydroxy-polyacrylamide (PAAm), that permits to surmount the intrinsically nonadhesive properties of polyacrylamide with minimal requirements in cost or expertize. We present a protocol for tuning easily the rigidity of "soft" hydroxy-PAAm hydrogels between ~0.5 and 50 kPa and a micropatterning method to locally deposit protein micropatterns on these hydrogels. In a second part, we describe a protocol for tuning the rigidity of "stiff" silicone elastomers between ~100 and 1000 kPa and printing efficiently proteins from the extracellular matrix. Finally, we investigate the effect of the matrix rigidity on the nucleus of primary endothelial cells by tuning the rigidity of both polymeric substrates. We envision that the complementarity of these two polymeric substrates, combined with an efficient microprinting technique, can be further developed in the future as a powerful mechanobiology platform to investigate in vitro the effect of mechanotransduction cues on cellular functions, gene expression, and stem cell differentiation.

  11. Modified silicone elastomer vaginal gels for sustained release of antiretroviral HIV microbicides.

    Science.gov (United States)

    Forbes, Claire J; McCoy, Clare F; Murphy, Diarmaid J; Woolfson, A David; Moore, John P; Evans, Abbey; Shattock, Robin J; Malcolm, R Karl

    2014-05-01

    We previously reported nonaqueous silicone elastomer gels (SEGs) for sustained vaginal administration of the CCR5-targeted entry inhibitor maraviroc (MVC). Here, we describe chemically modified SEGs (h-SEGs) in which the hydrophobic cyclomethicone component was partially replaced with relatively hydrophilic silanol-terminated polydimethylsiloxanes (st-PDMS). MVC and emtricitabine (a nucleoside reverse transcriptase inhibitor), both currently under evaluation as topical microbicides to counter sexual transmission of human immunodeficiency virus type 1 (HIV-1), were used as model antiretroviral (ARV) drugs. Gel viscosity and in vitro ARV release were significantly influenced by st-PDMS molecular weight and concentration in the h-SEGs. Unexpectedly, gels prepared with lower molecular weight grades of st-PDMS showed higher viscosities. h-SEGs provided enhanced release over 24 h compared with aqueous hydroxyethylcellulose (HEC) gels, did not modify the pH of simulated vaginal fluid (SVF), and were shown to less cytotoxic than standard HEC vaginal gel. ARV solubility increased as st-PDMS molecular weight decreased (i.e., as percentage hydroxyl content increased), helping to explain the in vitro release trends. Dye ingression and SVF dilution studies confirmed the increased hydrophilicity of the h-SEGs. h-SEGs have potential for use in vaginal drug delivery, particularly for ARV-based HIV-1 microbicides.

  12. 3D printing PLA and silicone elastomer structures with sugar solution support material

    Science.gov (United States)

    Hamidi, Armita; Jain, Shrenik; Tadesse, Yonas

    2017-04-01

    3D printing technology has been used for rapid prototyping since 1980's and is still developing in a way that can be used for customized products with complex design and miniature features. Among all the available 3D printing techniques, Fused Deposition Modeling (FDM) is one of the most widely used technologies because of its capability to build different structures by employing various materials. However, complexity of parts made by FDM is greatly limited by restriction of using support materials. Support materials are often used in FDM for several complex geometries such as fully suspended shapes, overhanging surfaces and hollow features. This paper describes an approach to 3D print a structure using silicone elastomer and polylactide fiber (PLA) by employing a novel support material that is soluble in water. This support material is melted sugar which can easily be prepared at a low cost. Sugar is a carbohydrate, which is found naturally in plants such as sugarcane and sugar beets; therefore, it is completely organic and eco-friendly. As another advantage, the time for removing this material from the part is considerably less than other commercially available support materials and it can be removed easily by warm water without leaving any trace. Experiments were done using an inexpensive desktop 3D printer to fabricate complex structures for use in soft robots. The results envision that further development of this system would contribute to a method of fabrication of complex parts with lower cost yet high quality.

  13. Novel encapsulation technique for incorporation of high permittivity fillers into silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Hvilsted, Søren; Skov, Anne Ladegaard

    2014-01-01

    as for the traditionally applied thermoplastic encapsulation. The properties of the elastomers are investigated as function of the filler content and type. The dielectric permittivity, dielectric loss, conductivity, storage modulus as well as viscous loss are compared to elastomers with the same amounts of high...

  14. Glycerol as high-permittivity liquid filler in dielectric silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Yu, Liyun; Gerhard, R.

    2016-01-01

    A recently reported novel class of elastomers was tested with respect to its dielectric properties. The new elastomer materialis based on a commercially available poly(dimethylsiloxane) composition, which has been modified by embedding glycerol droplets intoits matrix. The approach has two major ......, and the applicability ofthe models is discussed. VC 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44153....

  15. Design & synthesis of silicone elastomer networks with tunable physico-chemical characteristics

    Science.gov (United States)

    Willoughby, Julie Ann-Crowe

    2007-05-01

    We have engineered functional surfaces via the manipulation of silicone elastomers (SEs). The most common silicone, poly(dimethylsiloxane) PDMS, can be both challenging and advantageous in the design of surfaces due to its inherent inertness and flexibility of the siloxane backbone. This unique polymer is approaching a $10 billion dollar market attributed to its formulation in a wide array of applications; from the personal care industry to the electronics industry. While it can be used for many applications, surface design with PDMS usually requires a chemical or physical modification of the polymeric network. In addition, surface characteristics are tailored for specific functions since there is not one surface that fits all end-uses. In studying the intrinsic behavior of engineered SEs, we asked questions regarding surface stability, environmental conformation and adaptability, and tuning physical features. We report on the formation of responsive surfaces with tailorable surface-reconstruction kinetics and switching hysteresis by thiol-ene radical addition of mercaptoalkanols with variable lengths to poly(vinylmethylsiloxane) networks. Exposing the modified surfaces to water led to a rearrangement of the hydrophilic alkanes at the surface. The rearrangement kinetics decreases with increasing number of the methylene spacers (n) in the mercaptoalkanol. The response kinetics is found to be very fast for n = 2 and 6. For instance, upon exposing to water, the water contact angle on 3-mercaptopropanol-based surfaces decreases by ≈35° at the rate of 2°/second. The high flexibility of the siloxane backbone endows these materials with switching longevity; the materials were able to switch their wettability over 10 cycles with minimum hysteresis. Increasing the number of methylene spacers to n = 11 decreases the surface reorganization dramatically. Formation of semi-crystalline regions in such materials (detected via IR) is responsible for initial "sluggish" kinetics

  16. Design of Elastomer Structure to Facilitate Incorporation of Expanded Graphite in Silicones Without Compromising Electromechanical Integrity

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager; Daugaard, Anders Egede; Skov, Anne Ladegaard

    2015-01-01

    The development of elastomer materials with a high dielectric permittivity has attracted increased interest over the past years due to their use in, for example, dielectric elastomers. For this particular use, both the electrically insulating properties - as well as the mechanical properties...... of the elastomer - have to be tightly controlled in order not to destroy favorable elastic properties by the addition of particles. This study focuses on improving the electromechanical properties of an enhanced PDMS matrix with expanded graphite (EG) as filler. The PDMS matrix is crosslinked by means of an 8...

  17. Thermal oxidative and ozone oxidative stabilization effect of hybridized functional graphene oxide in a silica-filled solution styrene butadiene elastomer.

    Science.gov (United States)

    Su, Juqiao; Zhao, Zhongguo; Huang, Yajiang; Liao, Xia; Yang, Qi

    2016-10-26

    Hybridization of modified functional graphene oxide (fGO) in silica-filled solution styrene butadiene rubber (SSBR) endows preferable tensile and dynamic properties before and after thermal oxidative aging, and similar mechanical hysteresis performance compared with the composites without fGO. The preventing mechanism of fGO is attributed to its intrinsic peroxy radical scavenging and gas barrier abilities, which significantly reduces the peroxy radical concentration and oxygen permeability of nanocomposites and then prolongs oxidative induction time (OIT), characterized by differential scanning calorimetry (DSC). The ozone resisting effect of different loadings of fGO on nanocomposites have also been investigated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) after ozonization under 50 ppm ozone concentration. As a result, incorporation of fGO apparently suppresses both the formation of oxygenic groups of the olefinic elastomer and crack morphology extension upon ozonization. We propose that fGO protects the SSBR elastomer from ozone attack through the conjugated delocalized π-bonds of the fGO instead of the C[double bond, length as m-dash]C bonds of the elastomer matrix being attacked, and the compared experiments, characterized by X-ray photoelectron spectroscopy (XPS), confirm that this presumption is perhaps reasonable. Moreover, more than 3 phr incorporation of fGO in nanocomposites deteriorates the chemical and mechanical properties of the elastomer during the thermal oxidation and ozonization because of the cleavage influence of oxygenic groups on peroxy radicals.

  18. Composite silicone rubber of high piezoresistance repeatability filled with nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The ruthenium oxide nanoparticles with size less than 20 nm were fabricated by annealing the metallic ruthenium nanoparticles in air,which were synthesized by using the thermal reduction in the polyol solution.The rutile structure of the ruthenium oxide was proved by using transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).The oxide has good electron conductivity. The surface of the ruthenium oxide was modified by a vinyl silane coupling agent.The assembling of the silane to the oxide surface was proved by Infrared(IR)absorption spectroscopy.By mixing the nanoparticles with poly(methylvinylsiloxane)(PMVS)silicone rubber,a composite filled with dispersive conducting phase was fabricated.The temperature dependent conductivity shows that the electron transportation through composite is mainly dominated by tunneling.The measurement of piezoresistance shows that the composite at low strain has high piezoresistance repeatability.The 3D reconstruction images of the composite filled with carbon black or ruthenium oxide show that the aggregation of the nanoparticles differs much for two composites.The narrow distribution range of the particle size was thought to be the main factor for the high piezoresistance recurrence.

  19. Dielectric elastomer actuators of silicone rubber-titanium dioxide composites obtained by dielectrophoretic assembly of filler particles

    Science.gov (United States)

    Javadi, S.; Razzaghi-Kashani, M.

    2010-04-01

    Formation of controlled morphology of fillers in polymeric composites may be difficult to achieve by conventional methods such as mechanical shear or chemical methods. Tunable structure of filler and anisotropic properties in composites can be obtained by exploiting dielectrophoretic assembly of fillers in a polymer composite by using electric fields. In this study, different concentrations of Titanium Dioxide (TiO2) particles in silicone rubber matrix were assembled in a chain-like structure by using an alternating electric field. Silicone rubber matrix was vulcanized to transform the liquid to solid and maintain the filler structure in the desired direction. Generation of chain structure of filler was verified by Scanning Electron Microscopy (SEM) and equilibrium swelling. It was shown that dielectric permittivity of the oriented composite is higher whereas its dielectric loss factor is lower in the orientation (thickness) direction than those for the composites with random distribution of filler. This phenomenon was in agreement with results of dynamic-mechanical loss factor for these composites, and can be utilized in more efficient dielectric elastomer actuators. Elastic modulus is higher for the structured samples, but presence of titania filler induced a softening effect at higher strains where the actuators are practically being pre-stretched. A critical concentration of filler was distinguished as the percolation point at which the change in dielectric behavior is amplified. Using a simple blocking-force measurement, potential advantages of structured composites over the ones with randomly-distributed filler was explained for potential dielectric elastomer actuator applications.

  20. A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    in Young's modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. A new soft elastomer matrix, with no loss of mechanical stability and high dielectric permittivity, was prepared through the use of alkyl chloride-functional siloxane copolymers...

  1. Accelerated oldness techniques in laboratories and diagnosis methods applied at silicon elastomers used on insulators composites (polymers); Tecnicas de envelhecimento acelerado em laboratorio e metodos de diagnostico aplicados a elastomeros de silicone utilizados em isoladores compositos (polimericos)

    Energy Technology Data Exchange (ETDEWEB)

    Scarpa, P.C.N.; Oliveira, S.M.; Robert, R.; Souza, C.F. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)

    1991-12-31

    Several assays used as diagnosis methods of silicon elastomers degradation state are presented. The material used on insulators composites fabrication suffered accelerated oldness process in laboratory , and was measured some parameters to give an evaluation of its operational conditions after the tests. The oldness process used, diagnosis methods, and the results obtained are also discussed 4 refs., 4 figs., 7 tabs.

  2. Aerosol-Jet-Printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device

    Science.gov (United States)

    Reitelshöfer, Sebastian; Göttler, Michael; Schmidt, Philip; Treffer, Philipp; Landgraf, Maximilian; Franke, Jörg

    2016-04-01

    In this contribution we present recent findings of our efforts to qualify the so called Aerosol-Jet-Printing process as an additive manufacturing approach for stacked dielectric elastomer actuators (DEA). With the presented system we are able to print the two essential structural elements dielectric layer and electrode in one machine. The system is capable of generating RTV-2 silicone layers made of Wacker Elastosil P 7670. Therefore, two aerosol streams of both precursor components A and B are generated in parallel and mixed in one printing nozzle that is attached to a 4-axis kinematic. At maximum speed the printing of one circular Elastosil layer with a calculated thickness of 10 μm and a diameter of 1 cm takes 12 seconds while the process keeps stable for 4.5 hours allowing a quite high overall material output and the generation of numerous silicone layers. By adding a second printing nozzle and the infrastructure to generate a third aerosol, the system is also capable of printing inks with conductive particles in parallel to the silicone. We have printed a reduced graphene oxide (rGO) ink prepared in our lab to generate electrodes on VHB 4905, Elastosil foils and finally on Aerosol-Jet-Printed Elastosil layers. With rGO ink printed on Elastosil foil, layers with a 4-point measured sheet resistance as low as 4 kΩ can be realized leaving room for improving the electrode printing time, which at the moment is not as good as the quite good time-frame for printing the silicone layers. Up to now we have used the system to print a fully functional two-layer stacked DEA to demonstrate the principle of continuously 3D printing actuators.

  3. Simultaneously improved actuated performance and mechanical strength of silicone elastomer by reduced graphene oxide encapsulated silicon dioxide

    Directory of Open Access Journals (Sweden)

    Nanying Ning

    2015-10-01

    Full Text Available Herein, graphene oxide (GO-encapsulated silica (SiO2 hybrids (GO@SiO2 were prepared via electrostatic self-assembly of the 3-aminopropyltriethoxysilane (APS-modified SiO2 and GO. The as-prepared GO@SiO2 was introduced into polydimethylsiloxane (PDMS elastomer to simultaneously increase the dielectric constant (k and mechanical properties of PDMS. Then, the in situ thermal reduction of GO@SiO2/PDMS composites was conducted at 180°C for 2 h to increase the interfacial polarizability of GO@SiO2. As a result, the values of k at 1000 Hz are largely improved from 3.2 for PDMS to 13.3 for the reduced GO@SiO2 (RGO@SiO2/PDMS elastomer. Meanwhile, the dielectric loss of the composites remains low (<0.2 at 1000 Hz. More importantly, the actuated strain at low electric field (5 kV/mm obviously increases from 0.3% for pure PDMS to 2.59% for the composites with 60 phr of RGO@SiO2, an eightfold increase in the actuated strain. In addition, both the tensile strength and elastic modulus are obviously improved by adding 60 phr of RGO@SiO2, indicating a good reinforcing effect of RGO@SiO2 on PDMS. Our goal is to develop a simple and effective way to improve the actuated performance and mechanical strength of the PDMS dielectric elastomer for its wider application.

  4. Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces

    CERN Document Server

    Slipher, G A; Mrozek, R A

    2016-01-01

    Soft and pliable conductive polymer composites hold promise for application as bioelectronic interfaces such as for electroencephalography (EEG). In clinical, laboratory, and real-world EEG there is a desire for dry, soft, and comfortable interfaces to the scalp that are capable of relaying the microvolt-level scalp potentials to signal processing electronics. A key challenge is that most material approaches are sensitive to deformation-induced shifts in electrical impedance associated with decreased signal-to-noise ratio. This is a particular concern in real-world environments where human motion is present. The entire set of brain information outside of tightly controlled laboratory or clinical settings are currently unobtainable due to this challenge. Here we explore the performance of an elastomeric material solution purposefully designed for dry, soft, comfortable scalp contact electrodes for EEG that is specifically targeted to have flat electrical impedance response to deformation to enable utilization ...

  5. Simultaneously improved actuated performance and mechanical strength of silicone elastomer by reduced graphene oxide encapsulated silicon dioxide

    OpenAIRE

    Nanying Ning; Minglu Wang; Jing Zhang; Liqun Zhang; Ming Tian

    2015-01-01

    Herein, graphene oxide (GO)-encapsulated silica (SiO2) hybrids (GO@SiO2) were prepared via electrostatic self-assembly of the 3-aminopropyltriethoxysilane (APS)-modified SiO2 and GO. The as-prepared GO@SiO2 was introduced into polydimethylsiloxane (PDMS) elastomer to simultaneously increase the dielectric constant (k) and mechanical properties of PDMS. Then, the in situ thermal reduction of GO@SiO2/PDMS composites was conducted at 180°C for 2 h to increase the interfacial polarizability of GO...

  6. SCANNING ELECTRON MICROSCOPY STUDY OF FILLED SILICONE RUBBER

    Institute of Scientific and Technical Information of China (English)

    LI Yufu; YANG Qiyun; LI Guangliang

    1988-01-01

    The fracture surfaces of a number of silicone vulcanizates were investigated by the use of scanning electron microscopy (SEM). It was found that the difference in the presence and absence of filler, the variation of its surface modification as well as the history of thermal aging of the vulcanizates, all of these factors made difference in surface morphology of the fractured surface. This was correlated with the strength of the vulcanizates. The reinforcing effect of filler and the process of fracture were discussed.

  7. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  8. Research on marking lines of silicone elastomer PDMS for super-hydrophobic surface fabrication based on picosecond laser

    Science.gov (United States)

    Gang, Xiao; Dong, Shiyun; Yan, Shixing; Song, Chaoqun; Wang, Bin

    2016-10-01

    The picosecond laser has ultrashort pulse and superstrong peak power, which make it being focused on and applied in the micro-nanoscale fabrication field. Silicone elastomer PDMS is a typical antifouling material which can desorb defacement, using picosecond laser etching the surface through the way of galvanometer scanning in order to obtain a surface with micro-nano texture. The article studied the relationship between process parameters such as the power density, the scanning rate and the appearance of etched groove respectively, especially the width and depth of the groove. The results show that : for single marking, with the raise of the laser power density I, the depth of the groove increases, the inclination angle of the side wall is reduced. In another time, with the increase of the scanning rate v ,the depth of the groove decreases gradually and the surface morphology cannot be seen clearly. For multiple marking, the depth of the groove shown a falling slope from big to small with the increase of marking number. Finally,we got a path to optimize the process parameters to obtain a surface with micro-nano structures. After testing the surface contact angle, we found that the surface contact angle increased from 113° to 152°,which reached the level of superhydrophobic surface.

  9. Biocompatibility testing of a silicone maxillofacial prosthetic elastomer: soft tissue study in primates.

    Science.gov (United States)

    Wolfaardt, J F; Cleaton-Jones, P; Lownie, J; Ackermann, G

    1992-08-01

    Little information exists on the biocompatibility of maxillofacial prosthetic materials. Cosmesil material is a purpose-designed facial prosthetic elastomer that has an established clinical profile in humans but results of biocompatibility testing have not been published. Cosmesil, acrylic resin (positive control), black surgical gutta-percha (negative control), and Silastic 382 material (Dow Corning, Midland, Mich.) (reference control) were processed as custom-designed implants. The implants were inserted into five chacma baboons for a 12-week period in intraosseous, subperiosteal, submucosal, and intramuscular sites. The histologic assessment was based on a modified form of the FDI-ISO Technical Report 7405 for subcutaneous implants. An evaluation was made of capsule formation and inflammatory response. The statistical analysis involved a three-way ANOVA and a Tukey-Kramer Student range test. The critical level of statistical significance chosen was p less than 0.05. The study found that gutta-percha provoked a statistically significantly thicker capsule and a severe inflammatory response. Acrylic resin, Cosmesil material, and Silastic 382 material produced capsule formations and an inflammatory response that did not differ significantly. Cosmesil material is not manufactured as an implant material, but from the present findings it is considered acceptably biocompatible for its intended use where there may be contact with internal tissue spaces that are contiguous to external surfaces.

  10. Through silicon vias filled with planarized carbon nanotube bundles.

    Science.gov (United States)

    Wang, Teng; Jeppson, Kjell; Olofsson, Niklas; Campbell, Eleanor E B; Liu, Johan

    2009-12-02

    The feasibility of using carbon nanotube (CNT) bundles as the fillers of through silicon vias (TSVs) has been demonstrated. CNT bundles are synthesized directly inside TSVs by thermal chemical vapor deposition (TCVD). The growth of CNTs in vias is found to be highly dependent on the geometric dimensions and arrangement patterns of the vias at atmospheric pressure. The CNT-Si structure is planarized by a combined lapping and polishing process to achieve both a high removal rate and a fine surface finish. Electrical tests of the CNT TSVs have been performed and their electrical resistance was found to be in the few hundred ohms range. The reasons for the high electrical resistance have been discussed and possible methods to decrease the electrical resistance have been proposed.

  11. Solution titration by wall deprotonation during capillary filling of silicon oxide nanochannels

    NARCIS (Netherlands)

    Janssen, Kjeld G.H.; Hoang, Hanh T.; Floris, Jan; Vries, de Jeroen; Tas, Niels R.; Eijkel, Jan C.T.; Hankemeier, Thomas

    2008-01-01

    This paper describes a fundamental challenge when using silicon oxide nanochannels for analytical systems, namely the occurrence of a strong proton release or proton uptake from the walls in any transient situation such as channel filling. Experimentally, when fluorescein solutions were introduced i

  12. Elastomers Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Primary capabilities include: elastomer compounding in various sizes (micro, 3x5, 8x12, 8x15 rubber mills); elastomer curing and post curing (two 50-ton presses, one...

  13. Fabrication of a 100% fill-factor silicon microlens array

    Institute of Scientific and Technical Information of China (English)

    Yan Jianhua; Ou Wen; Ou Yi

    2012-01-01

    A simple method has been developed for the fabrication of a silicon microlens array with a 100% fill factor and a smooth configuration.The microlens array is fabricated by using the processes of photoresist (SU8-2005) spin coating,thermal reflow,thermal treatment and reactive ion etching (RIE).First,a photoresist microlens array on a single-polished silicon substrate is fabricated by both thermal reflow and thermal treatment technologies.A typical microlens has a square bottom with size of 25 μm,and the distance between every two adjacent microlenses is 5 μm.Secondly,the photoresist microlens array is transferred to the silicon substrate by RIE to fabricate the silicon microlens array.Experimental results reveal that the silicon microlens array could be formed by adjusting the quantities of the reactive ion gases of SF6 and O2 to proper values.In this paper,the quantities of SF6 and 02 are 60 sccm and 50 sccm,respectively,the corresponding etch ratio of the photoresist and the silicon substrate is 1 to1.44.The bottom size and height of a typical silicon microlens are 30.1μm and 3μm,respectively.The focal lengths of the microlenses ranged from 15.4 to 16.6μm.

  14. Spin filling of valley-orbit states in a silicon quantum dot.

    Science.gov (United States)

    Lim, W H; Yang, C H; Zwanenburg, F A; Dzurak, A S

    2011-08-19

    We report the demonstration of a low-disorder silicon metal-oxide-semiconductor (Si MOS) quantum dot containing a tunable number of electrons from zero to N = 27. The observed evolution of addition energies with parallel magnetic field reveals the spin filling of electrons into valley-orbit states. We find a splitting of 0.10 meV between the ground and first excited states, consistent with theory and placing a lower bound on the valley splitting. Our results provide optimism for the realisation in the near future of spin qubits based on silicon quantum dots.

  15. Preparation of silicone elastomer microsphere coated with starch nanocrystal%淀粉纳米晶涂覆的有机硅弹性微球的制备

    Institute of Scientific and Technical Information of China (English)

    钱景茹; 李琛; 杨成

    2015-01-01

    通过酸降解蜡性玉米淀粉制备了淀粉纳米晶。利用淀粉纳米晶乳化稳定乙烯基硅油和含氢硅油混合物形成Pickering乳液,然后通过硅氢加成制备了淀粉纳米晶涂覆的有机硅弹性微球。当淀粉纳米晶浓度为0.1%以上,就可以获得稳定乳液。随淀粉纳米晶浓度从0.1%增加到5.0%,乳液的粒径从70μm减小至17μm。有机硅微球的粒径同乳液粒径相比没有明显变化,涂覆在有机硅微球表面的淀粉纳米晶由聚集的微粒变成连续的层状物。%Starch nanocrystals were prepared by acid hydrolysis of waxy corn starch .It was found starch nanocrystal could stabilize the mixture of methylvinylpolysiloxane and methylhydrogenpolysiloxane .The silicone elastomer microspheres coated with starch nanocrystal were prepared via Pickering emulsion poly -merization .The size of silicone elastomer microsphere decreased with the increasing of starch nanocrystal content.When starch nanocrystal content was above 0.1%, the stable emulsion could be formed .The size of emulsion droplets decreased from 70~17 μm as starch nanocrystal content increased from 0.1%~5 .0%.Compared to the size of emulsion droplets , the size of silicone microsphere had no significant change .The morphology of starch nanocrystal aggregate adsorbed on the silicone microsphere surface be -came from microparticle to layer .

  16. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...... breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) are used to evaluate the elastomers...... before and after electrical breakdown. It was shown the chemically very similar silicone elastomers broke down electrically in very different ways. These observations emphasize that the modification of the silicone backbone may open up for completely new possibilities for stabilizing the silicone...

  17. Filled Ethylene-propylene Diene Terpolymer Elastomer as ThermalInsulator for Case-bonded Solid Rocket Motors

    Directory of Open Access Journals (Sweden)

    C. M. Bhuvaneswari

    2008-01-01

    Full Text Available Ethylene-propylene diene terpolymer (EPDM-based insulation system is being globallyused for case-bonded solid rocket motors. A study was undertaken using EPDM as base polymer,blended with hypalon and liquid EPDM and filled with fibrous and non-fibrous fillers. Theseformulations were evaluated as rocket motor insulation system. The basic objective of the studywas to develop an insulation system based on EPDM for case-bonded applications. A series ofrocket motor insulator compositions based on EPDM, filled with particulate and fibrous fillerslike precipitated silica, fumed silica, aramid, and carbon fibres have been studied for mechanical,rheological, thermal, and interface properties. Compositions based on particulate fillers wereoptimised for the filler content. Comparatively, fumed silica was found to be superior as fillerin terms of mechanical and interface properties. Addition of fibrous filler (5 parts improved thepeel strength, and reduced the thermal conductivity and erosion rate. All the compositions wereevaluated for sulphur and peroxide curing. Superior mechanical properties were achieved forsulphur-cured products, whereas peroxide-cured products exhibited an excellent ageing resistance.Rocket motors were insulated with optimised composition and propellant cast, and the motorswere evaluated by conducting static test in end-burning mode.Defence Science Journal, 2008, 58(1, pp.94-102, DOI : http://dx.doi.org/10.14429/dsj.58.1628

  18. Preparation of Micro-pored Silicone Elastomer Through Radiation Crosslinking%辐射交联法制备微孔化硅橡胶的研究

    Institute of Scientific and Technical Information of China (English)

    高小铃; 古梅; 谢续兵; 黄玮

    2013-01-01

    The radiation crosslinking was adopted to prepare the micro-pored silicone elastomer,which was performed by vulcanization and foaming respectively.Radiation crosslinking is a new method to prepare micro-pored material with high performance by use of radiation technology.Silicon dioxide was used as filler,and silicone elastomer was vulcanized by electron beams,then the micro-pored material was made by heating method at a high temperature.The effects of absorbed dose and filler content on the performance and morphology were investigated.The structure and distribution of pores were observed by SEM.The results show that the micro-pored silicon elastomer can be prepared successfully by controlling the absorbed dose and filler content.It has a smooth surface similar to a rubber meanwhile the pores are round and unconnected to each other with the minimum size of 14 μm.And the good mechanical performance can be suitable for further uses.%采用辐射交联法制备微孔化硅橡胶材料,实现硫化与发泡分步进行,是探索射线技术用于制备高性能微孔材料的一种新方法.以二氧化硅为填料,以电子加速器为射线源辐照实现硅橡胶的硫化,再经高温发泡为微孔材料.主要研究辐照条件、填料含量等关键因素对硅橡胶性能与结构的影响,并用扫描电镜观察泡孔的形态结构.结果表明,通过控制吸收剂量和填料含量等条件,实现了硅橡胶材料微孔化.微孔化硅橡胶材料表面光滑,接近橡胶形态,而材料内部具有丰富的μm级小孔,孔壁完整,孔与孔间彼此不贯通,泡孔细小,胞体尺寸(平均)最小达14 μm,泡孔的均匀性好,其力学性能较好.

  19. Strong photoluminescence of the porous silicon with HfO2-filled microcavities

    Science.gov (United States)

    Jiang, Ran; Wu, Zhengran; Du, Xianghao; Han, Zuyin; Sun, Weideng

    2015-06-01

    Greatly enhanced blue emission was observed at room temperature in the single-crystal silicon with HfO2 filled into its microcavities. The broad blue band light was emitted from both the HfO2 dielectric and the porous Si. The ferroelectricity of HfO2 enhances the blue emission from Si by its filling into the microcaivities. At the same time, HfO2 contributes to the light emission for the transitions of the defect levels for oxygen vacancy. The observation of greatly enhanced blue light emission of the porous Si filled with HfO2 dielectric is remarkable as both HfO2 and Si are highly compatible with Si-based electronic industry.

  20. Thermal properties of hemp fiber filled polyamide 1010 biomass composites and the blend of these composites and polyamide 11 elastomer

    Science.gov (United States)

    Nishitani, Yosuke; Mukaida, Jun; Yamanaka, Toshiyuki; Kajiyama, Tetsuto; Kitano, Takeshi

    2016-03-01

    The aim of this study is to improve the performance of all inedible plants-derived materials for new engineering materials such as structural materials and tribomaterials. Thermal properties of hemp fiber filled polyamide 1010 biomass composites and the blend of these composites and plants-derived TPE were investigated experimentally. These biomass composites were extruded by a twin screw extruder and compression or injection molded. Thermal properties such as dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of these biomass composites were evaluated. It was found that the addition of HF and the blend of bio-TPE with PA1010 have strong influence on the thermal properties such as DMA, TGA and DSC. In particular, HF has a good effect for the improvement of the thermal and mechanical properties. These properties of HF/PA1010/PA11E biomass composites are better than those of HF/PA1010/TPU ones.

  1. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...... breakdown patterns of two similar chloro propyl functionalized silicone elastomers which break down electrically in a rather different way as well as we compare them to a silicone based reference. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) are used to evaluate...... the elastomers after electrical breakdown....

  2. Solution titration by wall deprotonation during capillary filling of silicon oxide nanochannels.

    Science.gov (United States)

    Janssen, Kjeld G H; Hoang, T Hanh; Floris, Jan; de Vries, Jeroen; Tas, Niels R; Eijkel, Jan C T; Hankemeier, Thomas

    2008-11-01

    This paper describes a fundamental challenge when using silicon oxide nanochannels for analytical systems, namely the occurrence of a strong proton release or proton uptake from the walls in any transient situation such as channel filling. Experimentally, when fluorescein solutions were introduced into silicon oxide nanochannels through capillary pressure, a distinct bisection of the fluorescence was observed, the zone of the fluid near the entrance fluoresced, while the zone near the meniscus, was dark. The ratio between the zones was found to be constant in time and to depend on ionic strength, pH, and the presence of a buffer and its characteristics. Theoretically, using the Gouy-Chapman-Stern model of the electrochemical double layer, we demonstrate that this phenomenon can be effectively modeled as a titration of the solution by protons released from silanol groups on the walls, as a function of the pH and ionic strength of the introduced solution. The results demonstrate the dominant influence of the surface on the fluid composition in nanofluidic experiments, in transient situations such as filling, and changes in solvent properties such as the pH or ionic strength. The implications of these fundamental properties of silicon oxide nanochannels are important for analytical strategies and in particular the analysis of complex biological samples.

  3. A mesoscopic network model for permanent set in crosslinked elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Weisgraber, T H; Gee, R H; Maiti, A; Clague, D S; Chinn, S; Maxwell, R S

    2009-01-29

    A mesoscopic computational model for polymer networks and composites is developed as a coarse-grained representation of the composite microstructure. Unlike more complex molecular dynamics simulations, the model only considers the effects of crosslinks on mechanical behavior. The elastic modulus, which depends only on the crosslink density and parameters in the bond potential, is consistent with rubber elasticity theory, and the network response satisfies the independent network hypothesis of Tobolsky. The model, when applied to a commercial filled silicone elastomer, quantitatively reproduces the experimental permanent set and stress-strain response due to changes in the crosslinked network from irradiation.

  4. Post Curing as an Effective Means of Ensuring the Long-term Reliability of PDMS Thin Films for Dielectric Elastomer Applications

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2017-01-01

    -term elastomer film reliability. The Young’s moduli and electrical breakdown strengths of commercial (silica-reinforced) PDMS elastomer films, with and without additional 35 parts per hundred rubber titanium dioxide (TiO2), were investigated after high-temperature (200°C) post curing for various time spans......Post curing can be used to facilitate volatile removal and thus produce polydimethylsiloxane (PDMS) films with stable elastic and electrical properties over time. In this study, the effect of post curing was investigated for commercial silicone elastomer thin films as a means of improving long....... The elastomers were found to contain less than 2% of volatiles (significantly higher for TiO2-filled samples), but nevertheless a strong effect from post curing was observed. The young’s moduli as well as the strain-dependent behavior were found to change significantly upon post curing treatment, where Young...

  5. Light transmission in porous silicon dioxide filled with liquids of different refractive indices

    Institute of Scientific and Technical Information of China (English)

    Jun Li; Xinzheng Zhang; Fan Shi; Yan Xu; Pidong Wang; Xuanyi Yu; Jingjun Xu

    2011-01-01

    Optical transmission at 532 nm from nonabsorbing disordered porous silicon dioxide has been studied experimentally.The transmission behaviors can be adjusted by filling the pores with liquids of different refractive indics, which are analyzed based on the theory of diffusion in a weak scattering regime.In our experiment, the transmission coefficient changes from a value less than 1% to one that is greater than 75%, that is, the opaque sample becomes transparent, which means that the transport mean free path of light within the material has been effectively adjusted.In addition, this method is a useful nondestructive method to derive the refractive index of an unknown bulk porous material.%@@ Optical transmission at 532 nm from nonabsorbing disordered porous silicon dioxide has been studied experimentally.The transmission behaviors can be adjusted by filling the pores with liquids of different refractive indics, which are analyzed based on the theory of diffusion in a weak scattering regime.In our experiment, the transmission coefficient changes from a value less than 1% to one that is greater than 75%, that is, the opaque sample becomes transparent, which means that the transport mean free path of light within the material has been effectively adjusted.In addition, this method is a useful nondestructive method to derive the refractive index of an unknown bulk porous material.

  6. Critical Role of Diels-Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer

    Science.gov (United States)

    Heo, Gaeun; Pyo, Kyoung-Hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong

    2016-05-01

    This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels-Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching-releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11.

  7. Force-sensitive resistor of carbon-filled liquid silicone rubber

    Science.gov (United States)

    Hu, Wangyu; Zhao, Lihua; Wu, Lijun; Wang, Lingling; Zhang, Bangwei; Hu, Wangyu; Guan, Hengrong; Zhang, Bangwei

    1996-01-01

    The effects of carbon content, tensile force, and temperature on the electrical resistance of carbon-filled liquid silicone rubber composites are studied. The relaxation process of resistance following loading can be described by an exponential function. The force dependence of the equilibrium resistance can be expressed by a second order polynomial, and such a relationship can be derived from the quantum mechanical tunneling conduction mechanism by assuming that the separation distance between carbon aggregates changes as a function of the tensile force with a form of Δw=kF2. Combining with the experimental data and typical values of theoretical parameters, the elastic modulus, the separation distance, and the proportional constant k can be obtained. Finally, the temperature dependence of resistance can be interpreted by the general form of R=R0 exp(const./T) with two different constants at different temperature ranges.

  8. Intraocular ciprofloxacin levels after oral administration in silicone oil-filled eyes.

    Science.gov (United States)

    Talwar, Dinesh; Kulkarni, Amol; Azad, RajVardhan; Gupta, Suresh K; Velpandian, T; Sharma, YogRaj; Rajpal; Biswas, Nihar R

    2003-02-01

    To evaluate penetration of oral ciprofloxacin in the retro-silicone oil space fluid (RSOF) in silicone oil (SO)-filled eyes. One dose of 750 mg ciprofloxacin was given to two groups of five patients with vitrectomized eyes with SO endotamponade, 4 hours (group I) and 8 hours (group II) before SO removal. In 10 vitrectomized eyes with SO endotamponade (group III) and another 10 patients scheduled for vitrectomy for the first time (group IV), two 750-mg doses every 12 hours, with the last dose 12 hours before surgery, were given. Blood samples were taken at the time of collection of RSOF samples in groups I, II, and III and of the vitreous in group IV. All samples were assayed for ciprofloxacin by high-performance liquid chromatography. The mean drug concentration in the RSOF was 0.34 +/- 0.09, 0.37 +/- 0.04, 0.84 +/- 0.29, and 0.44 +/- 0.11 micro g/mL in groups I, II, III, and IV respectively. The mean serum concentration was 1.29 +/- 0.63, 1.08 +/- 0.14, 1.93 +/- 0.84, and 1.34 +/- 0.55 micro g/mL in groups I, II, III, and IV respectively with no statistically significant difference between groups III and IV (P = 0.081). Antibiotic levels in the RSOF in SO-filled eyes after oral administration of ciprofloxacin in two 750-mg doses exceeded the minimal inhibitory concentration for 90% of isolates (MIC(90)) for most bacterial species and was higher than levels reached in the vitreous in nonvitrectomized eyes (P = 0.001).

  9. Cyclic volatile methylsiloxanes in human blood as markers for ruptured silicone gel-filled breast implants.

    Science.gov (United States)

    Rosendahl, Pia; Hippler, Joerg; Schmitz, Oliver J; Hoffmann, Oliver; Rusch, Peter

    2016-05-01

    The replacement of medical-grade silicone with industrial-grade silicone material in some silicone gel-filled breast implants (SBI) manufactured by Poly Implant Prothèse and Rofil Medical Nederland B.V., reported in 2010, which resulted in a higher rupture tendency of these SBI, demonstrates the need for non-invasive, sensitive monitoring and screening methods. Therefore a sensitive method based on large volume injection-gas chromatography coupled to mass spectrometry (LVI-GC/MS) was developed to determine octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclo-hexasiloxane (D6) in blood samples from women with intact (n = 13) and ruptured SBI (n = 11). With dichloromethane extraction, sample cooling during preparation, and analysis extraction efficiencies up to 100 % and limits of detection of 0.03-0.05 ng D4-D6/g blood were achieved. Blood samples from women with SBI were investigated. In contrast to women with intact SBI, in blood from women with ruptured SBI higher D4 and D6 concentrations up to 0.57 ng D4/g blood and 0.16 ng D6/g blood were detected. With concentrations above 0.18 D4 ng/blood and 0.10 ng D6/g blood as significant criteria for ruptured SBI, this developed analytical preoperative diagnostic method shows a significant increase of the recognition rate. Finally a higher precision (error rate 17%) than the commonly used clinical diagnostic method, mamma sonography (error rate 46%), was achieved.

  10. Enhancement of the blue photoluminescence intensity for the porous silicon with HfO2 filling into microcavities

    Science.gov (United States)

    Jiang, Ran; Du, Xianghao; Sun, Weideng; Han, Zuyin; Wu, Zhengran

    2015-10-01

    With HfO2 filled into the microcavities of the porous single-crystal silicon, the blue photoluminescence was greatly enhanced at room temperature. On one hand, HfO2 contributes to the light emission with the transitions of the defect levels for oxygen vacancy. On the other hand, the special filling-into-microcavities structure of HfO2 leads to the presence of ferroelectricity, which greatly enhances the blue emission from porous silicon. Since both HfO2 and Si are highly compatible with Si-based electronic industry, combined the low-cost and convenient process, the HfO2-filled porous Si shows a promising application prospect.

  11. Monitoring diver kinematics with dielectric elastomer sensors

    Science.gov (United States)

    Walker, Christopher R.; Anderson, Iain A.

    2017-04-01

    Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The

  12. Dynamic mechanical properties of a maxillofacial silicone elastomer incorporating a ZnO additive: the effect of artificial aging.

    Science.gov (United States)

    Mouzakis, Dionysios E; Papadopoulos, Triantafillos D; Polyzois, Gregory L; Griniari, Panagiota G

    2010-11-01

    The main objective of the current study was to investigate the dynamic mechanical properties of a room-temperature vulcanizing silicone incorporating different fractions of zinc oxide (ZnO) after indoor and outdoor photoaging. Forty-eight samples were produced by adding different amounts of ZnO into a commercial maxillofacial silicone (EPISIL-E). The samples were divided into 4 groups containing 0.0, 0.2, 0.5, and 1 wt% ZnO additive, respectively. Samples were exposed to sunlight (subgroup 2), ultraviolet (subgroup 3), and fluorescence (subgroup 4) aging, whereas nonaged samples comprised the control subgroup (subgroup 1). Dynamic mechanical analysis was used to determine the storage modulus (E'), loss modulus (E″), and damping capacity (tanδ). General linear statistic model was conducted to evaluate the effects of aging, testing frequency, and composition on the dynamic mechanical properties of the silicone with the ZnO additive. Post hoc analysis was performed using Tukey test. Statistical analysis revealed a significant impact of composition on tanδ (P < 0.05). Aging influenced E' and E″ (P < 0.01). The combination of aging and composition had a significant effect on all dynamic properties (P < 0.01).

  13. Conductive elastomers by a new latex process

    Science.gov (United States)

    Electrically conductive polymers such as polyaniline can be used to in production of light-emitting diodes, printed circuit board components, antistatic materials, etc. Highly filled elastomers, such as those filled with metallic powders, can also conduct electricity. However, limitations due to co...

  14. Polymer-dispersed liquid crystal elastomers

    Science.gov (United States)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  15. Synchronously Tailoring Strain Sensitivity and Electrical Stability of Silicone Elastomer Composites by the Synergistic Effect of a Dual Conductive Network

    Directory of Open Access Journals (Sweden)

    Nanying Ning

    2016-03-01

    Full Text Available The use of conductive polymer composites (CPCs as strain sensors has been widely investigated. A wide range of strain sensitivities and high repeatability are vital for different applications of CPCs. In this study, the relations of the conductive filler network and the strain-sensing behavior and electrical stability under fatigue cycles were studied systematically for the first time based on the conductive polymethylvinylsiloxane (PMVS composites filled with both carbon nanotubes arrays (CNTAs and carbon black (CB. It was proved that the composites could be fabricated with large strain-sensing capability and a wide range of strain sensitivities by controlling the volume ratio of CNTA/CB and their amounts. Additionally, the CNTA/CB/PMVS composite with 3 vol % content of fillers showed high sensitivity (GF is 10 at 60% strain, high repeatability (the relative standard deviation (RSD of the max R/R0 value is 3.58%, and electrical stability under fatigue cycles (value range of R/R0 is 1.62 to 1.82 at the same time due to the synergistic effects of the dual conductive network of CNTAs and CB. This could not be achieved by relying on a single CNTA or CB conductive network. This study may provide guidance for the preparation of high performance CPCs for applications in strain sensors.

  16. Location of a Dexamethasone Implant at the Macula after Intravitreal Injection in a Silicone Oil-Filled Eye

    Directory of Open Access Journals (Sweden)

    Cenap Mahmut Esenulku

    2016-01-01

    Full Text Available Here, we report a case with cystoid macular edema (CME due to central retinal vein occlusion (CRVO presented with a dexamethasone implant (Ozurdex trapped at the macula in her silicone oil- (SO- filled eye after injection. No additional complications such as intraocular pressure (IOP rise or retinal damage were observed. The CME was resolved during the follow-up period. At the last visit, 3 months following the injection, Ozurdex implant was found to be mostly dissolved without any additional ocular complications.

  17. Entirely soft dielectric elastomer robots

    Science.gov (United States)

    Henke, E.-F. Markus; Wilson, Katherine E.; Anderson, Iain A.

    2017-04-01

    Multifunctional Dielectric Elastomer (DE) devices are well established as actuators, sensors and energy har- vesters. Since the invention of the Dielectric Elastomer Switch (DES), a piezoresistive electrode that can directly switch charge on and off, it has become possible to expand the wide functionality of DE structures even more. We show the application of fully soft DE subcomponents in biomimetic robotic structures. It is now possible to couple arrays of actuator/switch units together so that they switch charge between them- selves on and off. One can then build DE devices that operate as self-controlled oscillators. With an oscillator one can produce a periodic signal that controls a soft DE robot - a DE device with its own DE nervous system. DESs were fabricated using a special electrode mixture, and imprinting technology at an exact pre-strain. We have demonstrated six orders of magnitude change in conductivity within the DES over 50% strain. The control signal can either be a mechanical deformation from another DE or an electrical input to a connected dielectric elastomer actuator (DEA). We have demonstrated a variety of fully soft multifunctional subcomponents that enable the design of autonomous soft robots without conventional electronics. The combination of digital logic structures for basic signal processing, data storage in dielectric elastomer flip-flops and digital and analogue clocks with adjustable frequencies, made of dielectric elastomer oscillators (DEOs), enables fully soft, self-controlled and electronics-free robotic structures. DE robotic structures to date include stiff frames to maintain necessary pre-strains enabling sufficient actuation of DEAs. Here we present a design and production technology for a first robotic structure consisting only of soft silicones and carbon black.

  18. Perfluroether triazine elastomers

    Science.gov (United States)

    Korus, R. A.

    1980-01-01

    In order to obtain high performance elastomers with the high thermal stability and chemical inertness of perfluoroalkylene triazine and a low glass transition temperature, perfluoroether triazine elastomers were synthesized. The procedure for elastomer synthesis is described as well as general experimental methods. Results are presented and discussed. The screening of catalysts for the dehydration of perfluoroether diamide is also considered.

  19. Inorganic particle analysis of dental impression elastomers

    OpenAIRE

    Carlo,Hugo Lemes; FONSECA, Rodrigo Borges; Soares, Carlos José; Correr,Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti,Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously de...

  20. Poly (ricinoleic acid) based novel thermosetting elastomer.

    Science.gov (United States)

    Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi

    2008-01-01

    A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%.

  1. Biotin-Streptavidin Binding Interactions of Dielectric Filled Silicon Bulk Acoustic Resonators for Smart Label-Free Biochemical Sensor Applications

    Directory of Open Access Journals (Sweden)

    Amir Heidari

    2014-03-01

    Full Text Available Sensor performance of a dielectric filled silicon bulk acoustic resonator type label-free biosensor is verified with biotin-streptavidin binding interactions as a model system. The mass sensor is a micromachined silicon square plate with a dielectric filled capacitive excitation mechanism. The resonance frequency of the biotin modified resonator decreased 315 ppm when exposed to streptavidin solution for 15 min with a concentration of 10−7 M, corresponding to an added mass of 3.43 ng on the resonator surface. An additional control is added by exposing a bovine serum albumin (BSA-covered device to streptavidin in the absence of the attached biotin. No resonance frequency shift was observed in the control experiment, which confirms the specificity of the detection. The sensor-to-sensor variability is also measured to be 4.3%. Consequently, the developed sensor can be used to observe in biotin-streptavidin interaction without the use of labelling or molecular tags. In addition, biosensor can be used in a variety of different immunoassay tests.

  2. The demonstration of nonlinear analytic model for the strain field induced by thermal copper filled TSVs (through silicon via

    Directory of Open Access Journals (Sweden)

    M. H. Liao

    2013-08-01

    Full Text Available The thermo-elastic strain is induced by through silicon vias (TSV due to the difference of thermal expansion coefficients between the copper (∼18 ppm/ °C and silicon (∼2.8 ppm/ °C when the structure is exposed to a thermal ramp budget in the three dimensional integrated circuit (3DIC process. These thermal expansion stresses are high enough to introduce the delamination on the interfaces between the copper, silicon, and isolated dielectric. A compact analytic model for the strain field induced by different layouts of thermal copper filled TSVs with the linear superposition principle is found to have large errors due to the strong stress interaction between TSVs. In this work, a nonlinear stress analytic model with different TSV layouts is demonstrated by the finite element method and the analysis of the Mohr's circle. The characteristics of stress are also measured by the atomic force microscope-raman technique with nanometer level space resolution. The change of the electron mobility with the consideration of this nonlinear stress model for the strong interactions between TSVs is ∼2–6% smaller in comparison with those from the consideration of the linear stress superposition principle only.

  3. Improved Thermal Property of a Multilayered Graphite Nanoplatelets Filled Silicone Resin Composite

    Science.gov (United States)

    Lin, Jin; Zhang, Haiyan; Tang, Muyao; Tu, Wenying; Zhang, Xiubin

    2015-02-01

    We produced graphite nanoplatelets (GNP)/silicone resin composites at various loadings. The utilized GNPs were characterized by two-dimensional structure with high aspect ratio (~1810), and the GNP with approximately 10-30 nm thickness and 10-50 µm in length evenly dispersed throughout the resin matrix, which enables that GNPs effectively act as thermally conductive medium, thus contributed considerably to the formation of an efficient three-dimensional network for heat flow. The thermal conductivities of 5, 10, 15, and 20 wt.% GNP composite were 0.35, 1.02, 1.32, and 2.01 W/(m K), and were ca. 0.9, 4.7, 6.3, and 10.2 times higher than that of silicone resin at room temperature, respectively. The thermal conductivity decreased with elevated temperature in 25-200 °C, which was reminiscent at higher loading. Differential scanning calorimeter analysis showed that GNP addition increased the curing temperature of silicone resin from 90 to 119 °C, probably by hindering the free movement (mobility) of the silicone chains. The result showed that the GNP not only reduced the CTE but also improved the thermal stability of composite simultaneously.

  4. The Quest for Rheological Similarity in Analogue Models: new Data on the Rheology of Highly Filled Silicon Polymers

    Science.gov (United States)

    Boutelier, D. A.; Schrank, C.; Cruden, A. R.

    2006-12-01

    The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. Hence, information on the rheology of materials and potential materials is essential to evaluate their suitability as rock analogues. Silicon polymers have long been used to model ductile rocks that deform by diffusion or dislocation creep. Temperature and compositional variations that control the effective viscosity and density of rocks in the crust and mantle are simulated in the laboratory by multiple layers of various silicon polymers mixed with granular fillers, plasticines or bouncing putties. Since dislocation creep is a power law, strain rate-softening flow mechanism, we have been investigating the rheology of highly filled silicon polymers as suitable new analogue materials with similar deformation behavior. The materials actually exhibit strain rate softening behavior but with increasing amounts of filler the mixtures also become non-linear. We report the rheological properties of the analogue materials as functions of the filler content. For the linear viscous materials the flow laws are presented (viscosity coefficient and power law exponent). For non-linear materials the relative importance of strain and strain-rate softening/hardening has been investigated doing multiple creep tests that allow mapping of the effective viscosity in the stress-strain space. Our study reveals that most of the currently used silicon-based analogue materials have a linear or quasi-linear rheology but are also Newtonian or nearly-Newtonian viscous fluid, which makes them more appropriate for simulating natural rocks deforming by diffusion creep.

  5. Magnetostriction of engineered magnetorheological elastomers

    Science.gov (United States)

    Rieger, William; Kassner, Chris; von Lockette, Paris; Lofland, Samuel

    2012-02-01

    We have completed a study of the magnetostriction and poison ratio of several types of magnetorheological elastomers (MREs), including both hard and soft magnetic materials in silicone rubber matrices. While both random and aligned soft magnetic particles gave large (˜1%) magnetostriction, hard magnetic powders provided minimal actuation, regardless of whether they were aligned or not. In addition, we have created engineered lattices of magnetic wires and find the actuation highly dependent on the sample shape, and the angle of the magnetic field with respect to the alginment axis. We also propose some new structures based on hard magnetic wires which should provide piezomagnetic response.

  6. Mechanical characterization of seismic base isolation elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.; Hughes, T.H.

    1991-01-01

    From the various devices proposed for seismic isolators, the laminated elastomer bearing is emerging as the preferred device for large buildings/structures, such as nuclear reactor plants. The laminated bearing is constructed from alternating thin layers of elastomer and metallic plates (shims). The elastomer is usually a carbon filled natural rubber that exhibits damping when subjected to shear. Recently, some blends of natural and synthetic rubbers have appeared. Before candidate elastomers can be used in seismic isolation bearings, their response to design-basis loads and beyond- design-basis loads must be determined. This entails the development of constitutive models and and then the determination of associated material parameters through specimen testing. This paper describes the methods used to obtain data for characterizing the mechanical response of elastomers used for seismic isolation. The data provides a data base for use in determining material parameters associated with nonlinear constitutive models. In addition, the paper presents a definition for a damping ratio that does not exhibit the usual reduction at higher strain cycles. 2 refs., 6 figs., 1 tab.

  7. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Mazurek, Piotr Stanislaw;

    2016-01-01

    Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young's modulus or increasing the dielectric permittivity of silicone elastomers, or a combinatio...... also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses....

  8. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  9. Elastomers with Reversible Nanoporosity

    DEFF Research Database (Denmark)

    Szewczykowski, Piotr Przemyslaw; Andersen, K.; Schulte, Lars;

    2009-01-01

    An elastomer was created via cross-linking a diene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) block copolymer in the ordered state of hexagonal morphology, followed by the quantitative removal of the PDMS component. The elastomer material collapsed following etching of the PDMS...

  10. Mechanical Design Handbook for Elastomers

    Science.gov (United States)

    Darlow, M.; Zorzi, E.

    1986-01-01

    Mechanical Design Handbook for Elastomers reviews state of art in elastomer-damper technology with particular emphasis on applications of highspeed rotor dampers. Self-contained reference but includes some theoretical discussion to help reader understand how and why dampers used for rotating machines. Handbook presents step-by-step procedure for design of elastomer dampers and detailed examples of actual elastomer damper applications.

  11. Experimental and theoretical analyses of the age-dependent large-strain behavior of Sylgard 184 (10:1) silicone elastomer.

    Science.gov (United States)

    Hopf, R; Bernardi, L; Menze, J; Zündel, M; Mazza, E; Ehret, A E

    2016-07-01

    The commercial polydimethysiloxane elastomer Sylgard(®) 184 with mixing ratio 10:1 is in wide use for biomedical research or fundamental studies of mechanobiology. In this paper, a comprehensive study of the large strain mechanical behavior of this material under multiaxial monotonic and cyclic loads, and its change during the first 26 days after preparation is reported. The equibiaxial stress response studied in inflation experiments reveals a much stiffer and more nonlinear response compared to the uniaxial and pure shear characteristics. The polymer revealed remarkably elastic behavior, in particular, very little dependence on strain rates between 0.3%/s and 11%/s, and on the strain history in cyclic experiments. On the other hand, both the small-strain and large strain nonlinear mechanical characteristics of the elastomer are changing with sample age and the results suggest that this process has not ceased after 26 days. A recent re-interpretation of the well-known Ogden model for incompressible rubber-like materials was applied to rationalize the results and accurate agreement was obtained with the experimental data over all testing configurations and testing times. The change of a single parameter in this model is shown to govern the evolution of the nonlinear material characteristics with sample age, attributed to a continuation of the cross-linking process. Based on a kinetic relation to account for this process over time, the model provided successful predictions of the material behavior even after more than one year.

  12. Soft tissue expansion before vertical ridge augmentation: Inflatable silicone balloons or self-filling osmotic tissue expanders?

    Directory of Open Access Journals (Sweden)

    Prasad Vijayrao Dhadse

    2014-01-01

    Full Text Available Recent advances in periodontal plastic surgical procedures allow the clinician to reconstruct deficient alveolar ridges in more predictable ways than previously possible. Placement of implant/s in resorbed ridges poses numerous challenges to the clinician for successful esthetic and functional rehabilitation. The reconstruction frequently utilizes one or combination of periodontal plastic surgical procedures in conjunction with autogenous bone grafting, allogenic bone block grafting, ridge split techniques, distraction osteogenesis, or guided bone regeneration (GBR for most predictable outcomes. Current surgical modalities used in reconstruction of alveolar ridge (horizontal and/or vertical component often involve the need of flap transfer. Moreover, there is compromise in tissue integrity and color match owing to different surgical site and the tissue utilized is insufficient in quantity leading to post surgical graft exposition and/or loss of grafted bone. Soft tissue expansion (STE by implantation of inflatable silicone balloon or self filling osmotic tissue expanders before reconstructive surgery can overcome these disadvantages and certainly holds a promise for effective method for generation of soft tissue thereby achieving predictable augmentation of deficient alveolar ridges for the implant success. This article focuses and compares these distinct tissue expanders for their clinical efficacy of achieving excess tissue that predominantly seems to be prerequisite for ridge augmentation which can be reasonably followed by successful placement of endosseous fixtures.

  13. Ion implanted dielectric elastomer circuits

    Science.gov (United States)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  14. Electrodeposition of Gold to Conformally Fill High Aspect Ratio Nanometric Silicon Grating Trenches: A Comparison of Pulsed and Direct Current Protocols

    OpenAIRE

    Znati, Sami A.; Chedid, Nicholas; Miao, Houxun; Chen,Lei; Bennett, Eric E.; Wen, Han

    2015-01-01

    Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of x-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplatin...

  15. Design of a polymer-filled silicon nitride strip/slot asymmetric hybrid waveguide for realizing both flat dispersion and athermal operation.

    Science.gov (United States)

    Bian, Dandan; Chen, Shaowu; Lei, Xun; Qin, Guanshi; Chen, Zhanguo

    2016-06-20

    An asymmetric strip/slot hybrid silicon nitride waveguide is designed to simultaneously realize athermal operation and flat dispersion. The slot filling and upper cladding materials are negative thermal-optical coefficient (TOC), low refractive index polyurethane acrylate, while the left and right cladding layers are positive TOC, high refractive index silicon nitride. With suitable waveguide parameter selection, an optimum strip/slot hybrid silicon nitride waveguide exhibits an effective TOC of 1.263×10-7/K at 1550 nm, flattened dispersion in the wavelength range from 1200 to 1800 nm with the maximum dispersion of 30.51 ps/(nm·km), and a minimum of 10.89 ps/(nm·km). The proposed hybrid waveguide has great potential in building up broadband athermal microresonator optical frequency combs.

  16. 硅胶假体充填颞部的体会%Experience in silicone implants filled with temporal portion

    Institute of Scientific and Technical Information of China (English)

    杨进

    2015-01-01

    Objective To investigate the clinical application of silicone implants filled with temporal portion. Method First design fill-ing range,namely the expansion of the filler 0. 3 cm draw a line outside;prosthetic repair,so the length and width,thickness in place,the edges tapered to match the organization docile,smooth and clean appearance,no foreign body sensation;In close temporal depression,a-long sideburns hairline 1. 0 cm,along the hairline as to 1. 0 ~ 1. 5 cm incision,direct line separating the skin,or for superficial temporal fascia deep surface separation,blunt sharp combine to blunt the main separation;to handle top smoothing prosthesis,or by expanding cavi-ties,or straight needle and thread prosthesis implantation cavity so that the prosthesis smoothing,re - wound single suture;surgery plus pressure bandage at least 48 hours,taking antibiotics three days,three to four weeks stitches. Results A healing incisions,no case of in-fection. Follow - up of 3 months to 2 years,the appearance were significantly improved,the surface contour soft plump,reduce wrinkles, and look younger,higher surgeon satisfaction. 8 cases of the surgeon because after 2 weeks to a month varying degrees of local sense of pain,surgical removal of the prosthesis. Conclusion The surgery used to fill silicone prosthesis surgery,treatment of temporal depression is an easy to accept for the United States,and the safe,economical and effective surgical method.%目的:探讨硅胶假体充填颞部的临床应用效果。方法:首先设计充填范围,即在填充物画线外扩大0.3 cm;假体修整,做到长宽、厚度到位,边缘渐薄,使其与组织帖服,外观平滑整洁,而无异物感;以靠近颞部凹陷处,沿着鬓角发际内1.0 cm,顺发纹作以1.0~1.5cm 手术切口,直接行皮下分离,或作颞浅筋膜深面分离,钝锐结合以钝为主进行分离;以刀柄顶端摊平假体,或通过扩大腔隙,或用直针掛线法将假体置入

  17. Physical properties of maxillofacial elastomers under conditions of accelerated aging.

    Science.gov (United States)

    Yu, R; Koran, A; Craig, R G

    1980-06-01

    The stability of the physical properties of various commercially available maxillofacial prosthetic materials was evaluated with the use of an accelerated aging chamber. The tensile strength, maximum percent elongation, shear strength, tear energy, and Shore A hardness were determined before and after accelerated aging. Results indicate that silicone 44210, a RTV rubber, is a promising elastomer for maxillofacial application.

  18. Bonding Elastomers To Metal Substrates

    Science.gov (United States)

    Dickerson, George E.; Kelley, Henry L.

    1990-01-01

    Improved, economical method for bonding elastomers to metals prevents failures caused by debonding. In new technique, vulcanization and curing occur simultaneously in specially designed mold that acts as form for desired shape of elastomer and as container that positions and supports metal parts. Increases interface adhesion between metal, adhesive, and elastomer.

  19. Doping porous silicon with erbium: pores filling as a method to limit the Er-clustering effects and increasing its light emission

    KAUST Repository

    Mula, Guido

    2017-07-14

    Er clustering plays a major role in hindering sufficient optical gain in Er-doped Si materials. For porous Si, the long-standing failure to govern the clustering has been attributed to insufficient knowledge of the several, concomitant and complex processes occurring during the electrochemical Er-doping. We propose here an alternative road to solve the issue: instead of looking for an equilibrium between Er content and light emission using 1-2% Er, we propose to significantly increase the electrochemical doping level to reach the filling the porous silicon pores with luminescent Er-rich material. To better understand the intricate and superposing phenomena of this process, we exploit an original approach based on needle electron tomography, EXAFS and photoluminescence. Needle electron tomography surprisingly shows a heterogeneous distribution of Er content in the silicon thin pores that until now couldn\\'t be revealed by the sole use of scanning electron microscopy compositional mapping. Besides, while showing that pore filling leads to enhanced photoluminescence emission, we demonstrate that the latter is originated from both erbium oxide and silicate. These results give a much deeper understanding of the photoluminescence origin down to nanoscale and could lead to novel approaches focused on noteworthy enhancement of Er-related photoluminescence in porous silicon.

  20. Dielectric elastomer memory

    Science.gov (United States)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  1. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    other smaller particulate debris into the system. After a channel blockage was confirmed, three actuation attempts successfully cleared the blockage. Further tests indicated that the device were biocompatible with HeLa cells at 3 kV. To our knowledge this is the first pairing of dielectric elastomers with microfluidics in a non-electroosmotic context. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices. Dielectric elastomers can also be adapted to manipulate fluidic systems on a larger scale. The second part of the dissertation research reports a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ~3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ~0 kPa is reached at 2.4 kV. The device is reliable for at least 2,000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control. The final part of the dissertation presents a novel dielectric elastomer band with

  2. Instantaneous room temperature bonding of a wide range of non-silicon substrates with poly(dimethylsiloxane) (PDMS) elastomer mediated by a mercaptosilane.

    Science.gov (United States)

    Wu, Wenming; Wu, Jing; Kim, Jae-Heon; Lee, Nae Yoon

    2015-07-07

    This paper introduces an instantaneous and robust strategy for bonding a variety of non-silicon substrates such as thermoplastics, metals, an alloy, and ceramics to poly(dimethylsiloxane) (PDMS) irreversibly, mediated by one-step chemical modification using a mercaptosilane at room temperature followed by corona treatment to realize heterogeneous assembly also at room temperature. The mercapto functional group is one of the strongest nucleophiles, and it can instantaneously react with electrophiles of substrates, resulting in an alkoxysilane-terminated substrate at room temperature. In this way, prior oxidation of the substrate is dispensed with, and the alkoxysilane-terminated substrate can be readily oxidized and irreversibly bonded with oxidized PDMS at room temperature. A commercially available Tesla coil was used for surface oxidation, replacing a bulky and expensive plasma generator. Surface characterization was conducted by water contact angle measurement and X-ray photoelectron spectroscopy (XPS) analysis. A total of fifteen non-silicon substrates including polycarbonate (PC), two types of poly(vinylchloride) (PVC), poly(methylmethacrylate) (PMMA), polystyrene (PS), polyimide (PI), two types of poly(ethylene terephthalate) (PET), polypropylene (PP), iron (Fe), aluminum (Al), copper (Cu), brass, alumina (Al2O3), and zirconia (ZrO2) were bonded successfully with PDMS using this method, and the bond strengths of PDMS-PMMA, PDMS-PC, PDMS-PVC, PDMS-PET, PDMS-Al, and PDMS-Cu assemblies were measured to be approximately 335.9, 511.4, 467.3, 476.4, 282.2, and 236.7 kPa, respectively. The overall processes including surface modification followed by surface oxidation using corona treatment for bonding were realized within 12 to 17 min for most of the substrates tested except for ceramics which required 1 h for the bonding. In addition, large area (10 × 10 cm(2)) bonding was also successfully realized, ensuring the high reliability and stability of the introduced

  3. Breast Implants: Saline vs. Silicone

    Science.gov (United States)

    ... differ in material and consistency, however. Saline breast implants Saline implants are filled with sterile salt water. ... of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with silicone gel — ...

  4. Correlation between fill factors of amorphous silicon solar cells, and their i layer densities of states as determined by DLTS

    Energy Technology Data Exchange (ETDEWEB)

    Kalina, J.; Schade, H.; Delahoy, A.E. (Chronar Corporation, Princeton, NJ (USA))

    1989-10-15

    Deep-level transient spectroscopy (DLTS), based on short-circuit current transients after repetitive excitation by light, was performed on a-Si:H p-i-n solar cells over the temperature range 900-350 K. The fill factors of these same cells were measured at room temperature (at a light intensity of 0.01 sun to minimize series resistance effects) to obtain a measure of i layer quality. Dangling bond concentrations, N{sub s}, deduced from the DLTS spectra, and changes in N{sub s} caused by light soaking, agree with values commonly reported in the literature. The collection length/i layer thickness ratios deduced from the measured fill factors are found to be inversely related to N{sub s}. However, fill factor is not uniquely determined by N{sub s}-field distortion in the i layer must be taken into account. (orig.).

  5. Single-particle mechanism of magnetostriction in magnetoactive elastomers.

    Science.gov (United States)

    Kalita, Viktor M; Snarskii, Andrei A; Zorinets, Denis; Shamonin, Mikhail

    2016-06-01

    Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated. The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than the shear modulus µ of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead to effects of magnetodeformation and may increase the elastic moduli of these composite materials.

  6. Single-particle mechanism of magnetostriction in magnetoactive elastomers

    Science.gov (United States)

    Kalita, Viktor M.; Snarskii, Andrei A.; Zorinets, Denis; Shamonin, Mikhail

    2016-06-01

    Magnetoactive elastomers (MAEs) are composite materials comprised of micrometer-sized ferromagnetic particles in a nonmagnetic elastomer matrix. A single-particle mechanism of magnetostriction in MAEs, assuming the rotation of a soft magnetic, mechanically rigid particle with uniaxial magnetic anisotropy in magnetic fields is identified and considered theoretically within the framework of an alternative model. In this mechanism, the total magnetic anisotropy energy of the filling particles in the matrix is the sum over single particles. Matrix displacements in the vicinity of the particle and the resulting direction of the magnetization vector are calculated. The effect of matrix deformation is pronounced well if the magnetic anisotropy coefficient K is much larger than the shear modulus µ of the elastic matrix. The feasibility of the proposed magnetostriction mechanism in soft magnetoactive elastomers and gels is elucidated. The magnetic-field-induced internal stresses in the matrix lead to effects of magnetodeformation and may increase the elastic moduli of these composite materials.

  7. Elastomer and resin replicas for sem observation of metallic materials

    OpenAIRE

    Palin-Luc, Thierry; Sellier, E.; D?Errico, F.; Vanhaeren, M.

    2002-01-01

    International audience; The replica technique is often used to study damage evolution at the surface of specimens or industrial components and understand the physicial phenomena responsible for fatigue crack initiation before failure. Replicas are usually made from acetate cellulose film. This paper presents an alternative technique generally used by archaeologists to study lithic use-wear and bone modification. A mold is made from a dental elastomer (silicon based impression material) and a ...

  8. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  9. Sustainable Elastomers from Renewable Biomass.

    Science.gov (United States)

    Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing

    2017-07-18

    Sustainable elastomers have undergone explosive growth in recent years, partly due to the resurgence of biobased materials prepared from renewable natural resources. However, mounting challenges still prevail: How can the chemical compositions and macromolecular architectures of sustainable polymers be controlled and broadened? How can their processability and recyclability be enabled? How can they compete with petroleum-based counterparts in both cost and performance? Molecular-biomass-derived polymers, such as polymyrcene, polymenthide, and poly(ε-decalactone), have been employed for constructing thermoplastic elastomers (TPEs). Plant oils are widely used for fabricating thermoset elastomers. We use abundant biomass, such as plant oils, cellulose, rosin acids, and lignin, to develop elastomers covering a wide range of structure-property relationships in the hope of delivering better performance. In this Account, recent progress in preparing monomers and TPEs from biomass is first reviewed. ABA triblock copolymer TPEs were obtained with a soft middle block containing a soybean-oil-based monomer and hard outer blocks containing styrene. In addition, a combination of biobased monomers from rosin acids and soybean oil was formulated to prepare triblock copolymer TPEs. Together with the above-mentioned approaches based on block copolymers, multigraft copolymers with a soft backbone and rigid side chains are recognized as the first-generation and second-generation TPEs, respectively. It has been recently demonstrated that multigraft copolymers with a rigid backbone and elastic side chains can also be used as a novel architecture of TPEs. Natural polymers, such as cellulose and lignin, are utilized as a stiff, macromolecular backbone. Cellulose/lignin graft copolymers with side chains containing a copolymer of methyl methacrylate and butyl acrylate exhibited excellent elastic properties. Cellulose graft copolymers with biomass-derived polymers as side chains were

  10. Hugoniot-based equations of state for two filled EPDM rubbers

    Science.gov (United States)

    Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.

    2014-05-01

    Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.

  11. Dynamic damping property of magnetorheological elastomer

    Institute of Scientific and Technical Information of China (English)

    李剑锋; 龚兴龙

    2008-01-01

    Magnetorheological elastomer(MRE) is a new kind of smart materials,its dynamic mechanic performances can be controlled by an applied magnetic field.MRE is usually used as a stiffness-changeable spring in the semi-active vibration absorber.In order to get perfect vibration control effect,low dynamic damping of MRE is need.But the dynamic damping of MRE was not studied deeply in the past.The dynamic damping of MRE was studied and analyzed.The influences of different test conditions including test strain amplitude,test frequency and test magnetic field were deeply studied.MRE sample and pure silicone rubber sample were prepared and tested under different conditions.The test results show that the main source of dynamic damping is the friction between iron particles and rubber matrix.And the friction is mainly influenced by the strain amplitude and test magnetic field.

  12. QENS investigation of filled rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Triolo, A.; Lechner, R.E.; Desmedt, A.; Pieper, J. [CNR - Istituto per i Processi Chimico-Fisici, sez. Messina, Via La Farina 237, 98123 Messina (Italy); Lo Celso, F.; Triolo, R. [Dip. Chimica Fisica, V. le delle Scienze, Parco d' Orleans, Padiglione 17, Universita di Palermo, 90128 Palermo (Italy); Negroni, F. [Pirelli Pneumatici S.p.A, V. le Sarca 222, 20126 Milano (Italy); Arrighi, V.; Qian, H. [Chemistry School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom); Frick, B. [Institut Laue-Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9 (France)

    2002-07-01

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface. (orig.)

  13. QENS investigation of filled rubbers

    CERN Document Server

    Triolo, A; Desmedt, A; Pieper, J K; Lo Celso, F; Triolo, R; Negroni, F; Arrighi, V; Qian, H; Frick, B

    2002-01-01

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface. (orig.)

  14. QENS investigation of filled rubbers

    Science.gov (United States)

    Triolo, A.; Lo Celso, F.; Negroni, F.; Arrighi, V.; Qian, H.; Lechner, R. E.; Desmedt, A.; Pieper, J.; Frick, B.; Triolo, R.

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface.

  15. Self-healing elastomer system

    Science.gov (United States)

    Keller, Michael W. (Inventor); Sottos, Nancy R. (Inventor); White, Scott R. (Inventor)

    2009-01-01

    A composite material includes an elastomer matrix, a set of first capsules containing a polymerizer, and a set of second capsules containing a corresponding activator for the polymerizer. The polymerizer may be a polymerizer for an elastomer. The composite material may be prepared by combining a first set of capsules containing a polymerizer, a second set of capsules containing a corresponding activator for the polymerizer, and a matrix precursor, and then solidifying the matrix precursor to form an elastomeric matrix.

  16. 二元混杂粒径氮化硅填充硅橡胶的性能%Properties of Silicone Rubber Filled with Silicone Nitride Particles with Binary Particle Size Distribution

    Institute of Scientific and Technical Information of China (English)

    周文英; 左晶

    2011-01-01

    Two kinds of hybrid silicone nitride (Si3N4) particles with binary particle size distribution, i.e.,(15μm+ 0.6μm), (3μm + 0.6μm), were used to reinforce silicone rubber at the 65% total fillers content. The properties of filled silicone rubber were investigated as a function of relative content of the 0.6μm small particles (Ws). The results indicate that thermal conductivity and tensile strength reach the maximum values at Ws being 20%, 25% for the ( 15μm + 0.6μm) reinforced system, and 40 %, 15 % for the (3μm + 0.6μm) reinforced system,respectively; dielectric constants reduce to the lowest values at the Ws of 20% and 30 %, respectively, and coefficient of thermal expansion reduces with increasing the Ws for the two systems. Furthermore, the Si3N4 particle size has the effect on the properties of silicone rubber.%在质量分数65%总氮化硅用量下,分别选取0.6 μm、3.0 μm、15 μm三种粒径氮化硅粒子,按照15 μm/0.6 μm=25、3.0 μm/0.6 μm=5两种组合所得混杂粒子来填充硅橡胶,研究两体系中的小粒子相对含量(Ws)变化对硅橡胶性能的影响.结果表明,硅橡胶热导率分别在Ws为20%及40%处达到最大值,拉伸强度分别在Ws为25%及15%处达到最大值,介电常数约在Ws为20%及30%处下降至最低值,热膨胀系数均随小粒子用量增加而下降.此外,氮化硅粒子大小对硅橡胶上述性能有一定影响.

  17. Mechanical design handbook for elastomers. [the design of elastomer dampers for application in rotating machinery

    Science.gov (United States)

    Darlow, M.; Zorzi, E.

    1981-01-01

    A comprehensive guide for the design of elastomer dampers for application in rotating machinery is presented. Theoretical discussions, a step by step procedure for the design of elastomer dampers, and detailed examples of actual elastomer damper applications are included. Dynamic and general physical properties of elastomers are discussed along with measurement techniques.

  18. Filling Modification of Pyridyl-functionalized Polystyrene/polybutadiene/polystyrene Elastomer with Lignin%木质素对苯乙烯/丁二烯/苯乙烯/乙烯基吡啶嵌段聚合物的填充改性

    Institute of Scientific and Technical Information of China (English)

    宁志强; 曹龙海; 孔宪志

    2014-01-01

    玉米秸秆酶解木质素为原料,通过溶液浇铸的方法制备了不同含量木质素填充的吡啶基官能化苯乙烯/丁二烯/苯乙烯嵌段共聚物( SBS)膜材料,借助力学性能测试以及TG、SEM等分析手段,研究了木质素的含量对吡啶基官能化SBS( SBSVP)性能的影响。拉伸试验结果表明,SBSVP中加入适量的木质素可以提高弹性体的力学性能,在木质素质量分数6%时,SBSVP的拉伸强度可达12.6 MPa,断裂伸长率可达840%,比未填充SBSVP拉伸强度和断裂伸长率分别增加32.63%和3.83%;SEM分析表明,木质素与SBSVP的相容性较好,二者不存在明显的界面;TG分析表明,木质素填充SBSVP后,在受热降解前期失重大于纯的SBSVP,但中后期其最大分解速率低于纯的SBSVP,相应的最大分解速率温度高于纯的SBSVP,且最终材料的质量保留率高于未填充的SBSVP,表现出热稳定性的提高。%The pyridyl-functionalized polystyrene/polybutadiene/polystyrene ( SBS ) membrane materials filled with various contents of lignin were prepared through solution casting. The effects of lignin contents on the performances of pynidyl-functionalized SBS ( SBSVP) were studied by mechanical property testing and analysis of thermogravimetry analysis ( TGA) and scanning electron microscopy ( SEM) . The tensile test results showed that the mechanical properties of SBSVP elastomer could be improved by the filling of lignin. The tensile strength and elongation for the SBSVP with 6% lignin were 12. 6MPa and 840%. Compared with the unfilled SBSVP, the tensile strength and elongation at break of modified SBSVP increased for 32. 63% and 3. 83% respectively. The SEM analysis indicated that there was no remarkable interface between lignin and SBSVP, which showed an excellent interface compatibility. The TG analysis indicated that the SBSVP filled with lignin showed a higher weight loss than the pure SBSVP in the preliminary thermal degradation. In the middle and

  19. Artificial muscle using nonlinear elastomers

    Science.gov (United States)

    Ratna, Banahalli

    2002-03-01

    Anisotropic freestanding films or fibers of nematic elastomers from laterally attached side-chain polymers show muscle-like mechanical properties. The orientational order of the liquid crystal side groups imposes a conformational anisotropy in the polymer backbone. When a large change in the order parameter occurs, as at the nematic-isotropic phase transition, there is a concomitant loss of order in the backbone which results in a contraction of the film in the direction of the director orientation. The crosslinked network imposes a symmetry-breaking field on the nematic and drives the nematic-isotropic transition towards a critical point with the application of external stress. Isostrain studies on these nonlinear elastomers, show that there are large deviations from ideal classical rubber elasticity and the contributions from total internal energy to the elastic restoring force cannot be ignored. The liquid crystal elastomers exhibiting anisoptopic contraction/extension coupled with a graded strain response to an applied external stimulus provide an excellent framework for mimicking muscular action. Liquid crystal elastomers by their very chemical nature have a number of ‘handles’ such as the liquid crystalline phase range, density of crosslinking, flexibility of the backbone, coupling between the backbone and the mesogen and the coupling between the mesogen and the external stimulus, that can be tuned to optimize the mechanical properties. We have demonstrated actuation in nematic elastomers under thermal and optical stimuli. We have been able to dope the elastomers with dyes to make them optically active. We have also doped them with carbon nanotubes in order to increase the thermal and electrical conductivity of the elastomer.

  20. Fabrication and characterization of thermoplastic elastomer dry adhesives with high strength and low contamination.

    Science.gov (United States)

    Bin Khaled, Walid; Sameoto, Dan

    2014-05-14

    Polydimethylsiloxane (PDMS) and polyurethane elastomers have commonly been used to manufacture mushroom shaped gecko-inspired dry adhesives with high normal adhesion strength. However, the thermosetting nature of these two materials severely limits the commercial viability of their manufacturing due to long curing times and high material costs. In this work, we introduce poly(styrene-ethylene/butylene-styrene) (SEBS) thermoplastic elastomers as an alternative for the manufacture of mushroom shaped dry adhesives with both directional and nondirectional performance. These materials are attractive for their potential to be less contaminating via oligomer transfer than thermoset elastomers, as well as being more suited to mass manufacturing. Low material transfer properties are attractive for adhesives that could potentially be used in cleanroom environments for microscale assembly and handling in which device contamination is a serious concern. We characterized a thermoplastic elastomer in terms of oligomer transfer using X-ray photoelectron spectroscopy and found that the SEBS transfers negligible amounts of its own oligomers, during contact with a gold-coated silicon surface, which may be representative of the metallic bond pads found in micro-electro-mechanical systems devices. We also demonstrate the fabrication of mushroom shaped isotropic and anisotropic adhesive fibers with two different SEBS elastomer grades using thermocompression molding and characterize the adhesives in terms of their shear-enhanced normal adhesion strength. The overall adhesion of one of the thermoplastic elastomer adhesives was found to be stronger or comparable to their polyurethane counterparts with identical dimensions.

  1. 21 CFR 177.1590 - Polyester elastomers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester...

  2. Bottlebrush elastomers: a promising molecular engineering route to tunable, prestrain-free dielectric elastomers (Conference Presentation)

    Science.gov (United States)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Zhushma, Alexandr P.; Li, Qiaoxi; Morgan, Benjamin J.; Matyjaszewski, Krzysztof; Armstrong, Daniel P.; Dobrynin, Andrey V.; Sheyko, Sergei S.; Spontak, Richard J.

    2017-04-01

    Electroactive polymers (EAPs) refer to a broad range of relatively soft materials that change size and/or shape upon application of an electrical stimulus. Of these, dielectric elastomers (DEs) generated from either chemically- or physically-crosslinked polymer networks afford the highest levels of electroactuation strain, thereby making this class of EAPs the leading technology for artificial-muscle applications. While mechanically prestraining elastic networks remarkably enhances DEs electroactuation, external prestrain protocols severely limit both actuator performance and device implementation due to gradual DE stress relaxation and the presence of a cumbersome load frame. These drawbacks have persisted with surprisingly minimal advances in the actuation of single-component elastomers since the dawn of the "pre-strain era" introduced by Pelrine et al. (Science, 2000). In this work, we present a bottom-up, molecular-based strategy for the design of prestrain-free (freestanding) DEs derived from covalently-crosslinked bottlebrush polymers. This architecture, wherein design factors such as crosslink density, graft density and graft length can all be independently controlled, yields inherently strained polymer networks that can be readily adapted to a variety of chemistries. To validate the use of these molecularly-tunable materials as DEs, we have synthesized a series of bottlebrush silicone elastomers in as-cast shapes. Examination of these materials reveals that they undergo giant electroactuation strains (>300%) at relatively low fields (design approach to controlling (electro)mechanical developed here is independent of chemistry and permits access to an unprecedented range of actuation properties from elastomeric materials with traditionally modest electroactuation performance (e.g., polydimethylsiloxane, PDMS). Experimental results obtained here compare favorably with theoretical predictions and demonstrate that the unique behavior of these materials is a

  3. Inorganic particle analysis of dental impression elastomers.

    Science.gov (United States)

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  4. Role of uncrosslinked chains in the sliding dynamics of droplets on elastomers

    CERN Document Server

    Hourlier-Fargette, Aurélie; Neukirch, Sébastien

    2016-01-01

    We observe and investigate an unexpected behavior in the dynamics of aqueous droplets sliding down on vertical plates of soft silicone elastomers, where two successive velocity regimes are present. This macroscopic observation is found to be closely related to microscopic phenomena at the scale of the polymer network: we demonstrate that uncrosslinked chains found in most widely used commercial elastomers are responsible for this surprising sliding behavior, and a direct visualization of these uncrosslinked oligomers is performed. The speed change is shown to be correlated to a sudden change of surface tension of the droplets.

  5. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...... mode. One way to increase the energy density is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the development of interpenetrating networks from ionically assembled silicone polymers and covalently...

  6. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    Science.gov (United States)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  7. Elastomer Reinforced with Carbon Nanotubes

    Science.gov (United States)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  8. Polyurethane elastomers in armour applications

    NARCIS (Netherlands)

    Carton, E.P.; Broos, J.P.F.

    2012-01-01

    The use of elastomers in ballistic protection products (armour) is limited to low threat levels and transparent armour solution components. Often armor is considered a parasitic mass that increases with increasing threat levels. Therefore, low weight solutions are welcomed and bulk polymers,

  9. Anomalous Dielectric Properties of Carbon-Black Filled Elastomers

    Science.gov (United States)

    1993-07-15

    Volkenstein [3). More recent survey. are by Hedvig (4) and Perepechko [5]. The most modern ideas on dielectric aspects of elastomeric polymers have been...Ptitsyn, Cotozrmations of Marowolecules (Wiley Interscience, New York, 1966). 3. M.V. Volkenstein , Configurationa Statistcs of Polymeric Chains (Wiley

  10. Developing the Manufacturing Process for VCE: Binder for Filled Elastomers

    Energy Technology Data Exchange (ETDEWEB)

    E.A. Eastwood

    2009-11-01

    This topical report presents work completed to re-establish the manufacturing process for poly(ethylene-co-vinyl acetate-co-vinyl alcohol) terpolymer called VCE. The new VCE formulations meet the material requirements and have lower melt viscosity, which results in improved production for the next assembly. In addition, the reaction conditions were optimized in order to achieve a satisfactory conversion rate to enable production in a single work shift. Several equipment and process changes were made to yield a manufacturing process with improved product quality, yield, efficiency, and worker safety.

  11. Role of catalysis in sustainable production of synthetic elastomers

    Indian Academy of Sciences (India)

    Vivek K Srivastava; Madhuchhanda Maiti; Ganesh C Basak; Raksh V Jasra

    2014-03-01

    Elastomer business plays a significant role in the transportation industry. In fact, elastomers make the world move. Due to limited availability of natural rubber, synthetic elastomers bridge the gap between demand and supply in today’s growing tyre and automobile industry.With more than ∼10000 KTA total world productions, the impact of synthetic elastomer business cannot be overlooked. The need of synthetic elastomers for tyre and automobile industries is stringently specific. Catalysis plays an inevitable role in achieving the growing demand of specific synthetic elastomers. The present study will describe how catalysis plays a significant role in the sustainable development of elastomers with special reference to polybutadiene rubber.

  12. Vertically aligned nanowires on flexible silicone using a supported alumina template prepared by pulsed anodization

    DEFF Research Database (Denmark)

    Mátéfi-Tempfli, Stefan; Mátéfi-Tempfli, M.

    2009-01-01

    Carpets of vertically aligned nanowires on flexible substrates are successfully realized by a template method. Applying special pulsed anodization conditions, defect-free nanoporous alumina structures supported on polydimethylsiloxane (PDMS), a flexible silicone elastomer, are created. By using...

  13. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-08-18

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.

  14. Silicone-modified graphene oxide fillers via the Piers-Rubinsztajn reaction

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Liang, Shuai; Yu, Liyun

    2016-01-01

    While graphene or graphene oxide can make significantimprovements in the properties of a wide variety of polymericmaterials, their incorporation can be challenged byincompatibility with the polymeric matrix. The modification ofgraphene oxide with silicones or silanes using the Piers......-Rubinsztajn reaction improves dispersibility in nonpolar materials,including organic solvents and silicone pre-elastomers. Ahigh loading (up to 10 wt %) of modified graphene oxide insilicone elastomers could be achieved, which resulted inenhanced mechanical performance and reduced gas permeability....

  15. Effect of mechanical parameters on dielectric elastomer minimum energy structures

    Science.gov (United States)

    Shintake, Jun; Rosset, Samuel; Floreano, Dario; Shea, Herbert R.

    2013-04-01

    Soft robotics may provide many advantages compared to traditional robotics approaches based on rigid materials, such as intrinsically safe physical human-robot interaction, efficient/stable locomotion, adaptive morphology, etc. The objective of this study is to develop a compliant structural actuator for soft a soft robot using dielectric elastomer minimum energy structures (DEMES). DEMES consist of a pre-stretched dielectric elastomer actuator (DEA) bonded to an initially planar flexible frame, which deforms into an out-of-plane shape which allows for large actuation stroke. Our initial goal is a one-dimensional bending actuator with 90 degree stroke. Along with frame shape, the actuation performance of DEMES depends on mechanical parameters such as thickness of the materials and pre-stretch of the elastomer membrane. We report here the characterization results on the effect of mechanical parameters on the actuator performance. The tested devices use a cm-size flexible-PCB (polyimide, 50 μm thickness) as the frame-material. For the DEA, PDMS (approximately 50 μm thickness) and carbon black mixed with silicone were used as membrane and electrode, respectively. The actuators were characterized by measuring the tip angle and the blocking force as functions of applied voltage. Different pre-stretch methods (uniaxial, biaxial and their ratio), and frame geometries (rectangular with different width, triangular and circular) were used. In order to compare actuators with different geometries, the same electrode area was used in all the devices. The results showed that the initial tip angle scales inversely with the frame width, the actuation stroke and the blocking force are inversely related (leading to an interesting design trade-off), using anisotropic pre-stretch increased the actuation stroke and the initial bending angle, and the circular frame shape exhibited the highest actuation performance.

  16. Modeling of a Dielectric Elastomer Bender Actuator

    Directory of Open Access Journals (Sweden)

    Paul White

    2014-07-01

    Full Text Available The current smallest self-contained modular robot uses a shape memory alloy, which is inherently inefficient, slow and difficult to control. We present the design, fabrication and demonstration of a module based on dielectric elastomer actuation. The module uses a pair of bowtie dielectric elastomer actuators in an agonist-antagonist configuration and is seven times smaller than previously demonstrated. In addition, we present an intuitive model for the bowtie configuration that predicts the performance with experimental verification. Based on this model and the experimental analysis, we address the theoretical limitations and advantages of this antagonistic bender design relative to other dielectric elastomer actuators.

  17. Hencky's model for elastomer forming process

    Science.gov (United States)

    Oleinikov, A. A.; Oleinikov, A. I.

    2016-08-01

    In the numerical simulation of elastomer forming process, Henckys isotropic hyperelastic material model can guarantee relatively accurate prediction of strain range in terms of large deformations. It is shown, that this material model prolongate Hooke's law from the area of infinitesimal strains to the area of moderate ones. New representation of the fourth-order elasticity tensor for Hencky's hyperelastic isotropic material is obtained, it possesses both minor symmetries, and the major symmetry. Constitutive relations of considered model is implemented into MSC.Marc code. By calculating and fitting curves, the polyurethane elastomer material constants are selected. Simulation of equipment for elastomer sheet forming are considered.

  18. Thermoset elastomers derived from carvomenthide.

    Science.gov (United States)

    Yang, Jinyoung; Lee, Sangjun; Choi, Woo Jin; Seo, Howon; Kim, Pilhan; Kim, Geon-Joong; Kim, Young-Wun; Shin, Jihoon

    2015-01-12

    Renewable thermoset elastomers were prepared using the plant-based monomer carvomenthide. Controlled ring-opening transesterification polymerization of carvomenthide using diethylene glycol as an initiator gave α,ω-dihydroxyl poly(carvomenthide) (HO-PCM-OH), which was subsequently converted to carboxy-telechelic poly(carvomenthide) (HOOC-PCM-COOH) by esterification with excess succinic anhydride through a one-pot, two-step process, leading to no crystallinity, high viscosity, strong thermal resistance, and low glass transition temperature of the resulting functionalized polyester. Thermal curing processes of the resulting 3, 6, and 12 kg mol(-1) prepolymers were achieved with trifunctional aziridine to give cross-linked PCM elastomers. The thermal properties, mechanical behavior, and biocompatibility of the rubbery thermoset products were investigated by differential scanning calorimetry, thermal gravimetric analysis, dynamic mechanical analysis, tensile tests under static and cyclic loads, and cell adherence. These new materials are useful candidates to satisfy the design objective for the engineering of a variety of soft tissues.

  19. Rigidity-tuning conductive elastomer

    Science.gov (United States)

    Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel

    2015-06-01

    We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.

  20. Droplets sliding down inclined planes: unexpected dynamics on elastomer plates

    Science.gov (United States)

    Hourlier-Fargette, Aurelie; Antkowiak, Arnaud; Neukirch, Sebastien

    2016-11-01

    Droplet dynamics on an angled surface results from a competition between the weight of the droplet, capillary forces, and viscous dissipation inside the drop. The motion of droplets on stiff surfaces has been investigated for a long time, both experimentally and theoretically, while recent studies have shown the interesting physics underlying the sliding of droplets on soft surfaces. We focus on the dynamics of water-glycerol mixture droplets sliding down vertical plates of silicone elastomers, highlighting an unexpected behavior: the droplet dynamics on such a surface includes two regimes with different constant speeds. These results contrast with those found in the literature for droplets sliding on materials such as treated glass. We investigate the universality of this behavior on various elastomers, and study in detail the two regimes and the sharp transition observed between them. Different candidates can be responsible for the sudden speed change: bistability, chemical interaction with the substrate, softness of the material, etc. Our experiments to clarify the role of each of them reveal an unexpected link between microscopic phenomena at the scale of the polymer matrix and the macroscopic dynamics of a droplet.

  1. Magnetoactive elastomer as an element of a magnetic retina fixator

    Science.gov (United States)

    Makarova, L. A.; Nadzharyan, T. A.; Alekhina, Yu A.; Stepanov, G. V.; Kazimirova, E. G.; Perov, N. S.; Kramarenko, E. Yu

    2017-09-01

    We explore the possibility of creating an effective retinal fixator on the basis of magnetoactive elastomers (MAEs) and systems of permanent magnets. MAEs consist of silicone elastomer matrix with embedded magnetic iron microparticles. We study theoretically and experimentally magnetic forces acting between MAE samples and permanent magnets in various configurations. The theoretical model is based around classical magnetostatics and Maxwell equations with different parameters accounting for peculiarities of the material and the setup. Approximation of the experimentally measured magnetization curves for MAE samples was used to find input parameters for the theoretical model. To test the model, we conducted a series of experimental measurements of magnetic forces accompanied by model predictions for the system of one cylindrical magnet and a cuboid MAE sample. Calculated dependences of the average pressure arising from magnetic interactions on the distance between the closest faces of MAE samples and a permanent magnet are in a good agreement with the experimental data. The proof on concept for smaller magnetic systems required for eye surgery includes data for 10 magnets configuration and a thin MAE band. This research demonstrates high prospects of using MAE as an element of a magnetic fixator for treatment of complicated retinal detachments.

  2. Fully printed 3 microns thick dielectric elastomer actuator

    Science.gov (United States)

    Poulin, A.; Rosset, S.; Shea, H.

    2016-04-01

    In this work we present a new fabrication technique to print thin dielectric elastomer actuators (DEAs), reducing the driving voltage below 300 V while keeping good actuation performance. With operation voltages in the kV-range, standard DEAs are limited in terms of potential applications. Using thinner membranes is one of the few existing methods to achieve lower operation voltages. Typical DEAs have membranes in the 20-100 μm range, values below which membrane fabrication becomes challenging and the membrane quality and uniformity degrade. Using pad printing we produced thin silicone elastomer membranes, on which we pad-printed compliant electrodes. We then fabricated DEAs by assembling two membranes back to back. We obtain an actuation strain of 7.5% at only 245 V on a 3 μm thick DEA. In order to investigate the stiffening impact of the electrodes we developed a simple DEA model that includes their mechanical properties. We also developed a strain-mapping algorithm based on optical correlation. The simulation results and the strain-mapping measurements confirm that the stiffening impact of the electrodes increases for thinner membranes. Electrodes are an important element that cannot be neglected in the design and optimization of ultra-thin DEAs.

  3. Manufacture of Bulk Magnetorheological Elastomers Using Vacuum Assisted Resin Transfer Molding

    Science.gov (United States)

    Woods, B. K. S.; Wereley, N.; Hoffmaster, R.; Nersessian, N.

    Magnetorheological elastomers (MREs) consist of ferromagnetic particles embedded in a compliant matrix (i.e. elastomer). Due to the magnetic interaction of the ferromagnetic particles, MREs exhibit field dependent physical properties. Very significant changes in the modulus and loss factor of the elastomer can be realized. This makes MREs a promising candidate for active vibration control mechanisms. One factor currently limiting the implementation of this technology is the lack of an efficient manufacturing method that is practical for mass production. Most of the specimens created for previous MRE research were made using simple casting or mechanical mixing methods that are not ideal. In this research a new methodology for producing MREs using Vacuum Assisted Resin Transfer Molding (VARTM) was investigated. The method was used with a range of iron particles sizes and silicon elastomer systems and found to be effective within certain limits of applicability. The specimens produced were tested in compression under a range of magnetic fields to validate the presence of the MR effect. Relative changes in compressive modulus ranging from 35% to 150% (depending on volume fraction), under fields of around 0.3T were observed.

  4. Space-Qualifiable Cyanate Ester Elastomer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, CRG demonstrated the feasibility of a novel approach to prepare cyanate ester based elastomers. This approach polymerizes in-situ siloxane within a...

  5. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields....... This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength....... In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field...

  6. Space-Qualifiable Cyanate Ester Elastomer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG) proposes to design and develop a space-qualifiable cyanate ester elastomer for application in self-deployable space structures...

  7. High-strain actuator materials based on dielectric elastomers

    DEFF Research Database (Denmark)

    Pelrine, R.; Kornbluh, R.; Kofod, G.

    2000-01-01

    Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black) and patt......Dielectric elastomers are a new class of actuator materials that exhibit excellent performance. The principle of operation, as well as methods to fabricate and test these elastomers, is summarized here. The Figure is a sketch of an elastomer film (light gray) stretched on a frame (black...

  8. Preparation and property of graphene oxide core-shell hybrid particles/silicone rubber dielectric elastomer composites%氧化石墨烯核-壳杂化粒子/硅橡胶介电弹性体复合材料的制备与性能

    Institute of Scientific and Technical Information of China (English)

    王明路; 宁南英; 张静; 张立群; 田明

    2016-01-01

    采用阳离子聚电解质聚二烯丙基二甲基氯化铵(PDDA)改性 SiO2,再通过静电自组装制备了 SiO2-PD-DA-氧化石墨烯(GO)核-壳杂化粒子。采用溶液共混法将 SiO2-PDDA-GO引入到高温硫化硅橡胶(SR)中,制备了SiO2-PDDA-GO/SR介电弹性体复合材料。结果表明:该方法能实现 GO 在 SiO2表面大面积的包覆,解决了 GO容易自聚集的问题,且PDDA具有还原 GO的作用,无需再对 GO核-壳杂化粒子/SR复合材料进行原位热还原,简化了实验方案,节能环保。SiO2-PDDA-GO填充量为60wt%时,在100 Hz 频率下,SiO2-PDDA-GO/SR 介电弹性体复合材料的介电常数为21.53,是 SR的11.6倍,介电损耗保持较低值,同时,复合材料的模量保持在较低水平。在电场强度为2.48 kV/mm时,60wt%的SiO2-PDDA-GO/SR介电弹性体复合材料横向电致形变在同一电场强度下与 SR相比增加了15倍。%Cationic polyelectrolyte poly(diallyldimethylammonium chloride)(PDDA)was used to modify SiO2 ,and SiO2-PDDA-graphite oxide (GO)core-shell hybrid particles were prepared by electrostatic self-assembly.By intro-ducing SiO2-PDDA-GO into high-temperature vulcanization silicone rubber (SR)with solution blending method, SiO2-PDDA-GO/SR dielectric elastomer composites were prepared.Results show that this method can realize GO large surface coating on surface of SiO2 to prevent GO from self-agglomerating.GO core-shell hybrid particles/SR composites were obtained without in-situ thermal reduction because PDDA can reduce GO,made experimental scheme simple and environmental protection.The dielectric constant of SiO2-PDDA-GO/SR dielectric composite at 100 Hz increases to 21.53 with 60wt% SiO2-PDDA-GO which is 11.6 times than SR,and dielectric loss remains at low level.Meanwhile,modulus of composites remains low level.The lateral actuation strain of SiO2-PDDA-GO/SR dielectric elastomer composites with 60wt% SiO2-PDDA-GO at 2.48 kV/mm compared with pure SR increases 15 fold under same

  9. Collapse of Non-Rectangular Channels in a Soft Elastomer

    Science.gov (United States)

    Tepayotl-Ramirez, Daniel; Park, Yong-Lae; Lu, Tong; Majidi, Carmel

    2013-03-01

    We examine the collapse of microchannels in a soft elastomer by treating the sidewalls as in- denters that penetrate the channel base. This approach leads to a closed-form algebraic mapping between applied pressure and cross-sectional deformation that are in strong agreement with ex- perimental measurements and Finite Element Analysis (FEA) simulation. Applications of this new approach to modeling soft microchannel collapse range from lab-on-a-chip microfluidics for pressure-controlled protein filtration to soft-matter pressures sensing. We demonstrate the latter by comparing theoretical predictions with experimental measurements of the pressure-controlled electrical resistance of liquid-phase Gallium alloy microchannels embedded in a soft silicone elas- tomer.

  10. Mechanochemical Reactions of Elastomers with Metals.

    Science.gov (United States)

    1984-09-01

    34i neeeeewy a"md&tf by week nmbo) Elastomers, Fracture, Free-radical reactions, Mechanochemistry , Metals , Macromolecular rupture, Organic radicals...from metallic grey to red-brown, indicating the formation of an increased amount of iron oxide . When this oxidized powder was mixed into SBR and the...Project NR 092-555In ID Technical Report No. 33 MECHANOCHEMICAL REACTIONS OF ELASTOMERS WITH METALS by A. N. Gent and W. R. Rodgers Institute of

  11. Toxicity of Pyrolysis Gases from Elastomers

    Science.gov (United States)

    Hilado, Carlos J.; Kosola, Kay L.; Solis, Alida N.; Kourtides, Demetrius A.; Parker, John A.

    1977-01-01

    The toxicity of the pyrolysis gases from six elastomers was investigated. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acryltonitrile rubber exhibited the greatest toxicity under these test conditions; carbon monoxide was not found in sufficient concentrations to be the primary cause of death.

  12. Isolation and damping properties of magnetorheologic elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Collette, C; Kroll, G; Avraam, M; Preumont, A [University of Brussels, 50 av. F.D. Roosevelt, 1050 Brussels (Belgium); Saive, G [Techspace Aero (SAFRAN Group), 121, route de Liers, 4041 Herstal (Belgium); Guillemier, V [MATIS Benelux, 121, route de Liers, 4041 Herstal (Belgium)], E-mail: christophe.collette@ulb.ac.be

    2009-02-01

    This paper considers two systems based on a magnetorheological elastomer (MRE): a MRE isolator under a frequency varying harmonic excitation and a MRE Dynamic Vibration Absorber (DVA) mounted on a frequency-varying structure under a random excitation. It is shown that the commandability of the elastomer improves the isolation performances in the first case, and decreases the stress level in the structure in the second case.

  13. Adjustable Membrane Mirrors Incorporating G-Elastomers

    Science.gov (United States)

    Chang, Zensheu; Morgan, Rhonda M.; Xu, Tian-Bing; Su, Ji; Hishinuma, Yoshikazu; Yang, Eui-Hyeok

    2008-01-01

    Lightweight, flexible, large-aperture mirrors of a type being developed for use in outer space have unimorph structures that enable precise adjustment of their surface figures. A mirror of this type includes a reflective membrane layer bonded with an electrostrictive grafted elastomer (G-elastomer) layer, plus electrodes suitably positioned with respect to these layers. By virtue of the electrostrictive effect, an electric field applied to the G-elastomer membrane induces a strain along the membrane and thus causes a deflection of the mirror surface. Utilizing this effect, the mirror surface figure can be adjusted locally by individually addressing pairs of electrodes. G-elastomers, which were developed at NASA Langley Research Center, were chosen for this development in preference to other electroactive polymers partly because they offer superior electromechanical performance. Whereas other electroactive polymers offer, variously, large strains with low moduli of elasticity or small strains with high moduli of elasticity, G-elastomers offer both large strains (as large as 4 percent) and high moduli of elasticity (about 580 MPa). In addition, G-elastomer layers can be made by standard melt pressing or room-temperature solution casting.

  14. Fracture of elastomers by cavitation

    KAUST Repository

    Hamdi, Adel

    2014-01-01

    Cavitation phenomenon is studied in rubber-like materials by combining experimental, theoretical and numerical approaches. Specific tests are carried out on a Styrene Butadiene Rubber to point out main characteristics of cavitation phenomenon. Hydrostatic depression is numerically modelled using finite element method. Numerical results are compared to Ball\\'s and Hou & Abeyaratne\\'s models with regard to cavity nucleation in the material. Both models well fit experimental observations suggesting that the cavitation nucleation in elastomers depends on the confinement degree of the specimen. Finally, critical hydrostatic pressure and critical global deformation are proved to govern cavitation nucleation in the studied material. Critical loadings are identified by comparing experimental and numerical load-displacement curves. © 2013 Elsevier Ltd.

  15. EB radiation crosslinking of elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Bik, J.; Gluszewski, W.; Rzymski, W.M.; Zagorski, Z.P. E-mail: zagorski@ichtj.waw.pl

    2003-06-01

    Radiation-induced crosslinking is proposed as successful alternative to conventional, chemical methods of crosslinking of elastomers. Hydrogenated acrylonitrile-butadiene rubber was irradiated with 10 MeV electron beam to doses up to 300 kGy. Irradiated samples were investigated for the extent of crosslinking and for properties important for understanding of mechanisms. It follows from sol-gel analysis, that for 100 crosslinking acts there are 6-9 acts of chain scission. It is less than expected from the 20% participation of multi-ionization spurs, also in the solid state, as announced during the previous 9th Tihany Conference (Radiat. Phys. Chem. 56 (1999) 559). However, the apparent too low yield of multi-ionization spurs could be explained by partial conversion of scission products into crosslinks of specific trifunctional Y type. Our investigations confirm the usefulness of consideration of different radiation spurs in polymers, as well as in all, low LET irradiated media.

  16. Effect of Rheology and Poloxamers Properties on Release of Drugs from Silicon Dioxide Gel-Filled Hard Gelatin Capsules-A Further Enhancement of Viability of Liquid Semisolid Matrix Technology.

    Science.gov (United States)

    Sultana, Misbah; Butt, Mobashar Ahmad; Saeed, Tariq; Mahmood, Rizwan; Ul Hassan, Saeed; Hussain, Khalid; Raza, Syed Atif; Ahsan, Muhammad; Bukhari, Nadeem Irfan

    2016-12-08

    The liquid and semisolid matrix technology, filling liquids, semi-solids and gels in hard gelatin capsule are promising, thus, there is a need of enhanced research interest in the technology. Therefore, the present study was aimed to investigate isoniazid (freely soluble) and metronidazole (slightly soluble) gels filled in hard gelatin capsules for the effect of poloxamers of different viscosities on release of the drugs. Gel of each drug (10% w/w, particle size 180-250 μm), prepared by mixing poloxamer and 8% w/w hydrophilic silicon dioxide (Aerosil® A200), was assessed for rheology, dispersion stability and release profile. Both the drugs remained dispersed in majority of gels for more than 30 days, and dispersions were depended on gels' viscosity, which was further depended on viscosity of poloxamers. A small change in viscosity was noted in gels on storage. FTIR spectra indicated no interactions between components of the gels. The gels exhibited thixotropic and shear-thinning behaviour, which were suitable for filling in hard gelatin capsules without any leakage from the capsules. The release of both drugs from the phase-stable gels for 30 days followed first-order kinetics and was found to be correlated to drugs' solubility, poloxamers' viscosity, polyoxyethylene contents and proportion of block copolymer (poloxamers) in the gels. The findings of the present study indicated that release of drugs of different solubilities (isoniazid and metronidazole) might be modified from gels using different poloxamers and Aerosil® A200.

  17. A solid-state dielectric elastomer switch for soft logic

    Science.gov (United States)

    Chau, Nixon; Slipher, Geoffrey A.; O'Brien, Benjamin M.; Mrozek, Randy A.; Anderson, Iain A.

    2016-03-01

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  18. Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties

    Directory of Open Access Journals (Sweden)

    Wai K. Ho

    2010-01-01

    Full Text Available Novel materials based on nanotechnology creating nontraditional ablators are rapidly changing the technology base for thermal protection systems. Formulations with the addition of nanoclays and carbon nanofibers in a neat thermoplastic polyurethane elastomer (TPU were melt-compounded using twin-screw extrusion. The TPU nanocomposites (TPUNs are proposed to replace Kevlar-filled ethylene-propylene-diene-monomer rubber, the current state-of-the-art solid rocket motor internal insulation. Scanning electron microscopy analysis was conducted to study the char characteristics of the TPUNs at elevated temperatures. Specimens were examined to analyze the morphological microstructure during the pyrolysis reaction and in fully charred states. Thermophysical properties of density, specific heat capacity, thermal diffusivity, and thermal conductivity of the different TPUN compositions were determined. To identify dual usage of these novel materials, cone calorimetry was employed to study the flammability properties of these TPUNs.

  19. A solid-state dielectric elastomer switch for soft logic

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Nixon [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); Slipher, Geoffrey A., E-mail: geoffrey.a.slipher.civ@mail.mil; Mrozek, Randy A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); O' Brien, Benjamin M. [StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Anderson, Iain A. [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Department of Engineering Science, School of Engineering, The University of Auckland, Level 3, 70 Symonds Street, Auckland 1010 (New Zealand)

    2016-03-07

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  20. Improvement of the service properties of elastomer compositions by introduction of carbon nanomaterials

    Science.gov (United States)

    Vishnevskii, K. V.; Shashok, Zh. S.; Prokopchuk, N. R.; Krauklis, A. V.; Zhdanok, S. A.

    2012-09-01

    The influence of a carbon nanomaterial obtained in a high-voltage discharge plasma on the endurance of elastomer compositions has been investigated for the first time. The results of these investigations agree with those obtained in determining the parameters of the vulcanization kinetics, conventional tensile strength, relative breaking elongation, and resistance to thermal aging and swelling in liquid hydrocarbon media of highly filled rubbers based on butadiene-nitrile caoutchoucs. To verify the assumed mechanism underlying the action of a carbon nanomaterial on elastomer compositions, the parameters of their vulcanizing network have been determined using the method of equilibrium swelling. It is shown that the introduction of a carbon nanomaterial into polar caoutchouc-based rubber allows one to substantially improve its service characteristics and endurance.

  1. Electrical conductivity of a silicone network upon electron irradiation: influence of formulation

    Science.gov (United States)

    Roggero, A.; Dantras, E.; Paulmier, T.; Tonon, C.; Lewandowski, S.; Dagras, S.; Payan, D.

    2016-12-01

    In this study, the electrical conductivity of a silicone elastomer filled with inorganic fillers was investigated upon electron irradiation. Neat samples consisting of the isolated polysiloxane matrix (with no fillers) were studied in parallel to identify the filler contribution to this evolution. It was shown that exposure to 400 keV electron doses induced a decrease in electrical conductivity for both the filled and neat materials. This decrease was much more pronounced with the filled samples than with the neat ones. Moreover, the activation energy of electrical conductivity (Arrhenius behaviour) doubled in the filled case, while it varied only weakly for the neat case. In light of these results, structure-property relationships were proposed on the basis of the radiation-induced crosslink processes to which this material is subject. In the framework of electronic percolation theory, it is suggested that the radiation-induced formation of SiO3 crosslinks in the polysiloxane network and SiO4 crosslinks at filler-matrix interfaces affects the percolation path of the material, which can be simply modelled by a network of resistors in series. On one hand, their densification increases the overall resistance of the percolation path, which results in the observed decrease of effective electrical conductivity. On the other hand, the steep increase in activation energy in the filled material attributes to the SiO4 crosslinks becoming the most restrictive barrier along the percolation path. In spite of the misleading likeness of electrical conductivities in the pristine state, this study presented evidence that silicone formulation can affect the evolution of electrical properties in radiative environments. To illustrate this conclusion, the use of this material in space applications, especially when directly exposed to the radiative space environment, was discussed. The decrease in electrical conductivity was associated with a progressively increasing risk for the

  2. Dielectric elastomer actuators for facial expression

    Science.gov (United States)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  3. Transverse vibration of nematic elastomer Timoshenko beams

    Science.gov (United States)

    Zhao, Dong; Liu, Ying; Liu, Chuang

    2017-01-01

    Being a rubber-like liquid crystalline elastomer, a nematic elastomer (NE) is anisotropic viscoelastic, and displays dynamic soft elasticity. In this paper, the transverse vibration of a NE Timoshenko beam is studied based on the linear viscoelasticity theory of nematic elastomers. The governing equation of motion for the transverse vibration of a NE Timoshenko beam is derived. A complex modal analysis method is used to obtain the natural frequencies and decrement coefficients of NE beams. The influences of the nematic director rotation, the rubber relaxation time, and the director rotation time on the vibration characteristic of NE Timoshenko beams are discussed in detail. The sensitivity of the dynamic performance of NE beams to director initial angle and relaxation times provides a possibility of intelligent controlling of their dynamic performance.

  4. Protective effects in radiation modification of elastomers

    Science.gov (United States)

    Głuszewski, Wojciech; Zagórski, Zbigniew P.; Rajkiewicz, Maria

    2014-12-01

    Saturated character of ethylene/octene thermoplastic elastomers demands an application of nonconventional methods of crosslinking connections between chains of molecules. These are organic peroxides, usually in the presence of coagents or an application of ionizing radiation. Several approaches (radiation, peroxide, peroxide/plus radiation and radiation/plus peroxide) were applied in crosslinking of elastomere Engage 8200. Attention was directed to the protection effects by aromatic peroxides and by photo- and thermostabilizers on radiolysis of elastomers. Role of dose of radiation, dose rate of radiation as well as the role of composition of elastomere on the radiation yield of hydrogen and absorbtion of oxygen was investigated. DRS method was used to follow postirradiation degradation. Influence of crosslinking methods on properties of elastomers is described. Results were interpreted from the point of view of protective actions of aromatic compounds.

  5. Filler reinforcement in cross-linked elastomer nanocomposites: insights from fully atomistic molecular dynamics simulation.

    Science.gov (United States)

    Pavlov, Alexander S; Khalatur, Pavel G

    2016-06-28

    Using a fully atomistic model, we perform large-scale molecular dynamics simulations of sulfur-cured polybutadiene (PB) and nanosilica-filled PB composites. A well-integrated network without sol fraction is built dynamically by cross-linking the coarse-grained precursor chains in the presence of embedded silica nanoparticles. Initial configurations for subsequent atomistic simulations are obtained by reverse mapping of the well-equilibrated coarse-grained systems. Based on the concept of "maximally inflated knot" introduced by Grosberg et al., we show that the networks simulated in this study behave as mechanically isotropic systems. Analysis of the network topology in terms of graph theory reveals that mechanically inactive tree-like structures are the dominant structural components of the weakly cross-linked elastomer, while cycles are mainly responsible for the transmission of mechanical forces through the network. We demonstrate that quantities such as the system density, thermal expansion coefficient, glass transition temperature and initial Young's modulus can be predicted in qualitative and sometimes even in quantitative agreement with experiments. The nano-filled system demonstrates a notable increase in the glass transition temperature and an approximately two-fold increase in the nearly equilibrium value of elastic modulus relative to the unfilled elastomer even at relatively small amounts of filler particles. We also examine the structural rearrangement of the nanocomposite subjected to tensile deformation. Under high strain-rate loading, the formation of structural defects (microcavities) within the polymer bulk is observed. The nucleation and growth of cavities in the post-yielding strain hardening regime mainly take place at the elastomer/nanoparticle interfaces. As a result, the cavities are concentrated just near the embedded nanoparticles. Therefore, while the silica nanofiller increases the elastic modulus of the elastomer, it also creates a more

  6. Novel dielectric elastomer structure of soft robot

    Science.gov (United States)

    Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Liu, Junjie; Jin, Yongbin; Li, Tiefeng

    2015-04-01

    Inspired from the natural invertebrates like worms and starfish, we propose a novel elastomeric smart structure. The smart structure can function as a soft robot. The soft robot is made from a flexible elastomer as the body and driven by dielectric elastomer as the muscle. Finite element simulations based on nonlinear field theory are conducted to investigate the working condition of the structure, and guide the design of the smart structure. The effects of the prestretch, structural stiffness and voltage on the performance of the smart structure are investigated. This work can guide the design of soft robot.

  7. Design and Preparation of Cross-Linked Polystyrene Nanoparticles for Elastomer Reinforcement

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2010-01-01

    Full Text Available Cross-linked polystyrene (PS particles in a latex form were synthesized by free radical emulsion polymerization. The nano-PS-filled elastomer composites were prepared by the energy-saving latex compounding method. Results showed that the PS particles took a spherical shape in the size of 40–60 nm with a narrow size distribution, and the glass-transition temperature of the PS nanoparticles increased with the cross-linking density. The outcomes from the mechanical properties demonstrated that when filled into styrene-butadiene rubber (SBR, nitrile-butadiene rubber (NBR, and natural rubber (NR, the cross-linked PS nano-particles exhibited excellent reinforcing capabilities in all the three matrices, and the best in the SBR matrix. In comparison with that of the carbon black filled composites, another distinguished advantage of the cross-linked PS particles filled elastomer composites was found to be light weight in density, which could help to save tremendous amount of energy when put into end products.

  8. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers.

    Science.gov (United States)

    Lehmann, W; Skupin, H; Tolksdorf, C; Gebhard, E; Zentel, R; Krüger, P; Lösche, M; Kremer, F

    2001-03-22

    Mechanisms for converting electrical energy into mechanical energy are essential for the design of nanoscale transducers, sensors, actuators, motors, pumps, artificial muscles, and medical microrobots. Nanometre-scale actuation has to date been mainly achieved by using the (linear) piezoelectric effect in certain classes of crystals (for example, quartz), and 'smart' ceramics such as lead zirconate titanate. But the strains achievable in these materials are small--less than 0.1 per cent--so several alternative materials and approaches have been considered. These include grafted polyglutamates (which have a performance comparable to quartz), silicone elastomers (passive material--the constriction results from the Coulomb attraction of the capacitor electrodes between which the material is sandwiched) and carbon nanotubes (which are slow). High and fast strains of up to 4 per cent within an electric field of 150 MV x m(-1) have been achieved by electrostriction (this means that the strain is proportional to the square of the applied electric field) in an electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Here we report a material that shows a further increase in electrostriction by two orders of magnitude: ultrathin (less than 100 nanometres) ferroelectric liquid-crystalline elastomer films that exhibit 4 per cent strain at only 1.5 MV x m(-1). This giant electrostriction was obtained by combining the properties of ferroelectric liquid crystals with those of a polymer network. We expect that these results, which can be completely understood on a molecular level, will open new perspectives for applications.

  9. Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.

    Science.gov (United States)

    Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana

    2016-12-01

    Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Techniques for hot embossing microstructures on liquid silicone rubbers with fillers

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Skov, Anne Ladegaard

    2015-01-01

    of the simplest, most cost-effective, and time-saving methods for replicating microstructures. In the present study, films made fromliquid silicone rubber (LSR) formulations containing fillers are hot embossed under modified operating conditions. The use of such relatively hard silicone elastomers shows...

  11. Switching Shape of Nematic Elastomers

    Science.gov (United States)

    Urayama, Kenji

    2012-02-01

    Nematic elastomers (NEs) are a novel class of materials. NEs possess both the elastic properties of rubbers and the orientational properties of liquid crystals. The combination of these two properties makes the shape of NEs very sensitive to external stimuli. We focus on the thermally induced deformation of the NE films inherently possessing the two types of inhomogeneous director alignments, i.e., hybrid and twist alignments. In the NEs with hybrid alignments (HNEs), the director continuously changes by 90 degree from planar alignment to vertical alignment between the top and bottom surfaces. In the twist NEs, the director parallel to the surfaces smoothly rotates by 90 degree around the thickness axis, and the director at the mid-plane is parallel to the long or short axis of the film. In the HNEs and TNEs, the director change along the normal of the films causes the planes at different depth to respond differently to temperature variation, and the films are thus expected to change shape. We experimentally demonstrate that (i) depending on the width/thickness ratio, the TNE ribbons form the spiral ribbons or helicoids whose spiral or helical pitch markedly depends on temperature [1], and (ii) the HNE ribbons exhibit giant bending in response to temperature variation [2]. We theoretically interpret these experimental observations on the basis of the elastic models with the data of thermally induced uniaxial deformation of the corresponding NEs with globally planar alignment.[4pt] [1] Sawa, Ye, Urayama, Takigawa, Gimenez-Pinto, Selinger, R., Selinger, J., Proc. Natl. Acad. Sci., USA, 108, 6364 (2011).[0pt] [2] Sawa, Urayama, Takigawa, DeSimone, Teresi, Macromolecules, 43, 4362 (2010).

  12. Dielectric elastomer for stretchable sensors: influence of the design and material properties

    Science.gov (United States)

    Jean-Mistral, C.; Iglesias, S.; Pruvost, S.; Duchet-Rumeau, J.; Chesné, S.

    2016-04-01

    Dielectric elastomers exhibit extended capabilities as flexible sensors for the detection of load distributions, pressure or huge deformations. Tracking the human movements of the fingers or the arms could be useful for the reconstruction of sporting gesture, or to control a human-like robot. Proposing new measurements methods are addressed in a number of publications leading to improving the sensitivity and accuracy of the sensing method. Generally, the associated modelling remains simple (RC or RC transmission line). The material parameters are considered constant or having a negligible effect which can lead to serious reduction of accuracy. Comparisons between measurements and modelling require care and skill, and could be tricky. Thus, we propose here a comprehensive modelling, taking into account the influence of the material properties on the performances of the dielectric elastomer sensor (DES). Various parameters influencing the characteristics of the sensors have been identified: dielectric constant, hyper-elasticity. The variations of these parameters as a function of the strain impact the linearity and sensitivity of the sensor of few percent. The sensitivity of the DES is also evaluated changing geometrical parameters (initial thickness) and its design (rectangular and dog-bone shapes). We discuss the impact of the shape regarding stress. Finally, DES including a silicone elastomer sandwiched between two high conductive stretchable electrodes, were manufactured and investigated. Classic and reliable LCR measurements are detailed. Experimental results validate our numerical model of large strain sensor (>50%).

  13. Polysiloxane-based luminescent elastomers prepared by thiol-ene "click" chemistry.

    Science.gov (United States)

    Zuo, Yujing; Lu, Haifeng; Xue, Lei; Wang, Xianming; Wu, Lianfeng; Feng, Shengyu

    2014-09-26

    Side-chain vinyl poly(dimethylsiloxane) has been modified with mercaptopropionic acid, methyl 3-mercaptopropionate, and mercaptosuccinic acid. Coordinative bonding of Eu(III) to the functionalized polysiloxanes was then carried out and crosslinked silicone elastomers were prepared by thiol-ene curing reactions of these composites. All these europium complexes could be cast to form transparent, uniform, thin elastomers with good flexibility and thermal stability. The networks were characterized by FTIR, NMR, UV/Vis, and luminescence spectroscopy as well as by scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The europium elastomer luminophores exhibited intense red light at 617 nm under UV excitation at room temperature due to the (5)D0 →(7)F2 transition in Eu(III) ions. The newly synthesized luminescent materials offer many advantages, including the desired mechanical flexibility. They cannot be dissolved or fused, and so they have potential for use in optical and electronic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and Characterization of Magnetic Elastomer based PEG-Coated Fe3O4 from Natural Iron Sand

    Science.gov (United States)

    Kurniawan, C.; Eko, A. S.; Ayu, Y. S.; Sihite, P. T. A.; Ginting, M.; Simamora, P.; Sebayang, P.

    2017-05-01

    Magnetic elastomer nanocomposite based PEG-coated Fe3O4 with silicone rubber binder have been prepared from natural iron-sand by using coprecipitation method. The samples were characterized by using X-ray Diffractometer, X-ray Fluorescence, Fourier Transform Infra-Red, tensile strength test, and Vibrating Sample Magnetometer to analyze the physical and magnetic properties. We observed that all samples were formed by single phase cubic spinel magnetite (Fe3O4) crystalline structure. The atomic bonding analysis by FTIR showed that the C-O-C and C-H ordering were understood as the PEG - Fe3O4 bonding characteristics. We have observed that the Young modulus of elastomer based PEG-coated Fe3O4 slightly decreased compared to the natural iron-sand based elastomer. The magnetic properties of PEG-coated Fe3O4 were known to be magnetically softer with the lowest coercivity without losing its magnetization saturation value. We propose that the PEG-coated Fe3O4 is a promising candidate to be applied as magnetorheological elastomer due to a good mechanical and magnetic characteristic and also promising as microwave absorbing materials.

  15. 新型中空硅橡胶睾丸假体移植术治疗睾丸缺失的临床体会(附13例报告)%Testicular prosthesis implantation with new-typed hollow silicone elastomer prosthesis: 13-case report

    Institute of Scientific and Technical Information of China (English)

    朱扬进; 宁晔; 陈慧兴; 平萍; 黄妹; 徐迪萍; 薄隽杰; 黄翼然; 李铮

    2012-01-01

    complications. All the patients were satisfied with their scrotal appearance. About the weight of the testis seven patients were very much satisfied and five were satisfied. No rupture of prosthesis or rejection were reported. Conclusion The new-typed hollow silicone elastomer testicular prosthesis used in this study can meet patients ' requirements. Testicular prosthesis implantation should be a promising approach for patients undergoing orchidectomy. But further surveillance and long-term life quality follow-ups should be investigated.

  16. Functional silicone elastomers via novel siloxane copolymers and chain extenders

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    of siloxane copolymers[1] (via the tris(pentafluorophenyl)borane catalysed Piers-Rubinsztajn reaction[2]), which allows for the attachment of functional molecules through copper-catalysed azide-alkyne 1,3-dipolar cycloaddition (CuAAC)[3]. The synthesised copolymers allow for a high degree of chemical freedom...

  17. Functional silicone copolymers and elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    . This was done trough the synthesis of new functionalizable siloxane copolymers [2] that allow for the attachment of high dielectric permittivity molecules through copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions. The synthesised siloxane copolymers were prepared via the tris...

  18. Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis

    Science.gov (United States)

    Le Gal, André; Yang, Xin; Klüppel, Manfred

    2005-07-01

    The paper presents a combined experimental and theoretical approach to the understanding of hysteresis and adhesion contributions to rubber friction on dry and lubricated rough surfaces. Based on a proper analysis of the temperature- and frequency-dependent behaviors of nonlinear viscoelastic materials such as filler reinforced elastomer materials, master curves for the viscoelastic moduli are constructed. It is shown that the classical williams-Landel-Ferry equation cannot be applied in its simple form, but needs the introduction of an energy term describing the temperature dependency of glassy polymer bridges, which transmit the forces within flocculated filler clusters. The activation energy for carbon black and silica-filled elastomers is compared based on two different evaluation methods. The obtained dynamic data are shown to be related to a different friction behavior of elastomers regarding the two filler systems. Theoretical predictions of the stationary frictional behavior of the systems are in fair agreement with the experimental friction data at low sliding velocities. It is found that the formulated adhesion plays a dominant role on rough dry surfaces within this range of velocities.

  19. Soft silicone based interpenetrating networks as materials for actuators

    DEFF Research Database (Denmark)

    Yu, Liyun; Gonzalez, Lidia; Hvilsted, Søren

    2014-01-01

    A new approach based on silicone interpenetrating networks with orthogonal chemistries has been investigated with focus on developing soft and flexible elastomers with high energy densities and small viscous losses. The interpenetrating networks are made as simple two pot mixtures as for the comm...

  20. Thermoplastic Elastomers as LOVA Binders.

    Science.gov (United States)

    1987-01-01

    latent acid . A significant weight loss was observed around the decomposition temperature of ethyl naphthalene sulphonate . For the protonic acid as p...Equation for the Steady Shear Viscosity of Filled Polymer Melts", T.S. Stephens and H.H. Winter, in preparation, 1987. "Structure-Property Relationships...very minor weight loss was observed around 2701C with significant weight loss beginning at 4000C. In the presence of ethyl naphthalene sulphonate as

  1. Compatibility of selected elastomers with plutonium glovebox environment

    Energy Technology Data Exchange (ETDEWEB)

    Burns, R.

    1994-06-01

    This illustrative test was undertaken as a result of on-going failure of elastomer components in plutonium gloveboxes. These failures represent one of the major sources of required maintenance to keep gloveboxes operational. In particular, it was observed that the introduction of high specific activity Pu-238 into a glovebox, otherwise contaminated with Pu-239, resulted in an inordinate failure of elastomer components. Desiring to keep replacement of elastomer components to a minimum, a decision to explore a few possible alternative elastomer candidates was undertaken and reported upon herewith. Sample specimens of Neoprene, Urethane, Viton, and Hypalon elastomeric formulations were obtained from the Bacter Rubber Company. Strips of the elastomer specimens were placed in a plutonium glovebox and outside of a glovebox, and were observed for a period of three years. Of the four types of elastomers, only Hypalon remained completely viable.

  2. Elastomers in mud motors for oil field applications

    Energy Technology Data Exchange (ETDEWEB)

    Hendrik, J. [Baker Hughes INTEQ GmbH, Celle (Germany)

    1997-08-01

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Results of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.

  3. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    Science.gov (United States)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  4. Seismic base isolation: Elastomer characterization, bearing modeling and system response

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.; Wang, C.Y.; Hughes, T.H.

    1991-01-01

    This paper discusses several major aspects of seismic base isolation systems that employ laminated elastomer bearings. Elastomer constitutive models currently being used to represent the nonlinear elastic and hysteretic behavior are discussed. Some aspects of mechanical characterization testing of elastomers is presented along with representative tests results. The development of a finite element based mesh generator for laminated elastomer bearings is presented. Recent advances in the simulation of base isolated structures to earthquake motions are presented along with a sample problem. 13 refs., 19 figs., 1 tab.

  5. Silicon micro-mold

    Science.gov (United States)

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  6. Controlled synthesis of SBR elastomers

    Science.gov (United States)

    Zhou, Jin-Ping

    to a great extent on the amount of block styrene. With constant styrene and vinyl contents, the copolymer with the larger and longer blocky styrene gave a lower Tg value but produced a higher loss tangent, tan delta, and thus higher hysteresis loss. The second objective of this research was to synthesize well-defmed, tin-linked, star-branched elastomers. It was found that the tetraallyltin could be used as a reversible chain transfer agent in alkyllithium-initiated diene polymerization, as a consequence of lithium/tin exchange reactions. The polymers produced had very different combinations of linear and star branched polymer, depending on the [Sn]/[Li] ratio and the polymerization procedures. Hydrolysis of these polymer mixtures by HCl in THF resulted in a single peak with a narrow molecular weight distribution, which indicates that the exchange reaction is fast and reversible. In general, the presence of alkyl-tin compounds has little, if any, effect on the polybutadiene microstructures. The linking reaction of poly(dienyl)lithium with Tin(IV) chloride proceeds as a "living" reaction because the coupled polymer chain ends can still grow when more monomer is added. Kinetic study of the interaction of poly(dienyl)lithium with tin-linked polybutadiene showed redistribution of arms and linear polymers. The mechanism of transmetallation is proposed to occur via a stable penta-coordinated alkyl-tin lithium intermediate.

  7. Isothermal aging of three polyurethane elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Guess, T.R.

    1996-05-01

    Two polyurethane systems, EN-7 and L-100, have a long history as encapsulants and coatings in Sandia programs. These materials contain significant amounts of toluene diisocyanate (TDI), a suspect human carcinogen. As part of efforts to reduce the use of hazardous materials in the workplace, PET-90A, a polyurethane with less than 0.1% free TDI, was identified as a candidate for new applications and as a replacement for the more hazardous polyurethanes in selected programs. This report documents the results of a two-year accelerated aging study of PET-90A, EN-7, and L-100 polyurethane elastomers to characterize the effect of 135{degrees}F isothermal aging on selected physical, electrical, mechanical and thermal properties. In general, there was very little change in properties over the two year period for the three elastomers. The largest changes occurred in EN-7, which is the polyurethane with the longest service history in Sandia applications.

  8. Flexible, stretchable electroadhesives based on acrylic elastomers

    Science.gov (United States)

    Duduta, Mihai; Wood, Robert J.; Clarke, David R.

    2016-04-01

    Controllable adhesion is a requirement for a wide variety of applications including robotic manipulation, as well as locomotion including walking, crawling and perching. Electroadhesives have several advantages such as reversibility, low power consumption and controllability based on applied voltage. Most demonstrations of electroadhesive devices rely on fairly rigid materials, which cannot be stretched reversibly, as needed in some applications. We have developed a fast and reliable method for building soft, stretchable electroadhesive pads based on acrylic elastomers and electrodes made of carbon nanotubes. The devices produced were tested pre-deformation and in a stretched configuration. The adhesive force was determined to be in the 0.1 - 3.0 N/cm2 range, depending on the adhering surface. The electroadhesive devices were integrated with pre-stretched dielectric elastomer actuators to create a device in which the adhesion force could be tuned by changes in either the applied voltage or total area.

  9. Bistable dielectric elastomer minimum energy structures

    Science.gov (United States)

    Zhao, Jianwen; Wang, Shu; McCoul, David; Xing, Zhiguang; Huang, Bo; Liu, Liwu; Leng, Jinsong

    2016-07-01

    Dielectric elastomer minimum energy structures (DEMES) can realize large angular deformations by small voltage-induced strains, which make them an attractive candidate for use as soft actuators. If the task only needs binary action, the bistable structure will be an efficient solution and can save energy because it requires only a very short duration of voltage to switch its state. To obtain bistable DEMES, a method to realize the two stable states of traditional DEMES is provided in this paper. Based on this, a type of symmetrical bistable DEMES is proposed, and the required actuation pulse duration is shorter than 0.1 s. When a suitable mass is attached to end of the DEMES, or two layers of dielectric elastomer are affixed to both sides of the primary frame, the DEMES can realize two stable states and can be switched by a suitable pulse duration. To calculate the required minimum pulse duration, a mathematical model is provided and validated by experiment.

  10. Space Environment Effects on Silicone Seal Materials

    Science.gov (United States)

    deGroh, Henry C., III; Daniels, Christopher C.; Dever, Joyce A.; Miller, Sharon K.; Waters, Deborah L.; Finkbeiner, Joshua R.; Dunlap, Patrick H.; Steinetz, Bruce M.

    2010-01-01

    A docking system is being developed by the NASA to support future space missions. It is expected to use redundant elastomer seals to help contain cabin air during dockings between two spacecraft. The sealing surfaces are exposed to the space environment when vehicles are not docked. In space, the seals will be exposed to temperatures between 125 to -75 C, vacuum, atomic oxygen, particle and ultraviolet radiation, and micrometeoroid and orbital debris (MMOD). Silicone rubber is the only class of space flight-qualified elastomeric seal material that functions across the expected temperature range. NASA Glenn has tested three silicone elastomers for such seal applications: two provided by Parker (S0899-50 and S0383-70) and one from Esterline (ELA-SA-401). The effects of atomic oxygen (AO), UV and electron particle radiation, and vacuum on the properties of these three elastomers were examined. Critical seal properties such as leakage, adhesion, and compression set were measured before and after simulated space exposures. The S0899-50 silicone was determined to be inadequate for extended space seal applications due to high adhesion and intolerance to UV, but both S0383-70 and ELA-SA-401 seals were adequate.

  11. Inkjet printed multiwall carbon nanotube electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Baechler, Curdin; Gardin, Samuele; Abuhimd, Hatem; Kovacs, Gabor

    2016-05-01

    Dielectric elastomers (DE’s) offer promising applications as soft and light-weight electromechanical actuators. It is known that beside the dielectric material, the electrode properties are of particular importance regarding the DE performance. Therefore, in recent years various studies have focused on the optimization of the electrode in terms of conductivity, stretchability and reliability. However, less attention was given to efficient electrode processing and deposition methods. In the present study, digital inkjet printing was used to deposit highly conductive and stretchable electrodes on silicone. Inkjet printing is a versatile and cost effective deposition method, which allows depositing complex-shaped electrode patterns with high precision. The electrodes were printed using an ink based on industrial low-cost MWCNT. Experiments have shown that the strain-conductivity properties of the printed electrode are strongly depended on the deposition parameters like drop-spacing and substrate temperature. After the optimization of the printing parameters, thin film electrodes could be deposited showing conductivities of up to 30 S cm-1 without the need of any post-treatment. In addition, electromechanical tests with fabricated DE actuators have revealed that the inkjet printed MWCNT electrodes are capable to self-clear in case of a dielectric breakdown.

  12. Dynamic Soft Elasticity in Monodomain Nematic Elastomers

    OpenAIRE

    Hotta, A; Terentjev, E. M.

    2002-01-01

    We study the linear dynamic mechanical response of monodomain nematic liquid crystalline elastomers under shear in the geometry that allows the director rotation. The aspects of time-temperature superposition are discussed at some length and Master Curves are obtained between the glassy state and the nematic transition temperature Tni. However, the time-temperature superposition did not work through the clearing point Tni, due to change from the ``soft-elasticity'' nematic regime to the ordin...

  13. Spontaneous thermal expansion of nematic elastomers

    OpenAIRE

    Tajbakhsh, A. R.; Terentjev, E.M.

    2001-01-01

    We study the monodomain (single-crystal) nematic elastomer materials, all side-chain siloxane polymers with the same mesogenic groups and crosslinking density, but differing in the type of crosslinking. Increasing the proportion of long di-functional segments of main-chain nematic polymer, acting as network crosslinking, results in dramatic changes in the uniaxial equilibrium thermal expansion on cooling from isotropic phase. At higher concentration of main chains their behaviour dominates th...

  14. Characterization of graded polyurethane elastomer by FTIR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Polyurethane elastomers with graded structure were prepared in the graded temperature field. The samples were characterized by FTIR technology. The results show that the degree of microphase separation in the samples decreases with the decrease of the curing temperature. As far as the molar ratio of NH2 and NCO is concerned, the sample exhibits better graded morphology when the ratio is 0.95. The transparence of the samples prepared also changes gradually, increasing along the direction, in which temperature decreases.

  15. Characterization of graded polyurethane elastomer by FTIR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Polyurethane elastomers with graded structure were prepared in the graded temperature field. The samples were characterized by FTIR technology. The results show that degree of microphase separation in the samples decreases with the decrease of the curing temperature. As far as the molar ratio of NH2 and NCO is concerned, the sample exhibits better graded morphology when the ratio is 0.95. The transparence of the samples prepared also change gradually, increasing along the direction, in which temperature decrease.

  16. Polyurethane elastomers as maxillofacial prosthetic materials.

    Science.gov (United States)

    Goldberg, A J; Craig, R G; Filisko, F E

    1978-04-01

    A series of polyurethane elastomers based on an aliphatic diisocyanate and a polyether macroglycol was polymerized with various cross-link densities and OH/NCO ratios. Stoichiometries yielding between 8,600 and 12,900 gm/mole/crosslink and an OH/NCO ratio of 1.1 resulted in polymers with the low modulus, yet high strength and elongation necessary for maxillofacial applications.

  17. Stability analysis of dielectric elastomer film actuator

    Institute of Scientific and Technical Information of China (English)

    LIU YanJu; LIU LiWu; SUN ShouHua; ZHANG Zhen; LENG JinSong

    2009-01-01

    Dielectric elastomer (DE) is the most promising electroactive polymer material for smart actuators. When a piece of DE film is sandwiched between two compliant electrodes with a high electric field, due to the electrostatic force between the two electrodes, the film expands in-plane and contracts out-of-plane so that its thickness becomes thinner. The thinner thickness results in a higher electric field which inversely squeezes the film again. When the electric field exceeds the critical value, the dielectric field breaks down and the actuator becomes invalid. An elastic strain energy function with two material constants is used to analyze the stability of the dielectric elastomer actuator based on the nonlinear electromechanical field theory. The result shows that the actuator improves its stability as the ratio k of the material constants increases, which can be applied to design of actuators. Finally, this method is extended to study the stability of dielectric elastomers with elastic strain energy functions containing three and more material constants.

  18. Fiber optic pressure sensing with conforming elastomers.

    Science.gov (United States)

    Shao, Li-Yang; Jiang, Qi; Albert, Jacques

    2010-12-10

    A novel pressure sensing scheme based on the effect of a conforming elastomer material on the transmission spectrum of tilted fiber Bragg gratings is presented. Lateral pressure on the elastomer increases its contact angle around the circumference of the fiber and strongly perturbs the optical transmission of the grating. Using an elastomer with a Young's modulus of 20 MPa, a Poisson ratio of 0.48, and a refractive index of 1.42, the sensor reacts monotonically to pressures from 0 to 50 kPa (and linearly from 0 to 15 kPa), with a standard deviation of 0.25 kPa and maximum error of 0.5 kPa. The data are extracted from the optical transmission spectrum using Fourier analysis and we show that this technique makes the response of the sensor independent of temperature, with a maximum error of 2% between 25°C and 75°C. Finally, other pressure ranges can be reached by using conforming materials with different modulii or applying the pressure at different orientations.

  19. Toward a predictive model for elastomer seals

    Science.gov (United States)

    Molinari, Nicola; Khawaja, Musab; Sutton, Adrian; Mostofi, Arash

    Nitrile butadiene rubber (NBR) and hydrogenated-NBR (HNBR) are widely used elastomers, especially as seals in oil and gas applications. During exposure to well-hole conditions, ingress of gases causes degradation of performance, including mechanical failure. We use computer simulations to investigate this problem at two different length and time-scales. First, we study the solubility of gases in the elastomer using a chemically-inspired description of HNBR based on the OPLS all-atom force-field. Starting with a model of NBR, C=C double bonds are saturated with either hydrogen or intramolecular cross-links, mimicking the hydrogenation of NBR to form HNBR. We validate against trends for the mass density and glass transition temperature for HNBR as a function of cross-link density, and for NBR as a function of the fraction of acrylonitrile in the copolymer. Second, we study mechanical behaviour using a coarse-grained model that overcomes some of the length and time-scale limitations of an all-atom approach. Nanoparticle fillers added to the elastomer matrix to enhance mechanical response are also included. Our initial focus is on understanding the mechanical properties at the elevated temperatures and pressures experienced in well-hole conditions.

  20. Stability analysis of dielectric elastomer film actuator

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Dielectric elastomer (DE) is the most promising electroactive polymer material for smart actuators. When a piece of DE film is sandwiched between two compliant electrodes with a high electric field,due to the electrostatic force between the two electrodes,the film expands in-plane and contracts out-of-plane so that its thickness becomes thinner. The thinner thickness results in a higher electric field which inversely squeezes the film again. When the electric field exceeds the critical value,the dielectric field breaks down and the actuator becomes invalid. An elastic strain energy function with two material constants is used to analyze the stability of the dielectric elastomer actuator based on the nonlinear electromechanical field theory. The result shows that the actuator improves its stability as the ratio k of the material constants increases,which can be applied to design of actuators. Finally,this method is extended to study the stability of dielectric elastomers with elastic strain energy functions containing three and more material constants.

  1. Protection of elastomers with DLC film : deposition, characterization and performance

    NARCIS (Netherlands)

    Martinez Martinez, Diego

    2017-01-01

    Elastomers are materials which suffer from strong wear and cause high friction losses when subjected to dynamic contact, leading quite often to failure of the components in devices. In this Thesis, the protection of elastomers by the deposition of carbon-based films (DLC) is studied. To accomplish t

  2. Structural dynamics and interfacial properties of filler-reinforced elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, J; Klueppel, M, E-mail: Manfred.Klueppel@DIKautschuk.de [Deutsches Institut fuer Kautschuktechnologie e V, Eupener Strasse 33, D-30519 Hannover (Germany)

    2011-01-26

    The combined effect of filler networking and reduced chain mobility close to the filler interface is analyzed based on investigations of the relaxation dynamics of a solution of styrene butadiene rubber filled with different loadings and types of nanostructured carbon blacks. Dynamic-mechanical and dielectric spectra are studied in a wide frequency and temperature range. By referring to a tunneling process of charge carriers over nanoscopic gaps between adjacent carbon black particles the gap distance is evaluated from the dielectric spectra. This distance corresponds to the length of glassy-like polymer bridges forming flexible bonds between adjacent filler particles of the filler network. It is found that the gap distance decreases with increasing filler loading and specific surface area which correlates with an increase of the apparent activation energy of the filler network evaluated from dynamic-mechanical data. Due to the thermal activation of glassy-like polymer bridges the time-temperature superposition principle is not fulfilled for filled elastomers and the introduction of vertical shift factors is necessary to obtain viscoelastic master curves. The change in the low frequency viscoelastic properties by the incorporation of fillers is shown to be related to the superimposed dynamics of the filler network governed by the viscoelastic response of the glassy-like polymer bridges. This effect is distinguished from the reduced chain mobility close to the filler surface which results in a broadening of the glass transition on the high temperature or low frequency side. The microstructure-based interpretation of viscoelastic data is supported by an analysis of the relaxation time spectra.

  3. Structural dynamics and interfacial properties of filler-reinforced elastomers

    Science.gov (United States)

    Fritzsche, J.; Klüppel, M.

    2011-01-01

    The combined effect of filler networking and reduced chain mobility close to the filler interface is analyzed based on investigations of the relaxation dynamics of a solution of styrene butadiene rubber filled with different loadings and types of nanostructured carbon blacks. Dynamic-mechanical and dielectric spectra are studied in a wide frequency and temperature range. By referring to a tunneling process of charge carriers over nanoscopic gaps between adjacent carbon black particles the gap distance is evaluated from the dielectric spectra. This distance corresponds to the length of glassy-like polymer bridges forming flexible bonds between adjacent filler particles of the filler network. It is found that the gap distance decreases with increasing filler loading and specific surface area which correlates with an increase of the apparent activation energy of the filler network evaluated from dynamic-mechanical data. Due to the thermal activation of glassy-like polymer bridges the time-temperature superposition principle is not fulfilled for filled elastomers and the introduction of vertical shift factors is necessary to obtain viscoelastic master curves. The change in the low frequency viscoelastic properties by the incorporation of fillers is shown to be related to the superimposed dynamics of the filler network governed by the viscoelastic response of the glassy-like polymer bridges. This effect is distinguished from the reduced chain mobility close to the filler surface which results in a broadening of the glass transition on the high temperature or low frequency side. The microstructure-based interpretation of viscoelastic data is supported by an analysis of the relaxation time spectra.

  4. Microstructured silicon radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Derzon, Mark S.; Draper, Bruce L.

    2017-03-14

    A radiation detector comprises a silicon body in which are defined vertical pores filled with a converter material and situated within silicon depletion regions. One or more charge-collection electrodes are arranged to collect current generated when secondary particles enter the silicon body through walls of the pores. The pores are disposed in low-density clusters, have a majority pore thickness of 5 .mu.m or less, and have a majority aspect ratio, defined as the ratio of pore depth to pore thickness, of at least 10.

  5. About Dental Amalgam Fillings

    Science.gov (United States)

    ... and Medical Procedures Dental Devices Dental Amalgam About Dental Amalgam Fillings Share Tweet Linkedin Pin it More ... should I have my fillings removed? What is dental amalgam? Dental amalgam is a dental filling material ...

  6. Active vibration isolation platform on base of magnetorheological elastomers

    Science.gov (United States)

    Mikhailov, Valery P.; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  7. Soft and Ultra-soft Elastomers

    Science.gov (United States)

    Daniel, William; Burdynska, Joanna; Kirby, Sam; Zhou, Yang; Matyjaszewski, Krzysztof; Rubinstein, Michael; Sheiko, Sergei; UNC-MIRT Team

    2014-03-01

    Polymeric networks are attractive engineering materials utilized for various mechanically demanding applications. As such, much attention has been paid to reinforcement of polymer mechanical properties with little interest in how to make softer elastomers to address numerous biomedical applications including implants and cell differentiation. Without swelling in a solvent, it is challenging to obtain materials with a modulus below ca.105 Pa, which is dictated by chain entanglements. Here we present two methodologies for the creation of soft and ultra-soft dry elastomeric compounds. The first method utilizes polymer capsules as temperature responsive filler. Depending on volume fraction of microcapsules this method is capable of fine tuning modulus within an order of magnitude. The second technique uses the densely grafted molecular brush architecture to create solvent-free polymer melts and elastomers with plateau moduli in the range one hundred to ten hundred Pa. Such compounds may find uses in biomedical applications including reconstructive surgery and cell differentiation. National Science Foundation DMR-1122483.

  8. Compatibility of elastomers in palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Masjuki, H.H.; Siang, C.T.; Fazal, M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-10-15

    In recent time, environmental awareness and concern over the rapid exhaustion of fossil fuels have led to an increased popularity of biodiesel as an alternative fuel for automobiles. However, there are concerns over enhanced degradation of automotive materials in biodiesel. The present study aims to investigate the impact of palm biodiesel on the degradation behavior of elastomers such as nitrile rubber (NBR), polychloroprene, and fluoro-viton A. Static immersion tests in B0 (diesel), B10 (10% biodiesel in diesel), B100 (biodiesel) were carried out at room temperature (25 C) and at 50 C for 500 h. At the end of immersion test, degradation behavior was investigated by measuring mass, volume, hardness as well as tensile strength and elongation. The exposed elastomer surface was studied by scanning electron microscopy (SEM). Fourier Transform Infrared (FTIR) spectroscopy was carried out to identify the chemical and structural changes. Results showed that the extent of degradation was higher for both polychloroprene and NBR while fluoro-viton exhibited good resistance to degradation and was least attacked. (author)

  9. Preparation and Properties of Magnesium Hydroxide/Aluminum Hydroxide/Melamine Phosphate Filled Flame Retardant Silicone Rubber%氢氧化镁/氢氧化铝/三聚氰胺磷酸盐协效无卤膨胀型阻燃硅橡胶的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    李兴建; 张宜恒; 孙道兴

    2013-01-01

    以碱催化平衡聚合法制备的a,ω二羟基聚二甲基硅氧烷为基胶,制备氢氧化镁/氢氧化铝/三聚氰胺磷酸盐(MP)协效无卤膨胀型阻燃硅橡胶,并对其结构和性能进行研究.结果表明:氢氧化镁/氢氧化铝/MP可产生阻燃协同作用,能够使复合硅橡胶的阻燃性能、热稳定性能和抑烟性能进一步增强.氢氧化镁/氢氧化铝/MP阻燃硅橡胶不仅具有优异的阻燃性能,还能保持良好的物理性能,当复合阻燃剂氢氧化镁/氢氧化铝/MP并用比为12/18/30时,复合硅橡胶的综合性能最佳.%The magnesium hydroxide/aluminum hydroxide/melamine phosphate(MP) filled retardant silicone rubber was prepared by using α,ω-dihydroxy polydimethylsiloxane,which was prepared by equilibrium polymerization by using alkaline catalyst,and the structure and properties of the flame retardant silicone rubber were investigated.The results showed that,the magnesium hydroxide/aluminum hydroxide/MP flame retardants possessed excellent synergistic flame retardant effect,and the flame retardancy,thermal stability and smoke suppression of silicone rubber composite were improved.The magnesium hydroxide/aluminum hydroxide/MP flame retardant silicone rubber also possessed good physical properties.As the magnesium hydroxide/aluminum hydroxide/MP blend ratio was 12/18/30,the comprehensive properties of the silicone rubber composite was the best.

  10. Dynamic analysis of structures with elastomers using substructuring with non-matched interfaces and improved modeling of elastomer properties

    Science.gov (United States)

    Lin, Hejie

    A variety of engineering structures are composed of linear structural components connected by elastomers. The components are commonly analyzed using large-scale finite element models. Examples include engine crankshafts with torsional dampers, engine structures with an elastomeric gasket between the head and the block, engine-vehicle structures using elastomeric engine mounts, etc. An analytical method is presented in this research for the dynamic analysis of large-scale structures with elastomers. The dissertation has two major parts. In the first part, a computationally efficient substructuring method is developed for substructures with non-matched interface meshes. The method is based on the conventional fixed-interface, Craig-Bampton component mode synthesis (CMS) method. However, its computational efficiency is greatly enhanced with the introduction of interface modes. Kriging interpolation at the interfaces between substructures ensures compatibility of deformation. In the second part, a series of dynamic measurements of mechanical properties of elastomers is presented. Dynamic stiffness as a function of frequency under controlled temperature and vibrational amplitude is measured. Also, the strain and stress relaxation behavior is tested to investigate the linearity and histeresis of an elastomer. The linearity of dynamic stiffness is studied and discussed in detail through the strain and stress relaxation test. The dynamic stiffness of elastomers is measured at different conditions such as temperature, frequency, and amplitude. The relationships between dynamic stiffness and temperature, and frequency and amplitude are discussed. After the dynamic properties of an elastomer are measured, a mathematical model is presented for characterizing the frequency and temperature-dependent properties of elastomers from the fundamental features of the molecular chains forming them. Experimental observations are used in the model development to greatly enhance the

  11. Optimization of electrode placement in electromyographic control of dielectric elastomers

    Science.gov (United States)

    Walbran, Scott H.; Calius, Emilio P.; Dunlop, G. Reg; Anderson, Iain A.

    2009-03-01

    Human intention recognition is becoming a key part of powered prosthetics research. With the advent of smart materials, the usefulness of powered prosthetics has increased. Correspondingly, there is a greater need for control technology. Electromyography (EMG) has previously been used to control myoelectric hands; however the approach to electrode placement has been speculative at best. Carpi, Raspopovic and De Rossi have shown that dielectric elastomer actuators (DEAs) can be controlled by a variety of human electrophysiological signals, including EMG. To control a DEA device with multiple degrees of freedom using EMG, multiple electrode sites are required. This paper presents an approach to control an array of DEAs using a series of electrodes and an optimized electrode data filtering scheme to maximize classification accuracy when differentiating between hand grasps. A silicon mould of a human forearm was created with an array of electrodes embedded within it. Data from each electrode site was recorded using the Universal Electrophysiological Mapping (UnEmap) system developed at the University of Auckland Bioengineering Institute for the amplification and filtering of multiple biopotential signals. The recorded data was then processed off-line, in order to calculate spatial gradients; this would determine which electrode sites would give the best bipolar readings. The spatial gradients were then compared to each other in order to find the optimal electrode sites. Several points in the extensor compartment of the forearm were found to be useful in recognizing grasping, while several points in the flexor compartment of the forearm were found to be useful in differentiating between grasps.

  12. fs- and ns-laser processing of polydimethylsiloxane (PDMS) elastomer: Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Atanasov, P.A.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Amoruso, S.; Wang, X.; Bruzzese, R. [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Grochowska, K.; Śliwiński, G. [Photophysics Department, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdańsk (Poland); Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research group, SURF “Electrochemical and Surface Engineering” (Belgium); Delplancke, M.P.; Dille, J. [Université Libre de Bruxelles, Materials Engineering, Characterization, Synthesis and Recycling (Service 4MAT), Faculté des Sciences Appliquées, 1050 Brussels (Belgium)

    2015-05-01

    Highlights: • fs- and ns-laser (266 and 532 nm) processing of PDMS-elastomer, in air, is studied. • High definition tracks (on the PDMS-elastomer surface) for electrodes are produced. • Selective Pt or Ni metallization of the tracks is produced via electroless plating. • Irradiated and metallized tracks are characterized by μ-Raman spectrometry and SEM. • DC resistance of Pt and Ni tracks is always between 0.5 and 15 Ω/mm. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial as encapsulation and/or as substrate insulator carrier for long term neural implants because of its remarkable properties. Femtosecond (λ = 263 and 527 nm) and nanosecond (266 and 532 nm) laser processing of PDMS-elastomer surface, in air, is investigated. The influence of different processing parameters, including laser wavelength, pulse duration, fluence, scanning speed and overlapping of the subsequent pulses, on the surface activation and the surface morphology are studied. High definition tracks and electrodes are produced. Remarkable alterations of the chemical composition and structural morphology of the ablated traces are observed in comparison with the native material. Raman spectra illustrate well-defined dependence of the chemical composition on the laser fluence, pulse duration, number of pulses and wavelength. An extra peak about ∼512–518 cm{sup −1}, assigned to crystalline silicon, is observed after ns- or visible fs-laser processing of the surface. In all cases, the intensities of Si−O−Si symmetric stretching at 488 cm{sup −1}, Si−CH{sub 3} symmetric rocking at 685 cm{sup −1}, Si−C symmetric stretching at 709 cm{sup −1}, CH{sub 3} asymmetric rocking + Si−C asymmetric stretching at 787 cm{sup −1}, and CH{sub 3} symmetric rocking at 859 cm{sup −1}, modes strongly decrease. The laser processed areas are also analyzed by SEM and optical microscopy. Selective Pt or Ni metallization of the laser processed

  13. Toughening elastomers with sacrificial bonds and watching them break.

    Science.gov (United States)

    Ducrot, Etienne; Chen, Yulan; Bulters, Markus; Sijbesma, Rint P; Creton, Costantino

    2014-04-11

    Elastomers are widely used because of their large-strain reversible deformability. Most unfilled elastomers suffer from a poor mechanical strength, which limits their use. Using sacrificial bonds, we show how brittle, unfilled elastomers can be strongly reinforced in stiffness and toughness (up to 4 megapascals and 9 kilojoules per square meter) by introducing a variable proportion of isotropically prestretched chains that can break and dissipate energy before the material fails. Chemoluminescent cross-linking molecules, which emit light as they break, map in real time where and when many of these internal bonds break ahead of a propagating crack. The simple methodology that we use to introduce sacrificial bonds, combined with the mapping of where bonds break, has the potential to stimulate the development of new classes of unfilled tough elastomers and better molecular models of the fracture of soft materials.

  14. Amino alcohol-based degradable poly(ester amide) elastomers

    NARCIS (Netherlands)

    C.J. Bettinger (Christopher); J.P. Bruggeman (Joost); J.T. Borenstein (Jeffrey); R.S. Langer (Robert)

    2008-01-01

    textabstractCurrently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited c

  15. Evidence for the stress-thermal rule in an elastomer subjected to simple elongation

    Science.gov (United States)

    Broerman, A. W.; Venerus, D. C.; Schieber, J. D.

    1999-10-01

    Anisotropic thermal diffusivity is examined in a cross-linked silicone elastomer deformed in simple elongation. Thermal diffusivity both parallel and perpendicular to the stretch direction is measured using an optical technique called forced Rayleigh scattering. The thermal diffusivity is found to increase linearly with stretch ratio to a value 10% larger than the equilibrium value for a stretch ratio of two. Measurements of the birefringence and tensile stress were used to evaluate the stress-optic rule, which was found to be valid. The difference between measured thermal diffusivities parallel and perpendicular to the stretch direction and tensile stress data were used to show the thermal conductivity and stress tensors are linearly related. These data appear to be the first direct evaluation of the stress-thermal rule in a deformed polymeric material.

  16. A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    -methyl pyrrolidinone) with 1 wt% of surfactant (Triton X-100). The dispersion of MWCNTs in PDMS-PEG systemis shown in figure 2 where MWCNTs (dark areas) are well-distributed in the system indicating an acceptable dispersional though some big clusters appear in the optical microscope image. The conductivity of 4 phr...... MWCNTs is 10-3 S/cm compared to 10-1 S/cm of a non-stretchable reference conducting silicone elastomer (LR3162 from Wacker). Furthermore, PDMS-PEG block copolymer with 4 phr MWCNTs (Young’s modulus, Y = 0.26 MPa) is softer and more stretchable thanLR3162 (Y = 1.17 MPa)....

  17. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Clark, E.

    2011-09-22

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Polymeric materials become damaged by exposure over time to ionizing radiation. Despite the limited lifetime, polymers have unique engineering material properties and polymers continue to be used in tritium handling systems. In tritium handling systems, polymers are employed mainly in joining applications such as valve sealing surfaces (eg. Stem tips, valve packing, and O-rings). Because of the continued need to employ polymers in tritium systems, over the past several years, programs at the Savannah River National Laboratory have been studying the effect of tritium on various polymers of interest. In these studies, samples of materials of interest to the SRS Tritium Facilities (ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, Teflon{reg_sign}), Vespel{reg_sign} polyimide, and the elastomer

  18. Dielectric elastomer composites: A general closed-form solution in the small-deformation limit

    Science.gov (United States)

    Spinelli, Stephen A.; Lefèvre, Victor; Lopez-Pamies, Oscar

    2015-10-01

    A solution for the overall electromechanical response of two-phase dielectric elastomer composites with (random or periodic) particulate microstructures is derived in the classical limit of small deformations and moderate electric fields. In this limit, the overall electromechanical response is characterized by three effective tensors: a fourth-order tensor describing the elasticity of the material, a second-order tensor describing its permittivity, and a fourth-order tensor describing its electrostrictive response. Closed-form formulas are derived for these effective tensors directly in terms of the corresponding tensors describing the electromechanical response of the underlying matrix and the particles, and the one- and two-point correlation functions describing the microstructure. This is accomplished by specializing a new iterative homogenization theory in finite electroelastostatics (Lopez-Pamies, 2014) to the case of elastic dielectrics with even coupling between the mechanical and electric fields and, subsequently, carrying out the pertinent asymptotic analysis. Additionally, with the aim of gaining physical insight into the proposed solution and shedding light on recently reported experiments, specific results are examined and compared with an available analytical solution and with new full-field simulations for the special case of dielectric elastomers filled with isotropic distributions of spherical particles with various elastic dielectric properties, including stiff high-permittivity particles, liquid-like high-permittivity particles, and vacuous pores.

  19. A disposable and multifunctional capsule for easy operation of microfluidic elastomer systems

    Science.gov (United States)

    Thorslund, Sara; Nguyen, Hugo; Läräng, Thomas; Barkefors, Irmeli; Kreuger, Johan

    2011-12-01

    The global lab-on-chip and microfluidic markets for cell-based assays have been predicted to grow considerably, as novel microfluidic systems enable cell biologists to perform in vitro experiments at an unprecedented level of experimental control. Nevertheless, microfluidic assays must, in order to compete with conventional assays, be made available at easily affordable costs, and in addition be made simple to operate for users having no previous experience with microfluidics. We have to this end developed a multifunctional microfluidic capsule that can be mass-produced at low cost in thermoplastic material. The capsule enables straightforward operation of elastomer inserts of optional design, here exemplified with insert designs for molecular gradient formation in microfluidic cell culture systems. The integrated macro-micro interface of the capsule ensures reliable connection of the elastomer fluidic structures to an external perfusion system. A separate compartment in the capsule filled with superabsorbent material is used for internal waste absorption. The capsule assembly process is made easy by integrated snap-fits, and samples within the closed capsule can be analyzed using both inverted and upright microscopes. Taken together, the capsule concept presented here could help accelerate the use of microfluidic-based biological assays in the life science sector.

  20. BIOFILM DEVELOPMENT IN TIME ON A SILICONE VOICE PROSTHESIS - A CASE-STUDY

    NARCIS (Netherlands)

    NEU, TR; DEBOER, CE; VERKERKE, GJ; SCHUTTE, HK; RAKHORST, G; VANDERMEI, HC; BUSSCHER, HJ

    1994-01-01

    Voice prostheses from silicone elastomers become rapidly colonised by a mixed biofilm of bacteria and yeasts. In this study, microorganisms were isolated from biofilms on explanted prostheses after having been in place for various time intervals ranging from 1 to 67 d. The isolates were examined for

  1. Solubility of gases and solvents in silicon polymers: molecular simulation and equation of state modeling

    DEFF Research Database (Denmark)

    Economou, Ioannis; Makrodimitri, Zoi A.; Kontogeorgis, Georgios

    2007-01-01

    The solubility of n-alkanes, perfluoroalkanes, noble gases and light gases in four elastomer polymers containing silicon is examined based on molecular simulation and macroscopic equation of state modelling. Polymer melt samples generated from molecular dynamics ( MD) are used for the calculation...

  2. Modeling and control of a dielectric elastomer actuator

    Science.gov (United States)

    Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian

    2016-04-01

    The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.

  3. Polyurethane elastomers from morphology to mechanical aspects

    CERN Document Server

    Prisacariu, Cristina

    2011-01-01

    A comprehensive account of the physical / mechanical behaviour of polyurethanes (PU´s) elastomers, films and blends of variable crystallinity. Aspects covered include the elasticity and inelasticity of amorphous to crystalline PUs, in relation to their sensitivity to chemical and physical structure. A study is made of how aspects of the constitutive responses of PUs vary with composition: the polyaddition procedure, the hard segment, soft segment and chain extender (diols and diamines) are varied systematically in a large number of systems of model and novel crosslinked andthermoplastic PUs. Results will be related to: microstructural changes, on the basis of evidence from x-ray scattering (SAXS and WAXS), and also dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC) and IR dichroism. Inelastic effects will be investigated also by including quantitative correlations between the magnitude of the Mullins effect and the fractional energy dissipation by hysteresis under cyclic straining, g...

  4. Highly stretchable nanoalginate based polyurethane elastomers.

    Science.gov (United States)

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2013-06-20

    Highly stretchable elastomeric samples based on cationic polyurethane dispersions-sodium alginate nanoparticles (CPUD/SA) were prepared by the solution blending of sodium alginate and aqueous polyurethane dispersions. CPUDs were synthesized by step growth polymerization technique using N-methyldiethanolamine (MDEA) as a source of cationic emulsifier. The chemical structure and thermal-mechanical properties of these systems were characterized using FTIR and DMTA, respectively. The presence of nanoalginate particles including nanobead and nanorod particles were proved by SEM and EDX. It was observed that thermal properties of composites increased with increasing SA content. All prepared samples were known as thermoplastic-elastomers with high percentages of elongation. Excellent compatibility of prepared nanocomposites was proved by the DMTA data.

  5. EB radiation crosslinking of elastomers [rapid communication

    Science.gov (United States)

    Bik, J.; Głuszewski, W.; Rzymski, W. M.; Zagórski, Z. P.

    2003-06-01

    Radiation-induced crosslinking is proposed as successful alternative to conventional, chemical methods of crosslinking of elastomers. Hydrogenated acrylonitrile-butadiene rubber was irradiated with 10 MeV electron beam to doses up to 300 kGy. Irradiated samples were investigated for the extent of crosslinking and for properties important for understanding of mechanisms. It follows from sol-gel analysis, that for 100 crosslinking acts there are 6-9 acts of chain scission. It is less than expected from the 20% participation of multi-ionization spurs, also in the solid state, as announced during the previous 9th Tihany Conference (Radiat. Phys. Chem. 56 (1999) 559). However, the apparent too low yield of multi-ionization spurs could be explained by partial conversion of scission products into crosslinks of specific trifunctional Y type. Our investigations confirm the usefulness of consideration of different radiation spurs in polymers, as well as in all, low LET irradiated media.

  6. Tactile display with dielectric multilayer elastomer actuatorsq

    Science.gov (United States)

    Matysek, Marc; Lotz, Peter; Schlaak, Helmut F.

    2009-03-01

    Tactile perception is the human sensation of surface textures through the vibrations generated by stroking a finger over the surface. The skin responds to several distributed physical quantities. Perhaps the most important are high-frequency vibrations, pressure distributions (static shape) and thermal properties. The integration of tactile displays in man-machine interfaces promises a more intuitive handling. For this reason many tactile displays are developed using different technologies. We present several state-of-the-art tactile displays based on different types of dielectric elastomer actuators to clarify the advantages of our matrix display based on multilayer technology. Using this technology perpendicular and hexagonal arrays of actuator elements (tactile stimulators) can be integrated into a PDMS substrate. Element diameters down to 1 mm allow stimuli at the range of the human two-point-discrimination threshold. Driving the elements by column and row addressing enables various stimulation patterns with a reduced number of feeding lines. The transient analysis determines charging times of the capacitive actuators depending on actuator geometry and material parameters. This is very important to ensure an adequate dynamic characteristic of the actuators to stimulate the human skin by vibrations. The suitability of multilayer dielectric elastomer actuators for actuation in tactile displays has been determined. Beside the realization of a static tactile display - where multilayer DEA are integrated as drives for movable contact pins - we focus on the direct use of DEA as a vibrotactile display. Finally, we present the scenario and achieved results of a recognition threshold test. Even relative low voltages in the range of 800 V generate vibrations with 100% recognition ratio within the group of participants. Furthermore, the frequency dependent characteristic of the determined recognition threshold confirms with established literature.

  7. Electrospraying and ultraviolet light curing of nanometer-thin polydimethylsiloxane membranes for low-voltage dielectric elastomer transducers

    Science.gov (United States)

    Osmani, Bekim; Töpper, Tino; Siketanc, Matej; Kovacs, Gabor M.; Müller, Bert

    2017-04-01

    Dielectric elastomer transducers (DETs) have attracted interest as actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. To reach strains of more than 10 %, they currently require operating voltages of several hundred volts. In medical applications for artificial muscles, however, their operation is limited to a very few tens of volts, which implies high permittivity materials and thin-film structures. Such micro- or nanostructures can be prepared using electro-spraying, a cost-effective technique that allows upscaling using multiple nozzles for the fabrication of silicone films down to nanometer thickness. Deposition rates of several micrometers per hour have already been reached. It has been recently demonstrated that such membranes can be fabricated by electro-spraying and subsequent ultraviolet light irradiation. Herein, we introduce a relatively fast deposition of a dimethyl silicone copolymer fluid that contains mercaptopropyl side chains in addition to the methyl groups. Its elastic modulus was tuned with the irradiation dose of the 200 W Hg-Xe lamp. We also investigated the formation of elastomer films, using polymer concentrations in ethyl acetate of 1, 2, 5 and 10 vol%. After curing, the surface roughness was measured by means of atomic force microscopy. This instrument also enabled us to determine the average elastic modulus out of, for example, 400 nanoindentation measurements, using a spherical tip with a radius of 500 nm. The elastomer films were cured for a period of less than one minute, a speed that makes it feasible to combine electro-spraying and in situ curing in a single process step for fabricating low-voltage, multilayer DETs.

  8. Getting a prescription filled

    Science.gov (United States)

    ... are located inside of a grocery or large "chain" store. It is best to fill all prescriptions ... be used for long-term medicines and medical supplies. The website should have clear directions for filling ...

  9. Clinical evauation on axial length and intraocular lens power measurementin silicone oil-filled eyes using A-scan ultrasound%A超测量硅油填充眼眼轴及人工晶状体度数的临床评价

    Institute of Scientific and Technical Information of China (English)

    康欣乐; 李明新

    2013-01-01

    Objective To evaluate the accuracy of axial length and intraocular lens (IOL) measurement in silicone oil - filled eyes using A - scan ultrasound. Methods The cuvette was put with the silicone oil taken from the patients ' eyes, pure silicone oil and balanced salt solution. The speed of ultrasonic wave in these solvent was measured with empir -ical method using Compat tach Ⅱ A/B acoustic instrument of French QUANTEL MEDICAL company . Then the measured axial length was corrected to evaluate the accurate power of IOL . 25 patients who had vitrectomy and silicone oil filled surgery were collected. Firstly, using the recognized acoustic speed of 0x5700 to measure the axial length of the sick eye. Secondly, using the speed by our experiment to measure the sick eye in sitting position and in supine position . Fi-naly, the power of IOL was then calculated through SRK II formula by the axial length in sitting position. They received silicone oil extraction and cataract phacoemulsification and IOL implantation in one operation . 3 months after surgery, all eyes were reexamined and the actual axial length were measured again . The eye axial length and the best correct visual a -cuity were compared before and after the operation. The postoperative refraction and preoperative expected refraction was compared. Results The mean width of colorimetric cuvettes filled with pure Ox5700 silicone oil was (31.440 ±0.011) mm, that filled with the oil taken from patients' eyes was (31.420 ± 0.047 ) mm. There was no difference between them. The width of colorimetric cuvettes filled with the balanced salt solution was 21.07 mm. The recognized acoustic speed of Ox5700 silicone oil was 990 m/s. Before the surgrey, the mean axial length under the acoustic speed of 990 m/s in sili-cone oil tamponade eyes was (23. 219 ±0.125) mm. The mean axial length under the acoustic speed of 1 027m/s in sili-cone oil tamponade eyes was (24. 103 ±0. 135) mm in sitting position and was (24. 116 ±0. 128

  10. Tissue Response to, and Degradation Rate of, Photocrosslinked Trimethylene Carbonate-Based Elastomers Following Intramuscular Implantation

    Directory of Open Access Journals (Sweden)

    Brian G. Amsden

    2010-02-01

    Full Text Available Cylindrical elastomers were prepared through the UV-initiated crosslinking of terminally acrylated, 8,000 Da star-poly(trimethylene carbonate-co-ε-caprolactone and star-poly(trimethylene carbonate-co-D,L-lactide. These elastomers were implanted intramuscularly into the hind legs of male Wistar rats to determine the influence of the comonomer on the weight loss, tissue response, and change in mechanical properties of the elastomer. The elastomers exhibited only a mild inflammatory response that subsided after the first week; the response was greater for the stiffer D,L-lactide-containing elastomers. The elastomers exhibited weight loss and sol content changes consistent with a bulk degradation mechanism. The D,L-lactide-containing elastomers displayed a nearly zeroorder change in Young’s modulus and stress at break over the 30 week degradation time, while the ε-caprolactone-containing elastomers exhibited little change in modulus or stress at break.

  11. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures

    Science.gov (United States)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-06-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.

  12. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures

    Science.gov (United States)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-01-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel–elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm−2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel–elastomer hybrids including anti-dehydration hydrogel–elastomer hybrids, stretchable and reactive hydrogel–elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer. PMID:27345380

  13. Stretchable nanocomposite electrodes with tunable mechanical properties by supersonic cluster beam implantation in elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Borghi, F.; Podestà, A.; Milani, P., E-mail: pmilani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Melis, C.; Colombo, L. [Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Ghisleri, C.; Ravagnan, L. [WISE srl, Piazza Duse 2, 20122 Milano (Italy)

    2015-03-23

    We demonstrate the fabrication of gold-polydimethylsiloxane nanocomposite electrodes, by supersonic cluster beam implantation, with tunable Young's modulus depending solely on the amount of metal clusters implanted in the elastomeric matrix. We show both experimentally and by atomistic simulations that the mechanical properties of the nanocomposite can be maintained close to that of the bare elastomer for significant metal volume concentrations. Moreover, the elastic properties of the nanocomposite, as experimentally characterized by nanoindentation and modeled with molecular dynamics simulations, are also well described by the Guth-Gold classical model for nanoparticle-filled rubbers, which depends on the presence, concentration, and aspect ratio of metal nanoparticles, and not on the physical and chemical modification of the polymeric matrix due to the embedding process. The elastic properties of the nanocomposite can therefore be determined and engineered a priori, by controlling only the nanoparticle concentration.

  14. Low moduli elastomers with low viscous dissipation

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Yu, Liyun; Skov, Anne Ladegaard

    2012-01-01

    A controlled reaction schema for addition curing silicones leads to both significantly lower elastic modulus and lower viscous dissipation than for the chemically identical network prepared by the traditional reaction schema....

  15. Silicone films with high stiffness and increasing permittivity through dipole-grafting

    Science.gov (United States)

    Bluemke, Martin; Wegener, Michael; Krueger, Hartmut

    2015-04-01

    Dielectric elastomer actuators (DEAs) are smart materials that can be optimized by modifying the dielectric or mechanical properties of the electroactive polymer. The incorporation of inorganic particles in silicone elastomers shows a permittivity enhancement and undesired stiffening. We present another concept to obtain comparable properties by dipole grafting. Therefore, the organic dipole N-ally-N-methyl-4-nitroaniline is grafted in competition with the vinyl terminated PDMS to a hydrosilane cross-linker forming the PDMS network. With this procedure PDMS films with up to 25 wt% of the dipole were solvent casted and the chemical, mechanical, electrical, plus electromechanical properties of these novel materials were investigated.

  16. Thermal Analysis Characterization of Elastomers and Carbon Black Filled Rubber Composites for Army Applications

    Science.gov (United States)

    1985-06-01

    Organ~ce, 60.40 % Carbon Black, 36.15 450(S) 2 Carbon black, 36.40 500 % Residue, 2.09 410(SH) 2 Residue, 3.20 22 2 Organica , 64.99 2 Organics, 62.97 2...64.92 1 Organics, 62.30 I Carbon Black, 31.42 395(S) I Carbon Black, 34.02 420 Z Residue, 3.66 440(SR) 1 Reuidue, 3.69 73 - C I Organica , 6’.33 470... Organica , 62.80 % Organics, 62.80 % Carbon black, 36.27 470(S) 2 Carbon black, It.60 505 2 Residue, 0.963 435(51) 2 Residue, 1.60 Iii 2 Organics

  17. Silica-filled elastomers: polymer chain and filler characterization by a SANS-SAXS approach

    Energy Technology Data Exchange (ETDEWEB)

    Botti, A.; Pyckhout-Hintzen, W.; Richter, D. [IFF-Forschungszentrum Juelich, 52425 Juelich (Germany); Urban, V. [ESRF, BP220, 38043 Grenoble Cedex (France); IPNS, Argonne 60439-4814 (United States); Kohlbrecher, J. [PSI, 5232 Villigen (Switzerland); Straube, E. [University of Halle, FB Physik, 06099 Halle (Germany)

    2002-07-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  18. Silica-filled elastomers polymer chain and filler characterization by a SANS-SAXS approach

    CERN Document Server

    Botti, A; Richter, D; Urban, V; Ipns, A 6 4; Kohlbrecher, J; Straube, E

    2002-01-01

    A study of composites based upon commercially available silica fillers and networks of blends of protonated and deuterated anionically prepared polyisoprene is presented. The extraction of the single chain structure factor for SANS in the polymeric soft phase in isotropic and deformed state has been performed for the first time. The quasi three-component system could not be compositionally matched due to the internal structures of the activated fillers. For this, a parallel SAXS investigation provided the neccessary information on the filler structure which was lacking in the SANS analysis. Whereas mechanically clear reinforcement at low strains and filler-networking can be observed, the microscopic characterization of the chain deformation in the framework of the network tube model agrees with the estimates for hydrodynamic reinforcement of fractal fillers. (orig.)

  19. Moisture-cured silicone-urethanes-candidate materials for tissue engineering: a biocompatibility study in vitro.

    Science.gov (United States)

    Mrówka, P; Kozakiewicz, J; Jurkowska, A; Sienkiewicz, E; Przybylski, J; Lewandowski, Z; Przybylski, J; Lewandowska-Szumieł, M

    2010-07-01

    This study was performed to verify the response of human bone-derived cells (HBDCs) to moisture-cured silicone-urethanes (mcSUUs) in vitro, as the first step toward using them as scaffolds for bone tissue engineering. Good surgical handling, tissue cavity filling, stable mechanical properties, and potentially improved oxygen supply to cells after implantation justify the investigation of these nondegradable elastomers. A set of various mcSUUs were obtained by moisture-curing NCO-terminated prepolymers, synthesized from oligomeric siloxane diols of two different oligosiloxane chain lengths, and two different diisocyanates (MDI and IPDI), using two different NCO/OH molar ratios. Dibutyltindilaurate (DBTL) or N-dimethylethanolamine (N-met) served as catalysts. After 7 days of culture, cell number, viability, and alkaline phosphatase (ALP) activity were determined, and after 21 days, cell viability and collagen production were determined. Material characteristics significantly influenced the cell response. The mcSUUs prepared with DBTL (widely used in the syntheses of biomaterials) were cytotoxic. The MDI-based mcSUUs were significantly more favored by HBDCs than the IPDI-based ones in all performed tests. MDI-based material with low 2/1 NCO/OH and short chain length was the best support for cells, comparable with tissue-culture polystyrene (with ALP activity even higher). HBDCs cultured on porous scaffolds from this mcSUU produced a tissue-like structure in culture. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  20. Current leakage performance of dielectric elastomers under different boundary conditions

    Science.gov (United States)

    Lu, Tongqing; Shi, Zhibao; Chen, Zhiqiang; Huang, He; Wang, T. J.

    2015-10-01

    In the past decade, dielectric elastomers have become promising candidates in the applications of soft electromechanical transducers due to their outstanding properties of large deformation and high energy density. Current leakage of dielectric elastomer is one of the important dissipative mechanisms affecting the energy conversion efficiency. In this work, we experimentally investigate the current leakage performance of dielectric elastomers with different boundary conditions. We find that for displacement-type boundary conditions, the transition from Ohmic conduction to non-Ohmic conduction is abrupt near the critical electric field. By comparison, for force-type boundary conditions, the current leakage density versus electric field curve is smooth and is fit well by an exponential function. The equivalent resistivity of dielectric elastomers under force-type boundary conditions is approximately an order of magnitude smaller than that under displacement-type boundary conditions. The difference is qualitatively explained by a microscopic physical model. These results will help to design and optimize dielectric elastomer transducers to improve their energy conversion efficiency.

  1. Thermal Degradation Studies of Polyurethane/POSS Nanohybrid Elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, J P; Pielichowski, K; TremblotDeLaCroix, P; Janowski, B; Todd, D; Liggat, J J

    2010-03-05

    Reported here is the synthesis of a series of Polyurethane/POSS nanohybrid elastomers, the characterization of their thermal stability and degradation behavior at elevated temperatures using a combination of Thermal Gravimetric Analysis (TGA) and Thermal Volatilization Analysis (TVA). A series of PU elastomers systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterized using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increase the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation of the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a {approx}30 C increase in onset degradation temperature. Furthermore, characterization of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.

  2. Synergistic effects in the processes of crosslinking of elastomers

    Science.gov (United States)

    Głuszewski, Wojciech; Zagórski, Zbigniew P.; Rajkiewicz, Maria

    2014-01-01

    Radiation crosslinking of elastomers is an example of the modification of polymers by ionizing radiation. In practice, often parallel both traditional crosslinking (with peroxide) and radiation treatment is applied (Bik et al., 2003, 2004). Elastomers can be irradiated both before and/or after vulcanization products. The aim of this study was to investigate the system of the mixed radiation/peroxide and peroxide/radiation crosslinking of selected elastomers (Engage 8200, HNBR). In particular, attention was directed to the influence of the protective effects of aromatic additives in elastomers (peroxides, thermal- and light stabilizers) on the phenomenon of crosslinking and postradiation oxidation. Aromatic peroxides may undergo modifications during the preirradiation, which affect the subsequent processes of vulcanization. In this way the method of gas chromatography (GC) was applied for determination of hydrogen and oxidation effects, never described before for Engage 8200. Using that approach, radiation efficiency of hydrogen evolution and oxygen absorption efficiency of the polymers has been identified. To describe the phenomena of postradiation oxidation of elastomers, the method of Diffuse Reflection Spectrophotometry (DRS) was also applied.

  3. Ageing by UV radiation of an elastomer modified bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Virginie Mouillet; Fabienne Farcas; Stanislas Besson [CETE Mediterranee Pole d' activite, Aix-en-Provence (France). Laboratoire Regional des Ponts et Chaussees d' Aix-en-Provence

    2008-09-15

    Laboratory methods to simulate the short- and long-term ageing occurring during the service life of pure and polymer modified bitumens in a pavement are standardized but none of them takes into account the influence of UV radiations. If the impact of thermal ageing on the degradation of SBS elastomers in bitumens has been extensively studied, there is not study dealing with the photo-oxidation of these copolymers in a bituminous matrix. So, the aim of our study was to investigate, by FTIR spectrometry and SEC chromatography, whether the architecture of elastomers (linear or radial) might have any influence on their ageing by UV radiation in a bituminous matrix. The results show that the elastomers oxidation kinetic, unlike the disappearance kinetic of trans-butadiene double bond, does not depend on their architecture. But, when putted into the same base bitumen, the two copolymers show exactly the same oxidation kinetic and the same decreasing kinetic of trans-butadiene double bond. So, this study has revealed that inside the bituminous matrix, on the one hand, the elastomers architecture does not influence on its degradation when submitted to UV radiation and, on the other hand, there is a 'protection' of the elastomers by the studied bitumen towards UV radiation. 46 refs., 13 figs., 2 tabs.

  4. Silicone-Rubber Stitching Seal

    Science.gov (United States)

    Wang, D. S.

    1985-01-01

    Fabric products protected from raveling by coating threads and filling stitching holes with silicone rubber. Uncored silicone rubber applied to stitching lines with air-pressurized sealant gun. Next, plastic release film placed on coated side, and blanket flipped over so release film lies underneath. Blanket then bagged and adhesive cured under partial vacuum of about 3.5 psi or under pressure. Applications include balloons, parachutes, ultralight aircraft, sails, rescue harnesses, tents, or other fabric products highly stressed in use.

  5. Whole process modeling of joining of flareless AA 6061-T4 tube by extrusion-bulging forming using a polyurethane elastomer medium

    Science.gov (United States)

    Yang, J. C.; Li, H.; Yang, H.; Li, G. J.

    2016-08-01

    The tube joining by plastic deformation proves to be a more efficient and environmentally friendly way to achieve the tube-tube joining compared with other traditional types, such as metallurgical joining and mechanical joining. In this study, to reveal the effects of the processing parameters on the filling quality and residual contact stress, an axisymmetric finite element (FE) model of the whole joining process, including extrusion-bulging forming and unloading, was established and validated. The aluminum alloy (AA) 6061-T4 tubes, the stainless steel (ST) 15-5PH sleeve and polyurethane (PU) elastomer medium were characterized and modeled. And the implicit algorithm was adopted by comparing the prediction results between explicit and implicit FE models. The characteristics of stress distribution and plastic strain for the tube, PU elastomer and sleeve were discussed.

  6. Electrical modeling of dielectric elastomer stack transducers

    Science.gov (United States)

    Haus, Henry; Matysek, Marc; Moessinger, Holger; Flittner, Klaus; Schlaak, Helmut F.

    2013-04-01

    Performance of dielectric elastomer transducers (DEST) depends on mechanical and electrical parameters. For designing DEST it is therefore necessary to know the influences of these parameters on the overall performance. We show an electrical equivalent circuit valid for a transducer consisting of multiple layers and derive the electrical parameters of the circuit depending on transducers geometry and surface resistivity of the electrodes. This allows describing the DESTs dynamic behavior as a function of fabrication (layout, sheet and interconnection resistance), material (breakdown strength, permittivity) and driving (voltage) parameters. Using this electrical model transfer function and cut-off frequency are calculated, describing the influence of transducer capacitance, resistance and driving frequency on the achievable actuation deflection. Furthermore non ideal boundary effects influencing the capacitance value of the transducer are investigated by an electrostatic simulation and limits for presuming a simple plate capacitor model for calculating the transducer capacitance are derived. Results provide the plate capacitor model is a valid assumption for typical transducer configurations but for certain aspect ratios of electrode dimensions to dielectric thickness -- arising e.g. in the application of tactile interfaces -- the influence of boundary effects is to be considered.

  7. Self-stabilizing dielectric elastomer generators

    Science.gov (United States)

    Zanini, P.; Rossiter, J.; Homer, M.

    2017-03-01

    Dielectric elastomer generators (DEGs) are an emerging technology for the conversion of mechanical into electrical energy. Despite many advantageous characteristics, there are still issues to overcome, including the need for charging at every cycle to produce an electrical output. Self-priming circuits (SPCs) are one possible solution, storing part of the electric energy output of one cycle to supply as input for the next, producing a voltage boost effect. Until now, studies regarding SPCs neglect to consider how the increasing voltage will create an electromechanical response and affect the DEG when driven by an oscillatory mechanical load. In the present work we model this force-based actuation, including coupling between the DEG and SPC, in order to predict the dynamics of the system. In such cases, the DEG has a mechanical response when charged (actuator behaviour), and as the voltage increases, this actuation-like effect increases the capacitance values that bound the cycle. We show how this inherent nonlinearity yields a reduction in the DEG’s capacitance swing and reduces the performance of the SPC, but also self-stabilizes the system. This stability is useful in the design of robust DEG energy harvesters that can operate near to, but not enter, failure mode.

  8. Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer.

    Science.gov (United States)

    Biller, A M; Stolbov, O V; Raikher, Yu L

    2015-08-01

    Field-induced magnetostatic interaction in a pair of identical particles made of a magnetically soft ferromagnet is studied. It is shown that due to saturation of the ferromagnet magnetization, this case differs significantly from the (super)paramagnetic one. A numerical solution is given, discussed, and compared with that provided by a simpler model (nonlinear mutual dipoles). We show that for multidomain ferromagnetic particles embedded in an elastomer matrix, as for paramagnetic ones in the same environment, pair clusters may form or break by a hysteresis scenario. However, the magnetization saturation brings in important features to this effect. First, the bistability state and the hysteresis take place only in a limited region of the material parameters of the system. Second, along with the hysteresis jumps occurring under the sole influence of the field, the "latent" hysteresis is possible which realizes only if the action of the field is combined with some additional (nonmagnetic) external factor. The obtained conditions, when used to assess the possibility of clustering in real magnetorheological polymers, infer an important role of mesoscopic magnetomechanical hysteresis for the macroscopic properties of these composites.

  9. Renewable Aliphatic Polyester Block Polymer Thermoplastic Elastomers

    Science.gov (United States)

    Martello, Mark Thomas

    The performance of thermoplastic elastomers is predicated on their ability to form mechanically tough physically crosslinked elastomeric networks at low temperatures and be able to flow at elevated temperatures. This dissertation focuses on renewable aliphatic polyester block polymers with amorphous polylactide (PLA) and their performance as TPEs. The goal of this work was to enhance the mechanical toughness of PLA containing TPEs; fundamental properties ranging from chemical composition and phase behavior, molecular architecture and melt processability, to melt polymerization strategies were investigated. ABA triblock polymers with PLA end-blocks and rubbery mid-blocks from substituted lactones comprised of poly(6-methyl-epsilon-caprolactone)(PMCL), poly(delta-decalactone), and poly(epsilon-decalactone)(PDL) were produced by sequential ring-opening polymerizations in the bulk. The bulk microstructure of symmetric PLA-PMCL-PLA and PLA-PDL-PLA triblock polymers formed long-range ordered morphologies and the interaction parameter of the repeat units was determined. High molar mass triblocks exhibited elastomeric behavior with good tensile strengths and high elongations. Small triblocks were coupled to produced (PLA-PDL-PLA)n multiblock polymers with high molar mass and accessible order-disorder transitions allowing for melt processing via injection molding. The mechanical toughness of the multiblocks was comparable to the high molar mass triblocks. The controlled polymerization of renewable delta-decalactone was accomplished with an organocatalyst at low temperatures in the bulk to maximize the equilibrium conversion of the monomer.

  10. Energy harvesting for dielectric elastomer sensing

    Science.gov (United States)

    Anderson, Iain A.; Illenberger, Patrin; O'Brien, Ben M.

    2016-04-01

    Soft and stretchy dielectric elastomer (DE) sensors can measure large strains on robotic devices and people. DE strain measurement requires electric energy to run the sensors. Energy is also required for information processing and telemetering of data to phone or computer. Batteries are expensive and recharging is inconvenient. One solution is to harvest energy from the strains that the sensor is exposed to. For this to work the harvester must also be wearable, soft, unobtrusive and profitable from the energy perspective; with more energy harvested than used for strain measurement. A promising way forward is to use the DE sensor as its own energy harvester. Our study indicates that it is feasible for a basic DE sensor to provide its own power to drive its own sensing signal. However telemetry and computation that are additional to this will require substantially more power than the sensing circuit. A strategy would involve keeping the number of Bluetooth data chirps low during the entire period of energy harvesting and to limit transmission to a fraction of the total time spent harvesting energy. There is much still to do to balance the energy budget. This will be a challenge but when we succeed it will open the door to autonomous DE multi-sensor systems without the requirement for battery recharge.

  11. Temperature dependence of the dielectric constant of acrylic dielectric elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Junjie; Chen, Hualing; Li, Bo; Chang, Longfei [Xi' an Jiaotong University, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an (China); Xi' an Jiaotong University, School of Mechanical Engineering, Xi' an (China)

    2013-02-15

    The dielectric constant is an essential electrical parameter to the achievable voltage-induced deformation of the dielectric elastomer. This paper primarily focuses on the temperature dependence of the dielectric constant (within the range of 173 K to 373 K) for the most widely used acrylic dielectric elastomer (VHB 4910). First the dielectric constant was investigated experimentally with the broadband dielectric spectrometer (BDS). Results showed that the dielectric constant first increased with temperature up to a peak value and then dropped to a relative small value. Then by analyzing the fitted curves, the Cole-Cole dispersion equation was found better to characterize the rising process before the peak values than the Debye dispersion equation, while the decrease process afterward can be well described by the simple Debye model. Finally, a mathematical model of dielectric constant of VHB 4910 was obtained from the fitted results which can be used to further probe the electromechanical stability of the dielectric elastomers. (orig.)

  12. Castable thermoplastic urethane elastomers. II. Structure property correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.; Wischmann, K.B.

    1977-01-01

    A liquid casting approach has been used to encapsulate electronic assemblies with specially-developed, soluble urethane elastomers. As a continuation of this work, the present paper correlates macromolecular morphology with both high strain ultimate and low strain dynamic mechanical properties of these thermoplastic elastomers. Although the morphology-property correlations are shown to fit within the general framework of a domain model, the possibility is raised that the liquid casting procedure might give rise to slightly different structural features than the more conventional fabrication methods (e.g., melt processing). It is anticipated that the results of this investigation will help to increase our fundamental understanding of liquid castable elastomers, which have been heretofore neglected to a significant extent.

  13. Fracture Behavior of Dielectric Elastomer under Pure Shear Loading

    Science.gov (United States)

    Ahmad, D.; Patra, K.

    2017-09-01

    Dielectric elastomer has become a very important material for many emerging applications areas like optics, micro fluidics, sensors, actuators and energy harvesting. However, these elastomer components are prone to fracture or catastrophic failure because of defects likes notches, flaws, and fatigue crack, impurities which occur during production or during service. To make better use of this material, it is important to investigate fracture characteristics under different operating conditions. This study experimentally investigated the effects of notch length and strain rate on the fracture toughness, failure stretch and failure stress of acrylic elastomer under pure shear deformation mode. It is observed that failure stretch depends on notch length and independent of strain rate, but failure stress decreases with increasing notch length and increases with increasing strain rate. It is also found that fracture toughness is independent of notch lengths. However, fracture toughness is found to increase with strain rate.

  14. Development of soft robots using dielectric elastomer actuators

    Science.gov (United States)

    Godaba, Hareesh; Wang, Yuzhe; Cao, Jiawei; Zhu, Jian

    2016-04-01

    Soft robots are gaining in popularity due to their unique attributes such as low weight, compliance, flexibility and diverse range in motion types. This paper illustrates soft robots and actuators which are developed using dielectric elastomer. These developments include a jellyfish robot, a worm like robot and artificial muscle actuators for jaw movement in a robotic skull. The jellyfish robot which employs a bulged dielectric elastomer membrane has been demonstrated too generate thrust and buoyant forces and can move effectively in water. The artificial muscle for jaw movement employs a pure shear configuration and has been shown to closely mimic the jaw motion while chewing or singing a song. Thee inchworm robot, powered by dielectric elastomer actuator can demonstrate stable movement in one-direction.

  15. Exploring dielectric elastomers as actuators for hand tremor suppression

    Science.gov (United States)

    Kelley, Christopher R.; Kauffman, Jeffrey L.

    2017-04-01

    Pathological tremor results in undesired motion of body parts, with the greatest effect typically occurring in the hands. Since common treatment methods are ineffective in some patients or have risks associated with surgery or side effects, researchers are investigating mechanical means of tremor suppression. This work explores the viability of dielectric elastomers as the actuators in a tremor suppression control system. Dielectric elastomers have many properties similar to human muscle, making them a natural fit for integration into the human biomechanical system. This investigation develops a model of the integrated wrist-actuator system to determine actuator parameters that produce the necessary control authority without significantly affecting voluntary motion. Furthermore, this paper develops a control law for the actuator voltage to increase the effective viscous damping of the system. Simulations show excellent theoretical tremor suppression, demonstrating the potential for dielectric elastomers to suppress tremor while maximizing compatibility between the actuator and the human body.

  16. The heavy silicon oil(Densiron-68)applies in the intraoctdar short-term fills 15 cases clinical analyses.%重硅油应用眼内短期填充15例临床分析

    Institute of Scientific and Technical Information of China (English)

    马利波; 陈铁红; 张志; 张建东; 闻矩

    2010-01-01

    Objective To report and discuss the clinical efficiency,postoperative complications,and safety in patients after short-term Densiron 68 intraocular tamponade for complicated retinal detachment.Methods Fifteen patients were treated with par plana vitrectomy and heavy silicon oil (Densiron-68) tamponade,including diabetes retinopathy,acute retinal necrosis,macular hole retinal detachment,retinal detachment with giant retinal tear and rhegmatogenous retinal detachment with severe recurrent PVR.The tamponade persisted from 40 days to 12 months.The successfulness and complications were evaluated during and after removal of Densiron 68 intrancular tampouade.Results Anatomical success was achieved in 80% of cases (12/15) after removal of Densiron 68,retinal redetachment occurred in 3 patients.For the eyes with retinal redetachment,2 were re-operated with silicon oil tamponade,and 1 rejected to remove the heavy silicon oil.Best corrected visual acuity improved in 14 eyes,with no significant improvement in 1 eye.Complications included cataract development,posterior capsule opacification,emulsification and dispersion,pupillary synechiae,postoperative PVR,anterior chamber silicon oil and suhretina silicon oil.Conclusions Densiron 68 intraocular tamponade for compli cated retinal detachment positive effect and improve patient comfort,but the high inciodence of complications,only suitable for short-termfill adn the need for close follow-up.%目的 探讨重硅油(Densiron-68)用于眼内填充治疗复杂性视网膜脱离的临床效果、并发症及安全性.方法 采用玻璃体切割联合重硅油眼内填充治疗视网膜脱离患者15只眼,分别为糖尿病视网膜病变、急性视网膜坏死、黄斑裂孔性视网膜脱离、巨大裂孔性视网膜脱离、伴有严重PVR的复发性孔源视网膜脱离,填充时间最少为40d,最长为12个月.观察重硅油填充期间及取出后视网膜复位情况及并发症等.结果 12只眼取

  17. Hybrid matrices of ZnO nanofibers with silicone for high water flux photocatalytic degradation of dairy effluent

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmad; Shawabkeh, Ali Qublan; Alm, Martin

    2016-01-01

    Zinc oxide (ZnO) nanofibers were produced by electrospinning technique and surface coated on silicone elastomer substrate (diameter: 10.0 mm; thickness: 2.0 mm) by a dipcoating method. The obtained hybrid nanoporous matrices were investigated by scanning and transmission electron microscopy (SEM,...

  18. Flexible and stretchable electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Rosset, Samuel; Shea, Herbert R.

    2013-02-01

    Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.

  19. Self-sensing dielectric elastomer actuators in closed-loop operation

    Science.gov (United States)

    Rosset, Samuel; O'Brien, Benjamin M.; Gisby, Todd; Xu, Daniel; Shea, Herbert R.; Anderson, Iain A.

    2013-10-01

    Because of their large output strain, dielectric elastomer actuators (DEAs) have been proposed for tunable optics applications such as tunable gratings. However, the inherent viscoelastic drift of these actuators is an important drawback and closed-loop operation of DEAs is a prerequisite for any accurate real-world application. In this paper, we show how capacitive self-sensing can be used to drive a DEA in closed-loop without the need for any external sensor. The method has been demonstrated on a DEA tunable grating based on a VHB acrylic and silicone membrane. The results show that the widely used VHB presents a time-dependent drift between the capacitance of the electrodes and their strain. The silicone-based grating does not exhibit such a drift, and its strain can be stabilized by regulating the capacitance of the device to a constant value. We also report on an new fabrication method for thin deformable gratings based on replication on a water-soluble master and a 27% change in the grating period has been obtained on a VHB-based device.

  20. Phenomenological Theory of Isotropic-Genesis Nematic Elastomers

    Science.gov (United States)

    Lu, Bing-Sui; Ye, Fangfu; Xing, Xiangjun; Goldbart, Paul M.

    2012-06-01

    We consider the impact of the elastomer network on the nematic structure and fluctuations in isotropic-genesis nematic elastomers, via a phenomenological model that underscores the role of network compliance. The model contains a network-mediated nonlocal interaction as well as a new kind of random field that reflects the memory of the nematic order present at network formation and also encodes local anisotropy due to localized nematogenic polymers. This model enables us to predict regimes of short-ranged oscillatory spatial correlations (thermal and glassy) in the nematic alignment.

  1. Modeling shape-memory behavior of dielectric elastomers

    Science.gov (United States)

    Xiao, Rui

    2016-04-01

    In this study, we present a constitutive model to couple the shape memory and dielectric behaviors of polymers. The model adopted multiple relaxation processes and temperature-dependent relaxation time to describe the glass transition behaviors. The model was applied to simulate the thermal-mechanical-electrical behaviors of the dielectric elastomer VHB 4905. We investigated the influence of deformation temperature, voltage rate, relaxation time on the electromechanical and shape-memory behavior of dielectric elastomers. This work provides a method for combining the shape-memory properties and electroactive polymers, which can expand the applications of these soft active materials.

  2. Water-filled telescopes

    CERN Document Server

    Antonello, E

    2014-01-01

    In this short note we discuss the case of the thought experiments on water-filled telescopes and their realizations during 18th and 19th century. The story of those instruments shows that the scientific progress occurs in a curious way, since there was no stringent reason for the construction of a water-filled telescope.

  3. Matrix stiffness dependent electro-mechanical response of dipole grafted silicones

    Science.gov (United States)

    Kussmaul, Björn; Risse, Sebastian; Wegener, Michael; Kofod, Guggi; Krüger, Hartmut

    2012-06-01

    The properties of dielectric elastomer actuators can be optimized by modifying the dielectric or mechanical properties of the dielectric elastomer. This paper presents the simultaneous control of both dielectric and mechanical properties, in a silicone elastomer network comprising cross-linker, chains and grafted molecular dipoles. Chains with two different molecular weights were each combined with varying amounts of grafted dipole. Chemical and physical characterization showed that networks with stoichiometric control of cross-linking density and permittivity were obtained, and that longer chain lengths resulted in higher electrical field response due to the reduction in cross-linking density and correspondingly in mechanical stiffness. Both actuation sensitivities were enhanced by 6.3 and 4.6 times for the short and long chain matrix material, respectively.

  4. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  5. 硅油填充眼并发性白内障的特点及手术治疗%Characteristics and effects of surgery treatment for complicated cataract in silicone oil filled eyes

    Institute of Scientific and Technical Information of China (English)

    孟祥达; 颜华

    2015-01-01

    Objective To analyze the characteristics of complicated cataract of silicone oil tamponade eyes after pars plana vitrectomy,and to evaluate the effects of phacoemulsification and its relative factors.Methods Data of 51 eyes of 47 patients who underwent the treatment of phacoemusification for complicated cataract after silicone oil tamponade were analyzed.Twenty-eight patients were males (28 eyes),and 19 were females (23 eyes).The average age was (55.45 ± 11.37) years old with a range from 22 to 75 years old.The protopathy of all patients with silicon oil tamponade eyes included rhegmatogenous retinal detachment in 11 patients (11 eyes),macular hole induced by high myopia in 3 patients (3 eyes),PDR in 27 patients (31 eyes),retinal vein occlusion in 4 patients (4 eyes),and penetrating ocular injury in 2 patients (2 eyes).The preoperative best corrected visual acuity (BCVA) ranged from light perception to 0.25.The preoperative intraocular pressure (IOP) was (16.87 ± 5.29) mmHg (13.0 ~ 41.0 mmHg).The corneal endothelial cell counts was (2632.8 ± 402.9)/mm2 (845 ~ 3448/mm2).The follow-up was (4.71 ± 1.12) months with a range from 3 to 6 months.Results The lens in silicon oil tamponade eyes was characterized by nuclear opacity with little posterior cortex adhered tightly to the posterior capsule.The postoperative BCVA ranged from light perception to 0.6.BCVA increased in 47 eyes,remained stable in 3 eyes,and decreased in 1 eye.The postoperative IOP was (14.82 ± 2.56) mmHg with a range from 11.0 to 24.0 mmHg (1 mmHg =0.133 kPa),and decreased compared with preoperative one (P < 0.05).The postoperative corneal endothelial cell counts was (1926.89 ± 449.91)/mm2 (608 ~ 2850/mm2),and decreased compared with preoperative one (P < 0.05).The intraoperative and postoperative complications mainly included posterior capsule rupture (1 eye),temporary IOP elevation (5 eyes),various degrees of corneal edema (all 51 eyes),various degrees of aqueous flare (29 eyes

  6. Repeatable mechanochemical activation of dynamic covalent bonds in thermoplastic elastomers.

    Science.gov (United States)

    Imato, Keiichi; Kanehara, Takeshi; Nojima, Shiki; Ohishi, Tomoyuki; Higaki, Yuji; Takahara, Atsushi; Otsuka, Hideyuki

    2016-08-18

    Repeated mechanical scission and recombination of dynamic covalent bonds incorporated in segmented polyurethane elastomers are demonstrated by utilizing a diarylbibenzofuranone-based mechanophore and by the design of the segmented polymer structures. The repeated mechanochemical reactions can accompany clear colouration and simultaneous fading.

  7. Development of New Elastomers and Elastic Nanocomposites from Plant Oils

    Science.gov (United States)

    Zhu, Lin; Wool, Richard

    2006-03-01

    Economic and environmental concerns lead to the development of new polymers from renewable resources. In this research, new elastomers were synthesized from plant oil based resins. Acrylated oleic methyl ester (AOME), synthesized from high oleic triglycerides, can readily undergo free radical polymerization and form a linear polymer. To achieve the elastic properties, different strategies have been developed to generate an elastic network and control the crosslink density. The elastomers are reinforced by nanoclays. The intercalated state has a network structure similar to thermoplastic elastomers in which the hard segments aggregate to give ordered crystalline domains. The selected organically modified clay and AOME matrix have similar solubility parameters, therefore intercalation of the monomer/polymer into the clay layers occurs and the nano-scale multilayered structure is stable. In situ intercalation and solution intercalation were used to prepare the elastic nanocomposites. Dramatic improvement in mechanical properties was observed. Changes of tensile strength, strain, Young's modulus and fracture energy were related to the clay concentration. The fracture surface was studied to further understand clay effects on the mechanical properties. Self-Healing of the intercalated nanobeams, thermal stability, biocompatibility and biodegradability of this new elastomer were also explored.

  8. Diffraction from relief gratings on a biomimetic elastomer cast

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Raphael A., E-mail: rguerrero@admu.edu.ph [Department of Physics, Ateneo de Manila University, Loyola Heights, Quezon City (Philippines); Aranas, Erika B. [Department of Physics, Ateneo de Manila University, Loyola Heights, Quezon City (Philippines)

    2010-10-12

    Biomimetic optical elements combine the optimized designs of nature with the versatility of materials engineering. We employ a beetle carapace as the template for fabricating relief gratings on an elastomer substrate. Biological surface features are successfully replicated by a direct casting procedure. Far-field diffraction effects are discussed in terms of the Fraunhofer approximation in Fourier space.

  9. Conductive Elastomers for Stretchable Electronics, Sensors and Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Jin-Seo Noh

    2016-04-01

    Full Text Available There have been a wide variety of efforts to develop conductive elastomers that satisfy both mechanical stretchability and electrical conductivity, as a response to growing demands on stretchable and wearable devices. This article reviews the important progress in conductive elastomers made in three application fields of stretchable technology: stretchable electronics, stretchable sensors, and stretchable energy harvesters. Diverse combinations of insulating elastomers and non-stretchable conductive materials have been studied to realize optimal conductive elastomers. It is noted that similar material combinations and similar structures have often been employed in different fields of application. In terms of stretchability, cyclic operation, and overall performance, fields such as stretchable conductors and stretchable strain/pressure sensors have achieved great advancement, whereas other fields like stretchable memories and stretchable thermoelectric energy harvesting are in their infancy. It is worth mentioning that there are still obstacles to overcome for the further progress of stretchable technology in the respective fields, which include the simplification of material combination and device structure, securement of reproducibility and reliability, and the establishment of easy fabrication techniques. Through this review article, both the progress and obstacles associated with the respective stretchable technologies will be understood more clearly.

  10. 21 CFR 177.2400 - Perfluorocarbon cured elastomers.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only... generally recognized as safe (GRAS) in food or food packaging. (2) Substances used in accordance with a... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorocarbon cured elastomers. 177.2400...

  11. Key value propositions in applications for dielectric elastomer actuators

    DEFF Research Database (Denmark)

    Lautrop, Asger; Elena, Maria; Poole, Alan

    2015-01-01

    This work identifies and clarifies tendencies in the performance metrics of dielectric elastomer actuators with respect to different application requirements. The study is based on real proposed applications and therefore not only highlights the properties in which DEA provides value, but also...

  12. Cholesteric elastomers in external mechanical and electric fields

    Science.gov (United States)

    Menzel, Andreas M.; Brand, Helmut R.

    2007-01-01

    In our studies, we focus on the reaction of cholesteric side-chain liquid single-crystal elastomers (SCLSCEs) to static external mechanical and electric fields. By means of linearized continuum theory, different geometries are investigated: The mechanical forces are oriented in a direction either parallel or perpendicular to the axis of the cholesteric helix such that they lead to a compression or dilation of the elastomer. Whereas only a homogeneous deformation of the system is found for the parallel case, perpendicularly applied mechanical forces cause either twisting or untwisting of the cholesteric helix. This predominantly depends on the direction in which the director of the cholesteric phase is anchored at the boundaries of the elastomer, and on the sign of a material parameter that describes how deformations of the elastomer couple to the relative rotations between the elastomer and the director. It is also this material parameter that leads to an anisotropy of the mechanical reaction of the system to compression and dilation, due to the liquid crystalline order. The effect of an external electric field is studied when applied parallel to the helix axis of a perfect electric insulator. Here an instability arises at a threshold value of the field amplitude, where the latter results from a competition between the effects of the external electric field on the one hand and the influences of the boundaries of the system, the cholesteric order, and the coupling between the director and the polymer network on the other hand. The instability is either homogeneous in space in the directions perpendicular to the external electric field and includes homogeneous shearing, or, for certain values of the material parameters, there arise undulations of the elastomer and the director orientation perpendicular to the direction of the external electric field at onset. This describes a qualitatively new phenomenon not observed in cholesteric systems yet, as these undulations

  13. SD OCT Features of Macula and Silicon Oil–Retinal Interface in Eyes Status Post Vitrectomy for RRD

    OpenAIRE

    Manish Nagpal; Navneet Mehrotra; Rituraj Videkar; Rajen Mehta

    2015-01-01

    Aim: To objectively document findings at the Silicon oil-Retinal interface, macular status and tamponade effect in Silicon Oil (SO) filled eyes using SD OCT. Methods: 104 eyes of 104 patients underwent SD OCT examination, horizontal and vertical macular scans, in silicone oil filled eyes which underwent silicone oil injection post vitrectomy for rhegmatogenous retinal detachment. Findings were divided into 3 Groups; Group A: Findings at silicon oil retinal interface, Group B: Macular patholog...

  14. Dielectric elastomer actuators with zero-energy fixity

    Science.gov (United States)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2010-04-01

    Although dielectric elastomer actuators (DEAs) are becoming more powerful and more versatile, one disadvantage of DEAs is the need to continuously supply electrical power in order to maintain an actuated state. Previous solutions to this problem have involved the construction of a bistable or multi-stable rigid mechanical structure or the addition of some external locking mechanism. Such structures and mechanisms add unwanted complexity and bulk. In this paper we present a dielectric elastomer actuator that exhibits zero-energy fixity. That is, the actuator can be switched into a rigid state where it requires no energy to maintain its actuated shape. This is achieved without any additional mechanical complexity. This actuator relies on changes to the elastic properties of the elastomer material in response to a secondary stimulus. The elastomer can be switched from a rigid glass-like state to a soft rubber-like state as required. We present a dielectric elastomer actuator that utilizes shape-memory polymer properties to achieve such state switching. We call this a dielectric shape memory polymer actuator (DSMPA). In this case control of the elastic properties is achieved through temperature control. When the material is below its glass transition temperature (Tg) it is in its rigid state and dielectric actuation has no effect. When the temperature is elevated above Tg the material becomes soft and elastic, and dielectric actuation can be exploited. We present preliminary results showing that the necessary conditions for this zero-energy fixity property have been achieved. Applications are widespread in the fields of robotics and engineering and include morphing wings that only need energy to change shape and control valves that lock rigidly into position.

  15. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  16. Stacking Nematic Elastomers for Artificial Muscle Applications

    Science.gov (United States)

    2006-04-01

    amputees nd variable impendence ankle-foot orthoses for patients suffering from drop oot, a gait pathology caused by stroke, cerebral palsy , and multiple...by de Gennes [8]. In particular, niqueness of nematic LCEs stems from the fact that they exhibit eversible macroscopic and anisotropic contraction as...Irgacure-369 (Ciba pecialty Chemicals) were heated above TNI and filled into a lass cell on a temperature-controlled hot stage. Glass cells ere composed

  17. Supramolecular elastomer based on polydimethylsiloxanes (SESi) film: synthesis, characterization, biocompatibility, and its application in the context of wound dressing.

    Science.gov (United States)

    Zhang, Anqiang; Yang, Lin; Lin, Yaling; Lu, Hecheng; Qiu, Yuanhuan; Su, Yanlong

    2013-01-01

    Supramolecular elastomer based on polydimethylsiloxanes (SESi) is a kind of novel elastomer cross-linked by the multihydrogen bonds supplied by the functional groups linked to the end of the PDMS chains, such as amide, imidazolidone, pending urea (1,1-dialkyl urea), and bridging urea (1,3-dialkyl urea). SESi showed lower glass transition temperature (T g) at about -113 °C because of the softer chain of PDMS, and could show real rubber-like elastic behaviors and acceptable water vapor transmission rate under room temperature. The high biocompatibility of SESi in the form of films was demonstrated by the cytotoxicity evaluation (MTT cytotoxicity assay and direct contact assay), hemolysis assay, and skin irritation evaluation. Based on detailed comparisons between commercial Tegaderm(™) film and SESi film using a full-thickness rat skin model experiment, it was found that SESi film showed similar wound contraction rate as that of Tegaderm(™) film on day seven, 10, and 14; only on day five, SESi film showed a significant (p < 0.05) lower wound contraction rate. And, the wounds covered with SESi film were filled with new epithelium without any significant adverse reactions, similar with that of Tegaderm(™) film.

  18. ASSESSMENT OF THE INFLUENCE OF RADIATION AND DEFORMATION ON THE ELASTOMER DETERIORATION BY USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Jasminka Bonato

    2017-01-01

    Full Text Available Elastomers belong to the group of polymer materials and they have an important role as technical material in the shipbuilding industry. The radiation crosslinking of elastomers shows significant advantages over chemical crosslinking. It can improve mechanical strength, resistance to chemicals and insulation properties of elastomers. An undesirable side reaction, which can occur during radiation, is the degradation process. This results in cracks breaking, chemical disintegration and reduction of mechanical properties of elastomers. In this paper fuzzy logic is used to estimate the influence of radiation and deformation on the behavior of elastomer samples. A Gaussian model is created according to both the experts' experience and the measuring data. The results of the model are calculated by using the Normalized Roth Mean Square Error (NRMSE and the Roth Mean Square Error (RMSE. The so developed model gives new conceptions, which offer a possibility to improve the application of elastomer materials.

  19. Development of a structure-property correlation for castable urethane elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.

    1978-01-01

    A significant problem in electronic encapsulation is the poor load bearing performance of existing replacements for Adiprene-MOCA urethane elastomer. In response to this problem, this study defines the structural features that control the viscoelastic properties of the following liquid castable elastomers: Adiprene-MOCA, EN-7, and 3121-S. A review of previous investigations on a related class of materials suggests that viscoelastic properties may be more directly related to the physical structure or morphology of these elastomers, rather than their chemical structure. Accordingly, the morphology of the subject elastomers is characterized by means of electron microscopy and x-ray scattering measurements. These measurements reveal that within each elastomer incompatible chain segments cluster into separate domains, or microphases on a scale of 10 +- 1 nm. On this basis, it is concluded that the two major thermomechanical transitions present in each elastomer can be assigned to separate transitions within the two microphases. The above-ambient transition, which determines the upper use temperature of the elastomer, is specifically assigned to the glass transition of an amorphous microphase. The significance of this structure-property correltion for the liquid castable elastomers is twofold: (1) it permits generalization of mechanical property measurements on existing materials in order to predict their performance in unusual applications and (2) it leads to a rational strategy for developing improved elastomers for new, more demanding applications.

  20. Modified and Unmodified Zinc Oxide as Coagent in Elastomer Compounds

    Directory of Open Access Journals (Sweden)

    Kołodziejczak-Radzimska Agnieszka

    2014-09-01

    Full Text Available The aim of this work was to study the activity of unmodified and modified ZnO in the peroxide crosslinking of hydrogenated acrylonitrile-butadiene elastomer (HNBR and ethylene-propylene copolymer (EPM. In the first step, zinc oxide was obtained by emulsion precipitation. Maleic acid was introduced onto the surface of ZnO using an in situ method. The unmodified and modified zinc oxide was characterized using dispersive and morphological analysis, BET surface area analysis, and elemental, spectroscopic and thermal analysis. In the second stage of the research, the ZnO/MA systems were incorporated into the structure of elastomer compounds improving the kinetic and mechanical properties of vulcanizates. The proposed modification method had a favorable effect on the physicochemical properties of the zinc oxide and on the kinetic and mechanical properties of the vulcanizates. This study demonstrated that modification of zinc oxide by maleic acid is a promising technique.

  1. Small, fast, and tough: Shrinking down integrated elastomer transducers

    Science.gov (United States)

    Rosset, Samuel; Shea, Herbert R.

    2016-09-01

    We review recent progress in miniaturized dielectric elastomer actuators (DEAs), sensors, and energy harvesters. We focus primarily on configurations where the large strain, high compliance, stretchability, and high level of integration offered by dielectric elastomer transducers provide significant advantages over other mm or μm-scale transduction technologies. We first present the most active application areas, including: tunable optics, soft robotics, haptics, micro fluidics, biomedical devices, and stretchable sensors. We then discuss the fabrication challenges related to miniaturization, such as thin membrane fabrication, precise patterning of compliant electrodes, and reliable batch fabrication of multilayer devices. We finally address the impact of miniaturization on strain, force, and driving voltage, as well as the important effect of boundary conditions on the performance of mm-scale DEAs.

  2. Electrical Breakdown and Mechanical Ageing in Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin

    the mechanisms behind the electrical breakdown of DEs and the second strategy is to investigate the long-term electromechanical reliability of DEs. In the first strategy, the electrothermal breakdown in polydimethylsiloxane (PDMS) elastomers was modelled in order to evaluate the thermal mechanisms behind...... the electrical failures. From the modelling based on the fitting of experimental data, it showed that the electrothermal breakdown of the PDMS elastomers was strongly influenced by the increase in both relative permittivity and conductivity. In addition to that, a methodology in determining the parameters...... that affect the breakdown strength of the pre-stretched DEs was developed. Breakdown strength was determined for samples with and without volume conservation and was found to depend strongly on the strain and the thickness of the samples. In order for DEs to be fully implementable in commercial products...

  3. Batch fabrication of optical actuators using nanotube-elastomer composites towards refreshable Braille displays

    Science.gov (United States)

    Camargo, C. J.; Campanella, H.; Marshall, J. E.; Torras, N.; Zinoviev, K.; Terentjev, E. M.; Esteve, J.

    2012-07-01

    This paper reports an opto-actuable device fabricated using micro-machined silicon moulds. The actuating component of the device is made from a composite material containing carbon nanotubes (CNTs) embedded in a liquid crystal elastomer (LCE) matrix. We demonstrate the fabrication of a patterned LCE-CNT film by a combination of mechanical stretching and thermal cross-linking. The resulting poly-domain LCE-CNT film contains ‘blister-shaped’ mono-domain regions, which reversibly change their shape under light irradiation and hence can be used as dynamic Braille dots. We demonstrate that blisters with diameters of 1.0 and 1.5 mm, and wall thickness 300 µm, will mechanically contract under irradiation by a laser diode with optical power up to 60 mW. The magnitude of this contraction was up to 40 µm, which is more than 10% of their height in the ‘rest’ state. The stabilization time of the material is less than 6 s for both actuation and recovery. We also carried out preliminary tests on the repeatability of this photo-actuation process, observing no material or performance degradation. This manufacturing approach establishes a starting point for the design and fabrication of wide-area tactile actuators, which are promising candidates for the development of new Braille reading applications for the visually impaired.

  4. Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers.

    Science.gov (United States)

    Carpi, Federico; Frediani, Gabriele; Gerboni, Carlo; Gemignani, Jessica; De Rossi, Danilo

    2014-02-01

    Patients affected by motor disorders of the hand and having residual voluntary movements of fingers or wrist can benefit from self-rehabilitation exercises performed with so-called dynamic hand splints. These systems consist of orthoses equipped with elastic cords or springs, which either provide a sustained stretch or resist voluntary movements of fingers or wrist. These simple systems are limited by the impossibility of modulating the mechanical stiffness. This limitation does not allow for customizations and real-time control of the training exercise, which would improve the rehabilitation efficacy. To overcome this limitation, 'active' orthoses equipped with devices that allow for electrical control of the mechanical stiffness are needed. Here, we report on a solution that relies on compact and light-weight electroactive elastic transducers that replace the passive elastic components. We developed a variable-stiffness transducer made of dielectric elastomers, as the most performing types of electromechanically active polymers. The transducer was manufactured with a silicone film and tested with a purposely-developed stiffness control strategy that allowed for electrical modulations of the force-elongation response. Results showed that the proposed new technology is a promising and viable solution to develop electrically controllable dynamic hand orthoses for hand rehabilitation.

  5. Development of a biomimetic roughness sensor for tactile information with an elastomer

    Science.gov (United States)

    Choi, Jae-Young; Kim, Sung Joon; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon

    2016-04-01

    Human uses various sensational information for identifying an object. When contacting an unidentified object with no vision, tactile sensation provides a variety of information to perceive. Tactile sensation plays an important role to recognize a shape of surfaces from touching. In robotic fields, tactile sensation is especially meaningful. Robots can perform more accurate job using comprehensive tactile information. And in case of using sensors made by soft material like silicone, sensors can be used in various situations. So we are developing a tactile sensor with soft materials. As the conventional robot operates in a controlled environment, it is a good model to make robots more available at any circumstance that sensory systems of living things. For example, there are lots of mechanoreceptors that each of them has different roles detecting simulation in side of human skin tissue. By mimicking the mechanoreceptor, a sensory system can be realized more closely to human being. It is known that human obtains roughness information through scanning the surface with fingertips. During that times, subcutaneous mechanoreceptors detect vibration. In the same way, while a robot is scanning a surface of object, a roughness sensor developed detects vibrations generated between contacting two surfaces. In this research, a roughness sensor made by an elastomer was developed and experiment for perception of objects was conducted. We describe means to compare the roughness of objects with a newly developed sensor.

  6. Hydrostatically coupled dielectric elastomer actuators for tactile displays and cutaneous stimulators

    Science.gov (United States)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2010-04-01

    Hydrostatic coupling has been recently reported as a means to improve versatility and safety of dielectric elastomer (DE) actuators. Hydrostatically coupled DE actuators rely on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load. In this paper, we present ongoing development of bubble-like versions of such transducers, made of silicone and oil. In particular, the paper describes millimeter-scale actuators, currently being developed as soft, light, acoustically silent and cheap devices for two types of applications: tactile displays and cutaneous stimulators. In both cases, the most significant advantages of the proposed technology are represented by high versatility for design (due to the fluid based transmission mechanism), tailorable stiffness perceived by the user (obtained by adjusting the internal fluid pressure), and suitable electrical safety (enabled by both a passive interface with the user and the insulating internal fluid). Millimeter-scale prototypes showed a resonance frequency of about 250 Hz, which represents the value at which Pacinian cutaneous mechanoreceptors exhibit maximum sensitivity; this provides an optimum condition to eventually code tactile information dynamically, either in combination or as an alternative to static driving.

  7. A new three-dimensional magneto-viscoelastic model for isotropic magnetorheological elastomers

    Science.gov (United States)

    Agirre-Olabide, I.; Lion, A.; Elejabarrieta, M. J.

    2017-03-01

    In this work, a four-parameter fractional derivative viscoelastic model was developed to describe the dynamic shear behaviour of magnetorheological elastomers (MREs) as a function of the matrix, particle content and magnetic field. The material parameters were obtained from experimental data measured with a Physica MCR 501 rheometer from the Anton Paar Company, equipped with a magnetorheological cell. The synthetised isotropic MRE samples were based on room-temperature vulcanising silicone rubber and spherical carbonyl iron powder micro particles as fillers, and seven volumetric particle contents were studied. The influence of particle contents was included in each parameter of the four-parameter fractional derivative model. The dependency of the storage modulus as a function of an external magnetic field (magnetorheological (MR) effect) was studied, and a dipole–dipole interaction model was used. A new three-dimensional magneto-viscoelastic model was developed to couple the viscoelastic model, the particle-matrix interaction and the magneto-induced modulus model, which predicts the influence of the magnetic field and the particle content in the MR effect of isotropic MREs.

  8. An in vitro study to evaluate the effect on dimensional changes of elastomers during cold sterilization

    Science.gov (United States)

    Khinnavar, Poonam K.; Kumar, B. H. Dhanya; Nandeeshwar, D. B.

    2015-01-01

    Objectives: This study was planned to evaluate the dimensional stability of elastomers during cold sterilization or immersion disinfection and also to evaluate the same, along with acrylic resin trays which are used in clinical practice. Materials and Methods: A study mold according to revised American Dental Association. Specification no. 19 was used. Polyether, polyvinyl siloxane (PVS) (heavy body), PVS (regular body) and Hydrophilic addition reaction silicon (medium body) were selected for study. 2% glutaraldehyde and 0.525% sodium hypochlorite were the disinfectants used. The study was divided into group-I and group-II. In group-I study, 24 specimens of each impression material were prepared. Eight immersed in 2% glutaraldehyde, eight in 0.525% sodium hypochlorite and rest eight allowed to dry bench cure. After 16 h, the specimens measured under Leica WILD stereomicroscope and dimensions compared with master die. In group II study, 24 specimens of the material with the least dimensional changes were prepared and adhered to 24 acrylic resin disks using tray adhesive. Same immersion procedure was followed as in group I. The data were analyzed by one-way ANOVA and Tukey's multiple tests. Results: Of four impression materials used, PVS (heavy body) was the most dimensionally stable, and Polyether was the least dimensionally stable in both the groups. Interpretation and Conclusion: Within the limitation of the study, PVS (heavy body) was most stable, and polyether was least stable of all the impression materials. PMID:26929499

  9. Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch

    Science.gov (United States)

    Jiang, Liang; Betts, Anthony; Kennedy, David; Jerrams, Stephen

    2016-07-01

    Electromechanical instability (EMI) is one of most common failure modes for dielectric elastomers (DEs). It has been reported that pre-stretching a DE sample can suppress EMI due to strain stiffening taking place for larger strains and a higher elastic modulus are achieved at high stretch ratios when a voltage is applied to the material. In this work, the influence of equi-biaxial stretch on DE secant modulus was studied using VHB 4910 and silicone rubber (SR) composites containing barium titanate (BaTiO3, BT) particles and also dopamine coated BT (DP-BT) particles. The investigation of equi-biaxial deformation and EMI failure for VHB 4910 was undertaken by introducing a voltage-stretch function. The results showed that EMI was suppressed by equi-biaxial pre-stretch for all the DEs fabricated and tested. The stiffening properties of the DE materials were also studied with respect to the secant modulus. Furthermore, a voltage-induced strain of above 200% was achieved for the polyacrylate film by applying a pre-stretch ratio of 2.0 without EMI occurring. However, a maximum voltage-induced strain in the polyacrylate film of 78% was obtained by the SR/20 wt% DP-BT composite for a lower applied pre-stretch ratio of 1.6 and again EMI was eliminated.

  10. Characteristics and utilization of thermoplastic elastomers (TPE)-an overview

    Energy Technology Data Exchange (ETDEWEB)

    Roestamsjah [R and D Center for Applied Chemistry, Indonesian Inst. of Sciences (Indonesia)

    1998-10-01

    The unique feature of thermoplastic elastomer, the combining of processing characteristics of thermoplastics with the physical properties of vulcanized rubber is reviewed. Highlights of TPE and its characteristics is aimed to generate interest in TPE, where SANS technique will be utilized for its characterization. The topics discussed include rubber elasticity, state of aggregation of polymers, microseparation in block copolymer system, application of TPE, and finally some notes in developing interest in TPE and SANS in Indonesia. (author)

  11. Anisotropic Elastic Properties of Muscle-like Nematic Elastomers

    Science.gov (United States)

    Ratna, Banahalii; Thomseniii, Donald L.; Shenoy, Devanand; Srinivasan, Amritha; Keller, Patrick

    2001-03-01

    De Gennes suggested in 1997 that the liquid crystal elastomers are an excellent framework to mimic muscular action. We have prepared anisotropic freestanding films of nematic elastomers from laterally attached side-chain polymers that show muscle-like mechanical properties. The orientational order of the liquid crystal side groups imposes a conformational anisotropy in the polymer backbone. When the order parameter drops at the nematic-isotropic phase transition, there is a concomitant loss of order in the backbone which results in a contraction of the film in the direction of the director orientation. Dynamic mechanical data along directions parallel and perpendicular to the optic axis, show anisotropic stress-strain behavior. The film exhibits soft elasticity when strained in the perpendicular direction when the liquid crystal mesogens reorient without appreciable stress build up. Thermostrictive studies in the parallel direction show 40constriction at the nematic-isotropic phase transition. Isometric studies show that the elastic energy stored is purely entropic in origin and the elastomer acts like a spring with unusually large spring constant at the NI transition. The maximum stress measured is 300kPa. A strain rate of 5s-1 is estimated from shear relaxation studies.

  12. Statistical analysis of magnetically soft particles in magnetorheological elastomers

    Science.gov (United States)

    Gundermann, T.; Cremer, P.; Löwen, H.; Menzel, A. M.; Odenbach, S.

    2017-04-01

    The physical properties of magnetorheological elastomers (MRE) are a complex issue and can be influenced and controlled in many ways, e.g. by applying a magnetic field, by external mechanical stimuli, or by an electric potential. In general, the response of MRE materials to these stimuli is crucially dependent on the distribution of the magnetic particles inside the elastomer. Specific knowledge of the interactions between particles or particle clusters is of high relevance for understanding the macroscopic rheological properties and provides an important input for theoretical calculations. In order to gain a better insight into the correlation between the macroscopic effects and microstructure and to generate a database for theoretical analysis, x-ray micro-computed tomography (X-μCT) investigations as a base for a statistical analysis of the particle configurations were carried out. Different MREs with quantities of 2–15 wt% (0.27–2.3 vol%) of iron powder and different allocations of the particles inside the matrix were prepared. The X-μCT results were edited by an image processing software regarding the geometrical properties of the particles with and without the influence of an external magnetic field. Pair correlation functions for the positions of the particles inside the elastomer were calculated to statistically characterize the distributions of the particles in the samples.

  13. New DEA materials by organic modification of silicone and polyurethane networks

    Science.gov (United States)

    Kussmaul, Björn; Risse, Sebastian; Wegener, Michael; Bluemke, Martin; Krause, Jens; Wagner, Joachim; Feller, Torsten; Clauberg, Karin; Hitzbleck, Julia; Gerhard, Reimund; Krueger, Hartmut

    2013-04-01

    Dielectric elastomer actuators (DEAs) can be optimized by modifying the dielectric or mechanical properties of the electroactive polymer. In this work both properties were improved simultaneously by a simple process, the one-step film formation for polyurethane and silicone films. The silicone network contains polydimethylsiloxane (PDMS) chains, as well as cross-linker and grafted molecular dipoles in varying amounts. The process leads to films, which are homogenous down to the molecular level and show higher permittivities as well as reduced stiffnesses. The dipole modification of a new silicone leads to 40 times higher sensitivities, compared to the unmodified films. This new material reaches the sensitivity of the widely used acrylate elatomer VHB4905. A similar silicone modification was obtained by using smart fillers consisting of organic dipoles and additional groups realizing a high compatibility to the silicon network. Polyurethanes are alternative elastomers for DEAs which are compared with the silicones in important properties. Polyurethanes have an intrinsically high dielectric constant (above 7), which is based on the polar nature of the polyurethane fragments. Polyurethanes can be made in roll-to-roll process giving constant mechanical and electrical properties on a high level.

  14. Physical and Mechanical Evaluation of Silicone-Based Double-Layer Adhesive Patch Intended for Keloids and Scar Treatment Therapy

    Directory of Open Access Journals (Sweden)

    Barbara Mikolaszek

    2016-11-01

    Full Text Available Growing interest in silicone elastomers for pharmaceutical purposes is due to both their beneficial material effect for scar treatment and their potential as drug carriers. Regarding their morphological structure, silicone polymers possess unique properties, which enable a wide range of applicability possibilities. The present study focused on developing a double-layer adhesive silicone film (DLASil by evaluating its physical and mechanical properties, morphology, and stability. DLASil suitability for treatment of scars and keloids was evaluated by measurement of tensile strength, elasticity modulus, and elongation. The results indicated that mechanical and physical properties of the developed product were satisfying.

  15. Microstructure Filled Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thomas, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reese, T. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-24

    We propose replacing the gas fill in a hohlraum with a low average density, variable uniformity 3D printed structure. This creates a bimodal hohlraum which acts like a vacuum hohlraum initially during the picket, but could protect the capsule from glint or direct illumination, and then once expanded, homogenizes to behave like a variable z gas-fill during peak portion of the drive. This is motivated by a two main aims: 1) reduction of the Au bubble velocity to improve inner beam propagation, and 2) the introduction of a low density, high-Z, x-ray converter to improve x-ray production in the hohlraum and uniformity of the radiation field seen by the capsule.

  16. Complications of Dermal Filling

    Directory of Open Access Journals (Sweden)

    Sajad Ahmad Salati

    2011-11-01

    Full Text Available Dermal fillers have globally become sought after drugs due to the desire of aging population to regain the youthful looks without any surgical operations. But like other procedures, dermal filling can become complicated. Besides the profitability have introduced the factor of malpractice which can bring in misery rather than beauty and youthful body contours. This article briefly reviews the common adverse effects of dermal fillers.

  17. Silicon spintronics.

    Science.gov (United States)

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  18. The electrical breakdown strength of pre-stretched elastomers, with and without sample volume conservation

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed;

    2015-01-01

    strength of polydimethylsiloxane (PDMS) elastomers. Breakdown strength was determined for samples with and without volume conservation and was found to depend strongly on the stretch ratio and the thickness of thesamples. PDMS elastomers are shown to increase breakdown strength by a factor of ∼3 when...

  19. Tribological behavior of plasma-polymerized aminopropyltriethoxysilane films deposited on thermoplastic elastomers substrates

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Elías, Fernando, E-mail: fernando.alba@unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/Luis de Ulloa 20, 26004 Logroño, La Rioja (Spain); Sainz-García, Elisa; González-Marcos, Ana [Department of Mechanical Engineering, University of La Rioja, c/Luis de Ulloa 20, 26004 Logroño, La Rioja (Spain); Ordieres-Meré, Joaquín [ETSII, Polytechnic University of Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid (Spain)

    2013-07-01

    Thermoplastic elastomers (TPE) are multifunctional polymeric materials that are characterized by moderate cost, excellent mechanical properties (high elasticity, good flexibility, hardness, etc.), high tensile strength, oxidation and wettability. With an objective of reducing the superficial friction coefficient of TPE, this work analyzes the characteristics of coating films that are based on aminopropyltriethoxysilane (APTES) over a TPE substrate. Since this material is heat-sensitive, it is necessary to use a technology that permits the deposition of coatings at low temperatures without affecting the substrate integrity. Thus, an atmospheric-pressure plasma jet system (APPJ) with a dielectric barrier discharge (DBD) was used in this study. The coated samples were analyzed by Scanning Electron Microscopy, Atomic Force Microscopy, Fourier-Transform Infrared with Attenuated Total Reflectance Spectroscopy, X-ray Photoelectron Spectroscopy and tribological tests (friction coefficient and wear rate). The studies showed that the coated samples that contain a higher amount of forms of silicon (SiOSi) and nitrogen (amines, amides and imines) have lower friction coefficients. The sample coated at a specific plasma power of 550 W and an APTES flow rate of 1.5 slm had the highest values of SiOSi and nitrogen-containing groups peak intensity and atomic percentages of Si2p and SiO{sub 4}, and the lowest percentages of C1s and average friction coefficient. The results of this research permit one to conclude that APPJ with a DBD is a promising technique to use in coating SiO{sub x} and nitrogen-containing groups layers on polymeric materials. - Highlights: • SiO{sub x} thin films on thermoplastic elastomers by atmospheric pressure plasma jet. • Study of influence of plasma power and precursor flow rate on film's properties. • Friction coefficient is inversely related to the amount of SiOSi and N groups. • Nitrogen groups from the ionization gas (N{sub 2}) seem to

  20. Localised strain sensing of dielectric elastomers in a stretchable soft-touch musical keyboard

    Science.gov (United States)

    Xu, Daniel; Tairych, Andreas; Anderson, Iain A.

    2015-04-01

    We present a new sensing method that can measure the strain at different locations in a dielectric elastomer. The method uses multiple sensing frequencies to target different regions of the same dielectric elastomer to simultaneously detect position and pressure using only a single pair of connections. The dielectric elastomer is modelled as an RC transmission line and its internal voltage and current distribution used to determine localised capacitance changes resulting from contact and pressure. This sensing method greatly simplifies high degree of freedom systems and does not require any modifications to the dielectric elastomer or sensing hardware. It is demonstrated on a multi-touch musical keyboard made from a single low cost carbon-based dielectric elastomer with 4 distinct musical tones mapped along a length of 0.1m. Loudness was controlled by the amount of pressure applied to each of these 4 positions.

  1. Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles

    Science.gov (United States)

    Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.

    2017-03-01

    Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.

  2. Rehabilitation of digital defect with silicone finger prosthesis: a case report.

    Science.gov (United States)

    Saxena, Deepesh; Jurel, Sunit; Gupta, Ajay; Dhillon, Manu; Tomar, Divya

    2014-08-01

    Patients with acquired defects often had severe trauma which leads to psychological instability, functional loss and poor aesthetics. Digital defects threaten the integrity of one's self esteem and also leads to a reduced and compromised function. A well fitted and colour matched finger prosthesis can make a patient feel a capable person and not a handicap. This article describes a technique for fabrication of custom made finger prosthesis with a silicone elastomer. The customization of the prosthesis leads to a better fit and retention. An excellent shade matching is achieved by the use of intrinsic colours. The other advantages of using silicone as a material of choice for prosthesis fabrication are also discussed.

  3. Soft hydrogels interpenetrating silicone – a polymer network for drug releasing medical devices

    DEFF Research Database (Denmark)

    Steffensen, Søren Langer; Merete H., Vestergaard,; Møller, Eva H;

    2016-01-01

    such a sophisticated material by forming an interpenetrating polymer network (IPN) material through modification of silicone elastomers with a poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogel. IPN materials with a PHEMA content in the range of 13%–38% (w/w) were synthesized by using carbon dioxide......-based solvent mixtures under high pressure. These IPNs were characterized with regard to microstructure as well as ability of the hydrogel to form a surface-connected hydrophilic carrier network inside the silicone. A critical limit for hydrogel connectivity was found both via simulation and by visualization...

  4. Wear behaviour of epoxy resin filled with hard powders

    Science.gov (United States)

    Formisano, A.; Boccarusso, L.; Minutolo, F. Capece; Carrino, L.; Durante, M.; Langella, A.

    2016-10-01

    The development of high performance materials based on epoxy resin finds a growing number of applications in which high wear resistance is required. One major drawback in many of these applications is the relatively poor wear resistance of the epoxy resin. Therefore, in order to investigate on the possibility of increasing wear resistance of thermoset polymers filled with hard powders, sliding tests are carried out by means of a pin on disc apparatus. In particular, composite resins, constituted by an epoxy resin filled with different contents and sizes of Silicon Carbide powder, are analyzed; the wear resistance, in terms of volume loss, is measured for different abrasive counterfaces and loads.

  5. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  6. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  7. Tough Block Copolymer Organogels and Elastomers as Short Fiber Composites

    Science.gov (United States)

    Kramer, Edward J.

    2012-02-01

    The origins of the exceptional toughness and elastomeric properties of gels and elastomers from block copolymers with semicrystalline syndiotactic polypropylene blocks will be discussed. Using synchrotron X-radiation small angle (SAXS) and wide angle X-ray scattering (WAXS) experiments were simultaneously performed during step cycle tensile deformation of these elastomers and gels. From these results the toughness can be attributed to the formation, orientation and elongation of the crystalline fibrils along the tensile direction. The true stress and true strain ɛH during each cycle were recorded, including the true strain at zero load ɛH,p after each cycle that resulted from the plastic deformation of the sPP crystals in the gel or elastomer. The initial Young's modulus Einit and maximum tangent modulus Emax in each cycle undergo dramatic changes as a function of ɛH,p, with Einit decreasing for ɛH,p 100 to 1000 at the highest maximum (nominal) strain. Based on SAXS patterns from the deformed and relaxed gels, as well as on previous results on deformation of semicrystalline random copolymers by Strobl and coworkers, we propose that the initial decrease in Einit and increase in Emax with ɛH,p are due to a breakup of the network of the original sPP crystal lamellae and the conversion of the sPP lamellae into fibrils whose aspect ratio increases with further plastic deformation, respectively. The gel elastic properties can be understood quantitatively as those of a short fiber composite with a highly deformable matrix. At zero stress the random copolymer midblock chains that connect the fibrils cause these to make all angles to the tensile axis (low Einit), while at the maximum strain the stiff, crystalline sPP fibrils align with the tensile axis producing a strong, relatively stiff gel. The evolution of the crystalline structure during deformation is confirmed by WAXS and FTIR measurements.

  8. Nanomechanical probing of thin-film dielectric elastomer transducers

    Science.gov (United States)

    Osmani, Bekim; Seifi, Saman; Park, Harold S.; Leung, Vanessa; Töpper, Tino; Müller, Bert

    2017-08-01

    Dielectric elastomer transducers (DETs) have attracted interest as generators, actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. Their performance crucially depends on the elastic properties of the electrode-elastomer sandwich structure. The compressive displacement of a single-layer DET can be easily measured using atomic force microscopy (AFM) in the contact mode. While polymers used as dielectric elastomers are known to exhibit significant mechanical stiffening for large strains, their mechanical properties when subjected to voltages are not well understood. To examine this effect, we measured the depths of 400 nanoindentations as a function of the applied electric field using a spherical AFM probe with a radius of (522 ± 4) nm. Employing a field as low as 20 V/μm, the indentation depths increased by 42% at a load of 100 nN with respect to the field-free condition, implying an electromechanically driven elastic softening of the DET. This at-a-glance surprising experimental result agrees with related nonlinear, dynamic finite element model simulations. Furthermore, the pull-off forces rose from (23.0 ± 0.4) to (49.0 ± 0.7) nN implying a nanoindentation imprint after unloading. This embossing effect is explained by the remaining charges at the indentation site. The root-mean-square roughness of the Au electrode raised by 11% upon increasing the field from zero to 12 V/μm, demonstrating that the electrode's morphology change is an undervalued factor in the fabrication of DET structures.

  9. Elastomer liners for geothermal tubulars Y267 EPDM Liner Program:

    Energy Technology Data Exchange (ETDEWEB)

    Hirasuna, A.R.; Davis, D.L.; Flickinger, J.E.; Stephens, C.A.

    1987-12-01

    The elastomer, Y267 EPDM, has been identified as a hydrothermally stable material which can operate at temperatures in excess of 320/sup 0/C. The goal of the Y267 Liner Program was to demonstrate the feasibility of using this material as a liner for mild steel tubulars to prevent or mitigate corrosion. If successful, the usage of EPDM lined pipe by the geothermal community may have a significant impact on operating costs and serve as a viable alternative to the use of alloyed tubulars. Tooling procedures were developed under this program to mold a 0.64 cm (0.25'') thick Y267 EPDM liner into a tubular test section 61 cm (2') in length and 19.1 cm (7.5'') in diameter (ID). A successful effort was made to identify a potential coupling agent to be used to bond the elastomer to the steel tubular wall. This agent was found to withstand the processing conditions associated with curing the elastomer at 288/sup 0/C and to retain a significant level of adhesive strength following hydrothermal testing in a synthetic brine at 260/sup 0/C for a period of 166 hours. Bonding tests were conducted on specimens of mild carbon steel and several alloys including Hastelloy C-276. An objective of the program was to field test the lined section of pipe mentioned above at a geothermal facility in the Imperial Valley. Though a test was conducted, problems encountered during the lining operation precluded an encouraging outcome. The results of the field demonstration were inconclusive. 6 refs., 13 figs., 13 tabs

  10. Powerful polymeric thermal microactuator with embedded silicon microstructure

    NARCIS (Netherlands)

    Lau, G.K.; Goosen, J.F.L.; Van Keulen, F.; Chu Duc, T.; Sarro, P.M.

    2007-01-01

    A powerful and effective design of a polymeric thermal microactuator is presented. The design has SU-8 epoxy layers filled and bonded in a meandering silicon (Si) microstructure. The silicon microstructure reinforces the SU-8 layers by lateral restraint. It also improves the transverse thermal expan

  11. Toughening wood/polypropylene composites with polyethylene octene elastomer (POE)

    Institute of Scientific and Technical Information of China (English)

    JIANG Feng; QIN Te-fu

    2006-01-01

    Polyethylene octene elastomer (POE) as impact modifier was incorporated into wood/polypropylene composites (WPC) to enhance the impact strength of the composite. Two extruding routes, i.e. direct extruding route and two-stage extruding route, were adopted to produce Wood Powder/PP/POE ternary composites. The mechanical and dynamic mechanical analysis (DMA) properties of the composites were investigated. The results showed that the addition of POE can increase the impact strength of the composites, and the composites produced via two-stage extruding route showed superior mechanical properties. The results of the DMA confirmed the mechanical tests.

  12. A modelling approach for the heterogeneous oxidation of elastomers

    Science.gov (United States)

    Herzig, A.; Sekerakova, L.; Johlitz, M.; Lion, A.

    2017-04-01

    The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry's law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side

  13. A modelling approach for the heterogeneous oxidation of elastomers

    Science.gov (United States)

    Herzig, A.; Sekerakova, L.; Johlitz, M.; Lion, A.

    2017-09-01

    The influence of oxygen on elastomers, known as oxidation, is one of the most important ageing processes and becomes more and more important for nowadays applications. The interaction with thermal effects as well as antioxidants makes oxidation of polymers a complex process. Based on the polymer chosen and environmental conditions, the ageing processes may behave completely different. In a lot of cases the influence of oxygen is limited to the surface layer of the samples, commonly referred to as diffusion-limited oxidation. For the lifetime prediction of elastomer components, it is essential to have detailed knowledge about the absorption and diffusion behaviour of oxygen molecules during thermo-oxidative ageing and how they react with the elastomer. Experimental investigations on industrially used elastomeric materials are executed in order to develop and fit models, which shall be capable of predicting the permeation and consumption of oxygen as well as changes in the mechanical properties. The latter are of prime importance for technical applications of rubber components. Oxidation does not occur homogeneously over the entire elastomeric component. Hence, material models which include ageing effects have to be amplified in order to consider heterogeneous ageing, which highly depends on the ageing temperature. The influence of elevated temperatures upon accelerated ageing has to be critically analysed, and influences on the permeation and diffusion coefficient have to be taken into account. This work presents phenomenological models which describe the oxygen uptake and the diffusion into elastomers based on an improved understanding of ongoing chemical processes and diffusion limiting modifications. On the one side, oxygen uptake is modelled by means of Henry's law in which solubility is a function of the temperature as well as the ageing progress. The latter is an irreversible process and described by an inner differential evolution equation. On the other side

  14. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  15. Frequency-domain trade-offs for dielectric elastomer generators

    Science.gov (United States)

    Zanini, Plinio; Rossiter, Jonathan M.; Homer, Martin

    2017-04-01

    Dielectric Elastomer Generators (DEGs) are an emerging energy harvesting technology based on a the cyclic stretching of a rubber-like membrane. However, most design processes do not take into account different excitation frequencies; thus limits the applicability studies since in real-world situations forcing frequency is not often constant. Through the use of a practical design scenario we use modeling and simulation to determine the material frequency response and, hence, carefully investigate the excitation frequencies that maximize the performance (power output, efficiency) of DEGs and the factors that influence it.

  16. Reversible large amplitude planar extension of soft elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.

    The newly developed planar elongation fixture, designed as an add-on to the filament stretch rheometer, is used to measure reversible large amplitude planar elongation on soft elastomers. The concept of the new fixture is to elongate an annulus by keeping the perimeter constant. The deformation....... In particular it is observed that this new approximation reproduces the order of magnitude of the deformation on the cylindrical probe. In fact it is demonstrated that the deviation from an ideal planar extension of the cylindrical probe is highly sensitive towards the choice of strain tensor. When analyzing...

  17. Band structures in the nematic elastomers phononic crystals

    Science.gov (United States)

    Yang, Shuai; Liu, Ying; Liang, Tianshu

    2017-02-01

    As one kind of new intelligent materials, nematic elastomers (NEs) represent an exciting physical system that combines the local orientational symmetry breaking and the entropic rubber elasticity, producing a number of unique physical phenomena. In this paper, the potential application of NEs in the band tuning is explored. The band structures in two kinds of NE phononic crystals (PCs) are investigated. Through changing NE intrinsic parameters, the influence of the porosity, director rotation and relaxation on the band structures in NE PCs are analyzed. This work is a meaningful try for application of NEs in acoustic field and proposes a new intelligent strategy in band turning.

  18. Formation of free radicals during mechanical degradation of elastomers.

    Science.gov (United States)

    Devries, K. L.; Williams, M. L.; Roylance, D. K.

    1971-01-01

    Solithane 113 (an amorphous polyurethane elastomer) was prepared by curing equal proportions of castor oil and trifunctional isocyanate for 6 hr 45 min at 170 F. The sample material was mechanically degraded by grinding below and above its glass transition point at liquid nitrogen and room temperatures. The EPR spectra of ground samples were recorded and the number of free radicals were determined by a computer double-integration of the recorded spectra and by a comparison of the values with those of a standard material. Curves of EPR spectra suggest that different molecular mechanisms may be active in degradation of this material below and above its glass transition temperature.

  19. Quasi-static axisymmetric eversion hemispherical domes made of elastomers

    Science.gov (United States)

    Kabrits, Sergey A.; Kolpak, Eugeny P.

    2016-06-01

    The paper considers numerical solution for the problem of quasi-static axisymmetric eversion of a spherical shell (hemisphere) under action of external pressure. Results based on the general nonlinear theory of shells made of elastomers, proposed by K. F. Chernykh. It is used two models of shells based on the hypotheses of the Kirchhoff and Timoshenko, modified K.F. Chernykh for the case of hyperelastic rubber-like material. The article presents diagrams of equilibrium states of eversion hemispheres for both models as well as the shape of the shell at different points in the diagram.

  20. 40 Gbit/s silicon-organic hybrid (SOH) phase modulator

    OpenAIRE

    Alloatti L.; Korn D.; Hillerkuss D.; Vallaitis T.; Li J; Bonk R.; Palmer R.; Schellinger T.; Barklund A.; Dinu R.

    2010-01-01

    A 40 Gbit/s electro-optic modulator is demonstrated. The modulator is based on a slotted silicon waveguide filled with an organic material. The silicon organic hybrid (SOH) approach allows combining highly nonlinear electro-optic organic materials with CMOS-compatible silicon photonics technology.

  1. Energy harvesting by dielectric elastomer generator and self-priming circuit: verification by radio transmission

    Science.gov (United States)

    Ikegame, Toru; Takagi, Kentaro; Ito, Takamasa; Kojima, Hiroki; Yoshikawa, Hitoshi

    2017-04-01

    This paper discusses energy harvesting and its application using dielectric elastomer and self-priming circuit. With the self-priming circuit attached to the dielectric elastomer, the generated voltage increases exponentially according to the variation of the capacitance caused by applied deformation to the elastomer. Two-stage self-priming circuit is selected for optimal harvesting. The self-priming harvesting technique is able to increase the voltage of the dielectric elastomer from a few volts to kV order, however in this paper the generated voltage is limited up to 1kV in order to avoid the destruction of the dielectric elastomer. The ability of energy harvesting using dielectric elastomer and self-priming circuit is confirmed by both numerical simulation and experiments. In the experiment, the dielectric elastomer is deformed by an electric motor, and the harvested energy is stored to a charging capacitor through Zener diodes. A low-power microcomputer which has a radio transmitter is connected to the charging capacitor for the application example. The experimental results show that the temperature data can be transmitted only by the harvested energy. In addition, the efficiency of the energy harvesting is calculated by comparing the generated power with the charged power.

  2. Wrinkling of a thin film on a nematic liquid-crystal elastomer

    Science.gov (United States)

    Soni, Harsh; Pelcovits, Robert A.; Powers, Thomas R.

    2016-07-01

    Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)], 10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer.

  3. Wrinkling of a thin film on a nematic liquid-crystal elastomer.

    Science.gov (United States)

    Soni, Harsh; Pelcovits, Robert A; Powers, Thomas R

    2016-07-01

    Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)]1744-683X10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer.

  4. Tension-filled Governance?

    DEFF Research Database (Denmark)

    Celik, Tim Holst

    Since the crisis-engrossed 1970s, and especially the 1990s, ‘governance’ has become a dominant concern and concept; notably, within particularly political science, a certain diagnosis explicitly or implicitly focused on a shift ‘from government to governance’ has become increasingly popular....... This study examines the governance phenomenon of the post-1970/1990s period from a state-situated and historically informed perspective. Specifically, taking initial analytical departure in an approach of the early 1970s associated with James O’Connor, Jürgen Habermas and Claus Offe focused...... on the statesituated tension-filled functional relationship between legitimation and accumulation, the study both historically and theoretically reworks this approach and reapplies it for the post-1970s/1990s governance period. It asks whether and to what extent governance has served as a distinctive post- 1970s/1990s...

  5. Preparing for faster filling

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the programmed technical stop last week, operators focussed on preparing the machine for faster filling, which includes multibunch injection and a faster pre-cycle phase.   The LHC1 screen shot during the first multibunch injection operation. The LHC operational schedule incorporates a technical stop for preventive maintenance roughly every six weeks of stable operation, during which several interventions on the various machines are carried out. Last week these included the replacement of a faulty magnet in the SPS pre-accelerator, which required the subsequent re-setting of the system of particle extraction and transfer to the LHC. At the end of last week, all the machines were handed back for operation and work could start on accommodating all the changes made into the complex systems in order for normal operation to be resumed. These ‘recovery’ operations continued through the weekend and into this week. At the beginning of this week, operators succeeded in pro...

  6. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  7. Voltage-induced pinnacle response in the dynamics of dielectric elastomers

    Science.gov (United States)

    Li, Bo; Zhang, Junshi; Chen, Hualing; Li, Dichen

    2016-05-01

    A dielectric elastomer is capable of large deformation under alternating electromechanical excitation. In this paper, several dynamic properties of a dielectric elastomer are investigated, in particular the effect of strain stiffening. A theoretical model is established that shows that the bias voltage affects the amplitude and the response waveform during vibration, a curve with the shape of a pinnacle. We also describe the underlying physical mechanism by considering the molecular chain length and cross-linking density of the material. A phase portrait is presented that reveals the transitional behavior of the dielectric elastomer as it switches between soft and stiffened vibration states.

  8. Self-healing of optical functions by molecular metabolism in a swollen elastomer

    Directory of Open Access Journals (Sweden)

    Mitsunori Saito

    2012-12-01

    Full Text Available Optical functions of organic dyes, e.g., fluorescence or photochromism, tend to degrade by light irradiation, which causes a short lifetime of photonic devices. Self-healing of optical functions is attainable by metabolizing bleached molecules with nonirradiated ones. A polydimethylsiloxane elastomer provides a useful matrix for dye molecules, since its flexible structure with nano-sized intermolecular spaces allows dye diffusion from a reservoir to an operation region. Swelling the elastomer with a suitable solvent promotes both dissolution and diffusion of dye molecules. This self-healing function was demonstrated by an experiment in which a photochromic elastomer exhibited improved durability against a repeated coloring-decoloring process.

  9. Finite element modelling of dielectric elastomer minimum energy structures

    Science.gov (United States)

    O'Brien, Benjamin; McKay, Thomas; Calius, Emilio; Xie, Shane; Anderson, Iain

    2009-03-01

    This paper presents an experimentally validated finite element model suitable for simulating the quasi-static behaviour of Dielectric Elastomer Minimum Energy Structure(s) (DEMES). A DEMES consists of a pre-stretched Dielectric Elastomer Actuator (DEA) adhered to a thin, flexible frame. The tension in the stretched membrane causes the frame to curl up, and when a voltage is applied, the frame returns to its initial planar state thus forming a useful bending actuator. The simulation method presented here incorporates a novel strain energy function suitable for simulating general DEA actuator elements. When compared against blocked force data from our previous work, the new model provides a good fit with an order of magnitude reduction in computational time. Furthermore, the model accurately matched experimental data on the free displacement of DEMES formed with non-equibiaxially pre-stretched VHB4905 membranes driven by 2500 V. Non-equibiaxially pre-stretching the membranes allowed control of effective frame stiffness and bending moment, this was exploited by using the model to optimise stroke at 2500 V in a hypothetical case study. Dielectric constant measurements for non-equibiaxially stretched VHB4905 are also presented.

  10. Novel Arrangements for High Performance and Durable Dielectric Elastomer Actuation

    Directory of Open Access Journals (Sweden)

    Runan Zhang

    2016-07-01

    Full Text Available This paper advances the design of Rod Pre-strained Dielectric Elastomer Actuators (RP-DEAs in their capability to generate comparatively large static actuation forces with increased lifetime via optimized electrode arrangements. RP-DEAs utilize thin stiff rods to constrain the expansion of the elastomer and maintain the in-plane pre-strain in the rod longitudinal direction. The aim is to study both the force output and the durability of the RP-DEA. Initial design of the RP-DEA had poor durability, however, it generated significantly larger force compared with the conventional DEA due to the effects of pre-strain and rod constraints. The durability study identifies the in-electro-active-region (in-AR lead contact and the non-uniform deformation of the structure as causes of pre-mature failure of the RP-DEA. An optimized AR configuration is proposed to avoid actuating undesired areas in the structure. The results show that with the optimized AR, the RP-DEA can be effectively stabilized and survive operation at least four times longer than with a conventional electrode arrangement. Finally, a Finite Element simulation was also performed to demonstrate that such AR design and optimization can be guided by analyzing the DEA structure in the state of pre-activation.

  11. How does the molecular network structure influence PDMS elastomer wettability?

    Science.gov (United States)

    Melillo, Matthew; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from medical devices to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - microfluidic devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, end-group chemical functionality, and the extent of dilution of the curing mixture on the mechanical and surface properties of end-linked PDMS networks. The gel and sol fractions, storage and loss moduli, liquid swelling ratios, and water contact angles have all been shown to vary greatly based on the aforementioned variables. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have confirmed theories predicting the relationships between modulus and swelling. Furthermore, we have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient microfluidics and other PDMS-based materials that involve the transport of liquids.

  12. Antagonistic dielectric elastomer actuator for biologically-inspired robotics

    Science.gov (United States)

    Conn, Andrew T.; Rossiter, Jonathan

    2011-04-01

    For optimal performance, actuators designed for biologically-inspired robotics applications need to be capable of mimicking the key characteristics of natural musculoskeletal systems. These characteristics include a large output stroke, high energy density, antagonistic operation and passive compliance. The actuation properties of dielectric elastomer actuators (DEAs) make them viable for use as an artificial muscle technology. However, much like the musculoskeletal system, rigid structures are needed to couple the compliant DEA layers to a load. In this paper, a cone DEA design is developed as an antagonistic, multi-DOF actuator, viable for a variety for biologically-inspired robotics applications. The design has the advantage of maintaining pre-strain through a support structure without substantially lowering the overall mass-specific power density. Prototype cone DEAs have been fabricated with VHB 4910 acrylic elastomer and have characteristic dimensions of 49mm (strut length) and 60mm (DEA diameter). Multi-DOF kinematical outputs of the cone DEAs were measured using a custom 3D motion tracking system. Experimental tests of the prototypes demonstrate antagonistic linear (+/-10mm), rotational (+/-25°) and combined multi-DOF strokes. Overall, antagonistic cone DEAs are shown to produce a complex multi-DOF output from a mass-efficient support structure and thus are well suited for being exploited in biologically-inspired robotics.

  13. Superhydrophobic/superoleophilic magnetic elastomers by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Milionis, Athanasios, E-mail: am2vy@virginia.edu [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Fragouli, Despina; Brandi, Fernando; Liakos, Ioannis; Barroso, Suset [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy)

    2015-10-01

    Highlights: • We report the development of magnetic nanocomposite sheets. • Laser irradiation of the nanocomposites induces chemical and structural changes to the surface. • The laser-patterned surfaces exhibit superhydrophobicity and superoleophilicity. • The particle contribution in altering the surface and bulk properties of the material is studied. - Abstract: We report the development of magnetic nanocomposite sheets with superhydrophobic and supeoleophilic surfaces generated by laser ablation. Polydimethylsiloxane elastomer free-standing films, loaded homogeneously with 2% wt. carbon coated iron nanoparticles, were ablated by UV (248 nm), nanosecond laser pulses. The laser irradiation induces chemical and structural changes (both in micro- and nano-scale) to the surfaces of the nanocomposites rendering them superhydrophobic. The use of nanoparticles increases the UV light absorption efficiency of the nanocomposite samples, and thus facilitates the ablation process, since the number of pulses and the laser fluence required are greatly reduced compared to the bare polymer. Additionally the magnetic nanoparticles enhance significantly the superhydrophobic and oleophilic properties of the PDMS sheets, and provide to PDMS magnetic properties making possible its actuation by a weak external magnetic field. These nanocomposite elastomers can be considered for applications requiring magnetic MEMS for the controlled separation of liquids.

  14. Dielectric elastomer vibrissal system for active tactile sensing

    Science.gov (United States)

    Conn, Andrew T.; Pearson, Martin J.; Pipe, Anthony G.; Welsby, Jason; Rossiter, Jonathan

    2012-04-01

    Rodents are able to dexterously navigate confined and unlit environments by extracting spatial and textural information with their whiskers (or vibrissae). Vibrissal-based active touch is suited to a variety of applications where vision is occluded, such as search-and-rescue operations in collapsed buildings. In this paper, a compact dielectric elastomer vibrissal system (DEVS) is described that mimics the vibrissal follicle-sinus complex (FSC) found in rodents. Like the vibrissal FSC, the DEVS encapsulates all sensitive mechanoreceptors at the root of a passive whisker within an antagonistic muscular system. Typically, rats actively whisk arrays of macro-vibrissae with amplitudes of up to +/-25°. It is demonstrated that these properties can be replicated by exploiting the characteristic large actuation strains and passive compliance of dielectric elastomers. A prototype DEVS is developed using VHB 4905 and embedded strain gauges bonded to the root of a tapered whisker. The DEVS is demonstrated to produce a maximum rotational output of +/-22.8°. An electro-mechanical model of the DEVS is derived, which incorporates a hyperelastic material model and Euler- Bernoulli beam equations. The model is shown to predict experimental measurements of whisking stroke amplitude and whisker deflection.

  15. Biodegradable and radically polymerized elastomers with enhanced processing capabilities.

    Science.gov (United States)

    Ifkovits, Jamie L; Padera, Robert F; Burdick, Jason A

    2008-09-01

    The development of biodegradable materials with elastomeric properties is beneficial for a variety of applications, including for use in the engineering of soft tissues. Although others have developed biodegradable elastomers, they are restricted by their processing at high temperatures and under vacuum, which limits their fabrication into complex scaffolds. To overcome this, we have modified precursors to a tough biodegradable elastomer, poly(glycerol sebacate) (PGS) with acrylates to impart control over the crosslinking process and allow for more processing options. The acrylated-PGS (Acr-PGS) macromers are capable of crosslinking through free radical initiation mechanisms (e.g., redox and photo-initiated polymerizations). Alterations in the molecular weight and % acrylation of the Acr-PGS led to changes in formed network mechanical properties. In general, Young's modulus increased with % acrylation and the % strain at break increased with molecular weight when the % acrylation was held constant. Based on the mechanical properties, one macromer was further investigated for in vitro and in vivo degradation and biocompatibility. A mild to moderate inflammatory response typical of implantable biodegradable polymers was observed, even when formed as an injectable system with redox initiation. Moreover, fibrous scaffolds of Acr-PGS and a carrier polymer, poly(ethylene oxide), were prepared via an electrospinning and photopolymerization technique and the fiber morphology was dependent on the ratio of these components. This system provides biodegradable polymers with tunable properties and enhanced processing capabilities towards the advancement of approaches in engineering soft tissues.

  16. A novel variable stiffness mechanism for dielectric elastomer actuators

    Science.gov (United States)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-08-01

    In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.

  17. A novel duct silencer using dielectric elastomer absorbers

    Science.gov (United States)

    Lu, Zhenbo; Cui, Yongdong; Zhu, Jian; Debiasi, Marco

    2014-03-01

    A novel duct silencer was developed using dielectric elastomer absorbers (DEAs). Dielectric elastomer, a lightweight, high elastic energy density and large deformation under high DC/AC voltages smart material, was used to fabricate this new generation actuator. The acoustic performances of this duct silencer were experimentally investigated in a transmission loss (TL) measurement system using two-load method. It was found that the resonance peaks of this new duct silencer could be controlled by applying various DC voltages, a maximum resonance shift of 59.5Hz for the resonance peaks was achieved which indicated that this duct silencer could be adjusted to absorb broadband range noise without any addition mechanical part. Furthermore, the resonance shift and multiple resonances mechanisms using DEAs were proposed and discussed in the present paper which was aiming to achieve broadband noise reduction. The present results also provide insight into the appropriateness of the absorber for possible use as new acoustic treatment to replace the traditional acoustic treatment.

  18. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2009-01-01

    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  19. Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Annabelle; Kurokawa, Naruki; Hillmyer, Marc A. (UMM)

    2017-05-03

    Thermoplastic elastomers (TPEs) composed of ABA block polymers exhibit a wide variety of properties and are easily processable as they contain physical, rather than chemical, cross-links. Poly(γ-methyl-ε-caprolactone) (PγMCL) is an amorphous polymer with a low entanglement molar mass (Me = 2.9 kg mol–1), making it a suitable choice for tough elastomers. Incorporating PγMCL as the midblock with polylactide (PLA) end blocks (fLA = 0.17) results in TPEs with high stresses and elongations at break (σB = 24 ± 2 MPa and εB = 1029 ± 20%, respectively) and low levels of hysteresis. The use of isotactic PLA as the end blocks (fLLA = 0.17) increases the strength and toughness of the material (σB = 30 ± 4 MPa, εB = 988 ± 30%) due to its semicrystalline nature. This study aims to demonstrate how the outstanding properties in these sustainable materials are a result of the entanglements, glass transition temperature, segment–segment interaction parameter, and crystallinity, resulting in comparable properties to the commercially relevant styrene-based TPEs.

  20. Asymmetry bistability for a coupled dielectric elastomer minimum energy structure

    Science.gov (United States)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2016-11-01

    In this paper, a novel design of asymmetry bistability for a coupled dielectric elastomer minimum energy structure (DEMES) is presented. The structure can be stable both in the stretched and curved configurations, which are induced by the geometry coupling effect of two DEMESs with perpendicular bending axes. The unique asymmetry bistability and fully flexible compact design of the coupled DEMES can enrich the active morphing modes of the dielectric elastomer actuators. A theoretical model of the system’s strain energy is established to explain the bistability. Furthermore, a prototype is fabricated to verify the conceptual design. The experimental results show that when the applied voltage is below a critical transition one, the structure behaves as a conventional DEMES, once the applied voltage exceeds the critical voltage, the structure could change from the stretched (curved) configuration to the curved (stretched) configuration abruptly and maintain in a new stable configuration when the voltage is removed. A multi-segment structure with the coupled DEMES is also presented and fabricated, and it displays various voltage-actuated morphings. It indicates that the coupled DEMES and the multi-segment structures can be useful for the soft and shape-shifting robots.

  1. Radiation-induced aging of PDMS Elastomer TR-55: a summary of constitutive, mesoscale, and population-based models

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dinh, L. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-16

    Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation-, thermal-, and electrical barriers. External factors like mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a Materials Science point of view it is highly desirable to understand, effect, and manipulate such property changes in a controlled manner. In this report we summarize our modeling efforts on a polysiloxane elastomer TR-55, which is an important component in several of our systems, and representative of a wide class of filled rubber materials. The primary aging driver in this work has been γ-radiation, and a variety of modeling approaches have been employed, including constitutive, mesoscale, and population-based models. The work utilizes diverse experimental data, including mechanical stress-strain and compression set measurements, as well as MWD measurements using multiquantum NMR.

  2. Dielectric elastomer actuator for the measurement of cell traction forces with sub-cellular resolution

    Science.gov (United States)

    Rosset, Samuel; Poulin, Alexandre; Zollinger, Alicia; Smith, Michael; Shea, Herbert

    2017-04-01

    We report on the use of dielectric elastomer actuators (DEAs) to measure the traction force field of cells with subcellular resolution. The study of cellular electrochemical and mechanical response to deformation is an important area of research, as mechanotransduction has been shown to be linked with fundamental cell functions, or the progression of diseases such as cancer or atherosclerosis. Experimental cell mechanics is based on two fundamental concepts: the ability to measure cell stiffness, and to apply controlled strains to small clusters of cells. However, there is a lack of tools capable of applying precise deformation to a small cell population while being compatible with an inverted microscope (stable focal plane, transparency, compactness, etc.). Here, we use an anisotropically prestretched silicone-based DEA to deform a soft (7.6kPa) polyacrylamide gel on which the cells are cultured. An array of micro-dots of fluorescent fibronectin is transferred on the gel by micro-contact printing and serves as attachment points for the cells. In addition, the fluorescent dots (which have a diameter of 2 μm with a spacing of 6 μm) are used during the experiment to monitor the traction forces of a single cell (or small cluster of cells). The cell locally exerts traction on the gel, thus deforming the matrix of dots. The position of dots versus time is monitored live when the cells are submitted to a uniaxial strain step. Our deformable bioreactor enables the measurement of the local stiffness of cells submitted to mechanical strain, and is fully compatible with an inverted microscope set-up.

  3. Elastomer Change Out - Justification for minimizing the removal of elastomers in order to prevent cross contamination in a multiproduct facility.

    Science.gov (United States)

    Parks, Michael; O'Dwyer, Niamh; Bollinger, Jeremy; Johnson, Alan; Goss, Brian; Wyman, Ned; Arroyo, Adeyma; Wood, Joseph; Willison-Parry, Derek

    2017-09-19

    The primary objective of any Biopharmaceutical Product Changeover (PCO) program is to employ control strategies before, during, and after the manufacturing process, as well as from the beginning of the lifecycle approach for the equipment and validation, which will minimize the opportunity for cross- contamination when switching between products. Evaluation of the need for an Elastomer Change Out (ECO) should be considered as a segment of an overall changeover assessment. Lifecycle systems (e.g. Preventive Maintenance (PM), Cleanability Coupon Testing, Good Engineering Practices, etc.) and procedures should be in place and data should be generated demonstrating the soft parts do not harbor residues from the previous product campaign(s). The determination of whether or not to replace elastomers/soft parts should be made in the context of all of these systems along with the proper assessment of Risk. By understanding the actual value of ECO in terms of the overall PCO program, and the other systems and procedures that are in place that protect against cross contamination, the need for ECO for every product changeover is not necessary. The purpose of this paper is to review the practice of ECO at product changeover, evaluate the need for an ECO using a risk based approach, and provide rationale for justifying the reduction or elimination of ECO at product changeover. Copyright © 2017, Parenteral Drug Association.

  4. Polyacrylate membranes for tunable liquid-filled microlenses

    Science.gov (United States)

    Zhang, Wei; Zappe, Hans; Seifert, Andreas

    2013-04-01

    We present the use of polyacrylate membranes for the fabrication of pneumatically actuated variable lenses. Whereas the most commonly used membrane material for tunable liquid-filled lenses is polydimethylsiloxane (PDMS), polyacrylate membranes have the advantages of high resistance to swelling in silicone oil and enhanced compatibility with a wide range of aqueous optical liquids. These features are quantitatively demonstrated by comparing the material properties and performance of PDMS and polyacrylate membrane lenses. The optical transparency of polyacrylate is more than 92%. The surface roughness is below 3.3 nm rms, and reversible elastic deformation could be demonstrated. Optical measurements show that the cutoff frequency of the modulation transfer function of polyacrylate lenses with different liquid fillings, using a reference contrast of 0.2, is more than 1.5 times larger than that of the same system assembled with PDMS membranes filled with water.

  5. Impregnation of porous silicon with conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Harraz, Farid A. [Advanced Materials Technology Department, Central Metallurgical Research and Development Institute (CMRDI), PO Box: 87, Hewan, 11421 Cairo (Egypt)

    2011-06-15

    Fabrication of porous silicon layers using the electrochemical technique followed by filling the nanopores with a group of conducting polymers is investigated. Our findings revealed that the deposition of polymer proceeds homogeneously inside the nanopores strating from the pore bottom and propagates into the outer surface. The polymerization process was conducted and controlled by the potentiostatic and galvanostatic modes with characteristic, defined polymerization stages. As-formed hybrid nanocomposites were characterized using different analytical techniques. Polypyrrole, polyaniline and polythiophene were tested in this study. By selective dissolution of porous silicon template, polymeric nanowires were obtained. The fabrication process, the electrochemical measurements and the porous silicon filling mechanism with polymer are thoroughly addressed and discussed (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Application of silicone based elastomers for manufacturing of Green Fiber Bottle

    DEFF Research Database (Denmark)

    Saxena, Prateek; Bissacco, Giuliano

    2017-01-01

    Due to ever-increasing demand of sustainable products, eco-friendly packaging solutions are findingtheir importance in the paper packaging industry [1]. Green Fiber Bottle (GFB) is an alternative toplastic, glass and metal based packaging for beverages. The manufacturing of paper bottle is a two...

  7. Iron oxide nanoparticles as dielectric and piezoelectric enhancers for silicone elastomers

    Science.gov (United States)

    Iacob, Mihail; Tugui, Codrin; Tiron, Vasile; Bele, Adrian; Vlad, Stelian; Vasiliu, Tudor; Cazacu, Maria; Vasiliu, Ana-Lavinia; Racles, Carmen

    2017-10-01

    Iron oxide nanoparticles were prepared using an alkaline precipitation method to tune the reaction time so as to afford ferrihydrite with spherical morphology or goethite nanorods. These two nanoparticle types, surface-treated with a surfactant (Pluronic L81), were each incorporated in 10, 20 and 30 wt% within a polydimethylsiloxane-α,ω-diol (Mn = 60 000 g mol‑1). The mixtures were processed as films and crosslinked by condensation with tetraethoxysilane at room temperature. The aged films were investigated concerning filler distribution (by SEM coupled with an energy-dispersive x-ray spectroscopy module), mechanical (tensile strength, elongation and Young’s modulus), and dielectric properties (permittivity, loss, conductivity and strength). The results show that the fillers have a relatively homogeneous distribution within the matrix and, dependent on the filler nature and amount, generally manifest a mechanical reinforcing effect and act as dielectric permittivity and strength enhancers. In addition, it has been found that the crystalline nanoparticles induce a piezoelectric response, emphasized by piezoelectric force microscopy. The improved properties of the composites make them suitable for applications in mechanical/electrical energy conversion, as theoretical estimates showed.

  8. Hydrophobic silicone elastomer chamber for recording trajectories of motile porcine sperms without adsorption.

    Science.gov (United States)

    Matsuura, Koji; Kuroda, Yuka; Yamashita, Keisuke; Funahashi, Hiroaki

    2011-02-01

    Motile porcine sperms adhere to hydrophilic materials such as glass and plastics. The adsorption of sperms to a hydrophobic poly(dimethylsiloxane) (PDMS) membrane is less compared with that to glass. We investigated the linear velocity (LV) and amplitude of lateral head displacement (ALHD) of motile porcine sperm on glass and PDMS preparations using computer-assisted sperm analysis (CASA). Significant decreases were observed in the 15-min LV (Pglass preparations compared with those on PDMS preparations. These differences were due to adsorption of the head and/or neck to hydrophilic substrates. Because of the elasticity of PDMS, we propose that a PDMS membrane should be used for CASA. To investigate the dynamics of motile porcine sperms with microfluidics, we do not recommend plasma treatment to bond PDMS and glass in the microchannel preparation; instead, we suggest that a PDMS molding process without plasma treatment be used for preparation of microfluidic channels.

  9. Electromechanical phase transition in dielectric elastomers under uniaxial tension and electrical voltage

    Science.gov (United States)

    Huang, Rui; Suo, Zhigang

    2012-02-01

    Subject to forces and voltage, a dielectric elastomer may undergo electromechanical phase transition. A phase diagram is constructed for an ideal dielectric elastomer membrane under uniaxial force and voltage, reminiscent of the phase diagram for liquid-vapor transition of a pure substance. We identify a critical point for the electromechanical phase transition. Two states of deformation (thick and thin) may coexist during the phase transition, with the mismatch in lateral stretch accommodated by wrinkling of the membrane in the thin state. The processes of electromechanical phase transition under various conditions are discussed. A reversible cycle is suggested for electromechanical energy conversion using the dielectric elastomer membrane, analogous to the classical Carnot cycle for a heat engine. The amount of energy conversion, however, is limited by failure of the dielectric elastomer due to electrical breakdown. With a particular combination of material properties, the electromechanical energy conversion can be significantly extended by taking advantage of the phase transition without electrical breakdown.

  10. Stress-induced birefringence in elastomers doped with ferrofluid magnetic particles: Mechanical and optical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Sena, C. [Instituto de Fisica, Universidade de Sao Paulo, Caixa postal 66318, Sao Paulo, SP 05315-970 (Brazil); Bailey, C. [Liquid Crystal Institute, Kent State University, P.O. Box 5190, Kent, OH 44242-0001 (United States); Godinho, M.H. [Faculdade de Ciencias e Tecnologia e CENIMAT, Universidade Nova de Lisboa, Quinta da Torre, P-2829-516 Caparica (Portugal); Figueirinhas, J.L. [CFMC, Universidade de Lisboa, Avenida Prof. Gama Pinto 2, 1649 003 Lisbon (Portugal); Palffy-Muhoray, P. [Liquid Crystal Institute, Kent State University, P.O. Box 5190, Kent, OH 44242-0001 (United States); Figueiredo Neto, A.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa postal 66318, Sao Paulo, SP 05315-970 (Brazil)]. E-mail: afigueiredo@if.usp.br

    2006-05-15

    Magnetic nanoparticles from magnetic colloidal suspensions were incorporated in the urethane/urea elastomer (PU/PBDO) by adding to the prepolymers solution in toluene diverse amounts of magnetite grains. It is shown that ferrofluid grains can be efficiently incorporated into the elastomer according to this procedure. Mechanical and optical experiments performed show that the elastomer preparation procedure (casting) introduces a structural anisotropy on the optically isotropic sample. This fact is put in evidence by the measurements of the Young's moduli and orientation of the sample's optical axis under stress. The dependence of the phase shift of both the pure and ferrofluid-doped elastomer samples under strain is linear, and the strain-optic coefficient is show to be linear with the ferrofluid concentration.

  11. SYNTHESIS OF POLYURETHANE MODIFIED BISMALEIMIDE(UBMI)AND POLYURETHANE-IMIDE ELASTOMER

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Urethane modified bismaleimide(UBMI)was synthesized by the reaction of maleic anhydride(MA)with NCO group terminated polyurethane prepolymer(PUP)in presence of acetone.The product was determined by infrared analysis.Then ultrasonic assistant process was introduced into the solvent removal of the prepolymer mixture of UBMI and PUP.Polyurethane-imide(PUI)elastomer was synthesized from the above PUP-UBMI prepolymer mixture by the infusion technology with 2,5-dimethyl-2,5-bis(tert-butylperoxy)-hexane(B25)as liquid initiator at 120℃.The thermal properties and stress-strain behavior of PUI elastomer was characterised by thermogravimetric(TG)analysis and tensile testing apparatus,respectively.Compared with pure polyurethane elastomer,the PUI elastomer composite showed the better thermal stability.

  12. CLINICAL TRIALS FOR VAS DEFERENS OCCLUSION BY PERCUTANEOUS INJECTION OF POLYURETHANE ELASTOMER TO FORM PLUGS

    Institute of Scientific and Technical Information of China (English)

    ZHAOSheng-Cai; etal.

    1989-01-01

    A non-incision method of vss occlusion based on the percutaneous injection of polyurethane elastomer solution to form a plug is described. The procedure was conducted under aseptic procedure and local fidocaine anaesthesia. Two different kinds of

  13. Research on the damping properties of Fe12O19Sr/the polyurethane elastomer composite

    Science.gov (United States)

    Li, Y.; Qin, Yan; Sun, P. C.; Huang, Z. X.

    2016-07-01

    Magnetic elastomer composite is a promising damping material. In this paper, both strontium ferrite (Fe12O19Sr) powders and polyurethane elastomer which were mixed by mechanical blending method were used as the magnetic filler and as the matrix respectively, the properties of the magnetic damping composite materials were studied. The results show that the magnetic properties of the magnetic elastomers composite are enhanced with the ferrite loading. The mechanical properties and Shore hardness are highly influenced by mass fraction of ferrite particles. The damping properties of magnetic elastomer composite reach best when the strontium ferrite loading is 15phr, and the damping properties deteriorate when the loading continue increasing. The damping properties of the composites with the X direction of magnetization are better than that with Y direction of magnetization.

  14. Plackett-Burman Analysis of Glass Microballoon Filled Syntactic Foams

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Zachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bello, Mollie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cordes, Nikolaus Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-08-21

    Syntactic foams are an important category of composite materials that have abundant applications in a wide variety of fields. The current study utilized a Plackett-Burman (PB) experimental design to investigate the main effects of six variables on properties of syntactic foams formulated from a silicone elastomer and glass microballoons(MB). Findings from this investigation are meant to identify the most significant variables with respect to foam properties. Eight foam samples were created and tested using thermal, physical and mechanical techniques. The data from these tests was then evaluated using a Plackett-Burman response coefficient calculation (RCC). This calculation was applied to determine the statistical significance of the selected variables by comparison with a dummy variable. The data suggests that thermal properties, such as glass transition temperature and coefficient of thermal expansion, do not rely on any of the studied variables. Physical and mechanical measurements however were found to depend heavily on the matrix composition and the vacuum pressure used during mixing. Some variables were found to have little to no effect on any of the studied properties. Ultimately, this data could be used to formulate a comprehensive catalogue of syntactic foams based on their compositions. This type of database would allow customers in industry to identify which syntactic foam would best fit their application according to one or two properties.

  15. Multi-walled carbon nanotubes (MWCNT) as compliant electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Chua, Soo-Lim; Neo, Xin-Hui; Lau, Gih-Keong

    2011-04-01

    A stacked dielectric elastomer actuator (DEA) consists of multiple layers of elastomeric dielectrics interleaved with compliant electrodes. It is capable of taking a tensile load if only the interleaving compliant electrodes provide a good bonding and enough elasticity. However, the stacked configuration of DEA was found to produce less actuation strain as compared to a single-layer configuration of pre-stretched membrane. It is believed the binder for compliant electrodes has a significant influence on the actuation strain. Yet, there has yet systematic study on the effect of binder. In this paper, we will study the effects of binder, solvent, and surface fictionalization on the compliant electrodes using the conductive filler of Multi-Walled Carbon Nanotube (MWCNT). Two types of binders are used, namely a soft silicone rubber (Mold Max 10T) and a soft silicone gel (Sylgard 527 gel). The present experiments show that the actuators using binders in the compliant electrodes produce a much lower areal strain as compared to the ones without binders in them. It is found that introducing a binder in the electrodes decreases the conductivity. The MWCNT compliant electrode with binder remains conductive (<1TΩ) up to a strain of 300%, whereas the one without binder remains conductive up to a strain of 800%. Changing the type of binder to a softer and less-viscous one increases the percolation ratio for MWCNT-COOH filler from 5% to 15% but this does not significantly increase the actuation strain. In addition, this study investigates the effect of MWCNT functionalization on the dielectric elastomeric actuation. The compliant electrodes using the MWCNT functionalized with (-COOH) group was also found to have a lower electrical conductivity and areal actuation strain, in comparison to the ones using the pristine MWCNT filler. In addition to binder, solvent for dispersing MWCNT-COOH was found to affect the actuation strain even though the solvent is eventually removed by

  16. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles.

    Science.gov (United States)

    Stoyanov, Hristiyan; Kollosche, Matthias; Risse, Sebastian; Waché, Rémi; Kofod, Guggi

    2013-01-25

    Block copolymer elastomer conductors (BEC) are mixtures of block copolymers grafted with conducting polymers, which are found to support very large strains, while retaining a high level of conductivity. These novel materials may find use in stretchable electronics. The use of BEC is demonstrated in a capacitive strain sensor and in an artificial muscle of the dielectric elastomer actuator type, supporting more than 100% actuation strain and capacity strain sensitivity up to 300%.

  17. Experimental investigation on vibration characteristics of sandwich beams with magnetorheological elastomers cores

    Institute of Scientific and Technical Information of China (English)

    魏克湘; 孟光; 张文明; 朱石沙

    2008-01-01

    A sandwich beam specimen was fabricated by treating with MR elastomers between two thin aluminum face-plates.Experiment was carried out to investigate the vibration responses of the sandwich beam with respect to the intensity of the magnetic field and excitation frequencies.The results show that the sandwich beams with MR elastomers cores have the capabilities of shifting natural frequencies and the vibration amplitudes decrease with the variation of the intensity of external magnetic field.

  18. Dry Rolling Friction and Wear of Elastomer Systems and Their Finite Element Modelling

    OpenAIRE

    Xu, Dan

    2009-01-01

    Elastomers and their various composites, and blends are frequently used as engineering working parts subjected to rolling friction movements. This fact already substantiates the importance of a study addressing the rolling tribological properties of elastomers and their compounds. It is worth noting that until now the research and development works on the friction and wear of rubber materials were mostly focused on abrasion and to lesser extent on sliding type of loading. As the tribological ...

  19. Friction and wear characteristics of elastomers in lubricated contact with EALs

    OpenAIRE

    Mofidi, Mohammad; Simmons, Gregory; Prakash, Braham

    2008-01-01

    The friction and wear characteristics of several elastomers have been studied during reciprocating sliding conditions when lubricated with uncontaminated environmentally adapted lubricants and the same lubricants contaminated with moisture. The elastomers studied are Nitrile Butadiene Rubber (NBR), Hydrogenated Nitrile Butadiene Rubber (HNBR), and Fluorocarbon Rubber (FKM). The lubricants used are complex ester and polyol ester as well as both aged and non-aged polyol esters with 5% water con...

  20. The in-situ generation of silica reinforcement in modified polydimethylsiloxane elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, S [New Mexico Univ., Albuquerque, NM (United States). Advanced Materials Lab.; Bates, S.E.; Black, E.P.; Ulibarri, T.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-06-01

    Structure and properties of a series of modified polydimethylsiloxane (PDMS) elastomers reinforced by {ital in situ} generated silic particles were investigated. The PDMS elastomer was modified by systematically varying the molecular weight between reactive groups incorporated into the backbone. Tetraethoxysilane (TEOS) and partial hydrolyzate of TEOS were used to generate silic particles. Chemistry and phase structure of the materials were investigated by {sup 29}Si magic angle spinning nuclear magnetic resonance spectroscopy and swelling experiments.

  1. Microstructure-based modelling of arbitrary deformation histories of filler-reinforced elastomers

    Science.gov (United States)

    Lorenz, H.; Klüppel, M.

    2012-11-01

    A physically motivated theory of rubber reinforcement based on filler cluster mechanics is presented considering the mechanical behaviour of quasi-statically loaded elastomeric materials subjected to arbitrary deformation histories. This represents an extension of a previously introduced model describing filler induced stress softening and hysteresis of highly strained elastomers. These effects are referred to the hydrodynamic reinforcement of rubber elasticity due to strain amplification by stiff filler clusters and cyclic breakdown and re-aggregation (healing) of softer, already damaged filler clusters. The theory is first developed for the special case of outer stress-strain cycles with successively increasing maximum strain. In this more simple case, all soft clusters are broken at the turning points of the cycle and the mechanical energy stored in the strained clusters is completely dissipated, i.e. only irreversible stress contributions result. Nevertheless, the description of outer cycles involves already all material parameters of the theory and hence they can be used for a fitting procedure. In the general case of an arbitrary deformation history, the cluster mechanics of the material is complicated due to the fact that not all soft clusters are broken at the turning points of a cycle. For that reason additional reversible stress contributions considering the relaxation of clusters upon retraction have to be taken into account for the description of inner cycles. A special recursive algorithm is developed constituting a frame of the mechanical response of encapsulated inner cycles. Simulation and measurement are found to be in fair agreement for CB and silica filled SBR/BR and EPDM samples, loaded in compression and tension along various deformation histories.

  2. Silicon Spintronics

    NARCIS (Netherlands)

    Jansen, R.

    2008-01-01

    Integration of magnetism and mainstream semiconductor electronics could impact information technology in ways beyond imagination. A pivotal step is implementation of spin-based electronic functionality in silicon devices. Remarkable progress made during the last two years gives confidence that this

  3. Modélisation thermodynamique du frottement interne et de l'hystérésis d'un élastomèreThermodynamics modelling of internal friction and hysteresis of elastomers

    Science.gov (United States)

    Cantournet, Sabine; Desmorat, Rodrigue

    2003-04-01

    The study of the physical structure of filled elastomers makes us able to identify the state variables needed to model the behavior of elastomeric materials. We build a thermodynamics potential (written for finite strains and in 3D) which accounts for the nonlinearity of the behavior, for a hysteresis independent of the time and of the loading rate and for Mullins effect, this without introducing damage. The model can be coupled with damage to predict the crack initiation conditions under monotonic and/or cyclic loading. To cite this article: S. Cantournet, R. Desmorat, C. R. Mecanique 331 (2003).

  4. The electro-mechanical phase transition of Gent model dielectric elastomer tube with two material constants

    Science.gov (United States)

    Liu, Liwu; Luo, Xiaojian; Fei, Fan; Wang, Yixing; Leng, Jinsong; Liu, Yanju

    2013-04-01

    Applied to voltage, a dielectric elastomer membrane may deform into a mixture of two states under certain conditions. One of which is the flat state and the other is the wrinkled state. In the flat state, the membrane is relatively thick with a small area, while on the contrary, in the wrinkled state, the membrane is relatively thin with a large area. The coexistence of these two states may cause the electromechanical phase transition of dielectric elastomer. The phase diagram of idea dielectric elastomer membrane under unidirectional stress and voltage inspired us to think about the liquid-to-vapor phase transition of pure substance. The practical working cycle of a steam engine includes the thermodynamical process of liquid-to-vapor phase transition, the fact is that the steam engine will do the maximum work if undergoing the phase transition process. In this paper, in order to consider the influence of coexistent state of dielectric elastomer, we investigate the homogeneous deformation of the dielectric elastomer tube. The theoretical model is built and the relationship between external loads and stretch are got, we can see that the elastomer tube experiences the coexistent state before reaching the stretching limit from the diagram. We think these results can guide the design and manufacture of energy harvesting equipments.

  5. PLA-based biodegradable and tunable soft elastomers for biomedical applications.

    Science.gov (United States)

    Harrane, Amine; Leroy, Adrien; Nouailhas, Hélène; Garric, Xavier; Coudane, Jean; Nottelet, Benjamin

    2011-12-01

    Although desirable for biomedical applications, soft degradable elastomers having balanced amphiphilic behaviour are rarely described in the literature. Indeed, mainly highly hydrophobic elastomers or very hydrophilic elastomers with hydrogel behaviours are found. In this work, we developed thermoset degradable elastomers based on the photo-cross-linking of poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) triblock prepolymers. The originality of the proposed elastomers comes from the careful choice of the prepolymer amphiphilicity and from the possible modulation of their mechanical properties and degradation rates provided by cross-linkers of different nature. This is illustrated with the hydrophobic and rigid 2,4,6-triallyloxy-1,3,5-triazine compared to the hydrophilic and soft pentaerythritol triallyl ether. Thermal properties, mechanical properties, swelling behaviours, degradation rates and cytocompatibility have been evaluated. Results show that it is possible to generate a family of degradable elastomers covering a broad range of properties from a single biocompatible and biodegradable prepolymer.

  6. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    Science.gov (United States)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  7. Starch-based bio-elastomers functionalized with red beetroot natural antioxidant.

    Science.gov (United States)

    Tran, Thi Nga; Athanassiou, Athanassia; Basit, Abdul; Bayer, Ilker S

    2017-02-01

    Red beetroot (RB) powder was incorporated into starch-based bio-elastomers to obtain flexible biocomposites with tunable antioxidant properties. Starch granules within the bio-elastomers affected the release of the antioxidant molecule betanin in the RB powder. The bio-elastomers were hydrophobic and resisted dissolution in water, hence the release of betanin was due to diffusion rather than polymer matrix disintegration. Hydrophobicity was maintained even after water immersion. Released betanin demonstrated highly efficient antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(+)). RB powder was also found to increase the Young's modulus of the bio-elastomers without compromising their elongation ability. Infrared spectral analysis indicated weak interactions through hydrogen bonding among starch granules, RB powder and PDMS polymer within the bio-elastomers. Hence, as a simple but intelligent biomaterial consisting of mainly edible starch and RB powder the present bio-elastomers can be used in active packaging for a variety of pharmaceutical, medical, and food applications.

  8. Medication safety: Filling your prescription

    Science.gov (United States)

    ... medicines. Also learn what each medicine looks like. Filling Your Prescriptions Your health plan may require you to use certain pharmacies. ... standards. The website should have clear directions for filling or ... seeing you. Make sure your health plan will cover the cost of using the ...

  9. Lithographically patterned silicon nanostructures on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Megouda, Nacera [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Piret, Gaeelle; Galopin, Elisabeth; Coffinier, Yannick [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Hadjersi, Toufik, E-mail: hadjersi@yahoo.com [Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Elkechai, Omar [Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); and others

    2012-06-01

    The paper reports on controlled formation of silicon nanostructures patterns by the combination of optical lithography and metal-assisted chemical dissolution of crystalline silicon. First, a 20 nm-thick gold film was deposited onto hydrogen-terminated silicon substrate by thermal evaporation. Gold patterns (50 {mu}m Multiplication-Sign 50 {mu}m spaced by 20 {mu}m) were transferred onto the silicon wafer by means of photolithography. The etching process of crystalline silicon in HF/AgNO{sub 3} aqueous solution was studied as a function of the silicon resistivity, etching time and temperature. Controlled formation of silicon nanowire arrays in the unprotected areas was demonstrated for highly resistive silicon substrate, while silicon etching was observed on both gold protected and unprotected areas for moderately doped silicon. The resulting layers were characterized using scanning electron microscopy (SEM).

  10. Conductive magnetorheological elastomer: fatigue dependent impedance-mechanic coupling properties

    Science.gov (United States)

    Wang, Yu; Xuan, Shouhu; Ge, Lin; Wen, Qianqian; Gong, Xinglong

    2017-01-01

    This work investigated the relationship between the impedance properties and dynamic mechanical properties of magnetorheological elastomers (MREs) under fatigue loading. The storage modulus and the impedance properties of MREs were highly influenced by the pressure and magnetic field. Under the same experimental condition, the two characteristics exhibited similar fatigue dependent change trends. When pressure was smaller than 10 N, the capacitance of MRE could be divided into four sections with the increase of the cyclic numbers. The relative equivalent circuit model was established to fit the experimental results of the impedance spectra. Each parameter of circuit element reflected the change of fatigue loading, relative microstructure of MRE, MRE-electrode interface layer, respectively. Based on the above analysis, the real-time and nondestructive impedance method was demonstrated to be high potential on detecting the fatigue of the MRE device.

  11. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    Science.gov (United States)

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  12. Numerical investigation of smart base isolation system employing MR elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Usman, M; Sung, S H; Jang, D D; Jung, H J [Department of Civil and Environmental Engineering, KAIST, 305-701, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Koo, J H [Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, Ohio 45056 (United States)], E-mail: hjung@kaist.ac.kr

    2009-02-01

    This paper evaluates the dynamic performance of a newly proposed smart base isolation system employing Magneto-Rheological Elastomers (MREs). MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration reduction of civil engineering structures in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base-isolation system by using controllable MREs. To validate the effectiveness of the MRE-based isolation system, an extensive simulation study has been performed using a five degree-of-freedom structure under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.

  13. Auto-origami with liquid crystal elastomers: a simulation study

    Science.gov (United States)

    Konya, Andrew; Selinger, Robin

    2013-03-01

    Liquid crystal elastomers (LCE) undergo shape transformations induced by stimuli such as heating/cooling or illumination. When a non-uniform director field is imposed on a sample during crosslinking, it encodes a complex actuation trajectory which may include a combination of bends, twists, and folds along with changes in Gaussian curvature. Taking a materials-by-design approach, we perform finite element simulations to explore director geometries which produce such auto-origami behavior. By cataloging and assembling a variety of basic motifs including those identified by Modes and Warner, we design director geometries that yield a variety of target structures. Assembling a sample with domains of two LCE materials with different isotropic-nematic transition temperatures provides a means for sequencing steps in the resulting actuation choreography on heating/cooling. Supported by NSF-DMR-1106014.

  14. Derivation of stiffness matrix in constitutive modeling of magnetorheological elastomer

    Science.gov (United States)

    Leng, D.; Sun, L.; Sun, J.; Lin, Y.

    2013-02-01

    Magnetorheological elastomers (MREs) are a class of smart materials whose mechanical properties change instantly by the application of a magnetic field. Based on the specially orthotropic, transversely isotropic stress-strain relationships and effective permeability model, the stiffness matrix of constitutive equations for deformable chain-like MRE is considered. To valid the components of shear modulus in this stiffness matrix, the magnetic-structural simulations with finite element method (FEM) are presented. An acceptable agreement is illustrated between analytical equations and numerical simulations. For the specified magnetic field, sphere particle radius, distance between adjacent particles in chains and volume fractions of ferrous particles, this constitutive equation is effective to engineering application to estimate the elastic behaviour of chain-like MRE in an external magnetic field.

  15. Programming complex shapes in thin nematic elastomer and glass sheets

    Science.gov (United States)

    Plucinsky, Paul; Lemm, Marius; Bhattacharya, Kaushik

    2016-07-01

    Nematic elastomers and glasses are solids that display spontaneous distortion under external stimuli. Recent advances in the synthesis of sheets with controlled heterogeneities have enabled their actuation into nontrivial shapes with unprecedented energy density. Thus, these have emerged as powerful candidates for soft actuators. To further this potential, we introduce the key metric constraint which governs shape-changing actuation in these sheets. We then highlight the richness of shapes amenable to this constraint through two broad classes of examples which we term nonisometric origami and lifted surfaces. Finally, we comment on the derivation of the metric constraint, which arises from energy minimization in the interplay of stretching, bending, and heterogeneity in these sheets.

  16. Muscular MEMS—the engineering of liquid crystal elastomer actuators

    Science.gov (United States)

    Petsch, S.; Khatri, B.; Schuhladen, S.; Köbele, L.; Rix, R.; Zentel, R.; Zappe, H.

    2016-08-01

    A new class of soft-matter actuator, the liquid crystal elastomer (LCE), shows promise for application in a wide variety of mechanical microsystems. Frequently referred to as an ‘artificial muscle’, this family of materials exhibits large actuation stroke and generates considerable force, in a compact form which may easily be combined with the structures and devices commonly used in microsystems and MEMS. We show here how standard microfabrication techniques may be used to integrate LCEs into mechanical microsystems and present an in-depth analysis of their mechanical and actuation properties. Using an example from micro-optics and optical MEMS, we demonstrate that their performance and flexibility allows realization of entirely new types of tunable optical functionality.

  17. Rheological properties of carbon nanotubes-reinforced magnetorheological elastomer

    Science.gov (United States)

    Aziz, S. A. A.; Mazlan, SA; Nik Ismail, N. I.; Ubaidillah; Khairi, MHA; Yunus, NA

    2017-01-01

    Magnetorheological elastomer (MRE) based on the natural rubber with different types of multiwall carbon nanotubes (MWCNT) as additives were synthesized. MRE with pristine MWCNTs was prepared as a control and the carboxylated (MWCNT-COOH), as well as hydroxylated (MWCNT-OH) were introduced as new additives in MRE. Their rheological properties under different magnetic field were evaluated by using the rheometer (MCR 302, AntonPaar, Austria) equipped with the electromagnetic device. The dependency of MREs towards excitation frequencies under different magnetic field was investigated. It is shown that the storage modulus and loss factor of MRE with functionalized MWCNTs exhibited noticeable increment in MR performance compared to control parallel with the frequencies increment.

  18. Thermal stability of segmented polyurethane elastomers reinforced by clay particles

    Directory of Open Access Journals (Sweden)

    Pavličević Jelena

    2009-01-01

    Full Text Available The aim of this work was to determine the influence of clay nanoparticles on thermal properties of segmented polyurethanes based on hexamethylene- diisocyanate, aliphatic polycarbonate diol and 1,4-butanediol as chain extender. The organically modified particles of montmorillonite and bentonite were used as reinforcing fillers. The structure of elastomeric materials was varied either by diol type or chain extender content. The ratio of OH groups from diol and chain extender (R was either 1 or 10. Thermal properties of prepared materials were determined using modulated differential scanning calorimetry (MDSC. Thermal stability of obtained elastomers has been studied by simultaneously thermogravimetry coupled with DSC. The glass transition temperature, Tg, of soft segments for all investigated samples was about -33°C. On the basis of DTG results, it was concluded that obtained materials were very stable up to 300°C.

  19. Active vibration isolation with a dielectric elastomer stack actuator

    Science.gov (United States)

    Kaal, William; Bartel, Torsten; Herold, Sven

    2017-05-01

    This work presents the development, simulation and experimental investigation of a demonstrator for active vibration isolation with dielectric elastomers (DEs). The electromechanical behavior of the developed DE stack actuator is first characterized experimentally and a suitable simulation model is parametrized accordingly. The potential of the actuator for active vibration isolation is shown in a specially designed single axis test rig. The influence of different control strategies on the transmission behavior from the excited base to the mass is studied. A special aspect of the control strategy is the compensation of the specific nonlinearities. The analysis proves the potential of DE actuators for active vibration isolation purposes. The presented broadband active isolation could enable the use of DEs in various technical fields of application.

  20. Development of an isolator working with magnetorheological elastomers and fluids

    Science.gov (United States)

    Sun, S. S.; Yang, J.; Li, W. H.; Du, H.; Alici, G.; Yan, T. H.; Nakano, Masami

    2017-01-01

    This paper reports an isolator whose damping and stiffness can be simultaneously controlled by magnetorheological (MR) fluids and MR elastomers. A hydraulically actuated MTS machine was used to test this variable stiffness and damping isolator after its prototype. The field-dependent responses including stiffness variability and damping variability, together with the amplitude-dependent response and frequency-dependent responses were separately tested and analyzed successively. The experimental results prove the successful implementation of the as-designed MRE-F isolator with obvious variable damping and stiffness. A new phenomenological model incorporating Bingham model and four-parameter model was developed to describe the dynamic properties of the isolator. The successful development, experimental testing, and modelling of this innovative variable stiffness and damping isolator make the concept of variable stiffness and damping become feasible.

  1. Influence of melt mixer on injection molding of thermoset elastomers

    Science.gov (United States)

    Rochman, Arif; Zahra, Keith

    2016-10-01

    One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.

  2. Mechanical and Thermal Properties of Polysiloxanes and NBR Blend Elastomer

    Institute of Scientific and Technical Information of China (English)

    WANG Yanbing; HUANG Zhixiong; ZHANG Lianmeng; MEI Qilin

    2006-01-01

    A series of elastomers, based on NBR, polysiloxanes (PS) were prepared and characterized by tensile tests, thermogravimetry (TG) and differential scanning calorimetry ( DSC ). Two kinds of vulcanizing agent, DMDBH ( 2 , 5- dimethyl- 2 , 5- di ( t- batyl perory ) hexane ) and DCP ( dicumylperoxide ) were used to investigate the irfluence of different vulcanizing agents on properties of PS/NBR. The addition of PS to NBR was found to improve the thermal stability and decrease the tensile strength of NBR. The tensile strength decreased considerably while the elongation at break increased obviously with the increase of PS content. The series using DMDBH as vulcanizing agent showed a higher tensile strength and elongation at break than the series using DCP as vulcanizing agent. Simultaneity the thermal stability increased with the increase of PS content.

  3. Study on Dynamic Vulcanized EPDM/PP Thermoplastic Elastomer

    Institute of Scientific and Technical Information of China (English)

    YANG ShiYuan

    2001-01-01

    @@ Based upon the THE,HAAK RHEOCORD 90 and Wx-ray observation,a study was made on the structure and property of ethylene-propylene-ethlidene norborene (EPDM)/polyprolene (PP) blending systems ,and the experimental results were fully explained. (1) The effect of Mooney viscosity (ML)of EPDM、 melt flow rate(MFR) of peroxide(DCP) and mixing steps on mechanical properties of EPDM/PP blends was studied. The results showed that the mechanical and process properties of EPDM?PP thermoplastic elastomers were better using EPDM with the ML of 60 and PP with MFR of 7.5g/10min as matrix,DCP with the content of 1.2 per cent with the help of twostep curing process at the temperature of 170-175 ℃.

  4. Study on Dynamic Vulcanized EPDM/PP Thermoplastic Elastomer

    Institute of Scientific and Technical Information of China (English)

    YANG; ShiYuan

    2001-01-01

    Based upon the THE,HAAK RHEOCORD 90 and Wx-ray observation,a study was made on the structure and property of ethylene-propylene-ethlidene norborene (EPDM)/polyprolene (PP) blending systems ,and the experimental results were fully explained.  (1) The effect of Mooney viscosity (ML)of EPDM、 melt flow rate(MFR) of peroxide(DCP) and mixing steps on mechanical properties of EPDM/PP blends was studied. The results showed that the mechanical and process properties of EPDM?PP thermoplastic elastomers were better using EPDM with the ML of 60 and PP with MFR of 7.5g/10min as matrix,DCP with the content of 1.2 per cent with the help of twostep curing process at the temperature of 170-175 ℃.……

  5. Tunable Properties of Magnetoactive Elastomers for Biomedical Applications

    Science.gov (United States)

    Makarova, Liudmila A.; Alekhina, Yuliya A.; Rusakova, Tatiana S.; Perov, Nikolai S.

    The remote controllable magneto-mechanical devices based on MAEs (magnetoactive elastomers) can be obtained through variation of magnetic parameters of MAEs. Such devices can be used as the elements of peristaltic systems, artificial muscles, hyperthermia or drug delivery. MAEs with different matrix rigidity and filler particles type were investigated with VSM Lakeshore 7400 series and immittance meter Aktakom AM-3016 model. The dependencies of magnetostatic and magnetodynamic properties of MAEs with different types of magnetic particles on concentration of the magnetic filler and DC magnetic field strength were studied. There is a possibility to control the "magnetic hardness", energy absorption and heating, relaxation properties of MAEs which allow to use MAEs as the main element of the tunable devices for biomedical applications.

  6. A flexible micro fluid transport system featuring magnetorheological elastomer

    Science.gov (United States)

    Behrooz, Majid; Gordaninejad, Faramarz

    2016-02-01

    This study presents a flexible magnetically-actuated micro fluid transport system utilizing an isotropic magnetorheological elastomer (MRE). Theoretical modeling and analysis of this system is presented for a two-dimensional model. This fluid transport system can propel the fluid by applying a fluctuating magnetic field on the MRE. The magneto-fluid-structure interaction analysis is employed to determine movement of the solid domain and the velocity of the fluid under a controllable magnetic field. The effects of key material, geometric, and magnetic parameters on the behavior of this system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.

  7. Numerical investigation of smart base isolation system employing MR elastomer

    Science.gov (United States)

    Usman, M.; Sung, S. H.; Jang, D. D.; Jung, H. J.; Koo, J. H.

    2009-02-01

    This paper evaluates the dynamic performance of a newly proposed smart base isolation system employing Magneto-Rheological Elastomers (MREs). MREs belong to a class of smart materials whose elastic modulus or stiffness can be adjusted by varying the magnitude of the magnetic field. The base isolation systems are considered as one of the most effective devices for vibration reduction of civil engineering structures in the event of earthquakes. The proposed base isolation system strives to enhance the performance of the conventional base-isolation system by using controllable MREs. To validate the effectiveness of the MRE-based isolation system, an extensive simulation study has been performed using a five degree-of-freedom structure under several historical earthquake excitations. The results show that the proposed system outperformed the conventional system in reducing the responses of the structure in all the seismic excitations considered in the study.

  8. Organically Modified Aero-Sol Gel Silica for Elastomer Reinforcement

    Science.gov (United States)

    Pratsinis, S. E.; Kohls, D. J.; Beaucage, G.

    2000-03-01

    We have developed facilities to produce organically functionalized silicas using a novel, room-temperature, aerosol, chemical reactor (ASG reactor). This reactor can produce exceedingly high surface area nano-structured materials (up to 800 m2/g) with tuned interfacial chemistries. This poster will present our results on dynamic mechanical properties of elastomer compounds with ASG-organically modified silicas and comparison with conventional carbon black, conventional precipated and fumed silica as well as blends of the conventional materials. The mass-fractal structure as determined by SAXS and SALS, as well as conventional gas and DBP absorption measurements and microscopy will be presented. Hyeon-Lee, J.; Beaucage, G.; Pratsinis, S. E. (1997) Chem. of Mat. 9, 2400. Hyeon-Lee, J.; Beaucage, G.; Pratsinis, S. E.; Vemury, S. (1998) Langmuir 5751.

  9. Experimental study on the dielectric properties of polyacrylate dielectric elastomer

    Science.gov (United States)

    Qiang, Junhua; Chen, Hualing; Li, Bo

    2012-02-01

    The dielectric constant of elastomeric dielectric material is an essential physical parameter, whose value may affect the electromechanical deformation of a dielectric elastomer actuator. Since the dielectric constant is influenced by several external factors as reported before, and no certain value has been confirmed to our knowledge, in the present paper, on the basis of systematical comparison of recent past literature, we conducted extensive works on the measurement of dielectric properties of VHB films, involving five influencing factors: prestretch (both equal and unequal biaxial), electrical frequency, electrode material, stress relaxation time and temperature. Experimental results directly show that the dielectric response changes according to these factors, based on which we investigate the significance of each factor, especially the interaction of two external conditions on the dielectric constant of deformable dielectric, by presenting a physical picture of the mechanism of polarization.

  10. Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect

    Science.gov (United States)

    Zhang, Junshi; Zhao, Jianwen; Chen, Hualing; Li, Dichen

    2017-01-01

    In this paper, based on the standard linear solid rheological model, a dynamics model of viscoelastic dielectric elastomers (DEs) is developed with incorporation of viscous damping effect. Numerical calculations are employed to predict the damping effect on the dynamic performance of DEs. With increase of damping force, the DEs show weak nonlinearity and vibration strength. Phase diagrams and Poincaré maps are utilized to detect the dynamic stability of DEs, and the results indicate that a transition from aperiodic vibration to quasi-periodic vibration occurs with enlargement of damping force. The resonance properties of DEs including damping effect are subsequently analyzed, demonstrating a reduction of resonant frequency and resonance peak with increase of damping force.

  11. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  12. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  13. Toughening mechanism in elastomer-modified epoxy resins, part 2

    Science.gov (United States)

    Yee, A. F.; Pearson, R. A.

    1984-01-01

    The role of matrix ductility on the toughenability and toughening mechanism of elastomer-modified DGEBRA epoxies was investigated. Matrix ductility was varied by using epoxide resins of varying epoxide monomer molecular weights. These epoxide resins were cured using 4,4' diaminodiphenyl sulfone (DDS) and, in some cases, modified with 10% HYCAR(r)CTBN 1300X8. Fracture roughness values for the neat epoxies were found to be almost independent on the monomer molecular weight of the epoxide resin used. However, it was found that the fracture toughness of the elastomer-modified epoxies was very dependent upon the epoxide monomer molecular weight. Tensile dilatometry indicated that the toughening mechanism, when present, is similar to the mechanisms found for the piperidine cured epoxies in Part 1. SEM and OM corroborate this finding. Dynamic mechanical studies were conducted to shed light on the toughenability of the epoxies. The time-dependent small strain behavior of these epoxies were separated into their bulk and shear components. The bulk component is related to brittle fracture, whereas the shear component is related to yielding. It can be shown that the rates of shear and bulk strain energy buildup for a given stress are uniquely determined by the values of Poisson's ratio, nu. It was found that nu increases as the monomer molecular weight of the epoxide resin used increases. This increase in nu can be associated with the low temperature beta relaxation. The effect of increasing cross-link density is to shift the beta relaxation to higher temperatures and to decrease the magnitude of the beta relaxation. Thus, increasing cross-link density decreases nu and increases the tendency towards brittle fracture.

  14. Large Lightweight Mirrors Controlled by Dielectric Elastomer Artifical Muscle

    Science.gov (United States)

    Kornbluh, R. D.; Flamm, D. S.; Vujkovic-Civijin, P.; Pelrine, R. E.; Huestis, D. L.

    2002-05-01

    We will describe a new concept for control of the lightweight large-aperture mirrors that will be required for future space-based astronomy and remote sensing applications. To be cost effective and practical, such optical systems must be lightweight and capable of deployment from highly compacted stowed configurations. Optical systems based on membrane mirrors or other lightweight structures can address some of these needs, but such flexible gossamer structures present challenges in achieving and maintaining the required shape or figure. For the past 9 years SRI has been exploring dielectric elastomer artifical muscle technology for active control of objects and structures [1-2]. The basic functional element is a thin polymer film coated on both sides by a compliant electrode material. When voltage is applied between the top and bottom electrodes, an electrostrictive compressive force squeezes the film, causing it to expand in area. The induced forces are related to the square of the voltage. If we assemble a large mirror from numerous independently addressable elements, sophisticated control is possible, even including adaptive optics. Dielectric elastomers have many advantages over other electroactive polymers and other smart-materials actuation technologies that have been considered in the past. For example, from many candidate materials we can choose ones with high planar strains, low power dissipation, tolerance of the space environment, and ease of commercial fabrication into large sheets. [1] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287, 386 (2000). [2] R. Pelrine, P. Sommer-Larson, R. Kornbluh, R. Heydt, G. Kofod, Q. Pei, and P. Gravesen, in Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, ed. Y. Bar-Cohen, Proc. SPIE 4329, 335 (2001).

  15. Modelling and control of double-cone dielectric elastomer actuator

    Science.gov (United States)

    Branz, F.; Francesconi, A.

    2016-09-01

    Among various dielectric elastomer devices, cone actuators are of large interest for their multi-degree-of-freedom design. These objects combine the common advantages of dielectric elastomers (i.e. solid-state actuation, self-sensing capability, high conversion efficiency, light weight and low cost) with the possibility to actuate more than one degree of freedom in a single device. The potential applications of this feature in robotics are huge, making cone actuators very attractive. This work focuses on rotational degrees of freedom to complete existing literature and improve the understanding of such aspect. Simple tools are presented for the performance prediction of the device: finite element method simulations and interpolating relations have been used to assess the actuator steady-state behaviour in terms of torque and rotation as a function of geometric parameters. Results are interpolated by fit relations accounting for all the relevant parameters. The obtained data are validated through comparison with experimental results: steady-state torque and rotation are determined at a given high voltage actuation. In addition, the transient response to step input has been measured and, as a result, the voltage-to-torque and the voltage-to-rotation transfer functions are obtained. Experimental data are collected and used to validate the prediction capability of the transfer function in terms of time response to step input and frequency response. The developed static and dynamic models have been employed to implement a feedback compensator that controls the device motion; the simulated behaviour is compared to experimental data, resulting in a maximum prediction error of 7.5%.

  16. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2016-01-01

    Full Text Available Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST. The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst nbutyllithium (n-BuLi and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it’s technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 o C, the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF and methyl tert-butyl ether (MTBE. The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

  17. Experimental testing on free vibration behaviour for silicone rubbers proposed within lumbar disc prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rotaru, Iuliana, E-mail: rotaruiuliana2000@gmail.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical Engineering, Department of Mechanical Engineering, Mechatronics and Robotics, 61-63 Bd. Dimitrie Mangeron, 700050 Iasi (Romania); “Gr. T. Popa” University of Medicine and Pharmacy of Iasi, Faculty of Medical Bioengineering, Department of Biomedical Sciences, 9-13 M. Kogalniceanu Street, 700454 Iasi (Romania); Bujoreanu, Carmen [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical Engineering, Department of Mechanical Engineering, Mechatronics and Robotics, 61-63 Bd. Dimitrie Mangeron, 700050 Iasi (Romania); Bele, Adrian; Cazacu, Maria [“Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, 700487 Iasi (Romania); Olaru, Dumitru [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical Engineering, Department of Mechanical Engineering, Mechatronics and Robotics, 61-63 Bd. Dimitrie Mangeron, 700050 Iasi (Romania)

    2014-09-01

    This research was focused on the damping capacity study of two types of silicone rubbers proposed as layers within total lumbar disc prostheses of ball-and-socket model. In order to investigate the damping capacity, the two silicone rubber types mainly differing by the molecular mass of polymeric matrix and the filler content, as was emphasized by scanning electron microscopy and differential scanning calorimetry, were subjected to free vibration testing. Using an adapted experimental installation, three kinds of damping testing were realised: tests without samples and tests with three samples of each type of silicone rubber (69 ShA and 99 ShA). The free vibration tests were performed at a frequency of about 6 Hz using a weight of 11.8 kg. The relative damping coefficient was determined by measuring of two successive amplitudes on the vibrogram and calculating of the logarithmic decrement. The test results with silicone rubber samples showed a relative damping coefficient of 0.058 and respectively 0.077, whilst test results without samples showed a relative damping coefficient of 0.042. These silicone rubbers were found to have acceptable damping properties to be used as layers placed inside the prosthetic components. - Highlights: • Two types of silicone rubber were proposed within the total lumbar disc prostheses. • The filler content of elastomers was highlighted by microscopy investigation. • Damping capacity of the two elastomers was evaluated using free vibration analysis. • The logarithmic decrement and the relative damping coefficient were determined. • The silicone rubbers prepared in our work showed acceptable damping properties.

  18. Molecular beam deposition of high-permittivity polydimethylsiloxane for nanometer-thin elastomer films in dielectric actuators

    DEFF Research Database (Denmark)

    M. Weiss, Florian; Madsen, Frederikke Bahrt; Töpper, Tino

    2016-01-01

    monitoring. Using atomic force microscopy, the film surface morphology and mechanics were characterized after growth termination and subsequent curing. The Young's modulus of the elastomer corresponded to (1.8 ± 0.2) MPa and is thus a factor of two lower than that of DMS-V05. Consequently, the properties......To realize low-voltage dielectric elastomer actuators (DEAs) for artificial muscles, a high-permittivity elastomer and a related thin-film deposition technique must be selected. For polydimethylsiloxane, fillers or functionalized crosslinkers have been incorporated into the elastomer to improve...

  19. Response of a Plain and Filled Elastomer (Solithane 113) to High Strain-Rate Compression, Shear, and Tension Loading.

    Science.gov (United States)

    1981-01-01

    conducted at a higher impact velocity, showed macro- scopic spallation . A scanning microscope picture showing the internal * surfaces is presented in Figure...To fabricate the gages, it is necessary to drill through the walls of the cylindrical mold. Wires were carefully stretched and welded (see Figure 3.7

  20. PERVAPORATION OF ETHANOL/WATER MIXTURES WITH HIGH FLUX BY ZEOLITE-FILLED PDMS/PVDF COMPOSITE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    李继定

    2009-01-01

    Thin-film zeolite-filled silicone/PVDF composite membranes were fabricated by incorporating zeolite particles into PDMS(poly(dimethylsiloxane)) membranes.The morphology of zeolite particles and zeolite filled silicone composite membranes were characterized by SEM.The zeolite-filled PDMS/PVDF composite membranes were applied for the pervaporation of ethanol/water mixtures and showed higher flux compared with that reported in literatures.The effect of zeolite loading and Si/Al ratio of zeolite particles on...

  1. Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter is designed and fabricated by integrating two solid-core photonic crystal fibers filled with different liquid crystals in a double silicon v-groove assembly. By separately controlling the driving voltage of each liquid-crystal-filled section, both the short......-wavelength edge and the long-wavelength edge of the bandpass filter are tuned individually or simultaneously with the response time in the millisecond range....

  2. Design and application of permanent magnet flux sources for mechanical testing of magnetoactive elastomers at variable field directions.

    Science.gov (United States)

    Hiptmair, F; Major, Z; Haßlacher, R; Hild, S

    2015-08-01

    Magnetoactive elastomers (MAEs) are a class of smart materials whose mechanical properties can be rapidly and reversibly changed by an external magnetic field. Due to this tunability, they are useable for actuators or in active vibration control applications. An extensive magnetomechanical characterization is necessary for MAE material development and requires experiments under cyclic loading in uniform but variable magnetic fields. MAE testing apparatus typically rely on fields of adjustable strength, but fixed (transverse) direction, often provided by electromagnets. In this work, two permanent magnet flux sources were developed as an add-on for a modular test stand, to allow for mechanical testing in uniform fields of variable direction. MAE specimens, based on a silicone matrix with isotropic and anisotropic carbonyl iron particle distributions, were subjected to dynamic mechanical analysis under different field and loading configurations. The magneto-induced increase of stiffness and energy dissipation was determined by the change of the hysteresis loop area and dynamic modulus values. A distinct influence of the composite microstructure and the loading state was observed. Due to the very soft and flexible matrix used for preparing the MAE samples, the material stiffness and damping behavior could be varied over a wide range via the applied field direction and intensity.

  3. Silicone coating systems to improve corrosion protection of steel; Silikonbeschichtungssysteme zur Verbesserung des Korrosionsschutzes von Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Kucharczyk, P.; Fachinger, J.; Odoj, R. [Forschungszentrum Juelich GmbH (Germany); Boehnert, R. [Fachhochschule Koeln (Germany)

    2006-06-15

    Due to German policy an interim storage of radioactive waste during additional 30 years is needed. This requires a high standard of storage containers especially in terms of corrosion resistance. Silicon elastomers (polysiloxanes) have favourable physical and chemical properties and seem to be appropriate for either outer or inner coating of storage containers. In this paper corrosion protection of different silicon coating systems has been investigated. The addition-curing polysiloxane RT622 (Wacker Chemie) was used for experiments. This is a low-viscosity material that could be modified by corrosion protecting pigments like zinc powder and micaceous iron ore. The pigment coatings assured better corrosion protection than unmodified silicon covering. Furthermore, the zinc powder caused the most notable improvement of corrosion protection. The best coating system consisted of a zinc paint and a polysiloxane coating. (orig.)

  4. Removal of root filling materials.

    LENUS (Irish Health Repository)

    Duncan, H.F. Chong, B.S.

    2011-05-01

    Safe, successful and effective removal of root filling materials is an integral component of non-surgical root canal re-treatment. Access to the root canal system must be achieved in order to negotiate to the canal terminus so that deficiencies in the original treatment can be rectified. Since a range of materials have been advocated for filling root canals, different techniques are required for their removal. The management of commonly encountered root filling materials during non-surgical re-treatment, including the clinical procedures necessary for removal and the associated risks, are reviewed. As gutta-percha is the most widely used and accepted root filling material, there is a greater emphasis on its removal in this review.

  5. Gas-filled double glazing

    Energy Technology Data Exchange (ETDEWEB)

    Goesele, K.; Schuele, W.; Lakatos, B.

    1982-01-01

    On the basis of the results of experiments the sonar and thermal properties of insulated double glazing filled with gas are tested. The sound insulation properties of double glazing can be improved by introducing a gas of a heavy specific weight, such as CO/sub 2/ or SF/sub 6/ into the hollow space. Even gases with a light specific weight produce an improvement in sound insulation; light gases diffuse outwards much more rapidly, however, and can thus be eliminated for practical purposes. The combination of a gas-filled space between the panes and the use of sufficiently heavy compound panes were tested. The thermal properties of insulated double glazing filled with specifically heavy gas gave favourable results with a lower heat transition coefficient. The use of gas to fill double glazing has a particularly favourable effect if the panes are given a heat-reflecting coating in synthetic frames.

  6. Evacuation from smoke filled corridors

    NARCIS (Netherlands)

    Janse, E.W.; Leur, P.H.E. van de; Oerle, N.J. van

    1998-01-01

    underpinning compartmentation requirements in the Dutch regulations is that people can and will go through 30 m of smoke filled space. The hypothesis leads to the requirement that corridors are divided in compartments with a maximum length of 30 meters.

  7. Copper-assisted, anti-reflection etching of silicon surfaces

    Science.gov (United States)

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  8. Aging Behavior and Performance Projections for a Polysulfide Elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Giron, Nicholas Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Quintana, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    The accelerated aging behavior and aging state of a 30 year old field retrieved polysulfide elastomer was examined. The material is used as an environmental thread sealant for a stainless steel bolt in a steel threaded insert in an aluminum assembly. It is a two component curable polysulfide elastomer that is commercially available in a similar formulation as was applied 30 years ago. The primary goal of this study was to establish if aging over 30 years under moderate aging conditions (mostly ambient temperature and humidity) resulted in significant property changes, or if accelerated aging could identify developing aging pathways which would prevent the extended use of this material. The aging behavior of this material was examined in three ways: A traditional accelerated thermo-oxidative aging study between 95 to 140°C which focused on physical and chemical properties changes, an evaluation of the underlying oxidation rates between RT and 125°C, and an assessment of the aging state of a small 30 year old sample. All three data sets were used to establish aging characteristics, their time evolution, and to extrapolate the observed behavior to predict performance limits at RT. The accelerated aging study revealed a relatively high average activation energy of ~130 kJ/mol which gives overconfident performance predictions. Oxidation rates showed a decreasing behavior with aging time and a lower E a of ~84 kJ/mol from time - temperature superposition , but also predicted sufficient additional performance at RT. Consistent with these projections for extended RT performance, only small changes were observed for the 30 year old material. Extrapolations using this partially aged material also predict ongoing use as a viable option. Unexpected RT degradation could only develop into a concern should the oxidation rate not trend lower over time as was observed at elevated temperature. Considering all data acquired in this limited aging study , there are no immediately

  9. Aging Behavior and Performance Projections for a Polysulfide Elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Giron, Nicholas Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Quintana, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    The accelerated aging behavior and aging state of a 30 year old field retrieved polysulfide elastomer was examined. The material is used as an environmental thread sealant for a stainless steel bolt in a steel threaded insert in an aluminum assembly. It is a two component curable polysulfide elastomer that is commercially available in a similar formulation as was applied 30 years ago. The primary goal of this study was to establish if aging over 30 years under moderate aging conditions (mostly ambient temperature and humidity) resulted in significant property changes, or if accelerated aging could identify developing aging pathways which would prevent the extended use of this material. The aging behavior of this material was examined in three ways: A traditional accelerated thermo-oxidative aging study between 95 to 140°C which focused on physical and chemical properties changes, an evaluation of the underlying oxidation rates between RT and 125°C, and an assessment of the aging state of a small 30 year old sample. All three data sets were used to establish aging characteristics, their time evolution, and to extrapolate the observed behavior to predict performance limits at RT. The accelerated aging study revealed a relatively high average activation energy of ~130 kJ/mol which gives overconfident performance predictions. Oxidation rates showed a decreasing behavior with aging time and a lower E a of ~84 kJ/mol from time - temperature superposition , but also predicted sufficient additional performance at RT. Consistent with these projections for extended RT performance, only small changes were observed for the 30 year old material. Extrapolations using this partially aged material also predict ongoing use as a viable option. Unexpected RT degradation could only develop into a concern should the oxidation rate not trend lower over time as was observed at elevated temperature. Considering all data acquired in this limited aging study , there are no immediately

  10. A self-healing poly(dimethyl siloxane) elastomer

    Science.gov (United States)

    Keller, Michael Wade

    2007-12-01

    In this work, self-healing functionality is imparted to a poly(dimethyl siloxane) (PDMS) elastomer with low modulus and high strain-to-failure behavior. This material utilizes a two-microcapsule system to provide a mechanism for autonomic repair of damage. One microcapsule type contains a functionalized high-molecular-weight resin and organometallic catalyst compounds. The second microcapsule type contains a functional copolymer (initiator) that facilitates the crosslinking of the resin via the action of the catalyst. The healing response is triggered when damage, in the form of a tear, puncture, or crack, propagates through the material and ruptures a resin and initiator capsule. Ruptured capsules release their contents onto the crack plane, initiating polymerization. The polymerized material bonds the two crack faces together regaining much of the original strength, of the matrix material. The mechanical behavior of the microcapsules is studied using a combination of individual microcapsule compression tests and in-situ microscopic analysis. Single-capsule compression tests are performed to extract the modulus of the capsule shell wall and to investigate the behavior of microcapsules under large deformations. The capsules are shown to survive matrix deformation in excess of 45%. Although the microcapsules are robust and endure large matrix deformations, an approaching tear does successfully rupture the capsules. A tear test protocol is adopted to assess the healing efficiency of this new material. Self-healing PDMS specimens with 5 wt% initiator and 5 wt% resin microcapsules recover 97% of the original tear strength. Complete recovery of tear strength is possible under certain conditions. Addition of microcapsules to the PDMS matrix increases the tear strength of the material by 25%. Embedded microcapsules also increase the elastic stiffness by as much as 57%. The self-healing performance of the elastomer is also investigated under torsional fatigue loading. The

  11. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition

    Energy Technology Data Exchange (ETDEWEB)

    Keleş, Elif, E-mail: elifkelesh@hotmail.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Hazer, Baki, E-mail: bhazer2@yahoo.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Cömert, Füsun B. [Department of Microbiology, Faculty of Medicine, Bülent Ecevit University, 67600 Zonguldak (Turkey)

    2013-04-01

    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene–block-polyisoprene–block-polystyrene (PS–b-PI–b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS–b-PI–b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, {sup 1}H NMR, {sup 13}C NMR, GPC and FTIR. - Graphical abstract: Double bonds of polyisoprene units in polystyrene–block-polyisoprene–block-polystyrene triblock copolymer were partially capped with PEG containing mercapto end group via thiol-ene addition in order to obtain antibacterial amphiphilic elastomer. Nano fibers from amphiphilic graft polymers solution were produced by electrospinning. The PEG grafted copolymer inhibits very effectively bacterial growth. Highlights: ► A commercial synthetic elastomer was grafted with PEG to obtain amphiphilic elastomer. ► Amphiphilic elastomer shows antibacterial properties. ► Electrospun micro fibers of the amphiphilic elastomer tend to globular formation.

  12. Microbial degradation of linseed oil-based elastomer and subsequent accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer.

    Science.gov (United States)

    Pramanik, Nilkamal; Das, Rakesh; Rath, Tanmoy; Kundu, P P

    2014-10-01

    The microbial synthesis of environment-friendly poly(3-hydroxybutyrate--co-3-hydroxyvalerate), PHBV, has been performed by using an alkaliphilic microorganism, Alkaliphilus oremlandii OhILAs strain (GenBank Accession number NR_043674.1), at pH 8 and at a temperature of 30-32 °C through the biodegradation of linseed oil-based elastomer. The yield of the copolymer on dry cell weight basis is 90 %. The elastomers used for the biodegradation have been synthesized by cationic polymerization technique. The yield of the PHBV copolymer also varies with the variation of linseed oil content (30-60 %) in the elastomer. Spectroscopic characterization ((1)H NMR and FTIR) of the accumulated product through biodegradation of linseed oil-based elastomers indicates that the accumulated product is a PHBV copolymer consisting of 13.85 mol% of 3-hydroxyvalerate unit. The differential scanning calorimetry (DSC) results indicate a decrease in the melting (T m) and glass transition temperature (T g) of PHBV copolymer with an increase in the content of linseed oil in the elastomer, which is used for the biodegradation. The gel permeation chromatography (GPC) results indicate that the weight average molecular weight (M w) of PHBV copolymer decreases with an increasing concentration of linseed oil in the elastomer. The surface morphology of the elastomer before and after biodegradation is observed under scanning electron microscope (SEM) and atomic force microscope (AFM); these results indicate about porous morphology of the biodegraded elastomer.

  13. Finite element analysis and validation of dielectric elastomer actuators used for active origami

    Science.gov (United States)

    McGough, Kevin; Ahmed, Saad; Frecker, Mary; Ounaies, Zoubeida

    2014-09-01

    The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed.

  14. Study on the control of the compositions and properties of a biodegradable polyester elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Quanyong; Weng Jingyi; Zhang Liqun [Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei, E-mail: liu_quanyong@126.co, E-mail: zhanglq@mail.buct.edu.c [Key Laboratory of Bioprocess of Beijing, Beijing University of Chemical Technology, Beijing 100029 (China)

    2009-04-15

    Biodegradable polyester elastomers are widely reported to be applied in varied biomedical fields. In this paper, we attempt to investigate how both the thermal-curing time and molar ratio of the monomers affect the final compositions and properties of the novel poly(glycerol-sebacate-citrate) (PGSC) elastomers. First, PGSC elastomers are obtained after the thermal curing of the moldable mixtures consisting of citric acid and poly(glycerol-sebacate) (PGS) prepolymers synthesized in the lab. Then further studies show that, on the one hand, the control of longer thermal-curing time results in elastomers with less sol, lower swelling degree, slower degradation, greater mechanical strength and higher glass transition temperature and, on the other hand, the crosslink with more citric acid is advantageous to greatly improving their mechanical strength and glass transition temperatures, simultaneously decreasing their sol contents, swelling degrees and degradation rates. The PGSC elastomers show thermosetting properties, certain strength, mass losses lower than 20% after 4-week degradation and durative water absorption during degradation. Thus they might be potentially used as degradable bio-coatings, varied soft biomedical membranes and drug delivery matrices.

  15. Study on the control of the compositions and properties of a biodegradable polyester elastomer.

    Science.gov (United States)

    Liu, Quanyong; Tan, Tianwei; Weng, Jingyi; Zhang, Liqun

    2009-04-01

    Biodegradable polyester elastomers are widely reported to be applied in varied biomedical fields. In this paper, we attempt to investigate how both the thermal-curing time and molar ratio of the monomers affect the final compositions and properties of the novel poly(glycerol-sebacate-citrate) (PGSC) elastomers. First, PGSC elastomers are obtained after the thermal curing of the moldable mixtures consisting of citric acid and poly(glycerol-sebacate) (PGS) prepolymers synthesized in the lab. Then further studies show that, on the one hand, the control of longer thermal-curing time results in elastomers with less sol, lower swelling degree, slower degradation, greater mechanical strength and higher glass transition temperature and, on the other hand, the crosslink with more citric acid is advantageous to greatly improving their mechanical strength and glass transition temperatures, simultaneously decreasing their sol contents, swelling degrees and degradation rates. The PGSC elastomers show thermosetting properties, certain strength, mass losses lower than 20% after 4-week degradation and durative water absorption during degradation. Thus they might be potentially used as degradable bio-coatings, varied soft biomedical membranes and drug delivery matrices.

  16. Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals.

    Science.gov (United States)

    Ning, Nanying; Wang, Zhifei; Yao, Yang; Zhang, Liqun; Tian, Ming

    2015-10-05

    To meet the growing demand of environmental protection and resource saving, it is imperative to explore bio-based elastomers as next-generation dielectric elastomers (DEs). In this study, we used a bio-based gelatin/glycerin (GG) elastomer as the DE matrix because GG exhibits high dielectric constant (ɛr). Cellulose nanocrystals (CNCs), extracted from natural cellulose fibers, were used to improve the mechanical strength of GG elastomer. The results showed that CNCs with a large number of hydroxyl groups disrupted the hydrogen bonds between gelatin molecules and formed new stronger hydrogen bonds with gelatin molecules. A good interfacial adhesion between CNCs and GG was formed, and thus a good dispersion of CNCs in GG matrix was obtained, leading to the improved mechanical strength of GG. More interestingly, the ɛr of GG elastomer was obviously increased by adding 5 wt% of CNCs, ascribed to the increase in the polarizability of gelatin chains caused by the disruption of hydrogen bonds of gelatin. As a result, a 230% increase in the actuated strain at low electric field of GG was obtained by adding 5 wt% of CNCs. Since CNCs, gelatin and glycerol are all bio-based, this study offers a new method to prepare high performance DE for its application in biological and medical fields.

  17. Domain structure and time-dependent properties of a crosslinked urethane elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, R.R.

    1977-09-01

    The morphology of a chemically crosslinked urethane elastomer is correlated with its time-dependent mechanical properties. Evaluation of this amorphous elastomer by electron microscopy and small-angle x-ray scattering reveals that incompatible chain segments cluster into separate microphases having a periodicity in electron density of about 90 A. This observed domain structure is similar to that seen previously in uncrosslinked, thermoplastic urethane elastomers. As in earlier studies on such linear systems, thermal pretreatment of the crosslinked elastomer causes a time-dependent change in its room temperature modulus. However, the magnitude of this modulus change (about 20%) is generally less than observed previously with the linear systems. Another contrast with previous findings is that this time-dependent phenomenon is apparently not caused by thermally activated changes in microphase segregation. Rather, the observed time dependence in modulus is believed to be caused by molecular relaxation resulting in densification of amorphous packing within the hard-segment domains. The validity of this proposed mechanism is supported by differential scanning calorimetry experiments showing evidence of enthalpy relaxation during room-temperature aging of the elastomer. This relaxation is qualitatively similar to that observed previously during sub-T/sub g/ annealing of single-phase glassy polymers.

  18. Strain-responsive structural colored elastomers by fixing colloidal crystal assembly.

    Science.gov (United States)

    Ito, Tatsunori; Katsura, Chihiro; Sugimoto, Hideki; Nakanishi, Eiji; Inomata, Katsuhiro

    2013-11-12

    Colloidal crystal assembly film was prepared by using monodispersed colloidal particles of cross-linked random copolymer of methyl methacrylate and ethyl acrylate prepared by soap-free emulsion polymerization. The colloidal crystal film exhibited structural color when swollen with ethyl acrylate monomer. The structural color was maintained even after polymerization of the swelling monomer and cross-linker, suggesting the colloidal crystalline order was successfully fixed and embedded in the matrix of poly(ethyl acrylate) elastomer. Stretching deformation of the structural colored elastomer induced a sensitive change to shorter wavelength color. Peak wavelength of the UV-vis absorption spectrum of the stretched elastomer revealed an excellent proportional relationship with film thickness. In the swollen colloidal crystal film, ethyl acrylate was absorbed in the colloidal particle; therefore, poly(ethyl acrylate) chain should be penetrating into the colloidal particle after the polymerization of the matrix elastomer. This interpenetrated polymer network structure was considered to be effective for the rubber-like elasticity and sensitive strain-responsive color-changing phenomena of the structural colored elastomer.

  19. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    Science.gov (United States)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  20. Response analysis of dielectric elastomer spherical membrane to harmonic voltage and random pressure

    Science.gov (United States)

    Jin, Xiaoling; Wang, Yong; Chen, Michael Z. Q.; Huang, Zhilong

    2017-03-01

    Spherical membranes consisting of dielectric elastomer play important roles in flexible and stretchable devices, such as flexible actuators, sensors and loudspeakers. Executing various functions of devices depends on the dynamical behaviors of dielectric elastomer spherical membranes to external electrical and/or mechanical excitations. This manuscript concentrates on the random aspect of dielectric elastomer spherical membranes, i.e., the random response to combined excitations of harmonic voltage and random pressure. To analytically evaluate the response statistics of the stretch ratio, a specific transformation and stochastic averaging technique are successively adopted to solve the strongly nonlinear equation with respect to the stretch ratio. The stochastic differential equations for the system first integral and the phase difference between harmonic excitation and response are first derived through this transformation. The Fokker-Planck-Kolmogorov equation with respect to the stationary probability density of the system first integral and the phase difference is obtained. The stationary probability densities and the response statistics of the stretch ratio and its rate of change are then subsequently calculated. The phenomenon of stochastic jumps is found and the stochastic jump bifurcates with the variations of the frequency and the amplitude of the harmonic voltage and the intensity of the random pressure. The efficacy and accuracy of the analytical results are verified by comparing with the results from Monte Carlo simulation. Besides, the reliability of the dielectric elastomer spherical membrane is discussed briefly. The obtained results could provide options in implementing and designing dielectric elastomer structures for dynamic applications.

  1. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-09-14

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  2. Experimental study on silicon micro-heat pipe arrays

    Energy Technology Data Exchange (ETDEWEB)

    Launay, S.; Sartre, V.; Lallemand, M. [Institut National des Sciences Appliquees, Villeurbanne (France). Centre de Thermique

    2004-02-01

    In this study, micro-heat pipe arrays etched into silicon wafers have been investigated for electronic cooling purposes. Micro-heat pipes of triangular cross-section and with liquid arteries were fabricated by wet anisotropic etching with a KOH solution. The microchannels (230 {mu}m wide) are closed by molecular bonding of a plain wafer with the grooved one. A test bench was developed for the micro-heat pipe filling and the thermal characterisation. The temperature profile on the silicon surface is deduced from experimental measurements. The results show that with the artery micro-heat pipe array, filled with methanol, the effective thermal conductivity of the silicon wafer is significantly improved compared to massive silicon. (author)

  3. Ultrathin coating of plasma polymer of methane applied on the surface of silicone contact lenses.

    Science.gov (United States)

    Ho, C P; Yasuda, H

    1988-10-01

    Silicone rubber has great advantages as a contact lens material because of its very high oxygen permeability, softness, and excellent mechanical strength and durability. Practical application is hampered by inherent characteristics of elastomers, i.e., high tackiness and highly hydrophobic surface properties. By applying a thin layer, e.g., 5 nm, of plasma polymer of methane, it was found that all these disadvantages can be eliminated without sacrificing high oxygen permeation rate, e.g., less than 15% reduction. Optimization of operational parameters to achieve this task has been investigated. It was also found that under optimum conditions the coating withstood severe and repeated flexing of the contact lens.

  4. Novel silicone compatible cross-linkers for controlled functionalization of PDMS networks

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    2013-01-01

    . In order to improve the dielectric properties of PDMS a novel system is developed where push-pull dipoles are grafted to a new silicone compatible cross-linker. The grafted cross-linkers are prepared by reaction of two different push-pull dipole alkynes as well as a fluorescent alkyne with the new azide......-functional cross-linker by click chemistry. The dipole cross-linkers are used to prepare PDMS elastomers of various chains lengths providing different network densities. The functionalized cross-linkers are incorporated successfully into the networks and are well distributed as determined by the fluorescent...

  5. Coalescence control of elastomer clusters by fixed surface charges.

    Science.gov (United States)

    Gauer, Cornelius; Wu, Hua; Morbidelli, Massimo

    2010-02-04

    We studied the coalescence behavior of a fluorinated elastomer colloid, stabilized by fixed surface charges, with a glass transition temperature of about -20 degrees C, as a function of temperature under diffusion-limited cluster-cluster aggregation (DLCA) conditions. We first measured the aggregation kinetics by in situ dynamic light scattering and then simulated it through the Smoluchowski approach (i.e., population balance equations) using the only unknown parameter, the fractal dimension D(f) of the clusters, as the fit parameter. It was found that the estimated D(f) value increased as the temperature increased, starting from 1.7 at 25 degrees C and reaching the upper limit of 3.0 for T > or = 55 degrees C. These results indicate that the coalescence extent increases as the temperature increases. Such temperature-dependent coalescence behavior cannot be explained by thermodynamic considerations, and it must be related to a certain kinetic resistance. We explain this effect by considering the resistance of the fixed charges to relocation on the particle surface, which decreases as the temperature increases.

  6. Reduction of surface charges during coalescence of elastomer particles.

    Science.gov (United States)

    Gauer, Cornelius; Wu, Hua; Morbidelli, Massimo

    2010-07-15

    Reaction-limited aggregation of soft elastomer particles has been studied with specific attention to the fate of surface charges during coalescence. The employed system is an aqueous dispersion of fluoroelastomer particles, which are known to coalesce completely at 70 degrees C. In contrast to diffusion-limited conditions, under reaction-limited conditions the stability of the system is expected to change during aggregation because of surface reduction and charge accumulation resulting from coalescence. This allows investigating the mechanism of charge relocation during cluster coalescence. For particles stabilized by ionic surfactants, it has been found that the charges are mobile (i.e., they redistribute between aqueous solution and particle surface according to their adsorption equilibrium) (Gauer, C.; Jia, Z.; Wu, H.; Morbidelli, M. Langmuir 2009, 25, 9703). In this work, we consider the case of fixed charges, as those given by charged polymer end groups covalently bound to the particle surface. We demonstrate that a loss of fixed surface charges occurs during the coalescence and strongly affects the time evolution and the shape of the resulting cluster mass distribution.

  7. Performance of bolted closure joint elastomers under cask aging conditions

    Energy Technology Data Exchange (ETDEWEB)

    Verst, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daugherty, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-23

    The bolted closure joint of a bare spent fuel cask is susceptible to age-related degradation and potential loss of confinement function under long-term storage conditions. Elastomeric seals, a component of the joint typically used to facilitate leak testing of the primary seal that includes the metallic seal and bolting, is susceptible to degradation over time by several mechanisms, principally via thermo-oxidation, stress-relaxation, and radiolytic degradation under time and temperature condition. Irradiation and thermal exposure testing and evaluation of an ethylene-propylene diene monomer (EPDM) elastomeric seal material similar to that used in the CASTOR® V/21 cask for a matrix of temperature and radiation exposure conditions relevant to the cask extended storage conditions, and development of semiempirical predictive models for loss of sealing force is in progress. A special insert was developed to allow Compressive Stress Relaxation (CSR) measurements before and after the irradiation and/or thermal exposure without unloading the elastomer. A condition of the loss of sealing force for the onset of leakage was suggested. The experimentation and modeling being performed could enable acquisition of extensive coupled aging data as well as an estimation of the timeframe when loss of sealing function under aging (temperature/radiation) conditions may occur.

  8. Dielectric elastomer actuators for octopus inspired suction cups.

    Science.gov (United States)

    Follador, M; Tramacere, F; Mazzolai, B

    2014-09-25

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.

  9. Stretchable, adhesive and ultra-conformable elastomer thin films.

    Science.gov (United States)

    Sato, Nobutaka; Murata, Atsushi; Fujie, Toshinori; Takeoka, Shinji

    2016-11-16

    Thermoplastic elastomers are attractive materials because of the drastic changes in their physical properties above and below the glass transition temperature (Tg). In this paper, we report that free-standing polystyrene (PS, Tg: 100 °C) and polystyrene-polybutadiene-polystyrene triblock copolymer (SBS, Tg: -70 °C) thin films with a thickness of hundreds of nanometers were prepared by a gravure coating method. Among the mechanical properties of these thin films determined by bulge testing and tensile testing, the SBS thin films exhibited a much lower elastic modulus (ca. 0.045 GPa, 212 nm thickness) in comparison with the PS thin films (ca. 1.19 GPa, 217 nm thickness). The lower elastic modulus and lower thickness of the SBS thin films resulted in higher conformability and thus higher strength of adhesion to an uneven surface such as an artificial skin model with roughness (Ra = 10.6 μm), even though they both have similar surface energies. By analyzing the mechanical properties of the SBS thin films, the elastic modulus and thickness of the thin films were strongly correlated with their conformability to a rough surface, which thus led to a high adhesive strength. Therefore, the SBS thin films will be useful as coating layers for a variety of materials.

  10. Characterization of Ferrofluid-based Stimuli-responsive Elastomers

    Directory of Open Access Journals (Sweden)

    Sandra dePedro

    2016-12-01

    Full Text Available Stimuli-responsive materials undergo physicochemical, and/or structural changes when a specific actuation is applied. They are heterogeneous composites, consisting of a non-responsive matrix where functionality is provided by the filler. Surprisingly, the synthesis of Polydimethylsiloxane (PDMS-based stimuli-responsive elastomers (SRE has seldomly been presented. Here we present the structural, biological, optical, magnetic and mechanical properties of several magnetic SRE (M-SRE obtained by combining PDMS and isoparafin-based ferrofluid (FF. Independently of the FF concentration, results shown a similar aggregation level, with the nanoparticles (NP mostly isolated (>60%. In addition to the superparamagnetic behaviour, the samples show no cytotoxicity except the sample with the highest FF concentration. Spectral response shows FF concentrations where both optical readout and magnetic actuation can simultaneously be used. The Young’s modulus increases with the FF concentration until the elastomeric network is distorted. Our results demonstrate that PDMS can host up to 24.6% FF. When applied to soft microsystems, a large displacement for relatively low magnetic fields (< 0.3 T is achieved. The herein presented M-SRE characterization can be used for a large number of disciplines where magnetic actuation can be combined with optical detection, mechanical elements and biological samples.

  11. Modeling a dielectric elastomer as driven by triboelectric nanogenerator

    Science.gov (United States)

    Chen, Xiangyu; Jiang, Tao; Wang, Zhong Lin

    2017-01-01

    By integrating a triboelectric nanogenerator (TENG) and a thin film dielectric elastomer actuator (DEA), the DEA can be directly powered and controlled by the output of the TENG, which demonstrates a self-powered actuation system toward various practical applications in the fields of electronic skin and soft robotics. This paper describes a method to construct a physical model for this integrated TENG-DEA system on the basis of nonequilibrium thermodynamics and electrostatics induction theory. The model can precisely simulate the influences from both the viscoelasticity and current leakage to the output performance of the TENG, which can help us to better understand the interaction between TENG and DEA devices. Accordingly, the established electric field, the deformation strain of the DEA, and the output current from the TENG are systemically analyzed by using this model. A comparison between real measurements and simulation results confirms that the proposed model can predict the dynamic response of the DEA driven by contact-electrification and can also quantitatively analyze the relaxation of the tribo-induced strain due to the leakage behavior. Hence, the proposed model in this work could serve as a guidance for optimizing the devices in the future studies.

  12. Soft mobile robots driven by foldable dielectric elastomer actuators

    Science.gov (United States)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2016-08-01

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  13. Compatibility Studies on Elastomers and Polymers with Ethanol Blended Gasoline

    Directory of Open Access Journals (Sweden)

    J. S. Dhaliwal

    2014-01-01

    Full Text Available This paper reports the compatibility studies of 10% ethanol blended gasoline (E10 with four types of elastomer materials, namely, Neoprene rubber, Nitrile rubber, hydrogenated Nitrile butadiene rubber (HNBR, and Polyvinyl chloride/Nitrile butadiene rubber blend (PVC/NBR, and two types of plastic materials, namely, Nylon-66 and Polyoxymethylene (Delrin. These materials have applications in automotives as engine seals, gaskets, fuel system seals and hoses, and so forth. Two types of the ethanol blended gasoline mixtures were used: (a gasoline containing 5% ethanol (E5, which is commercial form of gasoline available in India, and (b gasoline containing 10% ethanol (E10. The above materials were immersed in E5 and E10 for 500 hrs at 55°C. A set of eight different properties in E5 and E10 (visual inspection, weight change, volume change, tensile strength, percent elongation, flexural strength, impact strength, and hardness were measured after completion of 500 hrs and compared with reference specimens (specimens at 55°C without fuel and specimens at ambient conditions. Variation observed in different materials with respect to the above eight properties has been used to draw inference about the compatibility of these elastomeric/polymer materials with E10 fuel vis-à-vis E5 fuels. The data presented in this study is comparative in nature between the results of E10 and E5.

  14. Colour gamuts in polychromatic dielectric elastomer artificial chromatophores

    Science.gov (United States)

    Rossiter, Jonathan; Conn, Andrew; Cerruto, Antonio; Winters, Amy; Roke, Calum

    2014-03-01

    Chromatophores are the colour changing organelles in the skins of animals including fish and cephalopods. The ability of cephalopods in particular to rapidly change their colouration in response to environmental changes, for example to camouflage against a new background, and in social situations, for example to attract a mate or repel a rival, is extremely attractive for engineering, medical, active clothing and biomimetic robotic applications. The rapid response of these chromatophores is possible by the direct coupling of fast acting muscle and pigmented saccules. In artificial chromatophores we are able to mimic this structure using electroactive polymer artificial muscles. In contrast to prior research which has demonstrated monochromatic artificial chromatophores, here we consider a novel multi-colour, multi-layer, artificial chromatophore structure inspired by the complex dermal chromatophore unit in nature and which exploits dielectric elastomer artificial muscles as the electroactive actuation mechanism. We investigate the optical properties of this chromatophore unit and explore the range of colours and effects that a single unit and a matrix of chromatophores can produce. The colour gamut of the multi-colour chromatophore is analysed and shows its suitability for practical display and camouflage applications. It is demonstrated how, by varying actuator strain and chromatophore base colour, the gamut can be shifted through colour space, thereby tuning the artificial chromatophore to a specific environment or application.

  15. Simulation of the transient electromechanical behaviour of dielectric elastomer transducers

    Science.gov (United States)

    Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2016-04-01

    To design systems utilizing dielectric elastomer transducers (DET) models are necessary to describe the behaviour of the DET and assess the system performance in advance. For basic set-ups simple analytical models or lumped parameter models are available and provide reasonable results. For more complex set-ups these models only allow a rough estimation of the system performance, not accurate enough to achieve an optimal system design. Therefore system designers typically resort to numerical simulation tools. Commercially available tools and models specialize on either electrical or mechanical domain thus simplifying or even neglecting effects in the other domain respectively. In this work we present a simulation tool taking into account the transient electrical and mechanical behaviour of DET under different mechanical load conditions and electrical driving frequencies. Our model can describe transient electrical and mechanical behaviour, such as electrical resistance, mechanical hyperelastic and viscosity of the electrodes and dielectric material. Model parameters are derived from measurements of the dielectric and the electrode resistance as well as e.g. the materials Young's modulus. The results from the simulation are compared to simple lumped parameter based models.

  16. Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces

    Science.gov (United States)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2011-04-01

    As a means to improve versatility and safety of dielectric elastomer actuators (DEAs) for several fields of application, so-called 'hydrostatically coupled' DEAs (HC-DEAs) have recently been described. HC-DEAs are based on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. This paper presents ongoing developments of HC-DEAs and potential applications in the field of haptics. Three specific examples are considered. The first deals with a wearable tactile display used to provide users with tactile feedback during electronic navigation in virtual environments. The display consists of HCDEAs arranged in contact with finger tips. As a second example, an up-scaled prototype version of an 8-dots refreshable cell for dynamic Braille displays is shown. Each Braille dot consists of a miniature HC-DEA, with a diameter lower than 2 mm. The third example refers to a device for finger rehabilitation, conceived to work as a sort of active version of a rehabilitation squeezing ball. The device is designed to dynamically change its compliance according to an electric control. The three examples of applications intend to show the potential of the new technology and the prospective opportunities for haptic interfaces.

  17. Reduced Order Models for Dynamic Behavior of Elastomer Damping Devices

    Science.gov (United States)

    Morin, B.; Legay, A.; Deü, J.-F.

    2016-09-01

    In the context of passive damping, various mechanical systems from the space industry use elastomer components (shock absorbers, silent blocks, flexible joints...). The material of these devices has frequency, temperature and amplitude dependent characteristics. The associated numerical models, using viscoelastic and hyperelastic constitutive behaviour, may become computationally too expensive during a design process. The aim of this work is to propose efficient reduced viscoelastic models of rubber devices. The first step is to choose an accurate material model that represent the viscoelasticity. The second step is to reduce the rubber device finite element model to a super-element that keeps the frequency dependence. This reduced model is first built by taking into account the fact that the device's interfaces are much more rigid than the rubber core. To make use of this difference, kinematical constraints enforce the rigid body motion of these interfaces reducing the rubber device model to twelve dofs only on the interfaces (three rotations and three translations per face). Then, the superelement is built by using a component mode synthesis method. As an application, the dynamic behavior of a structure supported by four hourglass shaped rubber devices under harmonic loads is analysed to show the efficiency of the proposed approach.

  18. Soft mobile robots driven by foldable dielectric elastomer actuators

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong, E-mail: jxzhouxx@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-28

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

  19. Fluid electrodes for submersible robotics based on dielectric elastomer actuators

    Science.gov (United States)

    Christianson, Caleb; Goldberg, Nathaniel; Cai, Shengqiang; Tolley, Michael T.

    2017-04-01

    Recently, dielectric elastomer actuators (DEAs) have gathered interest for soft robotics due to their low cost, light weight, large strain, low power consumption, and high energy density. However, developing reliable, compliant electrodes for DEAs remains an ongoing challenge due to issues with fabrication, uniformity of the conductive layer, and mechanical stiffening of the actuators caused by conductive materials with large Young's moduli. In this work, we present a method for preparing, patterning, and utilizing conductive fluid electrodes. Further, when we submerse the DEAs in a bath containing a conductive fluid connected to ground, the bath serves as a second electrode, obviating the need for depositing a conductive layer to serve as either of the electrodes required of most DEAs. When we apply a positive electrical potential to the conductive fluid in the actuator with respect to ground, the electric field across the dielectric membrane causes charge carriers in the solution to apply an electrostatic force on the membrane, which compresses the membrane and causes the actuator to deform. We have used this process to develop a tethered submersible robot that can swim in a tank of saltwater at a maximum measured speed of 9.2 mm/s. Since saltwater serves as the electrode, we overcome buoyancy issues that may be a challenge for pneumatically actuated soft robots and traditional, rigid robotics. This research opens the door to low-power underwater robots for search and rescue and environmental monitoring applications.

  20. Amorphous carbon interlayers for gold on elastomer stretchable conductors

    Science.gov (United States)

    Manzoor, M. U.; Tuinea-Bobe, C. L.; McKavanagh, F.; Byrne, C. P.; Dixon, D.; Maguire, P. D.; Lemoine, P.

    2011-06-01

    Gold on polydimethylsiloxane (PDMS) stretchable conductors were prepared using a novel approach by interlacing an hydrogenated amorphous carbon (a-C : H) layer between the deposited metal layer and the elastomer. AFM analysis of the a-C : H film surface before gold deposition shows nanoscale buckling, the corresponding increase in specific surface area corresponds to a strain compensation for the first 4-6% of bi-axial tensile loading. Without this interlayer, the deposited gold films show much smaller and uni-directional ripples as well as more cracks and delaminations. With a-C : H interlayer, the initial electrical resistivity of the metal film decreases markedly (280-fold decrease to 8 × 10-6 Ω cm). This is not due to conduction within the carbon interlayer; both a-C : H/PDMS and PDMS substrates are electrically insulating. Upon cyclic tensile loading, both films become more resistive, but return to their initial state after 20 tensile cycles up to 60% strain. Profiling experiments using secondary ion mass spectroscopy and x-ray photoelectron spectroscopy indicate that the a-C : H layer intermixes with the PDMS, resulting in a graded layer of decreasing stiffness. We believe that both this graded layer and the surface buckling contribute to the observed improvement in the electrical performance of these stretchable conductors.

  1. Flexible dielectric elastomer actuators for wearable human-machine interfaces

    Science.gov (United States)

    Bolzmacher, Christian; Biggs, James; Srinivasan, Mandayam

    2006-03-01

    Wearable dielectric elastomer actuators have the potential to enable new technologies, such as tactile feedback gloves for virtual reality, and to improve existing devices, such as automatic blood pressure cuffs. They are potentially lighter, quieter, thinner, simpler, and cheaper than pneumatic and hydraulic systems now used to make compliant, actuated interfaces with the human body. Achieving good performance without using a rigid frame to prestrain the actuator is a fundamental challenge in using these actuators on body. To answer this challenge, a new type of fiber-prestrained composite actuator was developed. Equations that facilitate design of the actuator are presented, along with FE analysis, material tests, and experimental results from prototypes. Bending stiffness of the actuator material was found to be comparable to textiles used in clothing, confirming wearability. Two roll-to-roll machines are also presented that permit manufacture of this material in bulk as a modular, compact, prestressed composite that can be cut, stacked, and staggered, in order to build up actuators for a range of desired forces and displacements. The electromechanical properties of single- layered actuators manufactured by this method were measured (N=5). At non-damaging voltages, blocking force ranged from 3,7-5,0 gram per centimeter of actuator width, with linear strains of 20,0-30%. Driving the actuators to breakdown produced maximum force of 8,3-10 gram/cm, and actuation strain in excess 30%. Using this actuator, a prototype tactile display was constructed and demonstrated.

  2. Work of adhesion and separation between soft elastomers

    Science.gov (United States)

    Lu, Nanshu

    2015-03-01

    The JKR (Johnson-Kendall-Roberts) method is widely used to measure the work of adhesion between soft materials. In this paper, the JKR theory is summarized and three dimensionless parameters are proposed to design a proper JKR experiment. The work of adhesion and the work of separation between two commonly used soft elastomers PDMS (Sylgard 184) and Ecoflex 0300 are obtained with the measured pull-in and pull-off forces using a dynamical mechanical analyzer (DMA). The effect of crosslinking density and solvent extraction are examined. It is found that the pull-in adhesion stays more or less constant for all contact pairs we measured. While the effect of crosslinking density is not significant for pristine PDMS, it is very obvious that the higher self-adhesion can be found in less crosslinked PDMS after solvent extraction. Such an effect is even more drastic for PDMS-to-Ecoflex adhesion. A unified adhesion mechanism is proposed to explain these complex adhesion behaviors. It is concluded that the chain-matrix interaction is the most effective adhesion mechanism compared to chain-chain or matrix-matrix interactions and the three interactions are exclusive to each other. This work is supported by the NSF CMMI award under Grant No. 1301335.

  3. Electromechanical behavior of fiber-reinforced dielectric elastomer membrane

    Directory of Open Access Journals (Sweden)

    Chi Li

    2015-04-01

    Full Text Available Based on its large deformation, light weight, and high energy density, dielectric elastomer (DE has been used as driven muscle in many areas. We design the fiber-reinforced DE membrane by adding fibers in the membrane. The deformation and driven force direction of the membrane can be tuned by changing the fiber arrangements. The actuation in the perpendicular direction of the DE membrane with long fibers first increases and then decreases by the increasing of the fiber spacing in the perpendicular direction. The horizontal actuation of the membrane decreases by decreasing the spacing of short fibers. In the membrane-inflating structure, the radially arranged fibers will break the axisymmetric behavior of the structure. The top area of the inflated balloon without fiber will buckle up when the voltage reaches a certain level. Finite element simulations based on nonlinear field theory are conducted to investigate the effects of fiber arrangement and verify the experimental results. This work can guide the design of fiber-reinforced DE.

  4. 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2016-02-16

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process. The research conducted during Project Silicon led to the first industrial scaling of 1366’s Direct Wafer™ process – an innovative, US-friendly (efficient, low-labor content) manufacturing process that destroys the main cost barrier limiting silicon PV cost-reductions: the 35-year-old grand challenge of making quality wafers (40% of the cost of modules) without the cost and waste of sawing. The SunPath program made it possible for 1366 Technologies to build its demonstration factory, a key and critical step in the Company’s evolution. The demonstration factory allowed 1366 to build every step of the process flow at production size, eliminating potential risk and ensuring the success of the Company’s subsequent scaling for a 1 GW factory to be constructed in Western New York in 2016 and 2017. Moreover, the commercial viability of the Direct Wafer process and its resulting wafers were established as 1366 formed key strategic partnerships, gained entry into the $8B/year multi-Si wafer market, and installed modules featuring Direct Wafer products – the veritable proving grounds for the technology. The program also contributed to the development of three Generation 3 Direct Wafer furnaces. These furnaces are the platform for copying intelligently and preparing our supply chain – large-scale expansion will not require a bigger machine but more machines. SunPath filled the

  5. Effect of surface properties of elastomer colloids on their coalescence and aggregation kinetics.

    Science.gov (United States)

    Gauer, Cornelius; Wu, Hua; Morbidelli, Massimo

    2009-10-20

    We study the aggregation kinetics of two elastomer colloids with similar bulk polymer properties but with different surface charge groups in order to understand the role of the surface properties in particle coalescence during aggregation. It is confirmed that clusters of the elastomer particles stabilized purely by ionic surfactants coalesce in both reaction-limited and diffusion-limited aggregation (RLCA and DLCA) regimes and that the coalescence is independent of the coagulant type. On the other hand, clusters formed by elastomer particles stabilized by charged polymer end groups, which are fixed on the particle surface, are fractal objects with a fractal dimension of 1.7 in the DLCA and 2.1 in the RLCA regime. This indicates insignificant cluster coalescence during aggregation, most likely due to a hindrance effect of the fixed charges.

  6. Mechanical behavior of a suite of elastomers used for seismic base isolation

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.; Hughes, T.H.

    1995-07-01

    Several practical systems have been developed to protect structures and their contents from the potential devastating consequences of earthquakes. The use of seismic isolation has recently proven to be an effective means to mitigate earthquake damage. With seismic isolation, the structures are decoupled from the strong horizontal ground accelerations. The use of high damping elastomer, steel lamiriated seismic isolation bearings has been proven to be an effective method for seismic base isolation. This paper describes recent research conducted at Argonne National Laboratory to find the mechanical response characteristics of a suite of elastomers compounded for use in elastomeric seismic isolation bearings. The response characteristics were obtained by testing small coupons of each elastomer in a high precision dynamic testing machine. Specifically, the paper reports on tests performed to find the variations in stiffness and energy dissipation with strain level, loading rate, and cycle number. The paper also reports on the effects that strain level has on stiffness recovery.

  7. Effects of vapor grown carbon nanofibers on electrical and mechanical properties of a thermoplastic elastomer

    Science.gov (United States)

    Basaldua, Daniel Thomas

    Carbon nanofiber (CNF) reinforced composites are exceptional materials that exhibit superior properties compared to conventional composites. This paper presents the development of a vapor grown carbon nanofiber (VGCNF) thermoplastic polyurethane (TPU) composite by a melt mixing process. Dispersion and distribution of CNFs inside the TPU matrix were examined through scanning electron microscopy to determine homogeneity. The composite material underwent durometer, thermal gravimetric analysis, differential scanning calorimetry, heat transfer, hysteresis, dynamic modulus, creep, tensile, abrasion, and electrical conductivity testing to characterize its properties and predict behavior. The motivation for this research is to develop an elastomer pad that is an electrically conductive alternative to the elastomer pads currently used in railroad service. The material had to be a completely homogenous electrically conductive CNF composite that could withstand a harsh dynamically loaded environment. The new material meets mechanical and conductive requirements for use as an elastomer pad in a rail suspension.

  8. Failure life determination of oilfield elastomer seals in sour gas/dimethyl disulfide environments

    Energy Technology Data Exchange (ETDEWEB)

    Kennelley, K.J.; Abrams, P.I. (Exxon Production Research Co., Houston, TX (US)); Vicic, J.C. (FMC Corp., Central Engineering Labs., Santa Clara, CA (US)); Cain, D. (FMC Corp., Wellhead Equipment, Houston, TX (US))

    1989-01-01

    Previous screening tests of various oilfield elastomers in sour gas/dimethyl disulfide environments indicated that hydrogenated nitrile (HNBR), tetrafluoroethylene-propylene (TFE/P), ethylene-propylene-diene (EPDM), and perfluorinated rubber (FFKM) elastomers may perform satisfactorily in these environments. This paper describes subsequent failure life tests conducted with the subject elastomers in the sour gas/dimethyl disulfide test environment at several elevated temperatures (> 135{degrees}C). The materials were tested in the form of O-rings (size 214), which were used to seal an autoclave containing the test environment at 14 MPa gas pressure. The results were used to extrapolate time to failure at a common reference temperature of 135{degrees}C. The performance of EPDM and HNBR in the sour gas/dimethyl disulfide mixture substantially exceeded a projected 20-year service life at 135{degrees}C, while FFKM and TFE/P did not.

  9. [Application of thermoplastic elastomer in hot-melt pressure sensitive adhesives for transtermal drug delivery].

    Science.gov (United States)

    Yan, Xiaoping; Zheng, Rui; Guan, Shijie; Yi, Bowen

    2009-06-01

    Development of drug dosage forms to a great extent depends on the development of drug auxiliary materials. The development of a new type of polymeric drug auxiliary materials will bring on the developing of a novel dosage forms technology and a flood of new drug dosage forms. Thermoplastic elastomer is a new type of drug polymeric auxiliary materials, at present, which has a broad application in the field of hot-melt pressure sensitive adhesives. This review mainly discussed a new transtermal Chinese drug delivery system, including matrix composition of the formula, modified thermoplastic elastomer for hot-melt pressure sensitive adhesives and their development prospects in the traditional Chinese drug delivery system. It suggested that thermoplastic elastomer of hot-melt pressure sensitive adhesives has broad development prospects in the field of the transtermal drug delivery system for traditional Chinese medicine.

  10. Paleovalley fills: Trunk vs. tributary

    Science.gov (United States)

    Kvale, E.P.; Archer, A.W.

    2007-01-01

    A late Mississippian-early Pennsylvanian eustatic sea level drop resulted in a complex lowstand drainage network being eroded across the Illinois Basin in the eastern United States. This drainage system was filled during the early part of the Pennsylvanian. Distinct differences can be recognized between the trunk and tributary paleovalley fills. Fills preserved within the trunk systems tend to be fluvially dominated and consist of bed-load deposits of coarse- to medium-grained sandstone and conglomerate. Conversely, the incised valleys of tributary systems tend to be filled with dark mudstone, thinly interbedded sandstones, and mudstones and siltstones. These finer grained facies exhibit marine influences manifested by tidal rhythmites, certain traces fossils, and macro- and microfauna. Examples of tributary and trunk systems, separated by no more than 7 km (4.3 mi) along strike, exhibit these styles of highly contrasting fills. Useful analogs for understanding this Pennsylvanian system include the Quaternary glacial sluiceways present in the lower Ohio, White, and Wabash river valleys of Indiana (United States) and the modern Amazon River (Brazil). Both the Amazon River and the Quaternary rivers of Indiana have (or had) trunk rivers that are (were) dominated by large quantities of bed load relative to their tributaries. The trunk valley systems of these analogs aggraded much more rapidly than their tributary valleys, which evolved into lakes because depositional rates along the trunk are (were) so high that the mouths of the tributaries have been dammed by bed-load deposits. These Holocene systems illustrate that sediment yields can significantly influence the nature of fill successions within incised valleys independent of rates of sea level changes or proximity to highstand coastlines. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  11. Gas-Filled Capillary Model

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2006-11-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.

  12. Experimental study of the intraventricular filling vortex in diastolic dysfunction

    Science.gov (United States)

    Santhanakrishnan, Arvind; Samaee, Milad; Nelsen, Nicholas

    2016-11-01

    Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over half of heart failure patients. HFNEF patients typically show diastolic dysfunction, caused by a decrease in relaxation capability of the left ventricular (LV) muscle tissue and/or an increase in LV chamber stiffness. Numerous studies using non-invasive medical imaging have shown that an intraventricular filling vortex is formed in the LV during diastole. We conducted 2D particle image velocimetry and hemodynamics measurements on a left heart simulator to investigate diastolic flow under increasing LV wall stiffness, LV wall thickness and heart rate (HR) conditions. Flexible-walled, optically clear LV physical models cast from silicone were fitted within a fluid-filled acrylic chamber. Pulsatile flow within the LV model was generated using a piston pump and 2-component Windkessel elements were used to tune the least stiff (baseline) LV model to physiological conditions. The results show that peak circulation of the intraventricular filling vortex is diminished in conditions of diastolic dysfunction as compared to the baseline case. Increasing HR exacerbated the circulation of the filling vortex across all cases.

  13. Hybrid matrices of TiO2 and TiO2–Ag nanofibers with silicone for high water flux photocatalytic degradation of dairy effluent

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmad; Alm, Martin; Thomsen, Peter

    2016-01-01

    TiO2 and TiO2–Ag nanofibers were produced by electrospinning technique and surface coated on silicone elastomer (diameter: 10.0 mm; thickness: 2.0 mm) by dipcoating method. These coated hybrid nanoporous matrices were characterized by various morphological and physicochemical techniques (like SEM......, TEM, XRD, FTIR, EDS and UV). These characterizations reveal that the surface morphology of electrospun nanofibers remain intact by the dipcoating technique. The produced hybrid matrices of TiO2 and TiO2–Ag silicone were utilized as photocatalysts to degrade dairy waste water with an efficient water...

  14. Long-term effects of intragastric instillations of silastic 386 foam elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.M.; Drake, G.A.; London, J.E.

    1981-12-01

    Young male Sprague-Dawley rats (87 days old) were given a single dose (5 g/kg body weight (BW)) of Silastic 386 foam elastomer intragastrically (IG), and young female Swiss-Webster mice (83 days old) were given a single dose (5 g/kg BW) IG, or a dose (1 g/kg BW) IG on each of 5 consecutive days, of Silastic 386 foam elastomer. All animals were then maintained for the rest of their lives and autopsied at death. No significant effects resulting from the oral administration of this of this material were seen in any of the rats or mice.

  15. Effect of heating rate on toxicity of pyrolysis gases from some elastomers

    Science.gov (United States)

    Hilado, C. J.; Kosola, K. L.; Solis, A. N.

    1977-01-01

    The effect of heating rate on the toxicity of the pyrolysis gases from six elastomers was investigated, using a screening test method. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acrylonitrile rubber exhibited the greatest toxicity under these test conditions, and carbon monoxide was not found in sufficient concentrations to be the primary cause of death.

  16. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  17. Carbon black networking in elastomers monitored by simultaneous rheological and dielectric investigations

    Science.gov (United States)

    Steinhauser, Dagmar; Möwes, Markus; Klüppel, Manfred

    2016-12-01

    The rheo-dielectric response of carbon black filled elastomer melts is investigated by dielectric relaxation spectroscopy in the frequency range from 0.1 Hz up to 10 MHz during oszillatory shearing in a plate-plate rheometer. Various concentrations and types of carbon blacks dispersed in a non-crosslinked EPDM melt are considered. It is demonstrated that during heat treatment at low strain amplitude a pronounced flocculation of filler particles takes place leading to a successive increase of the shear modulus and conductivity. Followed up by a strain sweep, the filler network breaks up and both quantities decrease simultaneously with increasing strain amplitude. Two relaxation times, obtained from a Cole-Cole fit of the dielectric spectra, are identified, which both decrease strongly with increasing flocculation time. This behaviour is analyzed in the frame of fractal network models, describing the effect of structural disorder of the conducting carbon black network on the diffusive charge transport. Significant deviations from the predictions of percolation theory are observed, which are traced back to a superimposed cluster-cluster aggregation process (CCA). During flocculation, a universal scaling behaviour holds between the conductivity and the corresponding high frequency relaxation time, which fits all the measured data. The scaling exponent agrees fairly well with the prediction obtained from CCA. It is demonstrated that the underlying basic mechanism is a change of the correlation length of the filler network, i.e. the size of the fractal heterogeneities. This decreases during flocculation due to the formation of additional conductive paths, making the system more homogeneous. An addition less pronounced effect is found from nanoscopic gaps between adjacent filler particles, which decrease during flocculation. The same universal scaling behaviour, as obtained for flocculation, is found for temperature-dependent dielectric measurements of the cured

  18. The reclaiming of butyl rubber and in-situ compatibilization of thermoplastic elastomer by power ultrasound

    Science.gov (United States)

    Feng, Wenlai

    This is a study of the continuous ultrasound aided extrusion process for the in-situ compatibilization of isotactic polypropylene (iPP)/ethylene-propylene diene rubber (EPDM) thermoplastic elastomer (TPE) using a newly developed ultrasonic treatment reactor. The rheological, mechanical properties and morphology of the TPE with and without ultrasonic treatment were studied. In-situ compatibilization in the ultrasonically treated blends was observed as evident by their more stable morphology after annealing, improved mechanical properties and IR spectra. The obtained results indicated that ultrasonic treatment induced the thermo-mechanical degradations and led to the possibility of enhanced molecular transport and chemical reactions at the interfaces. Processing conditions were established for enhanced in situ compatibilization of the PP/EPDM TPE. The ultrasonic treatments of butyl rubber gum and ultrasonic devulcanization of butyl rubber, tire-curing bladder during extrusion using a grooved barrel ultrasonic reactor were carried out. The ultrasonic treatment of gum caused degradation of the polymer main chain leading to lower molecular weight, broader molecular weight distribution, less unsaturation and changes in physical properties. The devulcanization of butyl rubber was successfully accomplished only at severe conditions of ultrasonic treatment. The mechanical properties of vulcanizates prepared from devulcanized butyl rubber are comparable to that of the virgin vulcanizate. The molecular characterization of sol fraction of devulcanized butyl rubber showed the devulcanization and degradation of butyl rubber occurred simultaneously. 1H NMR transverse relaxation was also used to study butyl rubber gum before and after ultrasonic treatment, and ultrasonically devulcanized unfilled butyl rubber. The T2 relaxation decays were successfully described using a two-component model. The recyclability of tire-curing bladder was also investigated. Gel fraction, crosslink

  19. Unsteady Capillary Filling By Electrocapillarity

    Science.gov (United States)

    Kang, In Seok; Lee, Jung A.

    2016-11-01

    Unsteady filling of electrolyte solution inside a nanochannel by the electrocapillarity effect is studied. The filling rate is predicted as a function of the bulk concentration of the electrolyte, the surface potential (or surface charge density), and the cross sectional shape of the channel. Since the driving force of the flow is the electrocapillarity, it is first analyzed by using the solution of the Poisson-Boltzmann equation. From the analysis, it is found that the results for many different cross sectional shapes can be unified with good accuracy if the hydraulic radius is adopted as the characteristic length scale of the problem. Especially in the case of constant surface potential, for both limits of κh -> 0 and κh -> ∞ , it can be shown theoretically that the electrocapillarity is independent of the cross sectional shape if the hydraulic radius is the same. In order to analyze the geometric effects more systematically, we consider the regular N-polygons with the same hydraulic radius and the rectangles of different aspect ratios. Washburn's approach is then adopted to predict the filling rate of electrolyte solution inside a nanaochannel. It is found that the average filling velocity decreases as N increases in the case of regular N-polygons with the same hydraulic radius. This is because of that the regular N-polygons of the same hydraulic radius share the same inscribing circle. This work has been supported by BK21+ program.

  20. Filling in the retinal image

    Science.gov (United States)

    Larimer, James; Piantanida, Thomas

    1990-01-01

    The optics of the eye form an image on a surface at the back of the eyeball called the retina. The retina contains the photoreceptors that sample the image and convert it into a neural signal. The spacing of the photoreceptors in the retina is not uniform and varies with retinal locus. The central retinal field, called the macula, is densely packed with photoreceptors. The packing density falls off rapidly as a function of retinal eccentricity with respect to the macular region and there are regions in which there are no photoreceptors at all. The retinal regions without photoreceptors are called blind spots or scotomas. The neural transformations which convert retinal image signals into percepts fills in the gaps and regularizes the inhomogeneities of the retinal photoreceptor sampling mosaic. The filling-in mechamism plays an important role in understanding visual performance. The filling-in mechanism is not well understood. A systematic collaborative research program at the Ames Research Center and SRI in Menlo Park, California, was designed to explore this mechanism. It was shown that the perceived fields which are in fact different from the image on the retina due to filling-in, control some aspects of performance and not others. Researchers have linked these mechanisms to putative mechanisms of color coding and color constancy.