WorldWideScience

Sample records for filled ptfe laminates

  1. MgTiO3 filled PTFE composites for microwave substrate applications

    International Nuclear Information System (INIS)

    Yuan, Y.; Zhang, S.R.; Zhou, X.H.; Li, E.Z.

    2013-01-01

    MgTiO 3 filled PTFE composite substrates were fabricated for microwave circuit applications. The filler content in the PTFE matrix was varied from 30 to 70 wt%. Low loss MgTiO 3 ceramic powder was prepared by the solid state ceramic route. The phase formation of MgTiO 3 was studied by powder X-ray diffraction analysis. Morphology of the composites and dispersion of filler in the PTFE matrix was studied using scanning electron microscopy. Microwave dielectric properties of the composites with respect to filler loading were measured by stripline resonator method using Vector Network Analyzer. Different theoretical modeling approaches were used to predict the dielectric constant of PTFE ceramic composites with respect to filler loading. The linear coefficient of thermal expansion of the composites was investigated. Moisture absorption of the composites was found out conforming to IPC-TM-650 2.6.2. - Highlights: • We prepare MT/PTFE composite by cold pressing and hot treating. • Increasing MT will increase ε r , tan δ and moisture absorption. • Increasing MT will decrease thermal expansion coefficient. • MT/PTFE composite has an ε r of 4.3 and a tan δ of 0.00097 at 50 wt% filler loading. • MT/PTFE composite are promising candidates for microwave circuit applications

  2. Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO2 particles

    NARCIS (Netherlands)

    Shen, J.T.; Top, M.; Pei, Y.T.; de Hosson, Jeff

    2015-01-01

    In this work, the tribological performance of PTFE filled SiO2 particles–epoxy composites is investigated. Under a load of 60 N (~140 MPa contact pressure), the optimum content of PTFE lies between 10 and 15 wt%, which yields an ultralow coefficient of friction (CoF) in conjunction with a low wear

  3. Oxygen Compatibility of Brass-Filled PTFE Compared to Commonly Used Fluorinated Polymers for Oxygen Systems

    Science.gov (United States)

    Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie

    2009-01-01

    Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to

  4. Radiation-induced crosslinking of short Fiber-filled polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Udagawa, Akira; Morita, Yousuke

    1999-02-01

    The radiation-induced crosslinking of PTFE mixed with short fibers as glass or carbon fibers was studied for processing the composite materials. The crosslinking behaviors did not change by mixing of the fiber under the irradiation condition in oxygen-free atmosphere at temperature at temperature of 330degC - 350degC. The effect of reinforcement by the fibers in the fabricated composite materials was supposed to be a morphological change of PTFE because and adhesion between PTFE and the fibers was hardly observed in the composite materials. (author)

  5. Radiation processing for PTFE composite reinforced with carbon fiber

    International Nuclear Information System (INIS)

    Akihiro Oshima; Akira Udagawa; Yousuke Morita

    1999-01-01

    The present work is an attempt to evaluate the performance of crosslinked PTFE as a polymer matrix for carbon fiber-reinforced composite materials. The carbon fiber-reinforced PTFE pre-composite, which is laminated with PTFE fine powder, is crosslinked by electron beam irradiation. Mechanical and frictional properties of the crosslinked PTFE composite obtained are higher than those of PTFE resin. The crosslinked PTFE composite with high mechanical and radiation resistant performance is obtained by radiation crosslinking process

  6. Structure-property effects on mechanical, friction and wear properties of electron modified PTFE filled EPDM composite

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Tribological properties of Ethylene-Propylene-Diene-rubber (EPDM containing electron modified Polytetrafluoroethylene (PTFE have been investiagted with the help of pin on disk tribometer without lubrication for a testing time of 2 hrs in atmospheric conditions at a sliding speed and applied normal load of 0.05 m•s–1 and FN = 1 N, respectively. Radiation-induced chemical changes in electron modified PTFE powders were analyzed using Electron Spin Resonance (ESR and Fourier Transform Infrared (FTIR specroscopy to characterize the effects of compatibility and chemical coupling of modified PTFE powders with EPDM on mechanical, friction and wear properties. The composites showed different friction and wear behaviour due to unique morphology, dispersion behaviour and radiation functionalization of PTFE powders. In general, EPDM reinforced with electron modified PTFE powder demonstrated improvement both in mechanical and tribological properties. However, the enhanced compatibility of PTFE powder resulting from the specific chemical coupling of PTFE powder with EPDM has been found crucial for mechanical, friction and wear properties.

  7. Laminates

    Science.gov (United States)

    Lepedat, Karin; Wagner, Robert; Lang, Jürgen

    The use of phenolic resin for the impregnation of a carrier material such as paper or fabric based on either organic or inorganic fibers was and still is one of the most important application areas for liquid phenolic resins. Substrates like paper, cotton, or glass fabric impregnated with phenolic resins are used as core layers for decorative and technical laminates and for many other different industrial applications. Nowadays, phenolic resins for decorative laminates used for furniture, flooring, or in the construction and transportation industry have gained significant market share. The Laminates chapter mainly describes the manufacture of decorative laminates especially the impregnation and pressing process with special emphasis to new technological developments and recent trends. Moreover, the different types of laminates are introduced, combined with some brief comments as they relate to the market for decorative surfaces.

  8. LAMINATES

    Directory of Open Access Journals (Sweden)

    Gökay Nemli

    2004-04-01

    Full Text Available Wood based panel producers afford to present their products either in sized semi-finished form or as covered in general by the in additional investments realized. The fact that the laminated material has a certain market share as well as the increase in demand for furniture types finished in various profiles have put the laminated sheets which provide very comprehensive design facilities at the top place and caused such boards to spread over the market rather more quickly. In line with this development, great developments have also been recorded during recent years in laminate utilization in furniture factoring sector and fast steps taken towards a more rational working environment. In this study, laminates types and manufacturing technologies were investigated.

  9. Microstructure and microwave dielectric properties of Na1/2Sm1/2TiO3 filled PTFE, an environmental friendly composites

    Science.gov (United States)

    Luo, Fuchuan; Tang, Bin; Yuan, Ying; Fang, Zixuan; Zhang, Shuren

    2018-04-01

    A study on Na1/2Sm1/2TiO3 filled and glassfiber reinforced polytetrafluoroethylene (PTFE) composites was described. The GF content was a fixed value of 4 wt%, and the NST content in the composite matrix changed from 26 to 66 wt%. The paper consisted of the manufactural process of the composite and the effects of filler content on the properties of the substrate, such as morphology, moisture absorption, density, dielectric properties and temperature coefficient of dielectric constant. As NST filler loading increased from 26 to 66 wt%, the dielectric constant and loss tangent experienced a continuously increase while the development in τε was opposite. X-Ray Diffraction, FTIR and XPS were used to analyze the microstructure of modified ceramic powder. It was proved that the silane coupling agent has been grafted on the NST surface successfully. At last, the NST/GF filled PTFE composites exhibited good dielectric constant (εr = 4.95), low dielectric loss (tan δ = 0.00147), acceptable water absorption (0.036) and temperature coefficient of dielectric constant (τε = -164) at filler loading of 4 wt% GF and 46 wt% NST.

  10. Friction Properties of Laminated Composite Materials of Alpha-Tricalcium Phosphate–Filled Poly (Vinyl Alcohol) Hydrogels

    OpenAIRE

    Yamamoto, Kanae; Iwai, Tomoaki; Shoukaku, Yutaka

    2015-01-01

    The aim of this study was to examine the mechanical characteristics of a polyvinyl alcohol hydrogel (PVA-H) as a candidate material for artificial joint cartilage. In the study, PVA-H was filled with α-tricalcium phosphate (α-TCP) in order to improve its mechanical properties. In addition, laminated composite materials with 3 layers were prepared by laminating α-TCP–filled PVA-H and unfilled PVA-H. The samples were prepared with different numbers of repeated freeze–thaw cycles and several con...

  11. Effect of bulk-fill base material on fracture strength of root-filled teeth restored with laminate resin composite restorations.

    Science.gov (United States)

    Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E

    2017-08-01

    To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fracture Resistance of Ceramic Laminate Veneers Bonded to Teeth with Class V Composite Fillings after Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Leyla Sadighpour

    2018-01-01

    Full Text Available Purpose. Porcelain laminate veneers (PLVs are sometimes required to be used for teeth with composite fillings. This study examined the fracture strength of PLVs bonded to the teeth restored with different sizes of class V composite fillings. Materials and Methods. Thirty-six maxillary central incisors were divided into three groups (n=12: intact teeth (control and teeth with class V composite fillings of one-third or two-thirds of the crown height (small or large group, resp.. PLVs were made by using IPS e.max and bonded with a resin cement (RelyX Unicem. Fracture resistance (N was measured after cyclic loading (1 × 106 cycles, 1.2 Hz. For statistical analyses, one-way ANOVA and Tukey test were used (α=0.05. Results. There was a significant difference between the mean failure loads of the test groups (P=0.004, with the Tukey-HSD test showing lower failure loads in the large-composite group compared to the control (P=0.02 or small group (P=0.05. The control and small-composite groups achieved comparable results (P>0.05. Conclusions. Failure loads of PLVs bonded to intact teeth and to teeth with small class V composite fillings were not significantly different. However, extensive composite fillings could compromise the bonding of PLVs.

  13. Evaluation of Interlaminar Stresses in Composite Laminates with a Bolt-Filled Hole Using a Linear Elastic Traction-Separation Description

    Directory of Open Access Journals (Sweden)

    Yong Cao

    2017-01-01

    Full Text Available Determination of the local interlaminar stress distribution in a laminate with a bolt-filled hole is helpful for optimal bolted joint design, due to the three-dimensional (3D nature of the stress field near the bolt hole. A new interlaminar stress distribution phenomenon induced by the bolt-head and clamp-up load, which occurs in a filled-hole composite laminate, is investigated. In order to efficiently evaluate interlaminar stresses under the complex boundary condition, a calculation strategy that using zero-thickness cohesive interface element is presented and validated. The interface element is based on a linear elastic traction-separation description. It is found that the interlaminar stress concentrations occur at the hole edge, as well as the interior of the laminate near the periphery of the bolt head. In addition, the interlaminar stresses near the periphery of the bolt head increased with an increase in the clamp-up load, and the interlaminar normal and shear stresses are not at the same circular position. Therefore, the clamp-up load cannot improve the interlaminar stress distribution in the laminate near the periphery of the bolt head, although it can reduce the magnitude of the interlaminar shear stress at the hole edge. Thus, the interlaminar stress distribution phenomena may lead to delamination initiation in the laminate near the periphery of the bolt head, and should be considered in composite bolted joint design.

  14. Properties of PTFE tape as a semipermeable membrane in fluorous reactions

    Directory of Open Access Journals (Sweden)

    Brendon A. Parsons

    2015-06-01

    Full Text Available In a PTFE tape phase-vanishing reaction (PV-PTFE, a delivery tube sealed with PTFE tape is inserted into a vessel which contains the substrate. The reagent diffuses across the PTFE tape barrier into the reaction vessel. PTFE co-polymer films have been found to exhibit selective permeability towards organic compounds, which was affected by the presence of solvents. In this study, we attempted to establish general trends of permeability of PTFE tape to different compounds and to better describe the process of solvent transport in PV-PTFE bromination reactions. Though PTFE tape has been reported as impermeable to some compounds, such as dimethyl phthalate, solvent adsorption to the tape altered its permeability and allowed diffusion through channels of solvent within the PTFE tape. In this case, the solvent-filled pores of the PTFE tape are chemically more akin to the adsorbed solvent rather than to the PTFE fluorous structure. The solvent uptake effect, which was frequently observed in the course of PV-PTFE reactions, can be related to the surface tension of the solvent and the polarity of the solvent relative to the reagent. The lack of pores in bulk PTFE prevents solvents from altering its permeability and, therefore, bulk PTFE is impermeable to most solvents and reagents. However, bromine, which is soluble in liquid fluorous media, diffused through the bulk PTFE. A better understanding of the PTFE phase barrier will make it possible to further optimize the PV-PTFE reaction design.

  15. Chromatographic and Spectral Analysis of Two Main Extractable Compounds Present in Aqueous Extracts of Laminated Aluminum Foil Used for Protecting LDPE-Filled Drug Vials

    Science.gov (United States)

    Akapo, Samuel O.; Syed, Sajid; Mamangun, Anicia; Skinner, Wayne

    2009-01-01

    Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE)) from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminated aluminum foil overwrap used for packaging LDPE vials filled with aqueous pharmaceutical formulations. By means of combined HPLC-UV, GC/MS, LC/MS/MS, and NMR spectroscopy, the two major compounds detected in the aqueous extracts of the representative commercial overwraps were identified as cyclic oligomers with molecular weights of 452 and 472 and are possibly formed from poly-condensation of the adhesive components, namely, isophthalic acid, adipic acid, and diethylene glycol. Lower molecular weight compounds that might be associated with the “building blocks” of these compounds were not detected in the aqueous extracts. PMID:20140083

  16. High-voltage leak detection of a parenteral proteinaceous solution product packaged in form-fill-seal plastic laminate bags. Part 1. Method development and validation.

    Science.gov (United States)

    Damgaard, Rasmus; Rasmussen, Mats; Buus, Peter; Mulhall, Brian; Guazzo, Dana Morton

    2013-01-01

    In Part 1 of this three-part research series, a leak test performed using high-voltage leak detection (HVLD) technology, also referred to as an electrical conductivity and capacitance leak test, was developed and validated for container-closure integrity verification of a small-volume laminate plastic bag containing an aqueous solution for injection. The sterile parenteral product is the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®, by Novo Nordisk A/S, Bagsværd, Denmark). The aseptically filled and sealed package is designed to preserve product sterility through expiry. Method development and validation work incorporated positive control packages with a single hole laser-drilled through the laminate film of each bag. A unique HVLD method characterized by specific high-voltage and potentiometer set points was established for testing bags positioned in each of three possible orientations as they are conveyed through the instrument's test zone in each of two possible directions-resulting in a total of six different test method options. Validation study results successfully demonstrated the ability of all six methods to accurately and reliably detect those packages with laser-drilled holes from 2.5-11.2 μm in nominal diameter. Part 2 of this series will further explore HVLD test results as a function of package seal and product storage variables. The final Part 3 will report the impact of HVLD exposure on product physico-chemical stability. In this Part 1 of a three-part research series, a leak test method based on electrical conductivity and capacitance, called high voltage leak detection (HVLD), was used to find leaks in small plastic bags filled with an insulin pharmaceutical solution for human injection by Novo Nordisk A/S (Bagsværd, Denmark). To perform the test, the package is electrically grounded while being conveyed past an electrode linked to a high-voltage, low-amperage transformer. The instrument measures the current that passes

  17. XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts

    Science.gov (United States)

    Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.

    1993-01-01

    The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.

  18. High-voltage leak detection of a parenteral proteinaceous solution product packaged in form-fill-seal plastic laminate bags. Part 2. Method performance as a function of heat seal defects, product-package refrigeration, and package plastic laminate lot.

    Science.gov (United States)

    Rasmussen, Mats; Damgaard, Rasmus; Buus, Peter; Mulhall, Brian; Guazzo, Dana Morton

    2013-01-01

    Part 1 of this three-part research series detailed the development and validation of a high-voltage leak detection test (HVLD, also known as an electrical conductivity and capacitance test) for verifying the container-closure integrity of a small-volume laminate plastic bag containing an aqueous solution formulation of the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. Leak detection capability was verified using positive controls each with a single laser-drilled hole in the bag film face. In this Part 2, HVLD leak detection capability was further explored in four separate studies. Study 1 investigated the ability of HVLD to detect weaknesses and/or gaps in the bag heat seal. Study 2 checked the HVLD detection of bag holes in packages stored 4 days at ambient conditions followed by 17 days at refrigeration. Study 3 examined HVLD test results for packages tested when cold. Study 4 compared HVLD test results as a function of bag plastic film lots. The final Part 3 of this series will report the impact of HVLD exposure on product visual appearance and chemical stability. In Part 1 of this three-part series, a leak test method based on electrical conductivity and capacitance, also called high-voltage leak detection (HVLD), was used to find leaks in small plastic bags filled with a solution for injection of the rapid-acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. In this Part 2, HVLD leak detection capability was further explored in four separate studies. Study 1 investigated the ability of HVLD to detect bag heat seal leaks. Study 2 checked HVLD's ability to detect bag holes after a total of 21 days at ambient plus refrigerated temperatures. Study 3 looked to see if HVLD results changed for packages tested when still cold. Study 4 compared HVLD results for multiple bag plastic film lots. The final Part 3 of this series will report any evidence of

  19. Microfabrication of crosslinked PTFE by synchrotron radiation

    International Nuclear Information System (INIS)

    Sato, Yasunori; Yamaguchi, Daichi; Oshima, Akihiro; Washio, Masakazu; Katoh, Takanori; Aoki, Yasushi; Ikeda, Shigetoshi; Tanaka, Shigeru

    2003-01-01

    Microfabrication of crosslinked polytetrafluoroethylene (PTFE) using synchrotron radiation (SR) has been demonstrated for production of micro-components applicable to radiation fields. The method of microfabrication was readily capable of obtaining a microstructure with aspect-ratio of 25 made of crosslinked PTFE. The etching rate of crosslinked PTFE was higher than that of non-crosslinked PTFE. The results show that the etching rate of crosslinked PTFE depends only on the degree of crosslinking. The effect of molecular motion on etching process was discussed from temperature dependence on etching rate. Moreover, in order to examine whether any change of chemical structures and crystallinity would be induced by SR-irradiation on PTFE, SR-irradiated PTFE was measured by NMR spectroscopy and DSC analysis. The results showed that the crosslinking reaction of PTFE would be induced by SR-irradiation in the solid state. (author)

  20. Study on the performance of MoS2 modified PTFE composites by molding process

    Science.gov (United States)

    Ma, Weiqiang; Hou, Genliang; Bi, Song; Li, Ping; Li, Penghui

    2017-10-01

    MoS2 filled PTFE composites were prepared by cold pressing and sintering molding. The compressive and creep properties of composite materials were analyzed by controlling the size of molded composites during molding. The results show that the composites have the best compressive and creep resistance when the molding pressure is 55 MPa in the MoS2 composites with 15% mass fraction, which is a practical reference for the preparation of MoS2-modified PTFE composites.

  1. Invertebrate lamins

    International Nuclear Information System (INIS)

    Melcer, Shai; Gruenbaum, Yosef; Krohne, Georg

    2007-01-01

    Lamins are the main component of the nuclear lamina and considered to be the ancestors of all intermediate filament proteins. They are localized mainly at the nuclear periphery where they form protein complexes with integral proteins of the nuclear inner membrane, transcriptional regulators, histones and chromatin modifiers. Studying lamins in invertebrate species has unique advantages including the smaller number of lamin genes in the invertebrate genomes and powerful genetic analyses in Caenorhabditis elegans and Drosophila melanogaster. These simpler nuclear lamina systems allow direct analyses of their structure and functions. Here we give an overview of recent advances in the field of invertebrate nuclear lamins with special emphasis on their evolution, assembly and functions

  2. Laminated articles

    International Nuclear Information System (INIS)

    Ridgway, P.C.; Case, D.F.

    1979-01-01

    In a method of bonding laminations of a magnetic core, photo-resist material consisting of a co-polymer is applied as a film to a sheet of magnetic material to define lamination shapes to enable the laminations to be formed by etching. The film of photo-resist material on the laminations is then utilised to bond the laminations together in a stack. In order to permit the core to operate at temperatures higher than the softening temperature of the photo-resist material, the bonded stack is irradiated with 1 - 2 Mer gamma radiation to a dose of 1 - 5 Mrads in 2 - 10 hrs to cause changes to the bonding material such that the material does not soften at the operating temperature of the core. (U.K.)

  3. Utilization of d-PTFE Barriers for Post-Extraction Bone Regeneration in Preparation for Dental Implants.

    Science.gov (United States)

    Greenstein, Gary; Carpentieri, Joseph R

    2015-01-01

    Guided bone regeneration (GBR) can be used to restore a defective alveolar ridge after extractions before or in combination with implant placement. It may also be employed after extractions to reduce crestal bone resorption and maximize bone fill of sockets. Resorbable or nonresorbable barriers (eg, expanded polytetrafluoroethylene [e-PTFE]) can be used when performing GBR procedures, but they need to be completely submerged to attain optimal results. Dense polytetrafluoroethylene (d-PTFE) is a type of nonresorbable barrier that circumvents the necessity to attain primary closure after placement of bone grafts, thereby reducing patient morbidity. This article addresses topics pertaining to d-PTFE utilization, including characteristics and advantages of d-PTFE barriers, time needed for osteoid tissue to become impervious to penetration by flap connective tissue, relevant clinical studies, and limitations of available data. Clinical photographs and radiographs of successfully treated cases are presented to illustrate the efficacy of d-PTFE barriers in regenerating defective bony plates after extractions.

  4. Chemiluminescence emission from irradiated polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Zhong Xiaoguang; Sun Jiazhen; Yoshii, Fumio; Sasaki, Takashi; Makuuchi, Keizo

    2000-01-01

    PTFE is well known for its chemical and high temperature resistance and also for its high-energy radiation sensitivity. The present work deals with the radiation-induced emission of chemiluminescence from PTFE film, which is generally thought as a measure of radiation induced oxidation reaction in irradiated polymer. The observation that the much stronger chemiluminescence emission from PTFE than that from other polymeric system indicate the unusual high degree of radiation induced oxidation in PTFE. On the other hand the temperature and atmosphere effect during radiation on emission of chemiluminescence were also reported. (author)

  5. Recycling of PTFE by means of ionizing rays

    International Nuclear Information System (INIS)

    Lee, D.W.

    1994-01-01

    By treatment with beta or gamma rays, PTFE waste is converted to high-grade PTFE fine powder. High-molecular weight PTFE is degraded to low-molecular weight PTFE. Due to this the density, the degree of crystallinity, and the melt flow index are increased, which enhances the brittleness of the material. Irradiation of PTFE thus facilitates milling and makes the material pourable and free-flowing. Milled PTFE fine powder, lie PTFE plastic, combines temperature resistance, weather fastness, and chemical stability with good slip behaviour and antiadhesive properties. Areas of application for fine powder include additives for plastics, printing inks, nonstick coatings, and antifriction lacquers. (orig.) [de

  6. Tribological behavior of Nano-Al2O3 and PEEK reinforced PTFE composites

    Science.gov (United States)

    Wang, Banghan; Lv, Qiujuan; Hou, Genliang

    2017-01-01

    The Nano-Al2O3 and PEEK particles synergetic filled PTFE composites were prepared by mechanical blending-molding-sintering method. The tribological behavior of composites with different volume fraction of fillers was tested on different test conditions by a MMW-1A block-on-ring friction and wear tester. The transfer film on counterpart 5A06 Aluminum alloy ring was inspected and anslyzed with scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The results demonstrated that the lowest friction coefficient was gained when the PTFE composite was filled with only 10% PEEK. The friction coefficient decreases gradually with the increasing content of PEEK. The special wear rate of 10% PEEK/PTFE were decreased clearly with filled different contents of nano-Al2O3 particles. The special wear rate of the sample with 5% nano-Al2O3 and 10% PEEK had the lowest volume wear rate. The sliding speed effect significantly on the tribological behavior of nano-Al2O3/PEEK/PTFE composites.

  7. Airborne nanoparticle concentrations in the manufacturing of polytetrafluoroethylene (PTFE) apparel.

    Science.gov (United States)

    Vosburgh, Donna J H; Boysen, Dane A; Oleson, Jacob J; Peters, Thomas M

    2011-03-01

    One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600 °C). This study addressed the potential for exposure to particulate matter from this sealing process by characterizing airborne particles in a facility that produces more than 1000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm⁻³)) compared with that measured in the office area (12,100 particles cm⁻³). Respirable mass concentrations were negligible throughout the facility (GM = 0.002 mg m⁻³) in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p < 0.0001). The sealing workers' breathing zone concentrations ranged from 147,000 particles cm⁻³ to 798,000 particles cm⁻³, and their seam responsibility significantly influenced their breathing zone concentrations (p = 0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations.

  8. Development of a Diehard GEM using PTFE insulator substrate

    OpenAIRE

    Wakabayashi, M.; Komiya, K.; Tamagawa, T.; Takeuchi, Y.; Aoki, K.; Taketani, A.; Hamagaki, H.

    2014-01-01

    We have developed the gas electron multiplier (GEM) using polytetrafluoroethylene (PTFE) insulator substrate (PTFE-GEM). Carbonization on insulator layer by discharges shorts the GEM electrodes, causing permanent breakdown. Since PTFE is hard to be carbonized against arc discharges, PTFE-GEM is expected to be robust against breakdown. Gains as high as 2.6x10^4 were achieved with PTFE-GEM (50 um thick) in Ar/CO2 = 70%/30% gas mixture at V_GEM = 730V. PTFE-GEM never showed a permanent breakdown...

  9. Development of a Diehard GEM using PTFE insulator substrate

    International Nuclear Information System (INIS)

    Wakabayashi, M; Tamagawa, T; Takeuchi, Y; Aoki, K; Taketani, A; Komiya, K; Hamagaki, H

    2014-01-01

    We have developed the gas electron multiplier (GEM) using polytetrafluoroethylene (PTFE) insulator substrate (PTFE-GEM). Carbonization on insulator layer by discharges shorts the GEM electrodes, causing permanent breakdown. Since PTFE is hard to be carbonized against arc discharges, PTFE-GEM is expected to be robust against breakdown. Gains as high as 2.6 × 10 4 were achieved with PTFE-GEM (50 μm thick) in Ar/CO 2 = 70%/30% gas mixture at V GEM = 730 V. PTFE-GEM never showed a permanent breakdown even after suffering more than 40000 times discharges during the experiment. The result demonstrates that PTFE-GEM is really robust against discharges. We conclude that PTFE is an excellent insulator material for the GEM productions

  10. Biomimetic Fluorocarbon Surfactant Polymers Reduce Platelet Adhesion on PTFE/ePTFE Surfaces

    Science.gov (United States)

    Wang, Shuwu; Gupta, Anirban Sen; Sagnella, Sharon; Barendt, Pamela M.; Kottke-Marchant, Kandice; Marchant, Roger E.

    2010-01-01

    We describe a series of fluorocarbon surfactant polymers designed as surface-modifying agents for improving the thrombogenicity of ePTFE vascular graft materials by the reduction of platelet adhesion. The surfactant polymers consist of a poly(vinyl amine) backbone with pendent dextran and perfluoroundecanoyl branches. Surface modification is accomplished by a simple dip-coating process in which surfactant polymers undergo spontaneous surface-induced adsorption and assembly on PTFE/ePTFE surface. The adhesion stability of the surfactant polymer on PTFE was examined under dynamic shear conditions in PBS and human whole blood with a rotating disk system. Fluorocarbon surfactant polymer coatings with three different dextran to perfluorocarbon ratios (1:0.5, 1:1 and 1:2) were compared in the context of platelet adhesion on PTFE/ePTFE surface under dynamic flow conditions. Suppression of platelet adhesion was achieved for all three coated surfaces over the shear-stress range of 0–75 dyn/cm2 in platelet-rich plasma (PRP) or human whole blood. The effectiveness depended on the surfactant polymer composition such that platelet adhesion on coated surfaces decreased significantly with increasing fluorocarbon branch density at 0 dyn/cm2. Our results suggest that fluorocarbon surfactant polymers can effectively suppress platelet adhesion and demonstrate the potential application of the fluorocarbon surfactant polymers as non-thrombogenic coatings for ePTFE vascular grafts. PMID:19323880

  11. Thermal radiation properties of PTFE plasma

    Science.gov (United States)

    Liu, Xiangyang; Wang, Siyu; Zhou, Yang; Wu, Zhiwen; Xie, Kan; Wang, Ningfei

    2017-06-01

    To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene (PTFE) as ablation materials, the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium (LTE) and optical thin assumptions. It is clarified that line radiation is the dominant mechanism of PTFE plasma. The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above 15 000 K. The emission coefficient increases with increasing temperature and pressure. Furthermore, it has a good log linear relation with pressure. Equivalent emissivity varies complexly with temperature, and has a critical point between 20 000 K to 25 000 K. The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.

  12. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    International Nuclear Information System (INIS)

    Hu Sheng; Xiao Chengjian; Zhu Zuliang; Luo Shunzhong; Wang Heyi; Luo Yangming; Wang Changbin

    2007-01-01

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  13. Friction coefficients of PTFE bearing liner

    Science.gov (United States)

    Daniels, C. M.

    1979-01-01

    Data discusses frictional characteristics of PTFE (polytetrafluoroethylene) under temperature extremes and in vacuum environment. Tests were also run on reduced scale hardware to determine effects of vacuum. Data is used as reference by designers of aircraft-control system rod-end bearings and for bearings used in polar regions.

  14. Long-term results of PTFE grafts.

    Science.gov (United States)

    Hedin, Ulf

    2015-01-01

    Vascular surgeons are essential in "lifeline" creation for hemodialysis patients and should be the central player in any multidisciplinary access service together with nephrologists, dialysis staff and interventional radiology. In this position, access surgeons are involved in complicated clinical decision making regarding primary and secondary access selection, which throughout the last decade has been largely aided, and influenced, by national and international guidelines as well as other initiatives. These recommendations, unanimously and appropriately, advocate the placement of native fistulas over synthetic grafts (the majority grafts from expanded polytetrafluoroethylene, ePTFE, herein referred to as PTFE) based on the superiority of fistulas with respect to complications such as infections and thrombosis. Nevertheless, the use of PTFE grafts for hemodialysis access is an accepted and firmly established alternative to native fistulas where data today reveal unwanted consequences to overinterpretation of established guidelines such as increased catheter use. This information highlights a need for an adjustment of access selection strategies based on patient-centered algorithms. Here, available results on PTFE graft performance in hemodialysis access is recapitulated, with respect to both conventional grafts and technical modifications, and conclude with a modified approach to primary access selection.

  15. Pliocene benthonic foraminifera from homogeneous and laminated marls on Crete

    NARCIS (Netherlands)

    Jonkers, H.A.

    1984-01-01

    In the Pliocene, the paleogeography of central Crete consisted of a number of basins which were filled by predominantly marly sediments. In the sedimentary sequence numerous laminated sapropelic intercalations can be observed. At a higher stratigraphic level diatomaceous laminites appear.

  16. Constitutive modeling of shock response of PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Eric N [Los Alamos National Laboratory; Reanyansky, Anatoly D [DSTO, AUSTRALIA; Bourne, Neil K [AWE, UK; Millett, Jeremy C F [AWE, UK

    2009-01-01

    The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phase II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.

  17. Method of radiation degradation of PTFE under vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com

    2004-10-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  18. Method of radiation degradation of PTFE under vacuum conditions

    Science.gov (United States)

    Korenev, Sergey

    2004-09-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  19. Effect of gamma radiation on graphite - PTFE dry lubrication system

    Science.gov (United States)

    Singh, Sachin; Tyagi, Mukti; Seshadri, Geetha; Tyagi, Ajay Kumar; Varshney, Lalit

    2017-12-01

    An effect of gamma radiation on lubrication behavior of graphite -PTFE dry lubrication system has been studied using (TR-TW-30L) tribometer with thrust washer attachment in plane contact. Different compositions of graphite and PTFE were prepared and irradiated by gamma rays. Gamma radiation exposure significantly improves the tribological properties indicated by decrease in coefficient of friction and wear properties of graphite -PTFE dry lubrication system. SEM and XRD analysis confirm the physico-chemical modification of graphite-PTFE on gamma radiation exposure leading to a novel dry lubrication system with good slip and anti friction properties.

  20. Properties of PTFE tape as a semipermeable membrane in fluorous reactions

    OpenAIRE

    Brendon A. Parsons; Olivia Lin Smith; Myeong Chae; Veljko Dragojlovic

    2015-01-01

    Summary In a PTFE tape phase-vanishing reaction (PV-PTFE), a delivery tube sealed with PTFE tape is inserted into a vessel which contains the substrate. The reagent diffuses across the PTFE tape barrier into the reaction vessel. PTFE co-polymer films have been found to exhibit selective permeability towards organic compounds, which was affected by the presence of solvents. In this study, we attempted to establish general trends of permeability of PTFE tape to different compounds and to better...

  1. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  2. Study of PTFE wick structure applied to loop heat pipe

    International Nuclear Information System (INIS)

    Wu, Shen-Chun; Gu, Tzu-Wei; Wang, Dawn; Chen, Yau-Ming

    2015-01-01

    This study investigated the use of sintered PTFE (polytetrafluoroethylene) particles as the wick material of loop heat pipe (LHP), taking advantage of PTFE's low thermal conductivity to reduce the heat leakage problem during LHP's operation. Different PTFE particle sizes were tried to find the one that resulted in the best wick; LHP performance tests were then conducted, and PTFE's potential for application to LHP was examined. Using PTFE particles ranging from 300–500 μm in size, the best wick properties were effective pore radius of 1.7 μm, porosity of 50%, and permeability of 6.2 × 10 −12  m 2 . LHP performance tests showed that, under typical electronic devices' operating temperature of 85 °C, the heat load reached 450 W, the thermal resistance was 0.145 °C/W, and the critical heat load (dryout heat load) reached 600 W. Compared to LHP with a nickel wick, LHP with a PTFE wick had a significantly lower operating temperature, indicating reduced heat leakage during operation, while having comparable performance; also, during the manufacturing process, a PTFE wick required lower sintering temperature, needed shorter sintering time, and had no need for hydrogen gas during sintering. The results of this study showed that, for high heat transfer capacity cooling devices, PTFE wicks possess great potential for applications to LHPs. - Highlights: • The performances of PTFE and nickel wicks in LHP are comparable for the first time. • PTFE wick allows for lower operating temperature and thus pressure in LHP system. • A wick requiring lower temperature and manufacturing cost and less time was made. • PTFE wick has potential to replace metal wick and enhance performance of LHP

  3. Dacron or PTFE for above-knee femoropopliteal bypass. a multicenter randomised study

    DEFF Research Database (Denmark)

    Jensen, L P; Lepäntalo, M; Fossdal, J E

    2007-01-01

    To compare polytetrafluorethylene (PTFE) and polyester grafts (Dacron) for above knee femoropopliteal bypass.......To compare polytetrafluorethylene (PTFE) and polyester grafts (Dacron) for above knee femoropopliteal bypass....

  4. Diaphragms obtained by radiochemical grafting in PTFE

    International Nuclear Information System (INIS)

    Nenner, T.; Fahrasmane, A.

    1984-01-01

    Diaphragms for alkaline water electrolysis are prepared by radiochemical grafting of PTFE fabric with styrene, which is later on sulfonated, or with acrylic acid. The diaphragms obtained are mechanically resistant to potash at temperatures up to 200 0 C, but show some degrafting, which limits the lifetime. The sulfonated styrene group has been found to be more stable in electrolysis than the acrylic acid. In both cases, the incorporation of a cross-linking agent like divinyl benzene improves the lifetime of the diaphragms. Electrolysis during 500 hours at 120 0 C and 10 kAm 2 could be performed. (author)

  5. ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Seguchi, Tadao

    1997-01-01

    Free radicals in crosslinked PTFE which formed by 60 Co γ-rays irradiation at 77 K and at room temperature were studied by electron spin resonance (ESR) spectroscopy. The crosslinked PTFE specimens with different crosslinking density were prepared by electron beam irradiation in the molten state. The ESR spectra observed in the irradiated crosslinked PTFE are much different from those in non-crosslinked PTFE (virgin); a broad singlet component increases with increasing the crosslinking density, G-value of radicals is much higher in crosslinked PTFE than in non-crosslinked one. Free radicals related to the broad component are trapped in the non-crystalline region of crosslinked PTFE and rather stable at room temperature, whereas radicals trapped in amorphous non-crosslinked PTFE are unstable at room temperature. It is thought that most of free radicals trapped in the crosslinked PTFE are formed in the crosslinked amorphous region. The trapped radicals decays around 383 K (110 o C) due to the molecular motion of α-relaxation. (Author)

  6. Modification of PTFE nanopowder by controlled electron beam irradiation: A useful approach for the development of PTFE coupled EPDM compounds

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available Low-temperature reactive mixing of controlled electron beam modified Polytetrafluoroethylene (PTFE nanopowder with Ethylene-Propylene-Diene-Monomer (EPDM rubber produced PTFE coupled EPDM rubber compounds with desired physical properties. The radiation-induced chemical alterations in PTFE nanopowder, determined by electron spin resonance (ESR and Fourier transform infrared (FTIR spectroscopy, showed increasing concentration of radicals and carboxylic groups (–COOH with increasing irradiation dose. The morphological variations of the PTFE nanopowder including its decreasing mean agglomerate size with the absorbed dose was investigated by particle size and scanning electron microscopy (SEM analysis. With increasing absorbed dose the wettability of the modified PTFE nanopowder determined by contact angle method increased in accordance with the (–COOH concentration. Transmission electron microscopy (TEM showed that modified PTFE nanopowder is obviously enwrapped by EPDM. This leads to a characteristic compatible interphase around the modified PTFE. Crystallization studies by differential scanning calorimetry (DSC also revealed the existence of a compatible interphase in the modified PTFE coupled EPDM.

  7. Photovoltaic-Panel Laminator

    Science.gov (United States)

    Keenan, R.

    1985-01-01

    Two-piece unit heats and presses protective layers to form laminate. Rubber diaphragm between upper and lower vacuum chambers alternates between neutral position and one that presses against solar-cell array, supplying distributed force necessary to press layers of laminate together. Encapsulation helps to protect cells from environment and to ensure long panel life while allowing efficient generation of electricity from Sunlight.

  8. Composite lamination method

    Science.gov (United States)

    Dickerson, G. E. (Inventor)

    1977-01-01

    A process was developed for preparing relatively thick composite laminate structure wherein thin layers of prepreg tapes are assembled, these thin layers are cut into strips that are partially cured, and stacked into the desired thickness with uncured prepreg disposed between each layer of strips. The formed laminate is finally cured and thereafter machined to the desired final dimensions.

  9. Studying the Effect of the Concentration of PTFE Nanoparticles on the Tribological Behavior of Ni-P-PTFE Composite Coatings

    Directory of Open Access Journals (Sweden)

    Hamid Rahmati

    2015-10-01

    Full Text Available In the past 30 years, electroless nickel (EN plating has grown to such proportions that these coatings and their applications are now found underground, in outer space, and in a myriad of areas in between. Moreover, in order to further improve the mechanical and tribological properties of the nickel-phosphorous (Ni-P coatings, Ni-P/PTFE composite coatings can be obtained, which provides even greater friction behavior and lubricity than the one naturally occurring in the nickel-phosphorous alloy deposit. In this paper, The Ni-P-PTFE coating was deposited on mild carbon steel surface via electroless deposition process. The friction behavior and wear mechanisms of Ni-P-PTFE nanocomposite coating were studied at different concentrations of PTFE. Frictional behavior was examined using a pin on disk wear test method. Surface morphology and worn surface was evaluated using field emission scanning electron microscopy (FESEM and energy dispersive spectroscopy (EDS analysis. The results showed that the incorporation of PTFE nanoparticles can reduce the wear rate of Ni-P coating from 33.07×10-6 mm3/Nm to 12.46×10-6 mm3/Nm for the Ni-P PTFE containing 10 g/l PTFE and decrease the friction coefficient from 0.64 to 0.2. Thus the tribological behavior of Ni-P coating is much improved in the presence of PTFE nanoparticles and 10 g/l is the optimized concentration of PTFE in the electroless bath.

  10. A MEMS lamination technology based on sequential multilayer electrodeposition

    International Nuclear Information System (INIS)

    Kim, Minsoo; Kim, Jooncheol; Herrault, Florian; Schafer, Richard; Allen, Mark G

    2013-01-01

    A MEMS lamination technology based on sequential multilayer electrodeposition is presented. The process comprises three main steps: (1) automated sequential electrodeposition of permalloy (Ni 80 Fe 20 ) structural and copper sacrificial layers to form multilayer structures of significant total thickness; (2) fabrication of polymeric anchor structures through the thickness of the multilayer structures and (3) selective removal of copper. The resulting structure is a set of air-insulated permalloy laminations, the separation of which is sustained by insulating polymeric anchor structures. Individual laminations have precisely controllable thicknesses ranging from 500 nm to 5 µm, and each lamination layer is electrically isolated from adjacent layers by narrow air gaps of similar scale. In addition to air, interlamination insulators based on polymers are investigated. Interlamination air gaps with very high aspect ratio (>1:100) can be filled with polyvinylalcohol and polydimethylsiloxane. The laminated structures are characterized using scanning electron microscopy and atomic force microscopy to directly examine properties such as the roughness and the thickness uniformity of the layers. In addition, the quality of the electrical insulation between the laminations is evaluated by quantifying the eddy current within the sample as a function of frequency. Fabricated laminations are comprised of uniform, smooth (surface roughness <100 nm) layers with effective electrical insulation for all layer thicknesses and insulator approaches studied. Such highly laminated structures have potential uses ranging from energy conversion to applications where composite materials with highly anisotropic mechanical or thermal properties are required. (paper)

  11. PTFE-ALUMINUM films serve as neutral density filters

    Science.gov (United States)

    Burks, H. D.

    1966-01-01

    Polytetrafluoroethylene /PTFE/ films coated with aluminum films act as neutral density filters in the wavelength range 0.3 to 2.1 microns. These filters are effective in the calibration of photometric systems.

  12. Degradation and crosslinking of PTFE due to irradiation

    International Nuclear Information System (INIS)

    Tutiya, Mituaki

    1995-01-01

    In this report, we summarized all our experimental results concerning about the effects of Co-60 γ rays irradiation on polytetrafluoroethylene (PTFE). The NMR spectra, the mechanical properties and others of PTFE were measured. The increase in the degree of crystallinity, the lowering of the 19degC transition temperature and that of the melting temperature due to irradiation were observed. The effect of post-irradiation heat treatment were also observed. In each case, the main causes of these effects were attributed to the radiation-induced main chain scission. In the case of PTFE irradiated at 320-360degC in vacuum, we found that the effect of radiation-induced crosslinking were observed. By using our new theories, these experimental results which were measured in the crystalline and the amorphous regions of the irradiated PTFE were discussed, and a satisfactory agreement between the theories and the experiments was obtained. (author)

  13. Impact of lubrication on the tribological behaviour of PTFE ...

    Indian Academy of Sciences (India)

    bronze and bronze + molybdenum disulfide (MoS2) were considered. These composites were ... the PTFE composites have significantly been reduced in the lubricated condition ... there are no strong bonds between the fillers and the matrix in.

  14. Polyester composite versus PTFE in laparoscopic ventral hernia repair.

    Science.gov (United States)

    Colon, Modesto J; Telem, Dana A; Chin, Edward; Weber, Kaare; Divino, Celia M; Nguyen, Scott Q

    2011-01-01

    Both polyester composite (POC) and polytetrafluoroethylene (PTFE) mesh are commonly used for laparoscopic ventral hernia repair. However, sparse information exists comparing perioperative and long-term outcome by mesh repair. A prospective database was utilized to identify 116 consecutive patients who underwent laparoscopic ventral hernia repair at The Mount Sinai Hospital from 2004-2009. Patients were grouped by type of mesh used, PTFE versus POC, and retrospectively compared. Follow-up at a mean of 12 months was achieved by telephone interview and office visit. Of the 116 patients, 66 underwent ventral hernia repair with PTFE and 50 with POC mesh. Patients were well matched by patient demographics. No difference in mean body mass index (BMI) was demonstrated between the PTFE and POC group (31.8 vs. 32.5, respectively; P=NS). Operative time was significantly longer in the PTFE group (136 vs.106 minutes, PPTFE group and none in the POC group (P NS). No other major complications occurred in the immediate postoperative period (30 days). At a mean follow-up of 12 months, no significant difference was demonstrated between the PTFE and POC groups in hernia recurrence (3% vs. 2%), wound complications (1% vs. 0%), mesh infection, requiring removal (3% vs. 0%), bowel obstruction (3% vs. 2%), or persistent pain or discomfort (28% vs. 32%), respectively (P=NS). Our study demonstrated no significant association between types of mesh used and postoperative complications. In the 12-month follow-up, no differences were noted in hernia recurrence.

  15. Magnetorheological fluid based on thixotropic PTFE-oil organogel

    Science.gov (United States)

    Zhang, Hansong; Yan, Hua; Hu, Zhide; Yang, Jianjian; Niu, Fanghao

    2018-04-01

    Polytetrafluoroethylene (PTFE) micropowders were employed in this work to fabricate PTFE-oil organogel, then carbonyl iron particles were dispersed in this thixotropic organogel to prepare magnetorheological fluids without any other additives. By performing a comparative investigation of MRFs' performances, enhanced magnetorheological response, suspension stability and tribological performance were obtained contrast to pure silicon oil based MRFs. The experimental results revealed a changeable viscosity of organogel, considerable increases in thixotropy also can be observed with the increase of PTFE content. Sedimentation tests demonstrated a much better suspension stability of MRFs based on organogel, suggesting that the internal network microstructures formed by hydrogen bonds between PTFE microparticles and oil molecular chains are likely to impose the gaps among magnetic particles thus hinder the particle aggregation and sedimentation. Moreover, a critical PTFE volume fraction about 4.7 vol% was recognized in this study, lower content organogels tended to display enhanced yield stresses contrast to pure silicon oil based MRFs while high content organogels showed slightly lower ones. It may suggest a compromise between nonmagnetic particle adsorption and the reinforcement effect of network microstructures. The adsorption is likely to decrease the saturation magnetization of carbonyl iron particles and to hinder the formation of field-induced chains, however, the reinforcement effect tends to strengthen these magnetic chains. Besides, the tribological tests confirmed the lubricant effects of PTFE-oil organogel by acquiring rather sharp decreases in friction coefficients of organogel based MRFs especially in the presence of magnetic field.

  16. Improved patency and reduced intimal hyperplasia in PTFE grafts with luminal immobilized heparin compared with standard PTFE grafts at six months in a sheep model.

    Science.gov (United States)

    Pedersen, G; Laxdal, E; Ellensen, V; Jonung, T; Mattsson, E

    2010-06-01

    The aim of this study was to compare the performance of polytetrafluoroethylene (PTFE) grafts with luminal coating of immobilized heparin to that of standard PTFE grafts at six months. Twenty-eight common carotid arteries in fourteen sheep were bypassed with heparin-coated PTFE grafts (6 mm diameter, 6 cm length) on one side and standard PTFE grafts on the other. The grafts were explanted after six months. The thickness of intimal hyperplasia (IH) in open grafts was measured with histomorphometrical methods. Two of 14 heparinized PTFE grafts and nine of 14 grafts in the control PTFE-group were occluded at explantation (P=0.006). Six-month patency rates for heparinized PTFE grafts and for standard PTFE grafts were 86% and 36%, respectively. Mean graft anastomotic IH thickness in open grafts were 0.074 mm for heparinized PTFE grafts and 0.259 mm for PTFE-grafts (P=0.006). PTFE grafts with luminal coating containing immobilized heparin had significantly better patency and recruited less intimal hyperplasia than standard PTFE grafts at six months.

  17. Lamination cooling system formation method

    Science.gov (United States)

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  18. The Scandinavian Propaten(®) trial - 1-year patency of PTFE vascular prostheses with heparin-bonded luminal surfaces compared to ordinary pure PTFE vascular prostheses - a randomised clinical controlled multi-centre trial

    DEFF Research Database (Denmark)

    Lindholt, J S; Gottschalksen, B; Johannesen, N

    2011-01-01

    To compare 1-year potencies' of heparin-bonded PTFE [(Hb-PTFE) (Propaten(®))] grafts with those of ordinary polytetraflouroethylene (PTFE) grafts in a blinded, randomised, clinically controlled, multi-centre study.......To compare 1-year potencies' of heparin-bonded PTFE [(Hb-PTFE) (Propaten(®))] grafts with those of ordinary polytetraflouroethylene (PTFE) grafts in a blinded, randomised, clinically controlled, multi-centre study....

  19. Lamins, laminopathies and disease mechanisms

    Indian Academy of Sciences (India)

    2011-07-08

    Jul 8, 2011 ... Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of ... Mutations in the human lamin genes lead to highly degenerative genetic diseases that affect a number of different ... June 2018.

  20. EB curable laminating adhesives

    International Nuclear Information System (INIS)

    Matsuyama, Asao; Kobayashi, Masahide; Gotoh, Sakiko

    1992-01-01

    New developed solvent free EB curable laminating adhesives have two liquid components, A with hydroxy and acryloyl group, B with isocyanate and acryloyl group in a molecule. These EB laminating adhesives do not need any aging process, which is a big advantage, and are very suitable for environment, safety, and health because of no heating process and solvent free formulas. And we have made basic research about the relation of peel strength or heat seal strength versus Tg of cured film, elongation at break, elastic modulus, and so on. Basic specifications of the new developed adhesives are shown. (author)

  1. A historical perspective of laminitis.

    Science.gov (United States)

    Heymering, Henry W

    2010-04-01

    The causes of laminitis are many-often interrelated, sometimes direct opposites. The history of laminitis has been a search for the cause or causes of laminitis and for effective treatment. Going in and out of fashion, many treatments have lasted for centuries, some for millennia, but very few have been proven. Copyright 2010 Elsevier Inc. All rights reserved.

  2. DESIGN ALTERNATIVES ON THE LAMINATES

    Directory of Open Access Journals (Sweden)

    Gökay Nemli

    2004-04-01

    Full Text Available Wood based panel manufacturers use increasing volumes of laminates. Laminates are resistant to the water, humidity, scratch, abrasion, burning and chemicals. These products consist of printed decor papers that have been saturated with thermosetting resin. In this study, laminate types, composition form and design alternatives were investigated.

  3. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    International Nuclear Information System (INIS)

    Li Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-01-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance

  4. Socket Preservation with d-PTFE Membrane: Histologic Analysis of the Newly Formed Matrix at Membrane Removal.

    Science.gov (United States)

    Laurito, Domenico; Cugnetto, Riccardo; Lollobrigida, Marco; Guerra, Fabrizio; Vestri, Annarita; Gianno, Francesca; Bosco, Sandro; Lamazza, Luca; De Biase, Alberto

    This study aimed to evaluate the efficacy of an exposed high-density polytetrafluoroethylene (d-PTFE) membrane in preventing epithelial migration in postextraction sockets. For this purpose, a histologic description of the newly formed soft tissue underlying the membrane is presented. The periodontal status of the adjacent teeth was also evaluated to assess the gingival response. Ten premolar extraction sockets were treated. After tooth extraction, the sockets were filled with nanocrystalline hydroxyapatite and covered with d-PTFE membranes. Subperiosteal pockets were created to ensure the stability of the membranes. Membranes were left intentionally exposed and were atraumatically removed after 28 days. At that time, a bioptic specimen of the newly formed soft tissue under the membranes was taken. All the histologic samples showed a dense connective tissue without epithelial cells and no signs of foreign body reaction. No significant variation of the periodontal indices was observed on the teeth adjacent to the extraction sites. The study results indicate that exposed d-PTFE membranes can prevent epithelial migration in healing sockets without consequences on the periodontal health.

  5. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  6. PTFE-nanocomposites structure and wear-resistance changing in various methods of structural modification

    Science.gov (United States)

    Mashkov, Yu K.; Ruban, A. S.; Rogachev, E. A.; Chemisenko, O. V.

    2018-01-01

    Conditions of polymer materials usage containing nanoelements as modifiers significantly affect the requirements for their physic-mechanical and tribological properties. However, the mechanisms of nanoparticles effect to the polymers tribotechnical properties have not been studied enough. The article aim is to analyze the results of studying polytetrafluoroethylene modified with cryptocrystalline graphite and silicon dioxide and to determine the effectiveness of the modification methods used and methods for further improving filled PTFE mechanical and tribotechnical properties. The effect of modifiers to PCM supramolecular structure was analyzed with SEM methods. The results of modifying the PCM samples surface by depositing a copper film with ion-vacuum deposition methods and changing the structural-phase composition and tribological characteristics are considered. The findings make possible to characterize the physicochemical processes under frictional interaction in metal polymer tribosystems.

  7. Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits.

    Science.gov (United States)

    Moura, Jonas M L; Ferreira, Juliana F; Marques, Leonardo; Holgado, Leandro; Graeff, Carlos F O; Kinoshita, Angela

    2014-09-01

    This work assessed the performance of membranes made of natural latex extracted from Hevea brasiliensis prepared with three different methods: polymerized immediately after collection without the use of ammonia (L1); polymerized after preservation in ammonia solution (L2); and polymerized after storage in ammonia, followed by Soxhlet technique for the extraction of substances (L3). Polytetrafluoroethylene (PTFE) membrane was used as control. Two 10-mm diameter bone defects were surgically made in the calvaria of thirty adult male New Zealand rabbits. Defects (total n = 60) were treated with guided bone regeneration (GBR) using L1, L2, L3 or PTFE membranes (n = 15 for each membrane). Ten animals were euthanized after 7, 20 and 60 days postoperatively so that five samples (n = 5) of each treatment were collected at each time, and bone regeneration was assessed microscopically. The microscopic analysis revealed defects filled with blood clot and new bone formation at the margins of the defect in all 7-day samples, while 20-day defects were mainly filled with fibrous connective tissue. After 60 days defects covered with L1 membranes showed a significantly larger bone formation area in comparison to the other groups (P PTFE membranes was also investigated in six additional rabbits. The animals were subjected to the same surgical procedure for the confection of one 10-mm diameter bone defect that was treated with L1 (n = 3) or PTFE (n = 3). Fifty-three days later, a second surgery was performed to make a second defect, which was treated with the same type of membrane used in the first surgery. Seven days later, the animals were euthanized and samples analyzed. No differences among L1 and PTFE samples collected from sensitized and non-sensitized animals were found (P > 0.05, Kruskal-Wallis). Therefore, the results demonstrated that latex membranes presented performance comparable to PTFE membranes, and that L1 membranes induced higher bone formation. L1 and

  8. Dosimetric properties of LIF:Mg,CuP+PTFE

    International Nuclear Information System (INIS)

    Gonzalez Martinez, P.R.; Azorin Nieto, J.; Ramirez Luna, A.

    1998-01-01

    The work presents the preparation method, as well as the characterization of the dosemeters of LiF;Mg,Cu+PTFE developed in the National Institute of Nuclear Investigations (ININ) Mexico, Among the carried out tests can mention, sensibility, detection threshold, equivalent of bottom, uniformity, reproducibility, dissipation, answer in function of the dose and kinetic parameters

  9. Creation and Validation of Sintered PTFE BRDF Targets & Standards.

    Science.gov (United States)

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L'Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2015-09-21

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming "near perfect" reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE's angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions.

  10. Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode

    International Nuclear Information System (INIS)

    Zarei, Mahmoud; Salari, Darioush; Niaei, Aligoli; Khataee, Alireza

    2009-01-01

    The electrochemical treatment of solutions containing C.I. Basic Yellow 2 (BY2) in aqueous solutions with carbon-PTFE (polytetrafluoroethylene) and carbon nanotube (CNT)-PTFE electrodes as cathode has been studied. The fabricated electrodes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The amount of electrogenerated H 2 O 2 on the surface of these electrodes was investigated, too. The results showed that the amount of H 2 O 2 obtained with the CNT-PTFE electrode was nearly three times higher than that of carbon-PTFE electrode. The decolorization efficiency of BY2 in peroxi-coagulation process reached 62% and 96% in the first 10 min by carbon-PTFE and CNT-PTFE electrodes at 100 mA, respectively. The effect of operational parameters such as applied current, initial pH and initial dye concentration was studied in an attempt to reach higher decolorization efficiency. The degradation and mineralization of BY2 using CNT-PTFE electrode were followed by total organic carbon (TOC) and GC-MS analysis. The results of TOC measurements indicated that peroxi-coagulation with carbon-PTFE allowed 81% mineralization after 6 h of electrolysis; whereas peroxi-coagulation with CNT-PTFE yields 92% mineralization under the same conditions. GC-MS analysis verified the identity of intermediates and a reaction pathway based on them was proposed.

  11. Biomechanical comparison of expanded polytetrafluoroethylene (ePTFE) and PTFE interpositional patches and direct tendon-to-bone repair for massive rotator cuff tears in an ovine model.

    Science.gov (United States)

    McKeown, Andrew Dj; Beattie, Rebekah F; Murrell, George Ac; Lam, Patrick H

    2016-01-01

    Massive irreparable rotator cuff tears are a difficult problem. Modalities such as irrigation and debridement, partial repair, tendon transfer and grafts have been utilized with high failure rates and mixed results. Synthetic interpositional patch repairs are a novel and increasingly used approach. The present study aimed to examine the biomechanical properties of common synthetic materials for interpositional repairs in contrast to native tendon. Six ovine tendons, six polytetrafluoroethylene (PTFE) felt sections and six expanded PTFE (ePTFE) patch sections were pulled-to-failure to analyze their biomechanical and material properties. Six direct tendon-to-bone surgical method repairs, six interpositional PTFE felt patch repairs and six interpositional ePTFE patch repairs were also constructed in ovine shoulders and pulled-to-failure to examine the biomechanical properties of each repair construct. Ovine tendon had higher load-to-failure (591 N) and had greater stiffness (108 N/mm) than either PTFE felt (296 N, 28 N/mm) or ePTFE patch sections (323 N, 34 N/mm). Both PTFE felt and ePTFE repair techniques required greater load-to-failure (225 N and 177 N, respectively) than direct tendon-to-bone surgical repairs (147 N) in ovine models. Synthetic materials lacked several biomechanical properties, including strength and stiffness, compared to ovine tendon. Interpositional surgical repair models with these materials were significantly stronger than direct tendon-to-bone model repairs.

  12. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  13. Laminated piezoelectric transformer

    Science.gov (United States)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  14. High-Voltage Leak Detection of a Parenteral Proteinaceous Solution Product Packaged in Form-Fill-Seal Plastic Laminate Bags. Part 3. Chemical Stability and Visual Appearance of a Protein-Based Aqueous Solution for Injection as a Function of HVLD Exposure.

    Science.gov (United States)

    Rasmussen, Mats; Damgaard, Rasmus; Buus, Peter; Guazzo, Dana Morton

    2013-01-01

    This Part 3 of this three-part research series reports the impact of high-voltage leak detection (HVLD) exposure on the physico-chemical stability of the packaged product. The product, intended for human administration by injection, is an aqueous solution formulation of the rapid acting insulin analogue, insulin aspart (NovoRapid®/NovoLog®) by Novo Nordisk A/S, Bagsværd, Denmark. The package is a small-volume form-fill-seal plastic laminate bag. Product-packages exposed to HVLD were compared to unexposed product after storage for 9 months at recommended storage conditions of 5 ± 3 °C. No differences in active ingredient or degradation products assays were noted. No changes in any other stability indicating parameter results were observed. This report concludes this three-part series. Part 1 documented HVLD method development and validation work. Part 2 explored the impact of various package material, package temperature, and package storage conditions on HVLD test results. Detection of leaks in the bag seal area was investigated. In conclusion, HVLD is reported to be a validatable leak test method suitable for rapid, nondestructive container-closure integrity evaluation of the subject product-package. In Part 1 of this three-part series, a leak test method based on electrical conductivity and capacitance, also called high-voltage leak detection (HVLD), was proven to find hole leaks in small plastic bags filled with a solution of insulin aspart intended for human injection (NovoRapid®/NovoLog® by Novo Nordisk A/S, Bagsværd, Denmark). In Part 2, the ability of the HVLD method to find other types of package leaks was tested, and the impact of package material and product storage temperature on HVLD results was explored. This final Part 3 checked how well the packaged protein drug solution maintained its potency after HVLD exposure over 9 months of storage under long-term stability conditions. Results showed that HVLD caused no harm to the product.

  15. A theory of piezoelectric laminates

    International Nuclear Information System (INIS)

    Giangreco, E.

    1997-01-01

    A theory of piezoelectric laminates is rationally derived from the three-dimensional Voigt theory of piezoelectricity. The present theory is a generalization to piezoelectric laminates of the Reissner-Mindlin-type layer-wise theory of elastic laminates. Both a differential formulation and a variational formulation of the piezoelectric laminate problem are presented. The proposed theory is adopted in the analysis of simple problems, in order to verify its effectiveness. The results it provides turn out to be in good agreement with the results supplied by the Voigt theory of piezoelectricity

  16. Dosimetric characterization of KMgF3:Tb+PTFE

    International Nuclear Information System (INIS)

    Ramirez R, M. I.; Garcia S, L.; Villicana M, M.; Huirache A, R.; Apolinar C, J.; Gonzalez M, P. R.

    2017-10-01

    In this work the results obtained from the dosimetric characterization of the new radiation detectors of KMgF 3 :Tb+PTFE are presented. The host salt was obtained by means of the microwave technique, with the polycrystalline powder obtained, dosimeters were made in tablet form, using as Ptfe binder. The thermoluminescent response of these new detectors presented a linear behavior, in the dose range between 1 and 1000 Gy of 60 Co gamma radiation, the reproducibility test in the measurements, during ten cycles of heat treatment, irradiation and reading presented ± 3.7% Ds, in the stability test of thermoluminescent signal, during two months showed that the fading is practically null. Due to the results obtained, this new detector could be very useful for the dosimetry of ionizing radiation in different clinical applications. (Author)

  17. Self-Healing Laminate System

    Science.gov (United States)

    Beiermann, Brett A. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor); Sottos, Nancy R. (Inventor)

    2016-01-01

    A laminate material may include a first flexible layer, and a self-healing composite layer in contact with the first flexible layer. The composite layer includes an elastomer matrix, a plurality of first capsules including a polymerizer, and a corresponding activator for the polymerizer. The laminate material may self-heal when subjected to a puncture or a tear.

  18. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    Directory of Open Access Journals (Sweden)

    Fang Liang

    2014-08-01

    Full Text Available Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE. The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications.

  19. Tribological study of PTFE composites loaded with porcelain tile waste

    International Nuclear Information System (INIS)

    Oliveira, P.M.; Araujo Neto, A.P.; Souza, J.R.; Medeiros, J.T.N.

    2016-01-01

    The Brazilian northeast is one of the largest producers of clays that burn in the white form and disposal of tailings from the process of polishing the ceramic pieces of porcelain stands out as a major source of environmental degradation. This problem can be reduced by adding such material as filler in composites, in order to improve the mechanical properties of the polymeric matrix. Polytetrafluoroethylene (PTFE) is characterized as a good solid lubricant, because it has excellent properties such as low coefficient of friction (0.01 < μ < 0.1), thermal stability at high temperatures and chemical resistance. However, the pure PTFE has high wear rates (greater than 10-13m2/N) leading to early failures of various components. To reuse the Tailings of Porcelain (TP), composites of PTFE + TP were developed in three different compositions (85:15, 75:25 and 65:35). For this investigation the particle size distribution and some chemical characteristics of the tailings by testing XRD, XRF, SEM and EDS were performed, registering a large amount of silica, aluminum and other metals. Roughness, wettability and sclerometry also were performed. It was noted that the values of arithmetic average roughness, Ra, is higher for composites with higher percentage of TP, in addition they have a lower contact angle and higher surface energy to distilled water, characterized as hydrophilic. The results of energy of deformation provided by the sclerometry test were non-linear. (author)

  20. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    Science.gov (United States)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  1. Robust non-wetting PTFE surfaces by femtosecond laser machining.

    Science.gov (United States)

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-08-08

    Nature shows many examples of surfaces with extraordinary wettability,which can often be associated with particular air-trapping surface patterns. Here,robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters,both of which make it a strong candidate for industrial applications.

  2. Laminated dosimetric card

    International Nuclear Information System (INIS)

    Cox, F.M.; Chamberlain, J.D.; Shrader, E.F.; Shoffner, B.M.; Szalanczy, A.

    1975-01-01

    A laminated card with one or more apertures, each adapted to peripherally seal an encapsulated dosimeter, is formed by bonding a foraminous, code-adaptable, rigid sheet of low-Z material with a codedly transparent sheet of low-Z material in light-transmitting registry with particular code-holes of the rigid sheet. The laminated card may be coded to identify the person carrying it, and/or the location or circumstances related to its exposure to radiation. This card is particularly adapted for use in an instrument capable of evaluating a multiplicity of cards, substantially continuously. The coded identification from the card may be displayed by an appropriate machine, and if desired an evaluation may be recorded because of a ''parity checking'' system incorporated in each card, which permits ''auto-correction.'' Alternatively, where means for effecting the correction automatically are available, the operation of the machine may be interrupted to permit visual examination of a rejected card. The card of this invention is also coded for identifying the type of card with respect to its specific function, and whether or not a card is correctly positioned at any predetermined location during its sequential progress through the instrument in which it is evaluated. Dosimeters are evaluated and the card identified in one pass through the instrument. (auth)

  3. Wear resistant PTFE thin film enabled by a polydopamine adhesive layer

    International Nuclear Information System (INIS)

    Beckford, Samuel; Zou, Min

    2014-01-01

    The influence of a polydopamine (PDA) adhesive layer on the friction and wear resistance of polytetrafluoroethylene (PTFE) thin films coated on stainless steel was investigated. The friction and wear tests were carried out using a ball on flat configuration under a normal load of 50 g, sliding speed of 2.5 mm/s, and stroke length of 15 mm. It is found that the PDA/PTFE film is able to withstand approximately 500 times more rubbing cycles than the PTFE film alone. X-ray photoelectron spectroscopy (XPS) results show that a tenacious layer of PTFE remains adhered to the PDA layer, which enables the durability of the PDA/PTFE film. Because of the relatively low thickness of the film, PDA/PTFE shows great potential for use in applications where durable, thin films are desirable

  4. Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting

    International Nuclear Information System (INIS)

    Sato, Kohei; Ikeda, Shigetoshi; Iida, Minoru; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2003-01-01

    Polymer electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene (PTFE) [RX-PTFE] has been processed by radiation-grafting with reactive styrene monomers by γ-rays under atmospheric circumstances, and the characteristic properties of the obtained membranes have been studied. The grafting yields of styrene monomer onto RX-PTFE, which have various crosslinking densities, were in the range of 5-100%. At the reaction period of 24 h, the grafting yields for RX-PTFE with low crosslinking density, which was reacted at 60 deg. C, achieved 94%. As a tendency, the lower grafting temperature gives higher grafting ratio of styrene onto RX-PTFE. Moreover, the yields of subsequent sulfonation for all samples were close to 100%. Mechanical properties were decreased with increasing grafting yields; especially the membrane with higher grafting yields was brittle. Ion exchange capacity of sulfonated RX-PTFE reached 1.1 meq/g while maintaining the mechanical properties

  5. Analysis of abrasive wear behavior of PTFE composite using Taguchi’s technique

    Directory of Open Access Journals (Sweden)

    Yusuf Şahin

    2015-12-01

    Full Text Available Polymeric composites are widely used for structural, aerospace, and automobile sectors due to their good combination of high specific strength and specific modulus. These two main characteristics make these materials attractive, compared to conventional materials like metal or alloy ones. Some of their typical benefits include easy processing, corrosion resistance, low friction, and damping of noise and vibrations. Wear behavior of Polytetrafluoroethylenes (PTFE and its composites including glass-filled composites and carbon-filled composites are investigated using a pin-on-disc configuration. A plan of experiments in terms of Taguchi technique is carried out to acquire data in controlled way. An orthogonal array (L9 and the analysis of variance are employed to investigate the influence of process parameters on the wear of these composites. Volume loss increased with abrasive size, load, and distance. Furthermore, specific wear rate decreased with increasing grit size, load, sliding distance, whereas, slightly with compressive strength. Optimal process parameters, which minimize the volume loss, were the factor combinations of L1, G3, D1, and C3. Confirmation experiments were conducted to verify the optimal testing parameters. It was found that in terms of volume loss, there was a good agreement between the estimated and the experimental value of S/N ratio with an error of 1.604%. Moreover, abrasive size, load, and sliding distance exerted a great effect on the specific wear rate, at 51.14, 27.77, and 14.70%, respectively.

  6. Surface modification of PTFE sheet by synchrotron radiation in the soft X-ray region

    International Nuclear Information System (INIS)

    Kato, Y.; Kanda, K.; Haruyama, Y.; Matsui, S.

    2004-01-01

    Full text: The surface properties of poly (tetrafluoroethylene) (PTFE) are changed by the exposure to synchrotron radiation (SR). We succeeded in controlling the wettability of the PTFE surface from hydrophobic to hydrophilic by varying the substrate temperature during the SR irradiation and found that the wettability was ascribable to microstructure and chemical composition of surface.In these previous works, oxygen atoms were found to inhabit on the hydrophobic surface of PTFE. In this study, we investigated the surface modification of PTFE from the SR exposure experiment under the O 2 gas atmosphere. The SR exposure to the PTFE sheet was carried out at beamline 6 (BL6) of the New- SUBARU. The PTFE sheet was irradiated to the white beam, ranging 50-1000 eV at BL6 at room temperature. The gas cell was mounted at the irradiation chamber. The O 2 gas pressure in the gas cell can be maintained at about 0.20 Pa during the SR exposure using 5mm φ hole window. The wettability of PTFE surface was evaluated by the contact angle of a small water drop. Contact angle was measured with the water drop of 1 μl using the contact angle meter. Fig.1 shows the SR dose dependence of contact angle of PTFE surface under the O 2 gas atmosphere and under the vacuum. Contact angle decreased monotonically with SR dose. The decrease rate of contact angle of the PTFE surface irradiated under the O 2 gas atmosphere was larger than that of the PTFE surface irradiated without O 2 gas. Therefore, the combination of O atom to the PTFE surface was enhanced by the O 2 gas in the reaction region. These results suggested that the bonding of O atom on the hydrophobic PTFE surface is dominantly produced in the sample chamber during SR irradiation, but not in the air atmosphere after the SR irradiation

  7. Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites

    International Nuclear Information System (INIS)

    Li, Du-Xin; You, Yi-Lan; Deng, Xin; Li, Wen-Juan; Xie, Ying

    2013-01-01

    Highlights: ► The tribological properties of GF/PA6 improved by the incorporation of PTFE. ► PTFE and UHMWPE exhibited a synergism effect on reducing friction coefficient. ► Solid lubricants enlarged the range of applied velocity for GF/PA6 composite. - Abstract: The main purpose of this paper is to further optimize the tribological properties of the glass fiber reinforced PA6 (GF/PA6,15/85 by weight) for high performance friction materials using single or combinative solid lubricants such as Polytetrafluroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE) and the combination of both of them. Various polymer blends, where GF/PA6 acts as the polymer matrix and solid lubricants as the dispersed phase were prepared by injection molding. The tribological properties of these materials and the synergism as a result of the incorporation of both PTFE and UHMWPE were investigated. The results showed that, at a load of 40 N and a velocity of 200 rpm, PTFE was effective in improving the tribological capabilities of matrix material. On the contrary, UHMWPE was not conductive to maintain the structure integrity of GF/PA6 composite and harmful to the friction and wear properties. The combination of PTFE and UHMWPE showed synergism on further reducing the friction coefficient of the composites filled with either PTFE or UHMWPE only. Effects of load and velocity on tribological behavior were also discussed. To further understand the wear mechanism, the worn surfaces were examined by scanning electron microscopy

  8. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  9. Enterocutaneous fistula associated with ePTFE mesh: case report and review of the literature.

    Science.gov (United States)

    Foda, M; Carlson, M A

    2009-06-01

    A case of enterocutaneous fistula secondary to the erosion of an expanded polytetrafluoroethylene (ePTFE) prosthesis into the jejunum is described. This case is unusual secondary to the long experience with ePTFE and the lack of published cases similar to this one. The technical details of this case reveal extenuating circumstances associated with the fistula formation, and it is concluded that this particular case does not provide sufficient evidence to implicate ePTFE, by itself, as an etiologic agent for gastrointestinal fistulization. In addition, the published safety record of ePTFE in abdominal wall surgery is reviewed.

  10. Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold

    International Nuclear Information System (INIS)

    Reznickova, Alena; Kolska, Zdenka; Hnatowicz, Vladimir; Svorcik, Vaclav

    2011-01-01

    Properties of pristine, plasma modified, and etched (by water and methanol) polytetrafluoroethylene (PTFE) were studied. Gold nanolayers sputtered on this modified PTFE have been also investigated. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Degradation of polymer chains was examined by etching of plasma modified PTFE in water or methanol. The amount of ablated and etched layer was measured by gravimetry. In the next step the pristine, plasma modified, and etched PTFE was sputtered with gold. Changes in surface morphology were observed using atomic force microscopy. Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS). Surface chemistry of the samples was investigated by electrokinetic analysis. Sheet resistance of the gold layers was measured by two-point technique. The contact angle of the plasma modified PTFE decreases with increasing exposure time. The PTFE amount, ablated by the plasma treatment, increases with the plasma exposure time. XPS measurements proved that during the plasma treatment the PTFE macromolecular chains are degraded and oxidized and new –C–O–C–, –C=O, and –O–C=O groups are created in modified surface layer. Surface of the plasma modified PTFE is weakly soluble in methanol and intensively soluble in water. Zeta potential and XPS shown dramatic changes in PTFE surface chemistry after the plasma exposure, water etching, and gold deposition. When continuous gold layer is formed a rapid decrease of the sheet resistance of the gold layer is observed.

  11. Improved conductivity of carbon-nano-fiber (CNF)/polytetrafluoroethylene (PTFE) composite

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Sarita; Kalra, G. S.; Pushkar, Vinay K.; Gill, Fateh Singh, E-mail: drfatehs@gmail.com [Graphic Era University, Bell Road, Clement Town, Dehradun (India); Panwar, Variz [School of Materials Science and Engineering, Gwangju Institute of Science Technology (GIST), Gwangju 500-712 (Korea, Republic of); Gupta, Himanshu; Pal, Pankaj K.; Pathak, Trilok K.; Purohit, L. P. [Gurukul Kangri University, Haridwar-249404 (India)

    2016-05-23

    A series of CNF/PTFE composite loaded with different weight % of CNFs as 0.01, 0.02, 0.03, 0.05, 1, 2, 3, 4, 5 into PTFE is fabricated. In this work, the 5wt% heat-treated CNFs were used as filler in PTFE. Current-voltage (I-V) study of the samples confirmed the samples as conducting composite. In scanning electron microscope (SEM) study, the conducting CNFs channels were observed from upper surface to inside throughout the polymer matrix. A sintered composite of 5 wt% loading of CNFs showed an improved conductivity and SEM image exhibited a good binding of CNFs into PTFE.

  12. Improved conductivity of carbon-nano-fiber (CNF)/polytetrafluoroethylene (PTFE) composite

    International Nuclear Information System (INIS)

    Chandra, Sarita; Kalra, G. S.; Pushkar, Vinay K.; Gill, Fateh Singh; Panwar, Variz; Gupta, Himanshu; Pal, Pankaj K.; Pathak, Trilok K.; Purohit, L. P.

    2016-01-01

    A series of CNF/PTFE composite loaded with different weight % of CNFs as 0.01, 0.02, 0.03, 0.05, 1, 2, 3, 4, 5 into PTFE is fabricated. In this work, the 5wt% heat-treated CNFs were used as filler in PTFE. Current-voltage (I-V) study of the samples confirmed the samples as conducting composite. In scanning electron microscope (SEM) study, the conducting CNFs channels were observed from upper surface to inside throughout the polymer matrix. A sintered composite of 5 wt% loading of CNFs showed an improved conductivity and SEM image exhibited a good binding of CNFs into PTFE.

  13. "Subclinical" laminitis in dairy cattle.

    Science.gov (United States)

    Vermunt, J J

    1992-12-01

    In dairying countries worldwide, the economic importance of lameness in cattle is now recognised. Laminitis is regarded as a major predisposing factor in lameness caused by claw disorders such as white zone lesions, sole ulcer, and heel horn erosion. The existence of subclinical laminitis was first suggested in the late 1970s by Dutch workers describing the symptoms of sole haemorrhages and yellowish-coloured, soft sole horn. In an attempt to clarify some of the confusing and often conflicting terminology, the literature on laminitis is reviewed. Disturbed haemodynamics, in particular repeated or prolonged dilation of arteriovenous anastomoses, have been implicated in the pathogenesis of both equine and bovine laminitis. Some characteristics of the vascular system of the bovine claw which may be of importance in the pathophysiology of the subclinical laminitis syndrome are therefore discussed. Clinical observations suggest that subclinical laminitis is a multifactorial disease. The different factors that are or may be involved in its aetiology vary in complexity and severity according to the management protocol of the animals. The possible involvement of subclinical laminitis in claw lesions is assessed.

  14. Continuous jute fibre reinforced laminated paper composite

    Indian Academy of Sciences (India)

    Jute fibre; laminated paper composite; plastic bag pollution. Abstract. Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate ...

  15. Subclinical laminitis in dairy heifers.

    Science.gov (United States)

    Bradley, H K; Shannon, D; Neilson, D R

    1989-08-19

    By causing poorer horn quality, subclinical laminitis is considered to be a major predisposing cause of other hoof problems, particularly sole ulcers in newly calved heifers. In this study the hind hooves of 136 female Friesian/Holstein cattle aged between four months and two years were examined to discover at what age the signs of subclinical laminitis appeared. Sole haemorrhages were found in the hoof horn of calves as young as five months. The consistent finding of these lesions in heifers of all ages indicated that subclinical laminitis of varying degree was a common condition during the early growing period of young dairy heifers.

  16. Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites

    Science.gov (United States)

    Yuan, Ying; Wang, Jie; Yao, Minghao; Tang, Bin; Li, Enzhu; Zhang, Shuren

    2018-01-01

    Composite substrates for microwave circuit applications have been fabricated by filling polytetrafluoroethylene (PTFE) polymer matrix with ceramic powder consisting of rutile TiO2 ( D 50 ≈ 5 μm) partially substituted with fused amorphous SiO2 ( D 50 ≈ 8 μm) with composition x vol.% SiO2 + (50 - x) vol.% TiO2 ( x = 0, 3, 6, 9, 12), and the effects of SiO2 addition on characteristics such as the density, moisture absorption, microwave dielectric properties, and thermal properties systematically investigated. The results show that the filler was well distributed throughout the matrix. High dielectric constant ( ɛ r > 7.19) and extremely low moisture absorption (ceramic particles served as barriers and improved the thermal stability of the PTFE polymer, retarding its decomposition. The temperature coefficient of dielectric constant ( τ ɛ ) of the composites shifted toward the positive direction (from - 309 ppm/°C to - 179 ppm/°C) as the SiO2 content was increased, while the coefficient of thermal expansion remained almost unchanged (˜ 35 ppm/°C).

  17. An update on equine laminitis

    OpenAIRE

    Laskoski, Luciane Maria; Valadão, Carlos Augusto Araújo; Dittrich, Rosangela Locatelli; Deconto, Ivan; Faleiros, Rafael Resende

    2016-01-01

    ABSTRACT: Laminitis is a severe podal affection, which pathophysiology remains partially renowned. Ischemic, enzymatic, metabolic and inflammatory mechanisms are connected to the development of laminar lesions. However, few therapeutic measures are effective to prevent or control the severity of acute laminitis and its prodromal stage, which often determines serious complications such as rotation and/or sinking of the distal phalanx and even the loss of hoof. The purpose of this study is to c...

  18. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.; Chen, S.-C.; Wang, T.-J.; Guo, J.

    2018-01-01

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non

  19. Low-Flammability PTFE for High-Oxygen Environments

    Science.gov (United States)

    Walle, E.; Fallon, B.; Sheppard, A.

    1986-01-01

    Modified forming process removes volatile combustible materials. Flammability of cable-wrapping tape reduced by altering tape-manufacturing process. In new manufacturing process, tape formed by proprietary process of screw extrusion, followed by washing in solvent and drying. Tape then wrapped as before. Spectrogram taken after extrusion, washing, and drying shows lower hydrocarbon content. PTFE formed by new process suited to oxygen-rich environments. Safe in liquid oxygen of Space Shuttle tank and in medical uses; thin-wall shrinkable tubing in hospital test equipment, surgical instruments, and implants.

  20. Immobilisation of a fibrillin-1 fragment enhances the biocompatibility of PTFE.

    Science.gov (United States)

    Hajian, Hamid; Wise, Steven G; Bax, Daniel V; Kondyurin, Alexey; Waterhouse, Anna; Dunn, Louise L; Kielty, Cay M; Yu, Young; Weiss, Anthony S; Bilek, Marcela M M; Bannon, Paul G; Ng, Martin K C

    2014-04-01

    Current vascular biomaterials exhibit poor biocompatibility characterised by failure to promote endothelialisation, predisposition to neoinitmal hyperplasia and excessive thrombogenicity. Fibrillin-1, a major constituent of microfibrils is associated with elastic fibres in the arterial wall. Fibrillin-1 binds to endothelial cells through an RGD cell adhesion motif in the fourth TB module. The RGD motif is present in PF8, a recombinant fibrillin-1 fragment. We investigated the potential of PF8 to improve the biocompatibility of PTFE. PF8 enhanced endothelial cell attachment and cell proliferation to a greater extent than fibronectin (pPTFE using plasma immersion ion implantation (PIII), retained these favourable cell interactive properties, again promoting endothelial cell attachment and proliferation. The thrombogenicity of covalently bound PF8 on PTFE was assessed in both static and dynamic conditions. In static conditions, uncoated PIII treated PTFE was more thrombogenic than untreated PTFE, while PF8 coating reduced thrombogenicity. Under flow, there was no difference in the thrombogenicity of PF8 coated PTFE and untreated PTFE. Immobilised PF8 shows a striking ability to promote attachment and growth of endothelial cells on PTFE, while providing a non-thrombogenic surface. These features make PF8 a promising candidate to improve the biocompatibility of current synthetic vascular grafts. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  1. Sutures for inguinal herniorrhaphy--a comparison of monofilaments with PTFE.

    Science.gov (United States)

    Cahill, J.; Northeast, A. D.; Jarret, P. E.; Leach, R. D.

    1989-01-01

    Polybutester (Novafil, Davis & Geck) and expanded polytetrafluoroethylene PTFE (Gore-tex, W L Gore) were compared with nylon (Ethilon, Ethicon UK) for elective inguinal herniorrhaphy. PTFE had the best handling characteristics, but is expensive, and increased wound sepsis attended its use. Polybutester had significantly better handling characteristics, and is an attractive alternative to nylon for hernia repair. PMID:2705719

  2. Fluoropolymer-coated dacron versus PTFE grafts for femorofemoral crossover bypass: randomised trial

    DEFF Research Database (Denmark)

    Eiberg, JP; Røder, Ole Christian; Stahl-Madsen, M

    2006-01-01

    To investigate whether patency of a thin walled 8 mm fluoropassivated Dacron graft was similar to that of a standard 8mm PTFE graft for femorofemoral crossover bypass surgery.......To investigate whether patency of a thin walled 8 mm fluoropassivated Dacron graft was similar to that of a standard 8mm PTFE graft for femorofemoral crossover bypass surgery....

  3. Preparation of PVDF and PTFE membranes for fuel cell use; Preparacao de membranas de PVDF e PTFE enxertadas e sulfonadas para uso em celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana N.; Zen, Heloisa A.; Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: angeral@ipen.br

    2007-07-01

    Grafting of styrene onto polyvinylidenefluoride (PVDF), polytetrafluoroethylene (PTFE) was studied using styrene/toluene solutions. First, PTFE and PVDF films were prepared and the process was conducted by radiation induced graft polymerization of styrene, by a Co{sup 60} source. Films of PTFE and PVDF were immersed in styrene/toluene at 1:1 (v/v) concentration and then submitted to gamma radiation at 20 kGy doses. After irradiation, the samples were evaluated at the period of 21 days at room temperature in order to observe the grafting degree. Chemical changes in the PVDF and PTFE films after styrene grafting were monitored and the results were evaluated by FTIR, DSC, TGA and degree of grafting (DOG). The ion exchange capacity (IEC) after sulfonation of 1, 2 and 24 hours were also determined. (author)

  4. Surface modification and adhesion improvement of PTFE film by ion beam irradiation

    International Nuclear Information System (INIS)

    Lee, S.W.; Hong, J.W.; Wye, M.Y.; Kim, J.H.; Kang, H.J.; Lee, Y.S.

    2004-01-01

    The polytetrafluoroethylene (PTFE) surfaces, modified by 1 kV Ar + or O 2 + ion beam irradiation, was investigated with in-situ X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), atomic force microscopy (AFM) measurements. The surface of PTFE films modified by Ar + ion irradiation was carbonized and the surface roughness increased with increasing ion doses. The surface of PTFE films modified by both Ar + ion in O 2 atmosphere and O 2 + ion irradiation formed the oxygen function group on PTFE surface, and the surface roughness change was relatively small. The adhesion improvement in Ar + ion irradiated PTFE surface is attributed to mechanical interlocking due to the surface roughness and -CF-radical, but that in Ar + ion irradiation in an O 2 atmosphere was contributed by the C-O complex and -CF-radical with mechanical interlocking. The C-O complex and -CF-radical in O 2 + ion irradiated surface contributed to the adhesion

  5. Fabrication and Characteristics of Al/PTFE Multilayers and Application in Micro-initiator

    Science.gov (United States)

    Zhang, Yuxin; Jiang, Hongchuan; Zhao, Xiaohui; Zhang, Wanli; Li, Yanrong

    2017-12-01

    In this paper, a micro-initiator was designed and fabricated by integrating Al/PTFE multilayers with a Cu film bridge. The regularity layer structure and interface composition of Al/PTFE multilayers was analysed by transmission electron microscope and X-ray photoelectron spectroscopy, respectively. The heat release reaction in Al/PTFE multilayers can be triggered with reaction temperature of 430 °C, and the overall heat of reaction is 3192 J/g. Al/PTFE multilayers with bilayer thickness of 200 nm was alternately deposited on a Cu film bridge to improve the electric explosion performances. Compared to Cu film bridge, the Al/PTFE/Cu integrated film bridge exhibits improved performances with longer explosion duration time, more violent explosion phenomenon and larger quantities of ejected product particles.

  6. Radiation-induced branching and crosslinking of poly(tetrafluoroethylene) (PTFE)

    International Nuclear Information System (INIS)

    Lappan, U.; Geissler, U.; Haeussler, L.; Jehnichen, D.; Pompe, G.; Lunkwitz, K.

    2001-01-01

    The effect of electron beams on poly(tetrafluoroethylene) (PTFE) at elevated temperatures above the melting point on oxygen-free conditions has been studied using differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), Fourier-transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and tensile test. The investigations have shown that the chemical structure and several properties of PTFE are greatly altered by the irradiation. DSC and WAXS indicate that the crystallinity of the PTFE irradiated with high doses is reduced. CF 3 side groups and branched structures are assumed to hinder the crystallization. TGA has shown that the thermal stability of the radiation-modified PTFE is considerably lower than that of unirradiated PTFE

  7. Renal vessel reconstruction in kidney transplantation using a polytetrafluoroethylene (PTFE) vascular graft.

    Science.gov (United States)

    Kamel, Mohamed H; Thomas, Anil A; Mohan, Ponnusamy; Hickey, David P

    2007-04-01

    We report a rare experience in reconstructing short renal vessels in kidney transplantation using polytetrafluroethylene (PTFE) vascular grafts. The short renal vessels in three kidney grafts were managed by the interposition of PTFE vascular grafts. Two grafts were from deceased donors and the third was a renal auto-transplant graft. PTFE grafts were used to lengthen short renal veins in two kidney grafts and a short renal artery in one. The warm ischaemia time was under 1 h and all kidneys functioned well post-operatively. Excellent blood perfusion in the three renal grafts was present on postoperative MAG 3 renal scan. No intra-operative or post-operative complications were encountered. In the three described patients, the use of PTFE vascular graft presented no additional morbidity to the kidney transplant operation and no post-oerative complication was related to its use. However, more data are necessary to conclude that PTFE graft can be used safely in kidney transplantation.

  8. Improvement of radiation resistance for polytetrafluoroethylene(PTFE) by radiation cross-linking

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Seguchi, Tadao.

    1996-01-01

    The crosslinked polytetrafluoroethylene(PTFE) was prepared by electron beams irradiation technique in the molten state at 340degC ± 3degC in inert gas atmosphere. The crosslinking density was changed by the irradiation dose. The radiation resistance of crosslinked PTFE was investigated on the mechanical properties after irradiation by γ-rays at room temperature under vacuum and in air. The dose at half value of elongation at break was about 1MGy for 500kGy-crosslinked PTFE, while the dose for non-crosslinked PTFE was only 3.5kGy. It was found that the radiation resistance of PTFE was extremely improved by crosslinking. (author)

  9. Thermally stimulated current in PTFE and its application in radiation dosimetry

    International Nuclear Information System (INIS)

    Ozdemir, S.

    1985-01-01

    Thermally Stimulated Current (TSC) measurement was made on PTFE (Polytetrafluoro ethylene) in an attempt to develop an integrating radiation dosimeter material and the system. TSC spectra, dose response, energy response, fading and background charge stability characteristics were used as a measure of suitability of various untreated and heat treated PTFE samples for dosimetry applications. For practical TSC dosimetry system, it was discovered that the PTFE samples should be subjected to a specific heat treatment in order to produce samples with better dosimeter characteristics. A treatment at a temperature of 240 C produces a high dose response and low fading characteristics. It was found that the spurious charges due to storage and low sensitivity to irradiation caused the limitation in the measurement of low doses with PTFE samples for personnel protection. However, a TSC Dosimetry system using PTFE is proposed which is suitable for radiation doses in the radiotherapy range from *approx* 50 to *approx* 800 mGy. (author)

  10. Effect of gamma radiation on graphite – PTFE dry lubrication system

    International Nuclear Information System (INIS)

    Singh, Sachin; Tyagi, Mukti; Seshadri, Geetha; Tyagi, Ajay Kumar; Varshney, Lalit

    2017-01-01

    An effect of gamma radiation on lubrication behavior of graphite -PTFE dry lubrication system has been studied using (TR-TW-30L) tribometer with thrust washer attachment in plane contact. Different compositions of graphite and PTFE were prepared and irradiated by gamma rays. Gamma radiation exposure significantly improves the tribological properties indicated by decrease in coefficient of friction and wear properties of graphite -PTFE dry lubrication system. SEM and XRD analysis confirm the physico-chemical modification of graphite-PTFE on gamma radiation exposure leading to a novel dry lubrication system with good slip and anti friction properties. - Highlights: • Novel dry lubrication system of graphite -PTFE using gamma radiation. • Gamma radiation processing. • Reduction in coefficient of friction, frictional torque and wear loss of developed dry lubrication system.

  11. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm 2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  12. Repair of large abdominal wall defects with expanded polytetrafluoroethylene (PTFE).

    Science.gov (United States)

    Bauer, J J; Salky, B A; Gelernt, I M; Kreel, I

    1987-01-01

    Most abdominal wall incisional hernias can be repaired by primary closure. However, where the defect is large or there is tension on the closure, the use of a prosthetic material is indicated. Expanded polytetrafluoroethylene (PTFE) patches were used to repair incisional hernias in 28 patients between November 1983 and December 1986. Twelve of these patients (43%) had a prior failure of a primary repair. Reherniation occurred in three patients (10.7%). Wound infections developed in two patients (7.1%), both of whom had existing intestinal stomas, one with an intercurrent pelvic abscess. The prosthetic patch was removed in the patient with the abscess, but the infection was resolved in the other without sequelae. Septic complications did not occur after any operations performed in uncontaminated fields. None of the patients exhibited any undue discomfort, wound pain, erythema, or induration. Complications related to adhesions, erosion of the patch material into the viscera, bowel obstruction, or fistula formation did not occur. Based on this clinical experience, the authors believe that the PTFE patch appears to represent an advance in synthetic abdominal wall substitutes. Images Fig. 1. Fig. 2(left)., Fig. 3(right). PMID:3689012

  13. The Study of the Composite Material Go/CF/PTFE Tribological Property

    Directory of Open Access Journals (Sweden)

    Wang Li-hu

    2017-01-01

    Full Text Available In this paper, the composite material Go/CF/PTFE tribological property was studied. The test of its mechanical property, and the fabrication of the filled PTEE composite material sample which is based on the technology of cold press molding and sinter molding proved that adding Go and CF moderately to the composite material was an efficient way to improve its mechanical property. Meanwhile the process of friction and wear trial and SEM analysis results of the micro-structure of wear pattern proved that the addition of the Go and CF tremendously improved the anti-wear property and that after the addition the plowing effect which took place on the material surface would turn into a kind of mixed wear effect that includes plowing effect and fatigue wear. Working as pinning and bridging, the Go which distributing uniformly in the matrix was able to improve the resistance and substantially resisted the crack propagation, therefore to a certain degree enhanced the intensity of composite material and prolong its lifespan.

  14. Mechanical Stability of H3PO4-Doped PBI/Hydrophilic-Pretreated PTFE Membranes for High Temperature PEMFCs

    International Nuclear Information System (INIS)

    Park, Jaehyung; Wang, Liang; Advani, Suresh G.; Prasad, Ajay K.

    2014-01-01

    Graphical abstract: - Highlights: • PBI/PTFE membrane was prepared by porous PTFE with hydrophilic surface pretreatment. • The durability of the prepared PBI/PTFE membrane was compared with pure PBI, PBI with untreated PTFE, and PBI-Nafion with untreated PTFE membranes. • Accelerated durability tests and SEM showed improved durability based the PBI/PTFE membrane with pretreated PTFE. - Abstract: A novel polybenzimidazole (PBI)/poly(tetrafluoroethylene) (PTFE) composite membrane doped with phosphoric acid was fabricated for high temperature operation in a polymer electrolyte membrane (PEM) fuel cell. A hydrophilic surface pretreatment was applied to the porous PTFE matrix film to improve its interfacial adhesion to the PBI polymer, thereby avoiding the introduction of Nafion ionomer which is traditionally used as a coupling agent. The pretreated PTFE film was embedded within the composite membrane during solution-casting using 5wt% PBI/DMAc solution. The mechanical stability and durability of three types of MEAs assembled with PBI only, PBI with pretreated PTFE, and PBI-Nafion with untreated PTFE membranes were evaluated under an accelerated degradation testing protocol employing extreme temperature cycling. Degradation was characterized by recording polarization curves, hydrogen crossover, and proton resistance. Cross-sections of the membranes were examined before and after thermal cycling by scanning electron microscope. Energy-dispersive X-ray spectroscopy verified that the PBI is dispersed homogeneously in the porous PTFE matrix. Results show that the PBI composite membrane with pretreated PTFE has a lower degradation rate than the Nafion/PBI membrane with untreated PTFE. Thus, the hydrophilic pretreatment employed here greatly improved the mechanical stability of the composite membrane, which resulted in improved durability under an extreme thermal cycling regime

  15. Preparation and Properties of PTFE-PMMA Core-Shell Nanoparticles and Nanocomposites

    Directory of Open Access Journals (Sweden)

    Diego Antonioli

    2012-01-01

    Full Text Available The preparation of polytetrafluoroethylene-poly(methyl methacrylate (PTFE-PMMA core-shell particles was described, featuring controlled size and narrow size distribution over a wide compositional range, through a seeded emulsion polymerization starting from a PTFE seed of 26 nanometers. Over the entire MMA/PTFE range, the particle size increases as the MMA/PTFE ratio increases. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomer and the PTFE seed. Particles in the 80–240 nm range can be prepared with uniformity indexes suited to build 2D and 3D colloidal crystals. These core-shell particles were employed to prepare nanocomposites with different compositions, through an annealing procedure at a temperature higher than the glass transition temperature of the shell forming polymer. A perfect dispersion of the PTFE particles within the PMMA matrix was obtained and optically transparent nanocomposites were prepared containing a very high PTFE amount.

  16. Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, S. [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Anthuvan, J. Tennis [M. Kumarasamy College of Engineering, Karur, Tamil Nadu (India)

    2015-12-30

    Graphical abstract: - Highlights: • PTFE polymer inclusion on Ni–W alloy matrix was electrodeposited by pulse current method. • Tribological properties and electrochemical characterizations of the nanocomposite coatings were analyzed. • The hydrophobic behaviour of Ni–W/PTFE nanocomposite coating was measured. • Ni–W/PTFE nanocomposite coatings have showed superior tribological properties and corrosion resistance relative to that of the Ni–W alloy matrix. - Abstract: Ni–W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni–W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni–W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni–W/PTFE nanocomposite coating has better corrosion resistance than the Ni–W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni–W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  17. Laser cutting of Kevlar laminates

    Energy Technology Data Exchange (ETDEWEB)

    VanCleave, R.A.

    1977-09-01

    An investigation has been conducted of the use of laser energy for cutting contours, diameters, and holes in flat and shaped Kevlar 49 fiber-reinforced epoxy laminates as an alternate to conventional machining. The investigation has shown that flat laminates 6.35 mm thick may be cut without backup by using a high-powered (1000-watt) continuous wave CO/sub 2/ laser at high feedrates (33.87 mm per second). The cut produced was free of the burrs and delaminations resulting from conventional machining methods without intimate contact backup. In addition, the process cycle time was greatly reduced.

  18. On compression and damage evolution in PTFE and PEEK

    Science.gov (United States)

    Rau, C.; Parry, S.; Garcea, S. C.; Bourne, N. K.; McDonald, S. A.; Eastwood, D. S.; Brown, E. N.; Withers, P. J.

    2017-01-01

    The well-known Taylor cylinder impact test, that follows the impact of a flat-ended cylindrical rod onto a rigid stationary anvil, is conducted over a range of impact speeds for two polymers, PTFE and PEEK. In previous work experiments and a model were developed to capture the deformation behaviour of the rod after impact. A distinctive feature of these works was that a region in which both spatial and temporal variation of both longitudinal and radial deformation showed evidence of changes in phase within the material. This region is X-ray imaged in a range of impacted targets at the I13 Imaging and Coherence beam line at the Diamond synchrotron. Further techniques were fielded to resolve compressed regions within the recovered polymer cylinders that showed a fracture zone in the impact region. This shows the transit of damage from ductile to brittle failure results from previously undetected internal failure.

  19. Non-Cyanide Electrodeposited Ag–PTFE Composite Coating Using Direct or Pulsed Current Deposition

    Directory of Open Access Journals (Sweden)

    Raymond Sieh

    2016-07-01

    Full Text Available The effects of FC-4 cationic surfactant on electrodeposited Ag–PTFE composite coating using direct or pulsed currents were studied using scanning electron microscope (SEM, energy dispersive X-ray (EDS, optical microscope, and a linear tribometer. FC-4:PTFE in various ratios were added to a non-cyanide succinimide silver complex bath. Direct or pulsed current method was used at a constant current density to enable comparison between both methods. A high incorporation rate of PTFE was successfully achieved, with pulsed current being highly useful in increasing the amount of PTFE in the composite coating. The study of coating wear under sliding showed that a large majority of the electrodeposited coatings still managed to adhere to the substrate, even after 10 wear cycles of sliding tests. Performance improvements were achieved on all the samples with a coefficient of friction (CoF between 0.06 and 0.12.

  20. Less Than Total Excision of Infected Prosthetic PTFE Graft Does Not Increase the Risk of Reinfection.

    Science.gov (United States)

    Sgroi, Michael D; Kirkpatrick, Vincent E; Resnick, Karen A; Williams, Russell A; Wilson, Samuel E; Gordon, Ian L

    2015-01-01

    Traditional treatment of infected polytetrafluoroethylene (PTFE) grafts consist of removal of the entire prosthesis. Closure of the native vessels may compromise vascular patency. We examined the outcomes for patients in whom a PTFE remnant of an infected graft was retained on the vessel. We reviewed the operating room log from 2000 to 2011 and identified all patients who had partial removal of an infected PTFE graft used for hemodialysis or peripheral bypass. These patients were examined for subsequent complications. Twenty-seven patients underwent 30 partial graft excisions with mean follow-up of 27 months. A total of 17% (5 of 30) of the partial graft resection procedures resulted in complications. Of 48 total remnants left behind at the arterial or venous anastomoses, reinfection occurred in 15%. Leaving a well-incorporated small 1-to 5-mm PTFE remnant at the arterial or venous anastomoses can be performed safely with a low risk of complications. © The Author(s) 2015.

  1. In vitro microbiologic evaluation of PTFE and cotton as spacer materials.

    Science.gov (United States)

    Paranjpe, Avina; Jain, Sumita; Alibhai, Karim J; Wadhwani, Chandur P; Darveau, Richard P; Johnson, James D

    2012-09-01

    To microbiologically evaluate the efficacy of cotton and polytetrafluoroethylene (PTFE) tape used as spacer materials. Twenty-six extracted human molars were restored using either cotton or PTFE tape as spacers under a standardized provisional restorative material (Cavit). The teeth were incubated for 7 days in a culture of Streptococcus gordonii or in liquid media alone. The spacers were removed and tested for bacterial contamination. The access cavities were also evaluated for bacterial contamination. Nine of 10 teeth with cotton spacers and one of 10 teeth with PTFE spacers were positive for S gordonii growth. The nine teeth in the cotton group also showed contamination of the access cavities. Even under optimal conditions, cotton spacers may cause leakage into the access cavities. Cotton fibers may serve as a route for bacterial contamination of the access cavities and root canal space. In contrast, PTFE tape did not provide an avenue for bacterial contamination.

  2. The production and characterization of Ptfe bonded Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Mokal, B.; Williams, A.J.; Hay, J.N.; Harris, I.R.

    1996-01-01

    A study of the processing and characteristics of PTFE bonded Nd Fe B magnets has been carried out. PTFE was used because of its low coefficient of friction, thus enabling its flow between the particles of Nd Fe B powder. PTFE also increases the resistance to corrosion of the magnet. In these investigations, the production of bonded magnets by cold compaction and by hot processing (HP) of MQ powders using PTFE as the binder was investigated . Magnetic, microstructural, and mechanical properties were investigated and are presented together with a correlation with the different processing techniques used. The corrosion behaviour of the hot pressed magnets was also investigated. These studies could lead to the development of simpler and more effective processing routes for the production of bonded magnets. (author)

  3. Preparation of Pt-PTFE hydrophobic catalyst for hydrogen-water isotope exchange

    International Nuclear Information System (INIS)

    Li Junhua; Kang Yi; Han Yande; Ruan Hao; Dou Qincheng; Hu Shilin

    2001-01-01

    The hydrophobic catalyst used in the hydrogen-water isotope exchange is prepared with Pt as the active metal, PTFE as the hydrophobic material, active carbon or silicon dioxide as the support. The isotope catalytic exchange reaction between hydrogen and water is carried out in the trickle bed and the effects of different carriers, mass fraction of Pt and PTFE on the catalytic activity are discussed. The experimental results show that the activity of Pt-C-PTFE hydrophobic catalyst with the ratio between PTFE and Pt-C from 1 to 2 is higher than other kinds of catalysts and the overall volume transfer coefficient is increased with the increasing of the hydrogen flow rate and reaction temperature

  4. Highly oriented poly(di-n-alkylsilylene) films on oriented PTFE substrates

    NARCIS (Netherlands)

    Frey, H.H.; Frey, Holger; Sheiko, Sergej; Sheiko, S.; Moller, M.; Möller, Martin; Wittmann, Jean-Claude; Lot, Bernard

    1993-01-01

    Highly oriented polysilylene layers have potential applications in electrophotography, nonlinear optics, display fabrication, and microlithography. The preparation of such layers by crystallization on a highly oriented PTFE substrate is reported, and their assessment by optical birefringence,

  5. Synthesis and characterization of c-PTFE-g-styrene copolymer by preirradiation method

    International Nuclear Information System (INIS)

    Oktaviani; Ambyah Suliwarno; Tita Puspitasari

    2011-01-01

    Crosslinked-poly(tetrafluoroethylene)-graf-styrene (c-PTFE-g-styrene) copolymer has been synthesized by copolymerization preirradiation method. Irradiation onto c-PTFE films was carried out by γ-ray with irradiation doses of 15, 30, and 45 kGy at room temperature. Styrene was grafted into irradiated c-PTFE films in the temperature range of between 600-90°C. Parameter observed in the grafting process was degree of grafting. The results showed that the degree of grafting increased with increasing of irradiation doses. The highest degree of grafting was 25,44 % obtained at temperature of 70°C and still increased up to 25,73% with increasing of the grafting time. The optimum grafting time was 2 hours. Chemical and physical properties of c-PTFE-g-styrene film were analyzed by IR spectrophotometer and Scanning Electron Microscopy (SEM). (author)

  6. Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery

    International Nuclear Information System (INIS)

    Qiu Jingyi; Ni Jiangfeng; Zhai Maolin; Peng Jing; Zhou Henghui; Li Jiuqiang; Wei Genshuan

    2007-01-01

    Using γ-radiation technique, poly(tetrafluoroethylene) (PTFE) membrane was grafted with styrene (St) (PTFE-graft-PS) or binary monomers of St and maleic anhydride (MAn) (PTFE-graft-PS-co-PMAn), respectively. Then grafted membranes were further sulfonated with chlorosulfonic acid into ion-exchange membranes (denoted as PTFE-graft-PSSA and PTFE-graft-PSSA-co-PMAc, respectively) for application of vanadium redox battery (VRB). Micro-FTIR analysis indicated that PTFE was successfully grafted and sulfonated at the above two different conditions. However, a higher degree of grafting (DOG) was obtained in St/MAn binary system at the same dose due to a synergistic effect. Comparing with PTFE-graft-PSSA, PTFE-graft-PSSA-co-PMAc membrane showed higher water uptake and ion-exchange capacity (IEC) and lower area resistance (AR) at the same DOG. In addition, PTFE-graft-PSSA-co-PMAc with 6% DOG also showed a higher IEC and higher conductivity compared to Nafion membrane. Radiation grafting of PTFE in St/MAn binary system and sequent sulfonation is an appropriate method for preparing ion-exchange membrane of VRB

  7. The Mechanical and Reaction Behavior of PTFE/Al/Fe2O3 under Impact and Quasi-Static Compression

    Directory of Open Access Journals (Sweden)

    Jun-yi Huang

    2017-01-01

    Full Text Available Quasi-static compression and drop-weight test were used to characterize the mechanical and reaction behavior of PTFE/Al/Fe2O3 composites. Two kinds of PTFE/Al/Fe2O3 composites were prepared with different mass of PTFE, and the reaction phenomenon and stress-strain curves were recorded; the residuals after reaction were analyzed by X-ray diffraction (XRD. The results showed that, under quasi-static compression condition, the strength of the materials is increased (from 37.1 Mpa to 77.2 Mpa with the increase of PTFE, and the reaction phenomenon occurred only in materials with high PTFE content. XRD analysis showed that the reaction between Al and Fe2O3 was not triggered with identical experimental conditions. In drop-weight tests, PTFE/Al/Fe2O3 specimens with low PTFE content were found to be more insensitive by high-speed photography, and a High Temperature Metal Slag Spray (HTMSS phenomenon was observed in both kinds of PTFE/Al/Fe2O3 composites, indicating the existence of thermite reaction, which was confirmed by XRD. In PTFE/Al/Fe2O3 system, the reaction between PTFE and Al precedes the reaction between Al and Fe2O3.

  8. Thermoluminescence sensitivity variations in LiF PTFE dosemeters incurred by improper handling procedures

    CERN Document Server

    Mason, E W; MacKinlay, Alistair F; Saunders, D

    1975-01-01

    A systematic study of some anomalous darkening effects and thermoluminescence sensitivity variations observed in LiF:PTFE thermoluminescent dosemeters is described. Various likely causes of such effects have been investigated. The manufacturer's recommended cleaning procedures have been found to be inadequate and, in some cases, have been found to actually promote discolouration of the dosemeters. Recommendations are given for the successful use of LiF:PTFE thermoluminescent dosemeters in personal dosimetry.

  9. Acid Aging Effects on Surfaces of PTFE Gaskets Investigated by Thermal Analysis

    Directory of Open Access Journals (Sweden)

    C. Fragassa

    2016-12-01

    Full Text Available This paper investigates the effect of a prolonged acid attack on the surface of PTFE by Thermogravimetric Analysis (TGA and Differential Scanning Calorimetry (DSC. PTFE is very non-reactive, partly because of the strength of carbon–fluorine bonds and for its high crystallinity, and, as a consequence, it is often used in containers and pipework with reactive and corrosive chemicals. The PTFE under analysis is commercialized by two alternative producers in form of Teflon tapes. These tapes are adopted, as gaskets, in process plants where tires moulds are cleaned by acid solutions inside a multistage ultrasonic process. In this case, PTFE shows, in a relatively short operation time, inexplicably phenomena of surface degradation, which could be related, in general terms, to an acid attack. But, even considering the combined effect of ultrasonic waves, temperature, humidity and acid attack, the PTFE properties of resistance nominally exclude the risk of the extreme erosion phenomena as observed. The present experimental research aim at investigating this contradiction. A possible explanation could be related to the presence in the cleaning solution of unexpected fluorides, able to produce fluorinating agents and, thus, degrade carbon-fluorine bonds. Considering more the 300 chemical elements a tire compound consists in, it is really complex to preserve the original chemical composition of the cleaning solution. In this research PTFE samples have been treated with different mixtures of acids with the aim at investigating the different aging effects. The thermal analysis has permitted the experimental characterization of PTFE surface properties after acid attack, providing evidence of the degradation phenomena. In particular, the different acid treatments adopted for accelerating the aging of gaskets have highlighted the different behaviour of the PTFE matrix, but also differences between manufacturers.

  10. About Dental Amalgam Fillings

    Science.gov (United States)

    ... and Medical Procedures Dental Devices Dental Amalgam About Dental Amalgam Fillings Share Tweet Linkedin Pin it More ... should I have my fillings removed? What is dental amalgam? Dental amalgam is a dental filling material ...

  11. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    International Nuclear Information System (INIS)

    Sparnacci, K.; Antonioli, D.; Deregibus, S.; Laus, M.; Zuccheri, G.; Boarino, L.; De Leo, N.; Comoretto, D.

    2012-01-01

    Nano sized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  12. Synchrotron radiation induced direct photo-etching and surface modification of PTFE

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Washio, Masakazu

    2003-01-01

    In the first part of this article, we have described and discussed the measurement results of etching rates by direct photo-etching using Synchrotron Radiation (SR) for various kind of crosslinked PTFEs, which were prepared by different crosslinking doses, comparing with the non-crosslinked PTFE. It has been found that the etching rates obtained for crosslinked PTFE were much larger than that of non-crosslinked one. These results are not described by simple consideration such as the G values of main chain scission. We propose that the etching rates should be discussed by the complex mechanism through at least two different steps such as polymer decomposition and fragment desorption. In the second part of the article, we have described and discussed the abnormal reaction induced at the surface region after the SR etching for non-crosslinked PTFE. Through the measurements using DSC and solid state 19 F-NMR, we have confirmed the crosslinking reaction of PTFE even in solid state PTFE. This should be induced by the very high density radical formation in very thin area of PTFE films by SR radiation. (author)

  13. Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres

    Directory of Open Access Journals (Sweden)

    Katia Sparnacci

    2012-01-01

    Full Text Available Nanosized PTFE-based core-shell particles can be prepared by emulsifier-free seed emulsion polymerization technique starting from spherical or rod-like PTFE seeds of different size. The shell can be constituted by the relatively high Tg polystyrene and polymethylmethacrylate as well as by low Tg polyacrylic copolymers. Peculiar thermal behavior of the PTFE component is observed due to the high degree of PTFE compartmentalization. A very precise control over the particle size can be exerted by properly adjusting the ratio between the monomers and the PTFE seed. In addition, the particle size distribution self-sharpens as the ratio monomer/PTFE increases. Samples with uniformity ratios suited to build 2D and 3D colloidal crystals are easily prepared. In particular, 2D colloidal crystal of spheres leads to very small 2D nanostructuration, useful for the preparation of masks with a combination of nanosphere lithography and reactive ion etching. 3D colloidal crystals were also obtained featuring excellent opal quality, which is a direct consequence of the monodispersity of colloids used for their growth.

  14. Ion beam deposition of DLC and nitrogen doped DLC thin films for enhanced haemocompatibility on PTFE

    International Nuclear Information System (INIS)

    Srinivasan, S.; Tang, Y.; Li, Y.S.; Yang, Q.; Hirose, A.

    2012-01-01

    Diamond-like carbon (DLC) and N-doped DLC (DLC:N) thin films have been synthesized on polytetrafluroethylene (PTFE) and silicon wafers using ion beam deposition. Raman spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were used to study the structural and morphological properties of the coated surface. The results show that the ion beam deposited DLC thin films exhibit high hardness and Young's modulus, low coefficient of friction and high adhesion to the substrate. Low concentration of nitrogen doping in DLC improves the mechanical properties and reduces the surface roughness. DLC coating decreases the surface energy and improves the wettability of PTFE. The platelet adhesion results show that the haemocompatibility of DLC coated PTFE, especially DLC:N coated PTFE, has been significantly enhanced as compared with uncoated PTFE. SEM observations show that the platelet reaction on the DLC and DLC:N coated PTFE was minimized as the platelets were much less aggregated and activated.

  15. The Scandinavian Propaten(®) trial - 1-year patency of PTFE vascular prostheses with heparin-bonded luminal surfaces compared to ordinary pure PTFE vascular prostheses - a randomised clinical controlled multi-centre trial.

    Science.gov (United States)

    Lindholt, J S; Gottschalksen, B; Johannesen, N; Dueholm, D; Ravn, H; Christensen, E D; Viddal, B; Flørenes, T; Pedersen, G; Rasmussen, M; Carstensen, M; Grøndal, N; Fasting, H

    2011-05-01

    To compare 1-year potencies' of heparin-bonded PTFE [(Hb-PTFE) (Propaten(®))] grafts with those of ordinary polytetraflouroethylene (PTFE) grafts in a blinded, randomised, clinically controlled, multi-centre study. Eleven Scandinavian centres enrolled 569 patients with chronic functional or critical lower limb ischaemia who were scheduled to undergo femoro-femoral bypass or femoro-poplitaeal bypass. The patients were randomised 1:1 stratified by centre. Patency was assessed by duplex ultrasound scanning. A total of 546 patients (96%) completed the study with adequate follow-up. Perioperative bleeding was, on average, 370 ml with PTFE grafts and 399 ml with Heparin-bonded PTFE grafts (p = 0.32). Overall, primary patency after 1 year was 86.4% for Hb-PTFE grafts and 79.9% for PTFE grafts (OR = 0.627, 95% CI: 0.398; 0.989, p = 0.043). Secondary patency was 88% in Hb-PTFE grafts and 81% in PTFE grafts (OR = 0.569 (0.353; 0.917, p = 0.020)). Subgroup analyses revealed that significant reduction in risk (50%) was observed when Hb-PTFE was used for femoro-poplitaeal bypass (OR = 0.515 (0.281; 0.944, p = 0.030)), and a significant reduction in risk (50%) was observed with Hb-PTFE in cases with critical ischaemia (OR = 0.490 (0.249; 0.962, p = 0.036)). The Hb-PTFE graft significantly reduced the overall risk of primary graft failure by 37%. Risk reduction was 50% in femoro-poplitaeal bypass cases and in cases with critical ischaemia. Copyright © 2011. Published by Elsevier Ltd.

  16. Failure modes of laminate structures

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, L.B.; Druce, R.L.; Wilson, M.J.

    1987-06-01

    Laminate structures composed of alternating thin layers of conductor and dielectric material are commonly used in energy storage and transmission components. The failure of the dielectric layers in regions of high field stress, with applied 60 Hz ac, dc and impulse voltages, was studied. Several geometries were compared, including staggered and flush edges. Electrical trees developed between the laminated dielectric layers. The visual characteristics and growth rates of the electrical trees under ac, dc and impulse stresses were different. Partial discharge detection and analysis was used to measure the inception voltage and discharge activity at the conductor edge voids, to observe tree formation and growth, and to predict impending failure due to dielectric erosion. Electric field distributions were modeled and partial discharge inception levels were estimated from known void geometries. The staggered edge geometry appears to enhance the electric field stress at the recessed electrode.

  17. Optimization of Laminated Composite Structures

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup

    of the contributions of the PhD project are included in the second part of the thesis. Paper A presents a framework for free material optimization where commercially available finite element analysis software is used as analysis tool. Robust buckling optimization of laminated composite structures by including...... allows for a higher degree of tailoring of the resulting material. To enable better utilization of the composite materials, optimum design procedures can be used to assist the engineer. This PhD thesis is focused on developing numerical methods for optimization of laminated composite structures...... nonlinear analysis of structures, buckling and post-buckling analysis of structures, and formulations for optimization of structures considering stiffness, buckling, and post-buckling criteria. Lastly, descriptions, main findings, and conclusions of the papers are presented. The papers forming the basis...

  18. Specific contribution of lamin A and lamin C in the development of laminopathies

    International Nuclear Information System (INIS)

    Sylvius, Nicolas; Hathaway, Andrea; Boudreau, Emilie; Gupta, Pallavi; Labib, Sarah; Bolongo, Pierrette M.; Rippstein, Peter; McBride, Heidi; Bilinska, Zofia T.; Tesson, Frederique

    2008-01-01

    Mutations in the lamin A/C gene are involved in multiple human disorders for which the pathophysiological mechanisms are partially understood. Conflicting results prevail regarding the organization of lamin A and C mutants within the nuclear envelope (NE) and on the interactions of each lamin to its counterpart. We over-expressed various lamin A and C mutants both independently and together in COS7 cells. When expressed alone, lamin A with cardiac/muscular disorder mutations forms abnormal aggregates inside the NE and not inside the nucleoplasm. Conversely, the equivalent lamin C organizes as intranucleoplasmic aggregates that never connect to the NE as opposed to wild type lamin C. Interestingly, the lamin C molecules present within these aggregates exhibit an abnormal increased mobility. When co-expressed, the complex formed by lamin A/C aggregates in the NE. Lamin A and C mutants for lipodystrophy behave similarly to the wild type. These findings reveal that lamins A and C may be differentially affected depending on the mutation. This results in multiple possible physiological consequences which likely contribute in the phenotypic variability of laminopathies. The inability of lamin C mutants to join the nuclear rim in the absence of lamin A is a potential pathophysiological mechanism for laminopathies

  19. Dextran grafting on PTFE surface for cardiovascular applications

    Science.gov (United States)

    Michel, Eléonore C; Montaño-Machado, Vanessa; Chevallier, Pascale; Labbé-Barrère, Amélie; Letourneur, Didier; Mantovani, Diego

    2014-01-01

    The modification of biomaterial surfaces with biomolecules influences the biological response. In this work, caboxymethyldextrans (CMD) with different degrees of substitution have been grafted to surfaces by introduction of amino moieties directly onto the substrate surface. Polytetrafluoroethylene was selected as a model substrate for biomaterial as it is already largely used for cardiovascular clinical applications. Firstly, CMD polymers were characterized by FTIR, 1H-NMR, and conductimetric titration. Then, the coatings have been analyzed by XPS to confirm the grafting and determine the composition. Once characterized, biological performances of CMD coatings were investigated. The hemocompatibility was ascertained using the free hemoglobin method. The effects on endothelial and smooth muscle cell adhesion were also studied. Results indicated that CMD at a 0.2 substitution degree, significantly influenced the biological property of PTFE by exhibiting non-thrombogenic properties as well as enhancing endothelial cell adhesion along with limiting smooth muscle cell adhesion. This work suggested the creation of versatile pro-active biomaterials suitable for different biomedical applications. PMID:25482414

  20. BRDF Calibration of Sintered PTFE in the SWIR

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.

    2009-01-01

    Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in their pre-flight calibrations and ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Facility at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NEST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. Currently the Diffuser Calibration Facility extended the covered spectral range from 900 nm up to 1.7 microns. The measurements were made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was setup. Broadband light source application is under development. Gray-scale sintered PTFE samples were used at these first trials, illuminated with P and S polarized incident light. The results are discussed and compared to empirically generated BRDF data from simple model based on 8 deg directional/hemispherical measurements.

  1. Impact damages modeling in laminated composite structures

    Directory of Open Access Journals (Sweden)

    Kreculj Dragan D.

    2014-01-01

    Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.

  2. Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators.

    Science.gov (United States)

    Zhao, Pengfei; Soin, Navneet; Prashanthi, Kovur; Chen, Jinkai; Dong, Shurong; Zhou, Erping; Zhu, Zhigang; Narasimulu, Anand Arcot; Montemagno, Carlo D; Yu, Liyang; Luo, Jikui

    2018-02-14

    Electrospinning is a simple, versatile technique for fabricating fibrous nanomaterials with the desirable features of extremely high porosities and large surface areas. Using emulsion electrospinning, polytetrafluoroethylene/polyethene oxide (PTFE/PEO) membranes were fabricated, followed by a sintering process to obtain pure PTFE fibrous membranes, which were further utilized against a polyamide 6 (PA6) membrane for vertical contact-mode triboelectric nanogenerators (TENGs). Electrostatic force microscopy (EFM) measurements of the sintered electrospun PTFE membranes revealed the presence of both positive and negative surface charges owing to the transfer of positive charge from PEO which was further corroborated by FTIR measurements. To enhance the ensuing triboelectric surface charge, a facile negative charge-injection process was carried out onto the electrospun (ES) PTFE subsequently. The fabricated TENG gave a stabilized peak-to-peak open-circuit voltage (V oc ) of up to ∼900 V, a short-circuit current density (J sc ) of ∼20 mA m -2 , and a corresponding charge density of ∼149 μC m -2 , which are ∼12, 14, and 11 times higher than the corresponding values prior to the ion-injection treatment. This increase in the surface charge density is caused by the inversion of positive surface charges with the simultaneous increase in the negative surface charge on the PTFE surface, which was confirmed by using EFM measurements. The negative charge injection led to an enhanced power output density of ∼9 W m -2 with high stability as confirmed from the continuous operation of the ion-injected PTFE/PA6 TENG for 30 000 operation cycles, without any significant reduction in the output. The work thus introduces a relatively simple, cost-effective, and environmentally friendly technique for fabricating fibrous fluoropolymer polymer membranes with high thermal/chemical resistance in TENG field and a direct ion-injection method which is able to dramatically improve the

  3. Glucocorticoids and laminitis in the horse.

    Science.gov (United States)

    Johnson, Philip J; Slight, Simon H; Ganjam, Venkataseshu K; Kreeger, John M

    2002-08-01

    The administration of exogenously administered GCs and syndromes associated with GC excess are both attended by increased risk for the development of laminitis in adult horses. However, there exists substantial controversy as to whether excess GCs cause laminitis de novo. If true, the pathogenesis of laminitis arising from the effects of GC excess is probably different from that associated with diseases of the gastrointestinal tract and endotoxemia. Although a satisfactory explanation for the development of laminitis as a consequence of GC action is currently lacking, numerous possible and plausible theoretical mechanisms do exist. Veterinarians must exert caution with respect to the use of GCs in adult horses. The extent to which individual horses are predisposed to laminitis as a result of GC effect cannot be predicted based on current information. However, the administration of systemic GCs to horses that have been previously affected by laminitis should be used only with extreme caution, and should be accompanied by careful monitoring for further signs of laminitis. The risk of laminitis appears to be greater during treatment using some GCs (especially dexamethasone and triamcinalone) compared with others (prednisone and prednisolone). Whenever possible, to reduce the risk of laminitis, GCs should be administered locally. For example, the risk of GC-associated laminitis is evidently considerably reduced in horses affected with chronic obstructive pulmonary disease (COPD) if GC treatment is administered via inhalation. We have hypothesized that structural changes in the equine hoof that resemble laminitis may arise as a consequence of excess GC effect. Although these changes are not painful per se, and are not associated with inflammation, they could likely predispose affected horses to the development of bona fide laminitis for other reasons. Moreover, the gross morphological appearance of the chronically GC-affected hoof resembles that of a chronically

  4. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  5. Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances

    International Nuclear Information System (INIS)

    Jang, Jong H.; Machida, Kenji; Kim, Yuri; Naoi, Katsuhiko

    2006-01-01

    The effect of PTFE addition was investigated for the electrophoretic deposition (EPD) of hydrous ruthenium oxide electrodes. Mechanical stability of electrode layers, together with deposition yield, was enhanced by using hydrous ruthenium oxide/PTFE dispersions. High supercapacitor performance was obtained for the electrodes prepared with 2% PTFE and 10% water. When PTFE content was higher, the rate capability became poor with low electronic conductivity; higher water content than 10% resulted in non-uniform depositions with poor cycleability and power capability. When electrodes were heat treated at 200 deg. C for 10 h, the specific energy was as high as 17.6 Wh/kg based on single electrode (at 200 W/kg); while utilizable energy was lower with heat treatment time of 1 and 50 h, due to the high resistance and gradual crystallization, respectively. With PTFE addition and heat treatment at 200 deg. C for 10 h, the specific capacitance was increased by 31% (460 → 599 F/g at ca. 0.6 mg/cm 2 ) at 10 mV/s, and the deposition weight was increased up to 1.7 mg/cm 2 with initial capacitance of 350 F/g

  6. Thermal and radiation process for nano-/micro-fabrication of crosslinked PTFE

    International Nuclear Information System (INIS)

    Kobayashi, Akinobu; Oshima, Akihiro; Okubo, Satoshi; Tsubokura, Hidehiro; Takahashi, Tomohiro; Oyama, Tomoko Gowa; Tagawa, Seiichi; Washio, Masakazu

    2013-01-01

    Nano-/micro-fabrication process of crosslinked poly(tetrafluoroethylene) (RX-PTFE) is proposed as a novel method using combined process which is thermal and radiation process for fabrication of RX-PTFE (TRaf process). Nano- and micro-scale patterns of silicon wafers fabricated by EB lithography were used as the molds for TRaf process. Poly(tetrafluoroethylene) (PTFE) dispersion was dropped on the fabricated molds, and then PTFE was crosslinked with doses from 105 kGy to 1500 kGy in its molten state at 340 °C in nitrogen atmosphere. The obtained nano- and micro-structures by TRaf process were compared with those by the conventional thermal fabrication process. Average surface roughness (R a ) of obtained structures was evaluated with atomic force microscope (AFM) and scanning electron microscope (SEM). R a of obtained structures with the crosslinking dose of 600 kGy showed less than 1.2 nm. The fine nano-/micro-structures of crosslinked PTFE were successfully obtained by TRaf process

  7. Comparison of FLIXENE™ and standard PTFE arteriovenous graft for early haemodialysis.

    Science.gov (United States)

    Chiang, Nathaniel; Hulme, Katherine Ria; Haggart, Paul Charles; Vasudevan, Thodur

    2014-01-01

    The purpose is to compare the outcomes of FLIXENE™ arteriovenous graft (AVG) to standard polytetrafluoroethylene (PTFE) AVG for early haemodialysis. This is a prospective observational study of all AVGs placed over a 40-month period between 2008 and 2011 at our vascular unit. Primary outcome was to examine early cannulation rates for FLIXENE™. Secondary outcomes included patency rates, usability of grafts, complications in particular infections, interventions and death in comparison to standard PTFE grafts. Forty-five FLIXENE™ and 19 standard PTFE AVGs were placed in the study period; 89% of FLIXENE™ grafts were used for dialysis, with 78% cannulated within 3 days. At 18 months, primary patency (FLIXENE™ 34% vs standard PTFE 24%), primary assisted patency (35% vs 36%) and secondary patency rate (51% vs 48%) were not statistically different; 20.2% of FLIXENE™ grafts were infected at 18 months requiring explantation compared with 40.3% of standard PTFE grafts (p=0.14). FLIXENE™ can be cannulated for dialysis within 3 days. It has similar patency and complication rates as other prosthetic grafts in the market. In patients who have no access and require urgent dialysis, FLIXENE™ is a viable option.

  8. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-01-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 10 16 ions/cm 2 , cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 10 17 ions/cm 2 , the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  9. Biocompatibility assessment of porous chitosan-Nafion and chitosan-PTFE composites in vivo.

    Science.gov (United States)

    Liu, Bo-Ji; Ma, Li-Nan; Su, Juan; Jing, Wei-Wei; Wei, Min-Jie; Sha, Xian-Zheng

    2014-06-01

    Chitosan (CS) is widely used as a scaffold material in tissue engineering. The objective of this study was to test whether porous chitosan membrane (PCSM) coating for Nafion used in implantable sensor reduced fibrous capsule (FC) density and promoted superior vascularization compared with PCSM coating for polytetrafluoroethylene (PTFE). PCSM was fabricated with solvent casting/particulate leaching method using silica gel as porogen and characterized in vitro. Then, PCSM-Nafion and PCSM-PTFE composites were assembled with hydrated PCSM and implanted subcutaneously in rats. The histological analysis was performed in comparison with Nafion and PTFE. Implants were explanted 35, 65, and 100 days after the implantation. Histological assessments indicated that both composites achieved presumed effects of porous coatings on decreasing collagen deposition and promoting angiogenesis. PCSM-PTFE exerted higher collagen deposition by area ratio, both within and outside, compared with that of PCSM-Nafion. Angiogenesis within and outside the PCSM-Nafion both increased over time, but that of the PCSM-PTFE within decreased. Copyright © 2013 Wiley Periodicals, Inc.

  10. Production of porous PTFE-Ag composite thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kecskeméti, Gabriella; Hopp, Béla; Smausz, Tomi; Tóth, Zsolt; Szabó, Gábor

    2012-01-01

    The suitability of pulsed laser deposition technique for preparation of polytetrafluoroethylene (PTFE) and silver (Ag) composite thin films was demonstrated. Disk-shaped targets combined from silver and Teflon with various percentages were ablated with pulses of an ArF excimer laser. The chemical composition of the deposited layers was estimated based on deposition rates determined for the pure PTFE and Ag films. EDX and SEM analyses using secondary electron and backscattered electron images proved that the morphology of the layers is determined by the PTFE which is the main constituent and it is transferred mostly in form of grains and clusters forming a sponge-like structure with high specific surface. The Ag content is distributed over the surface of the PTFE structure. Contact angle measurements showed that with increasing the amount of Ag in the deposited layers the surface significantly enhanced the wetting properties. Conductivity experiments demonstrated that when the average silver content of the layers was increased from 0.16 to 3.28 wt% the resistance of our PTFE-Ag composite films decreased with about three orders of magnitudes (from ∼10 MΩ to ∼10 kΩ). The properties of these films suggest as being a good candidate for future electrochemical sensor applications.

  11. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.

    Science.gov (United States)

    Huang, Kang; McLandsborough, Lynne A; Goddard, Julie M

    2016-01-01

    Biofilm control remains a challenge to food safety. A well-studied non-fouling coating involves codeposition of polytetrafluoroethylene (PTFE) during electroless plating. This coating has been reported to reduce foulant build-up during pasteurization, but opportunities remain in demonstrating its efficacy in inhibiting biofilm formation. Herein, the initial adhesion, biofilm formation, and removal kinetics of Bacillus cereus on Ni-PTFE-modified stainless steel (SS) are characterized. Coatings lowered the surface energy of SS and reduced biofilm formation by > 2 log CFU cm(-2). Characterization of the kinetics of biofilm removal during cleaning demonstrated improved cleanability on the Ni-PTFE coated steel. There was no evidence of biofilm after cleaning by either solution on the Ni-PTFE coated steel, whereas more than 3 log and 1 log CFU cm(-2) of bacteria remained on the native steel after cleaning with water and an alkaline cleaner, respectively. This work demonstrates the potential application of Ni-PTFE non-fouling coatings on SS to improve food safety by reducing biofilm formation and improving the cleaning efficiency of food processing equipment.

  12. Microwave plasma initiated graft copolymerization modification of monomers onto PTFE surface

    International Nuclear Information System (INIS)

    Guan Weishu; Wen Yunjian; Fang Yan; Yin Yongxiang

    1996-02-01

    A graft copolymerization modification technique of monomers onto polytetrafluoroethylene (PTFE) surface initiated by a 2.45 GHz non-equilibrium microwave plasma has been investigated. Standard X-Ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (sEM) and wetting techniques were used for examination and analysis of samples. Considerable changes in chemical structure, composition and in morphology of grafted surface of PTFE were found. Results showed the occurrence of noticeable defluorination and cross-linked structure on grafted surface, and indicated that different kinds and contents of oxygen-containing functional groups were introduced into the surface of PTFE. Wetting and adhesion experiment of the sample proved that significant improvements in hydrophilicity and adhesion of surface were exhibited. These results confirmed the success of grafting. (8 refs., 7 figs., 1 tab.)

  13. Carbon protrusions on PTFE surface prepared by ion irradiation and chemical defluorination

    Science.gov (United States)

    Kobayashi, T.; Iwaki, M.

    2006-01-01

    A surface of PTFE was covered with small protrusions by ion-beam irradiation. In this study, we converted PTFE protrusions into carbon protrusions by a defluorination (carbonization) process using sodium vapor. The morphology, composition and structure were analyzed by SEM-EDX, Raman spectroscopy and TEM. The irradiated PTFE sheets were packed in evacuated glass tubes with a sodium block and kept at 473 K for 2-48 h. The samples were then rinsed in HCl and distilled water to remove NaF precipitates. The EDX measurement showed that the NaF precipitates were completely removed by washing, and the percentage of carbon atoms was controlled from 60% to 99% by the treatment. Raman spectra showed that graphite structures grow during the defluorination process. TEM micrographs showed that the protrusions have a bubble structure and are covered with a thin wall. The carbonized protrusions were conductive and grew perpendicular to the substrate.

  14. Influence of porous PTFE/LDPE/PP composite electret in skin ultrastructure

    International Nuclear Information System (INIS)

    Jiang, J; Liang, Y Y; Tang, Y; Ye, X T; Yang, Y J; Song, M H; Cui, L L; Hou, X M

    2008-01-01

    Corona charging and heat melting method were used to prepare porous PTFE electret and porous PTFE/LDPE/PP composite electret, respectively. After 0.5, 1, 1.5, 3 and 4 hour's action of fluorescein sodium (FINa) and -300V porous PTFE/LDPE/PP composite electret on the excised abdominal skin of rat, the skin structure was studied by means of scanning electron microscopy, transmission electron microscopy and confocal laser scanning microscopy, respectively, to probe the mechanism of electret on transdermal drug delivery. The results indicated that negative electret could increase the transdermal delivery of FINa due to its effect on changing the organized structure of stratum corneum, enlarging the hair follicles, which may be the mechanism of electret in enhancing transdermal drug delivery.

  15. Characterization of structural modifications induced by x radiation on poly-tetra-fluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Takata, Neide H.

    1995-01-01

    This work deal mainly with the effect induced by X-ray radiation in PTFE as sheet and powder, and the characterization of unirradiated and irradiated samples. Several techniques such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman scattering, infrared photoacoustic spectroscopy (PAS) and electronic absorption spectroscopy were used to characterize the PTFE samples. The irradiation dose up to 640 kGy promoted a slight increase in the crystallinity degree of PTFE, which has been observed by X-ray diffraction, in DSC curves and in the PA spectra. For more than 640 kGy doses, the crystallinity degree remains constant. The increase in crystallinity can be attributed to the scissions of the chain in the amorphous region. (author). 87 refs., 18 figs., 3 tabs

  16. Annealing induced morphological modifications in PTFE films deposited by magnetron sputtering

    Science.gov (United States)

    Tripathi, S.; De, Rajnarayan; Rao, K. Divakar; Haque, S. Maidul; Misal, J. S.; Prathap, C.; Das, S. C.; Ganesan, V.; Sahoo, N. K.

    2017-05-01

    As grown RF magnetron sputtered polytetrafluoroethylene (PTFE) thin films were subjected to vacuum annealing at optimized elevated temperature of 200° C for varying time duration and corresponding surface morphological changes were recorded. The columnar structures appearing after an annealing duration of 2 hours are interesting for fabrication of rough PTFE surfaces towards possible applications in hydrophobicity along with high transmission. Supported by transmission data, the AFM images show a transformation of smooth PTFE surface with less than 2 nm rms roughness to a very rough surface. The results are interpreted in terms of thermal energy induced modifications only at the surface without any change in the original bonding structure on the surface and inside the sample. Preliminary studies indicate that the optimization of roughness and transmission together on such surfaces may lead to high water contact angles.

  17. Effect of gamma and neutron irradiation on the mechanical properties of Spectralon™ porous PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Gourdin, William H., E-mail: gourdin1@llnl.gov [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA USA (United States); Datte, Philip; Jensen, Wayne; Khater, Hesham; Pearson, Mark [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA USA (United States); Girard, Sylvain [Laboratoire Hubert Curien − UMR CNRS 5516, 18 rue du Pr. Benoît Lauras, F-42000 Saint Etienne (France); Paillet, Philippe; Alozy, Eric [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-11-15

    Highlights: • The effects of neutrons and gammas on PTFE are equivalent for a given absorbed dose. • A neutron fluence of 10{sup 13} n/cm{sup 2} corresponds to a gamma dose of 200 Gy. • The dose-to-fluence conversion factor is approximately 5 × 10{sup 10} n/(cm{sup 2}-Gy). • Irradiation in a low-oxygen environment enhances loads and elongations. • Mechanical properties of PTFE will deteriorate at a neutron fluence of 10{sup 13} n/cm{sup 2}. - Abstract: We establish a correspondence between the mechanical properties (maximum load and failure elongation) of Spectralon™ porous PTFE irradiated with 14 MeV neutrons and 1.17 and 1.33 MeV gammas from a cobalt-60 source. From this correspondence we infer that the effects of neutrons and gammas on this material are approximately equivalent for a given absorbed dose.

  18. Fabrication of micro-prominences on PTFE surface using proton beam writing

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akane, E-mail: ogawa.akane@jaea.go.jp [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan); Satoh, Takahiro; Koka, Masashi [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan); Kobayashi, Tomohiro [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 350-0198 (Japan); Kamiya, Tomihiro [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan)

    2013-07-01

    Polytetrafluoroethylene (PTFE) is a typical fluoropolymer and it has several desirable technological properties such as electrical insulation, solid lubrication etc. However, the conventional microstructuring methods have not been well applied to PTFE due to its chemical inertness. Some effective micromachining using synchrotron radiation or ion beam irradiation has been reported. In this study, we create micro-prominences by raising the original surface using proton beam writing (PBW) without chemical etching. A conical prominence was formed by spiral drawing from the center with a 3 MeV proton beam. The body was porous, and the bulk PTFE below the prominence changed to fragmented structures. With decreasing writing speed, the prominence became taller but the height peaked. The prominence gradually reduced in size after the speed reached the optimum value. We expect that these porous projections with high aspect ratio will be versatile in medical fields and microelectromechanical systems (MEMS) technology.

  19. Active screen cage pulsed dc discharge for implanting copper in polytetrafluoroethylene (PTFE)

    Science.gov (United States)

    Zaka-ul-Islam, Mujahid; Naeem, Muhammad; Shafiq, Muhammad; Sitara; Jabbar Al-Rajab, Abdul; Zakaullah, Muhammad

    2017-07-01

    Polymers such as polytetrafluoroethylene (PTFE) are widely used in artificial organs where long-term anti-bacterial properties are required to avoid bacterial proliferation. Copper or silver ion implantation on the polymer surface is known as a viable method to generate long-term anti-bacterial properties. Here, we have tested pulsed DC plasma with copper cathodic cage for the PTFE surface treatment. The surface analysis of the treated specimens suggests that the surface, structural properties, crystallinity and chemical structure of the PTFE have been changed, after the plasma treatment. The copper release tests show that copper ions are released from the polymer at a slow rate and quantity of the released copper increases with the plasma treatment time.

  20. Engineering based assessment for a shape design of a pediatric ePTFE pulmonary conduit valve.

    Science.gov (United States)

    Tsuboko, Yusuke; Shiraishi, Yasuyuki; Yamada, Akihiro; Yambe, Tomoyuki; Miura, Hidekazu; Mura, Seitaro; Yamagishi, Masaaki

    2016-08-01

    The authors examined the hemodynamic characteristics of expanded polytetrafluoroethylene (ePTFE) pulmonary valved conduits quantitatively by our originally developed pediatric pulmonary mechanical circulatory system, in order to suggest the optimal shape design. The system consisted of pneumatically driven right atrium and ventricle model, a pulmonary valve chamber, and elastic pulmonary compliance model with peripheral vascular resistance units, a venous reservoir. We employed two different types of ePTFE valve and evaluated the relationship between the leaflets motion and hemodynamic characteristics by using a high-speed video camera. As a result, we successfully reproduced hemodynamic simulations in our pediatric pulmonary mock system. We confirmed that the presence of bulging sinuses in the pulmonary valved conduit reduced the transvalvular energy loss and increased the valve opening area during systolic period. Our engineering-based in vitro analysis could be useful for proposing a shape design optimization of sophisticated pediatric ePTFE pulmonary valve.

  1. Characterization of Thermo-Elastic Properties and Microcracking Behaviors of CFRP Laminates Using Cup-Stacked Carbon Nanotubes (CSCNT) Dispersed Resin

    Science.gov (United States)

    Yokozeki, Tomohiro; Iwahori, Yutaka; Ishiwata, Shin

    This study investigated the thermo-elastic properties and microscopic ply cracking behaviors in carbon fiber reinforced nanotube-dispersed epoxy laminates. The nanocomposite laminates used in this study consisted of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional nanocomposite laminates were evaluated, and quasi-static and fatigue tension tests of cross-ply laminates were carried out in order to observe the damage accumulation behaviors of matrix cracks. Clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was concluded that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, and specifically, the former was the main contribution to the retardation of matrix crack formation.

  2. Molecular level analyses of mechanical properties of PTFE sterilized by Co-60 γ-ray irradiation for clinical use

    Science.gov (United States)

    Furuta, Masakazu; Matsugaki, Aira; Nakano, Takayoshi; Hirata, Isao; Kato, Koichi; Oda, Takashi; Sato, Mamoru; Okazaki, Masayuki

    2017-10-01

    Recently, Co-60 gamma-ray irradiation has become markedly popular for the sterilization of biomedical materials, including expanded PTFE. However, its effect on the properties of PTFE has not been thoroughly examined. In this study, changes in the properties of PTFE before and after irradiation were analyzed physicochemically and discussed crystallographically. The tensile breaking strengths of PTFE decreased markedly on irradiation at 1 kGy, and were maintained at almost one fourth of the original value (44.3±2.5 N/mm2) ranging from 5 to 100 kGy. XPS analysis indicated that the atomic concentrations of carbon (C) and fluorine (F) of PTFE were not different among samples irradiated at various dosages. Raman spectra of PTFE showed a slight increase of the absorption peak intensity at 735 cm-1 in an irradiation dosage-dependent manner. X-ray diffraction showed that the crystal size of PTFE (56.7±1.0 nm) became smaller after radiation at 100 kGy (48.5±0.6 nm). These results are consistent with the above results of Raman analysis. It is suggested that the observed changes in the mechanical properties of PTFE may be due to nano-scale C-C bond scission by gamma ray irradiation, and not due to the formation of micro-scale cracks.

  3. Radiation syntheses and characteristics of PTFE-g-PSSA ion exchange membranes for applications in vanadium redox battery

    International Nuclear Information System (INIS)

    Peng Jinfen; Qiu Jinyi; Zhai Maolin; Xu Peng; Peng Jing; Li Jiuqiang; Wei Genshuan

    2006-01-01

    Radiation-induced grafting of styrene onto polyterafluorothylene (PTFE) films was studied by simultaneous irradiation technique. The grafting was induced by 60 Co γ-rays at room temperatures. Effects of the solvent, absorbed dose, dose rate, atmosphere and initial monomer concentration on the grafting yield were investigated and optimal grafting conditions were obtained. Subsequently, sulphonation of the grafted PTFE films (PTFE-g-PS) was investigated and a series of ion exchange membranes (PTFE-g-PSSA) was prepared. FTIR, TGA, XRD and SEM measurements showed that grafting and sulfonation of the PTFE films were successfully carried out; moreover, grafting of styrene mainly occurred in the pores of PTFE films and crystallization degree of the PTFE films decreased with increase grafting yield. Water uptake, ion exchange capacity (IEC) and conductivity of the PTFE-g-PSSA membrane increased with the grafting yield. The results indicated that by 20 kGy irradiation, ion exchange membrane which was suitable for vanadium redox battery can be prepared. (authors)

  4. Preparation and characterization of PTFE coating in new polymer quartz piezoelectric crystal sensor for testing liquor products

    International Nuclear Information System (INIS)

    Gu Yu; Li Qiang

    2015-01-01

    A new method was developed based on the electron beam vacuum dispersion (EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating’s thickness was designed for the new EBVD equipment according to the quartz crystal microbalance (QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder (purity ≥ 99.99%) as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy (SEM), the structure of the PTFE polymer coating’s column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating. (paper)

  5. A fine surface roughness electroless Ni–P–PTFE composite modified stamper for light guide plate application

    International Nuclear Information System (INIS)

    Pan, K; Fu, C

    2010-01-01

    Electroless Ni–P–PTFE composite coating technology takes advantage of the beneficial properties from both Ni–P alloy and PTFE, such as good wear resistance, good anti-adhesion, dry lubrication, low coefficient of friction and good corrosion resistance. It has been applied in many mold industries. However, the Ni–P–PTFE composite coating suffers from bad surface roughness, when the PTFE particles incorporate into a Ni–P matrix. This severely hampers the technology to be applied to optical grade applications. In this paper, we propose a trick to generate a fine surface roughness (FSR) electroless Ni–P–PTFE composite to modify a nickel stamper. Using this new method, the nickel stamper can be covered by a Ni–P–PTFE functional layer and can keep the original surface property at the same time, namely the optical properties. We have chosen 4.5 inch (97 mm × 59 mm × 0.6 mm) light guide plates (LGPs) to demonstrate the effectiveness of the procedure. For the sake of comparison, the LGPs were produced by injection molding with three kinds of stampers including an original SUS430 master, an electroless Ni–P–PTFE composite coated nickel stamper and an FSR electroless Ni–P–PTFE composite modified stamper. We measured and discussed the optical performances at both the element level and system level, namely complete back light units.

  6. Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family.

    Science.gov (United States)

    Schilf, Paul; Peter, Annette; Hurek, Thomas; Stick, Reimer

    2014-07-01

    Lamin proteins are found in all metazoans. Most non-vertebrate genomes including those of the closest relatives of vertebrates, the cephalochordates and tunicates, encode only a single lamin. In teleosts and tetrapods the number of lamin genes has quadrupled. They can be divided into four sub-types, lmnb1, lmnb2, LIII, and lmna, each characterized by particular features and functional differentiations. Little is known when during vertebrate evolution these features have emerged. Lampreys belong to the Agnatha, the sister group of the Gnathostomata. They split off first within the vertebrate lineage. Analysis of the sea lamprey (Petromyzon marinus) lamin complement presented here, identified three functional lamin genes, one encoding a lamin LIII, indicating that the characteristic gene structure of this subtype had been established prior to the agnathan/gnathostome split. Two other genes encode lamins for which orthology to gnathostome lamins cannot be designated. Search for lamin gene sequences in all vertebrate taxa for which sufficient sequence data are available reveals the evolutionary time frame in which specific features of the vertebrate lamins were established. Structural features characteristic for A-type lamins are not found in the lamprey genome. In contrast, lmna genes are present in all gnathostome lineages suggesting that this gene evolved with the emergence of the gnathostomes. The analysis of lamin gene neighborhoods reveals noticeable similarities between the different vertebrate lamin genes supporting the hypothesis that they emerged due to two rounds of whole genome duplication and makes clear that an orthologous relationship between a particular vertebrate paralog and lamins outside the vertebrate lineage cannot be established. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Wettability of graphene-laminated micropillar structures

    International Nuclear Information System (INIS)

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun; Park, Ji-Hoon; Ahn, Joung Real

    2014-01-01

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues

  8. Wettability properties of PTFE/ZnO nanorods thin film exhibiting UV-resilient superhydrophobicity

    International Nuclear Information System (INIS)

    Bayat, A.; Ebrahimi, M.; Nourmohammadi, A.; Moshfegh, A.Z.

    2015-01-01

    Highlights: • Thin layer of Teflon was deposited on ZnO nanorods using RF sputtering technique. • Water contact angle was measured from 3° for ZnO to 160° for the PTFE/ZnO. • Very low contact angle hysteresis of ∼2° and sliding angle of ∼1° was measured. • Excellent stability under UV illumination was observed for the PTFE/ZnO sample. • We have proposed a model to describe wettability property supporting our data. - Abstract: In this research, initially anodization process was used to fabricate ZnO nanorods on Zn substrate and then RF sputtering technique was applied to grow a thin layer of polytetrafluoroethylene (PTFE, Teflon) on the coated ZnO nanorods for producing a superhydrophobic surface. According to scanning electron microscopy (SEM) observations, ZnO nanorods were formed with average diameter and length of about ∼180 nm and 14 μm, respectively. Superhydrophilic property of ZnO nanorods and superhydrophobic property of PTFE/ZnO nanorods was investigated by water contact angle (WCA) measurements. It was found that the contact angle varied with the PTFE deposition time. The highest contact angle measurement was obtained at 160° for the PTFE (60 min coating)/ZnO as optimum sample which indicates its superhydrophobic property. X-ray photoelectron spectroscopy (XPS) determined surface chemical composition and F/C ratio of about 1.27 for this sample. A change of water contact angle from 3° to 160° indicates transition from superhydrophilic to superhydrophobic state. Very low contact angle hysteresis (CAH) of ∼2° and sliding angle (SA) of ∼1° as well as unchanged contact angle under UV illumination was observed for the synthesized optimum PTFE/ZnO sample exhibits an excellent superhydrophobic property. Based on our data analysis, the ZnO nanorods and the PTFE/ZnO nanorods obey Wenzel and Cassie–Baxter model, respectively

  9. Friction transfer of polytetrafluoroethylene (PTFE) to produce nanoscale features and influence cellular response in vitro.

    Science.gov (United States)

    Kearns, V R; Doherty, P J; Beamson, G; Martin, N; Williams, R L

    2010-07-01

    A large number of cell types are known to respond to chemical and topographical patterning of substrates. Friction transfer of polytetrafluoroethylene (PTFE) onto substrates has been shown to produce continuous, straight, parallel nanofibres. Ammonia plasma treatment can be used to defluorinate the PTFE, decreasing the dynamic contact angle. Fibroblast and epithelial cells were elongated and oriented with their long axis parallel to the fibres, both individually and in clusters. The fibres restricted cell migration. Cell alignment was slightly reduced on the plasma-treated fibres. These results indicated that although surface topography can affect cellular response, surface chemistry also mediates the extent of this response.

  10. Sodium fill of FFTF

    International Nuclear Information System (INIS)

    Waldo, J.B.; Greenwell, R.K.; Keasling, T.A.; Collins, J.R.; Klos, D.B.

    1980-02-01

    With construction of the Fast Flux Test Facility (FFTF) completed, the first major objective in the startup program was to fill the sodium systems. A sodium fill sequence was developed to match construction completion, and as systems became available, they were inerted, preheated, and filled with sodium. The secondary sodium systems were filled first while dry refueling system testing was in progress in the reactor vessel. The reactor vessel and the primary loops were filled last. This paper describes the methods used and some of the key results achieved for this major FFTF objective

  11. Tl response of KMgF{sub 3}: Lu + PTFE at ultraviolet radiation; Respuesta Tl de KMgF{sub 3}: Lu + PTFE a radiacion ultravioleta

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P R [Instituto Nacional de Investigaciones Nucleares, A.P. 18 -1027, 11801 Mexico D.F. (Mexico); Alarcon, N G [Facultad de Quimica, Universidad Autonoma del Estado de Mexico. Paseo Tollocan, Esq. con Jesus Carranza, 50180 Toluca, Estado de Mexico (Mexico); Furetta, C; Azorin, J [Universidad Autonoma Metropolitana- Iztapalapa, San Rafael Atlixco 186, 09340 Mexico. D.F. (Mexico)

    2003-07-01

    Ionizing radiation has different types of interaction with a crystalline solid. However, only few effects are interesting to optimize some thermoluminescent (Tl) properties of certain Tl materials. This paper presents results obtained by irradiating KMgF{sub 3}: Lu + Ptfe Tl dosimeters with ultraviolet (UV) radiation previously exposed to gamma radiation. These results showed that those dosimeters not exposed previously to gamma radiation did not presented any Tl signal. Meanwhile, those previously submitted to gamma irradiation showed that their sensitivity was increased as the gamma dose increased. The glow curve of sensitized KMgF{sub 3}: Lu + Ptfe exposed to UV radiation, presented the dosimetric pea at 212 C. This makes this material to be promissory for measuring UV radiation. (Author)

  12. Dosimetric characterization of KMgF{sub 3}:Tb+PTFE; Caracterizacion dosimetrica de KMgF{sub 3}:Tb+PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez R, M. I.; Garcia S, L.; Villicana M, M.; Huirache A, R.; Apolinar C, J. [Universidad Michoacana de San Nicolas de Hidalgo, Facultad de Ingenieria Quimica, Francisco J. Mujica s/n, Ciudad Universitaria, Col. Felicitas del Rio, 58030 Morelia, Michoacan (Mexico); Gonzalez M, P. R., E-mail: itcraf_15@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-10-15

    In this work the results obtained from the dosimetric characterization of the new radiation detectors of KMgF{sub 3}:Tb+PTFE are presented. The host salt was obtained by means of the microwave technique, with the polycrystalline powder obtained, dosimeters were made in tablet form, using as Ptfe binder. The thermoluminescent response of these new detectors presented a linear behavior, in the dose range between 1 and 1000 Gy of {sup 60}Co gamma radiation, the reproducibility test in the measurements, during ten cycles of heat treatment, irradiation and reading presented ± 3.7% Ds, in the stability test of thermoluminescent signal, during two months showed that the fading is practically null. Due to the results obtained, this new detector could be very useful for the dosimetry of ionizing radiation in different clinical applications. (Author)

  13. Tribological study of PTFE composites loaded with porcelain tile waste; Estudo tribologico de compositos de PTFE carregados com rejeito de porcelanato

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, P.M.; Araujo Neto, A.P.; Souza, J.R.; Medeiros, J.T.N., E-mail: plinio_rpg@hotmail.com [Universidade Federal do Rio Grande do Norte (GET/UFRN), Natal, RN (Brazil). Grupo de Estudos de Tribologia e Integridade Estrutural

    2016-07-01

    The Brazilian northeast is one of the largest producers of clays that burn in the white form and disposal of tailings from the process of polishing the ceramic pieces of porcelain stands out as a major source of environmental degradation. This problem can be reduced by adding such material as filler in composites, in order to improve the mechanical properties of the polymeric matrix. Polytetrafluoroethylene (PTFE) is characterized as a good solid lubricant, because it has excellent properties such as low coefficient of friction (0.01 < μ < 0.1), thermal stability at high temperatures and chemical resistance. However, the pure PTFE has high wear rates (greater than 10-13m2/N) leading to early failures of various components. To reuse the Tailings of Porcelain (TP), composites of PTFE + TP were developed in three different compositions (85:15, 75:25 and 65:35). For this investigation the particle size distribution and some chemical characteristics of the tailings by testing XRD, XRF, SEM and EDS were performed, registering a large amount of silica, aluminum and other metals. Roughness, wettability and sclerometry also were performed. It was noted that the values of arithmetic average roughness, Ra, is higher for composites with higher percentage of TP, in addition they have a lower contact angle and higher surface energy to distilled water, characterized as hydrophilic. The results of energy of deformation provided by the sclerometry test were non-linear. (author)

  14. Predisposing factors of laminitis in cattle.

    Science.gov (United States)

    Vermunt, J J; Greenough, P R

    1994-01-01

    Laminitis is regarded as a major predisposing factor in lameness caused by claw disorders. Despite intensive study, both by experiment and by clinical observation, knowledge of the precise aetiology and pathogenesis of bovine laminitis is still incomplete. It is often hypothesized that changes in the micro-circulation of the corum (dermis) of the bovine claw contribute significantly to the development of laminitis; arteriovenous anastomoses (AVAs) playing a crucial role. Many factors have been implicated as contributing causes of laminitis in cattle; the disease has a multifactorial aetiology. The cause of laminitis should be considered as a combination of predisposing factors leading to vascular (AVAs in particular) reactivity and inhibition of normal horn synthesis. Nutrition, disease, management and behaviour appear to be closely involved in the pathogenesis of bovine laminitis. The major factors predisposing to laminitis in cattle, as reported or suggested in the literature, are reviewed, including systemic disease, nutrition (barley grain, protein, carbohydrate and fibre), management (housing, bedding and exercise), calving, season, age, growth, genetics, conformation and behaviour.

  15. Laminitis and the equine metabolic syndrome.

    Science.gov (United States)

    Johnson, Philip J; Wiedmeyer, Charles E; LaCarrubba, Alison; Ganjam, V K Seshu; Messer, Nat T

    2010-08-01

    Although much has been written about laminitis in the context of its association with inflammatory processes, recognition is growing that most cases of laminitis examined by veterinarians in private practice are those associated with pasture grazing, obesity, and insulin resistance (IR). The term 'endocrinopathic laminitis' has been adopted to classify the instances of laminitis in which the origin seems to be more strongly associated with an underlying endocrinopathy, such as either IR or the influence of corticosteroids. Results of a recent study suggest that obesity and IR represent the most common metabolic and endocrinopathic predispositions for laminitis in horses. IR also plays an important role in the pathogenesis of laminitis that develops when some horses or ponies are allowed to graze pastures at certain times of the year. The term equine metabolic syndrome (EMS) has been proposed as a label for horses whose clinical examination results (including both physical examination and laboratory testing) suggest heightened risk for developing laminitis as a result of underlying IR. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Meshfree modeling in laminated composites

    KAUST Repository

    Simkins, Daniel Craig; Collier, Nathan; Alford, Joseph B.

    2012-01-01

    A problem of increasing importance in the aerospace industry is in detailed modeling of explicit fracture in laminated composite materials. For design applications, the simulation must be capable of initiation and propagation of changes in the problem domain. Further, these changes must be able to be incorporated within a design-scale simulation. The use of a visibility condition, coupled with the local and dynamic nature of meshfree shape function construction allows one to initiate and explicitly open and propagate holes inside a previously continuous problem domain. The method to be presented naturally couples to a hierarchical multi-scale material model incorporating external knowldege bases to achieve the goal of a practical explicit fracture modeling capability for full-scale problems. © 2013 Springer-Verlag.

  17. Meshfree modeling in laminated composites

    KAUST Repository

    Simkins, Daniel Craig

    2012-09-27

    A problem of increasing importance in the aerospace industry is in detailed modeling of explicit fracture in laminated composite materials. For design applications, the simulation must be capable of initiation and propagation of changes in the problem domain. Further, these changes must be able to be incorporated within a design-scale simulation. The use of a visibility condition, coupled with the local and dynamic nature of meshfree shape function construction allows one to initiate and explicitly open and propagate holes inside a previously continuous problem domain. The method to be presented naturally couples to a hierarchical multi-scale material model incorporating external knowldege bases to achieve the goal of a practical explicit fracture modeling capability for full-scale problems. © 2013 Springer-Verlag.

  18. Optimization for Tribological Properties of Glass Fiber-Reinforced PTFE Composites with Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Firojkhan Pathan

    2016-01-01

    Full Text Available Most recent history shows that polytetrafluoroethylene (PTFE is widely used as antifrictional materials in industry for wide speed range. A high antifriction property of PTFE makes it suitable for dry friction bearing. Main disadvantage of using PTFE is its high wear rate, so extensive research had been carried out to improve the wear resistance with addition of filler material. This study focuses on four input parameters load, sliding speed, sliding distance, and percentage of glass fiber as a filler material. Taguchi method was used for experimentation; each parameter is having 3 levels with L27 orthogonal array. Grey relational analysis is used to convert multiple response parameters, namely, wear and coefficient of friction, into single grey relation grade. The optimal input parameters were selected based on the S/N ratio. It was observed that load 3 kg, sliding speed 5.1836 m/s (900 rpm, sliding distance 2 km, and 15% of glass fiber are optimal input parameters for PTFE without significantly affecting the wear rate and coefficient of friction.

  19. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong

    2007-01-01

    The graft polymerization of acrylic acid (AAc) was carried out onto poly(tetrafluoroethylene) (PTFE) films that had been pretreated with remote argon plasma and subsequently exposed to oxygen to create peroxides. Peroxides are known to be the species responsible for initiating the graft polymerization when PTFE reacts with AAc. We chose different parameters of remote plasma treatment to get the optimum condition for introducing maximum peroxides (2.87 x 10 -11 mol/cm 2 ) on the surface. The influence of grafted reaction conditions on the grafting degree was investigated. The maximum grafting degree was 25.2 μg/cm 2 . The surface microstructures and compositions of the AAc grafted PTFE film were characterized with the water contact angle meter, Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Contact angle measurements revealed that the water contact angle decreased from 108 o to 41 o and the surface free energy increased from 22.1 x 10 -5 to 62.1 x 10 -5 N cm -1 by the grafting of the AAc chains. The hydrophilicity of the PTFE film surface was greatly enhanced. The time-dependent activity of the grafted surface was better than that of the plasma treated film

  20. Dacron or PTFE for Above-knee Femoropopliteal Bypass. A Multicenter Randomised Study

    DEFF Research Database (Denmark)

    Jensen, L. P.; Lepäntalo, M.; Fossdal, J. E.

    2007-01-01

    more often than patients operated on for intermittent claudication, 10 and 3 respectively (p=0.003), and had higher mortality rates, 20% and 8% respectively (p=0.001). CONCLUSION: This trial confirms that Dacron is at least as durable as PTFE for above-knee bypass procedures, and might even be superior....

  1. Effect of gamma radiation on dielectric and mechanical properties of modified fluoroplastic PTFE

    Science.gov (United States)

    Romanov, Boris; Kostromin, Valeriy; Bedenko, Sergey; Knyshev, Vladimir; Mukhnurov, Ilya; Matias, Rodrigo Roman

    2018-03-01

    The influence of gamma radiation on dielectric and mechanical characteristics of modified fluoroplast PTFE-4 MBK is considered in this paper. The material was exposed to Gamma-ray source GU-200 (Joint-stock company «Research Institute of Instruments», Lytkarino, Russia). The results of the research have shown that the relative permittivity and the tangent of the dielectric loss angle of PTFE-4 MBK samples at doses 4.105-1.106 Gy monotonically increase by 2.9 and 9.4%, respectively, compared to un-exposed material. The research of the mechanical properties of PTFE-4 MBK showed a maximum stress of up to 13.8 MPa and a maximum strain of 252% at doses of 8.104 Gy. It has been demonstrated that modified PTFE-4 MBK has good dielectric characteristics and withstanding high mechanical stress. We propose to use the results of the research for choosing cables and wiring location used in nuclear and space industry.

  2. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells.

    Science.gov (United States)

    Guerrini, Edoardo; Grattieri, Matteo; Faggianelli, Alessio; Cristiani, Pierangela; Trasatti, Stefano

    2015-12-01

    Influence of PTFE in the external Gas Diffusion Layer (GDL) of open-air cathodes applied to membraneless microbial fuel cells (MFCs) is investigated in this work. Electrochemical measurements on cathodes with different PTFE contents (200%, 100%, 80% and 60%) were carried out to characterize cathodic oxygen reduction reaction, to study the reaction kinetics. It is demonstrated that ORR is not under diffusion-limiting conditions in the tested systems. Based on cyclic voltammetry, an increase of the cathodic electrochemical active area took place with the decrease of PTFE content. This was not directly related to MFC productivity, but to the cathode wettability and the biocathode development. Low electrodic interface resistances (from 1 to 1.5 Ω at the start, to near 0.1 Ω at day 61) indicated a negligible ohmic drop. A decrease of the Tafel slopes from 120 to 80 mV during productive periods of MFCs followed the biological activity in the whole MFC system. A high PTFE content in the cathode showed a detrimental effect on the MFC productivity, acting as an inhibitor of ORR electrocatalysis in the triple contact zone.

  3. Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes

    Science.gov (United States)

    Siemer, Darryl D.; Lewis, Leroy C.

    1990-01-01

    A process for removing I, R, Xe and Kr which involves the passage of the off gas stream through a tube-in-shell assembly, whereby the tubing is a PTFE membrane which permits the selective passages of the gases for removing and isolating the gases.

  4. Surface modification of BMN particles with silane coupling agent for composites with PTFE

    Science.gov (United States)

    Qi, Yanyuan; Luo, Qing; Shen, Jie; Zheng, Liu; Zhou, Jing; Chen, Wen

    2017-08-01

    Polymer-ceramic dielectric composites, which possess better dielectric properties, flexibility, ease in processing and shaping since they combine the advantages of polymers and dielectric ceramics, are widely used in microwave substrate applications. In order to optimize the properties of the composites, it is necessary to enhance the compatibility between the polymer matrix and ceramic filler because of their tremendous difference. In this paper, the vinyltrimethoxysilane (VTMS) is used to modify the Ba(Mg1/3Nb2/3)O3 (BMN) ceramic particles which can improve the compatibility between BMN ceramics and PTFE and the distribution of BMN in polytetrafluoroethylene (PTFE). The modification of VTMS has no influence on the crystal structure of BMN ceramics and the compact VTMS modified BMN/PTFE composites with satisfactory uniformity and less cavities are obtained. The relative permittivity (εr) of VTMS modified BMN/PTFE composite substrate is 5.84 while the loss tangent reaches 1.5 × 10-3 at microwave frequencies (around 10 GHz).

  5. Use of PTFE patch for pericardial closure after minimal invasive LVAD implantation.

    Science.gov (United States)

    Mohite, Prashant N; Sabashnikov, Anton; Popov, Aron F; Fatullayev, Javid; Simon, André R

    2016-07-01

    The left ventricular assist device (LVAD) is now a routine therapy for advanced heart failure. The thoracotomy approach for LVAD implantation, in which the left ventricle is approached through a pericardial rent, is becoming popular. We demonstrate closure of the pericardial rent with a polytetrafluoroethylene (PTFE) patch and its advantages. © The Author(s) 2015.

  6. Modeling the constitutive and frictional behavior of PTFE flexible stamps for nanoimprint lithography

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Hattel, Jesper Henri

    2013-01-01

    was verified through an experiment, where a PTFE sheet was deformed by a steel sphere mounted in a tensile test machine. Good agreement between simulations and experimental results is found, both regarding force–displacement and corresponding principal strain measurements. As expected, applying the correct...

  7. PTFE treatment by remote atmospheric Ar/O2 plasmas : a simple reaction scheme model proposal

    NARCIS (Netherlands)

    Carbone, E.A.D.; Verhoeven, M.W.G.M.; Keuning, W.; van der Mullen, J.J.A.M.

    2016-01-01

    Polytetrafluoroethylene (PTFE) samples were treated by a remote atmospheric pressure microwave plasma torch and analyzed by water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS). In the case of pure argon plasma a decrease of WCA is observed meanwhile an increase of hydrophobicity was

  8. HEALING OF MICROVENOUS PTFE PROSTHESES IMPLANTED INTO THE RAT FEMORAL VEIN

    NARCIS (Netherlands)

    VANDERLEI, B; DIJK, F; JONGEBLOED, WL; ROBINSON, PH; Bartels, H.

    44 PTFE prostheses (Gore-Tex(R); ID 1 mm) were implanted into rats' femoral veins by means of the sleeve anastomotic technique and were evaluated at regular intervals from 1 h up till 24 weeks after implantation by means of light and electron microscopy to study in detail their healing process. All

  9. Does patency after a vein collar and PTFE-bypass depend on sex and age?

    DEFF Research Database (Denmark)

    Lundgren, F; Schroeder, Torben Veith

    2012-01-01

    Randomized studies evaluating the effect of a vein collar at the distal anastomosis of PTFE-grafts show conflicting results. The study of the Joint Vascular Research Group (JVRG) of UK found improved primary patency while the Scandinavian Miller Collar Study (SCAMICOS) found neither any effect...

  10. Gas barrier properties of diamond-like carbon films coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Nagashima, I.; Ohgoe, Y.; Hirakuri, K.K.; Mukaibayashi, H.; Masuzawa, T.

    2009-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using radio frequency (RF) plasma-enhanced chemical vapour deposition (PE-CVD). Before the DLC coating, the PTFE substrate was modified with a N 2 plasma pre-treatment to enhance the adhesive strength of the DLC to the substrate. The influences of the N 2 plasma pre-treatment and process pressure on the gas permeation properties of these DLC-coated PTFE samples were investigated. In the Raman spectra, the G peak position shifted to a lower wave number with increasing process pressure. With scanning electron microscopy (SEM), a network of microcracks was observed on the surface of the DLC film without N 2 plasma pre-treatment. The density of these cracks decreased with increasing process pressure. In the film subjected to a N 2 plasma pre-treatment, no cracks were observed at any process pressure. In the gas barrier test, the gas permeation decreased drastically with increasing film thickness and saturated at a thickness of 0.2 μm. The DLC-coated PTFE with the N 2 plasma pre-treatment exhibited a greater reduction in gas permeation than did the samples without pre-treatment. For both sample types, gas permeation decreased with increasing process pressure.

  11. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Directory of Open Access Journals (Sweden)

    Rui Weng

    2014-03-01

    Full Text Available In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE-poly-phenylene sulphide (PPS composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  12. Spray-coating process in preparing PTFE-PPS composite super-hydrophobic coating

    Science.gov (United States)

    Weng, Rui; Zhang, Haifeng; Liu, Xiaowei

    2014-03-01

    In order to improve the performance of a liquid-floated rotor micro-gyroscope, the resistance of the moving interface between the rotor and the floating liquid must be reduced. Hydrophobic treatment can reduce the frictional resistance between such interfaces, therefore we proposed a method to prepare a poly-tetrafluoroethylene (PTFE)-poly-phenylene sulphide (PPS) composite super-hydrophobic coating, based on a spraying process. This method can quickly prepare a continuous, uniform PTFE-PPS composite super-hydrophobic surface on a 2J85 material. This method can be divided into three steps, namely: pre-treatment; chemical etching; and spraying. The total time for this is around three hours. When the PTFE concentration is 4%, the average contact angle of the hydrophobic coating surface is 158°. If silicon dioxide nanoparticles are added, this can further improve the adhesion and mechanical strength of the super-hydrophobic composite coating. The maximum average contact angle can reach as high as 164° when the mass fraction of PTFE, PPS and silicon dioxide is 1:1:1.

  13. Characterization of the personal thermoluminescent dosemeter of LiF: Mg, Ti + Ptfe

    International Nuclear Information System (INIS)

    Azorin N, J.; Gutierrez C, A.; Gonzalez M, P.

    1991-01-01

    The objective of this work is to characterize the thermoluminescent dosemeters taken place in the laboratory in form of pellets of LiF: Mg, Ti + Ptfe like personal dosemeters, subjecting them to the operation tests proposed by the international standards and comparing them with the TLD-100, the Tl dosemeter more used at the moment for personal dosimetry

  14. Determination of the parameters of traps in thermoluminescent dosemeters of ZrO2: Eu + Ptfe

    International Nuclear Information System (INIS)

    Nieto H, B.; Azorin N, J.; Rivera M, T.

    2002-01-01

    In this work the manufacture of dosemeters in pellets form of ZrO 2 : Eu + Ptfe is described; which after were exposed to UV radiation (260 nm) were generated the corresponding thermoluminescent curves and in the basis to the properties of symmetry of the curves it was determined the kinetic order using the Chen and the Balarin criteria. (Author)

  15. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-11-01

    Full Text Available Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature.

  16. Thermoluminescent characteristics of CaSO4:Dy+PTFE irradiated with high energy electron beams

    International Nuclear Information System (INIS)

    Alvarez, R.; Rivera, T.; Calderon, J. A.; Jimenez, Y.; Rodriguez, J.; Oviedo, O.; Azorin, J.

    2011-10-01

    In the present work thermoluminescent response of dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO 4 :Dy+PTFE) under high electron beam irradiations from linear accelerator for clinical applications was investigated. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator Varian, C linac 2300C/D, for clinical practice purpose. The electron irradiations were obtained by using the water solid in order to guarantee electronic equilibrium conditions. Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO 4 :Dy+PTFE were conducted under high electron beams irradiations. The thermoluminescent response of the pellets showed and intensity peak centered at around 235 C. Thermoluminescent response of CaSO 4 :Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO 4 :Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. (Author)

  17. [E-PTFE Membrane for the Management of Perforated Corneal Ulcer].

    Science.gov (United States)

    Pahor, D; Pahor, A

    2016-10-01

    Purpose: To present the surgical management of perforated corneal ulcer using PRECLUDE® Pericardial Membrane, composed of expanded polytetrafluoroethylene (e-PTFE; GORE-TEX®), as an alternative surgical procedure in patients at high risk of graft rejections and to evaluate side effects for a prolonged period. Patients and Methods: The study included all patients who were admitted to our department and underwent surgical repair of perforated corneal ulcer with the e-PTFE membrane between 2010 and 2015. In total, 8 patients (8 eyes) were enrolled. Medical records of all patients were retrospectively reviewed. The operation was performed under peribulbar anaesthesia. Non-absorbable, microporous, watertight 0.1 mm thick e-PTFE membrane was used to close the corneal ulcer. The membrane was cut to overlap the defect adequately and to achieve the desired tissue attachment without preparing the conjunctiva or superficial trephination of the cornea. The membrane was fixed to the healthy cornea with several non-absorbable sutures (Prolene® 10.0), in order to achieve the proper stress without wrinkling. Results: Five of 8 patients were treated for systemic immunological diseases. Sjögren's syndrome was diagnosed in 2 patients, granulomatosis with polyangiitis in one, vasculitis with a history of previous sclerokeratitis in one and systemic lupus erythematosus in one. In 2 patients, corneal perforation was observed as a complication of corneal infection and in one patient as a late complication of a severe chemical burn. Corneal perforations were successfully covered with e-PTFE membrane in all patients. E-PTFE membrane was well tolerated in all patients and the eye was always preserved. After 3 to 4 months, the membrane was removed in 7 patients. The underlying cornea was thin, firm, stable and vascularised. In one patient with Sjögren's syndrome, the e-PTFE membrane is still in place. Conclusion: Surgical management of perforated corneal ulcer using E-PTFE membrane

  18. Indirect induction of endothelial cell injury by PU- or PTFE-mediated activation of monocytes.

    Science.gov (United States)

    Liu, Xin; Xue, Yang; Sun, Jiao

    2010-01-01

    Polyurethanes (PUs) and polytetrafluoroethylene (PTFE) are widely used for making cardiovascular devices, but thrombus formation on the surfaces of these devices is inevitable. Since endothelial injury can lead to thrombosis, most of the studies on PUs or PTFE focused on their damage to endothelial cells. However, few studies have attempted to clarify whether the use of foreign objects as biomaterials can cause endothelial injury by activating the innate immune system. In this study, we aimed to investigate the roles of PU- or PTFE-stimulated immune cells in endothelial-cell injury. First, monocytes (THP-1 cells) were stimulated with PU or PTFE for 24 h and, subsequently, human umbilical vein endothelial cells (HUVECs) were treated with the supernatants of the stimulated cells for 24 h. We measured the generation of intracellular reactive oxygen species (ROS) from THP-1 cells treated with PU and PTFE for 24 h, meanwhile hydrogen dioxide (H(2)O(2)), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the supernatants were also detected. Then, we assessed the apoptosis rate of the HUVECs and determined the expression of NO, inducible nitric oxide synthase (iNOS), and apoptosis-related proteins (p53, Bax, Bcl-2) in the HUVECs. The results showed that large amounts of ROS and low levels of pro-inflammatory cytokines (TNF-α and IL-1β) were produced by the stimulated THP-1 cells. After culturing with the supernatants of the PU- or PTFE-stimulated THP-1 cells, the apoptosis rate, NO production and expression of iNOS, p53 and Bax in the HUVECs were up-regulated, while Bcl-2 expression was down-regulated. In conclusion, the release of ROS by PU- or PTFE-treated THP-1 cells may induce iNOS expression and cause apoptosis in HUVECs via the p53, Bax and Bcl-2 proteins. These data provide the interesting finding that endothelial injury in the process of biomaterial-induced thrombosis can be initiated through the release of soluble mediators by monocytes.

  19. Drastic Improvement in Adhesion Property of Polytetrafluoroethylene (PTFE) via Heat-Assisted Plasma Treatment Using a Heater.

    Science.gov (United States)

    Ohkubo, Yuji; Ishihara, Kento; Shibahara, Masafumi; Nagatani, Asahiro; Honda, Koji; Endo, Katsuyoshi; Yamamura, Kazuya

    2017-08-25

    The heating effect on the adhesion property of plasma-treated polytetrafluoroethylene (PTFE) was examined. For this purpose, a PTFE sheet was plasma-treated at atmospheric pressure while heating using a halogen heater. When plasma-treated at 8.3 W/cm 2 without using the heater (Low-P), the surface temperature of Low-P was about 95 °C. In contrast, when plasma-treated at 8.3 W/cm 2 while using the heater (Low-P+Heater), the surface temperature of Low-P+Heater was controlled to about 260 °C. Thermal compression of the plasma-treated PTFE with or without heating and isobutylene-isoprene rubber (IIR) was performed, and the adhesion strength of the IIR/PTFE assembly was measured via the T-peel test. The adhesion strengths of Low-P and Low-P+Heater were 0.12 and 2.3 N/mm, respectively. Cohesion failure of IIR occurred during the T-peel test because of its extremely high adhesion property. The surfaces of the plasma-treated PTFE with or without heating were investigated by the measurements of electron spin resonance, X-ray photoelectron spectroscopy, nanoindentation, scanning electron microscopy, and scanning probe microscopy. These results indicated that heating during plasma treatment promotes the etching of the weak boundary layer (WBL) of PTFE, resulting in a sharp increase in the adhesion property of PTFE.

  20. Influence of bress laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay M.; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Lee, Jae Hun; Lee, Hun Ju; Moon, Seung Hyun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-09-15

    The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their Ic behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of Ic in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

  1. Mechanisms of Loss of Agricultural Odorous Compounds in Sample Bags of Nalophan, Tedlar, and PTFE.

    Science.gov (United States)

    Kasper, Pernille Lund; Oxbøl, Arne; Hansen, Michael Jørgen; Feilberg, Anders

    2018-03-01

    Alteration of the chemical composition of odor samples during storage in polymer sample bags can significantly impair the accuracy of subsequent odor evaluations. To overcome or minimize this effect, the mechanisms determining compound loss must be more thoroughly understood. The present study examines the storage stability of a selection of key odorants from livestock production in polymer sample bags of Nalophan, Tedlar, and polytetrafluoroethylene (PTFE). The compounds included are acetic acid, butanoic acid, propanoic acid, 3-methylbutanoic acid, hydrogen sulfide, methanethiol, dimethyl sulfide, trimethylamine, and 4-methylphenol. The fate of the unrecovered compound fractions is clarified by means of thermal desorption and concentric double bags, allowing estimation of the magnitude of losses due to adsorption and diffusion, respectively. The degree of recovery was found to be PTFE > Tedlar > Nalophan, and smaller ratios of bag surface area to sample volume improved the recovery significantly. Furthermore, PTFE bags were found far superior for maintaining the original sample humidity and for storing 4-methylphenol. Analysis of sample humidity, partitioning coefficients, and thermal desorption suggested that the loss in PTFE bags was mainly controlled by adsorption, whereas for Nalophan and Tedlar, compound loss is a combined effect of adsorption and diffusion. It is suggested to heat the bags when evacuating the sample for analysis, as this was found to improve the recovery significantly. For a 5-L PTFE bag, all odorants could be found at concentration levels between 71.6 and 98.8% even after 48 h of storage when heated to 57°C prior to analysis. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Acid Aging Effects on Surfaces of PTFE Gaskets Investigated by Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Giorgini

    2016-09-01

    Full Text Available This paper investigates the effect of a prolonged acid and thermal attack, on the surface of PTFE by Fourier Transform Infrared Micro-Spectroscopy (FT-IR. The materials are commercialized by two alternative producers in form of Teflon tapes. These tapes are installed in process plants where tires moulds are cleaned inside a multistage ultrasonic process. In these cases, Teflon tapes, having a role of gaskets, show inexplicably phenomena of degradation in relatively short operation periods. Even considering that these gaskets are exposed to the combined effect of ultrasonic waves, temperature, humidity and acid attack, the PTFE properties of resistance nominally exclude the possibility of these severe erosion phenomena. An interesting explanation can be related to the potential presence in the cleaning solution, mainly based on sulfamic acid, of highly reactive chemical compounds, as chlorides and fluorides, originated by the disaggregation of elements from the tire composition and/or additives used as processing aids and/or by catalytic effect generated by fluorine produced by PTFE degradation. In general, up to 300 different chemical elements, both organic and inorganic, natural and synthetic, are merged in a tire. Since this composition is practically unknown, especially regarding additives and “unusual elements”, representing a secrecy of each tire manufactures, it is really complex to define the chemical composition of the cleaning solution with an appropriate precision. As a consequence, the gaskets have been treated with different mixtures of acids in the way to combine a larger range of possibilities. Thus, the FT-IR experimental characterization of PTFE surface properties followed an appropriate accelerated aging, aiming at actuating the specific mechanics of wearing as in industrial use. The different acid treatments adopted for accelerating the aging of gaskets have highlighted the different behaviour of the PTFE matrix, but

  3. Enhanced tribological behavior of anodic films containing SiC and PTFE nanoparticles on Ti6Al4V alloy

    International Nuclear Information System (INIS)

    Li, Songmei; Zhu, Mengqi; Liu, Jianhua; Yu, Mei; Wu, Liang; Zhang, Jindan; Liang, Hongxing

    2014-01-01

    Highlights: • An environmental friendly sodium tartrate (C 4 O 6 H 4 Na 2 ) electrolyte is used. • SiC and PTFE nanoparticles reduce friction coefficient of composite films. • SiC and PTFE nanoparticles demonstrate a favorable synergistic effect on improving tribological properties of composite films. • Lubricating mechanisms of SiC and PTFE nanoparticles are discussed. - Abstract: Anodic films containing SiC and polytetrafluoroethylene (PTFE) nanoparticles were successfully fabricated on Ti6Al4V alloy by using anodic oxidation method in an environmental friendly electrolyte. The morphology, structure and composition of the films were studied with the scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results showed that the film contained a layered structure and have a surface full of petaloid bulges, which was totally different from the common anodic oxide film of the porous kind. The tribological properties of the films were investigated with dry friction tests in terms of the friction coefficient, wear rate and the morphology of worn surfaces. The results indicated that the SiC/PTFE composite film exhibited much better anti-wear and anti-friction performances than that of the SiC composite film, the PTFE composite film and the ordinary film without nanoparticles. The SiC/PTFE composite film has friction coefficient of 0.1 and wear rate of 20.133 mg/m, which was decreased respectively by 80% and 44.5% compared with that of the ordinary film. The lubricating mechanisms of the composite film containing SiC and PTFE nanoparticles were discussed. PTFE nanoparticles could lead to the formation of lubricating layer while SiC nanoparticles inside the lubricating layer turned sliding friction to rolling friction

  4. PTFE grafts versus tunneled cuffed catheters for hemodialysis: which is the second choice when arteriovenous fistula is not feasible?

    Science.gov (United States)

    Donati, Gabriele; Cianciolo, Giuseppe; Mauro, Raffaella; Rucci, Paola; Scrivo, Anna; Marchetti, Antonio; Giampalma, Emanuela; Golfieri, Rita; Panicali, Laura; Iorio, Mario; Stella, Andrea; La Manna, Gaetano; Stefoni, Sergio

    2015-02-01

    Vascular access-related complications are still one of the leading causes of morbidity in hemodialysis patients. The aim of this study was to compare polytetrafluoroethylene (PTFE) grafts versus tunneled cuffed permanent catheters (TCCs) in terms of vascular access and patients' survival. An observational study was carried out with a 2-year follow-up. Eighty-seven chronic hemodialysis patients were enrolled: 31 with a PTFE graft as vascular access for hemodialysis versus 56 with a TCC. Patients' mean age was 63.8 ± 14.6 (grafts) versus 73.5 ± 11.3 years (TCCs), P = 0.001. Significantly more patients with TCC had atrial fibrillation than patients with grafts (30.3% versus 6.5%, P = 0.01). In an unadjusted Kaplan-Meier analysis, median TCC survival at 24 months was 5.4 months longer than that of PTFE grafts but not significantly (log-rank test = 1.3, P = ns). In a Cox regression analysis adjusted for age, gender, number of previous vascular accesses, diabetes, atrial fibrillation, smoking, and any complication, this lack of significant difference in survival of the vascular access between TCC and PTFE groups was confirmed and diabetes proved to be an independent risk factor for the survival of both vascular accesses considered (P = 0.02). In an unadjusted Kaplan-Meier analysis, a higher mortality was found in the TCC group than in the PTFE group at 24 months (log-rank test = 10.07, P PTFE grafts. When an arteriovenous fistula (AVF) is not possible, PTFE grafts can be considered the vascular access of second choice, whereas TCCs can be used when an AVF or PTFE graft are not feasible or as a bridge to AVF or PTFE graft creation. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Laminate mechanics for balanced woven fabrics

    NARCIS (Netherlands)

    Akkerman, Remko

    2006-01-01

    Laminate mechanics equations are presented for composites with balanced woven fabric reinforcements. It is shown that mimicking these textile composites with equivalent transversely isotropic (‘unidirectional’) layers requires disputable manipulations. Various micromechanics predictions of textile

  6. Natural fabric sandwich laminate composites: development and ...

    Indian Academy of Sciences (India)

    3Department of Production Technology, MIT Campus, Anna University, Chennai 600044, India. MS received ... In this work, eco-friendly natural fabric sandwich laminate (NFSL) composites are formulated using ... and eco-friendly quality [22].

  7. Behaviour of Mechanically Laminated CLT Members

    Science.gov (United States)

    Kuklík, P.; Velebil, L.

    2015-11-01

    Cross laminated timber (CLT) is one of the structural building systems based on the lamination of multiple layers, where each layer is oriented perpendicularly to each other. Recent requirements are placed to develop an alternative process based on the mechanical lamination of the layers, which is of particular interest to our research group at the University Centre for Energy Efficient Buildings. The goal is to develop and verify the behaviour of mechanically laminated CLT wall panels exposed to shear stresses in the plane. The shear resistance of mechanically jointed CLT is ensured by connecting the layers by screws. The paper deals with the experimental analysis focused on the determination of the torsional stiffness and the slip modulus of crossing areas for different numbers of orthogonally connected layers. The results of the experiments were compared with the current analytical model.

  8. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.

    2011-06-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag controls; however, AgNW ss-DSC devices consistently had higher fill factors (0.6 versus 0.69), resulting in comparable power conversion efficiencies (2.7%) compared to thermally evaporated Ag control (2.8%). Laminated Ag NW electrodes enable higher throughput manufacturing and near unity material usage, resulting in a cheaper alternative to thermally evaporated electrodes. © 2011 Elsevier B.V. All rights reserved.

  9. Scarf Repair of Composite Laminates

    Directory of Open Access Journals (Sweden)

    Xie Zonghong

    2016-01-01

    Full Text Available The use of composite materials, such as carbon-fiber reinforced plastic (CFRP composites, aero-structures has led to an increased need of advanced assembly joining and repair technologies. Adhesive bonded repairs as an alternative to recover full or part of initial strength were investigated. Tests were conducted with the objective of evaluating the effectiveness of techniques used for repairing damage fiber reinforced laminated composites. Failure loads and failure modes were generated and compared with the following parameters: scarf angles, roughness of grind tool and number of external plies. Results showed that scarf angle was the critical parameter and the largest tensile strength was observed with the smallest scarf angle. Besides, the use of external plies at the outer surface could not increase the repairs efficiency for large scarf angle. Preparing the repair surfaces by sanding them with a sander ranging from 60 to 100 grit number had significant effect on the failure load. These results allowed the proposal of design principles for repairing CFRP structures.

  10. Bovine laminitis: clinical aspects, pathology and pathogenesis with reference to acute equine laminitis.

    Science.gov (United States)

    Boosman, R; Németh, F; Gruys, E

    1991-07-01

    This review deals with the features of clinical and subclinical laminitis in cattle. Prominent clinical signs of acute laminitis are a tender gait and arched back. The sole horn reveals red and yellowish discolourations within five days. In subacute and chronic cases clinical signs are less severe. In chronic laminitis the shape of the claws is altered. Laminitis is frequently followed by sole ulceration and white zone lesions. Blood tests showed no significant changes for laminitic animals. Arteriographic studies of claws affected by laminitis indicated that blood vessels had narrowed lumens. Gross pathology revealed congestion of the corium and rotation of the distal phalanx. Histopathologic studies indicate that laminitis is associated with changes of the vasculature. Peripartum management and nutrition are important factors in its aetiology. It is hypothesised that laminitis is evoked by disturbed digital circulation. In the pathogenesis of acute laminitis three factors are considered important: the occurrence of thrombosis, haemodynamic aspects of the corium, and endotoxins which trigger these pathologic events.

  11. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    Science.gov (United States)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  12. MoS2-Filled PEEK Composite as a Self-Lubricating Material for Aerospace Applications

    Science.gov (United States)

    Theiler, Geraldine; Gradt, Thomas

    2010-01-01

    At BAM, several projects were conducted in the past years dealing with the tribological properties of friction couples at cryogenic temperature and in vacuum environment. Promising candidates for vacuum application are MoS2-filled PEEK/PTFE composites, which showed a friction coefficient as low as 0.03 in high vacuum. To complete the tribological profile of these composites, further tests were performed in ultra-high vacuum (UHV) at room temperature. In this paper, friction and stick slip behavior, as well as outgassing characteristics during the test are presented.

  13. Thermoluminescent response of CaSO{sub 4}: Dy + PTFE to beta particles; Respuesta termoluminiscente de CaSO{sub 4}: Dy + PTFE a particulas beta

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre C, A.; Azorin N, J. [Colegio de Bachilleres No. 13, Xochimilco-Tepepan, 16000 Mexico D.F. (Mexico)

    2000-07-01

    In this work the results of studying the thermoluminescent properties of CaSO{sub 4}: Dy + PTFE are presented when it is irradiated with beta particles. The conclusion was the obtention of the Tl response curve in function of dose is that to desexcite the dosemeters at temperature 300 C during 30 minutes and after that were irradiated at different times in groups and to do the reading of dosemeter, it can be observed that a greater irradiation time major is the Tl response and this depends of the material has been used. (Author)

  14. Measurement of absorbed dose for high energy electron using CaSO4: Tm-PTFE TLD

    International Nuclear Information System (INIS)

    Park, Myeong Hwan; Kim, Do Sung

    2000-01-01

    In this study, the highly sensitive CaSO 4 : Tm-PTFE TLDs has been fabricated for the purpose of measurement of high energy electron. CaSO 4 : Tm phosphor powder was mixed with polytetrafluoroethylene(PTFE) powder and moulded in a disk type(diameter 8.5mm, thickness 90mg/cm 2 ) by cold pressing. The absorbed dose distribution and ranges for high energy electron were measured by using the CaSO 4 : Tm-PTFE TLDs. The ranges determined were R 100 =3D14.5mm, R 50 =3D24.1mm and R p =3D31.8mm, respectively and the beam flatness, the variation of relative dose in 80% of the field size, was 4.5%. The fabricated CaSO 4 : Tm-PTFE TLDs may be utilized in radiation dosimetry for personal, absorbed dose and environmental monitoring.=20

  15. SIMULATION OF POROSITY AND PTFE CONTENT IN GAS DIFFUSION LAYER ON PROTON EXCHANGE MEMBRANE FUEL CELL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    NUR H. MASLAN

    2016-01-01

    Full Text Available Numerous research and development activities have been conducted to optimize the operating parameters of a proton exchange membrane fuel cell (PEMFC by experiments and simulations. This study explains the development of a 3D model by using ANSYS FLUENT 14.5 to determine the optimum PEMFC parameters, namely, porosity and polytetrafluoroethylene (PTFE content, in the gas diffusion layer (GDL. A 3D model was developed to analyze the properties and effects of GDL. Simulation results showed that the increase in GDL porosity significantly improved the performance of PEMFC in generating electrical power. However, the performance of PEMFC decreased with increasing PTFE content in GDL. Thus, the PTFE content in the GDL must be optimized and the optimum PTFE content should be 5 wt%. The model developed in this simulation showed good capability in simulating the PEMFC parameters to assist the development process of PEMFC design.

  16. Preliminary study of blood compatibility of PTFE copolymerized with DMAA through gamma rays compared to PET and aflon films

    International Nuclear Information System (INIS)

    Queiroz, A.A.A. de; Higa, O.Z.

    1990-01-01

    The new method developed by Imai and Nosa was used for the evaluation of blood compatibility of poly(tetrafluoroethylene) (PTFE) grafted films with N,N - dimethylacrylamide (DMAA). The amount of the formed thrombus was measured gravimetrically at an appropriate interval of time after calcium chloride being added to the ACD blood in contact to the tested material. It was concluded that the method of modifying the polymeric surface of PTFE by grafting the hydrophilic monomer DMAA improved its blood compatibility. (author)

  17. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  18. Microbiologic Evaluation of Cotton and Polytetrafluoroethylene (PTFE) Tape as Endodontic Spacer Materials in Primary Molars An in Vivo Study.

    Science.gov (United States)

    Prabhakar, Attiguppe Ramasetty; Dixit, Kratika; Raju, O S

    PTFE tape, which is commonly used as plumber's tape is an inorganic, non-fibrous, ribbon like material. The aim of this study was to evaluate PTFE tape as endodontic spacer material and to compare it with commonly used spacer material that is cotton, in primary teeth. Seventeen children undergoing pulpectomy of lower second primary molar bilaterally were included in the study. Cotton and PTFE tape were placed as spacers on each side randomly. Samples were taken from the access cavity at baseline and after seven days to check for microbial leakage. Spacer materials were also checked for microbial contamination. The results revealed that there was a significant increase in the bacterial colony count after seven days in cotton group. The access cavities were also positive for microbial leakage in the cotton group where the spacers showed positive growth. In PTFE group only two samples showed microbial contamination of spacer and out of two only one sample showed contamination of access cavity along with spacer. Within the limitations of this study, it can be concluded that PTFE tape performed better than cotton as endodontic spacer material. Thus, PTFE tape can be recommended as an endodontic spacer material as an alternative to cotton in primary teeth.

  19. Compressive Properties of PTFE/Al/Ni Composite Under Uniaxial Loading

    Science.gov (United States)

    Wang, Huai-xi; Li, Yu-chun; Feng, Bin; Huang, Jun-yi; Zhang, Sheng; Fang, Xiang

    2017-05-01

    To investigate the mechanical properties of pressed and sintered PTFE/Al/Ni (polytetrafluoroethylene/aluminum/nickel) composite, uniaxial quasi-static and dynamic compression experiments were conducted at strain rates from 10-2 to 3 × 103/s. The prepared samples were tested by an electrohydraulic press with 300 kN loading capacity and a split Hopkinson pressure bar (SHPB) device at room temperature. Experimental results show that PTFE/Al/Ni composite exhibits evident strain hardening and strain rate hardening. Additionally, a bilinear relationship between stress and {{log(}}\\dot{ɛ} ) is observed. The experimental data were fit to Johnson-Cook constitutive model, and the results are in well agreement with measured data.

  20. Relationship of Adhesive, Contact and Electret Properties of PTFE Modified by DC Discharge

    Science.gov (United States)

    Yablokov, M.; Piskarev, M.; Gilman, A.; Kechek'yan, A.; Kuznetsov, A.

    2018-02-01

    The relationship between the contact, adhesive and electret properties of PTFE films modified by direct current glow discharge has been studied. The film samples of 40 μm thickness were placed at the anode and cathode and treated in the air as a working gas. The contact properties of polymer surface were characterized by the values of deionized water contact angle. The peel strength was determined using T-peel test for the Scotch®810/PTFE film contact. The electret potential was measured by the compensation technique using dynamic capacitor, and from the measured potential value the effective surface charge density was calculated. It has been found that there is an undoubted correlation between the change in the value of water contact angle, the peel strength of the DC discharge-treated film, and the magnitude of the effective surface charge.

  1. Chemically robust carbon nanotube–PTFE superhydrophobic thin films with enhanced ability of wear resistance

    Institute of Scientific and Technical Information of China (English)

    Kewei Wang; Pan Xiong; Xiuping Xu; Kan Wang; YanLong Li; Yufeng Zheng

    2017-01-01

    A chemically robust superhydrophobic nanocomposite thin film with enhanced wear resistance is prepared from a composite comprising polytetrafluoroethylene (PTFE) and carbon nanotubes. The superhydrophobic thin films with hierarchical structure are fabricated by spraying an environmentally friendly aqueous dispersion containing carbon nanotubes and PTFE resin on silicon wafer. Thin films with a contact angle of 154.1° ± 2° and a sliding angle less than 2° remain superhydrophobic after abrading over 500 times under a pressure of 50 g/cm2. The thin film is also extremely stable even under much stress conditions. To further the understanding of the enhancement of wear resistance, we investigated the formation of microsized structure and their effects. The growth of microbumps is caused by attracting solution droplet to the hydrophilic islands on hydrophobic surface.

  2. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum

    Science.gov (United States)

    Wang, Qihua; Zheng, Fei; Wang, Tingmei

    2016-04-01

    The effects of temperature, sliding speed and load on the tribological properties of polyimide (PI), polytetrafluoroethylene (PTFE) and polyetheretherketone (PEEK) at cryogenic temperature in vacuum were investigated using a ball-on-disk tribometer. At cryogenic temperature, polymers show higher hardness which results in decreasing contact area between the friction pairs. Moreover, the real surface area in contact between steel ball and polymer disk determines the friction coefficient instead of the formation and adhesion of the transfer film. Thus, the friction coefficients at cryogenic temperatures are lower than at room temperature. On the other hand, wear rates of the three polymers decrease as temperature decreases since molecular mobility and migration are limited at cryogenic temperatures. For the visco-elasticity of PI, PTFE and PEEK, the friction coefficients fall as the load increases.

  3. Tl response of KMgF3: Lu + PTFE at ultraviolet radiation

    International Nuclear Information System (INIS)

    Gonzalez, P.R.; Alarcon, N.G.; Furetta, C.; Azorin, J.

    2003-01-01

    Ionizing radiation has different types of interaction with a crystalline solid. However, only few effects are interesting to optimize some thermoluminescent (Tl) properties of certain Tl materials. This paper presents results obtained by irradiating KMgF 3 : Lu + Ptfe Tl dosimeters with ultraviolet (UV) radiation previously exposed to gamma radiation. These results showed that those dosimeters not exposed previously to gamma radiation did not presented any Tl signal. Meanwhile, those previously submitted to gamma irradiation showed that their sensitivity was increased as the gamma dose increased. The glow curve of sensitized KMgF 3 : Lu + Ptfe exposed to UV radiation, presented the dosimetric pea at 212 C. This makes this material to be promissory for measuring UV radiation. (Author)

  4. Characterization of the melting process of PTFE using positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Honda, Y; Nishijima, S

    2015-01-01

    Poly(tetrafluoroethylene) (PTFE) is a semi-crystalline polymer and the lifetime of ortho-positronium(o-Ps) is known to be able to be separated into two components due to annihilation in the crystal region and in the amorphous region. The melting process of PTFE was investigated using positron annihilation spectroscopy and X-ray diffraction. The results indicated that volume expansion with an increase of temperature is dominantly due to the expansion of the amorphous region and a Ps bubble is formed at melting in both regions. The o-Ps relating to the crystal region definitely remains on the surface of crystal at the time of annihilation. The production of lower energy electrons at melting was deduced by the analysis of the Doppler broadened annihilation photopeak, and the increase in the number of such electrons was found to have great influence on the formation of the o-Ps and annihilation processes of positron and o-Ps. (paper)

  5. Laparoscopic diaphragmatic hernia repair using expanded polytetrafluoroethylene (ePTFE) for delayed traumatic diaphragmatic hernia.

    Science.gov (United States)

    Jee, Yeseob

    2017-06-01

    Traumatic diaphragmatic hernia (TDH) is an uncommon surgical problem, and diagnosis is often delayed. However, the mortality from bowel necrosis can reach 80%. Therefore, suspicion is needed and surgery is required to prevent complications. A 50-year-old man was transferred due to abdominal pain and vomiting. Chest X-ray and computed tomography (CT) scan showed herniation of the stomach through the left diaphragm. The patient had fallen down 15 months ago and CT scan at that time revealed a small defect of the diaphragm without herniation. We diagnosed delayed herniation of TDH and the patient underwent laparoscopic repair using an expanded polytetrafluoroethylene (ePTFE) mesh. Recovery was uneventful and the CT scan at 3 months after the operation showed no recurrence. We reported a delayed presenting TDH and considered a laparoscopic approach to be safe and feasible during elective surgery. Moreover, use of an ePTFE mesh for repair of large diaphragmatic hernia was also feasible.

  6. Evaluation of Behaviours of Laminated Glass

    Science.gov (United States)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  7. SELECTIVE HYDROGENATION OF CINNAMALDEHYDE WITH Pt AND Pt-Fe CATALYSTS: EFFECTS OF THE SUPPORT

    Directory of Open Access Journals (Sweden)

    A.B. da Silva

    1998-06-01

    Full Text Available Low-temperature reduced TiO2-supported Pt and Pt-Fe catalysts are much more active and selective for the liquid–phase hydrogenation of cinnamaldehyde to unsaturated cinnamyl alcohol than the corresponding carbon-supported catalysts. High-temperature reduced catalysts, where the SMSI effect should be present, are almost inactive for this reaction. There is at present no definitive explanation for this effect but an electronic metal-support interaction is most probably involved.

  8. Treatment of Malignant Biliary Obstruction with a PTFE-Covered Self-Expandable Nitinol Stent

    International Nuclear Information System (INIS)

    Han, Young-Min; Kwak, Hyo-Sung; Jin, Gong-Yong; Lee, Seung-Ok; Chung, Gyung-Ho

    2007-01-01

    We wanted to determine the technical and clinical efficacy of using a PTFE-covered self-expandable nitinol stent for the palliative treatment of malignant biliary obstruction. Thirty-seven patients with common bile duct strictures caused by malignant disease were treated by placing a total of 37 nitinol PTFE stents. These stents were covered with PTFE with the exception of the last 5 mm at each end; the stent had an unconstrained diameter of 10 mm and a total length of 50 80 mm. The patient survival rate and stent patency rate were calculated by performing Kaplan-Meier survival analysis. The bilirubin, serum amylase and lipase levels before and after stent placement were measured and then compared using a Wilcoxon signed-rank test. The average follow-up duration was 27.9 weeks (range: 2 81 weeks). Placement was successful in all cases. Seventy-six percent of the patients (28/37) experienced adequate palliative drainage for the remainder of their lives. There were no immediate complications. Three patients demonstrated stent sludge occlusion that required PTBD (percutaneous transhepatic biliary drainage) irrigation. Two patients experienced delayed stent migration with stone formation at 7 and 27 weeks of follow-up, respectively. Stent insertion resulted in acute elevations of the amylase and lipase levels one day after stent insertion in 11 patients in spite of performing endoscopic sphincterotomy (4/6). The bilirubin levels were significantly reduced one week after stent insertion (p < 0.01). The 30-day mortality rate was 8% (3/37), and the survival rates were 49% and 27% at 20 and 50 weeks, respectively. The primary stent patency rates were 85%, and 78% at 20 and 50 weeks, respectively. The PTFE-covered self-expandable nitinol stent is safe to use with acceptable complication rates. This study is similar to the previous studies with regard to comparing the patency rates and survival rates

  9. Treatment of Malignant Biliary Obstruction with a PTFE-Covered Self-Expandable Nitinol Stent

    Energy Technology Data Exchange (ETDEWEB)

    Han, Young-Min; Kwak, Hyo-Sung; Jin, Gong-Yong; Lee, Seung-Ok; Chung, Gyung-Ho [Chonbuk National University Medical School and Hospital, Chonju (Korea, Republic of)

    2007-10-15

    We wanted to determine the technical and clinical efficacy of using a PTFE-covered self-expandable nitinol stent for the palliative treatment of malignant biliary obstruction. Thirty-seven patients with common bile duct strictures caused by malignant disease were treated by placing a total of 37 nitinol PTFE stents. These stents were covered with PTFE with the exception of the last 5 mm at each end; the stent had an unconstrained diameter of 10 mm and a total length of 50 80 mm. The patient survival rate and stent patency rate were calculated by performing Kaplan-Meier survival analysis. The bilirubin, serum amylase and lipase levels before and after stent placement were measured and then compared using a Wilcoxon signed-rank test. The average follow-up duration was 27.9 weeks (range: 2 81 weeks). Placement was successful in all cases. Seventy-six percent of the patients (28/37) experienced adequate palliative drainage for the remainder of their lives. There were no immediate complications. Three patients demonstrated stent sludge occlusion that required PTBD (percutaneous transhepatic biliary drainage) irrigation. Two patients experienced delayed stent migration with stone formation at 7 and 27 weeks of follow-up, respectively. Stent insertion resulted in acute elevations of the amylase and lipase levels one day after stent insertion in 11 patients in spite of performing endoscopic sphincterotomy (4/6). The bilirubin levels were significantly reduced one week after stent insertion (p < 0.01). The 30-day mortality rate was 8% (3/37), and the survival rates were 49% and 27% at 20 and 50 weeks, respectively. The primary stent patency rates were 85%, and 78% at 20 and 50 weeks, respectively. The PTFE-covered self-expandable nitinol stent is safe to use with acceptable complication rates. This study is similar to the previous studies with regard to comparing the patency rates and survival rates.

  10. SPIE 9639-49 Creation and Validation of Sintered PTFE BRDF Targets & Standards

    OpenAIRE

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L’Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2015-01-01

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming “n...

  11. Ordered arrays of polymeric nanopores by using inverse nanostructured PTFE surfaces

    International Nuclear Information System (INIS)

    Martín, Jaime; Martín-González, Marisol; Del Campo, Adolfo; Reinosa, Julián J; Fernández, José Francisco

    2012-01-01

    We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm 2 . The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm 2 . The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130–140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm 2 -scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array. (paper)

  12. Change of wettability of PTFE surface by sputter etching and excimer laser. Sputter etching oyobi excimer laser ni yoru PTFE hyomen no shinsuika

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S. (Nitto Denko Corp., Osaka (Japan)); Kubo, U. (Kinki University, Osaka (Japan))

    1994-06-20

    The wettability of PTFE (polytetrafluoroethylene) surfaces was improved by sputter etching and excimer laser irradiation. In sputter etching, the PTFE surface was treated by reactive sputter etching with H2O gas to give active groups on the surface. In laser irradiation, the surface was irradiated in pure water by high-energy KrF excimer laser. As the surface wettability was evaluated with a contact angle to water, the contact angle decreased remarkably in both treatments resulting in a good improvement effect. In sputter etching, various new chemical bonds such as F-C=O, F2C-FC-O, F2C-C-O and C-O were observed because of a decrease in F and incorporation of oxygen. Such chemical bonds could be eliminated by ultraviolet ray irradiation, and the treated surface condition approached the initial condition after irradiation of 200 hours. In laser irradiation, it was suggested that C-F bonds were broken, and OH groups were added to the surface by dissociation of H2O to H and OH. 7 refs., 8 figs., 1 tab.

  13. Annealing dependent evolution of columnar nanostructures in RF magnetron sputtered PTFE films for hydrophobic applications

    Science.gov (United States)

    Tripathi, S.; De, Rajnarayan; Maidul Haque, S.; Divakar Rao, K.; Misal, J. S.; Prathap, C.; Das, S. C.; Patidar, Manju M.; Ganesan, V.; Sahoo, N. K.

    2018-01-01

    Present communication focuses on a relatively less explored direction of producing rough polytetrafluoroethylene (PTFE) surfaces for possible hydrophobic applications. The experiments were carried out to make rough PTFE films without losing much of the transmission, which is an important factor while designing futuristic solar cell protection covers. After annealing temperature optimization, as grown RF magnetron sputtered PTFE films (prepared at 160 W RF power) were subjected to vacuum annealing at 200 °C for different time durations ranging from 1 to 4 h. The films show morphological evolution exhibiting formation and growth of columnar nanostructures that are responsible for roughening of the films due to annealing induced molecular migration and rearrangement. In agreement with this, qualitative analysis of corresponding x-ray reflectivity data shows modification in film thickness, which may again be attributed to the growth of columns at the expense of the atoms of remaining film molecules. However, the observations reveal that the film annealed at 200 °C for 2 h gives a combination of patterned columnar structures and reasonable transmission of >85% (in 500-1000 nm wavelength range), both of which are deteriorated when the films are annealed either at high temperature beyond 200 °C or for long durations >3 h. In addition, attenuated total reflection-Fourier transform infrared spectroscopy results reveal that the molecular bonds remain intact upon annealing at any temperature within the studied range indicating the stable nature of the films.

  14. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).

    Science.gov (United States)

    Ahmmed, K M Tanvir; Patience, Christian; Kietzig, Anne-Marie

    2016-10-12

    In this work, internal and external flows over superhydrophobic (SH) polytetrafluoroethylene (PTFE) were studied. The SH surface was fabricated by a one-step femtosecond laser micromachining process. The drag reduction ability of the textured surface was studied experimentally both in microscale and macroscale internal flows. The slip length, which indicates drag reduction in fluid flow, was determined in microscale fluid flow with a cone-and-plate rheometer, whereas a pressure channel setup was used for macroscale flow experiments. The textured PTFE surface reduced drag in both experiments yielding comparable slip lengths. Moreover, the experimentally obtained slip lengths correspond well to the result obtained applying a semianalytical model, which considers the solid fraction of the textured surface. In addition to the internal flow studies, we fabricated SH PTFE spheres to test their drag reduction abilities in an external flow experiment, where the terminal velocities of the falling spheres were measured. These experiments were conducted at three different Reynolds numbers in both viscous and inertial flow regimes with pure glycerol, a 30% glycerol solution, and water. Surprisingly, the drag on the SH spheres was higher than the measured drag on the non-SH spheres. We hypothesize that the increase in form drag outweighs the decrease in friction drag on the SH sphere. Thus, the overall drag increased. These experiments demonstrate that a superhydrophobic surface that reduces drag in internal flow might not reduce drag in external flow.

  15. Combustion of PTFE: The Effects of Gravity and Pigmentation on Ultrafine Particle Generation

    Science.gov (United States)

    McKinnon, J. Thomas; Srivastava, Rajiv; Todd, Paul

    1997-01-01

    Ultrafine particles generated during polymer thermodegradation are a major health hazard, owing to their unique pathway of processing in the lung. This hazard in manned spacecraft is poorly understood, because the particulate products of polymer thermodegradation are generated under low gravity conditions. Particulate generated from the degradation of PolyTetraFluoroEthylene (PTFE), insulation coating for 20 AWG copper wire (representative of spacecraft application) under intense ohmic heating were studied in terrestrial gravity and microgravity. Microgravity tests were done in a 1.2-second drop tower at the Colorado School of Mines (CSM). Thermophoretic sampling was used for particulate collection. Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) were used to examine the smoke particulates. Image software was used to calculate particle size distribution. In addition to gravity, the color of PTFE insulation has an overwhelming effect on size, shape and morphology of the particulate. Nanometer-sized primary particles were found in all cases, and aggregation and size distribution was dependent on both color and gravity; higher aggregation occurred in low gravity. Particulates from white, black, red and yellow colored PTFE insulations were studied. Elemental analysis of the particulates shows the presence of inorganic pigments.

  16. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Tóth András

    2014-12-01

    Full Text Available An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE samples, which are subsequently coated with polyvinylpyrrolidone (PVP and tannic acid (TAN single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS, Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR and Atomic Force Microscopy (AFM. The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

  17. Tl response of LiF:Mg, Cu, P + PTFE to Am-Be neutrons

    International Nuclear Information System (INIS)

    Gonzalez M, P.R.

    2000-01-01

    In different laboratories of the world it is followed the research about development of new Tl materials, whose main characteristics should be their equivalence with the tissue and their high sensibility to any type of radiation. The study consists in to measure the Tl peak intensity which TLD-100 presents at being irradiated with neutrons and that appears over 250 Centigrade, for compare it with the Tl intensity of the LiF: Mg, Cu, P + PTFE dosemeters. However, not all dosemeters of the same group show the interesting peak, by this only can be the total Tl intensity of dosemeters studied. In the ININ dosemeters development laboratory, we have developed a Tl material of lithium fluoride activated with magnesium, copper and phosphorus (LiF: Mg, Cu, P) that in polycrystalline powder form is almost 35 times more sensitive than the TLD-100 commercial dosemeter of Harshaw/Filtrol, USA. With the use of polytetrafluorethylene (PTFE) and with the above described Tl material, it has been possible to obtain dosemeters in pellet form of LiF: Mg, Cu, P + PTFE. (Author)

  18. Hybrid Laminates for Application in North Conditions

    Science.gov (United States)

    Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.

    2016-11-01

    A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.

  19. Plated lamination structures for integrated magnetic devices

    Science.gov (United States)

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  20. Optimal Design of Laminated Composite Beams

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral

    model for the analysis of laminated composite beams is proposed. The structural analysis is performed in a beam finite element context. The development of a finite element based tool for the analysis of the cross section stiffness properties is described. The resulting beam finite element formulation...... is able to account for the effects of material anisotropy and inhomogeneity in the global response of the beam. Beam finite element models allow for a significant reduction in problem size and are therefore an efficient alternative in computationally intensive applications like optimization frameworks...... design of laminated composite beams. The devised framework is applied in the optimal design of laminated composite beams with different cross section geometries and subjected to different load cases. Design criteria such as beam stiffness, weight, magnitude of the natural frequencies of vibration...

  1. On Subsurface Crack Growth in Fibre Metal Laminate Materials

    National Research Council Canada - National Science Library

    Randall, Christian

    2003-01-01

    Fatigue crack growth in fibre metal laminates (FMLs) is significantly more complex than in monolithic materials due to the interaction of various physical mechanisms that govern the growth of cracks in laminates...

  2. Modeling Bistable Composite Laminates for Piezoelectric Morphing Structures

    OpenAIRE

    Darryl V. Murray; Oliver J. Myers

    2013-01-01

    A sequential modeling effort for bistable composite laminates for piezoelectric morphing structures is presented. Thin unsymmetric carbon fiber composite laminates are examined for use of morphing structures using piezoelectric actuation. When cooling from the elevated cure temperature to room temperature, these unsymmetric composite laminates will deform. These postcure room temperature deformation shapes can be used as morphing structures. Applying a force to these deformed laminates will c...

  3. Investigation into the Quality of Thermally Treated Package Lamination

    Directory of Open Access Journals (Sweden)

    Darius Kazlauskas

    2011-02-01

    Full Text Available The article deals with the problem of delaminating the package after pasteurization at relatively high temperatures. The main parameters of the lamination process influencing lamination strength were determined. The role of the amount of lamination glue and tension in the rewinder for two glue types were experimentally examined defining lamination regimes at which the process of delamination is excluded.Article in Lithuanian

  4. Properties of Chitosan-Laminated Collagen Film

    Directory of Open Access Journals (Sweden)

    Vera Lazić

    2012-01-01

    Full Text Available The objective of this study is to determine physical, mechanical and barrier properties of chitosan-laminated collagen film. Commercial collagen film, which is used for making collagen casings for dry fermented sausage production, was laminated with chitosan film layer in order to improve the collagen film barrier properties. Different volumes of oregano essential oil per 100 mL of filmogenic solution were added to chitosan film layer: 0, 0.2, 0.4, 0.6 and 0.8 mL to optimize water vapour barrier properties. Chitosan layer with 0.6 or 0.8 % of oregano essential oil lowered the water vapour transmission rate to (1.85±0.10·10–6 and (1.78±0.03·10–6 g/(m2·s·Pa respectively, compared to collagen film ((2.51±0.05·10–6 g/(m2·s·Pa. However, chitosan-laminated collagen film did not show improved mechanical properties compared to the collagen one. Tensile strength decreased from (54.0±3.8 MPa of the uncoated collagen film to (36.3±4.0 MPa when the film was laminated with 0.8 % oregano essential oil chitosan layer. Elongation at break values of laminated films did not differ from those of collagen film ((18.4±2.7 %. Oxygen barrier properties were considerably improved by lamination. Oxygen permeability of collagen film was (1806.8±628.0·10–14 cm3/(m·s·Pa and values of laminated films were below 35·10–14 cm3/(m·s·Pa. Regarding film appearance and colour, lamination with chitosan reduced lightness (L and yellowness (+b of collagen film, while film redness (+a increased. These changes were not visible to the naked eye.

  5. Tension-filled Governance?

    DEFF Research Database (Denmark)

    Celik, Tim Holst

    on the statesituated tension-filled functional relationship between legitimation and accumulation, the study both historically and theoretically reworks this approach and reapplies it for the post-1970s/1990s governance period. It asks whether and to what extent governance has served as a distinctive post- 1970s/1990s...

  6. filled neutron detectors

    Indian Academy of Sciences (India)

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter ...

  7. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  8. Lamination sheet of AA BST magnet

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The AA had 2 types of bending magnets: BLG (window-frame, long and narrow)and BST (H-type, short and wide). The BST had a very wide aperture, 0.564 m of "good field". To demonstrate the size, the petite AA secretary, Val Mansfield, poses with a lamination sheet. See also 7811105, 7906163, 8006050.

  9. Laminated Root Rot of Western Conifers

    Science.gov (United States)

    E.E. Nelson; N.E. Martin; R.E. Williams

    1981-01-01

    Laminated root rot is caused by the native fungus Phellinus weirii (Murr.) Gilb. It occurs throughout the Northwestern United States and in southern British Columbia, Canada. The disease has also been reported in Japan and Manchuria. In the United States, the pathogen is most destructive in pure Douglas-fir stands west of the crest of the Cascade Range in Washington...

  10. [Laminitis in cattle: a literature review].

    Science.gov (United States)

    Lischer, C; Ossent, P

    1994-10-01

    Worldwide afflictions of the claws belong to the economically important diseases in dairy cattle. The significance of laminitis has gained importance in the last years since the condition is regarded as the most important predisposing factor for the development of lesions such as sole ulcer, white line disease and heel horn erosion. Apart from the clinical stages (acute, subacute, chronic, chronic-recurrent) there is also a subclinical form of laminitis which does not cause lameness. It is characterized by soft yellowish sole and heel horn with haemorrhages in the sole and along the white line. Laminitis is a multifactorial event in which nutrition, genetic disposition and the perinatal period, combined with the associated diseases of high-yielding cows, have a particular significance. Currently, two principally different hypotheses on the pathogenesis are discussed. The generally accepted theory bases on a disturbance in the microcirculation of the corium. According to the other theory the circulatory disturbances are secondary to changes which occur in the horn producing cells of the stratum basale of the epidermis. The predisposing factors and the pathogenesis of laminitis are discussed in the light of possible therapeutic and prophylactic measures.

  11. Nuclear Structures Surrounding Internal Lamin Invaginations

    Czech Academy of Sciences Publication Activity Database

    Legartová, Soňa; Stixová, Lenka; Laur, O.; Kozubek, Stanislav; Sehnalová, Petra; Bártová, Eva

    2014-01-01

    Roč. 115, č. 3 (2014), s. 476-487 ISSN 0730-2312 R&D Projects: GA MŠk(CZ) LD11020 Institutional support: RVO:68081707 Keywords : LAMINS * NUCLEAR PORES * CHROMATIN Subject RIV: BO - Biophysics Impact factor: 3.263, year: 2014

  12. Doped LZO buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  13. Tropicalized Lambda Lengths, Measured Laminations and Convexity

    DEFF Research Database (Denmark)

    C. Penner, R.

    This work uncovers the tropical analogue for measured laminations of the convex hull construction of decorated Teichmueller theory, namely, it is a study in coordinates of geometric degeneration to a point of Thurston's boundary for Teichmueller space. This may offer a paradigm for the extension ...

  14. Progressive delamination in polymer matrix composite laminates: A new approach

    Science.gov (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.

    1992-01-01

    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  15. Systolic ventricular filling.

    Science.gov (United States)

    Torrent-Guasp, Francisco; Kocica, Mladen J; Corno, Antonio; Komeda, Masashi; Cox, James; Flotats, A; Ballester-Rodes, Manel; Carreras-Costa, Francesc

    2004-03-01

    The evidence of the ventricular myocardial band (VMB) has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium, making it possible to understand the principles governing electrical, mechanical and energetical events within the human heart. From the earliest Erasistratus' observations, principal mechanisms responsible for the ventricular filling have still remained obscured. Contemporary experimental and clinical investigations unequivocally support the attitude that only powerful suction force, developed by the normal ventricles, would be able to produce an efficient filling of the ventricular cavities. The true origin and the precise time frame for generating such force are still controversial. Elastic recoil and muscular contraction were the most commonly mentioned, but yet, still not clearly explained mechanisms involved in the ventricular suction. Classical concepts about timing of successive mechanical events during the cardiac cycle, also do not offer understandable insight into the mechanism of the ventricular filling. The net result is the current state of insufficient knowledge of systolic and particularly diastolic function of normal and diseased heart. Here we summarize experimental evidence and theoretical backgrounds, which could be useful in understanding the phenomenon of the ventricular filling. Anatomy of the VMB, and recent proofs for its segmental electrical and mechanical activation, undoubtedly indicates that ventricular filling is the consequence of an active muscular contraction. Contraction of the ascendent segment of the VMB, with simultaneous shortening and rectifying of its fibers, produces the paradoxical increase of the ventricular volume and lengthening of its long axis. Specific spatial arrangement of the ascendent segment fibers, their interaction with adjacent descendent segment fibers, elastic elements and intra-cavitary blood volume (hemoskeleton), explain the physical principles

  16. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings.

    Science.gov (United States)

    Wang, Huaiyuan; Zhao, Jingyan; Zhu, Youzhuang; Meng, Yang; Zhu, Yanji

    2013-07-15

    A simple engineering method was used to fabricate stability and wear-resistance of superhydrophobic PPS-based PPS/PTFE surfaces through nano/micro-structure design and modification of the lowest surface energy groups (-CF2-), which was inspired by the biomimic lotus leaves. The hydrophobic properties and wear-resistance of the coatings were measured by a contact angle meter and evaluated on a pin-on-disk friction and wear tester, respectively. Moreover, the surfaces of the PPS/PTFE composite coatings were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and thermogravimetry (TG) analysis. Results showed that the highest contact angle of the PPS/PTFE surface, with papillae-like randomly distributed double-scale structure, could reach up to 162°. When 1 wt.% PDMS was added, the highest contact angle could hold is 172°. The coatings also retained superhydrophobicity, even under high temperature environment. The investigation also indicated that the coatings were not only superhydrophobic but also oleophobic behavior at room temperature, such as the crude oil, glycerol, and oil-water mixture. The PPS/45%PTFE coatings had more stable friction coefficient and excellent wear-resistance (331,407 cycles) compared with those with less than 45% of PTFE. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Thermal–Hydrodynamic Behaviour of Coated Pivoted Pad Thrust Bearings: Comparison between Babbitt, PTFE and DLC

    Directory of Open Access Journals (Sweden)

    Konstantinos Katsaros

    2018-05-01

    Full Text Available The hydrodynamic lubrication and thermal analysis of tilting pad thrust bearings has been a major subject for many studies in the field of tribology. There is only a limited number of studies regarding thrust bearings with coated surfaces. The purpose of this study is to build a parametric, iterative algorithm in order to perform a complete thermal and hydrodynamic lubrication analysis for pivoted pad thrust bearings with coatings. The analytical model is mainly based on the energy, continuity and Navier–Stokes equations, which are solved numerically with the Semi-Implicit Method for Pressure Linked Equations Consistent (SIMPLEC method. The analysis focuses on a single pivoted pad of the thrust bearing. The thermal properties of the coating material are taken into account and the resulting thermal and flow fields are solved. The basic hydrodynamic and tribological characteristics are calculated for an uncoated, a Babbitt coated, a PTFE coated and a diamond like carbon (DLC coated pivoted pad thrust bearing. The pressure and the film thickness distribution, as well as the load capacity and the frictional forces, are determined for several pad positions and velocities of the rotor. A mineral oil lubricant is used to estimate the shear thinning or thickening effects on the pad tribological performance. The results indicate that pads coated with PTFE and DLC show lower friction forces compared to the common steel and Babbitt applications. At the same time, the DLC coating seems to affect the bearing’s flow and thermal fields less than the PTFE, making it more suitable for thrust bearings applications.

  18. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    Science.gov (United States)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  19. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    Science.gov (United States)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  20. Plasma polymer films rf sputtered from PTFE under various argon pressures

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy; Biederman, H.; Slavinská, D.; Zemek, Josef; Trchová, Miroslava

    2005-01-01

    Roč. 77, č. 2 (2005), s. 131-137 ISSN 0042-207X R&D Projects: GA MŠk(CZ) OC 527.10; GA MŠk(CZ) OC 527.90 Grant - others:EUREKAΣ2080(XE) OE57 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z20430508 Keywords : RF sputtering * PTFE * fluorcarbon plasma polymers * thin film * teflon * deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.909, year: 2005

  1. Effects of 108 Days Tritium Exposure on UHMW-PE, PTFE, and Vespel(R)

    International Nuclear Information System (INIS)

    Clark, E.A.

    2003-01-01

    Samples of three polymers, Ultra-High Molecular Weight Polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), also known as Teflon(R), and Vespel(R) polyimide were exposed to 1 atmosphere of tritium gas at ambient temperature for 108 days. Sample mass and size measurements to calculate density, spectra-colorimetry, dynamic mechanical analysis (DMA), and Fourier-transform infrared spectroscopy (FT-IR) were employed to characterize the effects of this exposure on these samples. This technical report is the first report from this research program

  2. Thermal conductivity measurements of PTFE and Al2O3 ceramic at sub-Kelvin temperatures

    Science.gov (United States)

    Drobizhev, Alexey; Reiten, Jared; Singh, Vivek; Kolomensky, Yury G.

    2017-07-01

    The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al2O3 ceramic (alumina) in the temperature ranges of 0.17-0.43 K and 0.1-1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.

  3. Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen

    Science.gov (United States)

    Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.

    1989-01-01

    A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.

  4. Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)

    Science.gov (United States)

    Zapata, Luis E.; Hackel, Lloyd

    1999-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  5. Thermoluminescent response of CaSO4: Dy + PTFE to beta particles

    International Nuclear Information System (INIS)

    Aguirre C, A.; Azorin N, J.

    2000-01-01

    In this work the results of studying the thermoluminescent properties of CaSO 4 : Dy + PTFE are presented when it is irradiated with beta particles. The conclusion was the obtention of the Tl response curve in function of dose is that to desexcite the dosemeters at temperature 300 C during 30 minutes and after that were irradiated at different times in groups and to do the reading of dosemeter, it can be observed that a greater irradiation time major is the Tl response and this depends of the material has been used. (Author)

  6. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Gh; Marcuta, M [SC ICPE Electrostatica SA, Bucharest (Romania); Jipa, S [' Valahia' University, Targoviste (Romania)

    2001-07-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process.

  7. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    International Nuclear Information System (INIS)

    Marin, Gh.; Marcuta, M.; Jipa, S.

    2001-01-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process

  8. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.

    2018-02-26

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non-planar transverse stretching process was employed in this study to produce micro-porous structure. The morphology, membrane thickness, mean pore size, and porosity of the PTFE membrane were investigated. The results show that the non-planar transverse stretched membranes exhibit more uniform average pore diameter with thinner membrane thickness. Morphological changes induced by planar and non-planar transverse stretching for pore characteristics were investigated. The stretching conditions, stretching temperature and rate, affect the stretched membrane. Increasing temperature facilitated the uniformity of pore size and uniformity of membrane thickness. Moreover, increase in stretching rate resulted in finer pore size and thinner membrane.

  9. The mechanism of PTFE and PE friction deposition: a combined scanning electron and scanning force microscopy study on highly oriented polymeric sliders

    NARCIS (Netherlands)

    Schönherr, Holger; Schaeben, H.; Vancso, Gyula J.

    1998-01-01

    The mechanism of friction deposition of polytetrafluoroethylene (PTFE) and polyethylene (PE) was studied by scanning electron (SEM) and scanning force microscopy (SFM) on the worn surfaces of PTFE and PE sliders that were used in friction deposition on glass substrates. These surfaces exhibited a

  10. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    Energy Technology Data Exchange (ETDEWEB)

    He, Jianchao; Wang, Heyi, E-mail: hywang@caep.cn; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-12-15

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  11. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    International Nuclear Information System (INIS)

    He, Jianchao; Wang, Heyi; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-01-01

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  12. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation

    International Nuclear Information System (INIS)

    Swain, Basudev; Ryang Park, Jae; Yoon Shin, Dong; Park, Kyung-Soo; Hwan Hong, Myung; Gi Lee, Chan

    2015-01-01

    Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30 vol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1 h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). - Highlights: • Waste automotive laminated glass and polyvinyl butyral mechanochemically separated. • An economical total recovery and environment-friendly process has been developed. • It is a global problem rather than regional environmental issue has been addressed. • Without using hazardous chemical wastes are being converted to a wealth.

  13. Introduction of oxygen vacancies and fluorine into TiO2 nanoparticles by co-milling with PTFE

    International Nuclear Information System (INIS)

    Senna, Mamoru; Šepelák, Vladimir; Shi, Jianmin; Bauer, Benjamin; Feldhoff, Armin; Laporte, Vincent; Becker, Klaus-Dieter

    2012-01-01

    Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO 2 nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm −1 (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d–d transitions of titanium ions. Incorporation of fluorine into n-TiO 2 was concentrated at the near surface region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO 2 was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO 2 lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO 6−n Vo n , located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO 2 particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO 2 and (c) fluorine migration from PTFE to TiO 2 . Highlights: Transfer of fluorine from PTFE to n-TiO 2 in a dry solid state process was confirmed. ► 40% of F in PTFE was incorporated to the near surface region of n-TiO 2 nanoparticles. ► The transfer process is

  14. Changes in the tribological behavior of an epoxy resin by incorporating CuO nanoparticles and PTFE microparticles

    DEFF Research Database (Denmark)

    Larsen, Thomas Ricco Ølholm; Andersen, Tom Løgstrup; Thorning, Bent

    2008-01-01

    by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which show a relatively good dispersion of both kinds of particles. Differential scanning calorimetry (DSC) and Vickers hardness measurements show no clear changes in glass transition temperature or hardness as a function...... of the composites using a smoother counterface. This gives rise to significantly less wear, which for composites without PTFE is attributed to formation of a protective transfer film. At a pv condition of 1.16 MPa, 1.0 m1s the following is found: composites without PTFE generally show an unsteady behavior with high...

  15. Multiple Scattering Approach to Polarization Dependence of F K-Edge XANES Spectra for Highly Oriented Polytetrafluoroethylene (PTFE) Thin Film

    International Nuclear Information System (INIS)

    Nagamatsu, S.; Ono, M.; Kera, S.; Okudaira, K. K.; Fujikawa, T.; Ueno, N.

    2007-01-01

    The polarization dependence of F K-edge X-ray absorption near edge structure (XANES) spectra of highly-oriented thin-film of polytetrafluoroethylene (PTFE) has been analyzed by using multiple scattering theory. The spectra show clear polarization dependence due to the highly-oriented structure. The multiple scattering calculations reflects a local structure around an absorbing atom. The calculated results obtained by considering intermolecular-interactions are in good agreement with the observed polarization-dependence. We have also analyzed structural models of the radiation damaged PTFE films

  16. Fatigue and fracture of fibre metal laminates

    CERN Document Server

    Alderliesten, René

    2017-01-01

    This book contributes to the field of hybrid technology, describing the current state of knowledge concerning the hybrid material concept of laminated metallic and composite sheets for primary aeronautical structural applications. It is the only book to date on fatigue and fracture of fibre metal laminates (FMLs). The first section of the book provides a general background of the FML technology, highlighting the major FML types developed and studied over the past decades in conjunction with an overview of industrial developments based on filed patents. In turn, the second section discusses the mechanical response to quasi-static loading, together with the fracture phenomena during quasi-static and cyclic loading. To consider the durability aspects related to strength justification and certification of primary aircraft structures, the third section discusses thermal aspects related to FMLs and their mechanical response to various environmental and acoustic conditions.

  17. Prediction of fatigue damage in tapered laminates

    DEFF Research Database (Denmark)

    Raeis Hosseiny, Seyed Aydin; Jakobsen, Johnny

    2017-01-01

    Effective implementation of ply-drops configurations substantially improve the damage tolerant design of flexible and aero-elastic wind turbine blades. Terminating a number of layers for an optimized blade design creates local bending effects. Inter-laminar stress states in tapered areas give rise...... to delamination and premature structural failure. Precise calculation of the stress levels for embedded ply-drops is required to predict failure initiation within acceptable limits. Multi-axial stress states in orthotropic laminates subjected to diverse loading mechanisms nucleate microscopic cracks....... By increasing the cracks density, damage occurs when residual material properties reduce to a critical level. Residual strength and stiffness of simple laminates are assigned in a set of fatigue failure criteria to assess the remaining life of the components by increasing number of loading cycles. The mode...

  18. Fabrication of CFRP/Al Active Laminates

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka

    This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.

  19. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  20. Benign gastric filling defect

    International Nuclear Information System (INIS)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y.

    1979-01-01

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  1. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y. [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  2. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K K; Lee, Y H; Cho, O K; Park, C Y [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  3. Laminated multilayer sheet structure and its utilization

    International Nuclear Information System (INIS)

    Chiba, K.; Itoh, K.; Mitani, Y.; Sobajima, S.; Yonemura, U.

    1980-01-01

    A laminated multilayer sheet structure is described comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer (B 2 ), said layer (B 1 ) being a transparent thermic ray reflecting layer composed of (I) a layer of a metal having a thickness of about 50 to about 600 A, said metal being selected from the group consisting of gold, silver, copper, aluminum and a mixture of alloy of at least two of said metals, and (II) a high refractive substance layer having a thickness of about 50 to about 600 A, of an oxide of titanium derived from a layer of an organic titanium compound of the formula Ti 1 O/sub m/R/sub n/, where R is alkyl of 1-20 carbon atoms, l=1-30, m=4+3(1-1), and n=4+2(1-1), and containing the organic residual moiety of the organic titanium compound, the amount of said organic residual moiety being 0.1 to 30% by weight based on the weight of the high refractive substance layer; or said layer (B 1 ) being a transparent semiconductive layer having a thickness of about 500 to about 5,000 a and being composed of a compound selected from the group consisting of indium oxide, tin oxide, cadmium oxide, antimony oxide, copper iodide, and a mixture of at least two of said compounds. A method is described for heat-insulating a room, which comprises applying to the surface of a floor, wall, ceiling or partition in the room a laminated multilayer sheet structure comprising (A) an opaque flexible sheet layer, and (B) a flexible layer laminated on the surface of layer (A) and composed of a transparent thermic ray reflecting layer (B 1 ) bonded to a transparent synthetic resin layer

  4. Numerical analysis of laminated elastomer by FEM

    International Nuclear Information System (INIS)

    Mazda, T.; Shiojiri, H.

    1993-01-01

    A Computer code based on mixed finite element method was developed for three dimensional large strain analyses of laminated elastomers including nonlinear bulk stress vs. bulk strain relationships. The adopted element is the variable node element with maximum node numbers of 27 for displacements and 4 for pressures. At first, the displacements and pressures were calculated by the code using single element under various loading conditions. The results were compared with theoretical solutions and the both results' exactly coincided with each other. Next, the analyses of laminated elastomers subjected to axial loadings were conducted using both the new code and ABAQUS code, and the results were compared with the test results. The agreement of the results of the present code were better than ABAQUS code mainly due to the capability of handling wider range of material properties. Lastly, the shearing tests of laminated elastomers were simulated by the new code. The results were shown to be in good agreement with the test results. (author)

  5. Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated. The results show that sulfonation of surface-grafted films is incomplete at room  temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours.

  6. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach.

    Science.gov (United States)

    Gabriel, Matthias; Niederer, Kerstin; Becker, Marc; Raynaud, Christophe Michel; Vahl, Christian-Friedrich; Frey, Holger

    2016-05-18

    Many biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished. Polytetrafluoroethylene (PTFE), a frequently used polymer for various medical applications, was wet-chemically activated and subsequently modified by grafting the endothelial cell (EC) specific peptide arginine-glutamic acid-aspartic acid-valine (REDV) using a bifunctional polyethylene glycol (PEG)-spacer (known to reduce platelet and nonspecific protein adhesion). Modified and control surfaces were both evaluated in terms of EC adhesion, colonization, and the attachment of platelets. In addition, samples underwent bacterial challenges. The results strongly suggested that PEG-mediated peptide immobilization renders PTFE an excellent substrate for cellular growth while simultaneously endowing the material with antifouling properties.

  7. Immobilization of Ochrobactrum tritici As5 on PTFE thin films for arsenite biofiltration.

    Science.gov (United States)

    Branco, Rita; Sousa, Tânia; Piedade, Ana P; Morais, Paula V

    2016-03-01

    Ochrobactrum tritici SCII24T bacteria is an environmental strain with high capacity to resist to arsenic (As) toxicity, which makes it able to grow in the presence of As(III). The inactivation of the two functional arsenite efflux pumps, ArsB and ACR3_1, resulted in the mutant O. tritici As5 exhibiting a high accumulation of arsenite. This work describes a method for the immobilization of the mutant cells O. tritici As5, on a commercial polymeric net after sputtered modified by the deposition of poly(tetrafluoroethylene) (PTFE) thin films, and demonstrates the capacity of immobilized cells to accumulate arsenic from solutions. Six different set of deposition parameters for PTFE thin films were developed and tested in vitro regarding their ability to immobilize the bacterial cells. The surface that exhibited a mild zeta potential value, hydrophobic characteristics, the lowest surface free energy but with a high polar component and the appropriate ratio of chemical reactive groups allowed cells to proliferate and to grow as a biofilm. These immobilized cells maintained their ability to accumulate the surrounding arsenite, making it a great arsenic biofilter to be used in bioremediation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Investigation of PTFE transfer films by infrared emission spectroscopy and phase-locked ellipsometry

    Science.gov (United States)

    Lauer, James L.; Bunting, Bruce G.; Jones, William R., Jr.

    1988-01-01

    When a PTFE sheet was rubbed unidirectionally over a smooth surface of stainless steel an essentially monomolecular transfer film was formed. by ellipsometric and emission infrared spectroscopic techniques it was shown that the film was 10 to 15 A thick and birefringent. From the intensity differences of infrared bands obtained with a polarizer passing radiation polarized in mutually perpendicular planes, it was possible to deduce transfer film orientation with the direction of rubbing. After standing in air for several weeks the transfer films apparently increased in thickness by as much as threefold. At the same time both the index of refraction and the absorption index decreased. Examination of the surfaces by optical and electron microscopies showed that the films had become porous and flaky. These observations were consistent with previous tribological measurements. The coefficients of friction decreased with the formation of the transfer film but increased again as the film developed breaks. The applicability of the ellipsometric and polarized infrared emission techniques to the identification of monomolecular tribological transfer films of polymers such as PTFE has been demonstrated.

  9. Investigation of graft copolymerization modification of PTFE surface using microwave plasma

    International Nuclear Information System (INIS)

    Wen Yunjian; Guan Weishu; Fang Yan; Ying Yongxiang

    1995-03-01

    Investigation of graft copolymerization modification of PTFE surface with kind of one or another reactive monomers was performed by using non-equilibrium microwave plasma at 2.45 GHz under various operating conditions. Untreated clean samples and grafted samples were examined and analyzed with different surface analytical techniques such as X-Ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscopy (SEM). The results showed that the occurrence of noticeable de-fluorination and cross linking on grafted surface, and different polar groups and content of oxygen-containing were introduced into the grafted surface of PTFE. Fibriform hetero-structure layer was also formed. These results confirmed the success of graft and indicated that the hydrophilicity of the grafted surface is excellent and a significant improvement in adhesion characteristics has been achieved. The experiments revealed that the changes in surface properties are correlated closely to the changes in chemical structure, composition and morphology. (8 figs., 1 refs.)

  10. Thermoluminescent signal fading of encapsulated lif: Mg,Ti detectors in PTFE-Teflon registered trademark

    International Nuclear Information System (INIS)

    Sasho Nikolovski, Sasho; Nikolovska, Lidija; Velevska, Marija; Velev, Velko

    2010-01-01

    Fading is a process when the latent information of a detector is unintentionally lost mainly due to the thermal influence. Thermoluminescent (TL) detectors have different sensitivities as far as the fading effect. Encapsulated TL detectors mounted within shielded filter holders are used during the personal monitoring of occupationally exposed persons in R. Macedonia. PTFE-Teflon registered trademark polymer is an example of encapsulation material that has a temperature resistance and it allows the luminescence signal to pass through. Since the encapsulated TL detectors cannot be submitted to annealing treatment in an oven, another fading reduction method is needed. The TL evaluation method suggested in this work is based on a specific glow-curve region. Irradiations were conducted using 90Sr/90Y source. Post-irradiation fade investigations were conducted for evaluation periods that varied up to 4 months. Two areas of the TL glow-curve were selected with the WimRems software. They correspond to the high and the low fading emission peaks (the lower temperature peaks display a greater degree of thermal fading than the higher temperature peaks). Post-irradiation fade is a contributing factor that affects the response of a thermoluminescent (TL) phosphor as a function of time. PTFE - Polytetrafluoroethylene most well known by the DuPont brand name Teflon registered trademark. (Author)

  11. Functional properties of poly(tetrafluoroethylene) (PTFE) gasket working in nuclear reactor conditions

    Science.gov (United States)

    Wyszkowska, Edyta; Leśniak, Magdalena; Kurpaska, Lukasz; Prokopowicz, Rafal; Jozwik, Iwona; Sitarz, Maciej; Jagielski, Jacek

    2018-04-01

    In this study structural and nanomechanical properties of polytetrafluoroethylene (PTFE) used as a gasket in the nuclear reactor have been deeply investigated. In order to reveal structural changes caused by long-term pressure, temperature and irradiation (possibly neutron and gamma), methods such as SEM, X-ray diffraction and Raman Spectroscopy have been used. Nanomechanical properties such as Young Modulus and hardness were investigated by means of the nanoindentation technique. Presented study confirmed the influence of working (radiative) environment on the functional properties of PTFE. The results of Raman spectroscopy and X-ray diffraction techniques revealed shift of the major band positions and band intensities increase. Moreover, changes of hardness and Young Modulus values of the irradiated material with respect to the virgin specimen have been recorded. This phenomenon can be attributed to the modifications in crystallinity of the material. Presented work suggest that morphology of the irradiated material altered from well-ordered parallel fibers to more dense and thicker ones.

  12. Synthesis of a gamma irradiation grafted polytetrafluoroethylene (PTFE) based olefinic copolymer

    International Nuclear Information System (INIS)

    Ferreto, Helio Fernando Rodrigues

    2006-01-01

    The extrusion of linear low density polyethylene (LLDPE) is limited by a process related defect known as 'melt fracture' or 'sharkskin', which is a surface defect of the extruded polymer. This defect results in a product with a rough surface that lacks luster and in alterations of specific surface properties. The aim of this study was to obtain a recycled polytetrafluoroethylene polymer with an olefin that could improve the extrudability of the LLDPE. The copolymer was obtained by irradiating recycled PTFE in an inert atmosphere followed by the addition of an olefinic monomer to graft the latter in the polymeric matrix (PTFE). After a certain time of contact, the copolymer was heat treated to permit recombination and elimination of the radicals, both in a reactive and/or inert atmosphere. Three olefinic monomers were used, namely; acetylene, ethylene and 1,3-butadiene. The 1,3-butadiene monomer was found to be more effective with respect to grafting. The specimens were studied using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). 0.2-2.0 wt% of the copolymer that was obtained was mixed with LLDPE. The rheological properties of the mixture were determined with a torque rheometer. The results indicated that the process used rendered a copolymer which when added to LLDPE, improved the extrusion process and eliminated the defect 'melt fracture'. (author)

  13. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  14. Thermoluminescent characteristics of CaSO{sub 4}:Dy+PTFE irradiated with high energy electron beams; Caracteristicas termoluminiscentes del CaSO{sub 4}:Dy+PTFE irradiado con haces de electrones de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, R.; Rivera, T.; Calderon, J. A.; Jimenez, Y. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Rodriguez, J. [Hospital General de Mexico, Dr. Balmis 148, Col. Doctores, 06726 Mexico D. F. (Mexico); Oviedo, O. [Centro Medico ABC, Sur 136 No. 116, Col. Las Americas, 01120 Mexico D. F. (Mexico); Azorin, J., E-mail: chagua@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico D. F. (Mexico)

    2011-10-15

    In the present work thermoluminescent response of dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO{sub 4}:Dy+PTFE) under high electron beam irradiations from linear accelerator for clinical applications was investigated. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator Varian, C linac 2300C/D, for clinical practice purpose. The electron irradiations were obtained by using the water solid in order to guarantee electronic equilibrium conditions. Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO{sub 4}:Dy+PTFE were conducted under high electron beams irradiations. The thermoluminescent response of the pellets showed and intensity peak centered at around 235 C. Thermoluminescent response of CaSO{sub 4}:Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO{sub 4}:Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. (Author)

  15. Arteriographical and pathological changes in chronic laminitis in dairy cattle.

    Science.gov (United States)

    Boosman, R; Nemeth, F; Gruys, E; Klarenbeek, A

    1989-07-01

    The arteriographic appearance of 76 bovine hind digits, obtained from a slaughterhouse, was related to the macroscopic signs of chronic laminitis in the digits. There were statistically significant correlations between the macroscopic and the arteriographic appearance of the claws. Subsequent histological examination of the radiographically abnormal arteries revealed features indicative of arteriosclerosis. The results of this study indicate that chronic laminitis develops following a subclinical attack of laminitis due to a continous hypoperfusion of the digit.

  16. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for

  17. Preparing for faster filling

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the programmed technical stop last week, operators focussed on preparing the machine for faster filling, which includes multibunch injection and a faster pre-cycle phase.   The LHC1 screen shot during the first multibunch injection operation. The LHC operational schedule incorporates a technical stop for preventive maintenance roughly every six weeks of stable operation, during which several interventions on the various machines are carried out. Last week these included the replacement of a faulty magnet in the SPS pre-accelerator, which required the subsequent re-setting of the system of particle extraction and transfer to the LHC. At the end of last week, all the machines were handed back for operation and work could start on accommodating all the changes made into the complex systems in order for normal operation to be resumed. These ‘recovery’ operations continued through the weekend and into this week. At the beginning of this week, operators succeeded in pro...

  18. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  19. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  20. Current perpendicular to plane giant magnetoresistance in laminated nanostructures

    International Nuclear Information System (INIS)

    Vedyayev, A.; Zhukov, I.; Dieny, B.

    2005-01-01

    We theoretically studied spin-dependent electron transport perpendicular-to-plain (CPP) in magnetic laminated multilayered structures by using Kubo formalism. We took into account not only bulk scattering, but the interface resistance due to both specular and diffuse reflection and also spin conserving and spin-flip processes. It was shown that spin-flip scattering at interfaces substantially reduces the value of giant magnetoresistance (GMR). This can explain the experimental observations that the CPP GMR ratio for laminated structures only slightly increases as compared to non-laminated ones even though lamination induces a significant increase in CPP resistance

  1. Core-Shell Al-Polytetrafluoroethylene (PTFE) Configurations to Enhance Reaction Kinetics and Energy Performance for Nanoenergetic Materials.

    Science.gov (United States)

    Wang, Jun; Qiao, Zhiqiang; Yang, Yuntao; Shen, Jinpeng; Long, Zhang; Li, Zhaoqian; Cui, Xudong; Yang, Guangcheng

    2016-01-04

    The energy performance of solid energetic materials (Al, Mg, etc.) is typically restricted by a natural passivation layer and the diffusion-limited kinetics between the oxidizer and the metal. In this work, we use polytetrafluoroethylene (PTFE) as the fluorine carrier and the shielding layer to construct a new type of nano-Al based fuels. The PTFE shell not only prevents nano-Al layers from oxidation, but also assists in enhancing the reaction kinetics, greatly improving the stability and reactivity of fuels. An in situ chemical vapor deposition combined with the electrical explosion of wires (EEW) method is used to fabricate core-shell nanostructures. Studies show that by controlling the stoichiometric ratio of the precursors, the morphology of the PTFE shell and the energy performance can be easily tuned. The resultant composites exhibit superior energy output characters than that of their physically mixed Al/PTFE counterparts. This synthetic strategy might provide a general approach to prepare other high-energy fuels (Mg, Si). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE) Powders: Chemical, Thermal and Wettability Analysis

    Science.gov (United States)

    Hunke, Harald; Soin, Navneet; Shah, Tahir H.; Kramer, Erich; Pascual, Alfons; Karuna, Mallampalli Sri Lakshmi; Siores, Elias

    2015-01-01

    Functionalization of Polytetrafluoroethylene (PTFE) powders of ~6 μm particle size is carried out using low-pressure 2.45 GHz H2, NH3 microwave plasmas for various durations (2.5, 10 h) to chemically modify their surface and alter their surface energy. The X-ray Photoelectron Spectroscopy (XPS) analyses reveal that plasma treatment leads to significant defluorination (F/C atomic ratio of 1.13 and 1.30 for 10 h NH3 and H2 plasma treatments, respectively vs. 1.86 for pristine PTFE), along with the incorporation of functional polar moieties on the surface, resulting in enhanced wettability. Analysis of temperature dependent XPS revealed a loss of surface moieties above 200 °C, however, the functional groups are not completely removable even at higher temperatures (>300 °C), thus enabling the use of plasma treated PTFE powders as potential tribological fillers in high temperature engineering polymers. Ageing studies carried over a period of 12 months revealed that while the surface changes degenerate over time, again, they are not completely reversible. These functionalised PTFE powders can be further used for applications into smart, high performance materials such as tribological fillers for engineering polymers and bio-medical, bio-material applications.

  3. [Research on ultrasonic permeability of low intensity pulsed ultrasound through PTFE membrane and Bio-Gide collagen membrane].

    Science.gov (United States)

    Chai, Zhaowu; Zhao, Chunliang; Song, Jinlin; Deng, Feng; Yang, Ji; Gao, Xiang; Liu, Minyi

    2013-12-01

    The aim of the present study was to detect the transmission rate of ultrasonic low intensity pulsed ultrasound (LIPUS) through polytetrafluoroethylene (PTFE) membrane (Thickness: 0.01 mm) and Bio-Gide collagen membrane, and to provide the basis for the barrier membrane selection on the study of LIPUS combined with guided tissue regeneration (GTR). The ultrasonic (LIPUS, frequency 1.5 MHz, pulse width 200 micros, repetition rate 1.0 kHz) transmission coefficient of the two kinds of barrier membrane were detected respectively through setting ten groups from 10 to 100mW/cm2 every other 10 mW/cm2. We found in the study that the ultrasonic transmission coefficient through 0.01 mm PTFE membrane was 78.1% to 92.%, and the ultrasonic transmission coefficient through Bio-Gide collagen membrane was 43.9% to 55.8%. The ultrasonic transmission coefficient through PTFE membrane was obviously higher than that through Bio-Gide collagen membrane. The transmission coefficient of the same barrier membrane of the ultrasonic ion was statistically different under different powers (P PTFE membrane and Bio-Gide collagen membrane were relatively high. We should select barrier membranes based on different experimental needs, and exercise ultrasonic transmission coefficient experiments to ensure effective power.

  4. ENHANCED HEALING OF 30-MU-M GORE-TEX PTFE MICROARTERIAL PROSTHESES BY ALCOHOL-PRETREATMENT

    NARCIS (Netherlands)

    VANDERLEI, B; STRONCK, JW; WILDEVUUR, CRH

    1991-01-01

    Polytetrafluoroethylene (PTFE) microvascular prostheses with a fibril length of 30-mu-m were pretreated with alcohol (n = 18), implanted into the abdominal aorta of rats and were evaluated at 1 day (n = 3), 1 week (n = 3), 3 weeks (n = 6) and 6 weeks (n = 6) to determine whether alcohol-pretreatment

  5. Highly oriented thin films of a substituted oligo(para-phenylenevinylene) on friction-transferred PTFE substrates

    NARCIS (Netherlands)

    Gill, R.E; Hadziioannou, G; Lang, P.; Garnier, F.; Wittmann, J.C.

    Communication: Highly oriented thin films of oligo(p-phenylenevinylene)s, oligoPPVs, provide information about the structure of polyPPV and structure-property relationships. It is shown that deposition of a substituted oligoPPV onto highly preoriented PTFE substrates leads to highly oriented thin

  6. How to increase the hydrophobicity of PTFE surfaces using an r.f. atmospheric-pressure plasma torch

    NARCIS (Netherlands)

    Carbone, E.A.D.; Boucher, N.; Sferrazza, M.; Reniers, F.

    2010-01-01

    An experimental investigation of the surface modification of polytetrafluoroethylene (PTFE) by an Ar and Ar/O2 plasma created with an atmospheric-pressure radio frequency (r.f.) torch is presented here. The surfaces were analyzed by atomic force microscopy (AFM), XPS and water contact angle (WCA) to

  7. Improved extraction of ePTFE and medical adhesive modified defibrillation leads from the coronary sinus and great cardiac vein.

    Science.gov (United States)

    Wilkoff, Bruce L; Belott, Peter H; Love, Charles J; Scheiner, Avram; Westlund, Randy; Rippy, Marian; Krishnan, Mohan; Norlander, Barry E; Steinhaus, Bruce; Emmanuel, Janson; Zeller, Peter J

    2005-03-01

    Permanent leads with shocking coils for defibrillation therapy are sometimes implanted in the coronary sinus (CS) and great cardiac vein (GCV). These shocking coils, as documented by pathologic examination of animal investigations, often become tightly encapsulated by fibrosis and can be very difficult to remove. One of three configurations of the Guidant model 7109 Perimeter coronary sinus shocking lead was implanted into the distal portion of the GCV of 24 sheep for up to 14 months. Group 1 had unmodified coils (control), group 2 had coils backfilled with medical adhesive (MA), and Group 3 had coils coated with expanded polytetrafluoroethylene (ePTFE). Eighteen leads, three from each group at 6 and 14 months were transvenously extracted from the left jugular vein. The remaining six animals were not subject to extraction. All animals were euthanized for pathological and microscopic examination. All six of the control, three of the MA, and one of the ePTFE leads required the use of an electrosurgical dissection sheath (EDS) for extraction. Five control, two MA, and none of the ePTFE leads had significant fibrotic attachments to the shocking coils. Significant trauma was observed at necropsy for those leads requiring the use of the EDS for extraction. Tissue ingrowth is a major impediment to the removal of defibrillation leads implanted in the CS and GCV of sheep. Reduction of tissue ingrowth by coating the shocking coils with ePTFE or by backfilling with MA facilitates transvenous lead removal with reduced tissue trauma.

  8. Investigation of counterface surface topography effects on the wear and transfer behaviour of a POM-20% PTFE composite

    NARCIS (Netherlands)

    Franklin, S.E.; de Kraker, A.

    2003-01-01

    In order to gain greater insight into the relation between the wear rate, counterface surface topography and the characteristics of the transfer layer formed, a series of wear experiments have been performed with a commercial POM-20% PTFE composite sliding against hardened tool steel counterfaces in

  9. Evaluation of a simple polytetrafluoroethylene (PTFE)-based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory.

    Science.gov (United States)

    Siria, Doreen J; Batista, Elis P A; Opiyo, Mercy A; Melo, Elizangela F; Sumaye, Robert D; Ngowo, Halfan S; Eiras, Alvaro E; Okumu, Fredros O

    2018-04-11

    Controlled blood-feeding is essential for maintaining laboratory colonies of disease-transmitting mosquitoes and investigating pathogen transmission. We evaluated a low-cost artificial feeding (AF) method, as an alternative to direct human feeding (DHF), commonly used in mosquito laboratories. We applied thinly-stretched pieces of polytetrafluoroethylene (PTFE) membranes cut from locally available seal tape (i.e. plumbers tape, commonly used for sealing pipe threads in gasworks or waterworks). Approximately 4 ml of bovine blood was placed on the bottom surfaces of inverted Styrofoam cups and then the PTFE membranes were thinly stretched over the surfaces. The cups were filled with boiled water to keep the blood warm (~37 °C), and held over netting cages containing 3-4 day-old inseminated adults of female Aedes aegypti, Anopheles gambiae (s.s.) or Anopheles arabiensis. Blood-feeding success, fecundity and survival of mosquitoes maintained by this system were compared against DHF. Aedes aegypti achieved 100% feeding success on both AF and DHF, and also similar fecundity rates (13.1 ± 1.7 and 12.8 ± 1.0 eggs/mosquito respectively; P > 0.05). An. arabiensis had slightly lower feeding success on AF (85.83 ± 16.28%) than DHF (98.83 ± 2.29%) though these were not statistically different (P > 0.05), and also comparable fecundity between AF (8.82 ± 7.02) and DHF (8.02 ± 5.81). Similarly, for An. gambiae (s.s.), we observed a marginal difference in feeding success between AF (86.00 ± 10.86%) and DHF (98.92 ± 2.65%), but similar fecundity by either method. Compared to DHF, mosquitoes fed using AF survived a similar number of days [Hazard Ratios (HR) for Ae. aegypti = 0.99 (0.75-1.34), P > 0.05; An. arabiensis = 0.96 (0.75-1.22), P > 0.05; and An. gambiae (s.s.) = 1.03 (0.79-1.35), P > 0.05]. Mosquitoes fed via this simple AF method had similar feeding success, fecundity and longevity. The method could potentially be used for laboratory colonization of mosquitoes

  10. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  11. Linker-free covalent immobilization of heparin, SDF-1α, and CD47 on PTFE surface for antithrombogenicity, endothelialization and anti-inflammation.

    Science.gov (United States)

    Gao, Ang; Hang, Ruiqiang; Li, Wan; Zhang, Wei; Li, Penghui; Wang, Guomin; Bai, Long; Yu, Xue-Feng; Wang, Huaiyu; Tong, Liping; Chu, Paul K

    2017-09-01

    Small-diameter vascular grafts made of biomedical polytetrafluoroethylene (PTFE) suffer from the poor long-term patency rate originating from thrombosis and intimal hyperplasia, which can be ascribed to the insufficient endothelialization and chronic inflammation of the materials. Hence, bio-functionalization of PTFE grafts is highly desirable to circumvent these disadvantages. In this study, a versatile "implantation-incubation" approach in which the biomedical PTFE is initially modified by plasma immersion ion implantation (PIII) is described. After the N 2 PIII treatment, the surface of biomedical PTFE is roughened with nanostructures and more importantly, the abundant free radicals generated underneath the surface continuously migrate to the surface and react with environmental molecules. Taking advantage of this mechanism, various biomolecules with different functions can be steadily immobilized on the surface of PTFE by simple solution immersion. As examples, three typical biomolecules, heparin, SDF-1α, and CD47, are covalently grafted onto the PTFE. In addition to retaining the bioactivity, the surface-functionalized PTFE exhibits reduced thrombogenicity, facilitates the recruitment of endothelial progenitor cells, and even alleviates the inflammatory immune responses of monocytes-macrophages and is thus promising to the development of small-diameter prosthetic vascular grafts with good long-term patency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dacron® vs. PTFE as bypass materials in peripheral vascular surgery – systematic review and meta-analysis

    Science.gov (United States)

    Roll, Stephanie; Müller-Nordhorn, Jacqueline; Keil, Thomas; Scholz, Hans; Eidt, Daniela; Greiner, Wolfgang; Willich, Stefan N

    2008-01-01

    Background In peripheral vascular bypass surgery different synthetic materials are available for bypass grafting. It is unclear which of the two commonly used materials, polytetrafluoroethylene (PTFE) or polyester (Dacron®) grafts, is to be preferred. Thus, the aim of this meta-analysis and systematic review was to compare the effectiveness of these two prosthetic bypass materials (Dacron® and PTFE). Methods We performed a systematic literature search in MEDLINE, Cochrane-Library – CENTRAL, EMBASE and other databases for relevant publications in English and German published between 1999 and 2008. Only randomized controlled trials were considered for inclusion. We assessed the methodological quality by means of standardized checklists. Primary patency was used as the main endpoint. Random-effect meta-analysis as well as pooling data in life table format was performed to combine study results. Results Nine randomized controlled trials (RCT) were included. Two trials showed statistically significant differences in primary patency, one favouring Dacron® and one favouring PTFE grafts, while 7 trials did not show statistically significant differences between the two materials. Meta-analysis on the comparison of PTFE vs. Dacron® grafts yielded no differences with regard to primary patency rates (hazard ratio 1.04 (95% confidence interval [0.85;1.28]), no significant heterogeneity (p = 0.32, I2 = 14%)). Similarly, there were no significant differences with regard to secondary patency rates. Conclusion Systematic evaluation and meta-analysis of randomized controlled trials comparing Dacron® and PTFE as bypass materials for peripheral vascular surgery showed no evidence of an advantage of one synthetic material over the other. PMID:19099583

  13. Dacron® vs. PTFE as bypass materials in peripheral vascular surgery – systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Eidt Daniela

    2008-12-01

    Full Text Available Abstract Background In peripheral vascular bypass surgery different synthetic materials are available for bypass grafting. It is unclear which of the two commonly used materials, polytetrafluoroethylene (PTFE or polyester (Dacron® grafts, is to be preferred. Thus, the aim of this meta-analysis and systematic review was to compare the effectiveness of these two prosthetic bypass materials (Dacron® and PTFE. Methods We performed a systematic literature search in MEDLINE, Cochrane-Library – CENTRAL, EMBASE and other databases for relevant publications in English and German published between 1999 and 2008. Only randomized controlled trials were considered for inclusion. We assessed the methodological quality by means of standardized checklists. Primary patency was used as the main endpoint. Random-effect meta-analysis as well as pooling data in life table format was performed to combine study results. Results Nine randomized controlled trials (RCT were included. Two trials showed statistically significant differences in primary patency, one favouring Dacron® and one favouring PTFE grafts, while 7 trials did not show statistically significant differences between the two materials. Meta-analysis on the comparison of PTFE vs. Dacron® grafts yielded no differences with regard to primary patency rates (hazard ratio 1.04 (95% confidence interval [0.85;1.28], no significant heterogeneity (p = 0.32, I2 = 14%. Similarly, there were no significant differences with regard to secondary patency rates. Conclusion Systematic evaluation and meta-analysis of randomized controlled trials comparing Dacron® and PTFE as bypass materials for peripheral vascular surgery showed no evidence of an advantage of one synthetic material over the other.

  14. Thermoelastic wave propagation in laminated composites plates

    Directory of Open Access Journals (Sweden)

    Verma K. L.

    2012-12-01

    Full Text Available The dispersion of thermoelastic waves propagation in an arbitrary direction in laminated composites plates is studied in the framework of generalized thermoelasticity in this article. Three dimensional field equations of thermoelasticity with relaxation times are considered. Characteristic equation is obtained on employing the continuity of displacements, temperature, stresses and thermal gradient at the layers’ interfaces. Some important particular cases such as of free waves on reducing plates to single layer and the surface waves when thickness tends to infinity are also discussed. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results. Numerical results are also obtained and represented graphically.

  15. Laminitis subclínica en bovinos

    OpenAIRE

    Franco, M. S.; Oliver, O. J.

    2012-01-01

    La laminitis subclínica es una entidad multifactorial que afecta a los bovinos especialmente en el periodo del periparto. Se caracteriza por la coloración amarilla de la suela, hemorragias de la suela, separación de la línea blanca y erosiones de talón. Se considera que es el mayor factor predisponente para la presentación de cojeras de pezuña a causa del debilitamiento del tejido corneo de la misma, lo que comrpromete el bienestar del animal y acarrea perdidas económicas directas e indirecta...

  16. Absorbed dose measurements in mammography using Monte Carlo method and ZrO2+PTFE dosemeters

    International Nuclear Information System (INIS)

    Duran M, H. A.; Hernandez O, M.; Salas L, M. A.; Hernandez D, V. M.; Vega C, H. R.; Pinedo S, A.; Ventura M, J.; Chacon, F.; Rivera M, T.

    2009-10-01

    Mammography test is a central tool for breast cancer diagnostic. In addition, programs are conducted periodically to detect the asymptomatic women in certain age groups; these programs have shown a reduction on breast cancer mortality. Early detection of breast cancer is achieved through a mammography, which contrasts the glandular and adipose tissue with a probable calcification. The parameters used for mammography are based on the thickness and density of the breast, their values depend on the voltage, current, focal spot and anode-filter combination. To achieve an image clear and a minimum dose must be chosen appropriate irradiation conditions. Risk associated with mammography should not be ignored. This study was performed in the General Hospital No. 1 IMSS in Zacatecas. Was used a glucose phantom and measured air Kerma at the entrance of the breast that was calculated using Monte Carlo methods and ZrO 2 +PTFE thermoluminescent dosemeters, this calculation was completed with calculating the absorbed dose. (author)

  17. Burning and radiance properties of red phosphorus in Magnesium/PTFE/Viton (MTV)-based compositions

    Science.gov (United States)

    Li, Jie; Chen, Xian; Wang, Yanli; Shi, Yuanliang; Shang, Junteng

    2017-09-01

    Red phosphorus (RP) a highly efficient smoke-producing agent. In this study different contents of RP are added into the Magnesium/PTFE/Viton (MTV)-based composition, with the aim of investigating the influence of RP on the burning and radiance properties of MTV-based composition by using a high-temperature differential thermobalance method, a Fourier Transform Infrared (FTIR) remote-sensing spectrometer, a FTIR Spectrometer and a far-infrared thermal imager. The results show that RP improves the initial reaction temperature and reduces the mass burning rate by 0.1-0.17 g·s-1 (34-59%). The addition of RP has no obvious effect on the burning temperature and far-infrared radiation brightness, but the radiating area raises substantially (by 141%), and thus improves the radiation intensity (by 155%).

  18. Temperature profiles of an ablation controlled arc in PTFE: II. Simulation of side-on radiances

    International Nuclear Information System (INIS)

    Schneidenbach, H; Uhrlandt, D; Franke, St; Seeger, M

    2007-01-01

    The temperature determination by spectroscopic measurements in high-current high-pressure arcs in a polytetrafluoroethylene (PTFE) nozzle under the assumption of an optically thin plasma has been investigated. Assuming local thermodynamic equilibrium the radial temperature distributions as well as the plasma pressures have been determined by fitting a model to measured spectral radiances considering line and continuum absorption. It is shown that absorption has to be included in the error estimate of the experimental results. The different effects, which cause deviations from the optically thin case, have been analysed numerically and by using a simplified analytical model. The theoretically estimated pressures sensitively depend on the Stark broadening. In the studied plasmas the calculated large electron densities indicate a marked reduction of the Stark widths by nonideality effects. The applicability of the experimental method has been proved for suitably chosen lines

  19. Optimization of the obtaining method of CaSO4: Dy + Ptfe dosimeters

    International Nuclear Information System (INIS)

    Galicia A, J.; Rioja Ch, J.; Torijano C, E.; Azorin N, J.

    2012-10-01

    This work contain the obtained results of studying the response when irradiating to different dose of X-rays, dosimeters of CaSO 4 : Dy + Ptfe using different lapses of time in their preparation (a lot of selected dosimeters of an elaboration process of 3 days and another of an elaboration process of 2 hours). For the elaboration of the powdered material, the evaporation method was used; the irradiation were carried out in a lineal accelerator Elekta Synergy property of the National Medical Center, 20 de November. The similarities and differences are shown among the two dosimeters lots together with an analysis of the shine curves and of calibration selecting those that presented a better behaviour and a more rea liable response. (Author)

  20. Dosimetry of beta particles using Li:Mg, Cu, P + Ptfe

    International Nuclear Information System (INIS)

    Olvera, L.; Azorin, J.; Rivera, T.

    2003-01-01

    This paper presents the experimental results of determining the thermoluminescence (Tl) response of LiF: Mg, Cu, P + Ptfe pellets excited with 90 Sr/ 90 Y beta radiation. The glow curve exhibited three peaks which appear at 121 C, 178 C and 217 C . Its relative sensitivity is 49 with respect to that of the TLD-100 dosemeter taken as a reference. The minimal dose that could be measured was 750 mGy. The Tl response as a function of dose was linear in the range of 0.7 mGy to 22.5 mGy. The study of the repeatability of the information contained in the pellets showed a standard deviation of 2 %. (Author)

  1. Bronchobiliary Fistula Treated by Self-expanding ePTFE-Covered Nitinol Stent-Graft

    International Nuclear Information System (INIS)

    Gandini, Roberto; Konda, Daniel; Tisone, Giuseppe; Pipitone, Vincenzo; Anselmo, Alessandro; Simonetti, Giovanni

    2005-01-01

    A 71-year-old man, who had undergone right hepatectomy extended to the caudate lobe with terminolateral Roux-en-Y left hepatojejunostomy for a Klatskin tumor, developed bilioptysis 3 weeks postoperatively due to bronchobiliary fistula. Percutaneous transhepatic cholangiography revealed a non-dilated biliary system with contrast medium extravasation to the right subphrenic space through a resected anomalous right posterior segmental duct. After initial unsuccessful internal-external biliary drainage, the fistula was sealed with a VIATORR covered self-expanding nitinol stent-graft placed with its distal uncovered region in the hepatojejunal anastomosis and the proximal ePTFE-lined region in the left hepatic duct. A 10-month follow-up revealed no recurrence of bilioptysis and confirmed the complete exclusion of the bronchobiliary fistula

  2. Effects of differently hardened brass foil laminate on the electromechanical property of externally laminated CC tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Mean, Byoung Jean; Lee, Jae Hun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-12-15

    The mechanical properties of REBCO coated conductor (CC) wires under uniaxial tension are largely determined by the thick component layers in the architecture, namely, the substrate and the stabilizer or even the reinforcement layer. Depending on device applications of the CC tapes, it is necessary to reinforce thin metallic foils externally to one-side or both sides of the CC tapes. Due to the external reinforcement of brass foils, it was found that this could increase the reversible strain limit from the Cu-stabilized CC tapes. In this study, the effects of differently hardened brass foil laminate on the electromechanical property of CC tapes were investigated under uniaxial tension loading. The tensile strain dependence of the critical current (I{sub c}) was measured at 77 K and self-field. Depending on whether the I{sub c} of CC tapes were measured during loading or after unloading, a reversible strain (or stress) limit could be determined, respectively. The both-sides of the Cu-stabilized CC tapes were laminated with brass foils with different hardness, namely 1/4H, 1H and EH. From the obtained results, it showed that the yield strength of the brass laminated CC tapes with EH brass foil laminate was comparable to the one of the Cu-stabilized CC tape due to its large yield strength even though its large volume fraction. It was found that the brass foil with different hardness was mainly sensitive on the stress dependence of I{sub c}, but not on the strain sensitivity due to the residual strain induced in the laminated CC tapes during unloading.

  3. Investigation of optical and microstructural properties of RF magnetron sputtered PTFE films for hydrophobic applications

    International Nuclear Information System (INIS)

    Tripathi, S.; Haque, S. Maidul; Rao, K. Divakar; De, Rajnarayan; Shripathi, T.; Deshpande, U.; Ganesan, V.; Sahoo, N.K.

    2016-01-01

    Highlights: • Polytetrafluoroethylene films were made by RF sputtering by varying deposition time. • With increasing deposition time, thickness shows unusual trend due to backsputtering. • Major contribution of CF 2 and CF 3 bonds in the samples is seen by ATR-FTIR. • Deposition time influences film thickness but all samples remain hydrophobic. • XPS spectra show strong CF x bonds at the surface. - Abstract: The deposition time dependence of optical, structural and morphological properties of thin as well as ultrathin Polytetrafluoroethylene (PTFE) sputtered films have been explored in the present communication. The films were prepared by RF magnetron sputtering under high vacuum condition, as a function of deposition time. The ellipsometry as well as X-ray reflectivity data show a drastic reduction in film thickness as the deposition time increases from 5 s to 10 s, possibly as a consequence of back sputtering. With subsequent deposition, back sputtering component decreases and hence, thickness increases with increase in deposition time. Atomic force microscopy (AFM) images show a slight change in growth morphology although roughness is independent of deposition time. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) measurements showed the presence of C−C and CF x (x = 1–3) bonds in all the PTFE films. Supporting this, corresponding X-ray photoelectron spectroscopy (XPS) curves fitted for C-1s and F-1s peaks revealed a major contribution from CF 2 bonds along with significant contribution from CF 3 bonds leading to an F/C ratio of ∼1.5 giving hydrophobic nature of all the films.

  4. Hole-thru-laminate mounting supports for photovoltaic modules

    Science.gov (United States)

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  5. Self-heating forecasting for thick laminate specimens in fatigue

    Science.gov (United States)

    Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.

  6. 78 FR 23591 - Certain Prepregs, Laminates, and Finished Circuit Boards

    Science.gov (United States)

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-659 (Enforcement)] Certain Prepregs... United States after importation of certain prepregs, laminates, and finished circuit boards that infringe... prepregs and laminates that are the subject of the investigation or that otherwise infringe, induce, and/or...

  7. Lateral testing of glued laminated timber tudor arch

    Science.gov (United States)

    Douglas R. Rammer; Philip Line

    2016-01-01

    Glued laminated timber Tudor arches have been in wide use in the United States since the 1930s, but detailed knowledge related to seismic design in modern U.S. building codes is lacking. FEMA P-695 (P-695) is a methodology to determine seismic performance factors for a seismic force resisting system. A limited P-695 study for glued laminated timber arch structures...

  8. Bayesian inference model for fatigue life of laminated composites

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian

    2016-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference. The ...

  9. Nuclear lamins: laminopathies and their role in premature ageing

    NARCIS (Netherlands)

    Broers, J.L.V.; Ramaekers, F.C.S.; Bonne, G.; Yaou, R.; Hutchison, C.J.

    2006-01-01

    It has been demonstrated that nuclear lamins are important proteins in maintaining cellular as well as nuclear integrity, and in maintaining chromatin organization in the nucleus. Moreover, there is growing evidence that lamins play a prominent role in transcriptional control. The family of

  10. Optimum design of laminated composite under axial compressive load

    Indian Academy of Sciences (India)

    In the present study optimal design of composite laminates, with and without rectangular cut-out, is carried out for maximizing the buckling load. Optimization study is carried out for obtaining the maximum buckling load with design variables as ply thickness, cut-out size and orientation of cut-out with respect to laminate.

  11. Static and dynamic through thickness lamina properties of thick laminates

    NARCIS (Netherlands)

    Lahuerta, F.; Nijssen, R.P.L.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    Thick laminates are increasingly present in large composites structures such as wind turbine blades. Different factors are suspected to be involved in the decreased static and dynamic performance of thick laminates. These include the effect of self-heating, the scaling effect, and the manufacturing

  12. Laminated lumber may be more profitable than sawn lumber

    Science.gov (United States)

    P. Koch

    1976-01-01

    By laminating 1/4-in. rotary-cut veneer into structural lumber, manufacturers can expand lumber output by at least 30% without increasing volume logged. The idea merits intensive study. Manufacturing plus raw material costs should total about $142/Mbf; sales price for desirable widths and lengths of the strong laminated product should approach or exceed $200/Mbf.

  13. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    Science.gov (United States)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-03-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2.

  14. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    International Nuclear Information System (INIS)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-01-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2. (paper)

  15. Minimum weight design of composite laminates for multiple loads

    International Nuclear Information System (INIS)

    Krikanov, A.A.; Soni, S.R.

    1995-01-01

    A new design method of constructing optimum weight composite laminates for multiple loads is proposed in this paper. A netting analysis approach is used to develop an optimization procedure. Three ply orientations permit development of optimum laminate design without using stress-strain relations. It is proved that stresses in minimum weight laminate reach allowable values in each ply with given load. The optimum ply thickness is defined at maximum value among tensile and compressive loads. Two examples are given to obtain optimum ply orientations, thicknesses and materials. For comparison purposes, calculations of stresses are done in orthotropic material using classical lamination theory. Based upon these calculations, matrix degrades at 30 to 50% of ultimate load. There is no fiber failure and therefore laminates withstand all applied loads in both examples

  16. The mechanical behavior of GLARE laminates for aircraft structures

    Science.gov (United States)

    Wu, Guocai; Yang, J.-M.

    2005-01-01

    GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.

  17. Fatigue Performance of Composite Laminates After Low-velocity Impact

    Directory of Open Access Journals (Sweden)

    LIANG Xiao-lin

    2016-12-01

    Full Text Available Compression-compression fatigue tests were carried out on T300/5405 composite laminates after low-velocity impact, compression performance of the laminates with different impact damages was studied together with its fatigue life and damage propagation under different stress levels, then the effects of impact energy, stress level and damage propagation on fatigue life of laminates were discussed. The results indicate that impact damage can greatly reduce the residual strength of laminates; under low fatigue load levels, the higher impact energy is, the shorter the fatigue life of laminates with impact damage will be; damage propagation undergoes two stages during the fatigue test, namely the steady propagation and the rapid propagation, accounting for 80% and 20% of the overall fatigue life, respectively; damage propagation rate decreases with the reduction of stress level.

  18. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  19. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  20. Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries

    Science.gov (United States)

    Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop

    2018-04-01

    A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.

  1. Gas-filled hohlraum fabrication

    International Nuclear Information System (INIS)

    Salazar, M.A.; Gobby, P.L.; Foreman, L.R.; Bush, H. Jr.; Gomez, V.M.; Moore, J.E.; Stone, G.F.

    1995-01-01

    Los Alamos National Laboratory (LANL) researchers have fabricated and fielded gas-filled hohlraums at the Lawrence Livermore National Laboratory (LLNL) Nova laser. Fill pressures of 1--5 atmospheres have been typical. We describe the production of the parts, their assembly and fielding. Emphasis is placed on the production of gas-tight polyimide windows and the fielding apparatus and procedure

  2. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.; Cachim, P.B.; Da Costa, Pedro M. F. J.

    2014-01-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  3. Mechanics of filled carbon nanotubes

    KAUST Repository

    Monteiro, A.O.

    2014-04-01

    The benefits of filling carbon nanotubes (CNTs) with assorted molecular and crystalline substances have been investigated for the past two decades. Amongst the study of new structural phases, defects, chemical reactions and varied types of host-guest interactions, there is one fundamental characterisation aspect of these systems that continues to be overlooked: the mechanical behaviour of filled CNTs. In contrast to their empty counterparts, the mechanics of filled CNTs is a subject where reports appear far and apart, this despite being key to the application of these materials in technological devices. In the following paragraphs, we review the work that has been carried out up to the present on the mechanics of filled CNTs. The studies discussed range from experimental resonant frequency essays performed within electron microscopes to modelling, via molecular dynamics, of three-point bending of nanotubes filled with gases. (C) 2014 Elsevier B.V. All rights reserved.

  4. Mechanical performance of laminated composites incorporated with nanofibrous membranes

    International Nuclear Information System (INIS)

    Liu, L.; Huang, Z.-M.; He, C.L.; Han, X.J.

    2006-01-01

    The effect of non-woven nanofibrous membranes as interlaminar interfaces on the mechanical performance of laminated composites was investigated experimentally. The nanofibrous membranes are porous, thin and lightweight, and exhibit toughness and strength to some extent. They give little increase in weight and thickness when incorporated into a laminate. More important, they can be used as a functional agent carrier for the laminate. The nanofiber membranes used in this paper were prepared by electrospinning of Nylon-6 (PA6), Epoxy 609 (EPO 1691-410) and thermoplastic polyurethane (TPU), with a thickness ranging from 20 to 150 μm. The non-woven fabrics were attached to one side of a glass/epoxy fabric lamina prior to lamination and each fabric was arranged in between two adjacent plies of the laminate. The nanofibrous membranes were characterized through scanning electron microscopy (SEM) and tensile testing, whereas the mechanical properties of the laminate were understood in terms of three-point bending and short-beam shear tests. Results have shown that the nanofibrous membranes in the ply interfaces with a proper thickness did not affect the mechanical performance of the composite laminates significantly

  5. Combined tension and bending testing of tapered composite laminates

    Science.gov (United States)

    O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles

    1994-11-01

    A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.

  6. Effect of nanomodified polyester resin on hybrid sandwich laminates

    International Nuclear Information System (INIS)

    Anbusagar, NRR.; Giridharan, P.K.; Palanikumar, K.

    2014-01-01

    Highlights: • Effect of nanomodified polyester resin on hybrid sandwich laminates is evaluated. • The hybrid sandwich laminates are fabricated with varying wt% of nanoclay. • Flexural, impact and moisture absorbtion properties are evaluated for hybrid composites. • Scanning electron microscopy is utilized to analyze the dispersion of clay and fractured surfaces of the nanocomposites. - Abstract: Effect of nanoclay modified polyester resin on flexural, impact, hardness and water absorption properties of untreated woven jute and glass fabric hybrid sandwich laminates have been investigated experimentally. The hybrid sandwich laminates are prepared by hand lay-up manufacturing technique (HL) for investigation. All hybrid sandwich laminates are fabricated with a total of 10 layers, by varying the extreme layers and wt% of nanoclay in polyester resin so as to obtain four different combinations of hybrid sandwich laminates. For comparison of the composite with hybrid composite, jute fiber reinforced composite laminate also fabricated. X-ray diffraction (XRD) results obtained from samples with nanoclay indicated that intergallery spacing of the layered clay increases with matrix. Scanning electron microscopy (SEM) gave a morphological picture of the cross-sections and energy dispersive X-ray spectroscopy (EDS) allowed investigating the elemental composition of matrix in composites. The testing results indicated that the flexural properties are greatly increased at 4% of nanoclay loading while impact, hardness and water absorption properties are increased at 6% of nanoclay loading. A plausible explanation for high increase of properties has also been discussed

  7. Ex-vivo release of Pipeline Embolization Device polytetrafluoroethylene (PTFE) sleeves for improved distal landing zone accuracy in-vivo: A technical note.

    Science.gov (United States)

    Griessenauer, Christoph J; Gupta, Raghav; Moore, Justin; Thomas, Ajith J; Ogilvy, Christopher S

    2016-12-01

    Distal landing zone accuracy is critical in some intracranial aneurysms treated with the Pipeline Embolization Device (PED), and delayed opening of the distal end of the device can complicate the procedure. Here, we report a technical nuance that facilitates accurate placement of the distal end of the PED by ex-vivo, pre-implantation release of the PED Flex polytetrafluoroethylene (PTFE) sleeves. The PED Flex is partially pushed out of the introducer sheath ex-vivo, pre-implantation until the distal PED opens entirely and the PTFE sleeves are located distal to the device. Without inverting the PTFE sleeves, the PED is carefully pulled back into the introducer sheath placing the PTFE sleeves inside the device. The PED is loaded into the microcatheter and advanced toward the site of implantation. When the PED is initially deployed and pushed out of the microcatheter, it opens immediately and provides an anchor for the remainder of the deployment process. We present a video (supplementary material) that illustrates the technique along with an illustrative case. Ex-vivo, pre-implantation release of the PTFE sleeves is an option in aneurysm treatment where distal landing accuracy is critical. Even without the protection of the PTFE sleeves, our clinical observation shows that the PED can be advanced safely through the microcatheter in selected cases. © The Author(s) 2016.

  8. Radiation grafting of pH and thermosensitive N-isopropylacrylamide and acrylic acid onto PTFE films by two-steps process

    International Nuclear Information System (INIS)

    Bucio, E.; Burillo, G.

    2007-01-01

    Polytetrafluoroethylene (PTFE) was grafted (g) with acrylic acid (AAc) by γ-ray pre-irradiation method to get PTFE-g-AAc films, then N-isopropylacrylamide (NIPAAm) was grafted onto PTFE-g-AAc films with γ-ray to get (PTFE-g-AAc)-g-NIPAAm. PTFE films were irradiated in air at a dose rate of 3.0 kGy h -1 and different radiation dose. The irradiated films were placed in glass ampoules, which contained aqueous solutions with different monomer concentration (AAc), and then they were heated at different temperatures and reaction time. NIPAAm onto PTFE-g-AAc was carried out with the same procedure with monomer concentration of 1 mol L -1 . The thermosensitivity of the samples was defined and calculated as the ratio of the grafted samples swelling at 28 and 35 o C, and pH sensitivity defined as the ratio of the grafted samples swelling at pH 2 and 8

  9. A comparison of woven versus nonwoven polypropylene (PP) and expanded versus condensed polytetrafluoroethylene (PTFE) on their intraperitoneal incorporation and adhesion formation.

    Science.gov (United States)

    Raptis, Dimitri Aristotle; Vichova, Barbora; Breza, Jan; Skipworth, James; Barker, Stephen

    2011-07-01

    To compare known and novel synthetic materials useful for incisional hernia repair and to test independently, whether they justify common perceptions related to their use. Four types of synthetic materials were implanted in to 12 pigs to compare incorporation histology and adhesion formation 90 d after placement. Woven polypropylene (WPP), nonwoven polypropylene (NWPP), expanded polytetrafluoroethylene (ePTFE). and condensed polytetrafluoroethylene (cPTFE) were placed intraperitoneally (IP). Intraperitoneally, WPP became fully peritonealized, but generated thick and plentiful adhesions. NWPP became fully peritonealized and generated filmy and far less numerous adhesions. ePTFE formed some filmy adhesions and did not peritonealize. cPTFE and WPP became fully peritonealized. However, bowel became adherent on raised edges of cPTFE and WPP. We conclude that NWPP incorporates extremely well intraperitoneally, promotes few adhesions, and its use is likely to be suitable for hernia repair. cPTFE performs well and promotes few adhesions, but to minimize potentially serious complications, its edges must be secured around its entire circumference. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Culture of Iris Pigment Epithelial Cells on Expanded-Polytetrafluroethylene (ePTFE Substrates for the Treatment of Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    S Nian

    2011-05-01

    Full Text Available Introduction: Transplantation of an intact differentiated retinal pigment epithelial (RPE cell layer may provide a means to treat Age-Related Macular Degeneration (AMD. However, harvesting RPE cells can be a technically complicated procedure. Our current work aimed to prepare intact differentiated iris pigment epithelial (IPE cell layers, which are easy to obtain and have the same embryonic origin and similar properties as RPE cells, on ePTFE substrates for transplantation purposes to rescue deteriorated photoreceptors in AMD. Methods: IPE cells isolated from rat eyes were seeded on different substrates, including fibronectin n-heptylamine (HA ePTFE substrates, HA ePTFE substrates, ePTFE substrates and fibronectin tissue culture polystyrene (TCPS as control. Cell number and morphology were assessed at each time interval. The formation of tight junction was examined by immunostaining of junction proteins. Results: An obvious increasing trend of cell number was observed in IPE cells on fibronectin n-heptylamine (HA ePTFE substrate, exhibiting heavy pigmentation and epithelial morphology. At Day 28, tight junction formation was indicated by cell-cell junctional proteins along cell borders. Conclusion: Harvested IPE cells cultured on fibronectin HA-ePTFE substrates can differentiate and form a cell monolayer that may be suitable for transplantation.

  11. Formaldehyde and TVOC emission behavior of laminate flooring by structure of laminate flooring and heating condition.

    Science.gov (United States)

    An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong

    2011-03-15

    Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. LamLum : a tool for evaluating the financial feasibility of laminated lumber plants

    Science.gov (United States)

    E.M. (Ted) Bilek; John F. Hunt

    2006-01-01

    A spreadsheet-based computer program called LamLum was created to analyze the economics of value- added laminated lumber manufacturing facilities. Such facilities manufacture laminations, typically from lower grades of structural lumber, then glue these laminations together to make various types of higher value laminated lumber products. This report provides the...

  13. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  14. Experience of usage of forming rings and protective caps made of PTFE on the single-component implants

    Directory of Open Access Journals (Sweden)

    S. A. Chertov

    2014-04-01

    Full Text Available Relevance. The main reason that limits the usage of single-component implants, as compared with collapsible (two-component implants is the high risk of infectious and inflammatory complications in the postoperative period and problems in prosthetics in the esthetically important areas. Therefore, the usage of elements that contribute to healing of the mucous membrane in the early stages of implantation is particularly up-to-date. Work objective is to determine the clinical effectiveness of usage of forming rings and protective caps made of PTFE on the single-component implants in the prevention of peri-implant pathology on a one-step surgical implantation. Materials and methods of the investigation. For this work we used the treatment results of 24 patients with various dentition defects. According to the single-component implant procedure 52 single-component implants were mounted. The head of monolithic implants (38 p. were isolated by rings or caps made of PTFE. For comparison, 14 implants remained bare for 2-6 weeks before the temporary prosthesis. Postoperatively, subjective feelings were noted in patients, the presence or absence of pain complaints during the examination and palpation, the nature and extent of edema, the phenomena of inflammation around the implant neck were checked. At the stage of sutures removal the degree of soft plaque deposits on the healing elements and titanium implant heads was assessed. Results of the investigation and their discussion. No effects of mucosal hyperemia around the supporting elements made of PTFE were revealed, there was no soft and hard plaque on the rings and caps in most patients of the main group. In patients of the control group, on the contrary, the appearance of the biofilm that covered the head and the implant shoulder on all abutments, which were not protected by a ring or cap, was noted. The healing period of mucous membrane in patients of the control group was longer, the quality of

  15. Aesthetic Qualities of Cross Laminated Timber

    DEFF Research Database (Denmark)

    Bejder, Anne Kirkegaard

    to its sustainable profile. In parallel to this, new production methods and further refined timber products have been developed. Among these are the engineered timber-based product Cross Laminated Timber (CLT) that show enhanced structural properties compared to unrefined timber. However, the question...... an undefined aesthetic potential that may innovate how we construct and perceive timber architecture, the overall aim of the thesis is to inquire into the architectural and aesthetic qualities of CLT. Through three chapters this thesis examines and discusses 1) the architectural qualities of CLT, 2......) the materiality of CLT, and 3) how one can deal with these qualitative aspects in the design process. This leads to: firstly, the development of an explicit model to help structuring the analysis and evaluation of the materiality of CLT, and secondly, a clarification and articulation of the aesthetic qualities...

  16. Permeability After Impact Testing of Composite Laminates

    Science.gov (United States)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  17. High energy electron beams characterization using CaSO{sub 4}:Dy+PTFE Phosphors for clinical therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, Col. Irrigacion. 11500 Mexico DF (Mexico); Espinoza, A.; Von, S.M. [Centro Estatal de Cancerologia de los Servicios de Salud de Nayarit, Enfermeria S/n, Fracc, Fray Junipero Serra, 63169 Tepic Nay (Mexico); Alvarez, R.; Jimenez, Y. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, Col. Irrigacion. 11500 Mexico DF (Mexico)

    2012-07-15

    In the present work high energy electron beam dosimetry from linear accelerator (LINACs) for clinical applications using dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO{sub 4}:Dy+PTFE) was studied. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator (LINAC) Varian, CLINAC 2300C/D, for clinical practice purpose. The electron irradiations were obtained using the water solid in order to guarantee electronic equilibrium conditions (EEC). Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO{sub 4}:Dy+PTFE were conducted under high electrons beams irradiations. The TL response of the pellets showed an intensity peak centered at around 215 Degree-Sign C. TL response of CaSO{sub 4}:Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO{sub 4}:Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. - Highlights: Black-Right-Pointing-Pointer Developing of CaSO{sub 4}:Dy to electron beams dosimetry. Black-Right-Pointing-Pointer Characterization of caSO{sub 4}:Dy to radiation safety in LINACs. Black-Right-Pointing-Pointer TL characteristics of CaSO{sub 4}:Dy for electron beams quality control.

  18. Electrostatic Properties of PE and PTFE Subjected to Atmospheric Pressure Plasma Treatment; Correlation of Experimental Results with Atomistic Modeling

    Science.gov (United States)

    Trigwell, Steve; Boucher, Derrick; Calle, Carlos

    2006-01-01

    The use of an atmospheric pressure glow discharge (APGD) plasma was used at KSC to increase the hydrophilicity of spaceport materials to enhance their surface charge dissipation and prevent possible ESD in spaceport operations. Significant decreases in charge decay times were observed after tribocharging the materials using the standard KSC tribocharging test. The polarity and amount of charge transferred was dependent upon the effective work function differences between the respective materials. In this study, polyethylene (PE) and polytetrafluoroethylene (PTFE) were exposed to a He+O2 APGD. The pre and post treatment surface chemistry was analyzed by X-ray photoelectron spectroscopy and contact angle measurements. Semi-empirical and ab initio calculations were performed to correlate the experimental results with some plausible molecular and electronic structure features of the oxidation process. For the PE, significant surface oxidation was observed, as indicated by XPS showing C-O, C=O, and O-C=O bonding, and a decrease in the surface contact angle from 98.9 deg to 61.2 deg. For the PTFE, no C-O bonding appeared and the surface contact angle increased indicating the APGD only succeeded in cleaning the PTFE surface without affecting the surface structure. The calculations using the PM3 and DFT methods were performed on single and multiple oligomers to simulate a wide variety of oxidation scenarios. Calculated work function results suggest that regardless of oxidation mechanism, e.g. -OH, =0 or a combination thereof, the experimentally observed levels of surface oxidation are unlikely to lead to a significant change in the electronic structure of PE and that its increased hydrophilic properties are the primary reason for the observed changes in its electrostatic behavior. The calculations for PTFE argue strongly against significant oxidation of that material, as confirmed by the XPS results.

  19. Filtration of Oil-furnace Carbon Black Dust Particles from the Tail Gases by Filter Bags With PTFE Membrane

    Directory of Open Access Journals (Sweden)

    Čuzela, D.

    2010-01-01

    Full Text Available During the industrial production of oil furnace carbon black, tail gases containing oil-furnace carbon black dust particles are emitted to the atmosphere. In the carbon black plant, Petrokemija d. d., there are six exhaust stacks for tail gases. Each of them has installed process equipment for cleaning tail gases. Efficiency of cleaning mainly depends on equipment construction and cleaning technology. The vicinity of the town, quality of the air in the region of Kutina, regarding floating particles PM10, and corporate responsibility for further enviromental improvement, imposes development of new methods that will decrease the emmision of oil-furnace carbon black dust particles in the air. Combining centrifugal percipitator and filter, special construction of cyclofilter for filtration of oil-furnace carbon black dust particles from tail gases by using PTFE (polytetrafluoroethylene membrane filter bags, was designed. Developed filtration technique provides η = 99.9 % efficiency of filtration. Construction part of the filter contains the newest generation of PTFE membrane filter bags with the ability of jet pulse cleaning. Using the PTFE membrane filter bags technology, filtration efficiency for oil-furnace carbon black dust particles in tail gases of maximum γ=5mgm-3can be achieved. The filtration efficiency was monitored continuously measuring the concentration of the oil-furnace carbon black dust particles in the tail gases with the help of in situ electronic probe. The accomplished filtration technology is the base for the installation of the PTFE membrane filter bags in the main operation filters which will provide better protection of the air in the town of Kutina against floating particles PM10.

  20. Effect of antithrombotic agents on the patency of PTFE-Covered stents in the inferior vena cava: An experimental study

    International Nuclear Information System (INIS)

    Makutani, Shiro; Kichikawa, Kimihiko; Uchida, Hideo; Maeda, Munehiro; Konishi, Noboru; Hiasa, Yoshio; Yoshikawa, Tomohiro; Kimura, Yukio

    1999-01-01

    Purpose: To evaluate the efficacy of antithrombotic agents in the prevention of stenosis of polytetrafluororethylene (PTFE)-covered stents in the venous system.Methods: Spiral Z stents covered with PTFE (PTFE-covered stents) were placed in the inferior vena cava (IVC) of 34 dogs. Nineteen dogs, used as a control group, were sacrificed at 2, 4, and 12 weeks. Fifteen dogs, previously given antithrombotic agents [cilostazol (n=5), warfarin potassium (n=5), cilostazol plus warfarin potassium (n=5)] were sacrificed at 4 weeks, and then examined angiographically and histopathologically. The effect of the antithrombotic agents was compared between groups.Results: The patency rate of the antithrombotic agent group was 93% (14/15), which was higher than the control group rate of 63% (12/19). The mean stenosis rate of the patent stent at both ends and at the midportion was lower at 4 weeks in the antithrombotic agent group than in the control group. In particular, the mean stenosis rate in the cilostazol plus warfarin potassium group was significantly lower than the control group (Tukey's test, p < 0.05). The mean neointimal thickness of the patent stent at both ends and at the midportion was thinner at 4 weeks in the antithrombotic agent group than in the control group. In particular, the thickness of the neointima in the cilostazol plus warfarin potassium group was significantly decreased when compared with the control group (Tukey's test p < 0.05). At 4 weeks, endothelialization in the antithrombotic agent group tended to be almost identical to that in the control group.Conclusion: The present study suggests that administration of an antithrombotic agent is an effective way of preventing the stenosis induced by a neointimal thickening of PTFE-covered stents in the venous system.

  1. Radiopacity of root filling materials

    International Nuclear Information System (INIS)

    Beyer-Olsen, E.M.

    1983-01-01

    A method for measuring the radiopacity of root filling materials is described. Direct measurements were made of the optic density values of the materials in comparison with a standard curve relating optic density to the thickness of an aluminium step wedge exposed simultaneously. By proper selection of film and conditions for exposure and development, it was possible to obtain a near-linear standard curve which added to the safety and reproducibility of the method. The technique of radiographic assessment was modified from clinical procedures in evaluating the obturation in radiographs, and it was aimed at detecting slits or voids between the dental wall and the filling material. This radiographic assessment of potensial leakage was compared with actual in vitro lekage of dye (basic fuchsin) into the roots of filled teeth. The result of the investigation show that root filling materials display a very wide range of radiopacity, from less than 3 mm to more than 12 mm of aluminium. It also seem that tooth roots that appear to be well obturated by radiographic evaluation, stand a good chance of beeing resistant to leakage in vitro, and that the type of filling material rather than its radiographic appearance, determines the susceptibility of the filled tooth to leakage in vitro. As an appendix the report contains a survey of radiopaque additives in root filling materials

  2. Study of the Formability of Laminated Lightweight Metallic Materials

    Directory of Open Access Journals (Sweden)

    Girjob Claudia

    2017-01-01

    Full Text Available The main objective of this work was to test the formability of laminated materials. Laminated materials are considered a good choice when parts with reduced weight are considered. Thus, a laminated material, aluminum - polypropylene - aluminum (Al-PP-Al, as sheet 1.2 mm and 1.4 mm thickness was used. Before processing the material by means of unconventional plastic deformation, its formability was determined by running the Nakajima test. After obtaining the forming limit curves, the material was machined by means of incremental forming.

  3. Modeling delamination of FRP laminates under low velocity impact

    Science.gov (United States)

    Jiang, Z.; Wen, H. M.; Ren, S. L.

    2017-09-01

    Fiber reinforced plastic laminates (FRP) have been increasingly used in various engineering such as aeronautics, astronautics, transportation, naval architecture and their impact response and failure are a major concern in academic community. A new numerical model is suggested for fiber reinforced plastic composites. The model considers that FRP laminates has been constituted by unidirectional laminated plates with adhesive layers. A modified adhesive layer damage model that considering strain rate effects is incorporated into the ABAQUS / EXPLICIT finite element program by the user-defined material subroutine VUMAT. It transpires that the present model predicted delamination is in good agreement with the experimental results for low velocity impact.

  4. Laminated Ti-Al composites: Processing, structure and strength

    DEFF Research Database (Denmark)

    Du, Yan; Fan, Guohua; Yu, Tianbo

    2016-01-01

    Laminated Ti-Al composite sheets with different layer thickness ratios have been fabricated through hot pressing followed by multi-pass hot rolling at 500 °C.The laminated sheets show strong bonding with intermetallic interface layers of nanoscale thickness between the layers of Ti and Al....... The mechanical properties of the composites with different volume fractions of Al from 10% to 67% show a good combination of strength and ductility. A constraint strain in the hot-rolled laminated structure between the hard and soft phases introduces an elastic-plastic deformation stage, which becomes more...

  5. THE USE OF CHLOROSULFONIC ACID ON SULFONATION OF cPTFE FILM GRAFTED STYRENE FOR PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-06-01

    Full Text Available Sulfonation of g-ray iradiated and styrene-grafted crosslinked polytetrafluoro ethylene film (cPTFE-g-S film have been done. The aim of the research was to make hydrophyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared by using chlorosulfonic acid in chloroethane under various conditions. The impact of the percentage of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film were examined. The results show that sulfonation of surface-grafted films was incomplete at room temperature. Increasing concentration of chlorosulfonic acid and reaction temperature accelerate the reaction but they also favor side reactions. These lead to the decrease of the ion-exchange capacity, water uptake, and proton conductivity but the increase of the resistance to oxidation in a perhydrol solution. The resulted cPTFE-g-SS membraneis stabile in a H2O2 30% solution for 20 h.   Keywords: Chorosulfonic acid, sulfonation, PTFE film, proton excange membrane.

  6. Ridge Preservation Comparing a Nonresorbable PTFE Membrane to a Resorbable Collagen Membrane: A Clinical and Histologic Study in Humans.

    Science.gov (United States)

    Arbab, Hussain; Greenwell, Henry; Hill, Margaret; Morton, Dean; Vidal, Ricardo; Shumway, Brian; Allan, Nicholas D

    2016-02-01

    The primary aim of this randomized, controlled, blinded clinical trial was to compare the effect of a resorbable collagen membrane (CM group) versus a nonresorbable high-density polytetrafluoroethylene membrane (PTFE group) on the clinical and histologic outcomes of a ridge preservation procedure. All 24 sites received an intrasocket cancellous allograft and a buccal overlay bovine derived xenograft. The change in horizontal crestal ridge width was -1.4 ± 1.2 mm for the CM group, whereas the PTFE group lost -2.2 ± 1.5 mm, which was not statistically significant between groups (P > 0.05). Vertical ridge height change was -1.2 ± 1.5 for the CM group, whereas the PTFE group lost -0.5 ± 1.6, which was not significantly different between groups (P > 0.05). The percent vital bone was similar and not significantly different between groups. Primary closure was not obtained and the exposed membrane portion over the socket opening healed with keratinized tissue. The choice of a resorbable versus a nonresorbable barrier membrane did not affect the clinical or the histologic outcome of ridge preservation treatment.

  7. On the potential for fibronectin/phosphorylcholine coatings on PTFE substrates to jointly modulate endothelial cell adhesion and hemocompatibility properties.

    Science.gov (United States)

    Montaño-Machado, Vanessa; Chevallier, Pascale; Mantovani, Diego; Pauthe, Emmanuel

    2015-01-01

    The use of biomolecules as coatings on biomaterials is recognized to constitute a promising approach to modulate the biological response of the host. In this work, we propose a coating composed by 2 biomolecules susceptible to provide complementary properties for cardiovascular applications: fibronectin (FN) to enhance endothelialization, and phosphorylcholine (PRC) for its non thrombogenic properties. Polytetrafluoroethylene (PTFE) was selected as model substrate mainly because it is largely used in cardiovascular applications. Two approaches were investigated: 1) a sequential adsorption of the 2 biomolecules and 2) an adsorption of the protein followed by the grafting of phosphorylcholine via chemical activation. All coatings were characterized by immunofluorescence staining, X-Ray Photoelectron Spectroscopy and Scanning Electron Microscopy analyses. Assays with endothelial cells showed improvement on cell adhesion, spreading and metabolic activity on FN-PRC coatings compared with the uncoated PTFE. Platelets adhesion and activation were both reduced on the coated surfaces when compared with uncoated PTFE. Moreover, clotting time tests exhibited better hemocompatibility properties of the surfaces after a sequential adsorption of FN and PRC. In conclusion, FN-PRC coating improves cell adhesion and non-thrombogenic properties, thus revealing a certain potential for the development of this combined deposition strategy in cardiovascular applications.

  8. Stress Analysis and Fatigue Behaviour of PTFE-Bronze Layered Journal Bearing under Real-Time Dynamic Loading

    Science.gov (United States)

    Duman, M. S.; Kaplan, E.; Cuvalcı, O.

    2018-01-01

    The present paper is based on experimental studies and numerical simulations on the surface fatigue failure of the PTFE-bronze layered journal bearings under real-time loading. ‘Permaglide Plain Bearings P10’ type journal bearings were experimentally tested under different real time dynamic loadings by using real time journal bearing test system in our laboratory. The journal bearing consists of a PTFE-bronze layer approximately 0.32 mm thick on the steel support layer with 2.18 mm thick. Two different approaches have been considered with in experiments: (i) under real- time constant loading with varying bearing widths, (ii) under different real-time loadings at constant bearing widths. Fatigue regions, micro-crack dispersion and stress distributions occurred at the journal bearing were experimentally and theoretically investigated. The relation between fatigue region and pressure distributions were investigated by determining the circumferential pressure distribution under real-time dynamic loadings for the position of every 10° crank angles. In the theoretical part; stress and deformation distributions at the surface of the journal bearing analysed by using finite element methods to determine the relationship between stress and fatigue behaviour. As a result of this study, the maximum oil pressure and fatigue cracks were observed in the most heavily loaded regions of the bearing surface. Experimental results show that PTFE-Bronze layered journal bearings fatigue behaviour is better than the bearings include white metal alloy.

  9. Self-expandable polytetrafluoroethylene (PTFE)-covered nitinol stent for the palliative treatment of malignant biliary obstruction

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Oong; Jung, Gyoo Sik; Han, Byung Hoon; Shin, Dong Hoon [Gospel Hospital, College of Medicine, Kosin University, Busan (Korea, Republic of); Ko, Ji Ho [Masan Samsung Medical Center, Sungkyunkwan University School of Medicine, Masan (Korea, Republic of)

    2008-06-15

    We wanted to determine the technical and clinical efficacy of placing a self-expandable PTFE-covered nitinol stent for the management of inoperable malignant biliary obstruction. Thirty six patients with inoperable malignant biliary obstructions were treated by placement of self-expandable PTFE-covered nitinol stents (S and G Biotech Corporation, Seongnam, Korea). Clinical evaluation was done with assessment of the serum bilirubin and alkaline phosphatase levels, which were measured before and after stent placement within 1 week, at 1 month and at 3 months. The patient survival rate and stent patency rate were calculated with performing Kaplan-Meier survival analysis. Successful stent placement was achieved in all the patients without procedure-related complication. Pancreatitis as an early complication occurred in two cases. The serum bilirubin and alkaline phosphatase levels were significantly decreased after the procedure. During the follow-up, recurrent obstructive jaundice occurred in six cases; stent migration occurred in four cases and tumor overgrowth occurred in two cases. The survival rates were 97%, 80%, 67% and 59% at 1, 3, 6 and 9 months, respectively. The stent patency rates were 96%, 92%, 86% and 86% at 1, 3, 6 and 9 months, respectively. Self-expandable PTFE-covered nitinol stent placement seems to be technically feasible and effective for the palliative treatment of malignant biliary obstruction.

  10. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-02-01

    Full Text Available Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiFx. The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition.

  11. Superhydrophobic photocatalytic PTFE – Titania coatings deposited by reactive pDC magnetron sputtering from a blended powder target

    Energy Technology Data Exchange (ETDEWEB)

    Ratova, Marina, E-mail: marina_ratova@hotmail.com; Kelly, Peter J.; West, Glen T.

    2017-04-01

    The production of photocatalytic coatings with superhydrophobic properties, as opposed to the conventional hydrophilic properties, is desirable for the prevention of adhesion of contaminants to photocatalytic surfaces with subsequent deterioration of photocatalytic properties. In this work polytetrafluoroethylene (PTFE) – TiO{sub 2} composite thin films were deposited using a novel method of reactive pulsed direct current (pDC) magnetron sputtering of a blended PTFE – titanium oxide powder target. The surface characteristics and photocatalytic properties of the deposited composite coatings were studied. The as-deposited coatings were annealed at 523 K in air and analysed with Raman spectroscopy, optical profilometry and scanning electron microscopy. Hydrophobicity was assessed though measurements of water contact angles, and photocatalytic properties were studied via methylene blue dye degradation under UV irradiation. It was found that variations of gas flow and, hence, process pressures allowed deposition of samples combining superhydrophobicity with stable photocatalytic efficiency under UV light irradiation. Reversible wettability behaviour was observed with the alternation of light-dark cycles. - Highlights: • PTFE-TiO{sub 2} coatings were deposited by pDC reactive magnetron sputtering. • Blended powder target was used for coatings deposition. • Deposited coatings combined superhydrophobic and photocatalytic properties. • Under UV irradiation coatings exhibited reversible wettability.

  12. Self-expandable polytetrafluoroethylene (PTFE)-covered nitinol stent for the palliative treatment of malignant biliary obstruction

    International Nuclear Information System (INIS)

    Yoo, Oong; Jung, Gyoo Sik; Han, Byung Hoon; Shin, Dong Hoon; Ko, Ji Ho

    2008-01-01

    We wanted to determine the technical and clinical efficacy of placing a self-expandable PTFE-covered nitinol stent for the management of inoperable malignant biliary obstruction. Thirty six patients with inoperable malignant biliary obstructions were treated by placement of self-expandable PTFE-covered nitinol stents (S and G Biotech Corporation, Seongnam, Korea). Clinical evaluation was done with assessment of the serum bilirubin and alkaline phosphatase levels, which were measured before and after stent placement within 1 week, at 1 month and at 3 months. The patient survival rate and stent patency rate were calculated with performing Kaplan-Meier survival analysis. Successful stent placement was achieved in all the patients without procedure-related complication. Pancreatitis as an early complication occurred in two cases. The serum bilirubin and alkaline phosphatase levels were significantly decreased after the procedure. During the follow-up, recurrent obstructive jaundice occurred in six cases; stent migration occurred in four cases and tumor overgrowth occurred in two cases. The survival rates were 97%, 80%, 67% and 59% at 1, 3, 6 and 9 months, respectively. The stent patency rates were 96%, 92%, 86% and 86% at 1, 3, 6 and 9 months, respectively. Self-expandable PTFE-covered nitinol stent placement seems to be technically feasible and effective for the palliative treatment of malignant biliary obstruction

  13. Removal of root filling materials.

    LENUS (Irish Health Repository)

    Duncan, H.F. Chong, B.S.

    2011-05-01

    Safe, successful and effective removal of root filling materials is an integral component of non-surgical root canal re-treatment. Access to the root canal system must be achieved in order to negotiate to the canal terminus so that deficiencies in the original treatment can be rectified. Since a range of materials have been advocated for filling root canals, different techniques are required for their removal. The management of commonly encountered root filling materials during non-surgical re-treatment, including the clinical procedures necessary for removal and the associated risks, are reviewed. As gutta-percha is the most widely used and accepted root filling material, there is a greater emphasis on its removal in this review.

  14. Better building of valley fills

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1980-03-01

    Current US regulations for building valley fills or head of hollow fills to hold excess spoil resulting from contour mining are meeting with considerable opposition, particularly from operators in steep-slope areas. An alternative method has been submitted to the Office of Surface Mining by Virgina. Known as the zoned concept method, it has already been used successfully in building water-holding dams and coal refuse embankments on sloping terrain. The ways in which drainage and seepage are managed are described.

  15. Tensile strength of glulam laminations of Nordic spruce

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Bräuner, Lise; Boström, Lars

    1999-01-01

    Design of glulam according to the European timber code Eurocode 5 is based on the standard document prEN1194 , according to which glulam beam strength is to be established either by full scale testing or by calculation. The calculation must be based on a knowledge of lamination tensile strength....... This knowledge may be obtained either by adopting a general rule that the characteristic tensile strength is sixty percent of the characteristic bending strength, or by performing tensile tests on an adequate number of laminations representative of the whole population. The present paper presents...... an investigation aimed at establishing such an adequate experimental background for the assignment of strength classes for glulam made of visually strength graded laminations from Nordic sawmills. The investigation includes more than 1800 boards (laminations) of Norway spruce (Picea abies) sampled from eight...

  16. Fatigue damage mechanics of notched graphite-epoxy laminates

    Science.gov (United States)

    Spearing, Mark; Beaumont, Peter W. R.; Ashby, Michael F.

    A modeling approach is presented that recognizes that the residual properties of composite laminates after any form of loading depend on the damage state. Therefore, in the case of cyclic loading, it is necessary to first derive a damage growth law and then relate the residual properties to the accumulated damage. The propagation of fatigue damage in notched laminates is investigated. A power law relationship between damage growth and the strain energy release rate is developed. The material constants used in the model have been determined in independent experiments and are invariant for all the layups investigated. The strain energy release rates are calculated using a simple finite element representation of the damaged specimen. The model is used to predict the effect of tension-tension cyclic loading on laminates of the T300/914C carbon-fiber epoxy system. The extent of damage propagation is successfully predicted in a number of cross-ply laminates.

  17. Climbing ripple structure and associated storm-lamination from a ...

    Indian Academy of Sciences (India)

    Pranhita–Godavari Valley, south India, displays well developed climbing ripple lamination and ... sedimentary environments, such as river flood .... Sediment, sequence and facies ..... tic Archaean Witwatersrand Supergroup, South Africa;.

  18. Finite elements modeling of delaminations in composite laminates

    DEFF Research Database (Denmark)

    Gaiotti, m.; Rizzo, C.M.; Branner, Kim

    2011-01-01

    of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.......e., delaminations, which may affect the stiffness and stability of structural components. Especially deep delaminations in the mid surface of laminates are expected to reduce the effective flexural stiffness and lead to collapse, often due to buckling behaviour. This paper deals with the numerical modelling...

  19. Modal analysis of pre and post impacted nano composite laminates

    Directory of Open Access Journals (Sweden)

    R. Velmurugan

    Full Text Available Modal analysis is carried out on pre and post impacted nano composite laminates. The laminates are prepared using 3, 5 and 8 layers of 610gsm glass woven roving mats(WRM with epoxy resin and montmorillonite(MMT clay content is varied from 1% to 5%. Impulse hammer technique is used to find natural frequency and damping factor of laminates. Medium velocity impact tests are conducted by using a gas gun. The vibration responses of natural frequency and damping factor are obtained and are studied for laminates with all edges clamped boundary conditions. Results show considerable improvement in natural frequency and damping factor due to nano clay addition. It is also seen that the nano clay controls the delamination due to impact loading.

  20. Three-dimensional free vibration analysis of thick laminated circular ...

    African Journals Online (AJOL)

    Dr Oke

    1 ,2 Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal-462003, INDIA ... In this communication, a numerical analysis regarding free vibration of thick laminated .... ANSYS finite element software.

  1. Investigation on Mechanical Properties and Reaction Characteristics of Al-PTFE Composites with Different Al Particle Size

    Directory of Open Access Journals (Sweden)

    Jia-xiang Wu

    2018-01-01

    Full Text Available Al-PTFE (aluminum-polytetrafluoroethylene serves as one among the most promising reactive materials (RMs. In this work, six types of Al-PTFE composites with different Al particle sizes (i.e., 50 nm, 1∼2 μm, 6∼7 μm, 12∼14 μm, 22∼24 μm, and 32∼34 μm were prepared, and quasistatic compression and drop weight tests were conducted to characterize the mechanical properties and reaction characteristics of Al-PTFE composites. The reaction phenomenon and stress-strain curves were recorded by a high-speed camera and universal testing machine. The microstructure of selected specimens was anatomized through adopting a scanning electron microscope (SEM to correlate the mesoscale structural characteristics to their macroproperties. As the results indicated, in the case of quasistatic compression, the strength of the composites was decreased (the yield strength falling from 22.7 MPa to 13.6 MPa and the hardening modulus declining from 33.3 MPa to 25 MPa with the increase of the Al particle size. The toughness rose firstly and subsequently decreased and peaked as 116.42 MJ/m3 at 6∼7 μm. The reaction phenomenon occurred only in composites with the Al particle size less than 10 μm. In drop weight tests, six types of specimens were overall reacted. As the Al particle size rose, the ignition energy of the composites enhanced and the composites turned out to be more insensitive to reaction. In a lower strain rate range (10−2·s−1∼102·s−1, Al-PTFE specimens take on different mechanical properties and reaction characteristics in the case of different strain rates. The formation of circumferential open cracks is deemed as a prerequisite for Al-PTFE specimens to go through a reaction.

  2. Novel phosphate-grafted ePTFE copolymers for optimum in vitro mineralization

    International Nuclear Information System (INIS)

    Wentrup-Byrne, Edeline; Suzuki, Shuko; Groendahl, Lisbeth; Suwanasilp, Juthakarn Jessica

    2010-01-01

    Surface modification via graft copolymerization is an attractive method for optimizing polymers used in biomedical applications. We developed a novel method using a mixed solvent system (either water and dichloromethane (DCM) or water, methanol and DCM) consisting of two solvent phases for grafting 2-(methacryloyloxy)ethyl phosphate onto expanded polytetrafluoroethylene (ePTFE). This new method resulted in the fabrication of grafted membranes with greater grafting extents (GEs) (as evaluated from x-ray photoelectron spectroscopy (XPS)) in the organic phase than those obtained when grafting was carried out in a single phase. It also made it possible to graft in the aqueous phase, a process that is otherwise inhibited by the concomitant formation of large amounts of highly crystalline homopolymer. Thorough characterization of the grafted membranes using gravimetric, XPS and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) not only permitted evaluation of the grafting outcomes but also made it possible to analyze their dependence on monomer concentration and solvent composition. A selection of membranes was tested for their in vitro mineralization capacity using simulated body fluid. It was found that an 'ideal' mineralization outcome, i.e. a uniform coating of carbonated hydroxyapatite (cHAP) formed on the sample grafted in the aqueous phase of the water/DCM two-phase solvent system. A detailed discussion bringing together these results, as well as results from a series of earlier studies, allows conclusions regarding polymer chemistry and the topology necessary for cHAP mineralization.

  3. Circularly Polarized S Band Dual Frequency Square Patch Antenna Using Glass Microfiber Reinforced PTFE Composite

    Directory of Open Access Journals (Sweden)

    M. Samsuzzaman

    2014-01-01

    Full Text Available Circularly polarized (CP dual frequency cross-shaped slotted patch antenna on 1.575 mm thick glass microfiber reinforced polytetrafluoroethylene (PTFE composite material substrate is designed and fabricated for satellite applications. Asymmetric cross-shaped slots are embedded in the middle of the square patch for CP radiation and four hexagonal slots are etched on the four sides of the square patch for desired dual frequency. Different substrate materials have been analysed to achieve the desired operating band. The experimental results show that the impedance bandwidth is approximately 30 MHz (2.16 GHz to 2.19 GHz for lower band and 40 MHz (3.29 GHz to 3.33 GHz for higher band with an average peak gain of 6.59 dBiC and 5.52 dBiC, respectively. Several optimizations are performed to obtain the values of the antenna physical parameters. Moreover, the proposed antenna possesses compactness, light weight, simplicity, low cost, and circularly polarized. It is an attractive candidate for dual band satellite antennas where lower band can be used for uplink and upper band can be used for downlink.

  4. Surface modifying of microporous PTFE capillary for bilirubin removing from human plasma and its blood compatibility

    International Nuclear Information System (INIS)

    Jin Gu; Yao Qizhi; Zhang Shanzi; Zhang Lei

    2008-01-01

    In this study, human serum albumin (HSA) was covalently immobilized onto the inner surface of microporous poly(tetrafluoroethylene) (MPTFE) capillaries for direct bilirubin removal from human plasma. To obtain active binding sites for HSA, the MPTFE capillaries were chemically functionalized by using a coating of poly(vinyl alcohol) (PVA)-glycidyl methacrylate (GMA) copolymers. Characterization of grafted MPTFE capillaries was verified by XPS, Fourier transform infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM). Non-specific adsorption on the PVA-GMA coated capillary remains low (< 0.38 mg bilirubin/g), and higher affinity adsorption capacity, of up to 73.6 mg bilirubin/g polymer was obtained after HSA is immobilized. Blood compatibility of the grafted MPTFE capillary was evaluated by SEM and platelet rich plasma (PRP) contacting experiments. The experimental data on blood compatibility indicated that PVA-coated and PVA-GMA-HSA coated PTFE capillary showed a sharp suppress on platelets adhesion. The proposed method has the potential of serving in bilirubin removal in clinical application

  5. Grafting of Styrene onto Commercial Polytetrafluorethylene (PTFE) Membrane and Sulfonation for Possible use in Fuel Cell

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Abdel-Hamed, M.O.; Hammam, A.M.; El-toony, M.M.

    2010-01-01

    The purpose of this work is to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the s tate of the art N afion that is used in both hydrogen and methanol fuel cells. Silica was inserted in commercial PTFE membrane in ratio 8%. Gamma irradiation was used for grafting of different ratios of styrene onto the membrane in one and two steps. Methacrylic acid and styrene were used as binary monomers for grafting of such membranes to raise the grafting percentage. Thermal characterization of the grafted membrane was discussed using thermal gravimetric analysis (TGA). The mechanical properties were tested by measuring ultimate tensile value, and Young modulus. The positron annihilation lifetime spectroscopy has been used to investigate the free volume hole size, while the surface morphology of the membrane was studied by scanning electron microscope (SEM). It was found that the maximum water uptake of the sulfonated membrane reached 20% by weight. The proton conductivity of the prepared polymer electrolyte was measured by ac impedance spectroscopic analysis. And it was found to be 0.9 x 10 -4 ohm -1 cm -1 .

  6. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    Science.gov (United States)

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  7. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    Science.gov (United States)

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Subclinical Laminitis in Dairy Cattle: 205 Selected Cases

    OpenAIRE

    BAKIR, Ali BELGE Bahtiyar

    2005-01-01

    The economic importance of lameness in dairy cattle has newly been recognized in Turkey. Lameness incidence in Turkey has been reported to be between 13% and 58%, which is similar to that of other countries where 4% and 55% incidence rates have been reported. The objective of this study was to determine the prevalence of sole lesions associated with subclinical laminitis in the hooves of dairy cattle in Van, Turkey. The risk factors for subclinical laminitis are proposed and discussed. The so...

  9. Dowelled structural connections in laminated bamboo and timber

    OpenAIRE

    Reynolds, Thomas Peter; Sharma, Bhavna; Harries, Kent; Ramage, Michael Hector

    2015-01-01

    Structural sections of laminated bamboo can be connected using methods common in timber engineering, however the different material properties of timber and laminated bamboo suggest that the behaviour of connections in the two materials would not be the same. This study investigates the dowelled connection, in which a connector is passed through a hole in the material, and load is resisted by shear in the connector and embedment into the surrounding material. Steel dowels were used in a conne...

  10. Laminitis in a mature elk hind (Cervus elaphus)

    DEFF Research Database (Denmark)

    Gray, Heather E.; Card, Claire; Baptiste, Keith E.

    2001-01-01

    Laminitis should be considered as a differential diagnosis in elk presenting with shifting leg lameness, reluctance to move, recumbency and hoof wall ridging. Eliminating the underlying cause and corrective trimming lead to a good prognosis for recovery.......Laminitis should be considered as a differential diagnosis in elk presenting with shifting leg lameness, reluctance to move, recumbency and hoof wall ridging. Eliminating the underlying cause and corrective trimming lead to a good prognosis for recovery....

  11. Retortable Laminate/Polymeric Food Tubes for Specialized Feeding

    Science.gov (United States)

    2012-06-01

    Report STP #3010 Results and Accomplishments (June 2010 – June 2012) Report No: FTR 303 CDRL Sequence: A003 June 2012 CORANET CONTRACT #: SP4701-08-D...June 2010 - June 2012 Retortable Laminate/Polymeric Food Tubes for Specialized Feeding - STP # 3010 SP4701-08-D-0004 MANTECH (0708011S) CORANET A003...on commercial off-the-shelf materials and not military unique. A market survey of commercially available laminated tubes revealed that they are all

  12. Ceramic laminates with tailored residual stresses

    Directory of Open Access Journals (Sweden)

    Baudín, C.

    2009-12-01

    Full Text Available Severe environments imposed by new technologies demand new materials with better properties and ensured reliability. The intrinsic brittleness of ceramics has forced scientists to look for new materials and processing routes to improve the mechanical behaviour of ceramics in order to allow their use under severe thermomechanical conditions. The laminate approach has allowed the fabrication of a new family of composite materials with strength and reliability superior to those of monolithic ceramics with microstructures similar to those of the constituent layers. The different ceramic laminates developed since the middle 1970´s can be divided in two large groups depending on whether the development of residual stresses between layers is the main design tool. This paper reviews the developments in the control and tailoring of residual stresses in ceramic laminates. The tailoring of the thickness and location of layers in compression can lead to extremely performing structures in terms of strength values and reliability. External layers in compression lead to the strengthening of the structure. When relatively thin and highly compressed layers are located inside the material, threshold strength, crack bifurcation and crack arrest during fracture occur.

    Las severas condiciones de trabajo de las nuevas aplicaciones tecnológicas exigen el uso de materiales con mejores propiedades y alta fiabilidad. La potencialidad de uso de materiales frágiles, como los cerámicos, en estas aplicaciones exige el desarrollo de nuevos materiales y métodos de procesamiento que mejoren su comportamiento mecánico. El concepto de material laminado ha permitido la fabricación de una nueva familia de materiales con tensiones de fractura y fiabilidad superiores a las de materiales monolíticos con microestructuras similares a las de las láminas que conforman el laminado. Los distintos materiales laminados desarrollados desde mediados de los años 70 se pueden

  13. Experimental Assessment of Tensile Failure Characteristic for Advanced Composite Laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2017-10-15

    In recent years, major airplane manufacturers have been using the laminate failure theory to estimate the strain of composite structures for airplanes. The laminate failure theory uses the failure strain of the laminate to analyze composite structures. This paper describes a procedure for the experimental assessment of laminate tensile failure characteristics. Regression analysis was used as the experimental assessment method. The regression analysis was performed with the response variable being the laminate failure strain and with the regressor variables being two-ply orientation (0° and ±45°) variables. The composite material in this study is a carbon/epoxy unidirectional (UD) tape that was cured as a pre-preg at 177°C(350°F). A total of 149 tension tests were conducted on specimens from 14 distinct laminates that were laid up at standard angle layers (0°, 45°, -45°, and 90°). The ASTM-D-3039 standard was used as the test method.

  14. Experimental Assessment of Tensile Failure Characteristic for Advanced Composite Laminates

    International Nuclear Information System (INIS)

    Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

    2017-01-01

    In recent years, major airplane manufacturers have been using the laminate failure theory to estimate the strain of composite structures for airplanes. The laminate failure theory uses the failure strain of the laminate to analyze composite structures. This paper describes a procedure for the experimental assessment of laminate tensile failure characteristics. Regression analysis was used as the experimental assessment method. The regression analysis was performed with the response variable being the laminate failure strain and with the regressor variables being two-ply orientation (0° and ±45°) variables. The composite material in this study is a carbon/epoxy unidirectional (UD) tape that was cured as a pre-preg at 177°C(350°F). A total of 149 tension tests were conducted on specimens from 14 distinct laminates that were laid up at standard angle layers (0°, 45°, -45°, and 90°). The ASTM-D-3039 standard was used as the test method.

  15. Emission of perfluoroalkyl carboxylic acids (PFCA) from heated surfaces made of polytetrafluoroethylene (PTFE) applied in food contact materials and consumer products.

    Science.gov (United States)

    Schlummer, Martin; Sölch, Christina; Meisel, Theresa; Still, Mona; Gruber, Ludwig; Wolz, Gerd

    2015-06-01

    Polytetrafluoroethylene (PTFE) has been widely discussed as a source of perfluorooctanoic acid (PFOA), which has been used in the production of fluoropolymers. PTFE may also contain unintended perfluoroalkyl carboxylic acids (PFCAs) caused by thermolysis of PTFE, which has been observed at temperatures above 300°C. Common PTFE coated food contact materials and consumer goods are operated at temperatures above 200°C. However, knowledge on possible emissions of PFCAs is limited. Therefore, it was the aim of this study to investigate and evaluate the emission of PFCAs from PTFE coated products with both, normal use and overheating scenarios. Four pans, claimed to be PFOA free, and nine consumer products were investigated. At normal use conditions (PTFE surfaces were trapped for 1h. Overheating scenarios (>260°C) recorded emissions during a 30min heating of empty pans on a stove. Emissions were analyzed by LC-ESI-MS. Results indicate the emission of PFCAs, whereas no perfluorinated sulfonic acids were traced. At normal use conditions total emissions of PFCAs accounted for 4.75ng per hour. Overheated pans, however, released far higher amounts with up to 12190ng PFCAs per hour at 370°C. Dominating contributors where PFBA and PFOA at normal use and PFBA and PFPeA during overheating. Temperature seems to be the main factor controlling the emission of PFCAs. A worst case estimation of human exposure revealed that emissions of PFCAs from heated PTFE surfaces would be far below the TDI of 1500ng PFOA per kg body weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The effect of nitrogen and oxygen plasma on the wear properties and adhesion strength of the diamond-like carbon film coated on PTFE

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.

    2008-01-01

    Diamond-like carbon (DLC) films were deposited on polytetrafluoroethylene (PTFE) using a radiofrequency plasma chemical vapour deposition method. Prior to DLC coating, the PTFE substrates were modified with O 2 and N 2 plasma to enhance the adhesion strength of the DLC film to the substrate. The effect of the plasma pre-treatment on the chemical composition and the surface energy of the plasma pre-treated PTFE surface was investigated by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurement, respectively. A pull-out test and a ball-on-disc test were carried out to evaluate the adhesion strength and the wear properties of the DLC-coated PTFE. In the N 2 plasma pre-treatment, the XPS result indicated that defluorination and the nitrogen grafting occurred on the plasma pre-treated PTFE surface, and the water contact angle decreased with increasing the plasma pre-treatment time. In the O 2 plasma pre-treatment, no grafting of the oxygen occurred, and the water contact angle slightly increased with the treatment time. In the pull-out test, the adhesion strength of the DLC film to the PTFE substrate was improved with the plasma pre-treatment to the PTFE substrate, and N 2 plasma pre-treatment was more effective than the O 2 plasma pre-treatment. In the ball-on-disc test, the DLC film with the N 2 plasma pre-treatment showed good wear resistance, compared with that with O 2 plasma pre-treatment

  17. Laminate for use in instrument dials or hands and method of making laminate

    International Nuclear Information System (INIS)

    Westland, J.M.; Crowther, A.

    1981-01-01

    A translucent sheet of PVC has a coating e.g. of black ink or luminous material, with apertures and optionally luminous or non-luminous indicia. Behind the apertures there are tritium-activated luminous indicia or markings which are covered by an opaque white sheet. A self-adhesive protective film may be temporarily applied to the coating. The laminated structure may be used for faces or hands in time-pieces or other instruments. The use of the white sheet and protective film prevents operatives coming into contact with luminous materials. (author)

  18. Werner complex deficiency in cells disrupts the Nuclear Pore Complex and the distribution of lamin B1.

    Science.gov (United States)

    Li, Zhi; Zhu, Yizhou; Zhai, Yujia; R Castroagudin, Michelle; Bao, Yifei; White, Tommy E; Glavy, Joseph S

    2013-12-01

    From the surrounding shell to the inner machinery, nuclear proteins provide the functional plasticity of the nucleus. This study highlights the nuclear association of Pore membrane (POM) protein NDC1 and Werner protein (WRN), a RecQ helicase responsible for the DNA instability progeria disorder, Werner Syndrome. In our previous publication, we connected the DNA damage sensor Werner's Helicase Interacting Protein (WHIP), a binding partner of WRN, to the NPC. Here, we confirm the association of the WRN/WHIP complex and NDC1. In established WRN/WHIP knockout cell lines, we further demonstrate the interdependence of WRN/WHIP and Nucleoporins (Nups). These changes do not completely abrogate the barrier of the Nuclear Envelope (NE) but do affect the distribution of FG Nups and the RAN gradient, which are necessary for nuclear transport. Evidence from WRN/WHIP knockout cell lines demonstrates changes in the processing and nucleolar localization of lamin B1. The appearance of "RAN holes" void of RAN corresponds to regions within the nucleolus filled with condensed pools of lamin B1. From WRN/WHIP knockout cell line extracts, we found three forms of lamin B1 that correspond to mature holoprotein and two potential post-translationally modified forms of the protein. Upon treatment with topoisomerase inhibitors lamin B1 cleavage occurs only in WRN/WHIP knockout cells. Our data suggest the link of the NDC1 and WRN as one facet of the network between the nuclear periphery and genome stability. Loss of WRN complex leads to multiple alterations at the NPC and the nucleolus. © 2013. Published by Elsevier B.V. All rights reserved.

  19. Effect of resin system on the mechanical properties and water absorption of kenaf fibre reinforced laminates

    International Nuclear Information System (INIS)

    Rassmann, S.; Paskaramoorthy, R.; Reid, R.G.

    2011-01-01

    The objective of this study is to compare the mechanical and water absorption properties of kenaf (Hibiscus cannabinus L.) fibre reinforced laminates made of three different resin systems. The use of different resin systems is considered so that potentially complex and expensive fibre treatments are avoided. The resin systems used include a polyester, a vinyl ester and an epoxy. Laminates of 15%, 22.5% and 30% fibre volume fraction were manufactured by resin transfer moulding. The laminates were tested for strength and modulus under tensile and flexural loading. Additionally, tests were carried out on laminates to determine the impact energy, impact strength and water absorption. The results revealed that properties were affected in markedly different ways by the resin system and the fibre volume fraction. Polyester laminates showed good modulus and impact properties, epoxy laminates displayed good strength values and vinyl ester laminates exhibited good water absorption characteristics. Scanning electron microscope studies show that epoxy laminates fail by fibre fracture, polyester laminates by fibre pull-out and vinyl ester laminates by a combination of the two. A comparison between kenaf and glass laminates revealed that the specific tensile and flexural moduli of both laminates are comparable at the volume fraction of 15%. However, glass laminates have much better specific properties than the kenaf laminates at high fibre volume fractions for all three resins used.

  20. PTFE Additive and Re-annealing Effect on Thermoluminescence Response of CaSO4:Dy Derived from Co-precipitation Method

    Science.gov (United States)

    Nuraeni, Nunung; Dwi Septianto, Ricky; Iskandar, Ferry; Haryanto, Freddy; Waris, Abdul; Hiswara, Eri

    2017-07-01

    Effect of re-annealing treatment in thermoluminescence response of thermoluminescent dosimeter (TLD) CaSO4:Dy and CaSO4:Dy with PTFE (Polytetrafluoroethylene) addition was investigated. CaSO4:Dy was prepared by a co-precipitation method. The PTFE was added before re-annealing treatment which the mass ratio of CaSO4:Dy and PTFE was fixed to 2:3. The re-annealing treatments of the samples were done at temperature 700 °C for 1 hr. The obtained samples were characterized using a Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) to observe the molecule bonding in sample and crystal properties, respectively. From the experimental results, it was observed that the thermoluminescence intensity of CaSO4:Dy, CaSO4:Dy re-annealed at 700 °C, and CaSO4:Dy + PTFE re-annealed at 700 °C are 57.03, 75.15, and 1191.11 nC, respectively. The intensity of 700 °C-re-annealed CaSO4:Dy increased significantly after PTFE addition.

  1. Effect of polytetrafluoroethylene (PTFE) phase transition at 19°C on the use of Spectralon as a reference standard for reflectance.

    Science.gov (United States)

    Ball, Christopher P; Levick, Andrew P; Woolliams, Emma R; Green, Paul D; Dury, Martin R; Winkler, Rainer; Deadman, Andrew J; Fox, Nigel P; King, Martin D

    2013-07-10

    Sintered polytetrafluoroethylene (PTFE) is highly reflective and is widely used as a reference standard in remote sensing, radiometry, and spectroscopy. The relative change in output flux from a PTFE integrating sphere over the room temperature phase transition at 19°C has been measured at a monochromatic wavelength of 633 nm as 1.82±0.21%. The change in output flux was attributed to a small change of 0.09±0.02% in the total hemispherical reflectance of PTFE, caused by a change in its material density as a result of the phase transition. For the majority of users, this small change measured in total hemispherical reflectance is unlikely to impact significantly the accuracy of PTFE flat panel reflectors used as reference standards. However, owing to the multiple reflections that occur inside an integrating sphere cavity, the effect is multiplied and remedial action should be applied, either via a mathematical correction or through temperature stabilization of the integrating sphere when high accuracy (PTFE-based integrating spheres at temperatures close to the phase transition at 19°C.

  2. Preparation Nano-Structure Polytetrafluoroethylene (PTFE Functional Film on the Cellulose Insulation Polymer and Its Effect on the Breakdown Voltage and Hydrophobicity Properties

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2018-05-01

    Full Text Available Cellulose insulation polymer is an important component of oil-paper insulation, which is widely used in power transformer. The weight of the cellulose insulation polymer materials is as high as tens of tons in the larger converter transformer. Excellent performance of oil-paper insulation is very important for ensuring the safe operation of larger converter transformer. An effective way to improve the insulation and the physicochemical property of the oil impregnated insulation pressboard/paper is currently a popular research topic. In this paper, the polytetrafluoroethylene (PTFE functional film was coated on the cellulose insulation pressboard by radio frequency (RF magnetron sputtering to improve its breakdown voltage and the hydrophobicity properties. X-ray photoelectron spectroscopy (XPS results show that the nano-structure PTFE functional film was successfully fabricated on the cellulose insulation pressboard surface. The scanning electron microscopy (SEM and X-ray diffraction (XRD present that the nanoscale size PTFE particles were attached to the pressboard surface and it exists in the amorphous form. Atomic force microscopy (AFM shows that the sputtered pressboard surface is still rough. The rough PTFE functional film and the reduction of the hydrophilic hydroxyl of the surface due to the shielding effect of PTFE improve the breakdown and the hydrophobicity properties of the cellulose insulation pressboard obviously. This paper provides an innovative way to improve the performance of the cellulose insulation polymer.

  3. QENS investigation of filled rubbers

    CERN Document Server

    Triolo, A; Desmedt, A; Pieper, J K; Lo Celso, F; Triolo, R; Negroni, F; Arrighi, V; Qian, H; Frick, B

    2002-01-01

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface. (orig.)

  4. Gas-Filled Capillary Model

    International Nuclear Information System (INIS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-01-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration -- Laser Wakefield (STELLA-LW) experiment

  5. Percutaneous Palliation of Pancreatic Head Cancer: Randomized Comparison of ePTFE/FEP–Covered Versus Uncovered Nitinol Biliary Stents

    International Nuclear Information System (INIS)

    Krokidis, Miltiadis; Fanelli, Fabrizio; Orgera, Gianluigi; Tsetis, Dimitrios; Mouzas, Ioannis; Bezzi, Mario; Kouroumalis, Elias; Pasariello, Roberto; Hatzidakis, Adam

    2011-01-01

    The purpose of this study was to compare the clinical effectiveness of expanded polytetrafluoroethylene/fluorinated-ethylene-propylene (ePTFE/FEP)–covered stents with that of uncovered nitinol stents for the palliation of malignant jaundice caused by inoperable pancreatic head cancer. Eighty patients were enrolled in a prospective randomized study. Bare nitinol stents were used in half of the patients, and ePTFE/FEP–covered stents were used in the remaining patients. Patency, survival, complications, and mean cost were calculated in both groups. Mean patency was 166.0 ± 13.11 days for the bare-stent group and 234.0 ± 20.87 days for the covered-stent group (p = 0.007). Primary patency rates at 3, 6, and 12 months were 77.5, 69.8, and 69.8% for the bare-stent group and 97.5, 92.2, and 87.6% for the covered-stent group, respectively. Mean secondary patency was 123.7 ± 22.5 days for the bare-stent group and 130.3 ± 21.4 days for the covered-stent group. Tumour ingrowth occurred exclusively in the bare-stent group in 27.5% of cases (p = 0.002). Median survival was 203.2 ± 11.8 days for the bare-stent group and 247.0 ± 20 days for the covered-stent group (p = 0.06). Complications and mean cost were similar in both groups. Regarding primary patency and ingrowth rate, ePTFE/FEP–covered stents have shown to be significantly superior to bare nitinol stents for the palliation of malignant jaundice caused by inoperable pancreatic head cancer and pose comparable cost and complications. Use of a covered stent does not significantly influence overall survival rate; nevertheless, the covered endoprosthesis seems to offer result in fewer reinterventions and better quality of patient life.

  6. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  7. Space-filling polyhedral sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  8. Vascular Dysfunction in Horses with Endocrinopathic Laminitis.

    Directory of Open Access Journals (Sweden)

    Ruth A Morgan

    Full Text Available Endocrinopathic laminitis (EL is a vascular condition of the equine hoof resulting in severe lameness with both welfare and economic implications. EL occurs in association with equine metabolic syndrome and equine Cushing's disease. Vascular dysfunction, most commonly due to endothelial dysfunction, is associated with cardiovascular risk in people with metabolic syndrome and Cushing's syndrome. We tested the hypothesis that horses with EL have vascular, specifically endothelial, dysfunction. Healthy horses (n = 6 and horses with EL (n = 6 destined for euthanasia were recruited. We studied vessels from the hooves (laminar artery, laminar vein and the facial skin (facial skin arteries by small vessel wire myography. The response to vasoconstrictors phenylephrine (10-9-10-5M and 5-hydroxytryptamine (5HT; 10-9-10-5M and the vasodilator acetylcholine (10-9-10-5M was determined. In comparison with healthy controls, acetylcholine-induced relaxation was dramatically reduced in all intact vessels from horses with EL (% relaxation of healthy laminar arteries 323.5 ± 94.1% v EL 90.8 ± 4.4%, P = 0.01, laminar veins 129.4 ± 14.8% v EL 71.2 ± 4.1%, P = 0.005 and facial skin arteries 182.0 ± 40.7% v EL 91.4 ± 4.5%, P = 0.01. In addition, contractile responses to phenylephrine and 5HT were increased in intact laminar veins from horses with EL compared with healthy horses; these differences were endothelium-independent. Sensitivity to phenylephrine was reduced in intact laminar arteries (P = 0.006 and veins (P = 0.009 from horses with EL. Horses with EL exhibit significant vascular dysfunction in laminar vessels and in facial skin arteries. The systemic nature of the abnormalities suggest this dysfunction is associated with the underlying endocrinopathy and not local changes to the hoof.

  9. Mechanical properties and the evolution of matrix molecules in PTFE upon irradiation with MeV alpha particles

    International Nuclear Information System (INIS)

    Fisher, Gregory L.; Lakis, Rollin E.; Davis, Charles C.; Szakal, Christopher; Swadener, John G.; Wetteland, Christopher J.; Winograd, Nicholas

    2006-01-01

    The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4 He 2+ ions from a tandem accelerator to doses between 1 x 10 6 and 5 x 10 10 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C 60 + source, was employed to probe chemical changes as a function of α dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of α particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing α particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of α dose. The data show that PTFE nominally retains its innate chemical structure and morphology at α doses 9 Rad. At α doses ≥10 9 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At α doses >10 10 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of α particle irradiation and show morphological roughening of the sample with increased α dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of α particles. RGA confirms the supposition that

  10. Steel skin - SMC laminate structures for lightweight automotive manufacturing

    Science.gov (United States)

    Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo

    2017-09-01

    In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.

  11. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    Institute of Scientific and Technical Information of China (English)

    Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong

    2013-01-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.

  12. Synthesis of a gamma irradiation grafted polytetrafluoroethylene (PTFE) based olefinic copolymer; Estudo da sintese de copolimero olefinico a base de politetrafluoroetileno (PTFE) por meio da enxertia induzida por radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Ferreto, Helio Fernando Rodrigues

    2006-07-01

    The extrusion of linear low density polyethylene (LLDPE) is limited by a process related defect known as 'melt fracture' or 'sharkskin', which is a surface defect of the extruded polymer. This defect results in a product with a rough surface that lacks luster and in alterations of specific surface properties. The aim of this study was to obtain a recycled polytetrafluoroethylene polymer with an olefin that could improve the extrudability of the LLDPE. The copolymer was obtained by irradiating recycled PTFE in an inert atmosphere followed by the addition of an olefinic monomer to graft the latter in the polymeric matrix (PTFE). After a certain time of contact, the copolymer was heat treated to permit recombination and elimination of the radicals, both in a reactive and/or inert atmosphere. Three olefinic monomers were used, namely; acetylene, ethylene and 1,3-butadiene. The 1,3-butadiene monomer was found to be more effective with respect to grafting. The specimens were studied using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). 0.2-2.0 wt% of the copolymer that was obtained was mixed with LLDPE. The rheological properties of the mixture were determined with a torque rheometer. The results indicated that the process used rendered a copolymer which when added to LLDPE, improved the extrusion process and eliminated the defect 'melt fracture'. (author)

  13. Study on the friction and wear properties of glass fabric composites filled with nano- and micro-particles under different conditions

    International Nuclear Information System (INIS)

    Su Fenghua; Zhang Zhaozhu; Liu Weimin

    2005-01-01

    The glass fabric composites filled with the particulates of polytetrafluoroethylene (PTFE), micro-sized MoS 2 , nano-TiO 2 , and nano-CaCO 3 , respectively, were prepared by dip-coating of the glass fabric in a phenolic resin containing the particulates to be incorporated and the successive curing. The friction and wear behaviors of the resulting glass fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration at various temperatures were evaluated on a Xuanwu-III high temperature friction and wear tester. The morphologies of the worn surfaces of the filled glass fabric composites and the counterpart steel pins were analyzed by means of scanning electron microscopy, and the elemental distribution of F on the worn surface of the counterpart steel was determined by means of energy dispersive X-ray analysis (EDXA). It was found that PTFE and nano-TiO 2 particulates as the fillers contributed to significantly improve the friction-reducing and anti-wear properties of the glass fabric composites, but nano-CaCO 3 and micro-MoS 2 as the fillers were harmful to the friction and wear behavior of the glass fabric composites. The friction and wear properties of the glass fabric composites filled with the particulate fillers were closely dependent on the environmental temperature and the wear rates of the composites at elevated temperature above 200 deg. C were much larger than that below 150 deg. C, which was attributed to the degradation and decomposition of the adhesive resin at excessively elevated temperature. The bonding strengths between the interfaces of the glass fabric, the adhesive resin, and the incorporated particulates varied with the types of the particulate fillers, which largely accounted for the differences in the tribological properties of the glass fabric composites filled with different fillers. Moreover, the transferred layers of varied features formed on the counterpart steel pins also partly accounted for the different friction and

  14. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection

    Directory of Open Access Journals (Sweden)

    Wenqiang Wei

    2016-05-01

    Full Text Available At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.

  15. Using lamb waves tomonitor moisture absorption thermally fatigues composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sun; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-06-15

    Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

  16. Electrical behavior of laminated composites with intralaminar degradation: A comprehensive micro-meso homogenization procedure

    KAUST Repository

    Selvakumaran, Lakshmi; Lubineau, Gilles

    2014-01-01

    Electrical Resistance Tomography (ERT) is a promising health monitoring technique to assess damage in laminated composites. Yet, the missing link between the various complex degradation mechanisms within the laminate and its global change

  17. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu; Wafai, Husam; Yudhanto, Arief; Lubineau, Gilles; Yaldiz, R.; Schijve, W.; Verghese, N.

    2015-01-01

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved

  18. The use of macro and micro proton beams to study the variation in PIXE yield from metal targets insulated with PTFE, glass and nylon

    International Nuclear Information System (INIS)

    Pillay, A.E.

    1999-01-01

    Proton beams of diameters of 3 mm and 3 μm, were used to observe the differences in PIXE yield from pure metal targets encapsulated with PTFE, glass (macor) and nylon. The beam energy was kept constant at 700 keV. Beam currents varied from about 200 pA with the microbeam and between 1-10 nA with the macrobeam. Considerable enhancement was observed mainly with the use of PTFE, up to about a factor of 18 with the macrobeam and 306 with the microbeam. (author)

  19. Feeding practices and potential risk factors for laminitis in dairy cows in Thailand

    OpenAIRE

    Pilachai, R.

    2013-01-01

    Laminitis is considered an important health problem facing the Thai dairy industry. Although the etiology of laminitis is multifactorial, nutrition is considered an important risk factor. Rumen acidosis, lipopolysaccharides (LPS) and histamine may play a role in the development of laminitis in dairy cattle. However, the relevancy of these risk factors in relation to the occurrence of laminitis under practical feeding conditions in Thailand is not clear. In Thailand, dairy rations are generall...

  20. Subclinical laminitis and its association with pO2 and faecal alterations: Isikli, Aydin experience

    OpenAIRE

    Ibrahim Akin; Deniz Alic Ural; Mehmet Gultekin; Kerem Ural

    2015-01-01

    ABSTRACTObjective. The aim of this field trial was to investigate the relationships among subclinical laminitis, hematological, ruminal and faecal alterations. Materials and Methods. To this extent dairy cows presenting subclinical laminitis (n=11) and to those of other healthy cows without laminitis (n=10) were enrolled and assigned into two groups. All animals were receiving the same daily ration formulated to contain 47% cornsilage and 18% hay, mainly. Effects of subclinical laminitis chal...

  1. Analytical and Experimental Characterization of Thick-Section Fiber-Metal Laminates

    Science.gov (United States)

    2013-06-01

    laminate . The model individually models each layer of the laminate and predicts stiffness degradation as metal layers plastically deform and as prepreg ...eliminating four of the possible ECM laminates . Additionally, since at least four individual layers (two aluminum and two prepreg ) are used in FML an...AFRL-AFOSR-UK-TR-2013-0023 Analytical and Experimental Characterization of Thick- Section Fiber-Metal Laminates Dr. Rene

  2. A transparent, solvent-free laminated top electrode for perovskite solar cells

    OpenAIRE

    Makha, Mohammed; Fernandes, Silvia Let?cia; Jenatsch, Sandra; Offermans, Ton; Schleuniger, J?rg; Tisserant, Jean-Nicolas; V?ron, Anna C.; Hany, Roland

    2016-01-01

    Abstract A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per mil...

  3. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  4. Recent developments of discrete material optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Lund, Erik; Sørensen, Rene

    2015-01-01

    This work will give a quick summary of recent developments of the Discrete Material Optimization approach for structural optimization of laminated composite structures. This approach can be seen as a multi-material topology optimization approach for selecting the best ply material and number...... of plies in a laminated composite structure. The conceptual combinatorial design problem is relaxed to a continuous problem such that well-established gradient based optimization techniques can be applied, and the optimization problem is solved on basis of interpolation schemes with penalization...

  5. Calculation of deflection for cross laminated timber floor panel

    Directory of Open Access Journals (Sweden)

    Kozarić Ljiljana M.

    2016-01-01

    Full Text Available In this paper analytically calculated values of effective flexural stiffness and deflections of five-layer CLT panels height 14 cm due to the payload defined in Eurocode 1 for floors in residential buildings are compared. Effective flexural stiffness was calculated using Gamma method, K-method and Kreuzinger's analogy. Three floor panels with identical height but with different combinations of lamination thicknesses in cross-layers were analyzed. The panels are 4.5 meters long and 1 meter wide. Lamination thicknesses in cross-sections of panels are 33,4 cm+21,9 cm, then 33 cm+22,5 cm and 52,8 cm.

  6. Multi-material topology design of laminates with strength criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2012-01-01

    The objective of this paper is to present a novel approach for multi-material topology optimization of laminated composite structures where strength constraints are taken into account together with other global structural performance measures. The topology design problem considered contains very...... many design variables, and when strength criteria are included in the problem, a very large number of criteria functions must be considered in the optimization problem to be solved. Thus, block aggregation methods are introduced, such that global strength measures are obtained. These formulations...... are illustrated for multi-material laminated design problems where the maximum failure index is minimized while compliance and mass constraints are taken into account....

  7. Criterion of damage beginning: experimental identification for laminate composite

    International Nuclear Information System (INIS)

    Thiebaud, F.; Perreux, D.; Varchon, D.; Lebras, J.

    1996-01-01

    The aim of this study is to propose a criterion of damage beginning for laminate composite. The materials is a glass-epoxy laminate [+55 deg.,-55 deg.[ n performed by winding filament process. First of all a description of the damage is performed and allows to define a damage variable. Thanks to the potential of free energy, an associated variable is defined. The damage criterion is written by using this last one. The parameter of the criterion is identified using mechanical and acoustical methods. The result is compared and exhibit a good agreement. (authors). 13 refs., 5 figs

  8. Hard-to-fill vacancies.

    Science.gov (United States)

    Williams, Ruth

    2010-09-29

    Skills for Health has launched a set of resources to help healthcare employers tackle hard-to-fill entry-level vacancies and provide sustainable employment for local unemployed people. The Sector Employability Toolkit aims to reduce recruitment and retention costs for entry-level posts and repare people for employment through pre-job training programmes, and support employers to develop local partnerships to gain access to wider pools of candidates and funding streams.

  9. Use of DSC and DMA Techniques to Help Investigate a Material Anomaly for PTFE Used in Processing a Piston Cup for the Urine Processor Assembly (UPA) on International Space Station (ISS)

    Science.gov (United States)

    Wingard, Doug

    2010-01-01

    Human urine and flush water are eventually converted into drinking water with the Urine Processor Assembly (UPA) aboard the International Space Station (ISS). This conversion is made possible through the Distillation Assembly (DA) of the UPA. One component of the DA is a molded circular piston cup made of virgin polytetrafluoroethylene (PTFE). The piston cup is assembled to a titanium component using eight fasteners and washers. Molded PTFE produced for spare piston cups in the first quarter of 2010 was different in appearance and texture, and softer than material molded for previous cups. For the suspect newer PTFE material, cup fasteners were tightened to only one-half the required torque value, yet the washers embedded almost halfway into the material. The molded PTFE used in the DA piston cup should be Type II, based on AMS 3667D and ASTM D4894 specifications. The properties of molded PTFE are considerably different between Type I and II materials. Engineers working with the DA thought that if Type I PTFE was molded by mistake instead of Type II material, that could have resulted in the anomalous material properties. Typically, the vendor molds flat sheet PTFE from the same material lot used to mold the piston cups, and tensile testing as part of quality control should verify that the PTFE is Type II material. However, for this discrepant lot of material, such tensile data was not available. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were two of the testing techniques used at the NASA/Marshall Space Flight Center (MSFC) to investigate the anomaly for the PTFE material. Other techniques used on PTFE specimens were: Shore D hardness testing, tensile testing on dog bone specimens and a qualitative estimation of porosity by optical and scanning electron microscopy.

  10. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

    Directory of Open Access Journals (Sweden)

    Chengxi Zhang

    2017-11-01

    Full Text Available Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene (PTFE capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19–35 nm, high fluorescence quantum yield of 47.8–90.55%, and photoluminescence emission in the range of 450–700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.

  11. The effect of addition of PTFE or urea on luminescence response of copper-doped lithium tetraborate

    Science.gov (United States)

    Iskandar, Ferry; Fajri, Annisa; Nuraeni, Nunung; Stavila, Erythrina; Aimon, Akfiny H.; Nuryadin, Bebeh W.

    2018-04-01

    Lithium tetraborate (Li2B4O7) is a promising material for application in personal dosimetry due to its tissue equivalent properties. The addition of copper as a dopant in Li2B4O7 is known to increase the sensitivity for both photoluminescent (PL) and thermoluminescent (TL) emission. Therefore, in this paper, synthesis of Li2B4O7:Cu is reported. The optimum synthesis condition was achieved using the solution-assisted method, followed by calcination at 700 °C for 2 h. The addition of 0.1 wt% Cu resulted in the highest PL and TL emissions. Further investigation of the influence of polytetrafluoroethylene (PTFE) or urea addition on the luminescence response of Li2B4O7:Cu is described. All samples were characterized by x-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry, photoluminescence spectrofluorophotometer, thermoluminescence reader, scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. The addition of PTFE decreased the PL emission of the Li2B4O7:Cu but slightly increased its TL emission. Meanwhile, the addition of urea increased the luminescence emission for both PL and TL of the Li2B4O7:Cu.

  12. Partial ion yield and NEXAFS of 2-(perfluorooctyl)ethanethiol self-assembled monolayer: Comparison with PTFE results

    CERN Document Server

    Setoyama, H; Murase, T; Imamura, M; Mase, K; Okudaira, K K; Hara, M; Ueno, N

    2003-01-01

    Partial-ion-yield (PIY) spectra using ion time-of-flight (TOF) method and near-edge absorption fine structure (NEXAFS) spectra were measured for 2-(perfluorooctyl)ethanethiol [CF sub 3 (CF sub 2) sub 7 (CH sub 2) sub 2 SH] self-assembled monolayer (F8-SAM) on Au(1 1 1) near carbon K-edge. The PIY spectra of the F8-SAM at the magic angle, where -CF sub 3 groups exist at the surface were compared with those of the rubbed polytetrafluoroethylene (PTFE) thin film. The F sup + intensity from the F8-SAM at the photon energy of the sharp peak of the NEXAFS, which originates from the excitation of C1s electron to sigma sup * (C-F) states at -CF sub 2 - chain, was extremely smaller than that from the rubbed PTFE film. This result clearly indicates that the ions observed by PIY do not originate from the film inside but from the surface. This was confirmed by changes in ion-TOF mass spectra during soft X-ray induced etching of the F8-SAM. The NEXAFS peaks of the F8-SAM were also assigned by considering PIY results.

  13. Tl response of LiF: Mg, Cu, P + PTFE (Mexico) and GR200A (China) dosemeters

    International Nuclear Information System (INIS)

    Gonzalez M, P.R.; Azorin N, J.; Furetta, C.

    2003-01-01

    TLD-100 was the commercial dosemeter more known since some decades ago. This dosemeter was considered for many research groups as the reference material for developing new Tl materials for ionizing radiation dosimetry. Actually it seems that TLD-100 is going to be replaced by the Chinese material GR200A, as reference material due that this material in addition to be considered as a tissue equivalent material, is 30 to 35 times more sensitive that TLD- 100. Results of the study of the Tl response of LiF: Mg, Cu, P + Ptfe developed at ININ-Mexico, comparing them with those of GR200A are presented. These results showed that the sensitivity (s = Tl intensity/weight x dose) to gamma radiation of the LiF: Mg, Cu, P + Ptfe dosimeters was 4.34 meanwhile that of the commercial dosemeter was 3.41. Detection threshold of the dosemeters studied was 2.22 and 0.52 μGy respectively Repeatability after 10 cycles Irradiation-reading-annealing was ±1.39% and ±1.86% respectively. Both types of dosemeters presented a linear response as a function of gamma radiation in the range from 0.02 mGy and 100 Gy. (Author)

  14. Feeding practices and potential risk factors for laminitis in dairy cows in Thailand

    NARCIS (Netherlands)

    Pilachai, R.

    2013-01-01

    Laminitis is considered an important health problem facing the Thai dairy industry. Although the etiology of laminitis is multifactorial, nutrition is considered an important risk factor. Rumen acidosis, lipopolysaccharides (LPS) and histamine may play a role in the development of laminitis in dairy

  15. Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins

    Science.gov (United States)

    Schatten, G.; Schatten, H.; Simerly, C.; Maul, G. G.; Chaly, N.

    1985-01-01

    Nuclear structural changes during fertilization and embryogenesis in mice and sea urchins are traced using four antibodies. The oocytes from virgin female mice, morulae and blastocytes from mated females, and gametes from the sea urchin Lytechnius variegatis are studied using mouse monoclonal antibodies to nuclear lamin A/C, monoclonal antibody to P1, human autoimmune antibodies to lamin A/C, and to lamin B. The mouse fertilization data reveal no lamins on the oocyte; however, lamins are present on the pronuclei, and chromosomes are found on the oocytes and pronuclei. It is detected that on the sea urchin sperm the lamins are reduced to acrosomal and centriolar fossae and peripheral antigens are around the sperm nucleus. The mouse sperm bind lamin antibodies regionally and do not contain antigens. Lamins and antigens are observed on both pronuclei and chromosomes during sea urchin fertilization. Mouse embryogenesis reveals that lamin A/C is not recognized at morula and blastocyst stages; however, lamin B stains are retained. In sea urchin embryogenesis lamin recognition is lost at the blastrula, gastrula, and plutei stages. It is noted that nuclear lamins lost during spermatogenesis are restored at fertilization and peripheral antigens are associated with the surface of chromosomes during meiosis and mitosis and with the periphery of the pronuclei and nuclei during interphase.

  16. 77 FR 61025 - Certain Prepregs, Laminates, and Finished Circuit Boards: Notice of Institution of Formal...

    Science.gov (United States)

    2012-10-05

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-659] Certain Prepregs, Laminates, and Finished..., and the sale within the United States after importation of certain prepregs, laminates, and finished... for sale, and selling for importation into the United States prepregs and laminates that are the...

  17. Abnormal A-type lamin organization in a human lung carcinoma cell line

    NARCIS (Netherlands)

    Machiels, BM; Broers, JL; Raymond, Y; de Leij, Louis; Kuijpers, HJH; Caberg, NEH; Ramaekers, Frans C. S.

    We have studied the expression of lamins A and C (A-type lamins) in a lung carcinoma cell line using type-specific monoclonal antibodies, Using immunofluorescence and immunoblotting studies it was noted that several irregularities in lamin expression exist in the cell line GLC-A1, derived from an

  18. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects

    DEFF Research Database (Denmark)

    Hasselberg, Nina E; Edvardsen, Thor; Petri, Helle

    2014-01-01

    Mutations in the Lamin A/C gene may cause atrioventricular block, supraventricular arrhythmias, ventricular arrhythmias (VA), and dilated cardiomyopathy. We aimed to explore the predictors and the mechanisms of VA in Lamin A/C mutation-positive subjects.METHODS AND RESULTS: We included 41 Lamin A/C...

  19. On the plastic behaviour of multi directional epoxy-bolted CFRP laminates

    DEFF Research Database (Denmark)

    Jensen, Aage; Poulsen, Ervin

    2004-01-01

    The second generation of CFRP laminate has recently been developed. It is a multi directional CFRP laminate, i.e. a laminate with carbon fibres having several directions other than the first generation. The paper describes the laboratory tests carried out in order to develop anchorage devices for...

  20. Effect of surface reactions on steel, Al{sub 2}O{sub 3} and Si{sub 3}N{sub 4} counterparts on their tribological performance with polytetrafluoroethylene filled composites

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.T.; Top, M. [Materials Innovation Institute M2i, Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Ivashenko, O.; Rudolf, P. [Department of Surfaces and Thin Films, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Pei, Y.T., E-mail: y.pei@rug.nl [Materials Innovation Institute M2i, Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Department of Advanced Production Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); De Hosson, J.Th.M., E-mail: j.t.m.de.hosson@rug.nl [Materials Innovation Institute M2i, Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-03-15

    Highlights: • The influence of surface reactions with PTFE on the tribo-performance of different counterparts is revealed. • Experiments confirm that friction can be greatly reduced by two F-terminated surfaces sliding over each other. • Al−F and Fe−F chemical bonding form on the surface of alumina and steel counterpart balls during sliding against PTFE-containing composite. • No Si−F bonding formed on Si{sub 3}N{sub 4} ball under the same condition, leading to higher friction and wear. - Abstract: The influence of surface reactions on the tribo-performance of steel, Al{sub 2}O{sub 3} and Si{sub 3}N{sub 4} balls sliding against polytetrafluoroethylene/SiO{sub 2}/epoxy composites was investigated. Al{sub 2}O{sub 3} ball were found to exhibit the best tribo-performance, namely a low coefficient of friction and the lowest wear rates of both the composites and the counterpart ball, when sliding against the PTFE filled composites. The difference in the tribo-performance of the Al{sub 2}O{sub 3} ball and the Si{sub 3}N{sub 4} ball can neither be attributed to the different morphology of the worn composite surfaces nor to the amount of PTFE transferred onto the wear surfaces. Instead we found that the friction is greatly reduced in the case of the Al{sub 2}O{sub 3} ball because two fluoro-terminated surfaces are sliding over each other; in fact, the formation of Al−F bonding was confirmed by X-ray photoelectron spectroscopy.

  1. Selection and specification criteria for fills for cut-and-fill mining

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, E. G.

    1980-05-15

    Because of significant differences in placement and loading conditions, the ideal fill material for a cut-and-fill operation has different characteristics to those for a fill for a filled open stoping operation. The differing requirements of the two mining operations must be understood and accounted for in establishing fill selection and specification criteria. Within the paper, aspects of the particular requirements of cut-and-fill mining are analyzed and related to the specific fill tests and properties required. Emphasis is placed upon the role of fill in ground support, though this cannot be isolated from overall fill performance. Where appropriate, test data are introduced and areas requiring continuing research highlighted.

  2. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Science.gov (United States)

    2010-07-01

    ... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.72 Disposal of excess spoil: Valley fill/head-of-hollow fills.... Uncontrolled surface drainage may not be directed over the outslope of the fill. (2) Runoff from areas above the fill and runoff from the surface of the fill shall be diverted into stabilized diversion channels...

  3. Determination of kinetic parameters in Tl dosemeters of LiF: Mg, Cu, P + PTFE developed in the ININ; Determinacion de parametros cineticos en dosimetros Tl de LiF: Mg, Cu, P + PTFE desarrollados en el ININ

    Energy Technology Data Exchange (ETDEWEB)

    Basurto G, B.S

    2002-07-01

    The objective of this work, is the one of determining the kinetic parameters of the dosemeter of LiF: Mg, Cu, P + Ptfe; starting from the curves Tl obtained at being irradiated with alpha radiation ({alpha}), beta ({beta}) and gamma ({gamma}). As like to compare its sensitivity with each radiation type, considering the sensitivity of the TLD-100 as the unit. In the Chapter 1, the fundamental structure of the matter is described, making emphasis in the different radiation types, and their interaction with this. In the Chapter 2, the units are described but used in the dosimetry of the radiation. In the Chapter 3, the basic concepts of the phenomenon of Tl are described and those are explained characteristic of the deconvolution method to determine the kinetics of the one phenomenon. In the Chapter 4, the methodology is detailed that was used in the elaboration of this thesis work, describing the material Tl that were considered like reference, as well as the sources of ionizing radiation, with those that the dosemeters were irradiated and the equipment in the one that the curves Tl was obtained. Reference is made to the software used to carry out the deconvolution of the curves Tl that were obtained in the one experimental development. In the Chapter 5, the obtained results of this study are presented, showing the tables of homogenization of dosemeters and the reading of the same one; they are observed the curves Tl obtained to different radiation doses (alpha, beta and gamma), the intensity Tl in function of the dose. Also they are tabulated, the obtained results in the kinetic parameters of the three different study materials (TLD-100H, USA; TLD-100, USA and LiF: Mg, Cu, P + Ptfe developed in the l.N.l.N). They are analyzed shortly for each material Tl their sensitivity to the ionizing radiation as well as their kinetic parameters. The obtained results showed that the Tl dosemeters of LiF: Mg,Cu,P + Ptfe, they presented a bigger sensitivity that the TLD-100 when

  4. Process-induced viscoelastic stress in composite laminates

    International Nuclear Information System (INIS)

    Stango, R.J.

    1985-01-01

    In recent years, considerable interest has developed in evaluating the stress response of composite laminates which is associated with cooling the material system from the cure temperature to room temperature. This research examines the fundamental nature of time-dependent residual-thermal stresses in composite laminates which are caused by the extreme temperature reduction encountered during the fabrication process. Viscoelastic stress in finite-width, symmetric composite laminates is examined on the basis of a formulation that employs an incremental hereditary integral approach in conjunction with a quasi-three dimensional finite element analysis. A consistent methodology is developed and employed for the characterization of lamina material properties. Special attention is given to the time-dependent stress response at ply-interface locations near the free-edge. In addition, the influence of cooling path on stress history is examined. Recently published material property data for graphite-epoxy lamina is employed in the analysis. Results of the investigation generally indicate that nominal differences between the thermoelastic and viscoelastic solutions are obtained. Slight changes of the final stress state are observed to result when different cooling paths are selected for the temperature history. The methodology employed is demonstrated to result in an accurate, efficient, and consistent approach for the viscoelastic analysis of advanced composite laminates

  5. Laminated structure in internally oxidized Ru-Ta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw

    2012-12-01

    During the development of refractory alloy coatings for protective purposes at high temperature under oxygen-containing atmospheres, previous studies noted and examined the internal oxidation phenomenon for Mo-Ru and Ru-Ta coatings. The internally oxidized zone shows a laminated structure, consisting of alternating oxygen-rich and deficient layers stacked with a general orientation. Previous studies proposed a forming mechanism. To investigate in detail, Ru-Ta coatings were prepared with various rotating speeds of a substrate-holder. The coatings were annealed at 600 Degree-Sign C in an atmosphere continuously purged with 1% O{sub 2}-99% Ar mixed gas for 30 min. Transmission electron microscopy was used to examine the laminated-layer periods. Auger electron spectroscopy depth profiles certified the periodical variation of the related constituents. X-ray photoelectron spectroscopy proved the valence variation of Ta in the near surface, accompanied by the introduction of oxygen ions. The inward diffusion of oxygen was dominated by lattice diffusion. - Highlights: Black-Right-Pointing-Pointer Laminated Ru-Ta coatings consisted of a cyclical gradient concentration. Black-Right-Pointing-Pointer The as-deposited coatings showed a laminated structure with a period of 4-34 nm. Black-Right-Pointing-Pointer Internal oxidation of Ru-Ta coatings executed after annealing in 1% O{sub 2}-Ar atmosphere. Black-Right-Pointing-Pointer Oxygen inward diffusion was dominated by lattice diffusion.

  6. Design of Multiple Bolted Connections for Laminated Veneer Lumber

    Science.gov (United States)

    Borjen Yeh; Douglas Rammer; Jeff Linville

    2014-01-01

    The design of multiple bolted connections in accordance with Appendix E of the National Design Specification for Wood Construction (NDS) has incorporated provisions for evaluating localized member failure modes of row and group tear-out when the connections are closely spaced. Originally based on structural glued laminated timber (glulam) members made with all L1...

  7. Bending analysis of laminated composite plates using finite element ...

    African Journals Online (AJOL)

    user

    theory to analyze the laminated composite plates. They concluded that ...... Aeronautics and Astronautics”, Inc.1801, Chapter 8, pp. 240. Baltacıoğlu A.K .... He is working as Assistant Professor in the Department of Mechanical. Engineering in ...

  8. Characterisation of fibre metal laminates under thermomechanical loadings

    NARCIS (Netherlands)

    Hagenbeek, M.

    2005-01-01

    Fibre metal laminates, such as Arall or Glare, can offer improved properties compared to monolithic materials. Glare for example shows improved fatigue, residual strength, burn-through, impact and corrosion properties with respect to aluminium 2024, together with a considerable weight reduction and

  9. Chapter 4: Lateral design of cross-laminated timber buildings

    Science.gov (United States)

    John W. van de Lindt; Douglas Rammer; Marjan Popovski; Phil Line; Shiling Pei; Steven E. Pryor

    2013-01-01

    Cross-laminated timber (CLT) is an innovative wood product that was developed approximately two decades ago in Europe and has since been gaining in popularity. Based on the experience of European researchers and designers, it is believed that CLT can provide the U.S. market the opportunity to build mid- and high-rise wood buildings. This Chapter presents a summary of...

  10. Thermoviscoelastic characterization and prediction of Kevlar/epoxy composite laminates

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1990-01-01

    The thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material were studied. The four orthotropic material properties, S sub 11, S sub 12, S sub 22, and S sub 66, were characterized by 20 minute static creep tests on unidirectional (0) sub 8, (10) sub 8, and (90) sub 16 lamina specimens. The Time-Temperature Superposition-Principle (TTSP) was used successfully to accelerate the characterization process. A nonlinear constitutive model was developed to describe the stress dependent viscoelastic response for each of the material properties. A numerical procedure to predict long term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM PC type computers. The program was designed for ease of use. The final phase involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperatures and load level for 4 to 5 weeks. These results were compared with the VCAP program predictions to verify the testing procedure and to check the numerical procedure used in the program. The actual tests and predictions agreed for all test cases which included 1, 2, 3, and 4 fiber direction laminates.

  11. Damage and Failure of Non-Conventional Composite Laminates

    NARCIS (Netherlands)

    Lopes, C.S.

    2009-01-01

    For a long time, the application of composite materials was restricted to military aircraft and secondary structures of commercial aircraft. Furthermore, the design possibilities offered by composite laminates were narrowed to quasi-isotropic configurations due to their closer behaviour with

  12. Theoretical modeling and experimental analyses of laminated wood composite poles

    Science.gov (United States)

    Cheng Piao; Todd F. Shupe; Vijaya Gopu; Chung Y. Hse

    2005-01-01

    Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin. The thick-walled hollow poles had adequate strength and stiffness properties and were a promising substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufacture and future installation and maintenance of this novel...

  13. Photodegradation in ballistic laminates: Spectroscopy and lifetime extension

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; Stallard, B.R.; White, C.A.; Garcia, M.J.; Morse, H.E. [Sandia National Labs., Albuquerque, NM (United States). Properties of Organic Materials Dept.

    1996-06-01

    Several years ago, the Materials and Process Sciences Center (Org. 1800) was asked by Dept. 9613 to study the materials aging issues which had led to the loss of ballistic protection by Armored Tractor (AT) windshields and windows. The authors speculated that this loss of impact strength was due to photodegradation of the polycarbonate (PC) inboard ply. They developed a spectroscopic method to identify changes in the outboard surface of the PC, and showed that the changes in the surface which occurred upon natural aging in the field could be reproduced by exposing the laminates to a simulated solar flux. Based on these results, they recommended changes in the adhesive interlayers to filter out the ultraviolet (UV) light causing the aging problem. Working with the laminate vendor, PPG, they re-designed the laminates to implement these changes and block essentially all UV light from the inboard ply. The most recent phase of this work involved accelerated solar aging of laminates made with the new design to verify that photoaging effects have been blocked by the new materials. They report here the results of that study, and recommended follow-on work.

  14. Computational Fatigue Life Analysis of Carbon Fiber Laminate

    Science.gov (United States)

    Shastry, Shrimukhi G.; Chandrashekara, C. V., Dr.

    2018-02-01

    In the present scenario, many traditional materials are being replaced by composite materials for its light weight and high strength properties. Industries like automotive industry, aerospace industry etc., are some of the examples which uses composite materials for most of its components. Replacing of components which are subjected to static load or impact load are less challenging compared to components which are subjected to dynamic loading. Replacing the components made up of composite materials demands many stages of parametric study. One such parametric study is the fatigue analysis of composite material. This paper focuses on the fatigue life analysis of the composite material by using computational techniques. A composite plate is considered for the study which has a hole at the center. The analysis is carried on (0°/90°/90°/90°/90°)s laminate sequence and (45°/-45°)2s laminate sequence by using a computer script. The life cycles for both the lay-up sequence are compared with each other. It is observed that, for the same material and geometry of the component, cross ply laminates show better fatigue life than that of angled ply laminates.

  15. Self-extinguishment of cross-laminated timber

    NARCIS (Netherlands)

    Crielaard, R.; van de Kuilen, J.W.G.; Terwel, K.C.; Ravenshorst, G.J.P.; Steenbakkers, P.; Breunesse, A.

    2016-01-01

    Cross-laminated timber, or CLT, is receiving attention for its potential use in tall buildings. As a combustible material, one of the challenges for the construction of these buildings is the fire risk that results from its use in the structure. Unprotected CLT can burn along with the fuel load

  16. Dual Teichmüller and lamination spaces

    DEFF Research Database (Denmark)

    Fock, Vladimir V.; Goncharov, Alexander B.

    2007-01-01

    We survey explicit coordinate descriptions for two versions of Teichmüller and lamination spaces for open surfaces, and extend them to the more general set-up of surfaces with distinguished collections of points on the boundary. Main features, such as mapping class group action, Poisson and sympl...

  17. Buckling analysis for anisotropic laminated plates under combined inplane loads

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.

    1974-01-01

    The buckling analysis presented considers rectangular flat or curved general laminates subjected to combined inplane normal and shear loads. Linear theory is used in the analysis. All prebuckling deformations and any initial imperfections are ignored. The analysis method can be readily extended to longitudinally stiffened structures subjected to combined inplane normal and shear loads.

  18. Chapter 5: Connections Connections in cross-laminated timber buildings

    Science.gov (United States)

    Mohammad Mohammad; Bradford Douglas; Douglas Rammer; Steven E. Pryor

    2013-01-01

    The light weight of cross-laminated timber (CLT) products combined with the high level of prefabrication involved, in addition to the need to provide wood-based alternative products and systems to steel land concrete, have significantly contributed to the development of CLT products and systems, especially in mid-rise buildings (5 to 9 stories). While this product is...

  19. Chapter 1: CLT Introduction to cross-laminated timber

    Science.gov (United States)

    Sylvan Gagnon; E.M.(Ted) Bilek; Lisa Podesto; Pablo Crespell

    2013-01-01

    Cross-laminated timber ( CLT), a new generation of engineered wood product developed initially in Europe, has been gaining increased popularity in residential and non-residential applications in several countries. Many impressive low- and mid-rise buildings built around the world using CLT showcase the many advantages this product has to offer to the construction...

  20. Laser cutting of laminated sheet material: a modeling exercise

    NARCIS (Netherlands)

    de Graaf, R.F.; Meijer, J.

    1997-01-01

    Laser cutting has been investigated for a number of aluminum-synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at rates comparable to those of

  1. Laser cutting of metal laminates: analysis and experimental validation

    NARCIS (Netherlands)

    de Graaf, R.F.; Meijer, J.

    2000-01-01

    Laser cutting has been investigated for a number of aluminum–synthetic laminates, newly developed materials for the aeronautic and automotive industry. The materials consist of alternating aluminum and synthetic layers. It is shown that these materials can be cut at the same speed as homogeneous

  2. Visco-piezo-elastic parameter estimation in laminated plate structures

    DEFF Research Database (Denmark)

    Araujo, A. L.; Mota Soares, C. M.; Herskovits, J.

    2009-01-01

    A parameter estimation technique is presented in this article, for identification of elastic, piezoelectric and viscoelastic properties of active laminated composite plates with surface-bonded piezoelectric patches. The inverse method presented uses experimental data in the form of a set of measu...

  3. Damage in woven CFRP laminates subjected to low velocity impacts

    International Nuclear Information System (INIS)

    Ullah, H; Abdel-Wahab, A A; Harland, A R; Silberschmidt, V V

    2012-01-01

    Carbon fabric-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in these materials affects both their in-service properties and performance that can deteriorate with time. These processes need adequate means of analysis and investigation, the major approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in woven composite laminates due to low-velocity dynamic out-of-plane bending. Experimental tests are carried out to characterise the behaviour of such laminates under large-deflection dynamic bending in un-notched specimens in Izod tests using a Resil Impactor. A series of low-velocity impact tests is carried out at various levels of impact energy to assess the energy absorbed and force-time response of CFRP laminates. X-ray micro computed tomography (micro-CT) is used to investigate material damage modes in the impacted specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply delamination and intra-ply delamination, such as tow debonding and fabric fracture, were the prominent damage modes.

  4. Fracture behaviour of alumina and zirconia thin layered laminate

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Hadraba, Hynek; Slabáková, L.; Drdlík, D.; Dlouhý, Ivo

    2012-01-01

    Roč. 32, č. 9 (2012), s. 2057-2061 ISSN 0955-2219 R&D Projects: GA ČR GD106/09/H035 Institutional research plan: CEZ:AV0Z20410507 Institutional support: RVO:68081723 Keywords : Ceramics * Laminates * Crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.360, year: 2012

  5. Development of High Performance CFRP/Metal Active Laminates

    Science.gov (United States)

    Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka

    This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.

  6. The extrinsic influence of carbon fibre reinforced plastic laminates to ...

    Indian Academy of Sciences (India)

    The extrinsic influence of carbon fibre reinforced plastic laminates to strengthen steel structures ... The intrinsic advantages of strengthening the steel-based structures by the use of fibre reinforced plastic (FRP) material have ... Sadhana | News.

  7. Residual stresses in non-symmetrical carbon-epoxy laminates

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Akkerman, Remko; Lamers, E.A.D.; Martin, M.J.; Hahn, H.T.

    2003-01-01

    The curvature of unsymmetrical [0/90] laminates moulded from AS4/8552 uni-directional tape has been measured. A linear thermoelastic approach has been applied to predict the related residual stress state before demoulding, giving an estimate of the stress induced by polymerisation strain. The

  8. Repair of white oak glued-laminated beams

    Science.gov (United States)

    Lawrence A. Soltis; Robert J. Ross

    1999-01-01

    Connections between steel side plates and white oak glued-laminated beams subjected to tension perpendicular-to-grain stresses were tested to failure. The beams were then repaired with five different configurations using two sizes of lag screws, with and without steel reinforcing plates. The repaired beams were re-tested to failure. Results indicate that in all...

  9. Technology of hardening fills for mined spaces

    International Nuclear Information System (INIS)

    Simek, P.; Holas, M.; Chyla, A.; Pech, P.

    1985-01-01

    The technology is described of hardening fills for mined spaces of uranium deposits in North Bohemian chalk. A special equipment was developed for the controlled preparation of a hardening mixture. The composition of the fill is determined by the strength of the filled rock, expecially by the standard strength, i.e., the minimal strength of the filling under uniaxial pressure. The said parameter determines the consumption of binding materials and thereby the total costs of the filling. A description is presented of the filling technology, including rabbit tube transport of the mixture and quality control. (Pu)

  10. Charge balancing fill rate monitor

    International Nuclear Information System (INIS)

    Rothman, J.L.; Blum, E.B.

    1995-01-01

    A fill rate monitor has been developed for the NSLS storage rings to allow machine tuning over a very large dynamic range of beam current. Synchrotron light, focused on a photodiode, produces a signal proportional to the beam current. A charge balancing circuit processes the diode current, creating an output signal proportional to the current injected into the ring. The unit operates linearly over a dynamic range of 120 dB and can resolve pulses of injected beam as small as 1 μA

  11. Lamination of organic solar cells and organic light emitting devices: Models and experiments

    International Nuclear Information System (INIS)

    Oyewole, O. K.; Yu, D.; Du, J.; Asare, J.; Fashina, A.; Anye, V. C.; Zebaze Kana, M. G.; Soboyejo, W. O.

    2015-01-01

    In this paper, a combined experimental, computational, and analytical approach is used to provide new insights into the lamination of organic solar cells and light emitting devices at macro- and micro-scales. First, the effects of applied lamination force (on contact between the laminated layers) are studied. The crack driving forces associated with the interfacial cracks (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and computational models. Guidelines are developed for the lamination of low-cost organic electronic structures

  12. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    Science.gov (United States)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  13. Coupling sequential injection on-line preconcentration using a PTFE beads packed column to direct injection nebulization inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    An automated sequential injection on-line preconcentration procedure for trace metals by using a PTFE bead-packed microcolumn coupled to ICP-MS is described, and used for simultaneous analyses of cadmium and lead. In dilute nitric acid (0.5%, v/v), neutral complexes between the analytes...

  14. Tribological Behavior of TiC/a-C : H-Coated and Uncoated Steels Sliding Against Phenol-Formaldehyde Composite Reinforced with PTFE and Glass Fibers

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    2013-01-01

    Tribological experiments on phenol-formaldehyde composite reinforced with polytetrafluoroethylene (PTFE) and glass fibers were performed against 100Cr6 steel and TiC/a-C:H thin film-coated 100Cr6 steel. In both cases, the coefficient of friction increases with increasing sliding distance until a

  15. Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle

    KAUST Repository

    Li, Erqiang; Xu, Qian; Sun, Jie; Fuh, Jerry; Wong, Yokesan; Thoroddsen, Sigurdur T

    2010-01-01

    , or Teflon) tubing, which of a much softer material, than the conventionally used glass tubing. Applying the same electrical voltage, PET/PTFE-based printhead will generate a larger volume change in the material to be dispensed. The novel printhead fabricated

  16. The effect on patency of type, shape and volume of a vein collar used at the distal anastomis of PTFE-bypass to arteries below-knee

    DEFF Research Database (Denmark)

    Lundgren, F; Schroeder, Torben Veith

    2012-01-01

    The aim of this paper was to study the effect on patency rate of different types of vein collar (Miller's original or St Mary's boot), different length/height shapes of vein collar, and different vein collar volumes at the distal anastomosis of PTFE-bypass grafts to below-knee arteries in patients...

  17. Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle

    KAUST Repository

    Li, Erqiang

    2010-09-01

    A PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzles is designed and fabricated. The printhead chamber is comprised of PET (polyethylene terephthalate) tubing or PTFE (polytetrafluoroethylene, or Teflon) tubing, which of a much softer material, than the conventionally used glass tubing. Applying the same electrical voltage, PET/PTFE-based printhead will generate a larger volume change in the material to be dispensed. The novel printhead fabricated herein has successfully dispensed liquids with viscosities up to 100 cps, as compared to 20 cps for the commercial printheads. Furthermore, PTFE-based printhead provides excellent anti-corrosive property when strongly corrosive inks are involved. The interchangeable nozzle design enables the same printhead to be fitted with nozzles of different orifice size, thus a clogged nozzle can be easily removed for cleaning or replacement. The characteristics of this novel printhead are also studied by dispensing glycerin-water solutions. © 2010 Elsevier B.V. All rights reserved.

  18. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saaidi, Rasha [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Rasmussen, Torsten B. [Department of Cardiology, Aarhus University Hospital, Aarhus (Denmark); Palmfeldt, Johan [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Nissen, Peter H. [Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus (Denmark); Beqqali, Abdelaziz [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Hansen, Jakob [Department of Forensic Medicine, Bioanalytical Unit, University of Aarhus (Denmark); Pinto, Yigal M. [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Boesen, Thomas [Department of Molecular Biology and Genetics, University of Aarhus (Denmark); Mogensen, Jens [Department of Cardiology, Odense University Hospital, Odense (Denmark); Bross, Peter, E-mail: peter.bross@ki.au.dk [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark)

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  19. Nitrogen and Fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE

    International Nuclear Information System (INIS)

    Peng, Hongliang; Liu, Fangfang; Qiao, Xiaochang; Xiong, Ziang; Li, Xiuhua; Shu, Ting; Liao, Shijun

    2015-01-01

    Graphical abstract: A novel N and F co-doped metal-free doped carbon catalyst with three dimensional vesicles structures and ultra thin walls are prepared by pyrolyzing the mixture of melamine and PTFE. The catalyst has high N and F contents (13 and 6 at.%), and exhibits high ORR activity, high stability, and high limitation current density in both alkaline and acid medium. - Highlights: • N and F co-doped carbon catalyst was derived from the mixture of PTFE and melamine. • The N and F contents of the catalyst are up to 13 and 6 at.%, respectively. • The catalyst has three dimensional vesicles structure with ultra thin walls. • ORR activity of the catalyst is superior to that of Pt/C catalyst in alkaline medium. - Abstract: A novel nitrogen and fluorine co-doped carbon catalyst (C-Mela-PTFE) is prepared by pyrolyzing a mixture of melamine and polytetrafluoroethylene (PTFE), the catalyst has a three-dimensional vesicular structure with ultrathin wall, and exhibits excellent ORR performance in both alkaline and acidic mediums. In an alkaline medium, the catalyst exhibits superior ORR activity to that of commercial Pt/C catalyst. Notably, the ORR activity of the catalyst is just slightly lower than that of Pt/C catalyst in acidic medium. It is interesting that the ORR limiting current density of our C-Mela-PTFE catalyst is much higher than that of Pt/C catalyst. The effects of the melamine/PTFE ratio and the pyrolysis temperature on the catalyst's ORR performance are investigated. The optimal melamine/PTFE ratio by weight is 1:1.5, and the optimal pyrolysis temperature is 950 °C. The catalyst samples are characterized by XRD, SEM/TEM, Raman analysis, and XPS, the results reveal the ultra-thin-walled vesicular structure, high surface area and porosity, and high doping amounts of N and F of the catalyst. For the optimal sample, the N and F contents are up to 13 and 6 at.%, respectively, the proportion of pyridinic N is up to 45 at.% according to the

  20. Influences of lamin A levels on induction of pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Bingfeng Zuo

    2012-09-01

    Lamin A is an inner nuclear membrane protein that maintains nuclear structure integrity, is involved in transcription, DNA damage response and genomic stability, and also links to cell differentiation, senescence, premature aging and associated diseases. Induced pluripotent stem (iPS cells have been successfully generated from various types of cells and used to model human diseases. It remains unclear whether levels of lamin A influence reprogramming of somatic cells to pluripotent states during iPS induction. Consistently, lamin A is expressed more in differentiated than in relatively undifferentiated somatic cells, and increases in expression levels with age. Somatic cells with various expression levels of lamin A differ in their dynamics and efficiency during iPS cell induction. Cells with higher levels of lamin A show slower reprogramming and decreased efficiency to iPS cells. Furthermore, depletion of lamin A by transient shRNA accelerates iPS cell induction from fibroblasts. Reduced levels of lamin A are associated with increased expression of pluripotent genes Oct4 and Nanog, and telomerase genes Tert and Terc. On the contrary, overexpression of lamin A retards somatic cell reprogramming to iPS-like colony formation. Our data suggest that levels of lamin A influence reprogramming of somatic cells to pluripotent stem cells and that artificial silencing of lamin A facilitates iPS cell induction. These findings may have implications in enhancing rejuvenation of senescent or older cells by iPS technology and manipulating lamin A levels.

  1. Determination of kinetic parameters in Tl dosemeters of LiF: Mg, Cu, P + PTFE developed in the ININ

    International Nuclear Information System (INIS)

    Basurto G, B.S.

    2002-01-01

    The objective of this work, is the one of determining the kinetic parameters of the dosemeter of LiF: Mg, Cu, P + Ptfe; starting from the curves Tl obtained at being irradiated with alpha radiation (α), beta (β) and gamma (γ). As like to compare its sensitivity with each radiation type, considering the sensitivity of the TLD-100 as the unit. In the Chapter 1, the fundamental structure of the matter is described, making emphasis in the different radiation types, and their interaction with this. In the Chapter 2, the units are described but used in the dosimetry of the radiation. In the Chapter 3, the basic concepts of the phenomenon of Tl are described and those are explained characteristic of the deconvolution method to determine the kinetics of the one phenomenon. In the Chapter 4, the methodology is detailed that was used in the elaboration of this thesis work, describing the material Tl that were considered like reference, as well as the sources of ionizing radiation, with those that the dosemeters were irradiated and the equipment in the one that the curves Tl was obtained. Reference is made to the software used to carry out the deconvolution of the curves Tl that were obtained in the one experimental development. In the Chapter 5, the obtained results of this study are presented, showing the tables of homogenization of dosemeters and the reading of the same one; they are observed the curves Tl obtained to different radiation doses (alpha, beta and gamma), the intensity Tl in function of the dose. Also they are tabulated, the obtained results in the kinetic parameters of the three different study materials (TLD-100H, USA; TLD-100, USA and LiF: Mg, Cu, P + Ptfe developed in the l.N.l.N). They are analyzed shortly for each material Tl their sensitivity to the ionizing radiation as well as their kinetic parameters. The obtained results showed that the Tl dosemeters of LiF: Mg,Cu,P + Ptfe, they presented a bigger sensitivity that the TLD-100 when being

  2. Optimization of the obtaining method of CaSO{sub 4}: Dy + Ptfe dosimeters; Optimizacion del metodo de obtencion de dosimetros de CaSO{sub 4}: Dy + PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Galicia A, J.; Rioja Ch, J.; Torijano C, E.; Azorin N, J., E-mail: blink19871@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2012-10-15

    This work contain the obtained results of studying the response when irradiating to different dose of X-rays, dosimeters of CaSO{sub 4}: Dy + Ptfe using different lapses of time in their preparation (a lot of selected dosimeters of an elaboration process of 3 days and another of an elaboration process of 2 hours). For the elaboration of the powdered material, the evaporation method was used; the irradiation were carried out in a lineal accelerator Elekta Synergy property of the National Medical Center, 20 de November. The similarities and differences are shown among the two dosimeters lots together with an analysis of the shine curves and of calibration selecting those that presented a better behaviour and a more rea liable response. (Author)

  3. Bio-inspired dental fillings

    Science.gov (United States)

    Deyhle, Hans; Bunk, Oliver; Buser, Stefan; Krastl, Gabriel; Zitzmann, Nicola U.; Ilgenstein, Bernd; Beckmann, Felix; Pfeiffer, Franz; Weiger, Roland; Müller, Bert

    2009-08-01

    Human teeth are anisotropic composites. Dentin as the core material of the tooth consists of nanometer-sized calcium phosphate crystallites embedded in collagen fiber networks. It shows its anisotropy on the micrometer scale by its well-oriented microtubules. The detailed three-dimensional nanostructure of the hard tissues namely dentin and enamel, however, is not understood, although numerous studies on the anisotropic mechanical properties have been performed and evaluated to explain the tooth function including the enamel-dentin junction acting as effective crack barrier. Small angle X-ray scattering (SAXS) with a spatial resolution in the 10 μm range allows determining the size and orientation of the constituents on the nanometer scale with reasonable precision. So far, only some dental materials, i.e. the fiber reinforced posts exhibit anisotropic properties related to the micrometer-size glass fibers. Dental fillings, composed of nanostructures oriented similar to the natural hard tissues of teeth, however, do not exist at all. The current X-ray-based investigations of extracted human teeth provide evidence for oriented micro- and nanostructures in dentin and enamel. These fundamental quantitative findings result in profound knowledge to develop biologically inspired dental fillings with superior resistance to thermal and mechanical shocks.

  4. Lamination and end plate design studies of SSC Low Energy Booster magnet prototypes

    International Nuclear Information System (INIS)

    Li, N.

    1993-01-01

    The LEB machine includes six kinds of laminated magnets and 4 kinds of laminations. The main quadrupole magnet and low field and high field corrector quadrupoles use the same lamination shape. The chromaticity sextupole, corrector dipole, and main dipole have different lamination designs. To test the physical design and production procedure for the magnets, it is necessary to build 2 or 3 prototypes for each kind of magnet. The ZVI plant in Moscow, manufactured all 4 kinds of lamination punching dies for the LEB magnets. Each die takes 3 to 5 months to fabricate. SSCL manufactured laser cut laminated magnet prototypes in the SSC shop at the same time. Since the LEB cycles at 10 Hz, the high frequency current and laminated end plate design causes a delamination problem on the magnet end. This problem is of concern and will be addressed

  5. Preparation of thermoluminescent dosimeters of LiF: Mg, Cu, P + Ptfe for environmental radiological monitoring and radiodiagnosis; Preparacion de dosimetros termoluminiscentes de LiF: Mg, Cu, P + PTFE para monitoreo radiologico ambiental y radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez L, A

    1997-12-31

    The necessity of finding a thermoluminescent material for measuring gamma and X radiation in applications like environmental monitoring, personnel dosimetry and biomedical sciences (radiotherapy and radiodiagnosis), but with special characteristics such as low umbral detection, independence of the energy of radiation and equivalency with the tissue. This made us think in lithium fluoride activated with magnesium, copper and phosphorous (LiF: Mg, Cu, P). In this thesis I developed this material chips like shape embedded in polytetrafluoroethylene (LiF: Mg, Cu, P+Ptfe). The chapter 1 and 2 talk about the atom is conformed and the interaction of the radiation with the matter. The requirements of Tl material, types of dosimetry system, biological effects and units of measurements are discussed in chapter 3 as well as the recommended limits of the International Commission on Radiological Protection ICRP. Chapter 4 shows aspects of the thermoluminescence phenomenon and describes, at the same time, the determination of the most important thermoluminescent parameters (kinetic order, energy or trap depth and the frequency factor). Chapter 5 describes the major characteristics and properties of Tl materials and its requirements for dosimetric use. Chapter 6 deals with the preparations of LiF: Mg, Cu, P+Ptfe chips and some tests for improving its sensitivity, describes the dosimetric tests and requirements proposed by American National Standard Institute ANSI-N545 Like: umbral of detection, homogeneity, fading, repeatability, linearity, effects of UV and fluorescent light etc. Finally in chapter 7 I do a report about analysis of results, conclusions and some recommendations. (Author).

  6. PTFE Graft as a "Bridge" to Communicating Veins Maturation in the Treatment of an Intrahepatic Cholangiocarcinoma Involving the 3 Hepatic Veins. The Minor-but-Complex Liver Resection.

    Science.gov (United States)

    Urbani, Lucio; Balestri, Riccardo; Sidoti, Francesco; Bernardini, Juri Riccardo; Arces, Francesco; Licitra, Gabriella; Leoni, Chiara; Forfori, Francesco; Colombatto, Piero; Boraschi, Piero; Castagna, Maura; Buccianti, Piero

    2016-12-01

    Parenchyma-sparing liver surgery allows resecting hepatic veins (HV) at the hepatocaval confluence with minor (PTFE graft can be used as a bridge to communicating-veins maturation to ensure the correct outflow of the spared liver. We present a video of an intrahepatic cholangiocarcinoma (IC) involving the three HV at the hepatocaval confluence treated with this approach. In a 50-year old obese (BMI 44.8) male a 6-cm IC involving the hepatocaval confluence was identified during the follow-up for a kidney malignancy. At the preoperative CT scan the left HV was not detectable, the middle HV was incorporated within the tumor, and right HV had a 3-cm contact with the tumor. No communicating veins were evident at preoperative imaging. After a J-shape thoracophrenolaparotomy, the resection of segments II-III-IVa was partially extended to segment VIII-VII and I. The right HV was detached from the tumor, and the middle HV was reconstructed with a 7-mm ringed-armed PTFE graft anastomosed to V8. Surgery lasted 20 h and 55 min with an estimated blood loss of 3500 ml, but the postoperative course was uneventful and the patient was discharged on the 14th postoperative day. One month later the CT scan showed a patent PTFE graft with the maturation of communicating-veins. One year later a complete thrombosis of the PTFE graft was observed with normal liver perfusion and function, and the patient was disease-free. PTFE-based parenchyma-sparing liver resection is a new tool to treat tumors located at the hepatocaval confluence exploiting the maturation of intrahepatic communicating-veins between main HV.

  7. Geochemistry records from laminated sediments of Shira Lake (Russian Asia)

    Science.gov (United States)

    Phedorin, M.; Vologina, E.; Drebuschak, M.; Tolomeev, A.; Kirichenko, I.; Toyabin, A.

    2009-04-01

    We measured downcore elements distributions in five cores collected across the Shira Lake situated in Central part of Asia (E90o12', N54o30'). The lake is small (32km2), saline (ca.20g/l SO4-, Cl-, Na+, Mg+, K+), being filled with regional precipitation of about 300mm/year (mainly through one major tributary, river Son) and has no surface outflow. The aim of our study was to reconstruct history of changes in the regime of the lake that happened both before and during period of instrumental meteorological observations. In particular, we were interested in lake-level changes due to evaporation, water supply from surface and from underground sources, and in changes of bioproduction in the lake as well. To construct depth-age model for the cores, we measured Cs-137 and unsupported Pb-210 in top layers of the cores. The sedimentation rate thus identified varied in the range of 1-2 mm/year for different cores. We visually observed fine sedimentation ‘rhythms' having thickness of about 0.x-2.x mm: these layers may now be reliably identified as annual lamination. We also determined concentrations of elements in the sediments by recording x-ray fluorescence (XRF) spectra when continuously scanning the halves of the cores under sharp synchrotron radiation (SR) beam, using an instrument described in (Zolotarev et al., 2001). The resolution of the scanning was 0.1 mm. After processing of the measured XRF-SR data as in (Phedorin and Goldberg, 2005) we obtained downcore records of 20 elements. We correlated all five cores employing elements patterns. We qualitatively identified variations in surface-water supply treating markers of ‘clastic' material (Ti, Rb, Zr). We identified downcore variations in authgenic mineralization, which appeared to have different kinds: Ca-related, Sr-related, Ba-related, Fe-related. We tried to assess biogenic production changes from Br distribution, admitting analogy of Br in Shira sediments to Br in Lake Baikal sediments (Phedorin et al., 2000

  8. Vertical Scan-Conversion for Filling Purposes

    OpenAIRE

    Hersch, R. D.

    1988-01-01

    Conventional scan-conversion algorithms were developed independently of filling algorithms. They cause many problems, when used for filling purposes. However, today's raster printers and plotters require extended use of filling, especially for the generation of typographic characters and graphic line art. A new scan-conversion algorithm, called vertical scan-conversion has been specifically designed to meet the requirements of parity scan line fill algorithms. Vertical scan-conversion ensures...

  9. 7 CFR 58.923 - Filling containers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filling containers. 58.923 Section 58.923 Agriculture... Procedures § 58.923 Filling containers. (a) The filling of small containers with product shall be done in a sanitary manner. The containers shall not contaminate or detract from the quality of the product in any way...

  10. Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes

    DEFF Research Database (Denmark)

    He, Maoshuai; Jin, Hua; Zhang, Lili

    2016-01-01

    electron microscopy, restructuring of the acorn-like Pt-Fe2O3 nanoparticles at reaction conditions is investigated. Upon heating to reaction temperature, ε-Fe2O3 is converted to β-Fe2O3, which can be subsequently reduced to metallic Fe once introducing CO. As Pt promotes the carburization of Fe, part...... of the metallic Fe reacts with active carbon atoms to form Fe2.5C instead of Fe3C, catalyzing the nucleation of carbon nanotubes. Nanobeam electron diffraction characterizations on SWCNTs grown under ambient pressure at 800 °C demonstrate that their chiral angle and diameter distributions are similar to those...

  11. Alveolar Ridge Preservation with nc-HA and d-PTFE Membrane: A Clinical, Histologic, and Histomorphometric Study.

    Science.gov (United States)

    Laurito, Domenica; Lollobrigida, Marco; Gianno, Francesca; Bosco, Sandro; Lamazza, Luca; De Biase, Alberto

    Alveolar ridge preservation has become a very common procedure following tooth extraction. This study presents a clinical, histologic, and histomorphometric analysis of postextraction bone changes using nanocrystalline hydroxyapatite (nc-HA) and exposed high-density polytetrafluoroethylene (d-PTFE) membrane. A total of 10 extraction sockets were treated. Clinical measurements were taken after tooth extraction with a customized acrylic stent to ensure the same measurement points. At 6 months, clinical measurements were repeated and bone specimens taken. An overall bone reduction was observed. The histologic and histomorphometric analysis revealed newly formed bone (25.92% ± 18.78%), soft tissue (28.55% ± 9.73%), and residual graft particles (15.43% ± 11.08%). Further studies are necessary to evaluate the efficacy of this technique over the long term.

  12. Tl response of KMgF3 :Lu+PTFE depending on the dose of gamma radiation of 60Co

    International Nuclear Information System (INIS)

    Lopez, A.; Gonzalez, P.R.; Furetta, C.; Azorin, J; Rivera, T.; Sepulveda, F.

    2002-01-01

    Due to the great interest in Tl dosimetry for measuring the levels of radiation doses, as environmental as in the different medical radiation applications in different laboratories of the World it is continued in the searching of new Tl materials with optimum dosimetric characteristics and low cost. In this work the obtained results when irradiating Tl dosemeters of KMgF 3 :Lu + PTFE with gamma radiation of 60 Co are presented. Such results showed that this material presents linearity of response depending on the dose between 0.016 to 100 Gy. Although it is continued with the characterization tests it is able to say that this Tl new material can be used for dosimetric aims. (Author)

  13. Preparation of thermoluminescent dosimeters of LiF: Mg, Cu, P + Ptfe for environmental radiological monitoring and radiodiagnosis

    International Nuclear Information System (INIS)

    Ramirez L, A.

    1996-01-01

    The necessity of finding a thermoluminescent material for measuring gamma and X radiation in applications like environmental monitoring, personnel dosimetry and biomedical sciences (radiotherapy and radiodiagnosis), but with special characteristics such as low umbral detection, independence of the energy of radiation and equivalency with the tissue. This made us think in lithium fluoride activated with magnesium, copper and phosphorous (LiF: Mg, Cu, P). In this thesis I developed this material chips like shape embedded in polytetrafluoroethylene (LiF: Mg, Cu, P+Ptfe). The chapter 1 and 2 talk about the atom is conformed and the interaction of the radiation with the matter. The requirements of Tl material, types of dosimetry system, biological effects and units of measurements are discussed in chapter 3 as well as the recommended limits of the International Commission on Radiological Protection ICRP. Chapter 4 shows aspects of the thermoluminescence phenomenon and describes, at the same time, the determination of the most important thermoluminescent parameters (kinetic order, energy or trap depth and the frequency factor). Chapter 5 describes the major characteristics and properties of Tl materials and its requirements for dosimetric use. Chapter 6 deals with the preparations of LiF: Mg, Cu, P+Ptfe chips and some tests for improving its sensitivity, describes the dosimetric tests and requirements proposed by American National Standard Institute ANSI-N545 Like: umbral of detection, homogeneity, fading, repeatability, linearity, effects of UV and fluorescent light etc. Finally in chapter 7 I do a report about analysis of results, conclusions and some recommendations. (Author)

  14. Laminae type and possible mechanisms for the formation of laminated sediments in the Shaban Deep, northern Red Sea

    Directory of Open Access Journals (Sweden)

    I. A. Seeberg-Elverfeldt

    2005-01-01

    Full Text Available Laminated sediments in the Shaban Deep, a brine-filled basin in the northern Red Sea, were analyzed with backscattered electron imagery. Here we present possible mechanisms involved in the formation of laminae of various types and homogenous intervals arising from the detailed investigation of multicore GeoB 7805-1 (26°13.9' N and 35°22.6' E; water depth 1447 m and gravity core GeoB 5836-2 (26°12.61' N, 35°21.56' E; water depth 1475 m. Sediment makeup includes six types: a a laminated structure with alternating light (mainly coccoliths and dark (diatom frustules layers, where the diatom component is indicative of the intra-annual variability between stratification and mixing events; b a pocket-like structure attributed to the sinking of particles within fecal pellets and aggregates; c a matrix of tightly packed diatoms that relates to extended stratification/mixing periods of the water column; d homogenous intervals that result from turbidity deposition; e silt accumulations which origin may lie in agglutinated foraminifers; and f pyrite layers with pyrite formation initiated at the seawater-brine interface.

  15. Preparation of Chitin-PLA laminated composite for implantable application

    Directory of Open Access Journals (Sweden)

    Romana Nasrin

    2017-12-01

    Full Text Available The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1–20% of PLA reinforced PLA films (CTP were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP were prepared by laminating PLA film (obtained by hot press method with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2 and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa and CTP2 film (8.83 MPa. After lamination of pure PLA and CTP2 film, the composite (LCTP yielded 0.265–1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical

  16. Preparation of Chitin-PLA laminated composite for implantable application.

    Science.gov (United States)

    Nasrin, Romana; Biswas, Shanta; Rashid, Taslim Ur; Afrin, Sanjida; Jahan, Rumana Akhter; Haque, Papia; Rahman, Mohammed Mizanur

    2017-12-01

    The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA) laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1-20% of PLA) reinforced PLA films (CTP) were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP) were prepared by laminating PLA film (obtained by hot press method) with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA) showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2) and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa) and CTP2 film (8.83 MPa). After lamination of pure PLA and CTP2 film, the composite (LCTP) yielded 0.265-1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical sector.

  17. Microhardness of bulk-fill composite materials

    OpenAIRE

    Kelić, Katarina; Matić, Sanja; Marović, Danijela; Klarić, Eva; Tarle, Zrinka

    2016-01-01

    The aim of the study was to determine microhardness of high- and low-viscosity bulk-fill composite resins and compare it with conventional composite materials. Four materials of high-viscosity were tested, including three bulk-fills: QuiXfi l (QF), x-tra fil (XTF) and Tetric EvoCeram Bulk Fill (TEBCF), while nanohybrid composite GrandioSO (GSO) served as control. The other four were low-viscosity composites, three bulk-fill materials: Smart Dentin Replacement (SDR), Venus Bulk Fill (VBF) and ...

  18. Review of fill mining technology in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K. H.; Hedley, D. G.F.

    1980-05-15

    The Canadian mining industry has a long history of being in the fore-front in developing new technology in underground hardrock mines. Examples include the development of hydraulic and cemented fills, undercut-and-fill, mechanized cut-and-fill, post pillar, vertical retreat and blasthole mining methods. The evolution of this technology is briefly described in an historical review. Backfill serves many functions, although it is generally considered in terms of its support capabilities. These functions, mainly related to the mining method used, are evaluated in regard to regional support, pillar support, fill roof, working floor, dilution control and waste disposal. With the advent of blasthole and vertical retreat methods for pillar recovery operations, the freestanding height of backfill walls has assumed greater importance. Consequently, more attention is being given to what fill properties are required to achieve fill wall exposures up to 25 m wide by 90 m high. With the large increases in energy costs, alternatives to partially replace Portland cement in fill are being examined. The validation of mining concepts and the interaction of backfill is perhaps best evaluated by in-situ measurements. Examples are given of stress, deformation and fill pressure measurements in longitudinal cut-and-fill, post pillar mining and blasthole stoping with delayed fill which were taken in several mines in Canada. Finally, the overall design procedure used in deciding mining method, stope and pillar dimensions, sequence of extraction, fill properties and support systems at a new mine is described.

  19. Hygrothermal effects on the tensile strength of carbon/epoxy laminates with molded edges

    Directory of Open Access Journals (Sweden)

    Cândido Geraldo Maurício

    2000-01-01

    Full Text Available The interlaminar stresses are confined to a region near the free edge. Therefore, the laminate stacking sequence and the free edge finishing are some of the factors that affect the strength of the laminate and limit its life. The use of molded edges eliminates the need for trimming and machining the laminates edges thus improving productivity. However, this fabrication technique may have a detrimental effect on the laminate strength for certain stacking sequences. This effect in the presence of moisture has not been characterized. This work presents the results of a comparative study of the resistance to delamination of laminates with machined edges and molded edges. Additionally, two environmental conditions were considered: dry laminates and laminates saturated with moisture. The tensile strength of the laminates were measured and micrographs were used to analyze the microstructure of the laminates near the free edges. It is concluded that the mechanical properties of advanced composites depend on the environmental conditions and the fabrication techniques used to produce the laminates. Therefore, it is necessary to account for these factors when experimentally determining the design allowables.

  20. Hygrothermal Effect on Mechanical and Fatigue Properties of laminated Lower Limb Socket and Bacteria Growth

    Directory of Open Access Journals (Sweden)

    Fadhel Abbas Abdullah

    2016-12-01

    Full Text Available In this work, hygrothermal effect on the mechanical and fatigue properties of prosthetic socket lamination and its effect on the bacteria growth were studied. Two laminations composite materials were used in manufacturing prosthetic socket by using vacuum device. The reinforced materials of these laminations were perlon and carbon nanopowder (CNP while the matrix material was polyurethane resin. Tests performed in this work were the moisture absorption properties test to calculate percent moisture content according to ASTM 5229, tensile and fatigue tests with and without the hygrothermal effect to find the mechanical and fatigue properties, and the bacteria growth test under the hygrothermal effect to calculate the number of bacteria on the laminations. The results showed that the lamination (10 perlon+1 wt % CNP has mechanical properties than lamination (10 perlon with and without hygrothermal effect. The mechanical and fatigue properties for the two laminations were decreasing with increasing temperature and moisture.. Adding carbon nanopowder to the lamination (10 perlon increased ultimate stress, modulus of elastic, and endurance limit by (1.36, 2.35, and2.72 time respectively. Finally, the results showed that the Staphylococcus aureus growth increases with increasing temperature and moisture on the two laminations used in manufacturing prosthetic socket, and adding carbon nanopowder also increased the Staphylococcus aureus growth on the lamination.